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ABSTRACT

This thesis presents three emerging computational methods: machine learning,

gradient-free optimization, and Bayesian modelling. Each method is showcased in

its ability to enable energy savings in new and existing buildings when paired with

dynamic energy models. Machine learning algorithms provide rapid computational

speed increases when used as surrogate models, supporting early-stage designs of

buildings. Genetic algorithms support the design of complex interacting systems in a

reduced amount of effort. Finally, Bayesian modelling can be leveraged to incorporate

uncertainty in building energy model calibration. These methods are all readily avail-

able and user-friendly, and can be incorporated into current engineering workflows.
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Chapter 1

Introduction

Significant improvements need to be made in the building construction and engi-

neering industry. Buildings account for approximately 30% of global energy con-

sumption, and reducing emissions in new and existing buildings by 59-65% is key

to meeting climate targets in British Columbia [1]. How to cost-effectively engineer

high-performance buildings remains a non-trivial challenge facing the industry today.

Unfortunately, the building engineering industry is fraught with arduous and time-

consuming workflows and methods. Building systems design relies on rules of thumb,

standards, and conservative estimates [2]; the end result is risk-adverse designs that

perform sub-optimally in order to save on up-front engineering effort and offload risks.

Energy consumption in buildings is regularly 30-50% higher than predicted during

design stages [3]. This is partly due to decisions made early on in the design pro-

cess. These decisions typically become locked-in as they are exceedingly expensive to

remedy as projects move forward. Devising evidence during early stages of design is

particularly challenging because buildings tend to be unique be-spoke developments

with a vast number of design parameters and possibilities [4].

When compared to other major industries, construction is fragmented and inef-

ficient, however, there remains a significant opportunity to leverage automation and

digitization. Engineers, likewise, need to prepare and modernize their workflows.

There remain opportunities to transform the manual time-consuming task effort to

value-added analysis and detailed design.

Issues arise not only in the design of new buildings, but also in the operation of

existing buildings. It has been estimated that up to 30% of energy consumed in the

existing building stock is due to inefficient operation [5]. While the capital cost to

remedy these problems is much less than major system upgrages, the up-front labour
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cost to identify the inefficiencies and suggest improvements is still a barrier to uptake

[6].

A further barrier to reducing energy consumption and carbon emissions is the lack

of confidence surrounding building retrofit decisions. Standard modelling practice

does not adequately represent the uncertainty of calibrated models [7]. It has been

shown that property owners require a higher internal return on investment for energy

reduction measures compared to other financial investments [8].

Advances in computational power have unlocked the capabilities of demanding

analytical algorithms, including machine learning, Bayesian modelling, and gradient-

free optimization. In recent years these tools have been implemented in user-friendly

programming packages such as open-source Python libraries. Examples include Ten-

sorFlow for machine learning [9], Platypus for optimization [10], Eppy for EnergyPlus

simulations [11], and PyMC3 for Bayesian modelling [12]. Simple integration with

cloud computing now allows single users the capability of large-scale development,

simulation, and analysis that would have previously required in-house supercomput-

ing.

Machine learning is a field of artificial intelligence containing a number of algo-

rithms that mimic how humans learn from data [13]. Their use has expanded greatly

in all domains, but remains limited in the building engineering practice. There are

many opportunities for machine learning in the building domain, but one promis-

ing application is the creation of surrogate models. Surrogate models can emulate

the outputs from detailed dynamic energy models at a fraction of the computational

cost. For example, a standard EnergyPlus model requires on the order of minutes to

simulate, whereas a surrogate model only requires on the order of milliseconds.

Gradient-free optimization algorithms include genetic and evolutionary algorithms

that mimic biological evolution [14]. They allow the optimization of systems where

an analytical solution is difficult or impossible to determine. The methods unlock

automated identification of optimal solutions of multi-objective and multi-parameter

problems. This can be used to identify scenarios with complex interactive dependen-

cies between systems, such as the optimal control of building systems.

Bayesian modelling is based on Bayes’ theorem, a statistical proof that mimics

human decision-making in uncertain conditions [15]. The models update based on

new observations, and allow previous knowledge to be incorporated. They can be used

to calibrate building models while inherently quantifying the amount of uncertainty

therein.
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This thesis presents an overview of recent advances in computational design and

analysis tools in the form of three separate manuscripts. The first manuscript is a

study of how machine learning can be used to support the early-stage design of a com-

plex mechanical building system by utilizing an artificial neural network. The second

manuscript is a case study on the simultaneous optimization of indoor air quality

and energy performance of a very common mechanical system type. Finally, the

third manuscript is a real-world implementation using a nascent Bayesian inference

technique to calibrate a large retail building.

1.1 Summary of Contributions by Author

The main contributions by author for each manuscipt are broken down by chapter as

follows:

Chapter 2: Rulff, D., Cant, K., and; Evins, R. (2021). Analysis of Feature

Importance in Modeling Ground Source Heat Pump Systems Using Broad Paramet-

ric Analysis, Load Characterization and Artificial Neural Networks. In eSim 2021

Conference Proceedings. Vancouver, BC; IBPSA.

K.C. and D.R. conceived of the project and wrote the manuscript. K.C. de-

veloped the case study model and neural network, and performed the feature im-

portance. D.R. performed the ground-source heat pump post-processing and devel-

oped the fourier transform methodology. R.E. supervised the project and revised the

manuscript.

Chapter 3: Cant, K., and; Evins, R. (2021). Optimizing VAV Terminal Box

Minimum Positions using Dynamic Simulations to Improve Energy and Ventilation

Performance. In Building Simulation 2021 Conference Proceedings. Bruges; IBPSA.

K.C. conceived of the project, developed the methodology and models, performed

the analysis and wrote the manuscript. R.E. supervised the project, contributed to

the discussion, and revised the manuscript.

Chapter 4: Cant, K., and; Evins, R. (2022). Improved Calibration of Building

Models using Approximate Bayesian Calibration and Neural Networks. Submitted to

the Journal of Building Performance Simulation.
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K.C. conceived of the project, developed the methodology and models, performed

the analysis and wrote the manuscript. R.E. supervised the project and revised the

manuscript.
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Chapter 2

Analysis of Feature Importance in

Modeling Ground Source Heat

Pump Systems Using Broad

Parametric Analysis, Load

Characterization and Artificial

Neural Networks

Abstract

This paper considers the case of modeling a ground source heat pump with a range

of temporal load dynamics to identify the important features used for estimating per-

formance. Heating and cooling load profiles are generated using extensive parametric

sampling of a base office building simulation, including variation of a set of parameters

for heat pump system design and properties of the ground. Load characteristics are

extracted from the models using aggregate output and application of Fourier Trans-

form decomposition to describe periodic behaviour. Artificial neural networks are

used to estimate the heating and cooling performance metrics of the ground source

heat pump system, with significant accuracy using the full feature set (R2>0.98). The

resulting loss in accuracy due to reduced dimensionality through feature grouping is

also shown, with implications for early stage design and performance modeling.
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2.1 Introduction

Ground Source Heat Pump systems have the potential to significantly reduce building-

sourced GHG emissions by efficiently exchanging thermal energy with a Ground Heat

Exchanger (GHE) and using electricity as a low-carbon energy input where generation

comes from renewable sources.

The significant variability in weather and ground conditions, along with the large

number of design parameters for both the building systems and GHE field, creates a

vast problem space that makes simulation of explicit configurations highly complex

and generalized modeling efforts computationally intractable [16]. Additionally, the

detailed information required to accurately model the GSHP system is not typically

available at the early stages of design.

The objectives of this study are:

1. separate the overall problem into component sub-models (building, GSHP, GHE)

and reduce dimensionality of the problem space through aggregate characteri-

zation of building heating and cooling load profiles to support generalization of

results

2. identify the important features of the systems that influence GSHP performance

and loading ratios through application of large scale parametric simulations

3. provide and compare the accuracy of preliminary models based on simplified

feature groupings for prediction of GSHP performance using Artificial Neural

Networks (ANN)

2.2 Existing Work and Contribution

The level of detail Incorporated into the model of thermal energy transfer and storage

dynamics for GHE fields varies depending on the purpose of the work. Reviews of

the research domain distinguish between thermal response factor methods, numerical

thermal methods, artificial neural network models, and state-space models [17].

The behaviour of a GHE field as a thermal mass can be measured through the re-

sponse over time to unit step heat pulses [18]. A major development by Eskilson

[19] used a numerical finite-difference method to express the temperature response at

the borehole wall in terms of dimensionless ”g-functions”. These g-functions must be
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calculated directly for each GHE configuration, which can be computationally time-

consuming for parametric studies [20]. This work has since been expanded upon in

a variety of ways [21], though g-functions continue to be used in integrated building

simulation software [22].

Work on characterizing ground temperature profiles (both surface and at various

depths) based on local weather information and material properties is an ongoing

area of research [23], including identifying relationships between air temperature,

ground temperature and altitude [24] or investigating the impact of surface air temp

fluctuations on long term vertical GHE performance [25].

Significant headway has been made with the application of machine learning to GHE

modeling, due to the complexities inherent in the problem [26]. Artificial Neural Net-

works (ANN) have shown promise for capturing the important dynamics of the GHE

field [27][28].

ANNs are used heavily for both classification and regression, and with sufficient train-

ing data can accurately predict building energy outputs, such as annual heating and

cooling loads and heat pump seasonal COPs, given proper hyperparameter tuning

[29]. This study adopts ANN methods to support sensitivity analysis, feature selec-

tion and to develop computationally efficient representations of not just the GHE

field, but also the GSHP plant performance in response to variable thermal load pro-

files.

There has been some research into applying the Fast Fourier Transform to decom-

pose load profiles into characteristic frequencies, with uses including forecasting of

electrical consumption [30] and for characterizing heating demands to inform the de-

sign and sizing of thermal storage [31]. This paper extends this analysis with the use

of Fourier Transform to identify important periodic features of heating and cooling

profiles influencing GSHP performance.

The design of GSHP systems has a strong tradition in engineering practice, with

ASHRAE publishing a detailed design guide [32][33]. Vital considerations for design

include avoiding seasonal drift in ground temperatures due to unbalanced heating and

cooling loads, which largely drives the need for accurate, detailed simulation of GHE

fields [34]. Research into the performance of heat pump technology itself continues

[35]; however, the fundamental physics of the vapour compression cycle are well un-

derstood, and performance can be reliably estimated with a reduced set of system

variables including fluid temperatures, flow rates and equipment design specifications

[36].
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EnergyPlus is a whole building simulation program that integrates Eskilson’s g-

functions to model vertical GHE fields connected to GSHP plants in a variable time-

step load aggregation scheme, showing average error in predictions for heat transfer of

4-6%, and for electricity consumption of less than 3%, compared to experimental data

[37]. There exists significant potential to leverage the detailed, building-integrated

simulation potential of EnergyPlus for broad parametric studies of GSHP perfor-

mance potential [38][39].

Methodology

2.2.1 Model Structure

The overall problem space was divided into three component sub-models for analysis

(shown in 2.1): the building, the GHE field, and the GSHP plant. The building

sub-model encompasses an expansive set of architectural, mechanical and electrical

design parameters that are used in an hourly simulation to generate heating and cool-

ing loads. The GHE field is represented by parameters about ground conditions and

interactions with the geo-exchange system configurations, capturing dynamic heat

transfer and storage behaviour in the simulation. The GSHP plant connects the

building loads to the GHE field, accounting for input equipment specifications and

controls to determine the electricity consumption required to handle the heating and

cooling loads of the system.

All components are simulated in EnergyPlus using BESOS for access to parametric

modeling and machine learning functionality, over the course of one operating year for

Victoria, BC (using standard Canadian Weather for Energy Calculations (CWEC)

provided by Environment Canada).

2.2.2 Building Definition

Baseline building assumptions were derived from the National Energy Code for Build-

ings (2015), with general inputs for building program, operating schedules, and geom-

etry generated through work by National Resources Canada (NRCan) versions of the
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Figure 2.1: Model Overview.

Commercial Prototype Building Models originally created by the US DOE [40]. A

Medium Office archetype was selected as a common platform for generating thermal

load profiles and exploring the impact of a variety of system changes.

Each rectangular floorplate is 1,660 m2 and represented by 5 thermal zones in the

model (perimeter and core). A central VAV system with air-side economizer control

and heat recovery serves each zone, with hydronic reheat coils and baseboards for

perimeter heating loads. An additional server room is included with each building,

acting as the space containing the additional IT loads and served by a fan coil unit

connected to the central hydronic loops.

To generate a sufficiently diverse set of heating and cooling loads, variations of a set

of building design parameters was included as part of the expansive sampling of the

problem space. These parameters, along with their sampled ranges, are shown in

Table 2.1.

2.2.3 Geo-exchange Field

This study focuses on a vertical, closed loop, ground-coupled heat exchanger configu-

ration, which make up 80% of installed systems in Canada [16]. The field is comprised

of vertical boreholes drilled into the ground with closed piping loops and grout infill,

conveying the heat transfer fluid and facilitating exchange to the surrounding soil,

rock and other subsurface materials.
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Parameter units range

1. Orientation deg (-45) - 45

2. Wall/Roof Insulation W/m2K 0.7 - 3.0

3. Slab Thickness m 0.01 - 0.10

4. Window U-value W/m2K 1.0 - 2.5

5. Solar Heat Gain Coef. 0.2 - 0.8

6. Window to Wall Ratio % 20 - 90

7. Horiz. Shading Depth m 0 - 1

8. Daylight Control frac 0 - 100

9. Lighting Power Density W/m 3 - 15

10. Plug Load Density W/m 0 - 20

11. Data Centre Load kW 0 - 10

12. DHW Load L/s 0.04 - 0.2

13. Infiltration L/sm2 0.1 - 0.5

14. Ventilation Effectiveness frac 0.5 - 1.5

15. Cooling Setpoint ◦C 22 - 26

16. Humidification RH 0 - 40

17. Dehumidification RH 50 - 100

18. Peak Occupancy m2/occ 10 - 100

19. Storeys 3 - 7

Table 2.1: List of building design parameters for Medium Office
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Parameter units range

20. Ground Conductivity W/mK 0.5 - 8.0

21. Soil Specific Heat J/kgK calc’d

22. Average Soil Surface Temp. ◦C 8 - 22

23. Average Amplitude of Temp. ◦C 2 - 12

24. Borehole Spacing m 5 - 8

25. Borehole Length m 75 - 200

26. Number of Boreholes calc’d

27. Ref. Field Loop Flow m3/s calc’d

Table 2.2: List of design parameters for the GHE field
The parameters representing the properties of the ground are included in Table 2.2,

along with borehole design context assumptions [41]. Boreholes drilled between 75 to

250m may pass through organic sand and soils, silt and clay deposits, limestone, gran-

ite and other dense rock; therefore, ranges in properties were selected accordingly [16].

2.2.4 Ground Source Heat Pump Plant

All heating and cooling loops are connected to a central plant comprised of a multi-

compressor GSHP, along with supplemental chillers and boilers. The GSHP takes

priority for satisfying building heating and cooling loads, with peaking equipment

scheduled to operate in sequence. Both building-side loop and ground loop connec-

tions control energy transfer using 3-way bypass flow-control valves.

The heat pump performance is calculated using EnergyPlus multi-linear regression

curves that determine part load thermal output and power consumption. The coeffi-

cients assumed were typical values used in the program’s sample files and described

in the engineer’s manual [32].

The GSHP parameters are listed in Table 2.3, with the primary independent vari-

able being reference cooling capacity. Reference heating capacity is set to be equal

to nominal cooling capacity, and flow rates through the equipment and GHE is set

based on a design loop temperature difference across the heat pump. Rated COP

values are adjusted to ASHRAE 90.1 testing conditions [32].
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Parameter units range

28. Cooling Capacity kW 10-200

29. Cooling Design COP 6.2

30. Heating Capacity kW calc’d

31. Heating Design COP 3.6

32. Flow Rates m3/s calc’d

33. Pump Power W calc’d

Table 2.3: List of GSHP design parameters for Medium Office
2.2.5 Parameter Sampling

The overall parametric run involved 10,000 simulation samples using latin-hypercube

sampling, which divides the design parameter space into equally large hypercubes and

randomly collects samples from within each hypercube. Hourly data for each of the

variables was extracted and stored for each EnergyPlus sample. These were used to

calculate the hourly building thermal loads, heat pump output, loop temperatures,

and electricity consumption by the equipment to satisfy heating loads and cooling

loads.

2.2.6 Model Characteristics and Feature Selection

Characterizing the heating and cooling load profiles across samples is important both

to understand the bounds of the scope of this study, and to narrow in on the signifi-

cant information that influences GSHP performance. A set of profile characteristics

have been selected to encompass the high level information that might be available

to practitioners estimating GSHP performance, along with metrics capturing profile

ranges and temporal dynamics. This set is not intended to represent an exhaustive

collection, and future study could incorporate more granular characteristics (such as

total monthly loads).

The Detailed Building Characteristics include seven derived from FFT decomposi-

tion of the hourly net heating and cooling load profiles. Each of these characteristics

represents the cumulative amplitude of distinct, meaningful ”bins” in the frequency

domain. ”Imbalance” represents correlation with a zero frequency component, there-

fore showing annual imbalance between heating and cooling. Stronger amplitude in
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each of the other bins reflects greater contribution to total loads from periodic be-

haviour of the noted frequency. These features help characterize the relationships

between base thermal demands, periodic loading and ”noise” for each run.

Overall, these characteristics form the input parameters that will be considered to

define the building loads independent of the detailed building information, opera-

tion, and weather that lead to the generation of these characteristics. Converting to

these characteristics allows for agnostic comparison of GSHP performance regardless

of building details, and allows for generalization of the results. The results apply

for buildings with load characteristics within the bounds of this study. The original

building parameters were important only for generating the heating and cooling load

profiles, and are therefore considered extraneous to the following stages of the study.

2.2.7 Feature Importance Selection

The four primary output objectives for the models in this study are the proportion of

annual load satisfied by the GSHP (proportion of load met) and the relative electrical

input to satisfy those loads (seasonal COP, or SCOP) for each of heating and cooling,

which are identified as the four ’labels’. Artificial Neural Networks (ANNs) are used

to determine feature importance, and the accuracy of the ANNs depending on the

selection of input features represent the relative accuracy of simplified inputs to the

energy model.

Hyperparameter tuning of ANNs is the selection of inputs and architecture that de-

fines the ANN model, such as regularization coefficient, number of nodes per hidden

layer, and total number of hidden layers. In order to compare the performance of the

ANN models, the overall parametric simulation dataset is split first into a training

set (with 80% of total simulations), and a testing set (with 20% of total simulations).

The training set is further divided using the k-folds cross validation method with

three folds. K-folds cross validation works by further dividing the training set by the

number of folds. For each set of hyperparameters, a unique model is trained on two-

thirds of the training set, and the remaining one-third is used as the test set. This is

repeated for each fold, and the average performance metrics are used to evaluate the

overall hyperparameter score [42]. The hyperparameters with the highest scores are

selected as the optimally tuned model and is then trained on the full training set and

tested on the original testing set.
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The neural network is a feed-forward neural network, trained via stochastic gradient

descent to minimize R2 score of the inputs and outputs scalarized between 0 and 1.

The hyperparameters selected for tuning included number of layers, between 1 and

3; number of nodes per layer, between 20 and 400; and L2 regularization parameter

alpha, between 1 and 0.001.

Hyperparameter tuning was performed for a baseline ANN that included the entire

feature set and output all four labels. The optimal hyperparameters were retained

and held consistent across all subsequent ANN models in the study. All model cre-

ation and modification was done using Keras for Tensorflow.

The main metric used for scoring of the models was the coefficient of determination

(R2 score). An ANN generated by all of the features is used as the baseline model.

Feature importance was first estimated by removing one feature at a time and re-

training the model. The average score of the new model across the four labels was

compared to that of the baseline model with all features. The difference in scores

was used as the metric for comparable feature importance. A larger difference in

scores implied that there was a larger dependence on that feature, or that the feature

was more important. However, the presence of correlated features would artificially

reduce the importance metric; where if both features are removed the overall loss in

score would be greater than the sum of the two individual reductions.

2.2.8 Simplified Feature Grouping

The overall feature space is grouped into different sets of simplified features. These

feature sets are grouped to represent different levels of information that may be avail-

able to the designs and modellers at early stages. The key characteristics and feature

groupings are summarized below:

1. Simple Building Information, including

� Site Location

� Total Annual Heating Load

� Total Annual Cooling Load

� Relative Heating HP Sizing
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� Relative Cooling HP Sizing

2. Detailed Building Characteristics, including

� Simple Building Information

� Imbalance

� Annual

� Semiannual

� Weekly

� Daily

� Semidaily

� Hourly

3. Detailed Soil Conditions, including

� Detailed Building Characteristics

� Ground Thermal Conductivity

� Ground Thermal Heat Capacity

� Average Amplitude of Surface Temperature

4. Site Location, including

� Average Soil Surface Temperature

2.3 Results

2.3.1 Load Characterization

Three illustrative buildings are selected based on building designs with the 90th, 50th

and 10th percentiles for annual heating demand. Figures 2.2 shows the heating and

cooling, along with the corresponding temperature of the flow leaving the GHE field.

Some general observations can be made, such as that the outlet temperature becomes

more volatile under greater cooling loads, and the field is generally warmer. However,

these examples also show that even in the same location, for the same building type,

total heating and cooling loads are not always correlated.
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Figure 2.2: Annual heating and cooling load profiles with temperature of fluid leaving
ground, (sample for 90th, 50th, and 10th percentile total heating demand)

Figure 2.3 summarizes the performance under each building characteristic for the

full sample set (of 9440 building configurations), with the three buildings highlighted.

2.3.2 Feature Importance

The baseline model hypertuning resulted in an optimal model with an overall R2

score of 0.99 on the testing set, with individual label scores shown in Figure 2.5. The
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Figure 2.3: Distribution of characteristic results across full solution set (sample size:
9440)

optimal hyperparameters identified by the k-folds cross-validation procedure included

two hidden layers each with 105 nodes, and an L2-regularization coefficient of 1.0.

These hyperparameters were included for all future ANN development. Additional

models are developed to identify the feature importance. The results are shown in

Figure 2.4 for each label. The average ground surface temperature dominated the

feature importance for both heating and cooling COP. Almost all other features had

a negligible impact on R2 score. Feature importance was more widespread for pro-

portion of heating and cooling load satisfied by the GSHP.

2.3.3 Reduction of Features Accuracy

From the initial full feature baseline ANN model, three additional models were trained

with subsets of features based on the original characteristic sets. Their performance

estimating the objectives are compared in Figure 2.5.

A fourth model was trained only using the feature identified as ”most important”

(Average Soil Surface Temperature). Without sizing information, it was incapable

of estimating the proportion of heating and cooling loads served, but it achieved R2

scores of 0.74 and 0.88 for estimating cooling SCOP and heating SCOP respectively.
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Figure 2.4: Feature importance based on R2 score loss for objectives across test set

2.4 Outlook and Conclusions

This study has demonstrated that ANN methods can predict GSHP performance

and system loading with sufficient accuracy (R2 > 0.98) within a narrow scope of

building types and ground conditions, and that the process identifying important

features in GSHP performance modeling can be efficiently handled with those same

meta-models.

Furthermore, the study provided preliminary results of a comparison of simplified

models that better reflect the limited information available in early stages of design,

and showed promising results for using computationally efficient ANN meta-models

to replace high fidelity simulation, where only preliminary performance and loading

proportion estimates are needed. As part of this approach, additional load char-

acterization using Discrete Fourier Series decomposition was also shown to provide

significant benefit for reducing prediction error.

The most important feature influencing GSHP performance (by a significant mar-

gin) was Average Soil Surface Temperature. This aligns with most simplified models

for GSHP performance, which identify correlation coefficients for inlet temperatures

(from the field); however, the results from the models trained on reduced feature sets
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Figure 2.5: Predicted vs. actual objective performance across test sets

demonstrate that using only the most important features is not sufficient to maintain

that prediction accuracy. The potential loading proportion of the GSHP plants was

influenced by a more varied set of features.

There were notable limitations to the study that prevent generalize-ability. Instead,

this study indicates promising direction of investigation that could be continued in a

variety of ways, including:

� Including additional characteristics/features (expanding on Fourier Series load

profile decomposition)
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� Refining feature selection process (applying a more statistically rigorous DOE)

� Expanding scope of study (parameters, building types, weather files, etc.)

� Bringing in more detailed system modeling for design support (both GSHP

plant and GHE field, over longer time horizons)
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Chapter 3

Optimizing VAV Terminal Box

Minimum Positions using Dynamic

Simulations to Improve Energy

and Ventilation Performance

Abstract

Variable air volume (VAV) systems have historically been designed following methods

that result in excess energy consumption and inadequate ventilation. Designing VAV

systems using heating and cooling design days and following the ASHRAE 62.1-2010

Ventilation Rate Procedure is shown to be inadequate for its intended purposes. A

method for quantifying energy and ventilation performance using dynamic energy sim-

ulations is coupled with a genetic algorithm to optimize VAV terminal box minimum

positions and central outside air damper minimum position. The genetic algorithm

results in improved energy performance while simultaneously addressing concerns for

underventilation, as shown in a case study medium office archetype energy simulation.

The method provides an opportunity to improve energy consumption and indoor air

quality in the existing building stock without requiring extensive capital retrofits or

complex controls algorithms.
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3.1 Introduction

The background and motivation for this research is presented below. First, multi-

zone central variable air volume (VAV) air handling units are introduced, then the

industry standard method for specifying ventilation rates is described. Next, research

trends on the competing objectives of indoor air quality and energy consumption is

discussed. Finally, the academic contributions of this research are defined.

3.1.1 VAV Systems

Multi-zone central variable air volume (VAV) air handling units are the most com-

monly installed HVAC system in North American commercial and institutional facil-

ities [43, 44]. Simple VAV systems are comprised of a central air handling unit that

is usually equipped with a variable-speed fan, heating and cooling coils, and a mix-

ing box to maintain the air flow rate, the temperature, and ventilation, respectively.

Downstream of the central unit, VAV terminal boxes maintain space temperatures by

modulate dampers to vary the supply of air.

The mixing box is a set of dampers that modulate to mix return air from the

occupied spaces with outside air for ventilation. Supply air temperature setpoints

are set cold relative to the occupied space setpoints regardless of operation, usually

at 13◦C. When outside conditions are favourable the mixing box will increase the

proportion of outside air to reduce cooling energy; referred to as air-side economizing.

The outside air damper will have a minimum damper position setpoint such that

adequate ventilation is maintained.

Terminal box dampers are likewise programmed with a minimum box position so

that during periods of low loads—and therefore low airflow—there remains adequate

ventilation air. Minimum box position setpoints have historically also served the role

of addressing concerns that occupants feel ‘stuffy’ at a lack of adequate air movement,

or feel ‘drafty’ from cold air ‘dumping’ due to a lower diffuser throw at lower airflow

rates [45]. Terminal boxes can be equipped with heating coils to prevent overcooling

or to provide supplemental heat as required, and are referred to as reheat boxes.

VAV terminal boxes can be classified as pressure dependent or pressure indepen-

dent. Pressure independent boxes are installed with airflow measuring devices that

directly calculate the amount of air passing through the box. Pressure dependent

boxes do not measure the airflow and simply modulate the damper to meet thermal

loads. The amount of airflow as a function of damper position is non-linear and
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dependent on the relative pressure in the upstream ductwork. Newer VAV terminal

boxes are more likely to be pressure independent than older boxes.

Older building automation systems (BAS) are simply collections of independently

operating control hardware. Zone-level and system-level equipment on older systems

do not have the capability to communicate with each other or be controlled by a

central algorithm. These legacy systems lack the ability to be upgraded with some of

the newer, more complex, algorithms needed for building-wide optimized operation.

3.1.2 Ventilation Rate Procedure

The most commonly followed design process for ensuring adequate ventilation from

a VAV system is the Ventilation Rate Procedure (VRP) from ASHRAE Standard

62.1, Ventilation for Acceptable Indoor Air Quality, section 6.2 [46]. The standard

requires that an adequate amount of outside air is supplied to the breathing zone by

the VAV ‘delivering no less than the minimum ventilation rates required whenever

the zones are occupied’. The minimum ventilation rate specified by ASHRAE 62.1

VRP is a summation of a floor area-based rate and an occupancy-based rate [47]. The

VRP is a calculation procedure where a critical zone is determined based on worst-case

conditions which define the system ventilation efficiency and required outside air rate.

The standard does not dictate to the designers how to select worst-case conditions,

but standard practice has been to analyze the system at cooling and heating design

days during occupied periods [48, 49].

ASHRAE 62.1 also does not dictate a terminal box minimum position, however,

ASHRAE standard 90.1, Energy Standard for Buildings Except Low-Rise Residential

Buildings, stated that ‘the minimum airflow for the VAV reheat boxes should be set

to 30% of the zone peak supply air volume or the outside air ventilation rate, or

the airflow rate required to comply with applicable codes or accreditation standards,

whichever is larger’. While the Standard revised the minimum from 30% to 20% in

2013 [50], setting the minimum boxes to 30% is the default and standard practice for

equipment manufacturers, and it can be assumed that most of the existing building

stock follows this default [48, 49].

3.1.3 New research on VAV box minimums

HVAC designers use data sheets from equipment manufacturers and guidelines to

design their systems. Manufacturers give an acceptable VAV box damper control
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range, typically being a 30% minimum. This default is then carried onwards for

design, installation, and commissioning of systems. ASHRAE RP-1353 [51] tested

a number of VAV boxes from popular manufacturers at a range of operations and

found that most VAV boxes are suitably accurate down to approximately 5% damper

position.

Within the HVAC design community, it is commonly assumed that a minimum

amount of airflow within spaces is required to properly mix air. This eliminates cool

air ‘dumping’ at low airflows and reduces ‘stuffiness’ within zones. ASHRAE RP-

1515 [45] identified that those assumptions are baseless. Feeling ‘drafty’ is more likely

from overcooling caused by minimum box positions set too high, and feeling ‘stuffy’

is correlated with overheating and not ventilation rates. The researchers found that

reducing the minimum box positions to around 10% to 20% actually increased the

thermal comfort of the occupants and reduced energy consumption by approximately

14% in a case study building.

[5] identified that retuning the minimum VAV box damper setpoints is the most

effective control measure for medium and large commercial buildings. They estimate

that on a per-building basis a site energy reduction of approximately 15% is possible,

and nation-wide retuning of minimum damper setpoints could reduce national site

energy consumption by over 6%. In addition, [52] estimate that the economic benefit

of improving ventilation in the existing American building stock is potentially 40

billion USD per year.

3.1.4 Competing Objectives of Energy and Indoor Air Qual-

ity

Providing adequate fresh air to occupants of the built environment provides numer-

ous health benefits and can significantly reduce the likelihood of the ‘sick building

syndrome’ [53]. Indoor air quality can be modelled as a balance between source

contaminant generation rate and ventilation dilution. Numerous challenges and un-

certainties associated with contaminant source control has lead to ventilation being

the main method in maintaining indoor air quality [54]. Conditioning outside air,

however, can be one of the largest energy expenditures in operating buildings. This

leads to an obvious tradeoff between energy consumption and indoor air quality.

There have been a number of studies that have investigated the tradeoff between

energy and indoor air quality for central VAV systems. [55] studied eight ventilation
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methods to quantify energy consumption (using a set of polynominal models in con-

junction with BLAST models), and ventilation performance (using maximum CO2

as the indoor air quality identifier). [44] quantified the potential energy savings of

using advanced occupancy sensors to control both the zone lighting and operation

of terminal boxes. [56] used the maximum CO2 in a space as a proxy for indoor air

quality while optimizing an equipment’s on/off schedule. [57] and [58] used produc-

tivity models to convert indoor air quality and thermal comfort into an annual dollar

value for optimizing ventilation rate and space temperature.

[59] and [60] both integrated a multi-objective algorithm directly into the HVAC

control system to trade off ventilation and energy consumption. [61] developed a

surrogate model to replace high-fidelity CFD models to optimize ventilation, thermal

comfort, and energy consumption, using maximum CO2 concentration as the identifier

for indoor air quality.

3.1.5 Novelty of Research

To quantify indoor air quality performance, researchers tend to use either maximum

CO2 concentration in occupied zones or a productivity model. CO2 concentrations

has been proven to be a poor choice as indication of indoor air quality [54]. In fact, the

use of CO2 is likely an artefact from historical versions of the ASHRAE 62 standard

[46]. There is ongoing debate and further research required to fully understand the

impact of ventilation on human comfort and health; however, there is strong evidence

to suggest that underventilating below the minimum requirements in ASHRAE 62.1-

2010 has a significant negative impact on occupant health and contributes to the sick

building syndrome [62, 53, 46]. Recent research has found a potentially quantifiable

economic impact of inadequate ventilation; however, further research is recommended

before it is generally applicable [53].

None of the studies on different control strategies or building optimization have

considered the selection of VAV box minimums. Recent research has trended towards

increasingly complex control algorithms and requires additional sensors located in

each zone. These studies do not address the large existing building stock that can

not implement these algorithms without extensive upgrades to their control systems

[63]. In addition, the requirement for additional sensors located in all zones may

significantly increase the amount of intrusive maintenance in order to ensure proper

operation of the HVAC systems [64]. Finally, there should be a preference for sim-
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pler control systems: a large study on high-performance UK buildings has identified

complex controls systems as a major contributor to the performance gap [65]. The

solution presented in this research is mainly applicable to improving the performance

of the existing building stock, which likely do not have the capability to extend their

control systems to include the novel higher performance control algorithms.

This paper addresses these issues in the field of optimizing the tradeoff between

indoor air quality and energy consumption in two separate ways.

1. Quantification of indoor air quality performance relative to an ASHRAE 62.1-

2010 baseline, along with quantifying the variation in underventilation following

industry standard practice.

2. Quantifying the relative improvement in both energy consumption and under-

ventilation a case study energy model based on an archetype building by using

a genetic algorithm to retune the setpoints for terminal minimum box positions,

along with a comparison to a base case following the standard ventilation rate

procedure method.

The model, methods, and results are made publicly available1.

3.2 Methods

The methods used to calculate and optimize the energy consumption and ventilation

performance are documented below. First the dynamic simulation case study is pre-

sented, followed by the procedure for calculating ventilation performance, and finally

the genetic algorithm for multi-objective optimization is described.

3.2.1 Dynamic Simulation

An EnergyPlus model is used to simulate the energy consumption of a building over a

year. The building is a medium office, based off of the DOE medium office archetype

[66], and modified for use with the Net-Zero Navigator project [4], shown in Fig. 3.1.

The building is simulated with the CWEC 2016 Victoria, BC, Canada weather file.

The building is equipped with a single central VAV providing supply air at a constant

temperature setpoint of 13◦C to VAV terminals located in each zone. The terminal

1https://gitlab.com/KCant/ventilation-study.git
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Figure 3.1: Depiction of the DoE medium office archetype, a 3-storey core-and-shell
energy model.

boxes are equipped with hot water reheat coils that allow a maximum of 30% airflow

or the minimum box position, whichever is larger, during heating.

Airflow rate through dampers is simplified as being directly proportional to damper

position, and is independent of upstream or downstream pressure effects or non-linear

damper behaviour. The minimum airflow rate through a damper is therefore equal

to the minimum damper position multiplied by the nominal airflow.

3.2.2 Ventilation Calculation

Ventilation calculations follow ASHRAE 62.1-2010 Ventilation Rate Procedure (VRP).

For each hour of the year a minimum specified amount of outside air is required to

be supplied to each zone depending on its floor area and occupancy. The occupancy

and required ventilation rates used in the simulations follow ASHRAE 62.1-2010. De-

sign occupancy is 25 m2 per person, and occupancy schedule matches the Canadian

National Energy Code for Buildings (NECB) schedule type A, shown in Fig. 3.2.

The per floor area and per person ventilation rate for office zones is 0.3 L/s

per m2 and 2.5 L/s per occupant during all hours of occupancy. In addition, the

ventilation rate effectiveness factor, the percentage of supply air that reaches the

occupant breathing zone, depends on the location of diffusers, grilles, and supply

air temperature. Assuming ceiling located supply and return grilles leads toa 1.0

effectiveness factor.

For each 15-minute timestep across the year (8760 hours), the amount of out-

side air supplied to each zone is compared to the required amount of ventilation.

The quantities of underventilation is summed and compared to the nominal required

ventilation amount. The relative proportion is then presented as a percentage of

underventilation.

For the base VRP scenario, the design process is as follows: the minimum damper
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Figure 3.2: Weekday occupancy schedule for the office archetype.

position is predetermined for the terminal boxes and the simulation is run for the

heating and cooling design days. For each time step in the simulation the VRP from

ASHRAE 62.1-2010 section 6.2.5 is completed to calculate the central outdoor air

damper position required. The highest required damper position across the design

days is recorded and set as the central minimum outdoor air damper position for the

simulation.

3.2.3 Genetic Algorithm

The proposed procedure emulates the multi-objective optimization described in [67],

linking EnergyPlus with Python via the besos [68] suite, which connects the Eppy

library [11] to the Platypus optimization library [10] using a number of Python helper

functions.

A multi-objective optimization (MOO) genetic algorithm (GA) is used to optimize

the performance of the building. The objectives in the MOO are to minimize the

energy consumption and the amount of underventilation. Each of the 15 terminal

boxes in the building are allowed a unique minimum box position, ranging from 0%

(fully closed) to 100% (fully open). The MOO algorithm used is NSGA-II [69]2.

3.3 Results

The results of the simulations and optimization are presented. First, the benefits

of quantifying ventilation performance using dynamic simulations is shown. Next,

2For this case study, the population size is set to 100 and run for 10 generations, following the
standard rule-of-thumb of a 10:1 ratio of population size to generations. Crossover and mutation
operators and settings remained as the default platypus settings. The optimization algorithm is
only run once and therefore no guarantee of true optimality is reached; however, the results provide
a clear basis of discussion and show an improvement over standard practice. It is assumed that
industry uptake of the method would not require convergence of absolute optimality.
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the potential improvements of using a genetic algorithm to optimize minimum box

positions is compared to the traditional approach.

3.3.1 Quantifying Ventilation Performance Using Dynamic

Simulations

Table 3.1 displays the minimum outdoor air damper position, annual energy con-

sumption, and underventilation for each set of minimum VAV box terminal positions

(in 10Energy consumption ranges from 125 ekWh/m2 to 198.6 ekWh/m2, and un-

derventilation ranges from 0.5% to 2.8%. In particular, the industry default value of

30% across all zones is of interest, which results in a minimum VAV central outdoor

air damper position of 43% and 1.2% underventilation.

None of the solutions following the VRP technically meet the requirement that

ventilation systems must be capable of delivering the minimum ventilation rates at

all occupied hours of the year [47]. This is based on the interpretation that ‘capa-

ble’ includes actual hourly operation due to the designed setpoints, thermal loads,

occupancy, and control algorithms.

Table 3.1: VRP Results

Min. Box Min. OA Energy Cons. Underven-

Position Damper Pos. [ekWh/m2] tilation

10% 100% 134.2 1.3%

20% 46% 125.0 2.8%

30% 43% 135.5 1.2%

40% 30% 154.0 0.5%

50% 25% 174.7 0.7%

60% 22% 198.6 1.1%

When the central outdoor air damper minimum position is included as an addi-

tional parameter, the resulting solution space is expanded to include potential design

selections that either reduce the amount of underventilation, reduce the annual energy

consumption, or simultaneously reduce the energy consumption and underventilation.
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3.3.2 Optimizing Energy and Ventilation by Selecting Mini-

mum Box Position on a Zone-By-Zone Basis

The GA enabled the optimization of terminal box minimum position on a zone-by-

zone basis simultaneously with the central outdoor air damper minimum position.

The resulting pareto-front of nondominated solutions shown in Fig. 3.3 improved

both the ventilation and energy performance of the case study building. Assuming

30% default minimum box positions and ensuring no underventilation would require

a central outside air damper position of 80% to 90% and an energy consumption of

141.9 to 146.3 ekWh/m2. The optimized design can achieve no underventilation and

an energy consumption of 130.1 ekWh/m2, a savings of 8% to 11%. Alternatively,

the optimization results in a savings of 9% with no additional underventilation over

the default minimum terminal positions (30%) and the VRP procedure.

Figure 3.4 presents the pareto-optimal results from the genetic algorithm. Mini-

mum box positions mostly varied between 5% and 15% across the pareto front for east

and west zones, 0% to 20% across the pareto front for north zones, 15% to 35% regard-

less of position on the pareto front for south zones, and between 5% and 55% for core

zones. In addition, central outdoor air damper minimum position increased along the

pareto front. For external zones, the optimal minimum terminal box positions rarely

exceeded the default 30%, even when the focus was on minimizing underventilation,

supporting recent guidelines to reduce terminal box positions below the default 30%.

The trends along the pareto front can be summarized as the most effective ways to

reduce underventilation at the least cost to energy consumption.

3.4 Discussion

Quantifying ventilation using dynamic hourly simulations identified that seemingly

equivalent VRP-compliant designs resulted in a range of annual ventilation perfor-

mance. All of the seemingly compliant designs in this study do not technically meet

the requirements of ASHRAE Standard 62.1-2010 Ventilation Rate Procedure due to

periods of underventilation.

If the requirement for adequate ventilation is to meet the minimum ventilation

rate at any occupied period, designing the ventilation system based on a worst-case

heating and/or cooling design day is not appropriate. The results of this research show

that for a minimum box position of 30% set across all zones in this case study simu-
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lation, the required minimum outdoor air damper position would be 90%—a number

HVAC designers would likely balk at—and would look to increase the minimum po-

sition of terminal boxes in critical zones in order to reduce the central outdoor air

damper minimum position to a more conservative value. The resulting annual energy

consumption would increase by over 7% compared to the standard VRP calculation.

If the VRP design method is deemed valid by the authority having jurisdiction,

with minimum outdoor air damper position calculated according to the expected

operation on heating and cooling design-days, and underventilation of the proposed

designs varied from 0.5% to 2.9%, then that would suggest that the acceptable amount

of underventilation is flexible. Improving ventilation can improve occupant health and

reduce the prevalence of the widely acknowledged sick building syndrome. The impact

of short periods of underventilation, however, requires further research.

The design solution presented can be considered a ‘sub-optimal’ solution because

there are likely still hours where the minimum box position can be improved with

dynamic control. A number of studies have been completed using highly intelligent

control algorithms, including neural networks, genetic algorithms, and complex rule-

based controls. These algorithms require large amounts of sensors to be placed in the

controlled zones and building automation systems that are capable of communicating

between terminal devices and central workstations for optimal control. There is evi-

dence that commonly-used sensors, such as carbon dioxide sensors, are likely to drift

out of calibration or fail. Additionally, existing commercial buildings would likely

require an upgrade to their building automation systems in order to accept these new

control algorithms.

Improvements from demand-control ventilation and highly intelligent control al-

gorithms for VAV systems has been generally in the range of 5%-30% of total energy

consumption. Energy savings shown in this case study for a mild climate (ASHRAE

Zone 4C) are comparable to those in the literature for novel control algorithms that

would require large capital upgrades to the existing buildings stock and ongoing cal-

ibration for the vast number of required sensors, whereas the implementation effort

for this retrofit would be comparable to a re-balancing project.

3.4.1 Limitations and Future Research

There are a number of limitations to the research presented that require further

development and research.
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The resulting setpoint selections in the study are not necessarily generalizable be-

cause they were only based off one case study simulation for a medium office building

in a mild climate. In addition, airflow through dampers is simplified to not include

pressure effects or non-linearities. This is especially important at minimum damper

positions where the study assumes minimum damper positions result in a propor-

tional percent of nominal airflow. Further, a common control strategy to reduce

energy consumption is to reset the supply air temperature to warmer setpoints dur-

ing colder ambient temperatures. An outside air temperature reset strategy may alter

the impact of minimum box positions, and reduce the negative impact of higher box

positions. Finally, the occupancy and internal loads in the case study building is

deterministic which may not represent the actual occupancy of office buildings in use.

Repeating the study for a number of different buildings, with different load conditions

and space types in different climates, and with stochastic occupancy may result in

more robust and generalized recommendations or guidelines.

The primary use-case for this method is the existing building stock with simple

VAV systems controlled by legacy BAS equipment, in which revising the minimum

box positions can be a more economical option to improve energy consumption and

indoor air quality. This method, however, still requires the development of a de-

tailed energy model and the optimization of setpoints. The relatively simple 15-zone

model simulated in this case study required approximately 3 minutes per simula-

tion. The genetic algorithm input 16 parameters and required 1,000 simulations for

good convergence (although hypervolume calculations were not conducted to quan-

tify convergence), with a total run time of under 4 hours with a 16-core processor.

It is anticipated that larger, more complex buildings would results in increased sim-

ulation time and require a higher number of inputs. While the computation time

increases substantially, the amount of effort saved relative to a manual design process

is improved, and computational time is relatively cheap. Further improvements by

replacing the dynamic energy simulation with a data-driven approach may reduce the

design effort, and the use of more efficient optimization algorithms, such as Bayesian

optimization, may reduce the computational burden.

Underventilation percentage is used as the metric for indoor air quality which

quantifies how well the ventilation system performs compared to the minimum re-

quirements of ASHRAE 62.1-2010, however, it does not give benefit to systems that

provide additional ventilation above the minimum requirements. Additionally, it

does not discriminate between large hours of small underventilation and small hours
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of larger underventilation. Further research is recommended to determine a more

representative metric for quantifying ventilation performance.

3.5 Conclusion

VAV systems are the most prevalent HVAC system in medium and large commercial

buildings. They have historically been designed using default terminal box minimum

positions, based on incorrect assumptions, and following a design-day ventilation cal-

culation procedure. This study used dynamic hourly simulations to quantify ventila-

tion performance to facilitate the design of systems that have equivalent or lower rates

of underventilation compared to the traditional Ventilation Rate Procedure required

by ASHRAE 62.1-2010, while also reducing energy consumption.

The optimization algorithm NSGA-II was used to support the design process by

providing insights into the tradeoff between energy and ventilation within a large

parameter set of terminal box positions. The method employed in this research can

help designers implement appropriate terminal box minimum positions for simple

VAV systems that reduce energy consumption and potentially improve thermal com-

fort while addressing concerns of underventilation. The results presented using a

case-study simulation building suggest that the standard practice for implementing

the ASHRAE 62.1-2010 Ventilation Rate Procedure using cooling and heating design

days may not provide adequate ventilation throughout the year.
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Figure 3.3: Energy and ventilation performance comparison of potential design op-
tions. A wide range of energy and ventilation performance is available for VAV termi-
nal box minimum damper positions and central OA damper positions. Selecting each
terminal box position independently can improve both energy and ventilation perfor-
mance over the designs with a single minimum box selected across-the-board.
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Figure 3.4: Details of the NSGA-II optimized designs. Different external load condi-
tions result in different recommended terminal box setpoints. Designs with very low
amounts of underventilation tend to be designs with core zones that have terminal box
setpoints equal or above the default 30%, whereas all optimized designs have exterior
zones with setpoints at or below the 30% default.



36

Chapter 4

Improved Calibration of Building

Models using Approximate

Bayesian Calibration and Neural

Networks

abstract

Deep energy retrofits of buildings are crucial to meeting climate targets and depend

on calibrated energy models for investor confidence. Although there remain issues

in calibration, Bayesian inference can improve the rigour in standard practice and

improve confidence in calibrated energy models. Approximate Bayesian computation

(ABC) methods present an opportunity to calibrate energy models while inherently

accounting for parameter uncertainty, and do not face the same curse of dimensional-

ity as the current standard process for Bayesian calibration. A case study for a large,

complex building is presented to demonstrate the applicability of ABC. Parameter

sensitivity screening, however, is found to result in over-confidence in the resulting

inference by between 14% and 85%. Finally, the presentation of posterior distribu-

tions may be misleading as independent distributions, which can misattribute the

true likelihood of parameters.
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4.1 Introduction

In order to meet the climate goals of Canada energy consumption and carbon emis-

sions must be reduced from the existing building stock [70]. In British Columbia the

latest climate plan requires a 59-65% reduction in building emissions [1]. The current

rate of commercial building retrofit in Canada is under 1.5% per year, however, it has

been argued that a deep retrofit rate of between 5% and 12% of the existing building

stock per year is needed [71]. Decision makers’ confidence in retrofits are undermined

by the lack of quantified uncertainty in costs and savings in standard approaches

[72, 73, 7]. For example, large retrofit projects that request funds from the Canadian

Infrastructure Bank must be ICP Certified [74]; requiring a calibrated energy model

with uncertainty levels clearly demonstrated [75]. Although there are higher up-front

costs, investing in an integrated design process at has proven to provide more energy

and cost savings over the life of the project [6, 76].

Calibrated energy models typically use dynamic energy modelling software, such

as EnergyPlus [77], and follow ASHRAE Standard 211 [78, 79, 80]. This is a time-

consuming process undertaken by qualified professionals [81, 82, 83]. The reason that

existing building calibrated energy models are so time-intensive, especially compared

to new building energy models, is a simultaneous lack of available documentation

and validation data [7, 84, 85]. Existing buildings have inadequate information about

their sub-components, such as mechanical equipment, lighting, or building envelope

[86]. The deficiencies come in the form of missing as-built drawings, shop drawings or

balancing reports, and many smaller changes to the building operation, equipment, or

occupancy that have gone undocumented [84]. Compounding this issue is the degra-

dation of equipment, ad-hoc changes to controls sequences, or improper installations

or repairs [87, 88, 7, 85].

Further complicating this challenge is the massive number of input parameters

compared to the amount of data that is available for calibration: typically on the

order of thousands of input parameters compared to tens of data points [86, 88, 83,

85, 77]. This leads to an over-parameterized and under-constrained model, where the

identifiability of parameters may not be possible. It produces equifinality in the model

results: the fact that different combinations of building parameters can result in nearly

identical outputs [89, 77, 7]. A number of previous studies recommend mitigating

this issue by limiting the number of parameters present in the calibration process

[90, 77, 91]. Recent research in high-fidelity model calibration, with smart meters
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and modern building management systems [7, 92, 93], has the potential to somewhat

alleviate the problem. However, there remain significant numbers of existing buildings

that rely on monthly utility bills as the source of reliable calibration data [83, 77].

Indeed, the buildings that are most primed to benefit from retrofit are likely older

buildings with older building management systems and meters [94].

The traditional steps for building energy model calibration are as follows [95, 86,

83]:

1. Perform an energy audit.

2. Develop a base energy model.

3. Simulate model and compare outputs to observed data.

4. Determine and tune model parameters.

5. Repeat steps 3 and 4 until calibration thresholds are achieved.

1. Standardization. There are established statistical criteria for energy model calibration assess-
ment; however, the process of calibration has not been standardized, and is usually carried out on
an ad-hoc basis according to the user’s judgement and experience.
2. Calibration costs. Developing and calibrating an energy model for an existing building is a
difficult and lengthy task, even more so than for a new building. The manual tuning process is
highly time-consuming and requires expert judgement. The added time and expense of sub-metered
data and site-collected data adds to the cost.
3. Model complexity. The amount of necessary input data varies according to the complexity of
the energy model and building. The choice of simulation program also affects the amount of input
data required.
4. Model input data. The amount of observed data, such as energy consumption, occupancy
levels, or sub-metering can be substantial and lead to problems of data quality or data handling.
5. Uncertainty in building models. A deterministic approach is typically carried out with man-
ual calibration. Not all input data affects energy consumption equally, and deterministic approaches
do not provide the level of influence or confidence that parameters have on the final output.
6. Discrepancies identification. There are often discrepancies between simulated outputs and
measured observations during calibrated simulation. While simulation experts may be able to iden-
tify the causes, the disagreements may be linked to a chain of errors in the building model definition
or measurements.
7. Automation. No automation process has been established as standard-process in building
energy model calibration. An automated process can reduce the time required to manually tune
calibrated models.
8. User’s experience. User experience is very important in building calibration. The ultimate
decision is up to the expert user to determine if their building energy model is adequately calibrated,
and calibration is highly dependent on the personal judgement of the analyst. A high level of domain
knowledge is required to properly develop and calibrate an energy model, even with automated or
systematic processes.

Figure 4.1: A summary of the main issues affecting calibration of building energy
models [86].
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Issues exist with the traditional method of building energy calibration. A com-

prehensive list adapted from Fabrizio and Monetti [86] is presented in Fig. 4.1. There

have been two main advances in building energy calibration that attempt to address

these issues [86, 88, 85, 77]: Automated Calibration, and Bayesian Calibration.

Automated calibration addresses issues #2 and #7, by replacing the manual tun-

ing process with a computational method, thus reducing expensive labour effort re-

quired for model tuning. Automated calibration, however, has not been shown to

improve the other issues with building energy calibration identified by [86, 96, 97, 98,

7, 99, 92, 85].

Bayesian Calibration is an alternative to automated building energy calibration.

It offers all the improvements of the automated approach—namely, time savings in

model tuning—and quantifies the amount of uncertainty and indeterminacy associ-

ated with the model, thus addressing issue #5 [7, 100, 85]. Furthermore, performing

Bayesian calibration at an earlier stage in the project can determine if costly sub-

metering is required for parameter identification, potentially addressing issue #2 [89].

Finally, and perhaps most important, Bayesian calibration can address issue #8, re-

garding user experience. Bayesian calibration takes into account the user’s personal

judgement and provides an opportunity to quantify and analyze the impact of this

judgement [91].

Bayesian Modelling

Statistical inference is about trying to learn what we cannot easily observe through

what we can observe. Statistical inference can be performed using Bayesian mod-

elling, which integrates prior knowledge that gets conditioned on observations in a

statistically consistent manner. Bayesian modelling is founded on Bayes’ theorem,

which is based on conditional probability: the likelihood of an event happening

due to the occurrence of a separate event or outcome. Bayes’ theorem is stated

mathematically as:

P (θ | D) =
P (D | θ)P (θ)

P (D)
. (4.1)

In this case, θ is a parameter, or set of parameters, of interest, and D is observed data.

Hereinafter, the term P (θ | D) is referred to as the posterior, the term P (D | θ) is

referred to as the likelihood, the term P (D) is referred to as the evidence, and the term

P (θ) is referred to as the prior. In the context of building energy model calibration,
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the parameters are characteristics of the building that are difficult to ascertain. The

likelihood is a stochastic model relating input parameters to output data. The priors

incorporate the existing knowledge of the parameters before inference, usually from a

combination of subject matter expertise, existing drawings or reports, or previously

measured or inferred data. The evidence takes the form of a scaling factor which is

used to ensure the posterior is a proper probability distribution with a summation of

1 [101].

Bayesian modelling can be broken down into three major steps [102]:

1. Setting up a full probability model, including joint probabilities of all observable

and unobservable quantities. This model should be consistent with scientific or

engineering knowledge of the problem at hand and the observed data.

2. Calculating the posterior by conditioning the model on observed data.

3. Evaluating the posterior and associated implications of the model. The resulting

posterior and conclusions should be reasonable. If the resulting posterior is not

reasonable, then there is an error either in the definition of the models or prior,

or the calculation and conditioning on observed data.

In most applications the likelihood is a statistical parametric model. A stochastic

parametric model, in this sense, is a model where a stochastic output can be defined

from a finite set of parameters [29]. Examples of parametric models include normal

distributions (parameterized by the mean and standard deviation), or the binomial

distribution (parameterized by the number of experiments and number of successes).

When performing Bayesian inference on parametric models, the parameters that de-

fine the model are themselves inferred. For example, if a normal distribution is used

for the parametric model, the posterior distribution of the mean and the standard

deviation parameters would be inferred from the priors and observations.

4.1.1 Bayesian Calibration in Building Energy Models

As opposed to stochastic parametric models, building energy simulations are complex

deterministic models. There is no randomness involved and the output of the model

will always be the same if the inputs are unchanged. The parameters of interest are

characteristics of the building and not characteristics of the model itself. Standard

Bayesian inference cannot be applied directly to deterministic building energy mod-

els, because the likelihood term, P (D) does not have a stochastic output and the

numerator of Bayes’ theorem cannot be calculated.
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The Kennedy and O’Hagan (KOH) method [103] is often used to solve this problem

[100, 91]; it was developed to incorporate deterministic computer models, like building

energy simulations, into Bayesian inference. The error between the model outputs and

observed data points following calibration includes all forms of uncertainty remaining

in the model. Examples of these uncertainties, given by Kennedy and O’Hagan [103]

are:

� parametric uncertainty,

� model inadequacy,

� residual variability,

� parametric variability,

� observation error, and/or

� code uncertainty.

The majority of work to date in building energy model calibration has followed

the Kennedy and O’Hagan approach, and most apply Gaussian Processes (GPs) as

surrogate models because of their ability to emulate both the simulation outputs and

the associated uncertainty [100, 92, 91]. Surrogate models, or meta-models, are data-

driven representations of the complex dynamic model that emulate the output of

the dynamic model at a fraction of the computational cost, which is crucial because

developing a robust posterior distribution can require thousands of iterations. Be-

cause GPs can effectively model physics-based computer models they are used as the

likelihood function during Bayesian inference [100, 91]. Although Gaussian Processes

are regarded as accurate surrogate models, their usefulness is limited to a relative

few number of parameters because they suffer greatly from the curse of dimension-

ality : the computational demand increases exponentially with the size of the model

[90, 104, 91]. Neural networks, on the other hand, have been shown to be able to pro-

vide similar levels of accuracy while accommodating a greater numbers of parameters

[105, 92].

Approximate Bayesian Computation (ABC), or likelihood-free inference, is an

emerging method which is used for situations where a probabilistic likelihood function

is difficult or impossible to define [106]. ABC methods still follow the same ideology

as the seminal KOH method, however, the use of GPs is replaced with a generic model

and a predefined distance metric to approximate the likelihood function.

The most basic ABC algorithm is the ABC-Rejection algorithm [107]. The user

defines a simulation model, prior distributions of parameters, a distance metric, a
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tolerance value, and the minimum size of the posterior set. The ABC-Rejection

algorithm is then as follows:

1. Sample a set of parameter points from the prior distribution.

2. Create a set of outputs by running the set of parameter points through the

simulation model.

3. Compare each output from the set of outputs with the observed data via the

distance metric.

4. If the resulting distance metric is within the tolerance value then accept the

associated parameter values, otherwise reject the associated parameter values.

5. Repeat steps 1-4 until the minimum size of the posterior set has been achieved.

It has been proven that the resulting posterior from ABC-Rejection algorithms

can closely match that of the true posterior [108]. The choice of tolerance value is

used to balance computational efficiency (time) with posterior precision. The toler-

ance and distance metric combination, similar to Kennedy and O’Hagan’s method,

should be used to incorporate additional sources of uncertainty unaccounted for in

the parameters. For this reason it is generally not recommended to choose a tolerance

value close to zero, meaning only accepting parameters which result in outputs close

to the measured data, unless the user is very confident in the total error of their

modelling system [109].

An alternate and more computationally efficient algorithm for ABC is Sequential

Monte Carlo, or ABC-SMC [110, 108]. This algorithm is similar in form and function

to the ABC-Rejection algorithm, with the addition of a tempering value that pro-

gressively morphs from sampling the prior to sampling the posterior distribution[110].

ABC-SMC has been proven to be robust in sampling multi-modal posterior distribu-

tions and converges asymptotically to the true posterior faster than ABC-Rejection

[109].

ABC-SMC has recently been employed for model inference in biological systems

[111]), epidemiology [108], chemical networks [112], and other situations where a

deterministic model may be advantageous. ABC has been used for building energy

calibration by [113] using an EnergyPlus archetype as a case study to compare the

impact of different machine learning algorithms as surrogates in the ABC process,

and found that machine learning models with ABC methods can provide reliable

parameter estimation with fast computation. In addition, they recommend further

research towards the application of the Sequential Monte Carlo method of ABC.
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Calibration Threshold Metrics

ASHRAE Guideline 14 provides calibration error metrics to assess the level of calibra-

tion [114, 115]: the coefficient of variation of the root mean square error(cvRMSE),

and the normalized mean bias error (NMBE).

The maximum allowable errors to be considered calibrated, according to ASHRAE

Guideline 14, are shown in Table 4.1. Recent research suggests cvRMSE is the more

representative measure of calibration for building energy consumption [116], however,

for the purposes of this research we will follow ASHRAE Guideline 14 thresholds.

Table 4.1: ASHRAE Guideline 14 Error Thresholds

Metric Maximum Error

cvRMSE 15%
NMBE 5%

Consistent with interpretations made by Kennedy and O’Hagan, ASHRAE Guide-

line 14 incorporates allowable cvRMSE and NMBE errors with the understanding

that a model with perfect parameter outputs can still result in a non-perfect match

of outputs to measured data [115].

4.1.2 Key Contributions of This Work

This paper documents a case study of Approximate Bayesian Calibration for a large

mixed-use retail building. This is the first known demonstration of ABC in in a real

world building energy model calibration. In addition, it is the first demonstration

of the Sequential Monte Carlo method of ABC for building energy calibration. The

case studies proves that ABC-SMC with neural network surrogate models can be ap-

plied to real-world scenarios without the curse of dimensionality associated with the

KOH method. Finally, an analysis of parameter sensitivity compared to information

gain from observed data and the impact of re-sampling from mutually independent

posterior distributions are presented. The unintended consequences from sensitivity

analysis pre-screening is discussed along with the interpretation of posterior distribu-

tions and their associated errors.
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4.2 Implementation

This section highlights the case study presented in this manuscript. It describes the

building of interest and the detailed energy mode developed, including the parameters

of uncertainty and their associated prior distributions, the surrogate model, and the

development, simulation, and analysis environment employed.

4.2.1 Case Study Building

The case used as example in this research is a large indoor mixed-use retail centre. The

building is approximately 500,000 ft2 with a large central atrium and approximately

100 unique retail units of various sizes. In addition, it houses a cafeteria with a

number of fast-food restaurants, a separate sit-down restaurant, a number of office

spaces, and a fitness gym. The building is located in a Mediterranean climate (Köppen

Csb, ASHRAE 4C).

The building is equipped with a central water-cooled chiller providing chilled water

to two-pipe fancoils located in retail units and in the mall atrium. Retail units have

electric heating installed as required by the tenant. Lighting in tenant spaces is

installed, maintained, and controlled by each individual tenant and the type and

amount of lighting varies considerably by tenant. The common space lighting is

installed, maintained, and controlled by the building owner, and is predominately

LED. Natural gas is consumed by tenant cooking equipment, a number of gas-fired

rooftop units, and domestic hot water in the fitness gym.

Electricity for the chilled water plant, common-space lighting, common-space plug

loads, and common-space fancoil units is paid for by the property manager. Elec-

tricity and natural gas consumed in each retail unit for lighting, plug loads, fancoil

units, and gas equipment is paid for by each respective tenant. Monthly common

electricity consumption, monthly total tenant electricity consumption, and monthly

total natural gas consumption has been provided between the years 2017 to 2019,

inclusive, for 108 total data points. It has been noted that increasing the temporal

resolution of data may improve the precision of posteriors [117], however, monthly

utility data is still the most commonly available temporal resolution of data and thus

representative of the industry as a whole. Hourly weather data for the three year

period corresponding to the utility data months was generated as an .EPW file from

the NASA Power Project [118].
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Figure 4.2: A 3D virtual representation of the case study building. The geometry of
the building was incorporated into the model using Rhinoceros 7 3D modelling software
and translated into a .idf file using Ladybug tools. The building loads and equipment
were input on a zone-level basis, and the zones are coloured according to their zone-
type.

Dynamic Energy Model

The simulation engine used in this case study is EnergyPlus version 9.5 [119], a

well-validated simulation engine and the most commonly used engine in recent build-

ing energy model calibration research [77]. The geometric and basic information of

the model was generated using Rhino 7 and the Ladybug modelling platform for

Grasshopper [120].

The building has been modelled with 6 floors, 71 total zones, with 11 different

zone-types. A visual overview of the model is shown in Fig. 4.2. The model includes

multiple mechanical system types and process loads. The relative complexity of the

model necessitates the calibration of a large number of uncertain parameters, which

may pose problems with the pre-existing Bayesian calibration guidelines that recom-

mend a minimal number of parameters. The authors could not find other samples in

the literature of whole-building Bayesian calibration that account for the complexity

of building, the quantity of meters, and the sources of uncertainty. The authors in-

tentionally selected this case study to demonstrate the applicability of the proposed

methods in difficult calibration scenarios.
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Parameters

The parameters were chosen based on subject matter expertise and following the

energy audit as likely parameters that would influence the monthly energy profile. The

allowable range and prior distribution for each parameter was based on information

gained during the preliminary energy audit, through site investigations and document

review.

All priors used in the analysis follow beta distributions due to their ability to

model a diverse set of probability distributions while remaining within a [0,1] bound.

This gives the potential to specify both the shape and confidence level of the prior

without risking the sampling to enter a physically infeasible value.

Surrogate Model

The surrogate model is a multi-level perceptron neural network using the Keras

Python library as an API for the TensorFlow machine learning platform [9]. The

model is built with two dense layers and includes batch normalization and dropout

between each layer. The inputs to the neural network are the continuous building

parameters in question. The outputs are monthly energy consumption for each util-

ity over the course of three years, for 108 total outputs. Inputs and outputs to the

surrogate are normalized between [0, 1] by removing the mean and scaling to unit

variance. Data is split based on an 80/20 training/test split, and the neural network

was trained for 1,000 epochs using the Adam training algorithm. The model was

trained to minimize the mean squared error loss.

Analysis and Simulation Environment

The handling of simulations, samplings, surrogate model development and training,

inference, and analysis was completed using Jupyter Notebooks version 3.2.8 run-

ning Python version 3.8.10. The handling of simulations, parameterization of the

simulations, and subsequent sampling was completed using the BESOS library [122].

Surrogate model development, training, and analysis was completed using Keras ver-

sion 2.6.0. Bayesian inference was completed using PyMC3 version 3.11.4 [12].



47

Table 4.2: Parameters incorporated in the calibration procedure. The parameter name,
units, maximum and minimum allowable values, and normalized beta distribution
parameters are provided.

Parameter Units Range Alpha Beta

Wall R-Value ft2·◦F·h/BTU 1-10 3 2
Wall Infiltration m3/s-m2 5e-5 - 5e-4 2 2
Roof R-Value ft2·◦F·h/BTU 18-40 3 5

Glazing U-Value W/m2K 2-4 2 3
Glazing SHGC - 0.2-0.8 2 2
Common Lights Multiplier∗ 0.1-2.0 2 3
Tenant Lights Multiplier∗ 0.1-2.0 2 3

Lighting Schedule factor∗∗ 0-1 2 3
Common Plug Loads Multiplier∗ 0.3-3.0 2 2
Tenant Plug Loads Multiplier∗ 0.3-3.0 2 2
Ventilation Rate Multiplier∗ 0.5-2.0 3 2

Chiller Nominal COP W/W 4-7 2 2
Cooking Energy W/m2 5-200 1 1
Elevator Energy kW 20-40 2 2

RTU Gas Efficiency % 60%-90% 2 2
DHW Gas Efficiency % 60%-98% 2 2
FCU Fan Pressure Pa 75-500 1 1
FCU Variable Speed %∗∗∗ 30%-90% 10 2
DOAS Fan Pressure Pa 250-1000 3 2
Cooling Setpoint ◦C 20.5-22 2 2
Heating Setpoint ◦C 18-20 2 2

Vestibule Infiltration m3/s-m2 ∗∗∗∗ 2.5e-4 - 2.5e-2 2 2
Roof Temperature ◦C∗∗∗∗∗ 0-3 2 2
∗ The values are based on NECB 2015, following a zone-by-zone basis.

These values are multiplied by the parameter value for each zone.
∗∗ The base lighting schedule follows NECB 2015 schedule-type C. A value of 0 represent

the baseline schedule. A value of 1 results in a schedule of always-on. The schedule is

varied proportionally between the baseline and always-on schedules on an hour-by-hour basis.
∗∗∗ A parameter representing the proportion of fan-coil units that have been converted to

variable speed.
∗∗∗∗ The main doors to the vestibule were noted to remain open throughout the summer.

This parameter estimates the level of infiltrationdue to the always-open doors.
∗∗∗∗∗ The roof is a large, flat, dark membrane. These types of roofs can exhibit

micro-climatic temperature increases relative to the ambient,

which increases the air temperature at ventilation units [121] .

4.3 Results

The results for the case study calibration procedure are presented in the following

sections. First, the surrogate model is analyzed to ensure the regression predictions

are reasonable. Next, a set of cases is used to compare the Bayesian inference approach

and the standard industry practice, The calibration results for the case study are then
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presented. Finally, the risks of selecting only the most sensitive parameters for the

calibration are illustrated and the risks of misattributing the posterior distributions

as mutually independent distributions are presented.

4.3.1 Sampling and Neural Network

For training the surrogate model, 300 samples are generated following a Latin hyper-

cube sampling procedure, which provides an even distribution of samples across the

parameter ranges in Table 4.2. Approximately 10 samples per parameter is a standard

rule-of-thumb for reasonable surrogate model accuracy [91]. The model is trained on

240 samples and tested on the remaining unseen 60 samples. The model converged

at approximately 400 epochs on [0,1] normalized training data. Total accuracy for

monthly energy predictions on the test dataset is a mean absolute error (MAE) of 0.3

kWh/m2 per month or a 3.5% mean absolute percentage error (MAPE). Important

for this study, as shown in Fig. 4.3a and 4.3b, the accuracy at values near to the

observed data is around 2%, or 0.1 kWh/m2.

4.3.2 Baseline Energy Model and Standard Practice

The baseline energy model was developed from observations on site and what was

deemed as a reasonable starting point for each parameter. The baseline model is

simulated, as would happen in a traditional calibration process, and compared to the

observed energy meter data. Monthly energy consumption for the three models is

shown in Fig. 4.4. The baseline energy model with default values does not meet any

of the minimum error metrics in order to be considered calibrated. In a standard cal-

ibration procedure, the user would begin iterating the parameters based on intuition

and subject-matter expertise in order to reduce the error gap.

For illustrative purposes, three separate examples were selected to represent what

results may be expected following a standard calibration procedure. Examples 1

through 3 were selected by iterating the design variables until the NMBE and cvRMSE

of all three energy meters were within acceptable limits per ASHRAE Guideline 14.

Also included for comparison are the baseline pre-calibration case and maximum

a posteriori (MAP) estimate. The MAP estimate is the value most likely value for

each parameter following Bayesian inference (inference results are described in further

detail in Section 4.3.3). The error metrics are shown in Table 4.3 for each case, metric,
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(a)

(b)

Figure 4.3: Mean absolute percentage error and mean absolute error, plus one stan-
dard deviation, of the surrogate model prediction compared to the energy model out-
puts at identical parameter input combinations. The surrogate model is used to predict
monthly energy consumption for all three meters across all three years for 108 total
outputs. The distance from observed x-axis value is the distance from the surrogate
prediction output compared to the building’s observed data consumption for that month
and meter.
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and energy meter. Note that the MAP does not perform significantly better than the

other three ‘calibrated’ examples in terms of calibration metrics.

Table 4.3: ASHRAE Guideline 14 error metric results for the three example cases,
the baseline case, and the MAP case. A cvRMSE value less than 15% and a NMBE
value less than 5% are both required in order to be considered as calibrated. All three
examples plus the MAP could be considered as calibrated models, whereas the baseline
requires significant tuning.

Case Meter cvRMSE NMBE

Baseline
Tenant Electricity 84.4% 77.0%
Common Electricity 20.7% -9.6%

Natural Gas 75.2% 71.8%

Example 1
Tenant Electricity 7.1% -4.2%
Common Electricity 11.5% -2.7%

Natural Gas 10.6 % -0.5%

Example 2
Tenant Electricity 8.1% -2.9%
Common Electricity 11.9% -3.5%

Natural Gas 8.2% 1.9%

Example 3
Tenant Electricity 5.3% 0.2%
Common Electricity 11.2% -1.6%

Natural Gas 11.2% -4.4%

MAP
Tenant Electricity 5.6% 1.1%
Common Electricity 11.7% -4.2%

Natural Gas 6.5% -0.4%

The parameter values for each example case are shown in Fig. 4.5, along with the

baseline and MAP cases. Parameter values varied considerably for many parameters,

indicating the overparameterization inherent in building energy model calibration

and the equifinality that cannot be escaped with building energy simulations. In a

standard process, the user may have settled at any of the design options. Also shown

in Fig. 4.5 is the likelihood of each parameter according to the prior and the posterior

distributions. A number of the parameters in each example are identified as having

a low likelihood of being the actual parameter, even though their selection can still

meet the calibration thresholds. Without performing the inference procedures, the

user would have no indication that their single selection of calibrated model may

indeed be a very unlikely candidate.
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(a) Common Electricity meter (b) Tenant Electricity meter

(c) Natural Gas meter

Figure 4.4: Monthly energy consumption various meters across three years of opera-
tion. The observed data is the calibration target, whereas the baseline is the best-guess
of building characteristics before the calibration procedure. Three examples show alter-
nate manually-tuned calibrated model outputs. The maximum a-posterior (MAP) is
the combination of parameter values with the highest likelihood following the Bayesian
inference.

4.3.3 Calibration Results

The surrogate model was put through the Bayesian calibration process. Convergence

metrics are then assessed to determine posterior representation. Following that, a

comparison of prior and posterior parameter distributions are presented, and then

monthly energy consumption and error metrics are shown.

ABC-SMC Posterior Convergence Checks

It is important to analyze the performance of the ABC-SMC algorithm. In theory,

if the algorithm is allowed to run indefinitely, it will eventually converge on the

‘true posterior’. In reality, due to computational time constraints, we run multiple

simultaneous inference chains and define the length of each chain. In order to assess

the convergence of the posterior distributions a common metric is the Gelman-Rubin

statistic (R̂). The Gelman-Rubin statistic compares the variation within each chain

with the variation between each chain. This results in a unitless ratio, which trends

towards a value of 1 with improved convergence [101]. An acceptable Gelman-Rubin

statistic value is subjective and may change depending on the needs of each project,
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Figure 4.5: A comparison of prior distribution, posterior distribution, baseline case
value, example cases values, and MAP value for each parameter. The prior distri-
bution of each parameter represents the knowledge of the user before completing the
Bayesian inference steps. The posterior distribution of each parameter represents the
knowledge of the parameter after the prior has been conditioned on the observed data.
The ranges between example cases show the vast range of possible combinations that
can all be considered as calibrated. While most example cases trended from the base-
line to a higher likelihood value, there are a number of examples with parameters that
exhibit very low likelihoods, but still meet the ASHRAE Guideline 14 targets.
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however, a standard rule-of-thumb number is to accept convergence if the Gelman-

Rubin statistic is below a value of 1.1 [102]. The Gelman-Rubin statistic for all

parameters in our posterior distribution chains are all equal or lower than a value of

1.01, indicating very good convergence has been achieved, and that our posteriors are

highly representative of the ‘true’ posterior.

Inference

A comparison of the prior distributions and posterior distributions are presented

in Fig. 4.5. The difference between prior distributions and posterior distributions

represents the amount of information that is contained within the observed data

(i.e., monthly energy consumption). Parameters that observed distinct changes to

the shape of the distribution from prior to posterior are those model parameters

that are highly influenced by the available observed data. This is in contrast to

a sensitivity analysis. A parameter may have a large influence on the final model

outputs, but the likelihood of that parameter may not be influenced heavily by the

observed data for a variety of reasons. One such reason is the issue of identifiability

or overparameterization in building energy models.

While identifiability of parameters due to overparameterization presents problems

in other calibration methods, Bayesian inference inherently quantifies the amount of

unidentifiability that is present. A parameter distribution that remains unacceptably

uncertain in the posterior means that the combination of prior knowledge and ob-

servation data is insufficient. The practitioner then has the following three options:

� obtain additional observations,

� improve the prior knowledge of the parameter in question, or

� improve the prior knowledge of other influential parameters.

An example of a parameter that was highly influenced by the observations was the

cooking energy parameter. The audit and prior knowledge of the subject were weak,

and therefore a flat prior across a large parameter range was selected. In addition,

while there are interactive effects by many characteristics of the building contained in

other parameters, only three parameters directly related to gas consumption: cooking

energy, rooftop unit efficiency, and domestic hot water efficiency. Following inference,

only a small subset of the cooking energy parameter could result in a gas consumption
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that matched the magnitude and shape of the monthly gas consumption between 2017

and 2019.

This can be compared to the DOAS Fan Pressure parameter, in which no no-

ticeable change occurred between the prior and posterior distributions. Essentially,

the parameter did not interact with the model in such a way that the observed data

could only be achieved with a subset of the parameter values, even though the outputs

were moderately sensitive to that parameter. One such possibility is that sensitivity

analysis was conducted across the entire range of a parameter’s possible values. If

a parameter’s impact of outputs was non-linear, the sensitivity analysis may show a

large impact on outputs, but at the ‘true’ range of possible impacts, the parameter

has a small impact. Of course, without performing inference, the user would not

know which range of values to perform the sensitivity analysis before-hand. For more

information on sensitivity analysis refer to Section 4.3.3.

The pre-calibration monthly energy distribution (based on prior distributions), the

post-calibration monthly energy distribution (based on posterior distributions), and

the observed monthly energy is shown for the common electricity meter in Fig. 4.6a

the tenant electricity meter in Fig. 4.6b, and the natural gas meter in Fig. 4.6c.

Overall, the posteriors matched the observed data much better, both in terms of

magnitude and seasonality. Note that the priors assumptions were developed before

the first round of simulations were completed.

The error metrics following calibration for this case study are presented in Fig. 4.6d.

The median error values for all meters for both cvRMSE and NMBE are well within

the allowable ranges set forth by ASHRAE Guideline 14. All cvRMSE error values,

except for a select few outliers in natural gas consumption, fall below the 15% allow-

able threshold. The NMBE for all meters falls within +/- 5% for values between the

25th and 75th percentile of the posterior. The values on the extreme ends for NMBE

for natural gas and the common electricity meter would not fall within the allowable

threshold of ASHRAE Guideline 14. The addition of further meters and tightening

of the tolerance value would reduce the NMBE and cvRMSE margins.

Sensitivity Analysis Screening

The amount of information gain for each parameter is measured by comparing the

relative entropy between the prior and posterior distributions. The statistical distance

between the prior and posterior is calculated using the Kullback-Leibler Divergence,
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(a) Common Electricity meter (b) Tenant Electricity meter

(c) Natural Gas meter (d) Posterior error distributions

Figure 4.6: Monthly energy consumption across three years of operation and associ-
ated posterior error distributions. The observed data represents the ground-truth data
that is the target for calibration. The prior distribution of monthly energy consumption
is the mean predicted energy consumption from the energy model after independent
sampling from the prior parameter distributions, along with a standard deviation of
predictions. The posterior is the distribution of monthly energy predictions of param-
eter combinations following the ABC-SMC procedure. Each distribution represents
2000 samples. The posterior distributions matched the observed data in both season-
ality and magnitude much better than the priors. The posteriors could not adequately
match the peak summer common electricity consumption, indicating that the combi-
nation of parameters and model could never adequately quantify summer consumption
and further parameterization would be required.

or KL Divergence, in units of bits. The greater the value of KL Divergence, the greater

the distribution has changed. A value of 0 indicates that the two distributions, the

prior and posterior, contain identical amounts of information [123].

A sensitivity analysis was done using the Sobol global sensitivity method [86] [124]

to rank the most important parameters. Sensitivity was calculated as the impact of

parameters on total annual energy consumption for each meter individually. There-

fore, if a parameter had a very high impact on one meter but a very low impact on

other meters, it would still result in a high relative sensitivity. The KL Divergence

and the total sensitivity are compared in Fig. 4.7. The relative amount of information

gain appears to be proportional to the relative sensitivity, at least in order of magni-
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tude, and a R2 score of 0.54 indicates that total sensitivity is somewhat correlated to

the amount of information gain.

Figure 4.7: A point-wise comparison for each meter on its overall sensitivity to nor-
malized annual outputs with the amount of information gain for that parameter be-
tween the prior and posterior distributions. Sensitivity analysis was calculated fol-
lowing the Sobol global variance method, whereas information gain was calculated
according to the KL Divergence. Note the log-log scale axes, which are used to vi-
sualize the order-of-magnitude impacts. There is a general trend between sensitivity
and information gain; however, there remains a few parameters that are orders of
magnitude less important but contain similar amounts of information gain.

It is common practice to perform a sensitivity analysis to remove parameters that

have less impact on the final results. Removing a parameter from the inference pro-

cedure is equivalent to setting that parameter to a value with complete certainty. To

illustrate the impact of parameter screening the five most sensitive parameters, rep-

resenting 93% of total variance, were selected. The priors and observed values remain

consistent among both cases, and the parameters removed from the inference are set

to their default values from the baseline model. In Fig. 4.8 the resulting posterior

from the five most sensitive parameters is compared with the resulting posterior from

all possible parameters. The difference in posterior maximum a-posteriori values and

their associated levels of likelihood are identified in Table 4.4. The resulting range of

calibration error metrics, shown in Fig. 4.9 have increased for some meters, however,

the overall scores remain reasonably calibrated.

The results speak to the potential outcome when parameters deemed less impor-

tant are neglected during the inference process. In general, the confidence in parame-

ters increased, sometimes significantly, towards values that are indeed less likely when

the full prior parameter set is considered. The resulting calibration error metrics are

only slightly worse than with the full-suite of parameters.
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Figure 4.8: A comparison of the five most important parameters’ prior and posterior
distributions. One scenario completed the same inference procedure with only the five
most sensitive parameters, and the other scenario contained all uncertain parameters
that were included in the case study. The MAP value is compared both in the value
of the parameter and the posterior likelihood of that variable. Of the five parameters,
only the ventilation rate multiplier and tenant plug load had MAP changes of less
than 5%. The remaining parameters shifted by between 10% and 15%. The likelihood
at the MAP increased for four parameters by 17% to 89%, except for the Cooking
parameter which decreased by 19%.

Table 4.4: The MAP values and associated likelihood comparison between a scenario
including parameter screening, and a scenario including the full-suite of uncertain
parameters.

Parameter
Maximum Likelihood
A Posteriori % Difference
% Difference at MAP

Cooking -4.7% -19.0%
Tenant Plug Load 0.6% 17.3%
Common Lighting 14.7% 88.6%
Ventilation Rate -10.4% 31.4%
Tenant Lighting 12.1% 24.0%

Figure 4.9: The error metrics for each meter from a scenario with only the five most
sensitive parameters. The overall error metrics predominately meet the calibration
thresholds.
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Posterior vs. Independent Distributions

It is important to note that the posteriors generated from Bayesian calibration tech-

niques are presented as independent distributions for each parameter, but they are in

fact mutually dependent distributions. The posteriors presented are smoothed kernel

density estimates of a large number of individual simulations that meet the tolerance

requirements set out in the inference algorithm. A number of parameters that impact

the observed data in a similar way may have regions of reasonable likelihood in the

posterior that, in combination, are indeed highly unlikely. An example in our case

study are the lighting power density and lighting schedule in our example. There may

be cases where values that are reasonably likely in the posterior distributions from

the parameters cannot both be present at once while meeting calibration thresholds,

and the posterior distributions on their own do not adequately represent this.

To illustrate this, Figs. 4.10a, 4.10b, and 4.10c compare the monthly predicted

energy consumption from the inference posterior chains with samples that were drawn

independently from each posterior along with the observed energy consumption for

each meter. The spread is significantly higher for each meter if the posteriors are

considered as independent. The ASHRAE Guideline 14 error metrics also exhibit a

much wider range, shown in Fig. 4.10d for mutually independent posterior samples,

with significantly more combinations of parameters exceeding the thresholds.

4.4 Discussion

The Bayesian method presents an alternative to standard practice. One of the major

differences is a shift from a deterministic to a stochastic viewpoint, in which unknown

parameters are not selected as a single value that meets the calibration targets, but

as likelihood distributions containing many options that meet the calibration targets.

This viewpoint can be carried forward throughout the process if retrofits are intended

and final savings can be presented in a similar manner with uncertainty accounted

for. This may improve the retrofit process by communicating the level of confidence

to which estimates are obtained.

The process outlined in this case study is not intended to replace the expert user

with a machine, or to automate the calibration entirely. There are steps that are

completed programmatically, such as sampling and modifying the simulation input,

that would otherwise be far too time-consuming to be completed in a step-by-step
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(a) Common Electricity meter (b) Tenant Electricity meter

(c) Natural Gas meter (d) Error metrics

Figure 4.10: Monthly energy consumption various meters across three years of oper-
ation, plus error distributions. The mean monthly energy predictions, along with a
standard deviation, for each meter, is compared for the posterior samples from the
ABC-SMC procedure and from a re-sampling of the individual parameter posterior dis-
tributions. Both posterior distributions follow similar patterns, but the independent
samples result in a much wider standard deviation. The spread is also represented in
the larger spread of error metrics. This is the result of combinations of parameters
that may not meet calibration thresholds, but may both be individually possible.

manual process. This also has the side benefit of increasing the possible number of

parameters that are investigated. In particular, the inclusion of the neural network

in the approximate Bayesian computation approach compared to the Gaussian Pro-

cesses in the standard KOH calibration approach remove the computational barrier

associated with increasing the number of uncertain parameters.

The process outlined in this study is intended to improve the rigour of the calibra-

tion process, not by removing the expert user’s bias and intuition, but by quantifying

it. The inference exercise advises the user how much information about the param-

eters is contained by the interaction between the observed data and the model. If

there is no shift between the prior and posterior during the inference, then the user

cannot use that calibration process, as it stands, to improve their understanding of

that parameter. Without performing inference, for example if one were to follow the

standard process of manual iteration, there would be no indication of how likely that

single choice is.
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During the calibration process, a tolerance threshold is identified. This tolerance

threshold contains the amount of allowable error between the predicted and observed

values, and contains all forms of error associated within the analysis. It includes

errors from model simplification, errors from the simulation itself, and in our case,

errors from the surrogate model, among others. If we identify that tolerance to be,

for example, 5%, then we are declaring that even if all parameter selections were

exactly true, the predicted results may still be off from the observed data points by

5% because of the remaining associated errors. It is the author’s recommendation to

retain the posterior distribution for subsequent steps, however, selecting the maximum

a posteriori of each parameter is a best selection if a single combination of parameters

is needed.

In completing Bayesian inference the posterior outcomes should never be a surprise

or appear incorrect to the user. If that is the case, then there is either an error with

the simulation, the observed data, or the user simply did not adequately incorporate

their true prior beliefs in the problem. That is not to say that the user should trust

implicitly the results from the inference, but it may hint at a need to provide more

information to the problem. This may involve the addition of further observed data

streams, such as monthly peak demand, or to revisit the site to collect more detailed

information of a particular subsystem.

Analyzing discrepancies between the predicted and observed data points can also

be insightful to the users. If a posterior distribution has converged satisfactorily (e.g.,

with a R̂ score close to 1), and there remains significant errors between predicted and

observed data points, one can confidently say that the current model and parameter

combinations statistically cannot explain the observations to a quantifiable degree.

To illustrate, in the case study above, summer electricity consumption could not be

matched following the calibration procedure, therefore no combination of the param-

eters and their ranges included, as they associate with the model, could explain the

summer electricity consumption. If a close match to summer electricity consumption

was desired, the user would need to modify or add further parameters to account

for this variation. The addition of further parameters would likely decrease the con-

fidence in the remaining parameters, but would be a truer indication of the actual

uncertainty associated with those parameters.

The author strongly recommends to include as many parameters as is feasible, and

to select priors as close as possible to the user’s true prior beliefs when performing

Bayesian inference. Counter to guidance in [89] and [91], among others, the goal of
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the process is not to end up with the narrowest posterior distributions of parameters,

but to quantify uncertainty in parameters as accurately as possible based on the ex-

isting prior beliefs and observations. Priors should not be selected as strong, weak,

or uninformed unless that is the true indication of the users prior beliefs [101]. In

addition, parameters should not be removed with an intent to narrow down the pos-

terior distributions of the remaining parameters. If the users have a true uncertainty

in parameters they should remain, as is, in the procedure. Sensitivity analysis can be

used to winnow down parameters to ensure important parameters are not neglected,

but as demonstrated in this case study, can have the unintended result of promot-

ing an incorrect posterior with improperly associated confidence. Sensitivity analysis

should be used as a method of selecting which parameters are included if there is a

capacity limit either due to labour or computation limitations.

Finally, it is worth mentioning that the parameter posteriors resulting from the

ABC-SMC process are not independent distributions. They are mutually dependent

and if the posteriors are presented in a way which may be interpreted as independent

distributions, then the associated error metrics should be independently resampled

from the posterior distributions. As was illustrated in the case study above, the

resulting error metrics are likely to be significantly worse.

For further discussion on the benefits and limitations of Bayesian analysis, the

authors recommend referring to [101].

4.4.1 Limitations and Further Work

This study presented a case of Bayesian calibration applied to a large retail build-

ing. Contributions relating to the feasibility of the method; the impact of sensitivity

screening; and the mutual dependence of posteriors was presented, however, further

research is recommended on a number of related topics.

The distance metrics, summary scores, and tolerance thresholds were not analyzed

in detail in this study. They likely have a significant impact on computational effort

and accuracy, but establishing guidelines and recommendations require further study.

The case study incorporated three years of energy consumption across three differ-

ent meters. During the inference process, all 108 data points were used for calibration

simultaneously, and with equal weighting. There may be benefits to a cascading cal-

ibration, with posteriors from each historic year acting as priors for the subsequent

year’s calibration.
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This case study presented the Bayesian calibration stage as a final step in a project.

There may be potential to incorporate these calibrations in an iterative way to reduce

the overall effort required. For example, there may be parameters of interest that are

difficult to measure. Inferring these values with greater confidence may be likely

through further confidence in other parameters that are easier to observe. This has

the potential benefit of focusing one’s efforts on collecting only the necessary data

points to adequately calibrate the model. The final result may be less overall effort

during the energy audit and energy model development stages.

The posterior distributions are presented for each parameter independently in

this case study, however, there may be further information to be gained by analyzing

the set of posterior parameter combinations themselves. A clustering analysis, for

example, may elucidate further information on parameter groupings.

4.4.2 Conclusions

The results presented above for a case study of a large mixed-use retail centre show

the applicability of performing approximate Bayesian computation for building en-

ergy calibration. The process leverages a neural network surrogate for time-efficient

calculations without the curse of dimensionality associated with Gaussian Processes.

The selection of parameters and priors still depends on an expert user’s subjec-

tivity and experience, and does not replace the expert user. In addition, the steps

leading up to the calibration, including reviewing data, building a model, and per-

forming an energy audit, are still necessary. The inference process does, however,

inform the user how much information can be gained from observed data compared

to prior beliefs gathered.

A sensitivity analysis can support the selection of parameters, and there is some

indication that the amount of information gain is proportional to the sensitivity of

that parameter, but it is not advised to winnow parameters down below what is

needed based on other limitations.

Bayesian inference provides a much-needed step in the calibration process of build-

ings that improves the rigour and will improve the confidence that both users and

the industry at wide will have with building energy calibration. It provides a way to

quantify and defend the selection of model parameters based on the available data,

and can be used to support and guide the calibration process.



63

Chapter 5

Conclusions

This thesis presented an overview of three emerging computational methods that

can be readily implemented into building engineering methodologies and workflows.

These have the potential to reduce the engineering burden that is required to design

or retrofit buildings to be low-energy and low-carbon.

In Chapter 2, an artificial neural network was used to support early-stage design

decision making. This research demonstrates that machine learning can identify the

important parameters to be understood, as well as the relative impact of that under-

standing. Furthermore, it enables a much quicker computational speed which enables

rapid iteration under a lack of detailed information.

In Chapter 3, a genetic algorithm was used to optimize the performance of a

archetypical existing building model. The paper shows that significant energy and

indoor air quality improvements can be made to existing buildings. Utilizing a genetic

algorithm side-steps the significant time requirement that would be needed for a

designer to manually iterate over the multitude of interacting parameters.

In Chapter 4, Bayesian inference is used to calibrate an energy model for a real-

world complex building. This research provides evidence that Approximate Bayesian

Computation is a viable method for incorporating uncertainty in building calibration.

The applications of computational methods have all been applied to reduce build-

ing energy consumption and leverage building energy models, but their usefulness

in the construction industry does not end there. Future work is recommended to

investigate how these methods can be applied to different facets of the industry.

Overall, there are ways to improve engineering efficiency in the industry. Design-

ing and operating buildings to be low-energy and low-carbon is essential for global

sustainability, and a reduction in the up-front effort is one less barrier to doing so.
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