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ABSTRACT

Recent decades have witnessed the phenomenal success of model predictive control
(MPC) in a wide spectrum of domains, such as process industries, intelligent transporta-
tion, automotive applications, power systems, cyber security, and robotics. For constrained
dynamic systems subject to uncertainties, robust MPC is attractive due to its capability of
effectively dealing with various types of uncertainties while ensuring optimal performance
concerning prescribed performance indices. But most robust MPC schemes require prior
knowledge on the uncertainty, which may not be satisfied in practical applications. There-
fore, it is desired to design robust MPC algorithms that proactively update the uncertainty
description based on the history of inputs and measurements, motivating the development
of adaptive MPC. This dissertation investigates four problems in robust and adaptive MPC
from theoretical and application points of view. New algorithms are developed to address
these issues efficiently with theoretical guarantees of closed-loop performance.

Chapter 1 provides an overview of robust MPC, adaptive MPC, and self-triggered MPC,
where the recent advances in these fields are reviewed. Chapter 2 presents notations and
preliminary results that are used in this dissertation. Chapter 3 investigates adaptive MPC
for a class of constrained linear systems with unknown model parameters. Based on the
recursive least-squares (RLS) technique, we design an online set-membership system iden-
tification scheme to estimate unknown parameters. Then a novel integration of the proposed
estimator and homothetic tube MPC is developed to improve closed-loop performance and
reduce conservatism.

In Chapter 4, a self-triggered adaptive MPC method is proposed for constrained discrete-
time nonlinear systems subject to parametric uncertainties and additive disturbances. Based
on the zonotope-based reachable set computation, a set-membership parameter estimator
is developed to refine a set-valued description of the time-varying parametric uncertainty
under the self-triggered scheduling. We leverage this estimation scheme to design a novel
self-triggered adaptive MPC approach for uncertain nonlinear systems. The resultant adap-
tive MPC method can reduce the average sampling frequency further while preserving com-
parable closed-loop performance compared with the periodic adaptive MPC method.

Chapter 5 proposes a robust nonlinear MPC scheme for the visual servoing of quadro-
tors subject to external disturbances. By using the virtual camera approach, an image-based
visual servoing (IBVS) system model is established with decoupled image kinematics and
quadrotor dynamics. A robust MPC scheme is developed to maintain the visual target stay
within the field of view of the camera, where the tightened state constraints are constructed
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based on the Lipschitz condition to tackle external disturbances.
In Chapter 6, an adaptive MPC scheme is proposed for the trajectory tracking of per-

turbed autonomous ground vehicles (AGVs) subject to input constraints. We develop an
RLS-based set-membership based parameter to improve the prediction accuracy. In the
proposed adaptive MPC scheme, a robustness constraint is designed to handle parametric
and additive uncertainties. The proposed constraint has the offline computed shape and on-
line updated shrinkage rate, leading to further reduced conservatism and slightly increased
computational complexity compared with the robust MPC methods.

Chapter 7 shows some conclusion remarks and future research directions.
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Chapter 1

Introduction

This chapter provides the introductory knowledge of model predictive control (MPC), ro-
bust MPC, and adaptive MPC. Then an overview of recent developments of adaptive MPC
is presented, followed by the motivation and contribution of this thesis. The organization
of this thesis is given at the end of this chapter.

1.1 MPC Overview

Recent decades have witnessed the phenomenal success of MPC in a wide spectrum of do-
mains, such as process industries, intelligent transportation, automotive applications, power
systems, cyber security and robotics [1–7]. This is because MPC offers a systematic and
efficient way for complex systems to deal with hard system constraints while ensuring the
optimal performance concerning prescribed performance indices [8–11]. MPC generates
the control inputs by repeatedly solving a constrained and finite-horizon optimal control
problem (OCP) in a receding-horizon fashion. Therefore, MPC is also called receding
horizon control (RHC).

In the standard MPC framework, the control actions are obtained by solving the fi-
nite horizon OCP at each sampling instant based on the current measurement of the state
xk. Solving this OCP yields an optimal control sequence {u∗l|k} including N control ac-
tions, where N is the prediction horizon and u∗l|k denotes the prediction of the control input
uk+l. Then the first element of this optimal control sequence is applied to the system, i.e.,
uk = u∗0|k, as shown in Figure 1.1. Repeating this computation process at the next sampling
time instant based on the new measurements yields new optimal control actions. There-
fore, MPC is naturally the feedback control law implemented implicitly, which is different
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from conventional feedback control strategies that provide offline computed control laws.
Specifically, if the control actions are computed by solving the open-loop OCP, the cor-
responding MPC formulation is referred to as the open-loop MPC formulation. With this
flexible formulation and simple concept, MPC provides an effective and efficient method-
ology to deal with system constraints and has become an attractive multivariable optimal
control method.

prediction horizon

k k+1k-2 k-1 k+2 k+3 k+4 k+N

Past Future

xk

Apply u*  to the system 0|k

Past

prediction horizon

k k+1k-2 k-1 k+2 k+3 k+4 k+N

Future

xk+1

k+N+1

Apply u*    to the system 0|k+1

Figure 1.1: The schematic diagram of MPC. The blue and red lines indicate the trajectories
of pass states and inputs, while the green and yellow lines are trajectories of future states
and inputs, respectively.

As introduced in [11], an alternative to the solution obtained by solving the open-loop
OCP for the MPC problem is to use dynamic programming (DP). Compared with the open-
loop OCP solution where the decision variable is a sequence of control actions u∗l|k, the DP
solution considers a sequence of control polices τl|k(·) as the decision variable. Therefore,
this MPC formulation is also referred to as the closed-loop MPC formulation or the feed-

back MPC formulation. Note that, without considering uncertainties, the open-loop and
closed-loop MPC formulations are equivalent, i.e., u∗0|k = τ0|k(xk).

1.2 Robust MPC: Overview

When uncertainties are present, the superiority of feedback control for handling uncertain-
ties renders the closed-loop MPC formulation superior to the open-loop MPC formulation,
which, however, makes the associated OCP much more complicated, especially for high-
dimensional systems [2]. Although standard closed-loop MPC has a certain level of ro-
bustness against sufficiently small uncertainties due to its receding-horizon nature [12], its
robustness may still be inadequate for practical applications because of its deterministic
formulation of the OCP. Motivated by this fact, robust MPC has been developed to offer
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computationally tractable MPC frameworks for handling system uncertainties in a system-
atic way.

According to the objective function to be minimized in the OCP, existing results on
robot MPC can be briefly classified into two categories: Robust MPC with the maximized
objective function and robust MPC with the nominal objective function. In the following,
we present a brief review of several representative results on each category of robust MPC
schemes.

1.2.1 Robust MPC with a worst-case objective function

The first category is to consider the worst-case objective function that is maximized over
all possible uncertainties. This is achieved by formulating a min-max OCP, which is also
referred to as min-max MPC [13, 14]. Therefore, min-max MPC can efficiently handle
various types of uncertainties, including additive disturbances and parametric uncertainties.
The min-max MPC approach is first proposed in [15] for the single-input-single-output
system, and further extended to general linear systems [16, 17] and linear parameter varying
(LPV) systems [18].

An open-loop min-max MPC scheme is proposed by [19] for a stable nonlinear system.
This scheme may have a relatively high computational burden. In addition, the resulting
controller may be conservative due to the small region of attraction and the open-loop pre-
diction. To deal with the conservative issue, the feedback (or closed-loop) min-max MPC
scheme is developed for the constrained nonlinear systems in [13, 20]. In this setup, the
feedback is incorporated into the predictions. Therefore, the optimal solution, which is a se-
quence of control laws depending on the predicted system states, is obtained by solving the
min-max optimization problem. It is shown that the resulting closed-loop system by apply-
ing the feedback min-max MPC method is input-to-state practically stable (ISpS). Another
alternative approach called multi-stage MPC [21] is to explicitly take into account available
new measurements at future sampling time instants. This is achieved by approximating the
enumeration of the uncertainty realization as a scenario tree. However, the computational
complexity of the aforementioned min-max MPC methods restricts their practical appli-
cations. Several methods for reducing the computational burden have been reported in
the literature. For example, instead of considering the worst-case realization of the un-
certainty, [17] solves the min-max optimization problem by only considering the extreme
disturbance realizations. Therefore, the computational load can be significantly reduced.
But this method is only suitable for low-dimensional systems and very short prediction
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horizons. By designing a specific feedback policy in [22], the min-max MPC optimization
problem is equivalently transferred to a convex and tractable optimization problem, thereby
improving the computational efficiency. An overview of results on min-max MPC can be
found in [14].

1.2.2 Robust MPC with a nominal objective function

An alternative to the worst-case objective function is the nominal cost function, as used in
standard MPC. The robust MPC methods falling within this category usually rely on the
tightened system constraints to guarantee constraint satisfaction for all possible uncertain-
ties. Depending on the decision variable of the MPC optimization problem, the constraint
tightening strategies in robust MPC can be classified as the open-loop methods and closed-
loop methods.

Tube-based MPC

A typical example of MPC methods using the closed-loop constraint tightening strategies
is tube-based MPC. As aforementioned, the closed-loop MPC is superior to open-loop
control for uncertain systems. The main difficulty of closed-loop MPC is the high com-
putational complexity arising from the use of control policy as the decision variable of the
MPC optimization problem. Tube-based MPC is developed to address this problem by
sacrificing, to some extent, optimality for simplicity. This is achieved by employing the pa-
rameterization of the locally stabilizing feedback control law in the MPC OCP. In addition,
this feedback control law is also employed to construct the tightened state constraints such
that the trajectories related to all possible realization of uncertainties are restricted within
a small neighborhood of the designed nominal trajectory. Therefore, tube-based MPC has
a similar order of computational complexity to standard MPC while providing less conser-
vative closed-loop performance. The concept of tubes is originally presented in [23, 24],
and tube-based MPC is explicitly proposed in [25, 26].

The essential idea of tube-based MPC is to tighten the system constraint X based on
a new system model stabilized by a feedback controller that the constraint satisfaction is
guaranteed for all possible realization of uncertainties. This is achieved by constructing a
positive invariant set S [27] for the error between the real system state xk+l and the pre-
dicted state xl|k based on the local feedback control law. For example, in [26], the state
constraint and the input constraint are tightened as XT = X 	 S and UT = U 	 KS, re-
spectively, where K is a stablizing feedback gain and vk+l|k is the control variable and 	 is
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the Pontryagin set subtraction. Then the closed-loop stability can be ensured by choosing
a suitable objective function. Later in [28], an extension of the tube-based MPC method
[26] is proposed by considering the initial condition of the nominal state trajectory as the
decision variable of the MPC optimization problem, leading to the guarantee of robust ex-
ponential stability. This tube-based MPC method [26] is extended to solve the output feed-
back problem for constrained linear time-invariant systems [28] and time-varying systems
[29]. A nonlinear version of the tube-based MPC is discussed in [30].

In the aforementioned tube-based MPC methods, the feedback gain, K, and the pos-
itive invariant set S are calculated offline. As a result, the state cross-section XT and
the control cross-section UT are determined offline and fixed during the online optimiza-
tion problem. Therefore, this framework has the same order of computational complexity
compared with standard MPC, which is referred to as “rigid tube-based MPC”. How-
ever, when considering parametric uncertainties, it is difficult to approximate the effects
of state-dependent uncertainties on prediction accurately, thus resulting in a conservative
performance of rigid tube-based MPC. This consideration motivates the development of
dynamic tube-based methods including homothetic tube-based MPC [31–33], elastic tube-
based MPC [34, 35] and separable state feedback (SSF) tube-based MPC [36–38], where
the tube cross-sections are constructed, optimized, and updated in an online manner. This
is achieved by considering the tube parameters as the decision variables of the MPC opti-
mization problem. In homothetic tube-based MPC, the shapes of the state cross-sections
XT,k and the control cross-sections UT,k are determined offline, but the size of each tube
cross-section is determined by a scalar to be updated online. But in elastic tube-based MPC,
the tube parameter is a vector. Therefore, the shape and size of each tube cross-section in
elastic tube-based MPC can be optimized online. SSF tube-based MPC parameterizes the
prediction of states and control inputs based on the sequences of partial states and con-
trol inputs. As a result, the tube cross-sections UT,k and XT,k are the collections of the
tube cross-sections associated with partial states and control inputs. Compared with elastic
tube-based MPC, SSF tube-based MPC allows the further optimized shape of each tube
cross-section, thereby leading to improved performance. Note that, in the aforementioned
dynamic tube-based MPC methods, the optimal tube cross-sections are constructed by in-
troducing extra decision variables into the MPC optimization problem, which inevitably
increases the computational complexity of the MPC algorithm. Consequently, a judicious
trade-off between computational complexity and conservatism needs to be considered for
the practical implementation of dynamic tube-based MPC.
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Open-loop constraint tightening

Essentially, tube-based MPC is a kind of feedback MPC framework synthesized with the
constraint tightening strategy. Indeed, tube-based MPC relies on the suitable parameter-
ization of the control input to construct the bounded tube cross-sections. Finding such a
control parameterization is relatively easy for linear systems. However, this is difficult for
nonlinear systems due to the intrinsic complexity of nonlinearities. An alternative to tube-
based MPC for nonlinear systems is to incorporate the constraint tightening strategy into the
open-loop MPC framework, which is referred to as the constraint tightening method. For
example, [39, 40] construct the sets for the error between the real system state and the pre-
dicted system state based on the Lipschitz constant and then employ these sets to tighten the
state constraint. Instead of designing the error sets, [41] proposes a robustness constraint
for the predicted states based on the Lipschitz constant. Then the authors develop a ro-
bust distributed MPC scheme for a large-scale nonlinear system, where the predicted state
trajectory is bounded via a monotonically decreasing function. Compared with tube-based
nonlinear MPC (NMPC) methods, although these constraint tightening schemes [39–41]
may have relatively conservative control performance due to the open-loop fashion, the
optimization problems arising from these MPC schemes are less complicated. Therefore,
these open-loop constraint tightening strategies are promising for practical applications
with limited computational power.

1.3 Adaptive MPC

1.3.1 Overview

Compared with standard MPC, robust MPC focuses on ensuring the theoretical properties
of controlled systems, such as the stability, feasibility, and constraint satisfaction, for all
possible realizations of uncertainties. The techniques used for dealing with uncertainties in
robust MPC frameworks usually require extensive offline computation, such as the calcu-
lation of terminal ingredients and tightened constraints, based on the a priori knowledge
of uncertainties. The system uncertainties should be bounded and have a deterministic de-
scription to enable the worst-case analysis. As a result, the performance of robust MPC
is inherently conservative when the uncertainty bound is inaccurate or time-varying, espe-
cially for parametric uncertainties due to the difficulty of accurately estimating the impacts
of parametric uncertainties when the system state evolves over time. Therefore, adaptive
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MPC, which aims at systematically refining the description of uncertainties online in the
robust MPC framework, e.g., [42–44], has emerged as a promising solution for handling
uncertainties with inaccurate prior knowledge.

1.3.2 Categories of adaptive control

As the seamless integration of MPC and system identification, adaptive MPC inherently
shares some general features of adaptive control schemes. Before delving into details of
adaptive MPC, we first recall several categorizations of adaptive control approaches in the
following to help understand the merits of adaptive MPC schemes.

From the perspective of control input effects, the adaptive MPC control schemes can
be categorized into dual methods and non-dual methods, as shown in Figure 1.2. Adaptive
dual control aims to cautiously drive the system output to its desired value and sufficiently
excite the system to accelerate the system identification process, thereby compromising pa-
rameter estimate convergence and control performance [45]. As a result, the dual control
is active for both control and estimation purposes, which is also referred to as the active
learning method. On the other hand, most adaptive non-dual control methods are based
on the certainty-equivalence (CE) principle, in which the parameter estimates are directly
used in the control system design as if they are the true system parameters [46, 47]. From
the estimation perspective, the estimation in the non-dual method is open-loop and relies
on the persistency of excitation (PE) of system states to ensure the estimation performance.
Therefore, the non-dual method is also named as the passive learning method. As a result,
the adaptive non-dual control method is relatively easier to implement but more conserva-
tive compared with the dual control method.
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(a) Adaptive non-dual control.
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(b) Adaptive dual control.

Figure 1.2: Adaptive control system architectures with indirect and direct adaption.

From the perspective of control system architecture, adaptive control methods can be
grouped into direct and indirect methods. As shown in Figure 1.3a, in the indirect adaptive
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control framework, the estimator updates the system parameter. The adaptation process
is decomposed into separate steps for parameter estimation and controller parameter cal-
culation. The direct adaptive control illustrated in Figure 1.3b employs a direct estimator
for unified parameter estimation and controller parameter updates. Direct adaptive control
usually relies on a nested bi-level optimization problem for simultaneous system identifi-
cation and control parameter updates, thereby potentially outperforming indirect methods.
But designing such a bi-level optimization problem is relatively complicated, especially for
nonlinear systems. Therefore, indirect adaptive control methods are more readily applica-
ble to complicated applications.
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(a) Indirect adaptive control.
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(b) Direct adaptive control.

Figure 1.3: Adaptive control system architectures with indirect and direct adaptation.

1.3.3 Literature review

As an emerging topic, many research efforts have been devoted to the development of
adaptive MPC, intending to guarantee the closed-loop properties, including closed-loop
stability and recursive feasibility, and estimation convergence. Based on the categorizations
of adaptive control presented in the previous subsection, the recent results on adaptive MPC
can be categorized into three main groups: Active learning-based adaptive MPC, passive
learning-based adaptive MPC, and data-driven MPC. An overview of recent results on each
category is presented in the following.

Active learning-based adaptive MPC

In adaptive control, the informative operating data can be obtained by actively probing the
uncertain system. This probing effect is also referred to as excitation, experimentation,
exploration, or active learning [48]. Therefore, the active learning-based adaptive MPC
methods focus on improving system learning by increasing the amount of information gen-
erated by the control inputs. A common solution to generate the informative operating data
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is by guaranteeing the system excitation [49]. Another solution is via optimal experiment
design (OED) under the closed loop [50].

Adaptive MPC with persistent excitation. In adaptive MPC, the probing feature of the
control inputs is added by reformulating the MPC optimization problem or by imposing the
system excitation on control inputs directly. Although adding this probing feature to con-
trol inputs inevitably leads to the undesired system excitation deteriorating control perfor-
mance, this probing effect can improve system learning and further enhance future control
performance. Therefore, the active learning-based method potentially improves the control
performance compared with the methods without involving active learning. A more de-
tailed discussion about the exploration-exploitation trade-off in MPC with active learning
can be found in a recent survey paper [51].

The idea of adding the excitation constraint in the optimization problem is originally
proposed in [52], where a simultaneous model predictive control and identification (MPCI)
approach is developed for processes modeled by finite-impulse-response (FIR) models.
The unknown system parameters are identified based on the least-squares (LS) technique.
The excitation constraint in [52] has a form of quadratic matrix inequalities, thereby lead-
ing to a non-convex optimization problem. Later in [53], the approach in [52] has been ex-
tended to handle dynamic auto-regressive with exogenous input (DARX) processes, where
an excitation constraint depending on process inputs only is developed. The authors in
[53] also propose a successive semidefinite programming (SSDP) algorithm to solve the
non-convex optimization online. The theoretical analysis of the optimality of this SSDP
algorithm is presented in [54]. In [55], an extension of the MPCI method [53] is proposed
to reduce the computational complexity by expressing the PE constraint in the frequency
domain. A neural network (NN) based nonlinear adaptive MPC algorithm is proposed in
[56], where the nonlinear process is modeled by a dynamic radial basis function network
and then identified by an adaptive fuzzy means algorithm. This adaptive MPC optimization
problem is augmented by a PE constraint presented in [52] for the output of hidden nodes
to improve the estimation performance.

A multiobjective optimization-based adaptive MPC framework is proposed in [57],
where the PE condition is considered as the primary objective. This formulation can avoid
the potential feasibility problem caused by the excitation constraint while ensuring suf-
ficient system excitation. In [58, 59], a two-phase optimization-based adaptive MPC al-
gorithm is proposed. In the first phase, a set of exciting control inputs with acceptable
closed-loop performance is obtained by solving the nominal MPC problem. Among them,
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the control input that maximizes the measure of the information matrix will be implemented
to the system. This adaptive MPC algorithm can provide a certain level of probing effect
while ensuring the loss of closed-loop performance within a prescribed range.

Due to the inherent advantage of MPC, the excitation constraint can be exactly handled,
while the loss of control performance can be minimized. Generally, the input excitation
level is decided by a tuning parameter. Therefore, it is difficult to systematically decide
whether the input excitation is necessary, which inevitably increases the conservatism of
adaptive MPC. To address this issue, the authors in [60] propose an adaptive MPC strat-
egy where the PE constraint is inactive over the prediction horizon. Compared with the
MPCI methods, e.g., [52, 53], a backward-looking input excitation constraint is designed
in [60] such that the PE constraint is only imposed on the first element in the control se-
quence. Therefore, there always exists a periodic feasible input sequence that guarantees
the recursive feasibility of the adaptive MPC algorithm in [60].

Based on the idea of zone-tracking MPC presented in [61], a stabilizing adaptive MPC
scheme is proposed in [62]. The main feature of this work is to steer the system state into
the invariant set such that the system can be excited safely without destroying the closed-
loop stability. This invariant set is constructed based on the target excitation condition.
Therefore, the conflict between the system excitation and stabilization can be mitigated
while the recursive feasibility is guaranteed. In [63, 64], an integration of tube-based MPC
[28] and PE constraint presented in [60] is proposed. Under the assumption that the ex-
citation feature of control inputs cannot be eliminated by the feedback control policy in
tube-based MPC, this formulation inherits the closed-loop properties of tube-based MPC.
The authors in [65] propose an MPC strategy with looking-forward PE. The main feature
of this method is to track a periodic PE reference trajectory, allowing to preserve the system
excitation without relying on the non-convex PE constraint. The periodic PE reference tra-
jectory is generated around the steady state such that the persistently exciting control inputs
can be implemented safely. Under the assumption that reference tracking control law and
the reference state satisfy the incremental stability condition, the adaptive MPC scheme in
[65] can drive the system state to the PE reference trajectory exponentially.

MPC with integrated experiment design. The objective of experiment design is to max-
imize the information generated by the experiment. A distinguishing feature of MPC with
integrated experiment design is to take the estimation accuracy into account in the MPC for-
mulation such that the generated control inputs have dual effects for regulating and probing
the closed-loop system [66]. Instead of exciting all directions in PE constraint based adap-
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tive MPC, OED-based adaptive MPC excites directions affected by uncertainties, providing
less conservative control performance.

In [67], an adaptive MPC scheme is proposed based on the CE-based MPC formulation,
where a standard MPC cost function is augmented with a term related to the predicted co-
variance matrix to minimize the variance of the parameter estimates. As a result, the system
probing is only performed when the estimation error is large or when the observed infor-
mation is insufficient for system identification. Therefore, it is not necessary to persistently
excite the control inputs. This method has been extended in [48] for orthonormal basis-
function models. Compared with [67], the method in [48] depends on the future control
inputs for the exact propagation of the conditional distribution of the uncertain parameters
over the prediction horizon, thereby avoiding heuristic additions to the cost function. The
authors in [68] propose a Lyapunov-based MPC approach for constrained linear uncertain
systems described by a polytopic Linear Difference Inclusion. The cost function in this
work is modified by adding a term related to the predicted parameter estimation error co-
variance. Therefore, the control inputs that minimize the objective function can excite the
system. In addition, by combing the robust control invariant (RCI) set with the Lyapunov-
based constraint, a feasible set is designed in [68] to guarantee the recursive feasibility and
asymptotic stability.

A CE-based MPC formulation is augmented with OED is proposed in [69, 70] for
nonlinear systems subject to process disturbances and measurement noises. A so-called
self-reflective MPC scheme is presented in this work with the modified objective function,
where the information of adjoint forward and backward propagation of states is employed
in MPC to compute second-order moment expansions of the expected loss of optimality
of the CE-based MPC. Consequently, both the control performance and the approxima-
tion of expected loss can be minimized. An integrated OED-based MPC for nonlinear
systems subject to an uncertain model structure is presented in [71], where the cost func-
tion is modified to include and optimize a measure of the Bayes risk of choosing incorrect
models. Therefore, the future uncertainty of the model structure is explicitly considered in
[71], which mitigates the conflict between system probing and control. In [72] the authors
present a multiobjective economic MPC formulation for nonlinear systems. In this formu-
lation, the learning cost is considered as the objective function to improve system learning,
and the primary MPC cost is bounded by an average constraint. Therefore, a simple trade-
off between the control performance and learning performance can be achieved while the
guaranteed safety and closed-loop performance are preserved.
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Passive learning-based adaptive MPC

A distinguishing feature of passive learning-based adaptive MPC is that the control inputs
have no probing effects for system learning. Therefore, there is no conflict between the
probing activity and control activity of the control inputs. The uncertainty reduction is
a side-effect of the control action. Literature in this category aims at reducing the con-
servatism of MPC algorithms based on system learning with guaranteed non-increasing
estimation errors. Based on different MPC formulations, a review of several representative
results on passive learning-based adaptive MPC is presented in the following.

MPC with the updated model. An early work on adaptive MPC is proposed in [73] by
directly augmenting a standard NMPC formulation with an LS-based parameter estimator.
A controllable perturbation of parameter estimation is designed to generate sufficient in-
formation for the convergence of model adaption. It is shown in [73] that the asymptotic
stability can be guaranteed when the estimation error converges to zero. For unconstrained
systems subject to unknown system parameters, in [74], an integrated perturbation analy-
sis strategy and sequential quadratic programming technique are proposed for improving
the computational efficiency of adaptive MPC. The parameter estimate in this formulation
is considered as the perturbation in the optimization problem. Based on the neighboring
extremals approach [75], the solution to the MPC optimization problem is computed with
a predictor-corrector form, where the correction term is calculated based on the Hamilto-
nian for the optimization problem. This allows for achieving high computational efficiency
when the perturbations arising from parameter estimates are small.

In [76, 77], an adaptive MPC formulation with a control Lyapunov function (CLF)
based constraint is proposed for unconstrained nonlinear systems subject to unknown pa-
rameters. This Lyapunov-based constraint is constructed based on an input-to-state stable
(ISS) controller associated with the parameter updating law and imposed on the first el-
ement of the control sequence [77] or the terminal state [76]. This kind of CLF-based
adaptive MPC formulation inherits the guaranteed closed-loop stability of the ISS con-
troller. But this method relies on the existence of the ISS controller. Designing such an ISS
controller is difficult for constrained systems.

For unconstrained linear systems, an adaptive MPC approach is proposed in [78] for
linear systems subject to unknown state and input matrices, where the closed-loop stabil-
ity and bounded estimation error can be guaranteed via imposing additional constraints
on control inputs. This approach has been extended to handle input constraints [79] and
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incremental input constraints [80] by appropriately tightening the input constraint. Based
on the ISS stabilizing MPC method [81], an adaptive MPC scheme is developed in [82]
for input-constrained neutrally stable linear systems. The prediction model is updated by
employing the switching logic presented in [83] to minimize the output errors.

When considering state and input constraints, a so-called indirect adaptive MPC method
is proposed in [84] for state and input-constrained linear systems, where an RCI set is
employed to ensure the recursive feasibility. By designing the terminal cost function and
terminal constraint using a parameter-dependent Lyapunov function [85], the closed-loop
system is ISS with respect to the estimation error. This method is extended to handle
constrained linear systems subject to both unknown state and input matrices in [86] by
using a less conservative RCI set. The authors have further proved that the closed-loop
system is asymptotically stable when the estimation error is sufficiently small. In [87, 88],
a decreasing horizon tube-based MPC method [89] is augmented by a parameter estimator
presented in [78]. The tube cross-sections are designed based on the outer approximation
of the reachable set for the disturbance arising from the model mismatch. Consequently,
the resultant adaptive MPC scheme inherits the closed-loop properties of the original tube-
based MPC method. A combination of the min-max MPC method [90] and the parameter
estimator proposed in [78] is provided in [91], where the robust constraint satisfaction is
guaranteed via the min-max optimization. An extension of the adaptive MPC method [78]
is proposed in [92], where a Levenberg–Marquardt algorithm is employed to improve the
performance of parameter estimation.

In [93, 94], the unmodeled dynamics is represented as the external disturbance. Then
an adaptive MPC algorithm is developed by augmenting the standard tube-based MPC
formulation [28] with a suitable system identification method. The authors in [95] consider
a constrained nonlinear system subject to additive disturbances. By approximating the
nonlinear system as an uncertain Quasi-Linear Parameter Varying system, a tube-based
adaptive MPC algorithm is developed for the regulation problem.

MPC with the updated model and constraints. The aforementioned works only employ
the identified model in MPC to improve the prediction accuracy. The constraints used for
ensuring closed-loop stability and recursive feasibility are developed offline based on the
initial knowledge of the uncertainty. Therefore, these methods are relatively conservative
when the estimation error becomes small.

A promising solution to this issue is to update the constraints in the MPC optimization
problem by efficiently using the information generated from system learning. In [96], the
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authors consider a class of constrained continuous-time linear systems with a controllable
canonical form. An adaptive MPC formulation is developed by augmenting a comparison-
based MPC method [97] with an online parameter estimator. The comparison model is
updated by using the parameter estimation and then employed to tighten the state and input
constraints such that the recursive feasibility can be ensured. The closed-loop stability is
guaranteed by updating the feedback gain based on the parameter estimate. This method is
extended to tackle single-input single-out discrete-time linear systems in [98].

The set-membership system identification is also widely employed in adaptive MPC.
Compared with the point-estimation of unknown parameters, the set-membership estima-
tion method aims to update the parameter estimate as well as the set description of un-
certainties. Early works on augmenting robust MPC with set-membership system iden-
tification are presented in [99, 100]. The authors in [100] propose a set-valued adaption
strategy for both point estimation and set estimation. The set of parametric uncertainty
being adapted is described as a ball whose center and radius are updated based on the
available measurements. A Lipschitz-based internal model is established in this method to
generate an uncertainty cone around the nominal state based on the estimated uncertainty
set. Then by restricting this uncertainty cone within the state constraint and the termi-
nal constraint, robust constraint satisfaction and closed-loop stability can be guaranteed.
A similar adaptive MPC method is presented in [99] with reduced conservatism by con-
sidering the worst-case realization of uncertainty via the min-max optimization. But the
methods in [99, 100] rely on an assumption on the terminal ingredients. This assumption
is relaxed in [101, 102], where the terminal constraint and the terminal cost function are
parameterized as the functions of parameter estimates rather than the functions of the esti-
mated uncertainty set. The extensions of the min-max method [99] and the Lipschitz-based
approach [100] are presented in [102] with a rigorous analysis of closed-loops stability
and recursive feasibility, which is further extended to continuous-time nonlinear systems
with exogenous disturbances [103] and economic objective function [104], and discrete-
time nonlinear systems [105]. In [106, 107], the authors propose a min-max adaptive MPC
scheme for nonlinear systems subject to external disturbances, where a piecewise constant
adaptive law is employed to contract a set-valued description of additive disturbances. The
min-max adaptive MPC for constrained linear systems can be found in [108].

Recently, in [109] an output feedback MPC strategy with set-membership identification
is presented for stable multi-input and multi-output (MIMO) systems subject to measure-
ment noises. A set of admissible models consistent with available measurements and un-
certainty descriptions is updated online and employed in MPC to improve the knowledge of
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the system dynamics. This model set is also used to tighten the input and output constraints.
Based on these tightened constraints and the equality terminal constraint, the recursive fea-
sibility of the resultant adaptive MPC algorithm can be guaranteed. The method [109] is
applied to FIR systems with chance constraints in [110] by approximating the chance con-
straints as the deterministic constraints. An extension of [110] is presented in [111], where
the sparsity information of the unknown system parameters is employed to improve the
closed-loop performance. Another extension of the result [109] is presented in [112] for
time-varying MIMO systems. Based on the upper bound of the parameter’s changing rate,
the estimated admissible model sets can be inflated over the prediction horizon. There-
fore, the time-varying nature of the MIMO system can be handled. In [113], a learning
MPC formulation [114] for iterative tasks is augmented with the set-membership system
identification method presented in [109].

The authors in [115] firstly propose a homothetic method strategy integrated with set-
membership identification. One distinguishing feature of this method is that a parameteri-
zation of the state tubes is involved in MPC such that the state tubes are constructed online
and optimized with respect to the set-valued description of uncertainty. Then by designing
a λ-contractive and invariant terminal set in [115], the recursive feasibility of the adaptive
MPC algorithm and practical stability of the closed-loop system can be guaranteed. The
results in [115] are extended and refined in [42] by developing a set-membership strategy
including both point estimation and set estimation. The min-max cost is replaced by a CE
cost to reduce the computational complexity. The formulation allows for the guaranteed
finite gain `2 stability, which is novel in the literature on adaptive MPC.

In [116], an adaptive MPC scheme is presented where a set-membership parameter esti-
mation with reduced computational complexity is developed by computing a hypercube to
bound the parametric uncertainty. This method is based on the robust MPC method in [33],
where the shape of the tube is fixed while the size of the tube is propagated by a scalar func-
tion in MPC. Therefore, the resulting adaptive MPC scheme is relatively conservative but
has reduced computational complexity compared with the method in [42]. In [43], a tube-
based adaptive MPC algorithm is presented for the nonlinear system by augmenting the
robust MPC method [33] and the set-membership system identification strategy presented
in [116]. Similar to [42], the state tube is constructed based on an incremental Lyapunov
function and a contraction rate for the nominal system. But the propagation of tube size in
MPC is based on the parameter estimate, thereby leading to improved closed-loop perfor-
mance. The formulations in [43, 116] can ensure finite gain `2 stability of the closed-loop
system.
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For adaptive MPC methods in [42, 115, 116], the shapes of tubes are decided offline
and the sizes of tubes are optimized online. Later in [44, 117, 118], a more flexible rep-
resentation of the tube cross-section is considered, where both the shape and size of state
tubes are optimized online based on a tube-based MPC formulation presented in [35]. A
class of linear systems subject to parametric and additive uncertainties is considered in
[117], where the tube-based MPC formulation [35] is augmented with a set-membership
identification system identification method [119] and the PE constraint presented in [60].
A min-max cost function is considered in this formulation to reduce the conservatism. By
designing an upper bound for the terminal tube parameter and the terminal state in [117],
the resulting adaptive MPC algorithm is recursively feasible, and the closed-loop system
is ISS. The results in [117] are extended in [118] with reduced computational complexity
by convexifying the PE constraint. In addition, the point estimation of the unknown pa-
rameter is calculated in [118]. Therefore, the min-max cost is replaced by a CE cost to
reduce the computational complexity further. Instead of designing the state tubes, the au-
thors in [44] construct the tube for the disturbances arising from the parametric uncertainty.
A set-membership parameter estimator derived from [105] is employed to update the un-
certainty set. The terminal constraints and the cost function are updated in [44] based on
the estimated uncertainty set to improve the closed-loop performance.

A recent result on combining stochastic MPC with set-membership system identifica-
tion is presented in [120], where a class of linear systems subject to hard constraints and
chance constraints is considered. The parameter estimator used in this work is derived from
the set-membership scheme presented in [109] and extended to handle the time-varying un-
known parameters. A tightened deterministic constraint is developed by using Bonferroni’s
inequality [121] to ensure the satisfaction of chance constraints. The recursive feasibility
and closed-loop stability are guaranteed by choosing the appropriate terminal ingredients.

Data-driven MPC

Most of the aforementioned results on adaptive MPC methods are model-based which rely
on the a priori knowledge of the system model structure. Indeed, the system identification
has to be conducted before the calculation of control inputs based on the input and state
history. However, it may be difficult or even impossible to conduct the system identification
in some practical problems since the data may not be informative enough. In contrast, data-

driven control aims to compute the optimal control input compatible with the collected
data, thereby can be applied without the a priori knowledge of the system model [122].
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Therefore, data-driven MPC is also of interest in adaptive MPC to enable a model-free
operation [123].

In this subsection, an overview of recent development on data-driven MPC is presented.
We firstly review the existing results on indirect data-driven MPC which have a two-step
formulation consisting of sequential system identification and model-based control. Then
we focus on direct data-driven MPC where the MPC optimization problem is formulated
from the collected data directly without conducting the system identification.

Indirect data-driven MPC. In indirect data-driven MPC, the system model is firstly
identified, then the control input is calculated based on the identified model. Identifying
the system model from data has been extensively studied in the field of system identifi-
cation, e.g., [124, 125]. Due to the inherent features of data-driven learning algorithms,
data-driven MPC has attracted increasing attention in recent years [123]. The first work
on data-driven MPC is proposed in [126] for unconstrained linear time-invariant (LTI) sys-
tems by integrating MPC with a subspace identification algorithm [127]. Therefore, this
formulation is also named subspace predictive control (SPC). Since predicting future be-
haviors in SPC is achieved based on the low-rank Hankel matrix constructed directly from
the collected data, the parametric representation of the dynamic system is not required.
Later in [128], the SPC method [126] is extended to handle the input and output constraints
by formulating a proper quadratic programming problem. A disturbance compensation
mechanism is also developed in [128] to handle the measured disturbances. In [129], an
SPC scheme is developed for Hammerstein LTI systems, where a set of kernel matrices
are constructed to approximate the Hammerstein nonlinearities. A comprehensive intro-
duction to SPC can be found in [130], and application of SPC to some industry issues can
be found in [131, 132]. Note that the aforementioned SPC methods only show empirical
success. It is still difficult to theoretically guarantee their closed-loop performance. For un-
constrained LTI systems, the authors in [133] propose a necessary and sufficient small-gain
stability condition for the closed-loop system. But for the general constrained LTI systems,
ensuring the recursive feasibility and closed-loop stability is still a challenging problem.

Similar to subspace identification, the Gaussian process (GP) has also attracted increas-
ing attention in data-driven MPC. Compared with the subspace identification, the GP model
can be used to describe nonlinear systems, thereby potentially having broader applications
[134]. The use of the GP model for the prediction in MPC optimization is firstly presented
in [135]. Later, the GP regression is incorporated with explicit MPC [136], one-step MPC
[137] and fault-tolerant MPC [138]. The combination of Sparse Spectrum GP regression
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and stochastic MPC is presented in [139]. Based on Pontryagin’s maximum principle, the
authors in [140] propose a new integration of GP and stochastic MPC with guaranteed op-
timality. Instead of using the GP model to describe the dynamic system, in [141] the GP
regression is used to learn and compensate the periodic time-vary disturbance. This result
is further refined in [142] for nonlinear systems subject to chance constraints.

For the modeling of complex nonlinear systems, NN is also an attractive tool. Many
research efforts have been made to incorporate the NN model into the MPC framework,
which is referred to as neural predictive control (NPC). The early results on this topic aim
to use NN to model the nonlinear term in the system model such that the linear MPC can
be applied, e.g., [143, 144]. Later in [145] a recurrent NN is employed to establish the pre-
diction model for nonlinear systems. The authors in [146] combine the offline step test data
and online collected data to establish the prediction model in NMPC based on the feedfor-
ward NN. In [147], an NPC scheme is developed for the path planning of mobile robots,
where a multi-layer wavelet NN is employed to model the car-like mobile robot. The com-
binations of continuous-time recurrent NN and NMPC are proposed in [148]. The authors
in [149] develop an NPC scheme based on two recurrent NNs, including the echo state
network and the simplified dual network. The echo state network is used for identifying
the dynamic model used in MPC, while the simplified dual network is adopted to solve the
MPC optimization problem with the guarantee of optimality. In [150], the self-organizing
recurrent radial basis function based recurrent NN is leveraged within the NMPC frame-
work, where both the structure and the parameter of the NN are updated concurrently to
improve the modeling accuracy. This result is further extended in [151] with improved
computation efficiency by using the multistructure radial basis function.

The aforementioned works investigate the point estimate of the dynamic model from
collected data. An alternative to this strategy is to derive a set-membership description
of the dynamic system from data. The main advantage of this framework is the guar-
antee of bounded prediction error. Therefore, it is promising to incorporate data-driven
set-membership identification into the MPC framework. The authors in [152] investigate
a linear system with an autoregressive exogenous (ARX) structure. A feasible parameter
set is built from data and a prior knowledge of the unknown regressor. Then a set-valued
description of the dynamic system is derived and then incorporated into the tube-based
MPC framework. The closed-loop stability and recursive feasibility can be guaranteed by
constructing the error tube and designing suitable ingredients. Instead of assuming a spe-
cific form of the system, [153] uses the data-driven model for the set-valued description of
the dynamic model, where the set propagation is computed based on the matrix zonotope
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recursion. It is further shown that this data-driven MPC scheme [153] is equivalent to the
standard MPC method in the absence of measurement noises.

Direct data-driven MPC. Compared with the indirect data-driven MPC methods, di-
rect data-driven MPC unifies the system identification and control input calculation via
formulating a nested bi-level optimization problem from data, thereby having a simpler
formulation. Recently, behavioral system theory has attracted increasing attention in data-
driven control, in which the dynamic systems can be abstracted as a set of trajectories [154].
Compared with the subspace methods extracting the parametric model from a data Hankel
matrix, the behavioral system theory methods aim to find the low-dimensional feature from
the data Hankel matrix, thereby naturally being attractive for data-driven control.

In data-driven control, one crucial question is how to efficiently describe dynamic be-
haviors of the system using the data directly. For nonlinear systems, this problem is still
challenging. But for LTI systems, there is a fundamental result which is the so-called fun-

damental lemma proposed by Willems et al. [155]. This result stipulates that all possible
finite-length trajectories of the LTI system can be obtained from a given finite set of tra-
jectories generated under the persistently exciting control inputs. Consequently, this result
illustrates a sufficient condition to uniquely identify the LTI model, thereby providing a
theoretic underpinning for results on subspace identification [156, 157] and data-driven
control [130, 133, 158].

The first work on the behavioral system theory based data-driven MPC is proposed in
[159] for unconstrained LTI systems, where a minimal image representation of the dynamic
system is used for the prediction. But in [159] the data Hankel matrix is constructed based
on current time data instead of the persistently exciting data. Therefore, the closed-loop
stability cannot be guaranteed. Later in [160], a data-driven MPC scheme, which is the so-
called DeePC, is presented for constrained LTI systems, where the image feature vector is
considered as the decision variable of the MPC optimization problem. Compared with the
method [159], the data Hankel matrix in [160] is constructed based on given trajectories
with persistently exciting control inputs, resulting in better prediction performance. In
addition, it is proved that for controllable LTI systems, the closed-loop behavior of DeePC
[160] is equivalent to the standard MPC algorithm.

The recent extensions of DeePC scheme are presented in [161–164]. In [161], a stochas-
tic DeePC is proposed for LTI systems subject to stochastic disturbances, where the cost
function is modified by adding heuristic regularization terms. Then the formulated DeePC
optimization problem is solved by using the distributionally robust optimization technique



20

[165] to handle the stochastic disturbance. The result in [161] is later extended in [162]
with the theoretical guarantees of constraint satisfaction and probabilistic performance un-
der the assumption on the Lipschitz continuity of the objective function. In [163, 164],
a robust DeePC scheme is developed for LTI systems subject to bounded measurement
noises. By adding the quadratic regulation terms to the objective function, the DeePC op-
timization problem can be reformulated as the min-max optimization problem to handle
the disturbances. In [164], the authors theoretically show that this min-max formulation
enables a robust performance guarantee under different types of uncertainty sets. Note that
in [161–164], the performance guarantee is theoretically investigated from the optimization
perspective, i.e., deriving an upper bound for the optimal value of the objective function.
But the stability of the closed-loop system and the recursive feasibility of the MPC algo-
rithm are not discussed.

Recently, there are some results exploring the analysis of closed-loop properties for
data-driven MPC [166–171]. The first result on data-driven MPC with guarantees of
closed-loop stability and recursive feasibility is presented in [166], where an equality ter-
minal constraint is considered in the MPC optimization problem. By designing a specific
Lyapunov function consisting of the optimal value function and an input-output-to-state
stability (IOSS) Lyapunov function [172], it proves that the closed-loop system is expo-
nentially stable. An extension of this data-driven MPC scheme is also proposed in [166]
for input-constrained LTI systems, in which a slack variable is introduced to compensate
the disturbances. In order to preserve the closed-loop properties, an extended state includ-
ing the past n-step inputs and outputs is constructed, leading to a so-called n-step MPC
formulation with the periodic operation. Consequently, the closed-loop stability and re-
cursive feasibility can be guaranteed periodically. The data-driven MPC scheme [166] is
further extended to the robust constraint satisfaction [168] and the setpoints tracking [167].
The authors in [169] investigate the data-driven MPC for nonlinear affine systems. By
approximating the nonlinear affine system as the image representation based data-driven
model, the method [168] is applied to handle the model deviation.

Note that in [166–169] an equality terminal constraint is employed to guarantee the
closed-loop stability, which, however, may lead to the conservative control performance.
To address this issue, the result [170] investigates the design of general terminal ingredients,
i.e., the terminal cost and the terminal set constraint, for data-driven MPC. Similar to [166],
the extended states consisting of the past inputs and outputs are introduced to reformulate
the LTI systems. As shown in [173], this new system can be further represented as a linear
fractional transformation to compute the terminal cost function and terminal constraint.
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Another result on reducing the conservatism of the equality terminal constraint in data-
driven MPC is presented in [171]. If the uncertainty is sufficiently small, by choosing a
sufficiently long prediction horizon, the closed-loop stability and recursive feasibility can
be ensured without relying on terminal ingredients.

Direct data-driven MPC usually has an implicit identification step that generates a pre-
diction model similar to the one used in indirect data-driven MPC. This intermediate step of
system identification makes indirect data-driven MPC less sensitive to noisy data. There-
fore, several results have appeared in literature exploring the relation and comparison be-
tween indirect and direct data-driven MPC [174–176]. For LTI systems, the authors in
[174] prove that SPC and DeePC are equivalent in deterministic cases, and the numerical
example shows SPC can outperform DeePC in the presence of additive Gaussian noise. A
similar conclusion is derived in [175], in which DeePC is proved to be the convex relax-
ation of SPC for the regulation problem. The result [175] further suggests that the indirect
method can outperform the direct method for LTI systems with “variance errors”, i.e., the
additive disturbances whose probability distribution are known, and the direct method is
recommended for “biased errors”, i.e., the model mismatch caused by using the linear
model obtained from data to describe a nonlinear system with noise-free measurements.
The performance comparison between indirect and direct data-driven MPC for stochas-
tic LTI systems with different sizes of data set is presented in [176], where the conver-
gence rate of identification and suboptimality gap between the data-driven method and the
model-based method are used as the indices. A compromise between indirect and direct
data-driven MPC is reported in [177]. This result presents a two-step framework. But
the prediction is achieved by using the prediction matrix built from the data instead of the
identification of a state-space or FIR model. Therefore, the pre-assumption on the system
model is not required in [177].

1.4 Self-Triggered MPC

The problem of addressing the computation and communication constraints in networked
dynamic systems has attracted increasing attention in recent years [178]. Compared with
the control methods with periodic execution, event-based aperiodic control, where the con-
trol input is not calculated and transmitted until a certain well-defined event occurs, has
proved to be effective in achieving the trade-off between the closed-loop performance and
the overall communication load. Therefore, numerous research efforts have been made to
explore event-based aperiodic control for networked dynamic systems. According to dif-
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ferent triggering mechanisms in the existing literature, there are two main categories [178]:
Event-triggered control and self-triggered control. In the former, the event is generally
triggered at time instants when the system outputs or states satisfy a certain condition, e.g.,
leaving a prescribed set. As a result, the continuous state or output measurement of the sys-
tem is required in event-triggered control to determine the computation of control inputs
and transmission of new measurements. For self-triggered control, the next sampling time
instant and the control input are determined simultaneously based on the measurements
obtained only at triggering time instants, thereby potentially allowing a further reduction
in overall communication load. A comprehensive introduction to event-triggered and self-
triggered control can be found in [178].

While event-based aperiodic control methods have become increasingly popular in
recent years, there are relatively few results on communication-efficient control of con-
strained dynamic systems. MPC, which has proved to be effective in handling system con-
straints for complicated systems [179], is a natural and promising framework to achieve
these objectives. In event-triggered MPC, the new control inputs are only computed and
transmitted if a performance criterion is violated, which allows the communication and
computational power to be saved while almost preserving the control performance [180–
182]. Self-triggered MPC pre-determines the execution of control inputs and time instants
of state measurements based on the prediction from the plant model. As a result, self-
triggered MPC only samples at the triggering time instants, thereby requiring less overall
information from the system.

Some results addressing self-triggered MPC have been reported in the literature, e.g.,
[183–190]. For deterministic systems, a self-triggered MPC scheme is developed in [183]
for input-constrained nonlinear affine systems, where the control inputs are implemented
in a sample-and-hold fashion by discretizing the optimal control trajectory into several
control input samples with optimal sampling intervals. In [187], the authors propose a self-
triggered MPC method that jointly designs the triggering behavior and control inputs for
constrained nonlinear systems such that the maximum sampling interval and the optimal
control inputs can be simultaneously obtained by solving an optimization problem. When
considering the system with uncertainties, a tube-based self-triggered MPC algorithm is
presented in [189] for linear systems subject to additive disturbances. But the sampling in-
terval is determined based on the tube cross-sections associated with the maximum admis-
sible sampling interval, leading to a conservative region of attraction for the self-triggered
MPC algorithm. To address this issue, in [190], the integration of self-triggered MPC with
homothetic tubes is proposed, where the tube cross-sections are optimized online based on
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the length of the sampling interval to reduce the conservatism. The probabilistic constraints
and stochastic disturbances are considered in [184, 185]. To relieve the computational bur-
den, the authors in [186] have proposed an adaptive mechanism for the prediction horizon
in the dual-mode MPC framework. By incorporating the self-triggering mechanism into
the min-max MPC strategy, a recent work in [188] provides a novel self-triggered robust
MPC (ST-RMPC) algorithm for general nonlinear systems considering both parametric
uncertainties and additive disturbances.

1.5 Research Motivations and Contributions

Although numerous results on robust MPC and adaptive MPC have been reported in the
literature, there are still many problems that need to be further investigated. As aforemen-
tioned, adaptive MPC aims to achieve a dual control objective, including regulation and
system identification. Specifically, the control signals should guarantee that the system
output can cautiously track the desired values while sufficiently exciting the system to ac-
celerate the system identification process [191]. But synthesizing system identification with
MPC definitely introduces new theoretical and practical problems. Similar to most adaptive
control methods, a persistent excitation of the system is required to achieve the satisfactory
performance of system identification, which, however, is usually conflicted with the control
objective [192]. How to achieve the exploration-exploitation trade-off in adaptive MPC is
still challenging. In addition, due to the recursive updates of the system model in MPC, it is
difficult to guarantee the stability of the closed-loop system and the recursive feasibility of
the adaptive MPC algorithm, especially for complicated nonlinear systems. Motivated by
these issues, this dissertation focuses on designing robust and adaptive MPC. The detailed
motivations and objectives of each chapter are presented in the following.

• Chapter 2 presents the notations and preliminary results that are useful throughout
this dissertation.

• Chapter 3 studies adaptive MPC for constrained linear systems subject to para-
metric uncertainties. The tube-based MPC strategy is one of the most attractive
approaches for linear systems to handle uncertainties since it can efficiently deal
with uncertainties while having a comparable computational complexity to standard
MPC [2]. Several results on adaptive MPC have been developed based on the tube-
based MPC technique, e.g., [42, 63, 64, 87, 88, 115, 116]. However, these results
are developed based on the rigid tube methods with fixed shapes and sizes, e.g.,
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[63, 64] or the homothetic tube method with dynamic sizes but fixed shapes, e.g.,
[42, 87, 88, 115, 116]. Therefore, these results may be conservative under recursive
updates of the uncertainty set. To address this issue, we propose an adaptive MPC
scheme based on the elastic tube method in Chapter 3, where both the size and shape
of the tube cross-sections are optimized via the MPC optimization problem. We
theoretically show the perturbed closed-loop system is asymptotically stable under
standard assumptions. Numerical simulations and comparisons are given to illustrate
the efficacy of the proposed method.

• Chapter 4 investigates self-triggered MPC for constrained discrete-time nonlinear
systems subject to parametric uncertainties and additive disturbances. Some re-
sults on ST-RMPC have been proposed in the literature, e.g., [184–186, 188–190].
But these results on self-triggered MPC handle the uncertainties by considering its
worst-case realization based on a priori knowledge of the uncertainty bound. Inher-
ently, those methods become conservative when the uncertainty is over-estimated and
time-varying. In Chapter 4, we develop an self-triggered adaptive MPC (ST-AMPC)
scheme based on the min-max MPC framework for uncertain nonlinear systems. A
set-membership parameter estimator is developed based on the zonotope-based in-
direct polytopic set computation such that the proposed estimator can be used for
the system with the aperiodic self-triggered sampling. It is theoretically shown that
the resulting ST-AMPC method is recursively feasible, and the closed-loop system
is ISpS at triggering time instants. A numerical example and comparison study are
presented to illustrate the advantages of the proposed method.

• Chapter 5 presents a robust MPC scheme for the visual servoing of quadrotors sub-
ject to external disturbances. In recent years, quadrotor unmanned aerial vehicles
(UAVs) have received considerable attention in many fields, such as agriculture, in-
dustry, and transportation, due to their high maneuverability, agile mobility, and ver-
tical take-off and landing (VTOL) capability [193–196]. The navigation of quadro-
tors usually relies on the position information measured by the global positioning
system (GPS) or other positioning systems. However, the position information may
be unavailable in some indoor or cluttered urban areas. For the quadrotor equipped
with a camera, visual servoing provides an alternative solution to this problem, where
the image data are employed as the feedback to regulate the quadrotor’s pose with
respect to a predefined visual target, allowing the navigation of quadrotors in GPS-
denied environments. The implementation of the visual servoing usually requires
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that the visual target always stays in the field of view (FOV) of the camera during
the visual servoing process, which is also referred to as the visibility constraint. To
address this issue, the MPC-based visual servoing method is a promising solution. In
Chapter 5, we investigate the image-based visual servoing (IBVS) of quadrotors sub-
ject to external disturbances based on robust MPC. A constraint tightening strategy is
developed based on the Lipschitz condition to handle the external disturbances. The
sufficient conditions on guaranteeing the recursive feasibility and closed-loop stabil-
ity are established in this chapter. Numerical simulation and experimental validation
are provided to illustrate the efficacy of the proposed method.

• Chapter 6 explores the trajectory tracking of perturbed autonomous ground vehi-
cles (AGVs) based on adaptive MPC. Over the past decades, AGVs have received
considerable attention in modern military and civilian areas due to their high ma-
neuverability, agile mobility, and low cost, e.g., [197–199]. Compared with other
control strategies, MPC is an attractive control paradigm since it can systematically
and efficiently deal with system constraints. Numerous results on MPC-based trajec-
tory tracking control of AGV have been developed in the literature. When consid-
ering uncertainties, most MPC-based trajectory tracking strategies assume that the
AGV system is perfectly modeled and is only perturbed by external disturbances
such as the wheel slipping and measurement noises. But the presence of model mis-
match is also inevitable in practical problems. In Chapter 6, we develop an adaptive
MPC scheme for the trajectory tracking of AGV subject to unknown parameters.
A set-membership based parameter estimator is developed based on the recursive
least-squares (RLS) technique to identify the unknown system parameter with non-
increasing estimation error. Then a robustness constraint is introduced into the MPC
optimization to handle parametric and additive uncertainties. Sufficient conditions
on ensuring the recursive feasibility of the proposed adaptive MPC method are de-
veloped. We further prove that the closed-loop tracking system is ISS under recursive
updates of the system model. A numerical example and comparison study are pro-
vided to show the efficacy of the proposed method.

• Chapter 7 concludes this dissertation and presents our future research directions.
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Chapter 2

Preliminary Results

This chapter introduces the main notations and preliminary results on closed-loop stability
and LS that are useful via the dissertation.

2.1 Notations

We use the symbols R and N to denote the sets of all real numbers and non-negative in-
tegers, respectively. Let R>0,R≥0 and N>0 represent the set of all positive real numbers,
non-negative real numbers, and positive integers. We define N[a,b] := {x ∈ N : a ≤ x ≤
b, b ≥ a}.

The set Bm = {b ∈ Rm : ‖b‖∞ ≤ 1} is called a unit hypercube of dimension m. Given
two sets X ⊆ Rn and Y ⊆ Rn, their Pontryagin difference is denoted by X 	 Y = {z ∈
Rn : z + y ∈ X, ∀y ∈ Y }, and their Minkowski sum is X ⊕ Y = {x+ y : x ∈ X, y ∈ Y }.
Given a continuous function

∏
(·) and a set S, we adopt

∏
(S) to denote the set-valued

operation {
∏

(s) : s ∈ S}. We use the notations �(S) and �(S) to denote the zonotopic
and the box overbounding of S, respectively. Given a matrix H ∈ Rn×m, a set H ⊆ Rm

and a vector h ∈ Rm, we define HH := {Hh : h ∈ H} and h − H := {h − ĥ : ĥ ∈ H}.
Given a set A ⊆ Rn and a vector z ∈ Rn, we use the notation |z|A = inf z̄∈A ‖z − z̄‖ to
denote the distance from z to A.

Given a vector z ∈ Rn, we use ‖z‖ and ‖z‖∞ to represent the Euclidean norm and the
infinity norm of z, respectively. For a matrix Z ∈ Rn×n, its maximum and minimum eigen-
values are denoted by λmax(Z) and λmin(Z), respectively. We adopt col(z1, z2, · · · , zn) to
denote the column operation [zT

1 , z
T
2 , · · · , zT

n ]T for column vectors z1, z2, · · · , zn. The no-
tation {zi}ni=1 denotes the sequence {z1, z2, · · · , zn}with n elements. Given a positive inte-
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ger n, we use In to denote an identity matrix of size n×n. Let z1 = [z11, z21, · · · , zn1]T and
z2 = [z12, z22, · · · , zn2]T be two n-dimensional column vectors, we write z1 ≤ z2(z1 ≥ z2)

when zi1 ≤ zi2(zi1 ≥ zi2) for all i ∈ N[1,N ]. Given two matrices Z1, Z2 ∈ Rn×n, Z1 ≺ Z2

means that the matrix Z1 − Z2 is negative definite.

2.2 Stability Theorem

In this subsection, we review some preliminary results on the stability properties of discrete-
time systems. In the following, we recall several definitions, assumptions, and theorems
from [200] and [11].

2.2.1 Stability and asymptotic stability

Consider a deterministic, discrete-time autonomous system

xk+1 = f(xk), (2.1)

where xk ∈ Rn is the system state. Given the initial condition x0 = x, we use Φ(k, x) to
denote the solution of (2.1) at time k, i.e., xk = Φ(k, x).

Before introducing the concepts and preliminary results of stability, we firstly recall
some definitions.

Definition 2.1 (Positive invariant set). [11, Definition B.2] A closed setA ⊂ Rn is positive

invariant for the system (2.1) if xk+1 ∈ A for all xk ∈ A.

Definition 2.2 (Class K, K∞, KL, and PD functions). [11, Definition B.3]

a) A function α : R≥0 → R≥0 is called K-function if it is continuous, strictly increasing

and α(0) = 0.

b) A function β : R≥0 → R≥0 is called K-function if it is K-function and β(x)→∞ as

x→∞.

c) A function γ : R≥0 × R≥0 → R≥0 is called KL-function if γ(·, t) is a K-function for

each fixed k ≥ 0 and γ(x, ·) is decreasing with γ(x, t)→ 0 as t→∞ for each fixed

fixed x ≥ 0

d) A function δ : R≥0 → R≥0 is calledPD-function (positive definite function) if δ(0) =

0 and δ(x) > 0 for all x > 0.
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The defintion of asymptotic stability is given as follows.

Definition 2.3 (Asymptotic stability). [11, Definition B.11] Suppose that the set Ω ⊆ Rn

is positive invariant and the setA ⊆ Ω is closed and positive invariant for the system (2.1).

ThenA is asymptotically stable in Ω for the system (2.1) if there exists aKL-function γ(·, ·)
such that

|Φ(k, x)|A ≤ γ(|x|A, k) (2.2)

for all x ∈ Ω and k ∈ N . The set Ω is also called the region of attraction of set A for the

system (2.1).

The asymptotic stability can be established based on the Lyapunov stability theorem,
which is presented in the following.

Definition 2.4 (Lyapunov function). [11, Definition B.12] Suppose that the set Ω ⊆ Rn is

positive invariant and the set A ⊆ Ω is closed and positive invariant for the system (2.1),

and f(·) is locally bounded. A function V : Ω → R≥0 is called a Lyapunov function in

Ω for the system (2.1) and set A if there exist K∞-functions α1, α2 and a continuous PD
function α3 that the following conditions

V (x) ≥ α1(|x|A), (2.3a)

V (x) ≤ α2(|x|A), (2.3b)

V (f(x))− V (x) ≤ −α3(|x|A) (2.3c)

hold for all x ∈ Ω.

Theorem 2.1 (Lyapunov function for asymptotic stability). [11, Theorem B.18] Given the

positive invariant sets Ω and A for the system (2.1), if there exists a Lyapunov function in

Ω for the system (2.1) and A, then A is asymptotically stable in Ω for the system (2.1).

Note that for the regulation problem without considering uncertainties, if the point x∗

is the equilibrium point for the system (2.1), then A = {x∗}.

2.2.2 Robust stability

We now review the stability concepts and properties for discrete-time uncertain systems
described by

xk+1 = f(xk, wk), (2.4)
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where xk ∈ Rn is the system state and wk ∈ Rn is the uncertainty belonging to the compact
setW . Let Φ(k, x,wk) denote the solution of (2.4) at time k, i.e., xk = Φ(k, x,wk), under
the initial condition xk = x and wk = {wi}i=ki=0.

We first recall the defintion of the robust positive invariant set.

Definition 2.5 (Robust positive invariant set). [11, Definition B.2] A closed set Ω ⊂ Rn is

robust positive invariant (RPI) for the system (2.4) if xk+1 ∈ Ω for all xk ∈ Ω and wk ∈ W .

Support that f(0, 0) = 0 and W contains the origin, and Ω is the RPI set for the sys-
tem (2.4). The definitions of input-to-state stability, input-to-state practical stability, ISS-
Lyapunov function, and ISpS-Lyapunov function are given as follows.

Definition 2.6 (ISS). [11, Definition B.45] The system (2.4) is ISS if there exist a KL-

function β(·, ·) and a K-function σ(·) such that, for all x ∈ Ω and wi ∈ W , i ∈ N[0,k], the

following condition holds

‖Φ(k, x,wk)‖ ≤ β(‖x‖, k) + σ(w̄), (2.5)

where w̄ = supwk∈W ‖wk‖.

Definition 2.7 (ISpS). [201] The system (2.4) is ISpS if there exist a KL-function β(·, ·), a

K-function σ(·), and a constant δ ≥ 0 such that, for all x ∈ Ω and wi ∈ W , i ∈ N[0,k], the

following condition holds

‖Φ(k, x,wk)‖ ≤ β(‖x‖, k) + σ(w̄) + δ, (2.6)

where w̄ = supwk∈W ‖wk‖.

Definition 2.8 (ISS-Lyapunov function). [11, Definition B.46] A function V : Ω → R≥0

is an ISS-Lyapunov function for the system (2.4) in Ω if there exist K∞-functions α1, α2, α3

and a K function σ that the following conditions

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), (2.7a)

V (f(x,w))− V (x) ≤ −α3(‖x‖) + σ(w̄) (2.7b)

hold for all x ∈ Ω and w ∈ W , where w̄ = supwk∈W ‖wk‖.

Definition 2.9 (ISpS-Lyapunov function). [202, Definition 6] A function V : Ω → R≥0 is

an ISpS-Lyapunov function for the system (2.4) in Ω if there exist K∞-functions α1, α2, α3,
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a constant δ ≥ 0, and K functions σ1, σ2 that the following conditions

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) + δ, (2.8a)

V (f(x,w))− V (x) ≤ −α3(‖x‖) + σ(w̄) (2.8b)

hold for all x ∈ Ω and w ∈ W , where w̄ = supwk∈W ‖wk‖.

Similarly, the input-to-state stability and input-to-state practical stability can be estab-
lished by following the following theorems.

Theorem 2.2 (Lyapunov function for input-to-state stability). [11, Lemma B.47] Suppose

that f is continuous. If there exists a continuous ISS-Lyapunov function in Ω for the system

(2.4), then the system (2.1) is ISS in Ω.

Theorem 2.3 (Lyapunov function for input-to-state stability). [202, Theorem 1] If there

exists a continuous ISpS-Lyapunov function in Ω for the system (2.4), then the system (2.1)

is ISpS in Ω.

2.3 MPC Design Strategy

2.3.1 Control invariance

Before presenting the MPC design strategy, we first recall several definitions related to the
control invariant set.

Determinstic systems

Consider a general deterministic, discrete-time system

xk+1 = f(xk, uk), (2.9)

where xk ∈ Rnx and uk ∈ Rnu are the system state and input, respectively. The system is
subject to the following state and input constraints:

xk ∈ X , uk ∈ U . (2.10)

It is assumed that the origin is the equilibrium point of the system in (2.9), and the system
state is accessible for all k ∈ N. The definition of control invariant set is presented in the
following.
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Definition 2.10 (Control invariant set). [11, Definition 2.10] A set Ω ⊆ X is called the

control invariant for the system (2.9) subject to constants (2.10) if, for all xk ∈ Ω, there

exists a uk ∈ U such that xk+1 = f(xk, uk) ∈ Ω.

Uncertain systems

Consider a general uncertain, discrete-time system

xk+1 = f(xk, uk, wk), (2.11)

where xk ∈ Rnx and uk ∈ Rnu are the system state and input, respectively. wk ∈ Rn is the
uncertainty belonging to the compact setW . The system is subject to constraints (2.10). In
the following, we recall several well-established definitions that are widely used in robust
MPC.

Definition 2.11 (Robust control invariant set). [11, Definition 3.6] A set Ω ⊆ X is called

the robust control invariant (RCI) for the system (2.11) subject to constants (2.10) if, for all

wk ∈ W , there exists a uk ∈ U such that xk+1 = f(xk, uk) ∈ Ω for every xk ∈ Ω.

Definition 2.12 (Minimal RPI set). [203, Definition 2] A set Ω ⊆ X is called the minimal

RPI (mRPI)) set for the system (2.11) subject to constants (2.10) if is contained in every

RPI set of the system (2.11).

Definition 2.13 (Maximal RPI set). [? ] A set Ω ⊆ X is called the maximal RPI (MRPI)

set for the system (2.11) subject to constants (2.10) if it contains every RPI set of the system

(2.11).

Definition 2.14 (l-step robust stabilizable set). [? ] Let Ω ⊆ X denote the RPI set for the

system (2.11) subject to constants (2.10). A setXl(Ω) is called the l-step robust stabilizable

set for the system (2.11) subject to constants (2.10) if, for all xk ∈ Xl(Ω), there eixsts a

sequence of admissible control inputs {ui}k+s
i=k , s ∈ N[0,l] such that xk+s ∈ Xl(Ω) for all

wk+i ∈ W , i ∈ N[0,s]. The initial condition Xl(Ω) = Ω.

2.3.2 Standard MPC

Suppose that the control objective is to stabilize the system in (2.9) to the origin. The main
insight of MPC is to solve an online optimization problem to obtain the control actions that
optimize the future output behaviors with respect to a prescribed performance index, where
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a dynamic model is employed to predict the future system output. In particular, the optimal
control input is obtained by solving the following optimization problem.

VN(xk) = min
uk

JN(xk,uk) =
N−1∑
l=0

`(xl|k, ul|k) + `f (xN |k), (2.12a)

s.t. xl+1|k = f(xl|k, ul|k), l ∈ NN−1
0 (2.12b)

xl|k ∈ X , ul|k ∈ U , l ∈ NN−1
0 (2.12c)

xN |k ∈ Xf (2.12d)

x0|k = xk (2.12e)

where N is the prediction horizon; uk = {ui|k}N−1
i=0 is the sequence of control inputs; xl|k

denotes the predicted system state at time l + k based on the plant in (2.9), current system
state xk, and control inputs {ui|k}l−1

i=0; Xf is the terminal constraint; ` : Rnx × Rnu →
R≥0 and `f : Rnx → R≥0 are the functions of stage cost and terminal cost, respectively.
As shown in Figure 1.1, at the current time instant k, the optimization problem (2.12) is
solved to obtain the optimal control sequence u∗k, and the first element in the sequence is
implemented to the system in (2.9), i.e., uk = u∗0|k. At next time instant, we repeat the
above procedure based on the new measurement xk+1 to obtain control input uk+1.

2.3.3 Adaptive min-max MPC

In this subsection, similar to [102], we present an adaptive MPC scheme based on the well-
established closed-loop min-max MPC approach proposed in [202]. Consider a discrete-
time nonlinear system subject to the parametric uncertainty and the additive disturbance

xk+1 = F(xk, uk, vk, dk) , f(xk, uk) + g(xk, uk)vk + dk, (2.13)

where xk ∈ Rnx and uk ∈ Rnu , vk ∈ V ⊂ Rnv and dk ∈ D ⊂ Rnx are the system state, the
control input, the parametric uncertainty, and the additive disturbance, respectively. Both
vk and dk are unknown and time-varying, and V andD are known zonotopes. The definition
of zonotope can be found in Definition 2.15. f : Rnx × Rnu → Rnx and g : Rnx × Rnu →
Rnx×nv are nonlinear functions satisfying conditions f(0, 0) = 0 and g(0, 0) = 0. The
system is subject to constraints xk ∈ X and uk ∈ U for all t ∈ N, where X and U
are compact sets containing the origin. It is assumed that xk is always measurable. For
the uncertainties dk and vk, we assume that there exist constants d̄, v̄, δ̄ ∈ R>0 such that
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‖dk‖ ≤ d̄, ‖vk‖ ≤ v̄, and ‖vk+1 − vk‖ ≤ δ̄. for all all dk ∈ D and vk, vk+1 ∈ V .
Let xl|k denote the prediction of the state xl+k which is made at the time instant k.

Given the prediction horizon N ∈ N>0, we suppose that the predicted state trajectory
xl|k, l ∈ N[0,N ], of the system (4.1) is generated by the control policy µl|k : Rnx → Rnu ,
parametric uncertainties vl|kk and additive disturbances dl|kk with l ∈ N[0,N−1] and x0|k =

xk. Then the cost function for min-max MPC is given by

J̄N(xk,N ,µk,N ,wk,N) =
N−1∑
l=1

`(xl|k, µl|k(xl|k)) + `f (xN |k),

where xk,N = {xl|k}Nl=0,µk,N = {µl|k(xl|k)}N−1
l=0 and wk,N = {vl|k, dl|k}N−1

l=0 ; ` : Rnx ×
Rnu → R≥0 and `f : Rnx → R≥0 are stage cost function and terminal cost function satis-
fying the condition `(0, 0) = 0 and `f (0) = 0. Then the optimal control policy sequence
µ∗k,N can be obtained by solving the following optimal control problem P0 [202]

P0 : VN(xk) = minµk,N maxwk,N J̄N(xk,N ,µk,N ,wk,N),

s.t. xl+1|k = F(xl|k, µl|k(xl|k), vl|k, dl|k),

x0|k = xk, xl|k ∈ XN−l, µl|k(xl|k) ∈ U ,∀(vl|k, dl|k) ∈ Vl|k ×D, l ∈ N[0,N ],
(2.14)

where the set Xi = {x ∈ Rnx : ∃µ(x) ∈ U such that F(x, µ(x),V ,D) ⊂ Xi−1}, i ∈ N[0,N ]

is the i-step robust stabilizable set, as defined in Definition 2.14, with X0 = Xf and Xf is
the terminal set. Vl|k = (Vk⊕lδ̄Bnv)∩V is the prediction of the bounding set Vl+k. Note that
µl|k(·) is the control policy which is the function depending on the predicted system state
xl|k, which leads to the closed-loop min-max MPC formulation [11]. Therefore, solving the
optimal control problem P0 by means of the dynamic programming method, the following
recursion equation for the optimal cost function can be obtained [204]

Vi(xk) = min
µ(·)∈U

{
max

(v,d)∈VN−i|k×D
{Vi−1(F(xk, µ(xk), v, d)) + `(xk, µ(xk))} such that

F(xk, µ(xk), v, d) ∈ Xi−1, µ(xk) ∈ U , ∀(v, d) ∈ VN−i|k ×D
}

(2.15)
with the initial condition V0(xk) = `f (xk) and i ∈ N[1,N ]. Then similar to [202], the
following assumptions on the cost function and terminal set are made in this work

Assumption 2.1. There exist a local controller κf : Rnx → Rnu , aK∞-function α(·), some

K functions σ1(·), σ2(·), σ3(·) and a robust invariant set Xf such that

1) F(xk, κf (xk), vk, dk) ∈ Xf ,∀(xk, vk, dk) ∈ Xf × V ×D.
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2) κf (xk) ⊆ U for all xk ∈ Xf .

3) `(xk, uk) ≥ σ1(‖xk‖) for all xk ∈ X and uk ∈ U .

4) σ2(‖xk‖) ≤ `f (xk) ≤ σ3(‖xk‖) for all xk ∈ Xf .

5) `f (F(xk, κf (xk), vk, dk)) − `f (xk) ≤ −`(xk, κf (xk)) + α(d̄),∀(xk, vk, dk) ∈ Xf ×
V ×D.

As shown in [202, Theorem 2], if Assumption 2.1 holds, without considering the update
of bounding set, i.e., Vk = V ,∀t ∈ N, the periodic closed-loop system under the feedback
control law uk = µ∗0|k(xk) is ISpS, where µ∗0|k(xk) is the optimal control policy obtained
by solving the optimal control problem P0.

2.4 System definition

2.4.1 Set-membership parameter estimation with periodic state mea-
surement

Consider the nonlinear system (2.13). At time instant t, given the system state xk−1 and
the control input uk−1, the parameter set Lk, which encloses uncertain parameter vk−1

consistent with the observation of system state xk, can be described as follows:

Lk = {v ∈ Rnv : yk − g(xk−1, uk−1)v ∈ D}. (2.16)

where yk = xk − f(xk−1, uk−1).
As mentioned before, vk has a maximum change rate δ̄ and vk ∈ V for all t ∈ N.

Let Vk−1 denote the bounding set for the unknown parameter vk−1, based on (2.16), the
membership set of the unknown parameter vk can be derived by

Vk = ((Vk−1 ∩ Lk)⊕ δ̄Bnv) ∩ V , (2.17)

where the initial condition V0 = V . With this, it can be guaranteed that vk ∈ Vk for all
t ∈ N. In addition, since V and D are convex polytopes, Vk can be computed by following
(2.17) directly. To reduce the computational complexity of the MPC problem, we remove
the redundant constraints in Vk by solving linear programming problems [205].
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2.4.2 Zonotopic set computation

We first recall the following definition of the zonotope.

Definition 2.15 (Zonotope of orderm [206]). A zonotope of orderm is a set of n-dimensional

vectors defined byZ = p⊕SBm, where p ∈ Rn is the center of the zonotope and S ∈ Rn×m

is the generator matrix.

Consider the system (2.13). Let X̂k denote the outer bound of exact uncertain state
set [206] Xk for the state xk. Given Xk+1 = F(xk, uk,Vk,D), it can be obtained that
Xk+1 ⊆ F(X̂k, uk,Vk,D). Suppose that X̂k is a zonotope with a form X̂k = pxk ⊕ SxkBn

x
k ,

where pxk ∈ Rnx is the center vector and Sxk ∈ Rnx×nxk is the generator matrix. Re-
calling the zonotopic set computation method in [206], we define an inclusion function
GF(X̂k, u,V ,D) associated with system model in (2.13) as the

GF(X̂k, u,V ,D) = ♦(∇xF(�(X̂k), u,V ,D)(X̂k − pxk))⊕ �(F(pxk, u,V ,D)),

where ♦(·) is Zonotope inclusion function given in [206, Theorem 3]. If Vk and D are
zonotopic, one has [206, Theorem 4]

Xk+1 ⊆ F(X̂k, uk,Vk,D) ⊆ GF(X̂k, uk,Vk,D).

Therefore, by choosing X̂k+1 = GF(X̂k, uk,Vk,D), it can be guaranteed thatXk+1 ⊆ X̂k+1

for all k ≥ 0.
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Chapter 3

Adaptive MPC for A Class of
Constrained Linear Systems with
Parametric Uncertainties

3.1 Introduction

This chapter studies adaptive MPC for constrained linear systems subject to parametric
uncertainties. A computationally tractable adaptive MPC algorithm is proposed based on
the techniques of tube MPC and RLS. Similar to [102], an RLS-based parameter estima-
tor is developed to simultaneously update the point estimate of unknown parameters and
the set description. In [102], only the estimated set description of uncertainties is used
to update the min-max optimization problem. The proposed method is developed based
on tube-based MPC to take full advantage of the estimation information, i.e., point and
set descriptions of uncertainties, to improve the closed-loop performance. In addition, the
min-max optimization problem in [102] is a non-convex and computationally complicated.
Alternatively, the proposed work employs the tube MPC technique to handle the uncer-
tainty, which has a comparable computational complexity to standard MPC.

As reviewed in Chapter 1, there are several results on tube-based adaptive MPC re-
ported in the literature, e.g., [42, 63, 64, 87, 88, 115, 116]. However, the results [63, 64]
are developed based on the rigid tubes, where the tube cross-sections are computed offline
based on the initial knowledge of uncertainties, leading to relatively conservative control
performance. There are some novel adaptive MPC strategies [42, 87, 88, 115, 116] com-
bining the homothetic tube MPC technique with the set-membership identification, where
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the sequence of state tubes {Xl|k} is developed with the form Xl|k = zl|k + σl|kX0 to guar-
antee the robust constraint satisfaction. Here, zl|k is the nominal system state, X0 is a given
set, and σl|k is a scalar to be optimized by the MPC optimization problem. It can be seen
that the tube cross-sections are shaped by the set X0, translated and scaled by the MPC
optimization problem. The set X0 is calculated offline according to the initial knowledge
of the uncertainty set, which may be conservative under recursive updates of the uncer-
tainty set. Inspired by the tube MPC approach in [35], we construct the homothetic tubes
in this work, where both the size and shape of the tube cross-sections are optimized via the
MPC optimization problem. Consequently, it will promisingly lead to control performance
improvement by using the proposed method.

In this chapter, we propose a computationally tractable adaptive MPC algorithm based
on elastic tubes. We extend the robust MPC framework in [35] to allow for online model
adaptation while guaranteeing closed-loop stability and recursive feasibility. Compared
with the methods in [42, 115], the proposed approach introduces additional decision vari-
ables in the MPC optimization problem to optimize both the shape and size of the tube
cross-sections, resulting in reduced conservatism.

The main contributions are two-fold:

• An online strategy for estimating unknown parameters and updating set descriptions
of uncertainties is proposed based on the RLS technique, which is further employed
to construct the elastic tube cross-sections to ensure robust constraint satisfaction. By
deriving non-increasing properties on the proposed estimation routine, the resulting
tube-based adaptive MPC scheme is recursively feasible under recursive model up-
dates while providing less conservative performance compared with the robust tube
MPC method. Furthermore, we theoretically show the perturbed closed-loop system
is asymptotically stable under standard assumptions.

• To provide a trade-off between the computational complexity and conservatism, a
specialization of the proposed adaptive method is also given with reduced computa-
tional complexity and comparable control performance. A numerical example and
comparison study are given to illustrate the benefits of the proposed method.
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3.2 Problem Formulation

Consider a discrete-time linear time-invariant (LTI) system with an unknown parameter
θ ∈ Rnθ

xk+1 = A(θ)xk +B(θ)uk, (3.1)

subject to a mixed constraint

M = {(xk, uk)|Fxk +Guk ≤ 1}, (3.2)

where xk ∈ Rnx and uk ∈ Rnu are the system state and input, respectively. The matrices
A(θ) and B(θ) are the real affine functions of θ, i.e., A(θ) = A0 +

∑nθ
i=1Aiθi, B(θ) =

B0 +
∑nθ

i=1Biθi. θ = col(θ1, θ2, · · · , θnθ) is the vector of unknown parameters, which is
assumed to be uniquely identifiable [207]. It is assumed that the parameter θ is bounded by
a given set Θ0 = {θ|‖θ‖ ≤ r0} which contains the real parameter θ∗.

In this chapter, the goal is to design a state feedback control law for the perturbed and
constrained system (3.1) while ensuring the desirable closed-loop performance and robust
constraint satisfaction by means of adaptive MPC. In particular, we consider the following
parameterization of the control input

uk = Kxk + vk, (3.3)

where vk ∈ Rnu is the decision variable of the MPC optimization problem; K ∈ Rnu×nx is
a prestabilizing state feedback gain such that φ(θ) = A(θ) +B(θ)K is quadratically stable
for all θ ∈ Θ0.

3.3 Uncertainty Estimation

This section introduces an online parameter estimation scheme based on the RLS technique
with guaranteed non-increasing estimation errors. Then an approach for approximating the
feasible solution set (FSS) is presented. Finally, we conclude this section by analyzing the
performance of the proposed estimation scheme.

3.3.1 Parameter estimation

Let g(xk, uk)θ =
∑nθ

i=1(Aixk + Biuk)θi, then we can formulate a regressor model yk =

g(xk, uk)θ
∗ with yk = xk+1 − A0xk − B0uk to estimate θ∗ by using the standard RLS
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method. But the convergence of this solution relies on persistent excitation of g(xk, uk),
which cannot be guaranteed if xk = 0 and uk = 0. Similar to [103], we introduce the
following filter wk for the regressor g(xk, uk) to improve the convergence performance,

wk+1 = g(xk, uk)−Kewk, (3.4)

where w0 = 0 and Ke is a Schur stable gain matrix. Let x̂k denote the system state es-
timated at time k − 1, based on (3.1) and (3.4), a state estimator at time k is designed as
follows:

x̂k+1 = A0xk +B0uk + g(xk, uk)θ̂k+1 +Kex̃k +Kewk(θ̂k − θ̂k+1), (3.5)

where x̃k = xk − x̂k is the state estimation error. Then subtracting (3.1) from (3.5) yields

x̃k+1 = g(xk, uk)θ̃k+1 −Kex̃k −Kewk(θ̂k − θ̂k+1). (3.6)

In order to establish an implicit regression model for θ̂, we introduce an auxiliary variable
ηk in the following

ηk = x̃k − wkθ̃k. (3.7)

Then by substituting (3.4)-(3.6) into (3.7), one gets

ηk+1 = −Keηk. (3.8)

Based on this implicit regression model, we develop the following parameter estimator by
using the standard RLS algorithm [208]

θ̂k+1 = θ̂k + Γ−1
k+1w

T
k (x̃k − ηk), (3.9a)

Γk+1 = λΓk + wT
k wk, (3.9b)

where Γ0 = βInθ ; β is the positive scalar, and λ ∈ (0, 1) is the forgetting factor. Then it fol-
lows from [208] that the non-increasing estimation error is guaranteed, and the convergence
of parameter estimates θ̂k can be achieved if the sequence wk is persistently exciting.

By using the proposed estimation mechanism (3.9), the convergence of the estima-
tion error θ̃k relies on the persistently exciting sequence of wk instead of g(xk, uk). Sup-
pose that the system is stable when k ≥ ts, ts ∈ N∞0 , and wts 6= 0. According to
(3.4), we have wk+1 = −Kewk for all k ≥ ts. Let wk = {wk, wk+1, · · · , wk+Np−1}
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with Np ∈ N∞0 . Then it can be derived that wkw
T
k = KewkwT

kKT
e for k ≥ ts, where

Ke = col(I,−Ke, (−Ke)
2, · · · , (−Ke)

Np−1). Since Ke is Schur stable, it is possible to
find Np, lp ∈ N∞0 , td ∈ N∞ts , ρ0 > 0 and ρ1 > 0 such that ρ1INpNx >

∑lp−1
j=0 (wk+jw

T
k+j) >

ρ0INpNx for all k ∈ Ntd
ts . Therefore, the sequence wk satisfies the PE condition during

a certain period when the system is stable. In addition, it can be derived from (3.9) that
θ̂k+1 ≈ θ̂k,Γk+1 ≈ λΓk and the corresponding Θ̂k ≈ Θ̂k+1 when wk is sufficiently small.
Since wk is decreasing when the system (3.1) is stable, Θ̂k will converge to a fixed set in
finite time.

3.3.2 Uncertainty set estimation

To bound the unknown parameters, we introduce the following ellipsoidal uncertainty set

Θ̂k = {θ|‖θ − θ̂k‖Γk ≤ Vk}. (3.10)

where Vk > 0 is the bound of the estimation error. According to (3.9b), we define the prop-
agation of Vk as Vk+1 = λVk with V0 = Λ̄(Γ0)r2

0, where Λ̄(Γ0) is the maximal eigenvalue
of Γ0.

Let Θk denote the FSS of unknown parameters. Since unknown parameters are uniquely
identifiable and stay in the a priori known set Θ0, Θk must be the subset of Θ0. Therefore,
for all k ≥ 1, Θk is computed as follows

Θk = Θk−1 ∩ Θ̂k. (3.11)

By choosing suitable θ̂0,Γ0 and V0, Θ̂0 can be equivalent to Θ0. The following lemma
shows the performance of uncertainty set estimation.

Lemma 3.1. Let Θk denote the estimated uncertainty set updated by following (3.4)-(3.11)

at each time instant. Suppose that θ∗ ∈ Θ0, then we have θ∗ ∈ Θk for all k ≥ 0.

Proof. To prove this lemma, we firstly show that θ∗ ∈ Θ̂k for all k ≥ 0. Let V(θ̃k) =

θ̃T
k Γkθ̃k, then it follows from [208] that V(θ̃k) is non-increasing and V(θ̃k) ≤ λV(θ̃k−1).

When k = 0, the condition V(θ̃0) = θ̃T
0 Γ0θ̃0 ≤ V0 holds by using ‖θ̃0‖ ≤ r0. When k > 0,

we still have Vk ≥ V(θ̃k) since Vk = λkV0 and V(θ̃k) ≤ λkV(θ̃0). Therefore, one gets
V(θ̃k) ≤ Vk for all k ≥ 0. Then according to (3.10), it can be derived that θ∗ ∈ Θ̂k for all
k ≥ 0. Suppose that θ∗ ∈ Θk. At next time instant, we have θ∗ ∈ Θ̂k+1, which implies
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that θ∗ ∈ Θk ∩ Θ̂k+1 = Θk+1. Hence, it can be concluded that θ∗ ∈ Θk for all k ≥ 0 if
θ∗ ∈ Θ0.

Generally, the tightened state constraints are widely employed in robust MPC to guaran-
tee recursive feasibility and closed-loop stability. These constraints are designed based on
the given bounds of uncertainties. Hence, having an accurate description of the uncertainty
is crucial to obtain the desired closed-loop performance. By incorporating the proposed
parameter estimator, it is possible to use the estimated parameters and uncertainty sets at
each time instant to obtain more accurate predictions and less conservative tightened state
constraints in robust MPC and thus improving the control performance. In the following
section, a computationally tractable integration of tube MPC and the proposed estimator is
presented.

3.4 Adaptive Model Predictive Control

In this section, we present a computationally tractable adaptive MPC algorithm based on
the homothetic tube MPC technique. Let xl|k denote the predicted real system state l steps
ahead from time k and xl|k = zl|k+el|k, where zl|k and el|k are the predicted nominal system
state and the error state, respectively. Our objective is to design a sequence of state tubes
{Xl|k} for robust constraint satisfaction, i.e., the following conditions hold for some ul|k:

xk ∈ X0|k (3.12a)

A(θ)x+B(θ)ul|k ∈ Xl+1|k, ∀x ∈ Xl|k, θ ∈ Θk+1 (3.12b)

(x, ul|k) ∈M,∀x ∈ Xl|k (3.12c)

Instead of designing the state tube Xl|k directly, in this work we construct the tube cross
section Sl|k for the error state el|k. Therefore, the state tube can be established indirectly
as Xl|k = zl|k ⊕ Sl|k. In the following, we present how to design the homothetic tubes
according to the estimation of uncertainties.

3.4.1 Error tube and constraint satisfaction

As mentioned in Section 3.3.1, we predict θ̂k+1 and Θk at time k based on the state esti-
mation error x̃k. Hence the system matrices A(θ̂k+1) and B(θ̂k+1) are considered in the
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following for predicting the nominal system state at time k:

zl+1|k = Ak+1zl|k +Bk+1ul|k (3.13)

where Ak+1 = A(θ̂k+1) and Bk+1 = B(θ̂k+1); N is the prediction horizon and l ∈ NN−1
0 .

Then subtracting (3.1) from (3.13) results in

el+1|k = xl+1|k − zl+1|k

= φ∗el|k + ∆φk+1zl|k + ∆Bk+1vl|k,
(3.14)

where φ∗ = A(θ∗) +B(θ∗)K,φk+1 = Ak+1 +Bk+1K, ∆φk+1 = φ∗ − φk+1 and ∆Bk+1 =

B(θ∗) − Bk+1. Since Θk is compact and convex, we can find a polytope to over approx-
imate Θk by following the algorithm in [209]. Let Θ̄k denote the polytopic over approx-
imation of Θk, and Pol(·) is the polytopic approximation operator from the algorithm in
[209]. Hence Θ̄k can be directly calculated as Θ̄k = Pol(Θk). Due to the recursive set
intersection in (3.11), we calculate Θ̄k indirectly to reduce the computational load, i.e.,
Θ̄k = Pol(Θ̂k) ∩ Θ̄k−1 with Θ̄0 = Pol(Θ0). Suppose that Θ̄k can be equivalently repre-
sented by a convex hull Co(θ̂jk), where j ∈ Nnc

0 and nc is an integer denoting the number
of extreme points in the convex hull. Hence, a set for the system pair (A(θ), B(θ)) at
time k can be approximated by using a convex hull Co(Ajk, B

j
k), where Ajk = A(θ̂jk) and

Bj
k = B(θ̂jk).

Inspired by the previous work [35], we consider a polytopic tube with the form Sl|k =

{el|k|V el|k ≤ αl|k} for the error el|k to handle multiplicative uncertainties, where V ∈
Rnv×nx is a matrix describing the shape of Sl|k; αk ∈ Rnv×1 is the tube parameter to be op-
timized. The following proposition shows a sufficient condition for the robust satisfaction
of constraint (3.2).

Proposition 3.1. Let Sl|k = {el|k|V el|k ≤ αl|k}. Suppose that el|k ∈ Sl|k, then el+1|k ∈
Sl+1|k. In addition, the constraint (3.2) is satisfied at each time instant if the following

conditions hold:

1 ≥

Hαl|k + (F +GK)zl|k +Gvl|k, l ∈ NN−1
0

Hαl|k + (F +GK)zl|k, l ∈ N∞N
(3.15a)

αl+1|k ≥ Hj
k+1αl|k + V (∆φjk+1zl|k + ∆Bj

k+1vl|k), l ∈ N∞0 , j ∈ Nnc
0 (3.15b)

where φjk = Ajk +Bj
kK,∆φ

j
k+1 = φjk+1 − φk+1 and ∆Bj

k+1 = Bj
k+1 −Bk+1; H and Hj

k+1
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are non-negative matrices satisfying the conditions HV = F +GK and Hj
k+1V = V φjk+1.

Proof. Consider the uncertain input matrixB(θ) in the system (3.1), this proof is completed
by following the proof of Proposition 2 in [35].

Proposition 3.1 shows a sequence of tightened sets for the nominal system state. By
considering tube parameters {αl|k} as extra decision variables of the MPC optimization
problem, we can obtain the optimal tube cross-sections online.

According to the proposed parameter estimator, we can obtain the new estimation of
the real system with non-increasing estimation error at each time instant. Hence, a time-
varying nominal system is used to improve the accuracy of prediction. However, the sys-
tem is considered to be invariant during the prediction. In order to improve the control
performance, a time-varying terminal set is constructed based on the new estimation of
uncertainty, which will be presented in the following.

3.4.2 Construction of terminal sets

Based on Proposition 3.1, we define the following dynamics of zl|k and αl|k for l ∈ N∞N at
time k

αl+1|k = max
j∈Nnc0

{Hj
kαl|k + V∆φjk+1zl|k}, (3.16a)

zl+1|k = φk+1zl|k, (3.16b)

where the maximization is taken for each element in the vector. LetZk denote the polytopic
RPI set for the system xk+1 = (A(θ) +B(θ)K)xk with respect to the uncertainty set Θk+1.
Since θ̂k+1 ∈ Θk+1, Zk is also RPI for the system (3.16b).

Define Zjl+1|k as Zjl+1|k = φjk+1Z
j
l|k with Zj0|k = Zk for all j ∈ Nnc

0 , then we have
Zjl+1|k ⊆ Z

j
l|k ⊆ Zk since φjk+1 is Schur stable for all j ∈ Nnc

0 . Inspired by Proposition 3 in
[35], the following proposition is given to construct the invariant set for the system (3.16a).

Proposition 3.2. Define

f̄ jl|k = maxz∈Zj
l|k
{(F +GK)z},

c̄jl|k = maxz∈Zj
l|k
{V (φjk+1 − φk+1)z},

ḡjl|k = maxz1,z2∈Zjl|k
{V φjk+1(z1 − z2)}.

(3.17)
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The set Ak = {α|‖α‖∞ ≤ γk, α ≥ 0} is invariant for the system (3.16a) while the con-

straint Hα + (F +GK)z ≤ 1 is satisfied if the following condition holds

γ̄l|k ≥ γk ≥ γ
l|k (3.18)

where

γ
l|k =

maxj∈Nnc0
‖c̄j
l|k‖∞+‖ḡj

l|k‖∞

1−maxj∈Nnc0
‖Hj

k+1‖∞
, γ̄l|k =

1−maxj∈Nnc0
‖f̄l|k‖∞

‖H‖∞ .

In addition, there exists a γk satisfying the condition (3.18) if l is sufficiently large.

Proof. This proposition can be proved by following the proof of Proposition 3 in [35].

As shown in [35], the invariant setAk for the system (3.16a) is nonempty if ‖Hj
k‖∞ < 1

for all k ≥ 0. This condition can be satisfied by choosing the appropriate V such that the
set {x|V x ≤ 1} is a λ-contractive set for the system zk+1 = φ(θ)zk, ∀θ ∈ Θ0. An example
of computing the matrix V can be found in [205].

To find the terminal set for the nominal state zN |k, we have the following assumption:

Assumption 3.1. Let Zk and Zk+1 denote the MRPI sets with respect to the uncertainty set

Θk+1 and Θk+2, respectively. Then the following condition holds

φ(θ)x ∈ Zk+1,∀(x, θ) ∈ Zk ×Θk+2 (3.19)

if Θk+2 ⊆ Θk+1.

Remark 3.1. To compute the set Zk+1 satisfying the condition (3.19), we can compute the

RPI set Z̄k+1 by following Algorithm 1 in [210] without considering (3.19). Then starting

with Z̄k+1, Zk+1 can be computed by solving the linear programming problem with the

additional constraint (3.19). In addition, given Zk,Θk+1 and Θk+2 with Θk+2 ⊆ Θk+1,

there always exists one Zk+1 such that (3.19) holds. A simple example is to choose Zk+1

as Zk+1 = Zk directly.

Assumption 3.2. LetMk,Mk+1,Ak andAk+1 are the horizons and invariant sets satisfying

Proposition 3.2 with respect to uncertainty sets Θk+1 and Θk+2, respectively. GivenMk and

Ak, if the condition Θk+2 ⊆ Θk+1 holds, there exist Mk+1 and Ak+1 such that Mk ≥Mk+1

and Ak ⊆ Ak+1.

According to Proposition 3.2, the feasible solution set of γk in (3.18) becomes larger
when l increases. Therefore, the larger invariant set Ak can be found by choosing the
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larger horizonMk. In addition, it follows from (3.11) that Θk+2 ⊆ Θk+1 for all k ≥ 0. Let
γk = γ̄Mk|k, γk+1 = γ̄Mk+1|k+1 andMk+1 = Mk, then we haveAk ⊆ Ak+1 since γk+1 ≥ γk.
Therefore, givenMk andAk, we can always findMk+1 andAk+1 such that Assumption 3.2
holds. As a result, the computational complexity of the MPC optimization problem is still
non-increasing under this assumption.

Suppose that the RPI set Zk has the polyhedral form Zk = {x|Vkx ≤ 1}, then the
terminal constraints for the systems in (3.16) are summarized as follows:

VkzN |k +DkαN |k ≤ 1, (3.20a)

0 ≤ αN+Mk|k ≤ γk1, (3.20b)

where Dk is a non-negative matrix satisfying DkV = Vk.

3.4.3 Construction of the cost function

Let vk = col(v0|k, v1|k, v2|k, · · · , vN−1|k). Define E and T as shift matrices such that
v0|k = Evk and vk+1 = Tvk, then the prediction of zl|k can be written as ξl+1|k = Ψk+1ξl|k,
where

ξl|k =

[
zl|k

vk

]
,Ψk+1 =

[
φk+1 Bk+1E

0 T

]
.

Similarly, the real system state xl|k can be predicted by using the following dynamics
ξ̄l+1|k = Ψ∗ξ̄l|k with

ξ̄l|k =

[
xl|k

vk

]
,Ψ∗ =

[
φ∗ B∗E

0 T

]
.

In this work, the objective is to minimize a cost function with a quadratic form J̄k =∑∞
i=0(xT

i|kQxi|k + uT
i|kRui|k), where Q > 0 and R > 0 are penalty matrices for the state

and input, respectively. Note that the cost function J̄k can be equivalently represented by
J̄k = ξT

0|kW
∗ξ0|k, where W ∗ is the solution of a Lyapunov equation

(Ψ∗)TW ∗(Ψ∗)−W ∗ + Q̄ = 0, Q̄ =

[
Q+KTRK KTRE

ETRK ETRE

]
. (3.21)

Since φ∗ is unknown, we cannot find the matrix W ∗ exactly. Alternatively, we consider an
over approximation of J̄k based on the uncertainty set updated at each time instant.

Lemma 3.2. Define a new cost function Jk as Jk = ξT
0|kWk+1ξ0|k, where Wk+1 is a positive
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definite matrix, then Jk ≥ J̄k if the following condition

Wk+1 ≥

[
φ(θ) B(θ)E

0 T

]T

Wk+1

[
φ(θ) B(θ)E

0 T

]
+ Q̄ (3.22)

holds for all θ ∈ Θk+1.

Proof. From Lemma 3.1, we have θ∗ ∈ Θk+1. Then following (3.22) yields Wk+1 ≥
(Ψ∗)TWk+1(Ψ∗) + Q̄. By substituting Q̄ = W ∗ − (Ψ∗)TW (Ψ∗) into the above equation,
we haveWk+1−W ∗ ≥ (Ψ∗)T(Wk+1−W ∗)(Ψ∗) ≥ 0. In addition, Jk−J̄k = ξT

0|kWk+1ξ0|k−
ξ̄T

0|kW
∗ξ̄0|k. Since ξ̄0|k = ξ0|k and Wk+1−W ∗ ≥ 0, it can be concluded that Jk ≥ J̄k for all

θ ∈ Θk+1.

Assumption 3.3. Let Wk+1 denote the weighting matrix at time k, if Θk+1 ⊆ Θk, then the

following condition holds for all k ≥ 0

ξT
0|kWk+1ξ0|k ≤ ξT

0|kWkξ0|k. (3.23)

Remark 3.2. Following (3.4)-(3.11), it can be guaranteed that Θk+1 ⊆ Θk for all k ≥ 0.

Given Wk,by imposing (3.23) as an additional constraint for the linear matrix inequality

(LMI) problem used for computing Wk+1, we can find a Wk+1 satisfying the condition

(3.23). An example of formulating the LMI problem can be found in [9] for details.

3.4.4 Adaptive MPC algorithm

According to the developed terminal sets and cost function, the adaptive MPC algorithm is
based on the following MPC optimization problem:

P : min
vk,{αl|k}

Jk = ξT
0|kWk+1ξ0|k

s.t. z0|k = xk

(3.3), (3.13), (3.15a), (3.15b), (3.20a), (3.20b)

At time instant k, we update the estimation of the unknown parameters and the uncer-
tainty set based on new measurements, then reformulate the optimization problem P. Note
that the reformulation of P with respect to the new estimation is not necessary if the esti-
mation error is sufficiently small. To reduce redundant estimating actions, we introduce a
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termination criterion for the proposed estimator. Let εx > 0 and εr > 0 denote the toler-
ances for the state estimation error and the error bound of parameter estimation, then the
proposed adaptive MPC algorithm is summarized in Algorithm 3.1.

Algorithm 3.1 The Adaptive MPC algorithm
Input: Given initial conditions x0,Θ0 and weighting matrices Q,R, determine the presta-

bilizing feedback gain K and MRPI set Z0. Compute the terminal set A0 and the
horizon M0 according to Proposition 3.2. Calculate the weighting matrix W0 satisfy-
ing (3.22).

1: for each time instant k = 0, 1, 2, · · · do
2: if ‖x̃k‖ ≥ εx or Vk ≥ εr then
3: Calculate θ̂k+1 and Θk+1 by using (3.4)-(3.11).
4: Compute Mk,Ak,Wk+1 and Zk with respect to Θk+1 such that Assumptions 3.1,

3.2 and 3.3 hold.
5: else
6: Let θ̂k+1 = θ̂k,Θk+1 = Θk,Zk = Zk−1,Wk+1 = Wk,Mk = Mk−1 and Ak =

Ak−1.
7: end if
8: Reformulate and solve the optimization problem P based on θ̂k+1 and Θk+1 to obtain

v∗k. ,
9: Calculate the control input as uk = Kxk+v

∗
0|k, and then implement uk to the system.

10: end for

Theorem 3.1. Suppose that Assumptions 3.1, 3.2 and 3.3 hold, and there is a feasible

solution to the optimal control problem P when k = 0. Then P is recursively feasible by

following Algorithm 3.1.

Proof. Suppose that P is feasible at time k. Let v∗k and α∗k = {α∗l|k}
N+Mk
l=0 denote the op-

timal solution of the MPC problem at time k. {z∗l|k,S∗l|k = {el|k|Vkel|k ≤ α∗l|k},X ∗l|k =

z∗l|k ⊕ S∗l|k}
N+Mk
l=0 are the corresponding nominal states, error tubes and state tubes, respec-

tively. Define a candidate input sequence at time k+1 as v̄k+1 = {v∗1|k, v∗2|k, · · · , v∗N−1|k, 0}.
Two cases are investigated to prove this theorem.

Case (1): Suppose that the estimation termination criterion in Algorithm 3.1 is not sat-
isfied. Based on z0|l+1 and v̄l|k+1, we firstly construct the following sequence ᾱk+1 =

{αl|k+1}
N+Mk+1−1
l=0 such that Xl|k+1 = X ∗l+1|k. Let

αN+Mk+1|k+1 = max
j∈Nnc0

{Hj
k+2αN+Mk+1−1|k+1 + V∆φjk+2zN+Mk+1−1|k+1},

we show that {v̄k+1, ᾱk+1} is a feasible solution for P in the following.
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• For l ∈ NN+Mk+1−1
0 , since Xl|k+1 = X ∗l+1|k, we have {z∗l+1|k, S

∗
l+1|k} satisfying the

condition z∗l+1|k⊕S∗l+1|k = zl|k+1⊕Sl|k+1, which verifies that the candidate sequence
{zl|k+1, αl|k+1, v̄l|k+1}

N+Mk+1−1
l=0

satisfies the constraints (3.15a) and (3.15b).

• When l = N , it follows form (3.20a) that Vkz∗N |k + DkV eN |k ≤ 1. By using
DkV = Vk, we have Vk(z∗N |k + eN |k) = VkxN |k ≤ 1, implying that X ∗N |k ⊆ Zk.
As aforementioned, XN−1|k+1 = X ∗N |k, then XN−1|k+1 ⊆ Zk. Since Zk is an RPI set,
v̄N−1|k+1 = 0 and Θk+2 ⊆ Θk+1, it yields that XN |k+1 ⊆ φk+2Zk ⊆ Zk+1 by fol-
lowing Assumption 3.1. Hence, we have zN |k+1 + eN |k+1 ∈ Zk+1 for all admissible
eN |k+1. As a result, the constraint (3.20a) is satisfied.

• When l = N + Mk+1, taking the infinity norm of (3.16a), we have ‖αl|k+1‖∞ ≤
max
j∈Nnc0

{‖Hj
k+2‖∞‖αl−1|k+1‖∞ + ‖c̄jl−1|k+1‖∞}. Since Xl−1|k+1 = X ∗l|k and Θk+2 ⊆

Θk+1, following Proposition 3.2 and Assumption 3.2, it is concluded that ‖αl|k+1‖∞ ≤
γk ≤ γk+1. Hence, the constraint (3.20b) is satisfied.

Case (2): Suppose that the estimation termination criterion in Algorithm 3.1 is satisfied.
Then we have θ̂k+2 = θ̂k+1, Zk+1 = Zk,Wk+2 = Wk+1, γk+1 = γk and Mk+1 = Mk.
The recursive feasibility can be proved by constructing the following candidate sequence
v̄k+1, {α∗1|k, α∗2|k, · · · , α∗N+Mk|k, max

j∈Nnc0

{Hj
k+1αN+Mk|k + V∆φjk+1zN+Mk|k}}.

In summary, there is a feasible solution for the optimal control problem P at time k+ 1

if it is feasible at time k. Therefore P is proved to be recursively feasible.

Theorem 3.2. Suppose that Assumptions 3.1, 3.2 and 3.3 hold, then the system (3.1) in

closed-loop is asymptotically stable by applying the adaptive MPC Algorithm 3.1.

Proof. To prove this theorem, in the following, we show that the optimal cost J∗k is a
Lyapunov function for the system (3.1) in closed-loop with Algorithm 3.1.

Case (1): Suppose that the estimation termination criterion in Algorithm 3.1 is not
satisfied. Let z0|k+1 = xk+1, ξ0|k+1 = col(z0|k+1, v̄k+1), ξ0|k = col(z∗0|k, v

∗
k) and J̄k+1 =

ξT
0|k+1Wk+2ξ0|k+1, based on Lemma 3.2, we have

ξT
0|k+1Wk+1ξ0|k+1 − J∗k = ξT

0|k(Ψ
∗)TWk+1Ψ∗ξ0|k − ξT

0|kWk+1ξ0|k

≤ −ξT
0|kQ̄ξ0|k = −zT

0|kQz0|k − uT
0|kRu0|k.

Since Q and R are positive definite and z0|k = xk, it can be derived that

ξ̄T
0|k+1Wk+1ξ̄0|k+1 − J∗k ≤ −xT

kQxk − uT
0|kRu0|k.
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In addition, from Assumption 3.1, we have

J̄k+1 = ξ̄T
0|k+1Wk+2ξ̄0|k+1 ≤ ξ̄T

0|k+1Wk+1ξ̄0|k+1,

which yields

J∗k+1 − J∗k ≤ J̄k+1 − J∗k ≤ −xT
kQxk − uT

kRuk ≤ 0, ∀xk 6= 0, uk 6= 0.

Since Wk is positive definite, J∗k is a Lyapunov function for the system (3.1).
Case (2): Suppose that the estimation termination criterion in Algorithm 1 is satisfied.

Then we have θ̂k+2 = θ̂k+1, Zk+1 = Zk,Wk+2 = Wk+1, γk+1 = γk and Mk+1 = Mk. By
repeating the above procedure, we can prove that J∗k is a Lyapunov function.

In summary, the optimal cost function J∗k is a Lyapunov function for the system (3.1)
in closed-loop with Algorithm 3.1. Hence, based on Thereom 2.1, it can be concluded the
closed-loop system is asymptotically stable.

Remark 3.3. Note that, unlike the robust method in [35], the propagation of homothetic

tube Sl|k (3.15) in our proposed method depends on the estimation θ̂k+1 and Θ̂k+1. In

addition, the nominal system (3.13), the terminal conditions in (3.20) and the weighting

matrix Wk+1 are also updated based on the estimation of uncertainty at each time instant.

By following (3.4)-(3.11), the non-increasing properties on the proposed estimation scheme

are guaranteed. Therefore, the resulting adaptive MPC scheme can reduce conservatism

compared with the original robust MPC method. The numerical simulations will elaborate

on this argument.

Remark 3.4. As shown in Algorithm 3.1, when updating the parameter estimate θ̂k and

uncertainty set Θk, we need to re-compute Mk,Zk+1 and Wk+1, which is relatively com-

putationally expensive. For some problems which have strict requirements on the compu-

tational load, a solution to reduce the computational complexity is to choose the relatively

large εx and εr. An alternative is to omit the update of terminal conditions and cost func-

tion by setting Mk = M0,Zk = Z0 and Wk = W0 for all k ≥ 0. Due to the fact that

Θk+1 ⊆ Θk ⊆ Θ0, this strategy can significantly reduce the computational load with guar-

anteed closed-loop stability and recursive feasibility but results in relatively conservative

control performance. Note that the recursive updates of the system model and uncertainty

sets are considered in the tube propagation. Thus, this simplified method still has less con-

servative closed-loop performance compared with the robust MPC method. The numerical

simulation will demonstrate this argument.
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3.5 Simulation Results

In this section, a numerical example is presented to show the effectiveness of proposed
adaptive MPC algorithms. The numerical test is conducted in Matlab, where the MPC
optimization problem is formulated and solved by using Yalmip [211].

We consider the following example for testing:

A0 =

[
0.42 −0.28

0.02 0.6

]
, A1 =

[
−0.12 −0.08

−0.12 −0.17

]
, A2 = −A1,

B0 =
[
0.3 −0.4

]T

, B1 =
[
0.04 −0.08

]T

, B2 = −1.5B1.

Θ0 = {θ ∈ R2|‖θ‖ ≤ 1}, {x|‖x‖∞ ≤ 17} and {u|‖u‖∞ ≤ 4}. The weighting matrices
are chosen as Q = I2 and R = 1. By following [9], the prestabilizing feedback gain is
chosen as K = [−0.4187 1.1562]. Set the prediction horizon N = 10, then the horizon and
terminal region are derived as M0 = 3 and γ0 = 0.4266. The parameters used in Algorithm
3.1 are given in the following εr = 0.001, εx = 0.001, λ = 0.5 and Γ0 = 0.15I2.

The robust MPC method in [35] (RMPC1) and [42] (RMPC2) are introduced for the
purpose of comparison. The initial point is set as x0 = [8, 8]T. The real system parameter
θ∗ = [−0.2, 0.5]T is given to evaluate the proposed parameter estimator. Figures 3.1 and
3.2 show the trajectories of system state and control input obtained by applying different
control methods. From these figures, it can be seen that the recursive feasibility can be
guaranteed by using these methods while the proposed method can accelerate the conver-
gence of system states. To further compare the control performances of different MPC
formulations, we introduce the following index J̄p =

∑Tstp
k=0(xT

kQxk +uT
kRuk)/Tstp, where

Tstp denotes the simulation time. The corresponding results are illustrated in Table 3.1,
implying that the proposed method can achieve the less conservative performance. The
polytopic approximation of uncertainty sets obtained at time k = 0, 3, 7, 20 are depicted
in Figure 3.4. It can be seen that the estimate of the uncertainty set is non-increasing and
finally converges to a fixed set, which verifies the proposed results.

Algorithm 3.1 Remark 15 RMPC1 RMPC2

J̄p 9.2023 9.2524 9.2524 9.3747

Table 3.1: The comparison of system performance.



51

0 2 4 6 8 10 12 14 16 18 20

Time instant

-1

0

1

2

3

4

5

6

7

8

x
1

Algorithm 1

Remark 3.4

RMPC1

RMPC2

0 2 4 6 8 10
-0.5

0

0.5

1

Figure 3.1: The time evolution of the system state x1.
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Figure 3.2: The time evolution of the system state x2.

3.6 Conclusion

In this chapter, we have investigated adaptive MPC for constrained linear systems subject
to multiplicative uncertainties. An online parameter estimator has been designed based on
the RLS technique for simultaneous parameter identification and uncertainty set estima-
tion. By integrating the proposed estimator with homothetic prediction tubes, the resultant
tube-based adaptive MPC scheme can efficiently handle the parametric uncertainties while
enhancing performance compared with the robust tube MPC method. The simplified ver-
sion of the proposed adaptive MPC method was also given to provide a trade-off between
conservatism and computational complexity. We have proven that the closed-loop system
is asymptotically stable, and the proposed adaptive MPC algorithm is recursively feasible
under recursive model updates. Numerical simulations and comparison studies have been
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Figure 3.3: Trajectories of control input u.

Figure 3.4: The estimated uncertainty set Θ obtained at k = 0, 3, 7, 20.

given to demonstrate the efficacy and advantages of the proposed adaptive MPC method.
On the other hand, the main limitation of the proposed adaptive MPC approach comes

from the polytopic over-approximation of the uncertainty set employed in the construction
of homothetic tubes, leading to an undesired increase in conservatism and computational
complexity. Furthermore, this work considered the constant parametric uncertainties only,
which potentially poses certain limitations to practical applications.
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Chapter 4

Self-Triggered Adaptive Model
Predictive Control of Constrained
Nonlinear Systems: A Min-Max
Approach

In Chapter 3, we investigate adaptive MPC for linear systems with periodic sampling. This
chapter studies the event-based aperiodic execution of adaptive MPC for networked dy-
namic systems.

4.1 Introduction

Event-based aperiodic control has proved to be effective in achieving the trade-off between
the closed-loop performance and the overall communication load [178]. In this chapter,
we are interested in applying the event-based triggering mechanism to MPC. In particular,
we focus on a class of constrained discrete-time nonlinear systems subject to parametric
uncertainties and additive disturbances. A brief literature review on ST-RMPC is presented
in 1.4. But these results deal with the uncertainties by considering its worst-case realization
based on a priori knowledge of the uncertainty bound. Inherently, those methods become
conservative when the uncertainty is over-estimated and time-varying. Hence, an intrigu-
ing question naturally arises: Is it possible to an online estimate of the uncertainty bound
based on the input and state history in the ST-RMPC framework to improve the control
performance and enlarge the average sampling period simultaneously? This question will



54

be answered in this work considering an adaptive MPC formulation.
For periodic control, adaptive MPC has proved to be a promising solution to relieve

the conservativeness of robust MPC methods [42, 44, 102], where the main insight is to
leverage the online estimation of uncertainty within a robust MPC framework. In order
to supplement and enhance the results in [188], this chapter investigates ST-AMPC for
discrete-time nonlinear systems subject to both parametric uncertainties and additive dis-
turbances. Due to inherent differences between robust MPC and adaptive MPC, the pro-
posed ST-AMPC scheme is significantly different from the robust method [188]. To allow
the online uncertainty estimation in the ST-RMPC method [188], a sufficiently large un-
certainty bound taking account of all admissible realization of uncertainties (or all possible
uncertainty estimation) should be considered for designing the MPC optimization problem
and the self-triggering mechanism. Indeed, this setup can guarantee constraint satisfaction
and closed-loop stability, which, however, inevitably leads to conservative closed-loop per-
formance. Therefore, a tailored design is required to accommodate the recursive updates
of the prediction model and the estimation of uncertainty sets. On the other hand, in the
self-triggered setting, the control inputs may be implemented in an open-loop fashion. As
a result, most of the existing results on adaptive MPC, e.g., [42, 44, 102], cannot be incor-
porated into the self-triggering mechanism since the control input implementation depends
on measurements of system states or outputs at every time instant. Another remarkable
difficulty lies in the implementation of the uncertainty estimation with discontinuous state
measurement of the system.

To solve these issues, we develop an ST-AMPC scheme based on the min-max MPC
framework for uncertain nonlinear systems in the following. The main contributions of
this work are three-fold:

• An adaptive MPC scheme with a zonotope-based set-membership parameter estima-
tor is developed. We introduce a zonotope-based indirect polytopic set computation
method to estimate the sets of unknown system states between two successive trig-
gering time instants such that the proposed estimator can be used for the system with
the aperiodic self-triggered sampling.

• Similar to the ST-RMPC method [188], we co-design the control inputs and sampling
intervals by developing a self-triggering mechanism in our framework to maximize
the average triggering interval based on the estimation of unknown parameters. Com-
pared with [188], a weighting factor update strategy is introduced to our framework
based on the estimated uncertainty set, leading to the further reduced average sam-
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pling frequency.

• It is theoretically shown that the resulting ST-AMPC method is recursively feasible,
and the closed-loop system is input-to-state practical stable (ISpS) at triggering time
instants. A numerical example and comparison study are presented to illustrate the
advantages of the proposed method.

4.2 Problem Formulation and Control objective

Consider a discrete-time nonlinear system subject to the parametric uncertainty and the
additive disturbance

xt+1 = F(xt, ut, vt, dt) , f(xt, ut) + g(xt, ut)vt + dt, (4.1)

where xt ∈ Rnx and ut ∈ Rnu , vt ∈ V ⊂ Rnv and dt ∈ D ⊂ Rnx are the system state, the
control input, the parametric uncertainty, and the additive disturbance, respectively. Both vt
and dt are unknown and time-varying, and V andD are known zonotopes. f : Rnx×Rnu →
Rnx and g : Rnx×Rnu → Rnx×nv are nonlinear functions satisfying conditions f(0, 0) = 0

and g(0, 0) = 0. The system is subject to constraints xt ∈ X and ut ∈ U for all t ∈ N,
where X and U are compact sets containing the origin. It is assumed that xt is always
measurable. For the uncertainties dt and vt, we have the following assumption.

Assumption 4.1. For all dt ∈ D and vt, vt+1 ∈ V , there exist constants d̄, v̄, δ̄ ∈ R>0 such

that ‖dt‖ ≤ d̄, ‖vt‖ ≤ v̄, and ‖vt+1 − vt‖ ≤ δ̄.

Assumption 4.1 indicates the boundedness of the additive disturbance dt and the para-
metric uncertainty vt, which is common in related literature on MPC. We also assume that
vt is slowly changing. This assumption is satisfied in a host of real-world applications.
Similar assumptions can be found in [42, 212].

In this chapter, we aim to design a feedback control law, which can robustly stabilize
the system (4.1) without violating state and input constraints for all admissible realiza-
tion of uncertainties while reducing the frequency of updating the control input with the
guaranteed closed-loop performance. To achieve this goal, we co-design the control inputs
and sampling intervals in the adaptive MPC framework. Particularly, at the sampling time
instant tk ∈ N, the next sampling time instant tk+1 and the control inputs between two
sampling instants, i.e., ut, t ∈ N[tk,tk+1−1], will be determined by an self-triggered scheme
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with the following form.

ut = τ(xtk , t− tk), t ∈ N[tk,tk+1−1], (4.2a)

tk+1 = tk +HVtk (xtk), (4.2b)

where k ∈ N and t0 = 0; HVtk : Rnx → N>0 is the self-triggering scheduler related to the
bounding set Vtk of the unknown parameter vtk , and τ : Rnx ×N→ Rnu is a function to be
designed. It can be seen from (4.2) that the state measurements and control inputs are only
updated at sampling time instant tk.

In this work, we expect to achieve a large sampling interval HVtk (xtk) with guaran-
teed closed-loop stability without violating the state and input constraints. This problem
is addressed by designing functions HVtk and τ based on the adaptive MPC technique.
Benefiting from the model refinement in adaptive MPC framework, we can further reduce
the sampling frequency by designing suitable HVtk based on the parameter estimation Vtk .
According to the min-max optimal control problem P0 in (2.14), the following section
presents an ST-AMPC solution for the design of functions HVtk and τ .

4.3 Self-Triggered Adaptive Min-Max MPC

In this section, we firstly present a zonotope-based set-membership parameter estimator ca-
pable of handling the aperiodic sampling induced by the self-triggering mechanism. Then
a self-triggering scheduler accommodating the estimation of uncertainty is developed, fol-
lowed by a summary of the proposed self-triggered adaptive min-max MPC algorithm.
Finally, this section is concluded with an analysis of closed-loop stability and recursive
feasibility.

4.3.1 Zonotope-based set-membership parameter estimator

Section 2.4.1 introduces the standard set-membership parameter estimator for the system
(4.1) with the periodic sampling. However, under the self-triggering mechanism (4.2b),
the state measurements are updated aperiodically. The resulting sampling interval between
sampling time instants tk and tk+1 may be greater than 1, i.e., tk+1 − tk > 1. Conse-
quently, the parameter set Ltk+1

cannot be computed by following (2.16), and hence the
set-membership parameter estimator presented in Section 2.4.1 cannot be applied to the
current problem with the aperiodic sampling. To solve this issue, a zonotope-based set-
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membership parameter estimator is presented in the following.
Let the set Xtk+1−1 denote the exact uncertain state set for the state xtk+1−1. By replac-

ing the state xtk+1−1 in (2.16) with the set Xtk+1−1an over-approximation of the parameter
set Ltk+1

is given by L̂tk(Xtk+1−1) where

L̂tk(Xtk+1−1) = {v ∈ Rnv : xtk − f(x, utk−1−1)− g(x, utk−1−1)v ∈ D, x ∈ X}. (4.3)

With this, we definitely have Ltk+1
= L̂tk(Xtk+1−1) when Xtk+1−1 = {xtk+1−1}. It can be

seen from (4.3) that the key ingredient of calculating L̂tk(Xtk+1−1) is to find the setXtk+1−1.
Since the state measurement xtk and inter-sampling control inputs ut, t ∈ N[tk,tk+1−1], are
known at the sampling time instant tk+1, it is possible to compute Xtk+1−1 by using the
zonotopic set computation method presented in Section 2.4.2. Therefore, by replacing the
parameter set Ltk+1

in (2.17) as L̂tk(Xtk+1−1), the bounding set Vtk+1
can be computed

under the self-triggering mechanism.
According to (2.17) and (4.3), it can be seen that the conservatism of Vtk+1

is primarily
determined by the exact uncertain state setXtk+1−1. Note that, in order to compute the outer
bound of Xtk+1−1 by using the method in Section 2.4.2, the sets Vtk+1−2 and D are required
to be zonotopic, which, however, cannot be guaranteed due to the intersection operation
in (2.17). To solve this problem, a zonotopic bounding process has to be performed. But
this strategy may result in unnecessary overestimation, leading to the conservative estima-
tion performance for the set-membership parameter estimator. Alternatively, motivated by
[213], a zonotope-based indirect set computation method is introduced in the following to
reduce the conservatism in calculating the outer bound of Xtk+1−1.

At the sampling time instant tk, suppose that tk+1 − tk > 1 and there is a group of
zonotopes V̂tk,i, i ∈ N[1,nztk

], such that Vtk = ∩
nztk
i=0 V̂tk,i. Using the set theory results in

GF(X̂tk , utk ,Vtk ,D) ⊆ ∩
nztk
i=0 GF(X̂tk , utk , V̂tk,i,D).

Since the sets X̂tk , V̂tk,i,D are zonotopic, we can compute GF(X̂tk , utk , V̂tk,i,D) by follow-
ing the method in Section 2.4.2. Therefore, the zonotopic bounding process can be avoided
even if Vtk is polytopic. With this, for l ∈ N[tk,tk+1−2], we define the following recursion

X̂l+1,i = GF(X̂l,i, ul,Vl,i,D), i ∈ N[0,nztk
], (4.4a)

Vl+1,i =

Vl,i ⊕ δ̄Bnv , if Vl,i ⊕ δ̄Bnv ⊆ V

V , otherwise
(4.4b)
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where X̂tk,i = {xtk}. Then the outer bound of Xtk+1−1 can be computed by X̂tk+1−1 =

∩
nztk
i=0 X̂tk+1−1,i. Note that the set Vl,i can also be updated via the equation Vl,i = Vl,i ⊕

(δ̄Bnv) ∩ V , which is less conservative compared with (4.4b). But this method requires the
zonotopic bounding process since the intersection operator may render the set Vl,i poly-
topic. Therefore, Vl,i is updated via (4.4b) in this work. Based on (2.17), (4.3) and (4.4),
the bounding set Vtk+1

can be computed by

Vtk+1
= ((Vtk ∩ L̂tk(X̂tk+1−1))⊕ (tk+1 − tk)δ̄Bnv) ∩ V . (4.5)

The proposed zonotope-based set-membership parameter estimator for the system (4.1)
with the aperiodic sampling is summarized in Algorithm 4.1.

Algorithm 4.1 Zonotope-based set-membership parameter estimation algorithm
Input: System states xtk−1

and xtk ; sampling time instants tk−1 and tk; the control input
sequence {ui}, i ∈ N[tk−1,tk−1]; the bounding set Vtk−1

.
1: if tk − tk−1 = 1 then
2: Compute the parameter set Ltk via (2.16) and then calculate the bounding set Vtk

according to (2.17).
3: else
4: Set X̂tk−1

= {xtk−1
} and find a sequence of zonotopes such that Vtk−1

=

∩
nztk−1

i=0 V̂tk−1,i.

5: Calculate set X̂tk−1 = ∩
nztk−1

i=0 X̂tk−1,i via (4.4).
6: Compute L̂tk(X̂tk−1) via (4.3) and then calculate the bounding set Vtk according to

(4.5).
7: end if

Remark 4.1. For each polytope Xtk , we can always find a group of zonotopes X̂tk,i whose

intersection is Xtk . Suppose that the polytope Xtk has m half-spaces. Then Xtk can be

exactly represented by the intersection of at most m zonotopic sets. Assume that the i-th

half-space Htk,i has the form Htk,i = {v ∈ Rnv : aT
tk,i
v ≤ btk,i} with atk,i ∈ Rnv , btk,i ∈ R

and i ∈ N[1,m]. Under this definition, it is obvious that Xtk = ∩mi=0Htk,i. In addition, for

each Xtk , it is easy to find the box �(Xtk) bounding the set Xtk . Then based on Htk,i, we

can find a vector ptk,i ∈ Rnv and a scalar htk,i ∈ R to establish a strip Stk,i = {v ∈
Rnv : |aT

tk,i
(v − ptk,i)| ≤ htk,i} such that Xtk ⊆ Stk,i, where ptk,i and htk,i satisfy the

condition btk,i = htk,i + aT
tk,i
ptk,i. Based on each Stk,i, we can find a zonotope bounding

the polytope Xtk . Therefore, at most m zonotopes are needed to construct the polytope Xtk .

The calculation of zonotopes X̂tk,i for a 2-dimensional case can be found in [213].
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4.3.2 ST-AMPC algorithm

As shown in (4.2), the measurements of system states are only updated at sampling time
instants in self-triggered control. Since the system states at inner-sampling time instants
are unknown under the self-triggering mechanism, and the optimal solution depends on
the system state, the adaptive min-max MPC scheme presented in Section 2.3.3 cannot
be directly employed to design the ST-AMPC algorithm. To address this issue, similar
to [188], we formulate a cost function combining both open-loop predictions and closed-
loop predictions for the proposed ST-AMPC algorithm, resulting in the following min-max
optimization problem P1.

P1 : V M
N (xtk , βtk) = min

utk,N

{
max

vl|tk
∈Vl|tk

,dl|tk
∈D

{
M−1∑
l=0

1

βtk
`(xl|tk , ul|tk) + VN−M(xM |tk)

}

such that xM |tk ∈ XN−M ,∀ vl|tk ∈ Vl|tk , dl|tk ∈ D
}

(4.6a)

s.t. xl+1|tk = F(xl|tk , ul|tk , vl|tk , dl|tk), (4.6b)

x0|tk = xtk , xl|tk ∈ X , ul|tk ∈ U , (4.6c)

where l ∈ N[0,M−1]; βtk > 1 is a scalar to be designed; M ∈ N[1,N−1] is an integer;
VN−M(xM |tk) is the optimal cost function in (N−M)-step defined by (2.15) with i replaced
by N − M , and utk,N = {ul|tk}l∈N[0,N−1]

is the control input sequence. Here ul|tk , l ∈
N[0,M−1] is the control input and ul|tk = µi|tk(xi|tk), l ∈ N[M,N−1] where µi|tk(xi|tk) is the
control policy depending on the predicted state xi|tk . Note that the term VN−M(xM |tk) is
based on the close-loop min-max MPC formuation [202]. To inherent the properities of
the close-loop min-max MPC method, we impose an additional condition that xM |tk ∈
XN−M is satisfied for all admissible realizations of uncertainties vl|tk and dl|tk with l ∈
N[0,M−1] when formulating the worse-case cost function. Therefore, the cost function (4.6a)
implicitly ensures the satisfaction of the constraint xM |tk ∈ XN−M .

As shown in (4.6), the entire prediction horizon is divided into two parts: The first
M steps (open-loop predictions) and the remainder (closed-loop predictions). This for-
mulation allows for evaluating the effects of open-loop predictions on the control perfor-
mance, thereby facilitating the co-design of control inputs and sampling time instants. Let
V i
j (xtk , βtk) be defined by (4.6) with M and N replaced by i and j, respectively, where
i ∈ N[1,Hmax], j ∈ N>0 and i ≤ j. Here Hmax ∈ N[1,N−1] denotes the maximum number
of time instants allowed for the open-loop phase. Similar to self-triggered MPC methods
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[184, 188, 190], the self-triggering scheduler in (4.2b) is designed as follows

HVtk (xtk) , max
{
H ∈ N[1,Hmax] : V H

N (xtk , βtk) ≤ V 1
N(xtk , βtk)

}
. (4.7)

It can be seen from (4.7) that the sum of stage costs related to the open-loop prediction
is weighted by the scalar βtk . Using a larger βtk will result in a larger sampling interval
HVtk (xtk), but will deteriorate the regulation performance [188]. Furthermore, the sam-
pling interval is also affected by the bound of uncertainties: A larger bound of uncertain-
ties renders a shorter sampling interval by following (4.7). Then based on the proposed
zonotope-based set-membership parameter estimator, we develop the following adaptive
mechanism associated with Vtk to further reduce the average sampling frequency,

βtk = β̄ · e(ξ̄−ξtk ), (4.8)

where β̄ > 1 is a tuning factor; ξ̄ = supv1,v2∈V ‖v1−v2‖ is the upper bound of the estimation
error and ξtk = supv1,v2∈Vtk

‖v1− v2‖. According to (2.17), one has Vtk ⊆ V for all tk ≥ 0,
which implies 0 ≤ ξtk ≤ ξ̄. Therefore, the range of βtk is given by β̄ ≤ βtk ≤ β̄eξ̄.

According to the developed set-membership parameter estimator, the proposed ST-
AMPC scheme is summarized in Algorithm 4.2. Let u∗tk,N = {u∗l|tk}l∈N[0,N−1]

denote the
optimal solution to the optimization problem (4.6) withM = HVtk (xtk). Then the feedback
control law (4.2a) and the sampling instant are given by

τ(xtk , t− tk) = u∗t−tk|tk , t ∈ N[tk,tk+1−1],

tk+1 = tk +HVtk (xtk),

which results in the following closed-loop system

xt+1 = F(xt, τ(xtk , t− tk), vt, dt). (4.9)

Remark 4.2. Compared with the ST-RMPC method [188] using the constant tuning factor

β̄, we consider the time-varying factor βtk which is updated with respect to the bounding

set Vtk in the proposed method. Under this mechanism, when a more accurate Vtk is ob-

tained, ξtk becomes smaller and βtk becomes larger, thereby leading to a larger sampling

interval. On the other hand, we can choose the update strategy such that the value of βtk is

inversely proportional to the size of Vtk , resulting in the control performance improvement.

Therefore, a trade-off between the communication load and closed-loop performance can
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be achieved by designing the appropriate updating mechanism for βtk .

Algorithm 4.2 Self-triggered adaptive MPC algorithm

Input: The initial system state x0; the prediction horizon N ; tuning parameters β̄, ξ̄ and
Hmax.

1: Set t = 0 and t0 = t.
2: for k = 0, 1, 2, · · · do
3: Measure the system state xtk .
4: if tk > 0 then
5: Compute Vtk by following Algorithm 4.1.
6: end if
7: Solve the optimization problems in (4.6) and (4.7) to obtain the optimal control input

sequence u∗tk,N and the sampling interval HVtk (xtk).
8: for t = tk, tk + 1, · · · , tk +HVtk (xtk)− 1 do
9: Implement the control input ut = u∗t−tk|tk to the system (4.1).

10: end for
11: Set t = t+ 1 and tk+1 = t.
12: end for

4.3.3 Recursive feasibility and closed-loop stability

The feasibility result is shown in the following theorem.

Theorem 4.1. For the nonlinear system (4.1), suppose that Assumption 2.1 holds, then the

proposed ST-AMPC scheme in Algorithm 4.2 is recursively feasible for all x0 ∈ XN .

Proof. At the triggering time tk, suppose that xtk ∈ XN , and the next sampling time instant
is tk+1 = tk + HVtk (xtk). For simplicity, we use the notation H∗tk to denote HVtk (xtk) in
the following. Let the sequence u∗tk,N = {u∗l|tk}

N−1
l=0 ,w

∗
tk,N

= {d∗l|tk , v
∗
l|tk}

N−1
l=0 denote the

optimal solution of the optimization problem (4.6), and x∗l|tk is the predicted optimal state
trajectory for the system (4.1) under u∗l|tk , d

∗
l|tk and v∗l|tk . Then we construct the following

candidate input sequence at next sampling time instant

ūtk+1,N = {ūl|tk+1
}N−1
l=0 , ūl|tk =

u∗H∗tk+l|tk , l ∈ N[0,N−H∗tk−1]

κf (xl|tk+1
), l ∈ N[N+H∗tk

,N−1]

where {xl|tk+1
} is the corresponding state trajectory under ūtk+1,N and w∗tk,N . Since vtk+l ∈

Vl|tk ⊆ V and dtk+l ∈ D for all l ∈ N[0,H∗tk
−1], by the optimization problem (4.6) we have
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xtk+1
∈ XN−H∗tk . Therefore, it can be concluded from (2.15) and Assumption 2.1 that XN

is a robust invariant set for the system (4.1) under the proposed ST-AMPC algorithm.

Remark 4.3. As shown in Theorem 4.1, we investigate the recursive feasibility of the pro-

posed method at triggering time instants. Although the control inputs are executed in an

open-loop configuration between two triggering time instants, it still can be guaranteed

that xt ∈ X and ut ∈ U for all t ≥ 0 and x0 ∈ XN by considering the worst-case

realization of uncertainties in the MPC optimization problem.

Theorem 4.2. For the nonlinear system (4.1), suppose that Assumption 2.1 holds and x0 ∈
XN . If the triggering time instants tk are determined by (4.7), under the proposed ST-AMPC

method presented in Algorithm 4.2, the closed-loop system (4.9) is ISpS at the triggering

time instants.

Proof. To prove ISpS of the closed-loop system, we need to show that the optimal cost
function V

H∗tk
N (xtk , βtk) is an ISpS Lyapunov function satisfying conditions (2.8a) and

(2.8b). We start the proof by finding the function α1(‖xtk‖). Recalling the optimization
problem (4.6), the lower bound of V

H∗tk
N (xtk , βtk) can be derived as follows

V
H∗tk
N (xtk , βtk) = JHN (xtk ,u

∗
tk,N

,w∗tk,N , βtk) ≥ min
utk

JHN (xtk ,utk,N ,0, βtk) ≥
σ1(‖xtk‖)
β̄eξ̄

.

Hence the function α1(‖xtk‖) can be chosen as α1(‖xtk‖) = σ1(‖xtk‖)/β̄eξ̄.
The next step is to find the function α2(‖xtk‖). We firstly consider the case xtk ∈ Xf .

Let ǔtk,N denote the optimal solution associated with V 1
N(xtk , βtk), and define a control

sequence ũtk,N+1 as ũtk,N+1 = {ǔtk,N , κf (xN |tk)}. We define the following cost function

J ij(xtk ,utk,N ,wtk,N , βtk) , `f (xj|tk) +
i−1∑
l=0

1

βtk
`(xl|tk , ul|tk) +

j−1∑
l=i

`(xl|tk , ul|tk), (4.10)

where i ∈ N[1,Hmax], j ∈ N>0 and i ≤ j. Then we have

J1
N+1(xtk , ũtk,N+1,wtk,N+1, βtk) =J1

N(xtk , ǔtk,N ,vtk,N ,dtk,N , βtk)− `f (xN |tk)

+ `f (xN+1|tk) + `(xN |tk , κf (xN |tk)).

for all xtk ∈ Xf . Since the sequence ũtk,N+1 is a suboptimal solution, the relation between
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V 1
N(xtk , βtk) and V 1

N+1(xtk , βtk) can be derived as follows

V 1
N+1(xtk , βtk) ≤ max

wtk,N+1

J1
N+1(xtk , ũtk,N+1,wtk,N+1, βtk)

≤ max
wtk,N

J1
N(xtk , ǔtk,N

,wtk,N , βtk) + α(d̄)

≤ V 1
N (xtk , βtk) + α(d̄), (4.11)

where the third inequality in (4.11) is obtained from Assumption 2.1. Therefore, by itera-
tively using the above inequality, for all xtk ∈ Xf , we have V 1

N(xtk , βtk) ≤ V 1
1 (xtk , βtk) +

(N − 1)α(d̄). In addition, from (4.6) one has

V 1
N(xtk , βtk) ≤ VN(xtk) +

1− βtk
βtk

`(x∗l|tk , u
∗
tk

),

leading to the following upper bound of V 1
N(xtk , βtk)

V 1
N(xtk , βtk) ≤ V1(xtk) +

1−βtk
βtk

`(xtk , κf (xtk)) + (N − 1)α(d̄)

≤ `f (xtk) +
1−βtk
βtk

`(xtk , κf (xtk)) +Nα(d̄)

≤ σ3(‖xtk‖) +Nα(d̄).

Hence, by (4.7) it is concluded that

V
H∗tk
N (xtk , βtk) ≤ σ3(‖xtk‖) +Nα(d̄).

For xtk ∈ XN but xtk 6∈ Xf , the upper bound can be found by following Lemma 1 in
[202]. Let Br = {x ∈ Rnx|‖x‖ ≤ r}. Since X ,U ,V and D are compact sets, there
exists a finite constant V̄N ∈ R≥0 such that V

H∗tk
N (xtk , βtk) ≤ V̄N for all xtk ∈ XN . For

xtk ∈ XN but xtk 6∈ Br, we have ‖xtk‖ ≥ r and V
H∗tk
N (xtk , βtk) ≤ V̄N , which in turn leads to

V
H∗tk
N (xtk , βtk) ≤

V̄N
r
‖xtk‖. Consequently, we have V

H∗tk
N (xtk , βtk) ≤ α2(‖xtk‖) + Nα(d̄)

for all xtk ∈ XN , where α2(‖xtk‖) = max(σ3(‖xtk‖),
V̄N
r
‖xtk‖).

The remainder of this proof is to find the function α3. Let H∗tk+1
denote the sampling

interval computed at time instant tk+1. Note that vtk+l ∈ Vl|tk and dtk+l ∈ D for all
l ∈ N[0,H∗tk

−1]. Taking into account the triggering condition (4.7), for all xtk ∈ XN , we
evaluate the discrepancy between the optimal cost functions at two triggering time instants
in the following

V
H∗tk+1

N (xk+1, βtk+1
)− V

H∗tk
N (xtk , βtk)
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≤V 1
N(xk+1, βtk+1

)− max
vl|tk∈Vl|tk ,dl|tk∈D


H∗tk
−1∑

l=0

1

βtk
`(xl|tk , u

∗
l|tk) + VN−H∗tk

(xH∗tk |tk
)


≤V 1

N(xk+1, βtk+1
)− VN−H∗tk (xtk+1

)−
H∗tk
−1∑

l=0

1

βtk
`(xtk+l, u

∗
l|tk).

It is similar to (4.11) that VN+1(xtk+1
)−VN(xtk+1

) ≤ α(d̄),which yields V 1
N(xk+1, βtk+1

) ≤
VN(xtk+1

) ≤ VN−H∗tk
(xtk+1

) + H∗tkα(d̄) for xtk+1
∈ XN−H∗tk . By choosing α3(‖xtk‖) =

σ2(‖xtk‖)/β̄eξ̄ and ρ(d̄) = H∗tkα(d̄), one has V
H∗tk+1

N (xk+1, βtk+1
) − V

H∗tk
N (xtk , βtk) ≤

−α3(‖xtk‖) + ρ(d̄). Therefore, the optimal value function V
H∗tk
N (xtk , βtk) is an ISpS Lya-

punov function at triggering time instants. Then according to Theorem 2.3, it is proved
that the closed-loop system (4.9) is ISpS under the proposed ST-AMPC algorithms for all
x0 ∈ XN at triggering time instants.

Remark 4.4. In Theorem 4.2, it is rigorously proved that the closed-loop system is ISpS

at triggering time instants under the proposed ST-AMPC algorithm. Compared with the

periodic adaptive min-max MPC method, the proposed ST-AMPC scheme can significantly

reduce the communication load since the state measurements are only updated at the sam-

pling time instants. The simulation results will demonstrate this argument. On the other

hand, this work only investigates the stability of the closed-loop system at sampling time

instants. The proposed ST-AMPC method would suffer increased conservatism compared

with the periodic method since the closed-loop stability at all time instants is investigated

in the periodic method. How to guarantee the closed-loop stability at inter-sampling time

instants will be considered in our further research.

4.4 Illustrative Example

In this section, a numerical example is presented to validate our theoretical results. We con-
sider the following discrete-time nonlinear system which is the modification of the example
in [40]

xt+1(1) = xt(1) + S
2
(1 + xt(1))ut − xt(2)vt(1) + dt(1),

xt+1(2) = xt(2) + S
2
(1− 4xt(2))ut + xt(1)vt(2) + dt(2).

where xt = [xt(1), xt(2)]T and ut are the system state and input subject to the constraints
|ut| ≤ 1.5 and ‖xt‖∞ ≤ 5. The parameter S = 0.4 is the sampling period of the
system. The parametric uncertainty vt = [vt(1), vt(2)]T and additive disturbance dt =
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[dt(1), dt(2)]T are limited by 0.1 ≤ ‖vt‖∞ ≤ 0.35, ‖dt‖∞ ≤ 0.01 and ‖vt+1− vt‖ ≤ 0.004,
respectively. The sequences of uncertainties used in the simulation are illustrated in Fig.
4.1.
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Figure 4.1: Trajectories of uncertainties.

For the proposed ST-AMPC scheme, we set the prediction horizon N = 6. The stage
cost function is chosen as `(x, u) = xTQx+ uTRu with Q = diag(10, 10) and R = 5. We
set

Xf = {x : xTPx ≤ 2.171}, P = [63.7335,−60.1802;−60.1802, 275.2859],

`f (x) = xTPx, κf (x) = [−0.4707,−4.7538]x.

The feedback policy in (2.15) is set as µ(x) = κf (x)+xTx+ c where c ∈ R is the decision
variable for the optimization problem in (2.15). For the self-triggering scheduler, we set
Hmax = 5 and β0 = 1.07. At time instant tk, the optimal sampling interval is obtained based
on (4.7). More specifically, we firstly solve the optimization problem P1 with M = 1 to
obtain the value of optimal cost V 1

N(xtk , βtk). Then we repeatedly solve P by choosing
different M from a decreasing sequence {Hmax, Hmax − 1, · · · , 2} until V M

N (xtk , βtk) ≤
V 1
N(xtk , βtk). To demonstrate the effectiveness of the proposed methods, the ST-RMPC

[188] the periodic robust MPC (P-RMPC) method in [14, 202] and the periodic adaptive
MPC (P-AMPC) method in Section 2.3.3 are also implemented with the same parameters
for the purpose of comparison.

In the simulation, we employ the Julia Toolbox JuMP [214] to formulate the MPC
optimization prolbem, where the nonlinear programming solver KNITRO [215] is used to
solve the optimization problem efficiently. Since it is almost impossible to exactly solve
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the min-max MPC optimization problemP1, we approximately solveP1 by considering the
different realization of uncertainties. More specially, we sample Na regularly distributed
points in the uncertainty sets Vtk and D, i.e., Vtk = {vl,tk} and D = {dl} with l ∈ N[0,Na].
This can be achieved by using the Julia toolbox GeoStats.jl [216] in the simulation. Starting
from the initial condition x0 = [4, 4]T and Na = 5, the time evolution of the system
states and control inputs under different methods is shown in Figs. 4.2-4.3. The triggering
time instants are reported in the bottom of Fig. 4.2. From these figures, it can be seen
that the proposed ST-AMPC scheme can stabilize the system state within a small region
around the origin while the state and input constraints are satisfied. Fig. 4.4 demonstrates
the comparison of estimated bounding sets Vtk obtained by using the proposed ST-AMPC
method (blue square) and P-AMPC method (green square) at the different triggering time
instants, in which the black star indicates the real value of vtk and the gray square indicates
the initial set V . It is worthwhile to observe that the set-valued description of vtk can be
refined by using the proposed set-membership parameter estimator under the self-triggering
mechanism.

Let Jp =
∑

t=0 x
T
t Qxt + uT

t Rut denote the system cost. We define T∆ = Ttotal/Ns

as the average time of computing the optimal triggering interval, where Ttotal is the total
computing time and Ns is the times of solving the min-max optimization problem. In the
simulation, we repeat the test 20 times to further compare the closed-loop performance and
the computing time. The comparison of performance index Jp, average sampling interval
Hs, average computing time T∆, and the total computing time Ttotal are shown in Table 4.1.
We observe that, by using the proposed ST-AMPC method, the average sampling inter-
val increases 12.44%, while the total cost increases 3.49% compared with the ST-RMPC
method. In addition, the average computing time for these methods is less than the sam-
pling time S. Although using the proposed ST-AMPC method leads to slightly increased
average computing time T∆, the total computing time Ttotal can be reduced. In summary,
the presented numerical example demonstrates that the proposed ST-AMPC method can
significantly reduce the average sampling frequency compared with the ST-RMPC method
and the periodic methods while preserving comparable closed-loop performance.

4.5 Conclusion

In this work, we have developed an ST-AMPC approach for constrained discrete-time non-
linear systems subject to parametric uncertainties and additive disturbances. A zonotope-
based set-membership parameter estimator has been developed to refine a set-valued de-
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Figure 4.2: Trajectories of system state xt and triggering time instant tk.
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Figure 4.3: Control input ut.

Jp Hs Ns T∆ Ttotal

ST-AMPC 751.70 4.6 20 0.3568 s 7.1353 s

ST-RMPC 726.38 4.09 22 0.3466 s 7.6262 s

P-AMPC 702.75 1 90 0.1265 s 11.3825 s

P-RMPC 705.73 1 90 0.13 s 11.6981 s

Table 4.1: Closed-loop performance comparison.
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Figure 4.4: Comparison of uncertainty estimation at triggering time instants tk =
1, 5, 7, 36, 66, 79.

scription of the time-varying parametric uncertainty. The proposed estimator does not rely
on the continuous measurement of the system state. Hence the estimation performance is
guaranteed under the aperiodic sampling induced by the self-triggering mechanism. The
estimated uncertainty set has been incorporated to facilitate the co-design of control inputs
and sampling intervals to reduce the conservatism further and enlarge the average sam-
pling interval compared with the ST-RMPC method. We have proved that the proposed
ST-AMPC approach is recursively feasible, and the closed-loop system is ISpS at trigger-
ing time instants. Numerical results have illustrated the efficacy and advantages of the
proposed method.
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Chapter 5

Robust Nonlinear Model Predictive
Control Based Visual Servoing of
Quadrotor UAVs

The previous chapters study robust and adaptive MPC for general linear and nonlinear
systems. This chapter focuses on applying the robust MPC scheme to the quadrotor UAVs.

5.1 Introduction

In recent decades, quadrotors have received considerable attention in many fields, such as
agriculture, industry, and transportation, due to their high maneuverability, agile mobility,
and VTOL capability [217]. Tremendous results have been published in this field [193–
196]. The navigation of quadrotors usually relies on the position information measured by
the GPS or other positioning systems. However, the position information may be unavail-
able in some indoor or cluttered urban areas. For the quadrotor equipped with a camera,
visual servoing provides an alternative solution to this problem, where the image data are
employed as the feedback to regulate the quadrotor’s pose with respect to a predefined
visual target, allowing the navigation of quadrotors in GPS-denied environments [218].

In the existing literature, visual servoing techniques are mainly classified into two cat-
egories: IBVS and position-based visual servoing (PBVS). Compared with PBVS using
3-D features defined in the Cartesian space, IBVS does not require additional geometrical
information to reconstruct the camera pose. Hence it is relatively easy to be implemented
and insensitive to camera calibration errors [218]. However, taking image features as the



70

system state may destroy the cascaded structure of the original quadrotor system. There-
fore, the appropriate design of image moments is desired for the IBVS of quadrotors, which
has been intensively studied in the literature. In this chapter, we only focus on the IBVS
based on the virtual camera technique and refer readers to a recent thesis by Xie [219] for
an overview of existing IBVS techniques.

The main insight of the virtual camera based method is to introduce a virtual camera
frame by defining a virtual camera. This virtual camera frame has the same origin and the
yaw angle as the real camera frame but zero pitch and roll angles, facilitating the estimation
of depth information. By choosing suitable image moments in the virtual camera plane,
we can derive the image kinematics independent of the quadrotor’s roll and pitch motion,
thereby simplifying the controller design. But the IBVS approaches generally require that
the visual target should stay in the FOV of the camera during the visual servoing process,
which cannot be guaranteed in practical applications. If the quadrotor loses sight of the
visual target, its visual servoing process may fail due to the loss of image data. Therefore,
keeping the visual target within the FOV of the camera, i.e., ensuring the satisfaction of the
visibility constraint, should be primarily addressed during the servoing process.

Due to the inherent characteristics, it is promising to fulfill the visibility constraint in
the visual servoing by using MPC. In [220], an NMPC approach is designed for the cam-
era projection model to handle the input and visibility constraints. In [221], a stabilizing
NMPC based IBVS approach is designed for the setpoint tracking of underwater vehicles.
Sheng et al. proposed an output feedback NMPC strategy in [222] for the IBVS of quadro-
tors, where a high-gain observer is developed to estimate the linear velocity. Note that the
aforementioned methods assume the absence of external disturbances, which is unrealistic
in practical control problems. Therefore, robust MPC has attracted increasing attention in
the existing literature on IBVS. The authors in [223] established a linear parameter-varying
model for the IBVS of the manipulator with an eye-in-hand camera structure, where the
worst-cast cost with respect to the parametric uncertainty is considered in the MPC opti-
mization problem to handle uncertainties. In [224] a robust NMPC strategy is proposed
for the image kinematics defined in the virtual camera plane, in which a tightened state
constraint is constructed to handle external disturbances.

In this chapter, we investigate the MPC-based IBVS of quadrotors subject to external
disturbances. Similar to our previous work [222], the IBVS system model is derived by
integrating the image kinematics and quadrotor dynamics. Then a robust MPC scheme is
developed for the IBVS of quadrotors, in which the external disturbances are handled based
on the constraint tightening strategy presented in [225]. Different from the existing IBVS
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method [224], the MPC objective function used in the proposed method is not required to
be Lipschitz continuous, thereby reducing the conservatism.

The main contributions are two-followed

• Inspired by [225], a sequence of tightened state constraints is designed based on
the Lipschitz condition such that the constraint satisfaction can be guaranteed for all
admissible realization of uncertainties. In addition, due to the offline construction
of the tightened constraints, the computational complexity of the proposed method
is almost equivalent to the standard NMPC scheme, making it applicable to real
quadrotor platforms while ensuring robust constraint satisfaction.

• A robust MPC scheme is developed for the IBVS of quadrotors to fulfill the visibility
constraints. Compared with our previous work [222] where the rigorous analysis of
the closed-loop prosperities is not provided, the sufficient conditions on guaranteeing
the recursive feasibility of the proposed robust NMPC algorithm are established in
this work. It is also theoretically shown that the tracking error will converge to a
small set around the origin in finite time under the proposed conditions. Numerical
simulation and experimental validation are provided to illustrate the efficacy of the
proposed method.

5.2 System Modeling

In this section, different coordinates used for describing the motion of a quadrotor are
firstly presented, followed by the modeling of a quadrotor system. Then image features are
introduced to derive the decoupled image kinematics. Finally, we establish the dynamics
of the quadrotors expressed in the virtual camera frame.

5.2.1 Quadrotor dynamics

As shown in Figure 5.1, the inertia frame N = {On, n1, n2, n3} and the body-fixed frame
B = {Ob, b1, b2, b3} are introduced to describe the motion of the quadrotor. It is assumed
that the origin of the frame B is located at the center of gravity (COG) of the quadrotor.
The orientation relationship between two coordinate frames is characterized by a rotation
matrix. The third frame is the camera frame C = {Oc, c1, c2, c3}, whereOc is located at the
optical center of the camera. Since the camera is attached underneath the geometric center
of the quadrotor, it is assumed that B and C are aligned by neglecting the displacement



72

𝑐ଵ௩

𝑐ଷ௩

𝑐ଶ௩

𝑐ଵ

𝑐ଷ

𝑐ଶ

𝑛ଷ

𝑛ଵ

𝑛ଶ

𝑢௩ 𝑛௩

Virtual image plane

Real image plane
𝒞p

𝒱p

Target plane

𝑢௖

𝑛௖

𝑂௡

𝑂௖ , 𝑂௩ , 𝑂௕

Figure 5.1: Reference coordinate frames.

between Ob and Oc. Hence, only C is considered in the following for the convenience
of presentation. The last one is the virtual camera frame V = {Ov, c

v
1, c

v
2, c

v
3}, where

the origin Ov coincides with Oc and cv3 is parallel to n3. Let η = [φ, θ, ψ]T denote the
attitude vector of the quadrotor represented in B, where φ, θ and ψ are roll, pitch, and yaw
angles, respectively. Then the quadrotor orientation from C to N can be described by the
following rotation matrix

RN
C =

cθcψ sθsφcψ − sψcφ sθcφcψ + sψsφ

cθsψ sθsφsψ + cψcφ sθcφsψ − sφcψ

−sθ cθsφ cθcφ


where s· = sin(·) and c· = cos(·). Similarly, RN

V and RV
C are rotation matrices from V to

N and from C to V , respectively.
Let ζn = [xn, yn, zn]T and vn = [vnx , v

n
y , v

n
z ]T denote the position and linear velocity of

the quadrotor expressed in N , and Ωc = [Ωc
1,Ω

c
2,Ω

c
3]T is the angular velocity expressed

in C . Without considering uncertainties, the motion of the quadrotor in N is described by
following equations [226]

ζ̇
n

= vn (5.1a)
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v̇n = −RN
C E3F/m+ gE3 (5.1b)

ṘN
C = RN

C [Ωc]× (5.1c)

Ω̇
c

= −I−1 [Ωc]× IΩc + I−1τ (5.1d)

where m is the mass of the quadrotor; g is the gravitational constant; I is the moment of
inertia of the quadrotor; F is the magnitude of the thrust generated by all propellers; τ
is the resultant torque generated by the propellers; E3 = [0, 0, 1]T and [Ωc]× denotes the
operation spanning the vector Ωc into a skew-symmetric matrix [227].

5.2.2 Image feature and IBVS dynamics

Similar to [227, 228], a pinhole camera model is considered in this work. The ground
target considered here is a 2-D polytope consisting of multiple points. The positions of
these points are extracted from captured images. Here it is assumed that the ground target
consists of more than one point. As shown in Figure 5.1, we firstly introduce a 2-D image
plane Cp whose basis {uc, nc} is parallel to {c1, c2}. Analogously, Vp is a 2-D plane with
its basis {uv, nv} parallel to {cv1, cv2}. Given a point ζc = [xc, yc, zc]T expressed in C , its
projection in Cp can be calculated by using the perspective projection equation as follows
[229]

ζcp =

[
ucp

ncp

]
=

λ

zc

[
xc

yc

]
, (5.2)

where λ is the camera focal length. Similarly, for a point ζv = [xv, yv, zv]T expressed in
V , its projection in the plane Vp can be calculated by using (5.2). Then recalling the image
features defined in [229], the image moments are given as follows

s1 = s3
uvg
λ
, s2 = s3

nvg
λ
, s3 =

√
a∗

a
, s4 = 1

2
arctan

(
2µ11

µ20−µ02

)
, (5.3)

where s = [s1, s2, s3, s4]T is image moment; uvg = 1
N

∑N
k=1 u

v
k,p; n

v
g = 1

N

∑N
k=1 n

v
k,p;

(uvk,p, n
v
k,p), k ∈ N[1,N ], is the position of the kth point in the virtual image plane; N is

the number of points contained in the target object; µij =
∑N

k=1(uvk,p − uvg)i(nvk,p − nvg)j ,
a = µ20 +µ02, and a∗ is the value of awhen the quadrotor is at the desired pose. As derived
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in [219], the kinematics of image moments is given by

ṡ = fs(s,v
v, ψ̇) =


− 1
z̄c
vvx + s2ψ̇

− 1
z̄c
vvy − s1ψ̇

− 1
z̄c
vvz

−ψ̇

 (5.4)

where vv = [vvx, v
v
y , v

v
z ]

T denotes the linear velocity of the quadrotor expressed in V and
z̄c is the desired height of the quadrotor expressed in C . Since s1, s2 and s3 are image
features for the horizontal and vertical motion of the quadrotor, the quadrotor’s workspace
can be restricted by imposing an additional constraint on the image moment s. Therefore,
the visibility constraint S = {s ∈ R4 : −smax ≤ s ≤ smax} is incorporated to maintain
the target of interest within the FOV of the camera, where smax ∈ R4 is a known constant
vector. In addition, by substituting vn = RN

V vv into (5.1b), the translational motion of the
quadrotor in virtual camera frame V can be obtained, i.e., v̇v = −[ψ̇E3]×vv−RV

C E3T/m+

gE3, which can be rewritten as

v̇v = fv(v
v,h, ψ̇) = −[ψ̇E3]×vv + h. (5.5)

where h = [h1, h2, h3]T = gE3−RV
C E3T/m. Since the velocity and acceleration of a real

quadrotor system are limited, the following physical constraints are considered: V = {v ∈
R3 : −vmax ≤ vv ≤ vmax},U = {(h, ψ̇) ∈ R4,−hmax ≤ h ≤ hmax, |ψ̇| ≤ Ωmax}, where
vmax ∈ R3,hmax ∈ R3 and Ωmax ∈ R are constant and known. Let x = col(s,vv) and
u = col(h, ψ̇), based on (5.4) and (5.5), the quadrotor IBVS model is derived as follows

ẋ = f(x,u) :=

[
fs(s,v

v, ψ̇)

fv(v
v,h, ψ̇)

]
. (5.6)

5.2.3 Control objective

In this work, the control objective is to regulate the relative position and yaw angle of the
quadrotor to a prescribed visual target based on captured images and measured velocities.
Instead of generating the actuator level commands directly, we adopt a dual-loop control
structure shown in Figure 5.2, where the outer-loop IBVS controller receives the extracted
image features to output desired attitude and velocity signals for the inner-loop, while the
inner-loop tracking controller drives the quadrotor to the desired position. Since a class
of commercial quadrotors, e.g., DJI Phantom 4 and Parrot Bebop 2, with the embedded
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Figure 5.2: The dual-loop control structure.

autopilot function, is considered here, we only focus on designing the outer-loop IBVS
controller in this work.

Let hd(t) = [h1,d(t), h2,d(t), h3,d(t)]
T and ψ̇d(t) denote the output from the IBVS con-

troller at time t, then the desired attitudes and velocity are given as follows:

φd(t+ δ) = arcsin

(
h2,d(t)√

h1,d(t)2+h2,d(t)2+(h3,d(t)−g)2

)
,

θd(t+ δ) = arctan
(

h1,d(t)

h3,d(t)−g

)
,

ψd(t+ δ) = ψ̇d(t)δ + ψ(t),

vvd(t+ δ) = fv(v
v(t),hd(t), ψ̇d(t))δ + vv(t),

where ηd(t) = [φd(t), θd(t), ψd(t)]
T and vvd(t) are the desired attitude vector and velocity

vector for the inner-loop controller, respectively. δ is the sampling interval. Our objective
of this study is to design a robust NMPC based IBVS controller to robustly stabilize the
quadrotor to the desired pose based on the image and velocity information while satisfying
the visibility constraint S and the physical constraints V and U .

5.3 Controller Design

In this section, a robust NMPC scheme is developed for the IBVS of the quadrotor sys-
tem subject to unknown disturbances. A state constraint tightening strategy is introduced
to handle external disturbances. Then a summary of the proposed MPC algorithm is pre-
sented. Finally, this section concludes with sufficient conditions for ensuring recursive
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feasibility and closed-loop stability.

5.3.1 Robust NMPC scheme

In this subsection, we consider the quadrotor IBVS model in (5.6) with the presence of
external disturbances ω(t) ∈ R7

ẋ(t) = f(x(t),u(t)) + ω(t). (5.7)

It is assumed that x(t) ∈ X and u(t) ∈ U , where X can be obtained from the constraints
V and S. We further assume that ω(t) belongs to a bounded set W . The variable x̄(t) is
defined as the state of the following nominal system

˙̄x(t) = f(x̄(t),u(t)). (5.8)

Our control objective is to regulate the system state to its desired value xr = col(sr,v
v
r) ∈

R7, where sr ∈ R4,vvr ∈ R3 are constant vectors, and (xr, 0) is an equilibrium point of the
system (5.6). Then for the nominal system (5.8) we have the following assumption, which
is common in robust MPC, e.g., [180, 188]

Assumption 5.1. 1) The function f(x(t),u(t)) is locally Lipschitz continuous in x(t) ∈ X
with a Lipschitz constant L, and 2) there exists a feedback gain K such that A + BK is

Hurwitz, where A = ∂f(x(t),u(t))
∂x

|(xr,0) and B = ∂f(x(t),u(t))
∂u

|(xr,0).

MPC optimization problem

Let x̄(l|t), l ∈ [t, t+T ] denote the trajectory of the nominal system state, which is predicted
at the time t by using the nominal system model in (5.8) with the control input trajectory
u(l|t). Here, T is the prediction horizon. Let x̂(t) = x(t) − xr and x̂(l|t) = x̄(l|t) − xr

with l ∈ [t, t+ T ]. Define the cost function as

JT (x̂(l|t),u(l|t)) =

∫ t+T

t

`(x̂(τ |t),u(τ |t))dτ + `f (x̂(t+ T |t)),

where `(x̂(l|t),u(l|t)) : R7 × R4 → R≥0 and `f (x̂(t + T |t)) : R7 → R≥0 are the stage
cost function and the terminal cost function to be designed, respectively. Then the MPC
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Algorithm 5.1 Robust NMPC algorithm
Input: Initial system state x0; prediction horizon T ; sampling interval δ; terminal con-

straint Ω(ε)
1: Set t = 0.
2: Measure the system state x(t) and calculate the tracking error x̂(t) = x(t)− xr.
3: while x̂(t) /∈ Ω(ε) do
4: Solve the optimization problem P in (5.9) to obtain the optimal control input trajec-

tory u∗(l|t).
5: Apply the control input u(τ) = u∗(τ |t), τ ∈ [t, t+ δ) to the system (5.7).
6: end while
7: Apply the input u(t) = Kx̂(t) to the system (5.7).

optimization problem is formulated as follows:

P : VT (x̂(t)) = min
u(l|t)

JT (x̂(l|t),u(l|t)) (5.9a)

s.t. x̄(t|t) = x̂(t) + xr, (5.9b)

˙̄x(l|t) = f(x̄(l|t),u(l|t)), (5.9c)

x̄(l|t) ∈ Xl−t,u(l|t) ∈ U , (5.9d)

x̂(t+ T |t) ∈ Ω(ε), (5.9e)

where Xl−t is the tightened state constraint and Ω(ε) is the terminal constraint, which will
be introduced later.

In this work, we consider a dual-mode MPC framework proposed in [230]. Specifically,
when the tracking error x̂(t) /∈ Ω(ε), an optimal control trajectory u∗(l|t) is obtained by
solving the optimization problem in (5.9). Then the control input to be implemented is
given by u(τ) = u∗(τ |t), τ ∈ [t, t + δ]. When x̂(t) ∈ Ω(ε), the locally stabilizing control
law u(t) = Kx̂(t) is applied. Algorithm 5.1 summarizes the proposed robust NMPC
approach.

Tightened state constraint

Given the optimal control input trajectory u∗(l|t), l ∈ [t, t + T ], we use x(l|t) and x̄∗(l|t)
to denote the trajectories of real system state and optimal nominal system state obtained
by using the system models in (5.7) and (5.8), respectively. In order to guarantee the
satisfaction of state and input constraints for all admissible realization of uncertainties, we
need to ensure that x(l|t) ∈ X for all admissible realizations of the uncertainty. Suppose
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that P is a positive definite matrix. By using the Lipschitz condition in Assumption (5.1),
the deviation between two states x(l|t) and x̄∗(l|t) is derived as follows

‖x̄∗(l|t)− x(l|t)‖P ≤
∫ l

t

(L(‖x̄∗(τ |t)− x(τ |t)‖P) + ω̄P )dτ,

where ω̄P = ω̄λ̄(
√

P) and ω̄ = supω(t)∈W ‖ω(t)‖. Then the Gronwall–Bellman inequality
implies that

‖x̄∗(l|t)− x(l|t)‖P ≤
ω̄P
L

(eL(l−t) − 1), (5.10)

which describes the upper bound of the error between the optimal predicted nominal state
x̄∗(l|t) and the real state x(l|t). Motivated by [225], we design the tightened constraint
Xl−t as follows:

Xl−t = X 	 El−t
El−t := {x ∈ R7 : ‖x‖P ≤ ω̄P

L
(eL(l−t) − 1)}.

(5.11)

Consequently, we can ensure that x(l|t) ∈ X if x̄(l|t) ∈ Xl−t. Therefore, the robust
satisfaction of state constraints is guaranteed.

Objective function and terminal constraint

In this work, we consider the stage and terminal cost functions with a quadratic form:

`(x̂(t),u(t)) = ‖x̂(t)‖2
Q + ‖u(t)‖2

R, `f (x̂(t)) = ‖x̂(t)‖2
P,

where matrices Q,R and P are positive definite. In addition, we consider an ellipsoidal
terminal constraint Ω(ε) = {x ∈ R7 : `f (x) ≤ ε2}. For the objective function and terminal
constraint, we have the following assumption.

Assumption 5.2. For the system (5.8), there exist a feedback gain K and matrices Q,R

and P such that the following conditions hold for all x̂(t) ∈ Ω(ε): 1) Kx̂(t) ∈ U , 2) Ω(ε)

is a control invariant set for the system (5.8) under the control law u(t) = Kx̂(t), and 3)
˙̀
f (x̂(t)) ≤ −`(x̂(t),Kx̂(t)).

Remark 5.1. Assumption 5.2 is common in MPC, e.g.[180, 225, 231]. As shown in [231],

given Q,R and K, if there exists a unique positive definite solution P for the following

Lyapunov equation (AK+κI)TP(AK+κI) = −Q̄ with Q̄ = Q+KTRK,AK = A+BK

and κ < −λ̄(AK) , the inequalities in Assumption 5.2 hold. In addition, the suitable

matrices P and K satisfying conditions in Assumption 5.2 can be found by solving a linear
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matrix inequality problem.

5.3.2 Feasibility and stability analysis

In this subsection, the main theoretical results of this work are presented. We firstly investi-
gate the sufficient conditions that guarantee the recursive feasibility of the proposed robust
NMPC scheme. Then we illustrate the stability result for the closed-loop system.

Theorem 5.1. Suppose that Assumptions 5.1 and 5.2 hold, and there exists a feasible solu-

tion for the optimization problem P at the time instant t = 0. The proposed robust NMPC

scheme, summarized in Algorithm 5.1, is recursively feasible if the following conditions

hold

L ≤ λ̄(
√

P)(eLδ − 1), (5.12a)

xr ⊕ Ω(ε) ⊆ XT+δ, (5.12b)

ε(e−δλ(Q̄)/(2λ̄(P)) − 1) + ω̄eLT ≤ 0. (5.12c)

Proof. To prove the recursive feasibility, we need to show that the optimization problem P
admits a feasible solution at time t+ δ if it is feasible at time t. We construct the following
candidate solution

ũ(l|t+ δ) =

u∗(l|t), l ∈ [t+ δ, t+ T )

Kx̄∗(l|t), l ∈ [t+ T, t+ T + δ]
(5.13)

Here, we suppose that the state trajectory x̄∗(l|t), l ∈ [t + T, t + T + δ] is obtained under
the input trajectory u∗(l|t) = Kx̄∗(l|t). Let x̃(l|t + δ) denote the nominal state trajectory
predicted by using the input trajectory ũ(l|t+ δ) and the system model in (5.8) with x̃(t+

δ|t + δ) = x(t + δ). Define x̂∗(l|t) = x̄∗(l|t) − xr and x̂(l|t + δ) = x̃(l|t + δ) − xr. We
show that ũ(l|t+ δ) is a feasible solution at time t+ δ in the following.

Case 1: l ∈ [t + δ, t + T ). As mentioned in Assumption 5.1, the nominal system (5.8)
is locally Lipschitz continuous. Then by the Gronwall–Bellman inequality, we can derive
the upper bound of the derivation between the states x̃(l|t+ δ) and x̄∗(l|t)

‖x̃(l|t+ δ)− x̄∗(l|t)‖P ≤ ω̄eL(l−t−δ) (5.14)
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Furthermore, it follows from (5.11) and (5.12a) that

ω̄P
L

(eL(l−t) − 1)− ω̄P
L

(eL(l−t−δ) − 1) ≥ ω̄eL(l−t−δ),

which implies
(x̃(l|t+ δ)− x̄∗(l|t)) ∈ Xl−t ∩ Xl−t−δ.

Since x̄∗(l|t) ∈ Xl−t, we have x̃(l|t + δ) ∈ Xl−t−δ, indicating that the constraint (5.9d) is
satisfied for l ∈ [t+ δ, t+ T ).

Case 2: l ∈ [t+ T, t+ T + δ). According to Assumption 5.2, we have

x̂∗(l|t) ∈ Ω(ε),Kx̄∗(l|t) ∈ U ,∀l ∈ [t+ T, t+ T + δ).

In addition, it follows from (5.12b) that

x̄∗(l|t) ∈ xr ⊕ Ω(ε),∀l ∈ [t+ T, t+ T + δ).

Then by repeating the above procedure, we can prove that constraint (5.9d) holds for l ∈
[t+ T, t+ T + δ).

Case 3: l = t + T + δ. Since x̂∗(l|t) ∈ Ω(ε), according to Assumption 5.2, it can be
derived that

˙̀
f (x̂

∗(l|t)) ≤ −`(x̂∗(l|t),Kx̂∗(l|t)) ≤ −λ(Q̄)

λ̄(P)
`f (x̂

∗(l|t)).

Applying the comparison principle [232] yields

`f (x̂
∗(t+ T + δ|t)) ≤ `f (x̂

∗(t+ T |t))e−
λ(Q̄)

λ̄(P)
δ ≤ ε2e

−λ(Q̄)

λ̄(P)
δ
.

Similarly, we have ‖x̃(l|t+ δ)− x̄∗(l|t)‖P ≤ ω̄eLT , implying that

‖x̃(l|t+ δ)− xr‖P ≤ εe
− δλ(Q̄)

2λ̄(P) + ω̄eLT ≤ ε.

Therefore, the constraint (5.9e) is satisfied. In summary, ũ(l|t+ δ) is a feasible solution for
the optimization problem P , which proves this theorem.

Theorem 5.1 presents our feasibility result of the proposed robust NMPC scheme. In
the following, we investigate the stability of the closed-loop system.
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Theorem 5.2. Suppose that Assumptions 5.1 and 5.2 hold, and conditions presented in

Theorem 5.1 are satisfied. If the following condition

2ω̄λ̄(Q)

L2λ(P)
((Lε+ ξ)eLT − Lε− LTξ − ξ) + 2εω̄eLT <

λ̄(Q)

λ(P)
δε2 (5.15)

holds, where ξ = supx(t)∈X ,u(t)∈U ‖f(x(t),u(t))‖P, then the tracking error x̂(t) will con-

verge to the set Ω(ε̄) in finite time with ε̄ =
√

2 λ̄(P)‖
√
P‖

λ(Q̄)
εω̄.

Proof. In this proof, we consider the following two cases: x̂(t) /∈ Ω(ε) and x̂(t) ∈ Ω(ε).
To prove this theorem, we firstly show that the proposed robust NMPC scheme will steer
the tracking error x̂(t) into the terminal set Ω(ε).

When x̂(t) /∈ Ω(ε), it holds that

VT (x̂(t+ δ))− VT (x̂(t)) ≤ JT (x̂(l|t+ δ), ũ(l|t+ δ))− VT (x̂(t)) ≤ ∆1 + ∆2 + ∆3

∆1 =

∫ t+T+δ

t+δ

`(x̂(τ |t+ δ), ũ(τ |t+ δ))− `(x̂∗(τ |t),u∗(τ |t))dτ,

∆2 = −
∫ t+δ

t

`(x̂∗(τ |t),u∗(τ |t))dτ,

∆3 = `f (x̂(t+ T + δ|t+ δ))− `f (x̂∗(t+ T + δ|t)).

In the following, the upper bounds of the ∆1,∆2 and ∆3 will be derived.
According to triangle inequality, it can be derived that

∆1 ≤
∫ t+T+δ

t+δ

‖x̂(τ |t+ δ)‖2
Q − ‖x̂∗(τ |t)‖2

Qdτ

≤ λ̄(Q)

λ(P)

∫ t+T+δ

t+δ

(‖x̂(τ |t+ δ)− x̂∗(τ |t)‖P)(‖x̂(τ |t+ δ)‖P + ‖x̂∗(τ |t)‖P)dτ.

In order to find the upper bound of ∆1, we need to quantify the term ‖x̂(τ |t + δ)‖P +

‖x̂∗(τ |t)‖P. Since x̄∗(t+T |t) = x̄∗(l|t)+
∫ t+T
l

f(x̄∗(τ |t),u(τ |t))dτ , recalling the triangle
inequality implies that

‖x̂∗(l|t)‖P ≤ ‖x̂∗(t+ T |t)‖P + (t+ T − l)ξ

Analogously,

‖x̂∗(l|t+ δ)‖P ≤ ‖x̂∗(t+ T + δ|t+ δ)‖P + (t+ δ + T − l)ξ.
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Then based on (5.14), the upper bound of ∆1 is derived as follows:

∆1 ≤
λ̄(Q)

λ(P)

∫ t+T+δ

t+δ

ω̄eL(τ−t−δ)(2ε+ 2(t+ δ + T − τ)ξ)dτ

≤ λ̄(Q)

λ(P)

∫ T

0

ω̄eLτ (2ε+ 2(T − τ)ξ)dτ

≤ 2ω̄λ̄(Q)

L2λ(P)
((Lε+ ξ)eLT − Lε− LTξ − ξ).

Similarly, using the triangle inequality yields

∆3 ≤ ‖x̂(t+δ+T |t+δ)−x̂∗(t+δ+T |t)‖P·(‖x̂(t+δ+T |t+δ)‖+‖x̂∗(t+δ+T |t)‖) ≤ 2εω̄eLT .

Furthermore, we have ‖x̂(t)‖P ≥ ε for x̂(t) /∈ Ω(ε). Therefore, it holds that

∆2 ≤ −
λ̄(Q)

λ(P)

∫ t+δ

t

‖x̂∗(τ |t+ δ)‖2
Pdτ ≤ −

λ̄(Q)

λ(P)
δε2.

Recalling the stability condition (5.15), we have

VT (x̂(t+ δ))− VT (x̂(t)) ≤ ∆1 + ∆2 + ∆3 < 0.

Therefore, based on [230, Theorem 2], it can be concluded that the error state x̂(t) will
finally converge to the terminal set Ω(ε).

Next, we will show that the set Ω(ε̄) is a positively robust invariant set for the closed-
loop system under the control law u(t) = Kx̂(t). Suppose that x̂(t0) ∈ Ω(ε) and consider
a Lyapunov function V (x̂(t)) = `f (x̂(t)). Following [180, Lemma 1] yields that

V̇ (x̂(t)) ≤ λ̄(Q̄)

λ(P)
(−‖x̂(t)‖2

P + ε̄2),∀t ≥ t0.

As presented in the proof of Theorem 9 in [180], Ω(ε̄) is a positively robust invariant set.
Therefore, x̂(t) ∈ Ω(ε̄),∀t ≥ t0, which completes the proof.

Remark 5.2. Theorems 5.1 and 5.2 demonstrate that, by using the proposed method, the

tracking error x̂(t) will be steered in a region whose size is decided by the uncertainty

bound ω̄. From conditions (5.12) and (5.15), it can be seen that, although choosing a

large T can provide a potential improvement of control performance, a small prediction

horizon T is required to ensure the stability and feasibility if the uncertainty bound ω̄ is
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large, especially when the Lipschitz constant L is large. Therefore, a trade-off is desired to

design the prediction horizon T .

5.4 Simulation and Experiment

In this section, the numerical simulation and the experimental test are presented to illustrate
the efficacy of the proposed robust NMPC based IBVS technique.

5.4.1 Numerical simulation

In the simulation, we consider a quadrotor with the same parameters from [222]: m =

1.2 kg, g = 9.8 m/s2 and I = diag([0.013, 0.013, 0.023]). The camera focal length is
λ = 2.8 × 10−3 m. The pixel of camera is assumed to be square with the side length
1.4× 10−6 m. The target of interest are four coplanar points in the inertial frame:

[0.25, 0.2, 0]T, [−0.25, 0.2, 0]T, [0.25,−0.2, 0]T, [−0.25,−0.2, 0]T.

So the desired image features are sr = [0, 0, 1, 0]T and a∗ = 3.572 × 10−7. The cor-
responding desired position and attitudes are [0, 0,−1]T and [0, 0, 0]T, respectively. The
objective is to steer the quadrotor from its initial position ζn(0) = [1,−0.6,−3]T and
η(0) = [0, 0,−0.17]T to the desired position. Therefore, the initial image moment is
s(0) = [0.881, 0.764, 3, 0.174]T. When t = 0, it is assumed that the quadrotor hovers
at its initial position with zero linear and angular velocities.

For the proposed robust NMPC scheme, the sampling interval is δ = 0.1 s, and the
prediction horizon is set to T = 0.4 s. The weighting matrices are chosen as follows:
Q = diag([100, 100, 100, 100, 100, 100, 100]) and R = diag([50, 50, 50, 50]). To fulfill the
visibility constraint, the state and input constraints are given by {x ∈ R7 : −xmax ≤ x ≤
xmax} and {u ∈ R4 : −umax ≤ u ≤ umax}, where xmax = [1, 1, 4, 3.14, 0.5, 0.5, 0.5]T

and umax = [0.3, 2, 2, 2]T. According to Remark 5.1, the terminal weighting matrix P and
the feedback gain K can be computed with ε = 1.4702. Based on [232], the Lipschitz
constant is chosen as L = 1.06. The upper bound of the external disturbance is ω̄ = 0.015.
Moreover, we employ a nonlinear output-tracking controller from [233] with the sampling
period 0.1δ to solve the inner-loop attitude tracking problem.

The simulation results are shown in Figures 5.3 and 5.4. It can be seen that the state
and input constraints are satisfied by using the proposed robust NMPC method. The tra-
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Figure 5.3: The trajectories of (a) ground target points in the real image plane and (b) the
quadrotor in the inertia frame.

jectories of ground target points in the camera plane are presented in Figure 5.3(a), where
the red circles, red squares, and blue stars denote the initial, final, and desired positions,
respectively. The motion of the quadrotor in the inertial frame is described in Figure 5.3(b).
From Figures 5.3 and 5.4, it can be observed that the quadrotor can be stabilized within a
small region around the desired position by using the proposed robust NMPC based IBVS
method, which verifies our theoretical results.

5.4.2 Experimental test

The schematic diagram of the experimental setup is shown in Figure 5.5. We consider a
Parrot Bebop 2 quadrotor platform equipped with a wide-angle fisheye lens camera and an
inertial measurement unit (IMU). The camera is mounted on the front of the quadrotor with
the focal length λ = 1.8× 10−6 m. Our proposed robust NMPC algorithm is implemented
on the ground station. The image processing algorithm is developed based on OpenCV
[234] to extract the image moments and is implemented on the same laptop. The MPC
optimization problem is formulated and solved by using an open-source tool CasADi [235]
in Python. When receiving the image features extracted from the captured image, the
control command is generated by solving the optimization problem and then sent back to
the quadrotor.
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Figure 5.4: Time evolutions of (a) image moments s, (b) linear velocities in the virtual
camera frame vv, (c) control inputs u and (d) desired attitudes ηd.

The control objective is to regulate the quadrotor to 1.35 m above the barycenter of the
ground target with its yaw aligned with the principal axis of the target. Since Ov and Oc

are different in the experiments, we manually drive the quadrotor to the desired position to
calculate a∗ before the experimental test. Hence a∗ = 5.5 × 10−8 in the experiments. For
the proposed robust NMPC algorithm, the state and input weighting matrices are chosen
as Q = diag([200, 200, 200, 2, 10, 10, 10]) and R = diag([1, 1, 1, 1]). In addition, xmax =

[2, 2, 5, 3.14, 0.5, 0.5, 0.5]T,umax = [0.06, 2, 2, 2]T, δ = 0.1 s and T = 0.4 s. In order to
guarantee the practical implementation, the terminal constraint (5.9e) is not considered in
the experiments. As ignoring the terminal constraint may degrade the performance, the
dual-MPC framework is not employed in the experiments to improve the performance such
that all control inputs are calculated by solving the optimization problem P .

Experiment results are illustrated in Figures 5.6 - 5.7. Note that we consider the time
instant when the first group of image features is successfully extracted as the initial time
instant in the experiments. The time evolutions of the image moments and linear velocities
are shown in Figures 5.6(a) and Figure 5.6(b), respectively. The control inputs are pre-
sented in Figures 5.6(c), and the corresponding desired attitudes for the inner-loop flight
controller are illustrated in Figure 5.6(d). Figure 5.7 shows the processing of images cap-
tured by the camera, where the target points are recognized and marked as red, at time t =

0 s, 8.6 s, 17.1 s, and 23.1 s. From experiment results, it shows that, although the terminal
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Figure 5.5: The schematic diagram of the experimental setup.

constraint is not considered, the proposed robust NMPC based IBVS method can steer the
quadrotor to the neighborhood of the desired position while guaranteeing the physical and
visibility constraints. Compared with the simulation results, the quadrotor finally arrived
at a relatively larger region around the desired position since the actual value of uncer-
tainty bound ω is unknown in the experiment. Another reason is that the inputs generated
proposed method are not the direct control commands for the quadrotor propeller, which
leads to additional disturbances. Therefore, the quadrotor finally arrived at the neighbor-
hood of the desired position in the experiment. The experiment video can be found via
https://www.youtube.com/watch?v=b3dAPMjo920.

5.5 Conclusion

In this chapter, we developed a robust NMPC scheme for the IBVS of quadrotors subject
to external disturbances. By defining suitable image features in the virtual camera plane,
the integration of the decoupled image kinematics and quadrotor dynamics was derived.
Then the robust NMPC scheme was developed to guarantee the satisfaction of physical and
visibility constraints, where the tightened state constraints were developed to handle ex-
ternal disturbances. In addition, sufficient conditions on guaranteeing recursive feasibility
of the proposed robust NMPC-based IBVS scheme have been proposed. We have further
proven that the quadrotor can be regulated to a small region around the desired position by
using the proposed method. Simulation studies and experiment results have demonstrated
the efficacy of the proposed robust NMPC based IBVS method.

https://www.youtube.com/watch?v=b3dAPMjo920
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Figure 5.6: The experimental trajectories of (a) image moments s, (b) linear velocities in
the virtual camera frame vv, (c) control inputs u and (d) desired Euler angles ηd for the
inner loop.

(a) t = 0 s. (b) t = 8.6 s.

(c) t = 17.1 s. (d) t = 23.1 s.

Figure 5.7: The processing of images captured by the onboard camera at different time
instants.
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Chapter 6

Trajectory Tracking Control of
Autonomous Ground Vehicles Using
Adaptive Learning MPC

Chapter 4 studies the application of robust MPC to quadrotors. In this chapter, we focus on
the application of adaptive MPC to autonomous ground vehicles (AGVs).

6.1 Introduction

Over the past decades, AGVs have received considerable attention in modern military and
civilian areas due to the high maneuverability, agile mobility and, low cost of AGVs [236].
Among related studies, trajectory tracking control is one of the fundamental control prob-
lems for AGVs. Many control schemes have been developed for the trajectory tracking
of AGVs (e.g., [197–199]). In practical AGV applications, an important issue is that the
presence of uncertainties, such as measurement noises and model mismatch, is inevitable.
Accordingly, robust control methods have been employed in the AGV trajectory tracking
problems, such as sliding mode control [237] and adaptive control [238]. The main focus of
the aforementioned works is to explore feedback control laws that regulate tracking errors.
But the physical constraints such as the speed limit and workspace restriction are ignored
in these works. To address this issue, MPC stands out as a promising solution.

In this work, we develop an adaptive MPC scheme for the AGV trajectory tracking
problem with input constraints. Similar to [239, 240], the dynamics of the tracking error
represented in the local frame is firstly derived. Different from previous works consid-
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ering the presence of external disturbances in the AGV trajectory tracking problem, this
chapter considers an AGV system subject to both parametric uncertainties and external dis-
turbances. A set-membership based parameter estimator is developed based on the RLS
technique to identify the unknown system parameter with non-increasing estimation error,
which provides a less conservative bounding set to describe the unknown parameter. The
nominal system model used in MPC is recursively updated based on the estimated system
parameter, leading to improved prediction accuracy. Note that the existing adaptive MPC
methods [42–44, 102, 109] cannot be directly extended to solve the current problem since
the established error dynamics is nonlinear and time-varying.

The main contributions of this chapter are two-fold:

• A novel adaptive MPC based trajectory tracking scheme is developed based on the
robustness constraint method. We extend the robust MPC framework in [241] to the
AGV tracking error dynamic system subject to additive and parametric uncertainties.
Similar to the robust MPC method [241], the shape of the designed robustness con-
straint is computed offline based on the invariant set, but a dynamic shrinkage rate
is designed and updated online associated with the estimated bounding set, thereby
giving rise to further enhanced performance with slightly increased computational
complexity compared with the original robust MPC method.

• Sufficient conditions on ensuring the recursive feasibility of the proposed adaptive
MPC method are developed. We further prove that the closed-loop tracking system is
input-to-state stable (ISS) under recursive updates of the system model. A numerical
example and comparison study are provided to show the efficacy of the proposed
method.

6.2 Problem Formulation

In this section, the kinematic model of the AGV is firstly introduced. Then the formulation
of the tracking problem is described. Finally, the control objective is presented.

6.2.1 AGV kinematics

Consider a general AGV with two differential driving wheels, as shown in Figure 6.1. Each
wheel is independently driven by an actuator. The points po = (xo, yo) and ph = (x, y) are
the midpoint between two wheels and the head position of the AGV, respectively. The head
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point ph locates at the perpendicular bisector of the wheel axis, and the distance between
po and ph is r. Let θ(t) denote the AGV heading angle, then the kinematic model of the
AGV is given by

η̇o(t) = fo(ηo(t),u(t)) =

cos θ(t) 0

sin θ(t) 0

0 1

u(t), (6.1)

where ηo(t) = [xo(t), yo(t), θ(t)]
T; u(t) = [v(t), ω(t)]T is the control input, and v(t) and

ω(t) are linear and angular velocities, respectively. Then according to (6.1), the kinematics
of the AGV’s head position ph is described as follows:

η̇(t) = fh(η(t),u(t), r) =

cos θ(t) −r sin θ(t)

sin θ(t) r cos θ(t)

0 1

u(t), (6.2)

where η(t) = [x(t), y(t), θ(t)]T is the AGV system state. It can be seen from (6.1) and
(6.2) that the position of head point ph is derived from the point po. The vast majority of
literature on the AGV trajectory tracking problem assumes that the point po is the center
of mass of the AGV. However, it is difficult to precisely measure the distance r between
the points po and ph since the position information of po is usually inaccurate in practical
control problems. Therefore, we assume that r is constant but unknown, whose true value
is denoted by r∗. In addition, we consider the bounded linear and angular velocities of the
AGV given by |v(t)| ≤ v̌, |ω(t)| ≤ ω̌, where v̌, ω̌ > 0 are known constants. Then the input
constraint can be derived as U = {u ∈ R2 : Hu ≤ h}, in which H = [I2,−I2]T and
h = [v̌, ω̌, v̌, ω̌]T.

In this work, the main control design objective is to track a time-parameterized refer-
ence trajectory ηs(t) = [xs(t), ys(t), θs(t)]

T. In order to avoid the singularity problem,
we suppose that the reference trajectory satisfies the AGV kinematic model in (6.1) with a
reference control input signal us(t) = [vs(t), ωs(t)]

T, i.e.,

η̇s(t) = fo(ηs(t),us(t)). (6.3)

Similar to [198, 239], we define the tracking error state ηe(t) = [xe(t), ye(t), θe(t)]
T in the
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Figure 6.1: The structure of an AGV system.

local frame, which is given as follows:

ηe(t) =

 cos θ(t) sin θ(t) 0

− sin θ(t) cos θ(t) 0

0 0 1


xs(t)− x(t)

ys(t)− y(t)

θs(t)− θ(t)

 . (6.4)

Then based on (6.2) and (6.3), the following error dynamics can be derived

η̇e(t) =

 ω(t)ye(t) + vs(t) cos θe(t)− v(t)

−ω(t)xe(t) + vs(t) sin θe(t)− rω(t)

ωs(t)− ω(t)

 . (6.5)

6.2.2 Tracking problem formulation

Since the designed tracking controller needs to be executed in the digital platform, we
consider the discrete-time version of the system model in (6.2) by using the Euler forward
approximation in the following. In addition, the presence of external disturbances caused
by the wheel slipping is taken into account in this work, resulting in the following perturbed
kinematics

η(k + 1) = f(η(k),u(k), r) + d(k) = δfh(η(k),u(k), r) + η(k) + d(k), (6.6)

where d(k) = [dx(k), dy(k), dθ(k)]T is the external disturbance and δ > 0 is the sampling
period. In this chapter, we only consider the disturbance of position measurement, i.e.,
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dθ(k) for all k ≥ 0. Its corresponding nominal system model is given by

η(k + 1) = f(η(k),u(k), r). (6.7)

Then we have the following general assumptions for the above systems.

Assumption 6.1. The external disturbance d(k) and unknown parameter r belong to con-

vex and compact sets D and R0, and bounded by constants ď ≥ ‖d(k)‖,∀d(k) ∈ D and

ř ≥ |r|,∀r ∈ R0, where ď and ř are positive and known.

Assumption 6.2. The reference system state ηs(k) and control input us(k) are bounded

for all k ≥ 0.

Assumptions 6.1 and 6.2 indicate the bounded uncertainties and reference signals. Due
to the limit of physical systems, Assumption 6.1 is commonly used in the literature on
the AGV trajectory tracking problem. In addition, Assumption 6.2 can be satisfied by
designing a suitable reference trajectory. Therefore, these assumptions are reasonable.

Define the AGV’s head position ph(k), the reference position ps(k), the position error
pe(k) and the control input u(k) as ph(k) = [x(k), y(k)]T, ps(k) = [xs(k), ys(k)]T, pe(k) =

[xe(k), ye(k)]T and u(k) = [v(k), ω(k)]T, respectively. According to the definition of error
state in (6.4), pe(k) can be calculated by

pe(k) = fp(η(k),ηs(k)) = Ψ(θ(k))(ph(k)− ps(k)),Ψ(θ(k)) =

[
cos θ(k) sin θ(k)

− sin θ(k) cos θ(k)

]
.

Without considering the external disturbance, the discrete-time version of the error dy-
namics in (6.5) is given as follows:

pe(k + 1) = fe(pe(k),u(k), r) = A(ω(k))pe(k) + δue(k), (6.8)

where

ue(k) =

[
vs(k) cos θe(k)− v(k)

vs(k) sin θe(k)− rω(k)

]
,A(ω(k)) =

[
1 δω(k)

−δω(k) 1

]
.

6.2.3 Control objective

In this work, the control objective is to design a stabilizing trajectory tracking controller
for the system (6.6) based on the adaptive MPC method to be developed, where the robust
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satisfaction of constraint U is guaranteed and the unknown parameter r is identified online.
Given the prediction horizon T and the parameter estimate r̂(k), we use η̄(l|k), l ∈ N[0,T ],

and p̄e(l|k) to denote the trajectories of predicted nominal state and error state under the
control input u(l|k) with the nominal system model in (6.7) and the error dynamic model in
(6.8), respectively. To achieve the desired objective, we propose a computationally tractable
integration of the robustness constraint based MPC scheme and online set-membership sys-
tem identification. More specifically, the estimate r̂(k) and the bounding set R(k) for the
unknown parameter are updated consistently with a priori knowledge, i.e., the uncertainty
sets D and R0, and the input and state trajectories. Both r̂(k) and R(k) are employed to
construct the robustness constraint X (l|k), l ∈ N[0,T−1], on the nominal error state p̄e(l|k).
Consequently, the control input is determined by the following finite horizon optimal con-
trol problem

min
uT (k)

JT (pe(k),uT (k)) =
T−1∑
l=0

`(p̄e(l|k),u(l|k)) + `f (p̄e(T |k)) (6.9a)

s.t. η̄(0|k) = η(k), pe(k) = fp(η(k),ηs(k)) (6.9b)

η̄(l + 1|k) = f(η̄(l|k),u(l|k), r̂(k)), l ∈ N[0,T−1] (6.9c)

p̄e(l|k) ∈ X (l|k), l ∈ N[0,T−1] (6.9d)

u(l|k) ∈ U , l ∈ N[0,T−1] (6.9e)

p̄e(T |k) ∈ Ω, (6.9f)

where uT (k) = col(u(0|k),u(1|k), · · · ,u(T − 1|k)) is the control input sequence; Ω is
the terminal constraint; ` : R2 × R2 → R≥0 and `f : R2 → R≥0 are the state and terminal
cost functions to be designed, respectively. For the MPC optimization problem in (6.9), we
have the following general assumption.

Assumption 6.3. For the error dynamics in (6.8), there exist a terminal cost function `f :

R2 → R≥0, a terminal control law τf : R2 × R→ R2 and an invariant set Ω such that the

following conditions hold

τf (pe(k), r̂(k)) ∈ U , (6.10a)

fe(pe(k), τf (pe(k), r̂(k))) ∈ Ω, (6.10b)

`f (fe(pe(k), τf (pe(k), r̂(k))))− `f (pe(k)) + `(pe(k),ue(k)) ≤ 0, (6.10c)

for all (pe(k), r̂(k)) ∈ Ω×R0.
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Assumption 6.3 describes the conditions on the terminal cost `f (pe(k)), the terminal
control law τf (pe(k), r̂(k)) and the invariant set Ω. Compared with the standard conditions
used in robust MPC methods, e.g.,[41, 180, 241], the main difference is that the terminal
control law τf (pe(k), r̂(k)) in our work depends on the parameter estimate r̂(k). Therefore,
the methods presented in [41, 180, 241] cannot be applied to the current problem where the
model parameter is recursively updated. To solve this problem, the detailed discussion on
parameter selection for the satisfaction of Assumption 6.3 is presented in Section 6.4.

6.3 Adaptive Learning MPC Algorithm

In this section, we present an adaptive MPC scheme for this trajectory tracking problem.
We firstly introduce a parameter estimator for the simultaneous estimation of the unknown
parameter and the uncertainty set. Then the formulation of the MPC optimization problem
is presented. Finally, this section concludes with a summary of the proposed adaptive MPC
algorithm.

6.3.1 Parameter estimation

In the following, we use r̂(k) and r̃(k) = r∗ − r̂(k) to denote the estimate of the unknown
system parameter r∗ and the corresponding estimation error at time k, respectively. Let

h(k) = y(k)− y(k − 1)− δv(k − 1) sin θ(k − 1), g(k) = δω(k) cos θ(k).

Then the regression model for the unknown parameter derived from (6.6) is given as follows

h(k + 1) = g(k)r∗ + dy(k).

It is assumed that the uncertainty setR0 has a formR0 = {r ∈ R>0, |r − r̄0| ≤ σ̌}, where
constants r̄0, σ̌ are positive.

At time instant k, assume that the true parameter r∗ belongs to a set R(k) = {r ∈
R : (r − r̂(k))2/ψ(k) ≤ σ̂2(k)} where ψ(k), σ̂(k) are variables to be designed later. In
addition, Assumption 6.1 implies |dy(k)| = |(h(k + 1) − g(k)r∗)| ≤ ď. Then we can find
a set S(k + 1) = {r ∈ R : (h(k + 1)− g(k)r)2 ≤ ď2} such that r∗ ∈ S(k + 1). Therefore,
r∗ is consistent with both sets S(k + 1) andR(k).

Our purpose is to design the uncertainty set estimation R(k + 1) such that S(k +

1) ∩ R(k) ⊆ R(k + 1). Recall the set-membership identification algorithm in [242], the
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unknown parameter can be estimated as follows:

ψ−1(k + 1) = ψ−1(k) + λf (k + 1)g2(k), (6.11a)

r̂(k + 1) = r̂(k) + λf (k + 1)ψ(k + 1)g(k)h̃(k + 1), (6.11b)

h̃(k + 1) = h(k + 1)− g(k)r̂(k), (6.11c)

G(k) = g2(k)ψ(k), (6.11d)

λf (k + 1) =

 0, if h̃2(k + 1) ≤ ď2

1
ďG(k)

(|h̃(k + 1)| − ď), otherwise
(6.11e)

σ̂2(k + 1) = σ̂2(k) + λf (k + 1)ď2 − λf (k + 1)h̃2(k + 1)

1 + λf (k + 1)G(k)
, (6.11f)

where ψ(0) = 1 and σ̂(0) = σ̌.
The following lemma shows the performance of parameter estimation.

Lemma 6.1. [242] Suppose that Assumption 6.1 holds. For the bounded g(k), the proposed

parameter estimation scheme summarized in (6.11a) - (6.11f) has the following properties

for all k > 0: 1) r∗ ∈ R(k) if r∗ ∈ R(0), and 2) |r̃(k)| is bounded and non-increasing.

Proof. Consider a candidate of Lyapunov function V(r̃(k)) = r̃2(k)ψ−1(k). We show the
satisfaction of each statement in the following.

1): Suppose that r∗ ∈ R(k − 1). Following the analysis in [208, 242] yields

V(r̃(k)) = V(r̃(k − 1)) + λf (k)

(
d2
y(k)− h̃2(k)

1 + λf (k)G(k − 1)

)

≤ V(r̃(k − 1)) + λf (k)

(
ď2 − h̃2(k)

1 + λf (k)G(k − 1)

)

Then it can be derived from (6.11f) that

V(r̃(k)) ≤ V(r̃(k − 1)) + σ̂2(k)− σ̂2(k − 1).

In addition, due to the fact r∗ ∈ R(k − 1), we have V(r̃(k − 1)) ≤ σ̂2(k − 1), implying
V(r̃(k)) ≤ σ̂2(k). Therefore, r∗ ∈ R(k). Since r∗ ∈ R(0), it can be concluded that
r∗ ∈ R(k),∀k ≥ 0.
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2): According to (6.11e) and (6.11f), it can be derived that

σ̂2(k)− σ̂2(k − 1) = λf (k)

(
ď2 − h̃2(k)

1 + λf (k)G(k − 1)

)
≤ 0,

leading to V(r̃(k)) ≤ V(r̃(k − 1)). By (6.11a) one gets ψ−1(k) ≥ ψ−1(k − 1). Therefore,
it is easy to verify that |r̃(k)|2 ≤ |r̃(k − 1)|2. Since |r̃(0)| is bounded, it can be concluded
that |r̃(k)| is bounded and non-increasing.

Remark 6.1. From Lemma 6.1, it can be seen that the proposed parameter estimation

scheme presented in (6.11a) - (6.11f) ensures the estimation error to be bounded and non-

increasing. This property is sufficient for guaranteeing closed-loop properties of the pro-

posed adaptive MPC algorithm. Note that, as shown in [242, Theorem 3], if there exist

two positive constants C1 and C2 such that the PE condition 0 < C1 ≤
∑k+N

i=k g2(i) ≤ C2

holds for the integer N and all k ≥ 0, the developed estimator can theoretically provide

better performance of convergence, i.e., lim
k→∞
|r̃(k)| ≤ 4Nď2/C1. As mentioned in Sec-

tion 6.1, this can be achieved by imposing the PE condition as an extra constraint to the

MPC optimization problem (6.9). However, this strategy may degrade the control perfor-

mance because of the undesired system excitation arising from the excitation constraint.

Therefore, the approach of introducing the PE condition is not considered in this work.

6.3.2 Adaptive MPC algorithm

In this chapter, we consider a standard stage cost function `(pe(k),ue(k)) and a terminal
cost function `f (pe(k)) with a quadratic form

`(pe(k),ue(k)) = ‖pe(k)‖2
Q + ‖ue(k)‖2

R, `f (pe(k)) = ‖pe(k)‖2
P. (6.12)

where P,Q and R are positive definite matrices with appropriate dimensions. The terminal
control law τf (pe(k), r(k)) and invariant set Ω are designed as follows:

τf (pe(k), r(k)) = Dr(k)(Kpe(k) + Dv(k)), Ω = {pe ∈ R2 : ‖pe‖P ≤ ε}, (6.13)

where K ∈ R2×2 and ε > 0 are the feedback gain matrix and constant, respectively;
Dr(k) = diag(1, 1/r(k)) and Dv(k) = [vs(k) cos θe(k), vs(k) sin θe(k)]T. The designable
parameters should be chosen to satisfy the conditions in Assumption 6.3 as stated in Section
6.4. In the following, we demonstrate the parameterization of robustness constraint with
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respect to the estimated upper bound of the estimation error.
According to the definition of the bounding set R(k), the estimation error r̃(k) is

bounded by |r̃(k)| ≤ σ(k) for all r∗ ∈ R0, where σ(k) =
√
ψ(k)σ̂(k) is a scalar. From the

proof of Lemma 6.1, we have 0 ≤ σ̂(k) ≤ σ̂(k − 1) and ψ−1(k) ≥ ψ−1(k − 1) > 0. As a
result, σ(k) ≤ σ(k − 1) ≤ σ̌ for all k ≥ 1. Define the following dynamic shrinkage rate
α(k) associated with the upper bound of the estimation error σ(k)

α(k) =
eξe·(σ̌−σ(k))

ξα
, (6.14)

where ξα, ξe > 0 are tuning factors. Motivated by [41, 180, 241], we design the robustness
constraint as follows

X (l|k) =

{
pe ∈ R2 : ‖pe‖ ≤ α(k)ε

(T − l)ξx + l

T

}
, l ∈ N[0,T ] (6.15)

where ξx > 1 is a constant. For the robust constraint (6.15), we have the following assump-
tion.

Assumption 6.4. Given the invariant set Ω, the robustness constraint satisfies the condition

X (T |k) ⊆ Ω for all k ≥ 0.

Assumption 6.4 indicates X (k + T |k) ⊆ Ω for all k ≥ 0, which can be satisfied by
choosing suitable parameters ξα, ξe. Therefore, the terminal constraint Ω in the optimiza-
tion problem (6.9) can be omitted. Consequently, the proposed adaptive MPC scheme is
based on the following new optimization problem:

VT (pe(k)) = min
uT (k)

JT (pe(k),uT (k))

s.t. η̄(0|k) = η(k), p̄e(0|k) = pe(k) (6.16a)

η̄(l + 1|k) = f(η̄(l|k),u(l|k), r̂(k)), (6.16b)

p̄e(l|k) = fp(η̄(l|k),ηs(l + k)) (6.16c)

p̄e(l|k) ∈ X (l|k), l ∈ N[0,T ] (6.16d)

u(l|k) ∈ U , l ∈ N[0,T−1], (6.16e)

where pe(k) = fp(η(k),ηs(k)). By solving this optimization problem, the sequence of
optimal control inputs u∗T (k) are obtained. Then the control input to be implemented at
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Algorithm 6.1 Proposed adaptive MPC algorithm

Input: Initial system state η(0); prediction horizon T ; sampling interval δ; weighting
matrices P,Q and R; robustness constraint parameters ε, ξα, ξe and ξx.

1: for k = 0, 1, 2, 3, · · · do
2: Measure the state η(k).
3: if k > 0 then
4: Update the estimation of the unknown parameter r̂(k) and the uncertainty set

R(k) by using (6.11a)- (6.11f).
5: end if
6: Solve the optimization problem in (6.16) to obtain the optimal control input se-

quence u∗T (k).
7: Apply the control input u(k) = u∗(k|k) to the system (6.6).
8: end for

time instant k is u(k) = u∗(k|k), leading to the following closed-loop system

pe(k + 1) = fe(pe(k),u∗(k|k), r∗)−Ψ(θ(k))dp(k), (6.17)

where dp(k) = [dx(k), dy(k)]T. The proposed adaptive MPC scheme is summarized in
Algorithm 6.1.

Remark 6.2. The robustness constraint approach is firstly proposed in [41], and is ex-

tended for the event-triggered robust MPC problem in [180]. This strategy has been ap-

plied in [239] to solve the AGV trajectory tracking problem. The authors in [241] improved

the original robustness constraint to provide an enlarged initial feasible region. Inspired

by these works, we develop a new robustness constraint which is parameterized by the

estimated upper bound of the estimation error σ(k). Compared with existing methods

[41, 180, 239, 241] where a constant shrinkage rate ᾱ = 1/ξα is employed, the dynamic

shrinkage rate (6.14) is employed in this work. According to Lemma 6.1 it can be ensured

that α(k) ≥ ᾱ for all k ≥ 0. As a result, the size of X (l|k) is enlarged by introducing

the dynamic shrinkage rate. Therefore the proposed robustness constraint (6.15) is less

conservative compared with the existing methods [41, 180, 239, 241].

6.4 Theoretical Analysis

Section 6.3 has descried the proposed adaptive MPC scheme for the trajectory tracking
problem presented in Section 6.2. In this section, the main theoretical results of this work
are developed. We firstly provide the guideline for parameter selection such that Assump-
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tion 6.3 holds. Then sufficient conditions on ensuring the recursive feasibility are presented
in Theorem 6.1, and the stability results are summarized in Theorem 6.2.

6.4.1 Parameter selection

The following lemma provides some guidelines on how to design parameters P,K and ε
such that Assumption 6.3 holds.

Lemma 6.2. Suppose that Assumption 6.2 holds. Let hf = [ξuv̌ − v̌s, ξurω̌ − v̌s, ξuv̌ −
v̌s, ξurω̌ − v̌s]T where ξu ∈ (0, 1], r = minr∈R |r| and v̌s = maxk≥0 |vs(k)|. For the error

dynamics in (6.8), if the following conditions hold

Ω ⊆ XU = {pe ∈ R2 : HKpe ≤ hf}, (6.18a)

(A(ω(k)) + δK)TP(A(ω(k)) + δK)−P ≺ −Q̄, (6.18b)

for all |ω(k)| ≤ ξuω̌ and r̂(k) ∈ R with Q̄ = Q+KTRK, the terminal cost `f (pe(k)), ter-

minal controller τf (pe(k), r̂(k)) and invariant set Ω presented in (6.12) and (6.13) satisfy

the conditions in Assumption 6.3.

Proof. To prove this lemma, we show the satisfaction of conditions (6.10a)-(6.10c) in the
following.

Since pe(k) ∈ Ω ⊆ XU , we have

|k11xe(k) + k12ye(k)| ≤ ξuv̌ − v̌s,
|k21xe(k) + k22ye(k)| ≤ ξurω̌ − v̌s.

where kij denotes the (i, j)-th entry of the matrix K. Then it can be derived from |r̂(k)| ≥ r

and |vs(k)| ≤ v̌s that

|k11xe(k) + k12ye(k) + vs(k) cos θe(k)|
≤ |k11xe(k) + k12ye(k)|+ |vs(k) cos θe(k)|
≤ ξuv̌ − v̌s + |vs(k)| ≤ ξuv̌ ≤ v̌

and
| 1
r̂(k)

(k21xe(k) + k22ye(k) + vs(k) sin θe(k))|
≤ | 1

r̂(k)
||k11xe(k) + k12ye(k)|+ | 1

r̂(k)
||vs(k) sin θe(k))|

≤ | 1
r̂(k)
|(ξurω̌ − v̌s) + | 1

r̂(k)
||vs(k) sin θe(k))|

≤ ξuω̌ ≤ ω̌.
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Therefore, it can be concluded that τf (pe(k), r̂(k)) ∈ U for all r̂(k) ∈ R.
In addition, substituting τf (pe(k), r̂(k)) into (6.8) yields

pe(k + 1) = (A(ω(k)) + δK)pe(k).

where ω(k) = 1
r̂(k)

(k21xe(k) + k22ye(k) + vs(k) sin θe(k)). Based on (6.18a), it can be
derived that τf (pe(k), r̂(k)) ∈ ξuU , implying |ω(k)| ≤ ξuω̌. Since P,Q and R are positive
definite, according to (6.18), one gets

‖pe(k + 1)‖2
P = pT

e (k)(A(ω(k)) + δK)TP(A(ω(k)) + δK)pe(k) ≤ ‖pe(k)‖2
P ≤ ε,

leading to pe(k + 1) ∈ Ω. Therefore, the condition in (6.10c) is satisfied.
Consider the terminal cost function `f (pe(k)) and input ue(k) = τf (pe(k), r̂(k)), we

have

`f (pe(k + 1))− `f (pe(k)) + `(pe(k),ue(k))

= ‖pe(k + 1)‖2
P + ‖pe(k)‖2

P + ‖pe(k)‖2
Q + ‖ue(k)‖2

R

= pe(k)T(A(ω(k)) + δK)TP(A(ω(k)) + δK)−P)pe(k) + pe(k)T(Q + KTRK)pe(k).

Then recalling (6.18b) yields

`f (pe(k + 1))− `f (pe(k)) + `(pe(k), τf (pe(k), r̂(k))) ≤ 0,

which completes the proof.

6.4.2 Recursive feasibility

Given two position η1,η2 and u ∈ U , by recalling the AGV kinematics in (6.2), it can be
derived that

‖fh(η1,u, r1)− fh(η2,u, r2)‖

=‖fh(η1,u, r1)− fh(η2,u, r1) + fh(η2,u, r1)− fh(η2,u, r2)‖

≤

∥∥∥∥∥∥∥
v(cos θ1 − cos θ2)− ωr1 (sin θ1 − sin θ2)

v(sin θ1 − sin θ2)− ωr1(cos θ1 − cos θ2)

0


∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥
ω sin θ2(r2 − r1)

ω cos θ2(r2 − r1)

0


∥∥∥∥∥∥∥

=

√
(4v2 + 4ω2r2

1) sin2(
θ1 − θ2

2
) + |ω(r2 − r1)|
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≤
√

(v2 + ω2r2
1)(θ1 − θ2)2 + |ω(r2 − r1)|

≤
√
v̌2 + ω̌2r2

1‖η1 − η2‖+ ω̌|r2 − r1|.

In addition,

η̄∗(l + 1|k) = δfh(η̄
∗(l|k),u∗(l|k), r̂(k)) + η̄∗(l|k)

=
l∑

i=k

δfh(η̄
∗(i|k),u∗(i|k), r̂(k)) + η̄∗(k|k).

Then for l ∈ N[k+1,k+T−1], the deviation between two predicted states, being predicted at
two successive time instants, is evaluated in the following:

‖η̄(l + 1|k + 1)− η̄∗(l + 1|k)‖

=‖
l∑

i=0

δfh(η̄(i|k + 1),u∗(i+ 1|k), r̂(k + 1))−
l∑

i=0

δfh(η̄
∗(i+ 1|k),u∗(i+ 1|k), r̂(k))

− η̄∗(1|k) + η̄(0|k + 1)‖

≤
l∑

i=0

δ‖fh(η̄(i|k + 1),u∗(i+ 1|k), r̂(k + 1))− fh(η̄∗(i+ 1|k),u∗(i+ 1|k), r̂(k))‖

+ ‖η̄(0|k + 1)− η̄∗(1|k)‖

≤δ
√
v̌2 + ω̌2r̂2(k)

l∑
i=0

‖η̄(i|k + 1)− η̄∗(i+ 1|k)‖+ (l − 1)ω̌|r̂(k + 1)− r̂(k)|+ ∆(k),

where ∆(k) = δ‖ω(k)‖σ(k) + ď. Since r̂(k + 1) ∈ R(k), we have |r̂(k + 1) − r̂(k)| ≤
σ(k) ≤ σ̌ and (̂k) ≤ ř, implying

‖η̄(l + 1|k + 1)− η̄∗(l + 1|k)‖ ≤ Ľ

l∑
i=k+1

‖η̄(i|k + 1)− η̄∗(i|k)‖+ ∆̌,

where Ľ = δ
√

2(v̌2 + ω̌2ř2) and ∆̌ = T ω̌σ̌ + δω̌σ̌ + ď. For all l ∈ N[1,T ], we de-
rive the following upper bound for deviation between two predicted states based on the
Gronwall–Bellman–Ou–Iang-type inequality [243, Theorem 2.1]

‖η̄(l|k + 1)− η̄∗(l + 1|k)‖ ≤ ∆̌e(l−1)Ľ,∀l ∈ N[1,T ]. (6.19)
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The following theorem shows conditions under which the recursive feasibility of the
formulated optimization problem can be guaranteed.

Theorem 6.1. For the system (6.6), suppose that Assumptions 6.1–6.3 and 6.4 hold, and

there exists a feasible solution for the MPC problem at time instant k = 0. Then the

proposed MPC scheme, presented in Algorithm 6.1, is recursively feasible if the following

conditions hold

ξαT ∆̌eĽ(T−1) ≤ ε(ξx − 1), (6.20a)√
λmax(P)eξeσ̌(T + ξx − 1) ≤ Tξα, (6.20b)

ξα

√
λmax(P− Q̄) ≤

√
λmin(P). (6.20c)

Proof. Let u∗T (k) = col(u∗(0|k),u∗(1|k), · · · ,u∗(T − 1|k)) denote the optimal solution
at time k. Correspondingly, under the optimal control input sequence u∗T (k), the sequence
of nominal states {η̄∗(l|k)}Tl=0 is predicted by using the system model in (6.7) with online
estimated parameter r̂(k) and η̄∗(0|k) = η(k). Similarly, we can obtain the corresponding
nominal error state sequence {p̄∗e(l|k)}Tl=0. Then we construct a candidate solution at time
k+1 as follows: ūT (k+1) = col(u∗(1|k),u∗(2|k), · · · ,u∗(T−1|k), τf (p̄e(T |k+1), r̂(k+

1))). Based on the control input sequence ūT (k + 1), true state η(k + 1) and parameter
estimate r̂(k + 1), the corresponding nominal system state η̄(l|k + 1), l ∈ N[0,T ] and error
state p̄e(l|k + 1) at time k + 1 can be computed, where η̄(0|k + 1) = η(k + 1). To prove
this theorem, we need to show that ūT (k + 1) is a feasible solution for the MPC problem
in (6.16).

First, we show that the constraint (6.16d) is satisfied. It can be seen from (6.4) that
‖p̄e(l|k + 1) − p̄∗e(l|k)‖ ≤ ‖η̄(l|k + 1) − η̄∗(l|k)‖. Then for p̄∗e(l|k) ∈ X (l|k), recalling
(6.19)

‖p̄e(l|k + 1)‖ ≤ α(k)ε
ξx(T − l) + l

T
+ ∆̌eĽ(l−1). (6.21)

The above equation describes the upper bound of ‖p̄e(l|k+ 1)‖. In addition, it can be seen
from (6.15) that, if p̄e(l|k + 1) ∈ X (l|k + 1), p̄e(l|k + 1) must be bounded by

‖p̄e(l|k + 1)‖ ≤ α(k + 1)ε
ξx · (T − l + 1) + l − 1

T
.

Therefore, the satisfaction of the constraint (6.16d) can be proved by showing that

α(k + 1)ε
ξx · (T − l + 1) + l − 1

T
≥ α(k)ε

ξx(T − l) + l

T
+ ∆̌eĽ(l−1).
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From α(k + 1) ≥ α(k) we have

α(k + 1)ε
ξx(T − l + 1) + l − 1

T
− α(k)ε

ξx(T − l) + l

T

≥α(k)ε(
ξx(T − l + 1) + l − 1

T
+
ξx(T − l) + l

T
)

=α(k)ε
ξx − 1

T
.

Using (6.14) and (6.20a) yields

α(k)ε
ξx − 1

T
≥ ε(ξx − 1)

ξαT
≥ ∆̌eĽ(T−1).

Consequently, we have

‖p̄e(l|k + 1)‖ ≤ α(k)ε
ξx(T − l) + l

T
+ ∆̌eĽ(l−1),

≤ α(k + 1)ε
ξx(T − l + 1) + l − 1

T
,

implying that p̄e(l|k + 1) ∈ X (l|k + 1) for l ∈ N[0,T−1].
The next step is to show p̄e(T |k+1) ∈ X (T |k+1). As shown in (6.21), ‖p̄e(T −1|k+

1)‖ ≤ α(k)ε + ∆̌eĽ(T−1). Since α(k) ≤ eξeσ̌

ξα
and ∆̌eĽ(T−1) ≤ ε(ξx−1)

ξαT
, it can be derived

from (6.20b) that
‖p̄e(T − 1|k + 1)‖ ≤ ε√

λmax(P)
.

As a result,

‖p̄e(T − 1|k + 1)‖P ≤
√
λmax(P)‖p̄e(T − 1|k + 1)‖ ≤ ε.

Therefore, we have p̄e(T − 1|k + 1) ∈ Ω. Moreover, Lemma 6.2 shows that

‖p̄e(T |k + 1)‖2
P ≤ p̄T

e (T − 1|k + 1)(P− Q̄)p̄T
e (T − 1|k + 1)

≤ λmax(P− Q̄)‖p̄e(T − 1|k + 1)‖2

Then by (6.20c) one gets

‖p̄e(T |k + 1)‖ ≤

√
λmax(P− Q̄)

λmax(P)
‖p̄e(T − 1|k + 1)‖
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≤

√
λmax(P− Q̄)

λmax(P)
ε ≤ ε/ξα ≤ α(k)ε.

Hence, we arrive at p̄e(T |k + 1) ∈ X (T |k + 1), implying that the constraint (6.16d) is
satisfied.

The remainder of this proof is to show the satisfaction of constraint (6.16e). Since
p̄e(T − 1|k + 1) ∈ Ω, τf (p̄e(T − 1|k + 1), r̂(k + 1)) ∈ U by Lemma 6.2. In addition,
u∗(l|k) ∈ U for all l ∈ N[0,T−1]. Therefore, it can be concluded that ūT (k+ 1) is a feasible
solution at time k + 1, which proves Theorem 6.1.

6.4.3 Closed-loop stability

The following theorem states the closed-loop behaviors of the error dynamics in (6.17)
under the proposed adaptive MPC scheme presented in Algorithm 6.1.

Theorem 6.2. For the system (6.6), suppose that Assumptions 6.1–6.3 and 6.4 hold, and

conditions in Theorem 6.1 are satisfied. Then the closed-loop system (6.17) is ISS.

Proof. To prove the closed-loop stability, we need to show that the optimal value function
VT (pe(k)) is an ISS-Lyapunov function.

By (6.16) it can be seen that VT (pe(k)) ≥ ‖pe(k)‖2
Q ≥ β1(‖pe(k)‖) with β1(‖pe(k)‖) =

λmin(Q)‖pe(k)‖2. The next step is to find the function β2(‖pe(k)‖).
Let the optimal value function Vj(pe(k)), j ∈ N[0,T−1] be defined by (6.16) with T

replaced by j and V0(pe(k)) = `f (pe(k)). For all pe(k) ∈ Ω, we have

Vj+1(pe(k))− Vj(pe(k)) ≤ `f (p̄
∗
e(j + 1|k))− `f (p̄∗e(j|k)) + `(p̄∗e(j|k), τf (p̄

∗
e(j|k), r̂(k)))

≤ 0,

implying that

VT (pe(k)) ≤ V0(pe(k)) = `f (pe(k)) ≤ λmax(P)‖pe(k)‖2.

For pe(k) /∈ Ω, we firstly need to show that VT (pe(k)) is bounded for all k ≥ 0. Since
η̄∗(0|k) = η(k), according to (6.19), one gets

‖η̄∗(k|k)‖ ≤ ‖η̄∗(k|k − 1)‖+ ∆(k) ≤ α(k − 1)
ξx(T − 1) + 1

T
+ ∆̌.
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In addition, Assumption 6.2 shows that ηs(k) and us(k) are bounded for all k ≥ 0. There-
fore, p̄e(l|k) is bounded for all k ≥ 0 and l ∈ N[0,T ]. As a result, there exists a constant V̌ >

0 such that VT (pe(k)) ≤ V̌ for all pe(k) /∈ Ω. Let Bξr = {pe ∈ R2 : ‖pe‖2 ≤ ξr} where
ξr > 0 is a constant. Then for pe(k) /∈ Bξr , we have ‖pe(k)‖2 ≥ ξr and VT (pe(k)) ≤ V̌ ,
leading to VT (pe(k)) ≤ V̌

ξr
‖pe(k)‖2. By setting

β2(‖pe(k))‖) = max(λmax(P),
V̌

ξr
)‖pe(k)‖2,

one gets VT (pe(k)) ≤ β2(‖pe(k))‖) for all k ≥ 0.
The next step is to find the difference between VT (pe(k)) and VT (pe(k+1)). Recalling

the optimization problem in (6.16), one gets VT (pe(k + 1))− VT (pe(k)) ≤ Λ1 + Λ2 + Λ3,
where

VT (pe(k + 1))− VT (pe(k)) ≤ Λ1 + Λ2 + Λ3

Λ1 =− `(p̄∗e(0|k),u∗(0|k)),

Λ2 =
T−1∑
l=0

(`(p̄e(l|k + 1),u∗(l + 1|k))− `(p̄∗e(l + 1|k),u∗(l + 1|k))),

Λ3 =`(p̄e(T − 1|k + 1), τf (p̄e(T − 1|k + 1), r̂(k + 1)))

+ `f (p̄e(T |k + 1))− `f (p̄∗e(T |k)

The upper bound of Λi, i = 1, 2, 3 is derived in the following. Apparently,

Λ1 ≤ −‖p̄∗e(0|k)‖2
Q = −‖pe(k)‖2

Q ≤ β3(‖pe(k)‖), (6.22)

where β3(‖pe(k)‖) = λmin(Q)‖pe(k)‖2. In addition, using the triangle inequality leads to

Λ2 =
T−1∑
l=0

‖p̄e(l|k + 1)‖2
Q − ‖p̄∗e(l + 1|k)‖2

Q

≤
T−1∑
l=0

λmax(Q)(‖p̄∗e(l|k + 1)‖+ ‖p̄∗e(l + 1|k)‖) · ‖p̄e(l|k + 1)− p̄∗e(l + 1|k)‖.

Since p̄e(l|k+1) ∈ X (l|k+1) and p̄∗e(l|k) ∈ X (l|k), substituting ‖p̄e(l|k+1)−p̄∗e(l|k)‖ ≤
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∆̌eĽ(l−1) into the above inequality yields

Λ2 ≤
T−1∑
l=0

λmax(Q)∆̌φ(l), φ(l) =
eξeσ̌+Ľ(l−1)

Tξα
(2(T − l)ξx + 2l + 1− ξx).

In addition, because of p̄e(T − 1|k + 1) ∈ Ω, it follows from Assumption 6.3 that

Λ3 ≤ `f (p̄e(T − 1|k + 1))− `f (p̄∗e(T |k))

= ‖p̄e(T − 1|k + 1)‖2
P − ‖p̄∗e(T |k)‖2

P.

Analogously, the upper bound of Λ3 can be derived as follows

Λ3 ≤ λmax(P)∆̌φ(T ). (6.23)

Then recalling (6.22)-(6.23) leads to

VT (pe(k + 1))− VT (pe(k)) ≤ β3(‖pe(k)‖) + λw,

where λw = ∆̌(
∑T−1

l=0 λmax(Q)φ(l) + λmax(P)φ(T )). Therefore, it can be concluded
that the optimal value function VT (pe(k)) is an ISS-Lyapunov function, implying that the
closed-loop system is ISS by[200, Theorem 1].

Remark 6.3. Theorems 6.1 and 6.2 presents the sufficient conditions for the recursive

feasibility and closed-loop stability, which mainly depends on the upper bounds of the

parametric uncertainty and additive disturbances. But the conditions (6.20a) and (6.20b)

may result in a conservative bound on the admissible uncertainties. A potential solution

to reduce the conservatism of the proposed method is to update the invariant set Ω with

respect to the new estimation. Since the proposed estimator guarantees the estimation

error to be non-increasing, it is possible to update the invariant set Ω such that the size

of Ω is non-decreasing. But considering a time-varying invariant set will significantly

increase the complexity of the proposed method, which may render the proposed method

impractical. Therefore, the fixed invariant set is considered in this work. How to efficiently

update the invariant set associated with the parameter estimation is a potential direction

for our further research.
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6.5 Numerical Example

In this section, a numerical example is illustrated to validate the proposed adaptive MPC
algorithm. The linear and angular velocities of the AGV are bounded by v̌ = 0.6 m/s and
ω̌ = π/8 rad/s. The objective is to track a lemniscate reference trajectory described by
xs(t) = sin(0.05t), ys(t) = sin(0.1t), θs = atan2(ẋs(t), ẏs(t)), where atan2(·,·) is the
four-quadrant inverse tangent function. The sampling interval is δ = 0.1 s. In addition,
D = {d ∈ R3 : ‖d‖ ≤ 0.004} and R0 = {r ∈ R : |r − r̄0| ≤ 0.25} with r̄0 = 0.7 m. The
true value of the unknown parameter is r∗ = 0.47 m. For the proposed estimator, r̂(0) = r̄0

and σ̂(0) = 0.25 m. For the proposed adaptive MPC scheme, the prediction horizon is
chosen as T = 5. Set the weighting matrices as Q = 0.02I2 and R = 0.1I2. Based on
Lemma 6.2, we compute the following parameters

P =

[
0.4656 0

0 0.4656

]
,K =

[
−0.4449 0

0 −0.4449

]
, ξu = 1, ε = 0.0996.

Then according to feasibility conditions (6.20a) - (6.20c) in Theorem 6.1, the tuning pa-
rameters for the robustness constraint are given as follows: ξx = 2.0823, ξe = 0.0346, ξα =

1.0457.
In order to demonstrate the efficacy of the proposed method, we employ the robust

MPC (RMPC) scheme, which can be regarded as a special case of the proposed adaptive
MPC scheme, if not incorporating the parameter estimation, for the purpose of compari-
son. The results obtained by the proposed method are labeled as ALMPC. Starting from the
point η(0) = [0.2,−0.2, π/2]T, the trajectories of the AGV’s head point ph(k) are shown
in Figure 6.2, where the blue solid and red dash-dot lines denote the results by using the
proposed adaptive MPC method and robust MPC method, respectively. Figure 6.3 shows
the time evolution of the control inputs. It can be seen that the input constraint is satisfied
by using both the adaptive MPC method and the robust MPC method. The comparison of
tracking errors pe(k) and input errors ue(k) by using two methods is shown in Figure 6.4,
and the trajectories of tracking errors pe(k) are illustrated in Figure 6.5. As shown in these
figures, it can be seen that the proposed adaptive MPC scheme can regulate the tracking
error within a small region around the origin, which verifies our theoretical results. The re-
sults of parameter estimation are demonstrated in Figure 6.6, showing that the convergence
of parameter estimates r̂(k) is achieved, while the estimated uncertainty set R(k) shrinks
to a fixed set.

To further demonstrate the efficacy of the proposed method, we introduce the following
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Figure 6.2: Trajectories of the AGV’s head point ph(k).
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Figure 6.3: Control inputs u(k).

performance indexes:

Jp =
M∑
i=0

(‖pe(i)‖2
Q + ‖ue(i)‖2

R), V̄ =
M∑
i=0

VT (VT (pe(i))),

MSEx = (
M∑
i=0

‖pe(i)‖2)/M, MSEu = (
M∑
i=0

‖ue(i)‖2)/M,

where M is the number of simulation steps. The comparison of system performance is
illustrated in Table 6.1. Compared with the robust MPC method, the proposed adaptive
MPC approach can reduce the cost and position tracking error by approximately 32.18%
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Figure 6.4: Tracking errors pe(k) and input errors ue(k).
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Figure 6.5: Trajectories of the tracking errors pe(k).

and 34.5%, respectively. To summarize, the presented numerical example has demonstrated
that the proposed adaptive MPC scheme can regulate the tracking error within a small
region, while reducing the conservatism compared to the robust MPC scheme.
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Figure 6.6: Parameter estimation r̂(k) and σ(k).

Table 6.1: The comparison of system performance.

Jp MSEx MSEu V̄

Adaptive MPC 0.3066 0.0045 0.0015 2.86

Robust MPC 0.4520 0.0068 0.0021 4.29

6.6 Conclusion

In this work, we have developed a novel adaptive MPC algorithm for the trajectory tracking
of input constrained AGV systems subject to parametric uncertainties and additive distur-
bances. Based on the RLS technique, we first developed the online set-membership based
parameter estimator being used to improve the prediction accuracy in MPC, where the
estimation error was ensured to be non-increasing. This estimator also provided the se-
quence of bounding sets for the unknown parameter. These sets were employed to design
the robustness constraint for handling uncertainties. The shape of the designed robust-
ness constraint was computed offline based on the invariant set, whereas the shrinkage rate
of this constraint was updated online associated with the estimated bounding set, thereby
leading to the further reduced conservatism with slightly increased computational complex-
ity compared with robust MPC. We also established sufficient conditions for guaranteeing
the recursive feasibility and closed-loop stability. The numerical example and comparison
study have demonstrated the advantages of the proposed method.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This dissertation investigates four problems in robust and adaptive MPC from theoretical
and application points of view. New algorithms are developed to address these issues ef-
ficiently, and theoretical analysis of closed-loop stability and recursive feasibility of MPC
algorithms are conducted rigorously.

Chapter 3 investigated adaptive MPC for constrained linear systems subject to multi-
plicative uncertainties. We have developed an RLS-based parameter estimator to update the
point and set descriptions of uncertainties simultaneously. The estimated unknown param-
eters and uncertainty sets are employed in the construction of homothetic prediction tubes
for robust constraint satisfaction. By deriving non-increasing properties on the proposed
estimation routine, the resulting tube-based adaptive MPC scheme is recursively feasible
under recursive model updates while providing less conservative performance compared
with the robust tube MPC method. We have theoretically shown the perturbed closed-loop
system is asymptotically stable under standard assumptions. The simplified version of the
proposed adaptive MPC method was also given to provide a trade-off between conservatism
and computational complexity. Numerical simulations and comparisons have been given
to illustrate the efficacy of the proposed method.

Chapter 4 has explored the event-based adaptive MPC with aperiodic sampling. Specif-
ically, we have developed an ST-AMPC approach for constrained discrete-time nonlin-
ear systems subject to parametric uncertainties and additive disturbances. A real-time
zonotope-based set-membership parameter estimator has been developed to refine a set-
valued description of the time-varying parametric uncertainty based on the available mea-
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surements. By approximating the set of reachable states between two successive triggering
time instants, the proposed estimator can be used for dynamic systems sampled in an ape-
riodic manner, including the self-triggered scheduling. We have leveraged this estimation
scheme to design a novel ST-AMPC approach that can further reduce the average sampling
frequency while preserving comparable closed-loop performance. We have theoretically
shown that, under some reasonable assumptions, the proposed ST-AMPC algorithm is re-
cursively feasible, and the closed-loop system is ISpS at triggering time instants. Numer-
ical experiments and comparisons have been conducted to demonstrate the efficacy of the
proposed method.

Chapter 5 have studied the robust MPC theory and its application to quadrotor systems.
In particular, we have proposed a robust NMPC scheme for the IBVS of quadrotors sub-
ject to external disturbances. A virtual camera approach has been used to define the image
moments in the virtual camera plane to derive the decoupled image kinematics. Then by
integrating the image kinematics and quadrotor dynamics, an NMPC scheme has been de-
veloped to fulfill the visibility constraint, where tightened state constraints are constructed
based on the Lipschitz condition to tackle external disturbances. Sufficient conditions on
guaranteeing recursive feasibility of the proposed robust NMPC-based IBVS scheme have
been proposed. We have further proven that the quadrotor can be regulated to a small region
around the desired position by using the proposed method. Simulation studies and exper-
iment results have demonstrated the efficacy of the proposed robust NMPC based IBVS
method.

In Chapter 6, we have developed a novel adaptive MPC algorithm for the trajectory
tracking of input constrained AGV systems subject to parametric uncertainties and additive
disturbances. Based on the RLS technique, a set-membership based parameter estima-
tor has been developed to improve the prediction accuracy in MPC. In addition, we have
developed a robustness constraint for the predicted states, where its shape is decided of-
fline based on the RPI set, whereas its shrinkage rate is updated online according to the
estimated upper bound of the estimation error. The resultant adaptive MPC scheme can
efficiently handle uncertainties with reduced conservatism and slightly increased computa-
tional complexity compared with the robust MPC methods. Furthermore, we have proven
that the proposed adaptive MPC algorithm is recursively feasible under some derived con-
ditions, and the closed-loop system is ISS. Finally, a numerical example and comparison
study are conducted to illustrate the efficacy of the proposed method.
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7.2 Future Directions

Compound-triggered adaptive MPC for nonlinear systems

The current study of adaptive MPC conducts the system identification when receiving new
measurements. Although enabling online model refinement in robust MPC potentially im-
proves the closed-loop performance, the system identification process and the correspond-
ing control parameter updates inevitably make the MPC problem significantly complicated.
A potential solution is to reduce the redundant actions of system identification. Based on
the proposed self-triggered adaptive MPC scheme in Chapter 4, it is possible to address
this issue by designing suitable triggering conditions with respect to estimation accuracy
and control performance. Under this triggering mechanism, we can also propose the appro-
priate exciting strategy to accelerate the system identification process. Therefore, one of
the future directions is to design compound-triggered adaptive MPC for general nonlinear
systems.

Distributed adaptive MPC for constrained large-scale nonlinear systems

In recent years, large-scale networked systems, such as road-traffic networks, water net-
works, and power networks, have attracted increasing attention. For those networked sys-
tems, it is relatively expensive to implement the centralized MPC method due to its large
amount of dimensions. In contrast, distributed MPC is a desirable solution since it im-
proves efficiency by dividing the large-scale system into interconnected subsystems based
on communication networks. In addition, only the neighbor information of each agent can
be assessed in the network system. In order to formulate the optimal control problem, it
is necessary to estimate state information for those inaccessible agents. Hence distributed
adaptive MPC is possibly a promising solution for controlling networked systems.

Data-driven MPC for constrained dynamic systems with external disturbances

In previous chapters, there exists a common assumption that the model structure is (par-
tially) known. However, it is difficult to have accurate knowledge of the system structure
in many practical applications, inherently making the aforementioned model-based adap-
tive MPC methods invalid. The data-driven control method is a promising solution to this
problem since it aims to compute the optimal control input compatible with the collected
data, thereby can be applied without the a priori knowledge of the system model. This has
motivated the development of data-driven MPC (see Section 1.3.3 for details). But most
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existing results are based on the fundamental lemma, and hence is only applicable to linear
systems with the absence of measurement noises. Therefore, an interesting direction of
our future work is to study data-driven MPC for nonlinear systems with the guarantee of
closed-loop properties.
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• Refereed conference papers that have been published:

C1. H. Wei, K. Zhang, and Y. Shi. “Distributed Min–Max MPC for Dynamically
Coupled Nonlinear Systems: A self-triggered approach,” In Proceedings of The
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Algorithm,” in Proceedings of the 42nd Annual Conference of IEEE Industrial

Electronics Society (IECON 2017), Beijing, China, Oct. 29-Nov. 1, 2017.

C4. K. Zhang, J. Chen, Y. Chang and Y. Shi, “EKF-Bbased LQR Tracking Con-
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properties of quasi-infinite horizon nonlinear model predictive control. Automatica,
50(9):2269–2280, 2014.

[13] Daniel Limón, T Alamo, Francisco Salas, and Eduardo F Camacho. Input to state
stability of min-max MPC controllers for nonlinear systems with bounded uncer-
tainties. Automatica, 42(5):797–803, 2006.

[14] Davide Martino Raimondo, Daniel Limon, Mircea Lazar, Lalo Magni, and Ed-
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[65] Sven Brüggemann and Robert R Bitmead. Model predictive control with forward-
looking persistent excitation. arXiv preprint arXiv:2004.01625, 2020.

[66] Morten Hovd and Robert R Bitmead. Interaction between control and state estima-
tion in nonlinear MPC. IFAC Proceedings Volumes, 37(9):119–124, 2004.

[67] Tor Aksel N Heirung, Bjarne Foss, and B Erik Ydstie. MPC-based dual control with
online experiment design. Journal of Process Control, 32:64–76, 2015.

[68] Avishai Weiss and Stefano Di Cairano. Robust dual control MPC with guaranteed
constraint satisfaction. In Proceedings of 53rd IEEE Conference on Decision and

Control (CDC), pages 6713–6718, Los Angeles, CA, USA, 2014. IEEE.

[69] Boris Houska, Dries Telen, Filip Logist, and Jan Van Impe. Self-reflective model
predictive control. SIAM Journal on Control and Optimization, 55(5):2959–2980,
2017.

[70] Xuhui Feng and Boris Houska. Real-time algorithm for self-reflective model pre-
dictive control. Journal of Process Control, 65:68–77, 2018.

[71] Tor Aksel N Heirung, Tito LM Santos, and Ali Mesbah. Model predictive control
with active learning for stochastic systems with structural model uncertainty: Online
model discrimination. Computers & Chemical Engineering, 128:128–140, 2019.
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