
Provably Efficient Algorithms for Decentralized Optimization

by

Changxin Liu

A Dissertation Submitted in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in the Department of Mechanical Engineering

© Changxin Liu, 2021

University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part,

by photocopying or other means, without the permission of the author.

ii

Provably Efficient Algorithms for Decentralized Optimization

by

Changxin Liu

Supervisory Committee

Dr. Yang Shi, Supervisor

(Department of Mechanical Engineering)

Dr. Daniela Constantinescu, Departmental Member

(Department of Mechanical Engineering)

Dr. Jane Ye, Outside Member

(Department of Mathematics and Statistics)

iii

ABSTRACT

Decentralized multi-agent optimization has emerged as a powerful paradigm that

finds broad applications in engineering design including federated machine learning

and control of networked systems. In these setups, a group of agents are connected

via a network with general topology. Under the communication constraint, they aim

to solving a global optimization problem that is characterized collectively by their

individual interests. Of particular importance are the computation and communica-

tion efficiency of decentralized optimization algorithms. Due to the heterogeneity of

local objective functions, fostering cooperation across the agents over a possibly time-

varying network is challenging yet necessary to achieve fast convergence to the global

optimum. Furthermore, real-world communication networks are subject to conges-

tion and bandwidth limit. To relieve the difficulty, it is highly desirable to design

communication-efficient algorithms that proactively reduce the utilization of network

resources. This dissertation tackles four concrete settings in decentralized optimiza-

tion, and develops four provably efficient algorithms for solving them, respectively.

Chapter 1 presents an overview of decentralized optimization, where some prelim-

inaries, problem settings, and the state-of-the-art algorithms are introduced. Chapter

2 introduces the notation and reviews some key concepts that are useful throughout

this dissertation. In Chapter 3, we investigate the non-smooth cost-coupled decentral-

ized optimization and a special instance, that is, the dual form of constraint-coupled

decentralized optimization. We develop a decentralized subgradient method with dou-

ble averaging that guarantees the last iterate convergence, which is crucial to solving

decentralized dual Lagrangian problems with convergence rate guarantee. Chapter 4

studies the composite cost-coupled decentralized optimization in stochastic networks,

for which existing algorithms do not guarantee linear convergence. We propose a new

decentralized dual averaging (DDA) algorithm to solve this problem. Under a rather

mild condition on stochastic networks, we show that the proposed DDA attains an

O(1/t) rate of convergence in the general case and a global linear rate of convergence

if each local objective function is strongly convex. Chapter 5 tackles the smooth

cost-coupled decentralized constrained optimization problem. We leverage the ex-

trapolation technique and the average consensus protocol to develop an accelerated

DDA algorithm. The rate of convergence is proved to be O
(

1
t2

+ 1
t(1−β)2

)
, where β

denotes the second largest singular value of the mixing matrix. To proactively reduce

the utilization of network resources, a communication-efficient decentralized primal-

iv

dual algorithm is developed based on the event-triggered broadcasting strategy in

Chapter 6. In this algorithm, each agent locally determines whether to generate net-

work transmissions by comparing a pre-defined threshold with the deviation between

the iterates at present and lastly broadcast. Provided that the threshold sequence is

summable over time, we prove an O(1/t) rate of convergence for convex composite ob-

jectives. For strongly convex and smooth problems, linear convergence is guaranteed

if the threshold sequence is diminishing geometrically. Finally, Chapter 7 provides

some concluding remarks and research directions for future study.

v

Table of Contents

Supervisory Committee ii

Abstract iii

Table of Contents v

List of Tables viii

List of Figures ix

Acronyms x

Acknowledgements xi

1 Introduction 1

1.1 Overview of Decentralized Optimization 1

1.1.1 Cost-Coupled Decentralized Optimization 2

1.1.2 Constraint-Coupled Decentralized Optimization 6

1.1.3 Communication-Efficient Decentralized Optimization 9

1.2 Organization and Contributions . 12

2 Preliminaries 15

2.1 Notation . 15

2.2 Communication Model . 15

2.2.1 Network Topology . 15

2.2.2 Mixing Matrix . 16

2.3 Optimization Background . 16

3 Decentralized Subgradient Methods with Double Averaging 18

3.1 Introduction . 18

vi

3.2 Problem Setup and Preliminaries . 20

3.2.1 Basic Setup . 20

3.2.2 Communication Network . 20

3.2.3 Subgradient Method with Double Averaging 21

3.3 Algorithm and Convergence Results 21

3.4 Proofs of Convergence Results . 22

3.5 Extension to Constraint-Coupled Decentralized Optimization 29

3.6 Experiment . 36

3.7 Conclusion . 38

4 Decentralized Dual Averaging Methods 39

4.1 Introduction . 39

4.2 Related Work . 41

4.3 Problem Setup and Preliminaries . 42

4.3.1 Basic Setup . 42

4.3.2 Stochastic Communication Network 43

4.3.3 Centralized Dual Averaging Method 44

4.4 Algorithm and Convergence Results 48

4.5 Proofs of Convergence Results . 54

4.6 Proofs of Supporting Lemmas for Theorem 4.2 61

4.6.1 Proof of Lemma 4.2 . 61

4.6.2 Proof of Lemma 4.3 . 62

4.6.3 Proof of Lemma 4.4 . 71

4.7 Experiments . 72

4.7.1 Decentralized Logistic Regression 73

4.7.2 Decentralized LASSO . 76

4.8 Conclusion . 77

5 Accelerated Decentralized Dual Averaging Method 79

5.1 Introduction . 79

5.2 Problem Setup and Preliminaries . 81

5.2.1 Problem Setup . 81

5.2.2 Centralized Accelerated Dual Averaging 81

5.3 Algorithm and Convergence Result 82

5.4 Proof of Convergence Result . 85

vii

5.4.1 Notations and Supporting Lemmas 85

5.4.2 Proof of Theorem 5.1 . 92

5.5 Experiments . 95

5.5.1 Case I: Real Dataset . 95

5.5.2 Case II: Synthetic Dataset . 96

5.6 Conclusion . 96

6 Communication-Efficient Decentralized Primal-Dual Algorithms 98

6.1 Introduction . 98

6.2 Problem Setup and Preliminaries . 100

6.2.1 Basic Setup . 100

6.2.2 Primal-Dual Formulation . 100

6.3 Algorithm and Convergence Results 101

6.3.1 Algorithm Development . 101

6.3.2 Convergence Results . 103

6.4 Proofs of Convergence Results . 107

6.4.1 Proof of Theorem 6.1 . 107

6.4.2 Proof of Theorem 6.2 . 114

6.5 Experiments . 117

6.5.1 Decentralized l1-l2 Minimization 117

6.5.2 Decentralized Logistic Regression 120

6.6 Conclusion . 121

7 Conclusion and Future Directions 122

7.1 Conclusions . 122

7.2 Future Work . 124

7.2.1 Privacy-Preserving and Resilient Decentralized Optimization . 124

7.2.2 Dual Averaging Methods for Decentralized Online Optimization 124

7.2.3 Rate Analysis of DDA Methods Under Error Bound Conditions 125

Appendix A Publications 126

Bibliography 128

viii

List of Tables

Table 1.1 An overview of cost-coupled decentralized convex optimization

algorithms. 6

Table 1.2 An overview of constraint-coupled decentralized convex optimiza-

tion algorithms. 9

Table 1.3 An overview of communication-efficient decentralized convex op-

timization algorithms. 12

Table 6.1 The time spent per iteration for COCA and event-triggered LALM119

ix

List of Figures

Figure 1.1 Centralized network versus decentralized network 2

Figure 3.1 Trajectories of the primal objective error
∣∣∑50

i=1 cix
(t)
i −

∑50
i=1 cix

∗
i

∣∣
(left-hand side) and the quadratic penalty for the coupled con-

straint

∥∥∥∥(b−∑50
i=1 di log(1 + x

(t)
i)
)
+

∥∥∥∥2. 38

Figure 4.1 Comparison results for decentralized logistic regression in differ-

ent network configurations. 75

Figure 4.2 Comparison results for decentralized LASSO in different network

configurations. 78

Figure 5.1 Comparison of objective error in Case I. 97

Figure 5.2 Comparison of objective value in Case II. 97

Figure 6.1 Objective error |F(x̂(t)) − F(x∗)| versus iteration number and

broadcasting times when r = 0.4. 119

Figure 6.2 Objective error |F(x̂(t)) − F(x∗)| versus iteration number and

broadcasting times in different random networks. 119

Figure 6.3 RSE versus iteration number and broadcasting times when r =

0.04. 121

x

Acronyms

MAS multi-agent system

DGD decentralized gradient descent

DSA2 decentralized subgradient with double averaging

DDA decentralized dual averaging

ADDA accelerated decentralized dual averaging

ALM augmented Lagrangian method

LALM linearized augmented Lagrangian method

ADMM alternating direction method of multipliers

xi

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Prof. Yang Shi for

giving me the opportunity to work under his supervision at UVic. Throughout my

PhD, his enthusiasm in pursuing fundamental research problems has stimulated me

to do so as well; his guidance and feedback have greatly sharpened my thinking and

brought my research work to a higher level. I am also deeply indebted to him for his

encouragement and support whenever I was frustrated, and for his invaluable advice

for my career development.

I wish to thank the thesis committee members, Prof. Jane Ye and Prof. Daniela

Constantinescu, for their willingness to serve on the committee. I am also grateful

for their warm support when I was TA for their courses. I would like to thank the

External Examiner Prof. Na Li from Harvard University for her time in evaluating

the thesis.

I also want to express my deep appreciation to Prof. Huiping Li from Northwestern

Polytechnical University for the mentorship over the years. I am especially thankful

for his valuable suggestions on my research work, writing, and presentation, and for

his encouragement for me to pursue academic life.

I am thankful for Yong Zhang and Zirui Zhou, the mentors for my intership at

Huawei Canada. I greatly thank them for the fruitful discussions that have broadened

my horizons, and for their insightful comments that have improved our work.

I would like to thank the ACIPL team: Kunwu Zhang, Qi Sun, Qian Zhang,

Henglai Wei, Tianyu Tan, Tianxiang Lu, Xinxin Shang, Xiang Sheng, and Chonghan

Ma. I am grateful for the sincere friendship, research discussions, and those uncounted

coffee gatherings.

Finally, I am utmostly grateful to my parents and sister for their support through-

out my life. They are so considerate and attentive. I would also like to give special

thanks to our new family member–my niece Yishu– for the joyful moments she brought

to us last year.

Chapter 1

Introduction

1.1 Overview of Decentralized Optimization

Multi-agent optimization has received increasing attention lately, primarily because

it imparts balanced computation, privacy preservation, and communication efficiency

to modern large-scale machine learning [46,62]. It refers to the optimization problems

where a group of agents (e.g., processor, robots) aim to solve a common optimization

problem in a collaborative manner. For example, in supervised machine learning,

a set of parameters that characterize the mapping function from data to labels are

determined by minimizing a loss function that penalizes the fitting error. However, it

is usually inconvenient to perform such a task on one single machine due to concerns

about data privacy and/or computational inefficiency. One attempt, referred to as

the distributed solution [15, 42], to solving this problem is to use a central server to

coordinate multiple agents to perform optimization collaboratively, as demonstrated

in Figure 1.1a. Although it helps secure data privacy and facilitate parallel computing,

this approach still suffers from several disadvantages. First, the star network topology

renders the system sensitive to network changes, as possible disconnections lead to loss

of training data and significant performance degradation. Second, the requirement

on the bandwidth around the central server is high, in the sense that the computing

efficiency can be largely declined if timely communication between the server and the

agents is not guaranteed. Therefore, it is pivotal to pursue fully decentralized solutions

where a central server is removed and each agent only exchanges information with its

immediate neighbors – see Figure 1.1b, which is the main theme of this dissertation.

We continue with an overview of decentralized optimization in different settings.

2

Central
Server

1 2

3

4

5

(a) Centralized network

1 2

3

4

5

(b) Decentralized network

Figure 1.1: Centralized network versus decentralized network

1.1.1 Cost-Coupled Decentralized Optimization

Consider a multi-agent system (MAS) consisting of n agents, each of which, say i,

has access to a local objective function fi and the common constraint set X ⊆ Rm.

They are connected via a general communication network and they aim to solving

the following optimization problem:

min
x∈X

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
(1.1)

in a decentralized manner. That is, when solving (1.1), a pair of agents can exchange

information only if they are connected in the communication network. This problem

is referred to as cost-coupled decentralized optimization in the literature and finds

broad applications in optimal control of MAS [76], sensor networks [75], and machine

learning [46], to name a few.

As an example, we consider training parametric linear models for classification in

machine learning. A set of n users, each of which possesses a proprietary dataset, are

interested in achieving this task. Let the model of interest be y = 〈x,M〉 + b where

x ∈ Rm is the parameter and b ∈ R the bias. In particular, each user i has a collection

of mi labeled samples; for each sample i the features and the label are denoted as

M i
j ∈ Rm and yij ∈ {1,−1}, j = 1, · · · ,mi, respectively. Performing training on the

datasets of all the users generally leads to superior performance than that with a local

dataset. Thus, the following logistic regression problem is constructed based on the

3

overall dataset

min
x∈Rm

1

n

n∑
i=1

fi(x), fi(x) =
1

mi

mi∑
j=1

ln
(
1 + exp

(
−(M iT

j x+ b)yij
))

+
µ

2
‖x‖2, (1.2)

where the loss function 1
n

∑n
i=1 fi penalizes the fitting error and µ > 0 characterizes

the regularization term that prevents overfitting. Clearly, the problem in (1.2) is a

cost-coupled decentralized optimization problem.

In the following, we provide an overview of existing algorithms applicable to Prob-

lem (1.1); see Table 1.1. We begin by presenting an equivalent reformulation of (1.1):

min
x1,...,xn∈X

{
f(x) :=

1

n

n∑
i=1

fi(xi)

}
(1.3a)

s.t. x1 = x2 · · · = xn, (1.3b)

where x = [xT1 , . . . , x
T
n]T. Depending on how the consensus requirement in (1.3b)

is enforced, existing algorithms can be roughly categorized into two classes, that is,

consensus-based decentralized optimization methods and decentralized primal-dual

methods.

Consensus-based decentralized optimization methods. In this class, the av-

erage consensus protocols [122] are leveraged to amend the local search direction

within each agent, such that consensus and optimization can be achieved simulta-

neously. In particular, a doubly stochastic matrix P ∈ [0, 1]n×n [4] is usually used

to encode the network topology and the weights of connected links. Based on the

local search philosophy, we further categorize the consensus-based methods into the

following three subgroups.

i) Consensus-based decentralized gradient descent (DGD). In consensus-based DGD,

each agent i generates two sequences of variables {x(t)i }t≥1 and {y(t)i }t≥1 in an

iterative manner by imitating centralized gradient descent. For example, in the

4

seminal work [65], the iteration rule at time t reads

y
(t+1)
i =

n∑
j∈Ni

⋃
{i}

pijx
(t)
j − at∇fi(x

(t)
i)

x
(t+1)
i = argmin

x∈X
‖x− y(t+1)

i ‖2,
(1.4)

where ∇fi denotes of gradient of fi, at denotes the step size that is decreasing

over time, and Ni is the set of neighbors of agent i. Since
∑

j∈Ni
⋃
{i} pij = 1,

one can verify that the movement of y
(t)
i in DGD is together guided by the local

gradient ∇fi and the consensus error vector
∑

j∈Ni pij(x
(t)
j − x

(t)
i), which is key

to achieving consensus and optimization simultaneously. When the problem is

unconstrained, i.e., X ≡ Rm, and smooth, there are several attempts in the

literature to speed up the algorithm in [65]. For example, the authors in [83]

proposed the EXTRA algorithm that adds a cumulative correction term to

conventional DGD such that a constant step size can be used to accelerate the

convergence. Specifically, EXTRA has an O(1/t) rate of convergence when the

problem is convex and a linear rate of convergence if the problem is strongly

convex. Alternatively, an additional gradient-tracking process based on the

dynamic average consensus scheme in [122] can be used to equip each agent

with an estimation of 1
n

∑n
i=1∇fi(x

(t)
i) to facilitate local search, which also

validates the use of a constant step size in DGD [73, 111]. This methodology

was later extended to decentralized optimization over stochastic networks [111].

Also based on this idea, a decentralized Nesterov gradient descent was proposed

in [74].

It is worth to mention that in (1.4) the local estimates {x(t−1)i : i = 1, · · · , n},
which are obtained via a projection operator at time t − 1, are averaged at

time t. As documented in [18], such a nonlinear consensus-projection coupling

makes the convergence rate analysis challenging, especially when the network is

not static. This leads to the technical difficulty of developing consensus-based

projected gradient methods that can exploit the smoothness property of the

objective functions. Notably, the authors in [84] overcame this challenge; they

developed a decentralized proximal gradient method and proved an O(1/t) rate

of convergence in terms of the norm of the difference of two consecutive iterates.

ii) Consensus-based decentralized dual averaging (DDA). Different from DGD, the

5

update of consensus-based DDA algorithms [18] at time t is written as

z
(t+1)
i =

n∑
j=1

p
(t)
ij z

(t)
j +∇fi(x(t)i) (1.5a)

x
(t+1)
i = argmin

x∈X

{
at

〈
z
(t+1)
i , x

〉
+

1

2
‖x‖2

}
, (1.5b)

where each agent seeks consensus among local dual variables {z(t)i : i = 1, . . . , n}.
Under the standard assumption of bounded (sub)gradient, the dynamics in

(1.5a) is decoupled from the projection operation and purely linear. This es-

sentially facilitates the analysis of DDA-type algorithms even the network is

time-varying and random. The O(1/
√
t) rate of convergence for DDA is firstly

established in [18] for non-smooth problems. Although this strategy was later

extended to handle more general settings, e.g., directed communication net-

work [48, 89], and nonseparable global objectives [38], they both considered

general non-smooth problems and obtained an O(1/
√
t) sublinear rate of con-

vergence.

iii) Other consensus-based methods. Several other first-order optimization methods

such as the Frank-Wolfe method [96] and the conjugate gradient method [108]

have also been used to develop consensus-based decentralized algorithms. The

authors in [94] proposed a decentralized Newton-Raphson method, where the

Hessian and gradient of the overall objective function are estimated via two

separate dynamic average consensus schemes. Recently, the authors in [117]

developed a Newton tracking algorithm to avoid exchanging Hessian among

agents. For decentralized second-order methods, more restrictive assumptions,

e.g., the local objective functions are twice differentiable, are usually required

for guaranteeing convergence.

Decentralized primal-dual methods. This type of methods are inspired by an-

other equivalent form of (1.1)

min
x1,...,xn∈X

{
f(x) :=

1

n

n∑
i=1

fi(xi)

}
s.t. (L ⊗ I)x = 0

(1.6)

6

where L denotes the Laplacian matrix associated with the communication network,

I is an identity matrix of size m × m, ⊗ denotes the Kronecker product, and x =

[xT1 , . . . , x
T
n]T. Since (4.2) is a linearly constrained optimization problem, centralized

primal-dual optimization paradigms such as the alternating direction method of mul-

tipliers (ADMM) [5], in company with proper coordinate change of dual variables, can

be used to design decentralized algorithms. In contrast to consensus-based methods,

constraints can be conveniently handled in this framework. However, since L needs

to be explicitly given in the formulation (4.2), those algorithms and the associated

linear convergence results cannot be extended to stochastic communication networks,

where the network topology is random and not ensured to be connected at each time

instant.

Algorithms
Constrained/ Stochastic Convergence rate

Composite comm. Cvx Strongly cvx
[55] ×

√
- -

[18]
√ √

O(1/
√
t) -

Consensus [73] × × O(1/t) Linear
-based [111] ×

√
- Linear

[96]
√

× O(1/t) O(1/t2)
Ch. 4

√ √
O(1/t) Linear

Ch. 5
√

× O(1)(1
t2 + 1

t(1−β)2) -

Primal-dual
[83] × × O(1/t) Linear
[84]

√
× O(1/t) -

[1]
√

× - Linear
[110]

√
× O(1/t) Linear

Table 1.1: An overview of cost-coupled decentralized convex optimization algorithms.

1.1.2 Constraint-Coupled Decentralized Optimization

For this class of problems, each agent holds its own decision variable xi, objective

function Ji, and constraint Xi. In addition, all the agents are coupled via global

constraints, e.g.,
∑n

i=1 qi(xi) ≤ 0. Formally, the minimization problem is given by

min
{xi∈Xi}ni=1

n∑
i=1

Ji(xi)

s.t.
n∑
i=1

qi(xi) ≤ 0.

(1.7)

7

Such a problem finds applications in resource allocation [90], decentralized charg-

ing control of plug-in electric vehicles (PEVs) [19, 95], and distributed control of

constraint-coupled multi-agent systems [100].

For example, in charging control of PEVs we consider a fleet of n PEVs that shall

be charged by drawing power from one electricity distribution network. The problem

is concerned with finding an optimal charging schedule that fulfills several constraints,

e.g., the preferred final state of charge for each PEV and the maximum power flow

of the network, which can be formulated as the following optimization problem:

min
{xi∈Xi}ni=1

n∑
i=1

cTi xi

s.t.
n∑
i=1

(
Aixi −

b

n

)
≤ 0

where the entries in vector xi denote the charging rate in certain time slots for PEV

i, ci the corresponding costs with unitary charging rate, Xi represents the local con-

straint for PEV i, and
∑n

i=1

(
Aixi − b

n

)
≤ 0 expresses the network-wide power con-

straints.

The approaches developed recently are mostly based on Lagrangian duality [14,

64, 68]. We continue with a survey of existing algorithms applicable to solving (1.7);

see Table 1.2.

Dual decomposition methods. Define the Lagrangian function

n∑
i=1

(Ji(xi) + 〈λ, qi(xi)〉) ,

where λ ≥ 0 represents the dual variable associated with the coupled constraint.

Then, the dual problem of (1.7) is

max
λ≥0

{
ψ(λ) :=

n∑
i=1

ψi(λ)

}
(1.8)

where

ψi(λ) = min
xi∈Xi

{Ji(xi) + 〈λ, qi(xi)〉} .

8

Standard dual decomposition methods [64, 68] require a fusion center that is able

to communicate with all the agents to determine the gradient of the dual objective

function. Note that the dual Lagrangian problem in (1.8) has the same structure with

the cost-coupled decentralized optimization problem. Therefore, existing cost-coupled

decentralized optimization algorithms can be used to solve the outer problem in (1.8)

in a decentralized manner. For example, the work in [100] formed a double-loop

algorithm that combines the accelerated gradient method and a finite time consensus

scheme to tackle the dual problem. The authors in [47] theoretically validated the use

of a constant step size for the case where the objective and the constraint functions are

smooth. In non-smooth settings, recent work in [70] properly relaxed the constraint-

coupled problem and explored the duality principle twice to design a decentralized

algorithm. Alternatively, the authors in [19, 59, 86] employed the consensus-based

decentralized subgradient methods. In particular, the authors in [82] used ADMM and

the primal-dual method of multipliers (PDMM) to solve the dual problem; however

the convergence results are missing. The works in [86] and [59] considered the settings

with constant step size and decaying step sizes, respectively, under the assumption

that a Slater point exists and is known to all agents. To get such an assumption

satisfied, a decentralized method is provided in [59] to find a Slater point. The

framework considered in [19] relaxed this assumption, but the requirement on the

step size is more restrictive, i.e., square summable step sizes.

When the coupled constraint is characterized by a special linear equality, several

methods with improved convergence results were reported in the literature. For ex-

ample, the authors applied the splitting technique to the dual problem and came

up with an algorithm that has an O(1/t) rate of convergence if the cost function is

convex and a linear rate of convergence when the cost is smooth and strongly con-

vex [113]. For unbalanced communication networks and nonconvex cost functions, a

decentralized algorithm was proposed based on a similar methodology in [119].

Augmented Lagrangian methods. Dual decomposition methods may suffer from

several advantages including slow convergence and non-uniqueness of solutions. To

tackle these problems, regularization techniques have been used. When the coupled

constraint is a linear equality, the authors in [7] proposed an accelerated distributed

augmented Lagrangian method (ALM). The method was later extended to handle

nonconvex problems in [8]. These algorithms need a central server to update dual

variables. To achieve decentralized implementation, a local version of the dual update

9

within the server was incorporated into each agent, where the gradient of the dual

function is estimated via dynamic average consensus [20].

Algorithms
Additional Coupled constraint Convergence
assumptions Equality Inequality rate

[68] Central server needed
√ √

O(1/
√
t)

[64] Slater point known
√ √

O(1/t)
Dual [19] -

√ √
-

decomposition [86] Slater point known
√ √

O(1/t)
methods [59] Slater point known

√ √
O(1/

√
t)

[47] Smoothness
√ √

-

Ch. 3 -
√ √

O(1/
√
t)

Augmented [7] Central server needed
√

× O(1/t)
Lagrangian [20] -

√
× -

methods [121] Multiple comm. rounds
√

× O(1/t)

Table 1.2: An overview of constraint-coupled decentralized convex optimization algo-
rithms.

1.1.3 Communication-Efficient Decentralized Optimization

In the above subsections, there is one underlying assumption that the communication

between agents is perfect. However, this is rarely the case in practice. Indeed, real-

world communication networks are subject to congestion and bandwidth limit. To

relieve the difficulty, compressing the traffic via sparsification or quantization is a

promising solution, which has been actively explored lately. In the following, we

provide a survey of communication-efficient decentralized optimization algorithms in

the literature; see Table 1.3.

Decentralized optimization with event-triggered broadcasting. Over the

past decade, event-triggered broadcasting has emerged as a promising communication-

efficient approach for scheduling data transmission in large-scale networked control

systems [2, 88, 98]. The idea is to generate network transmission only when the in-

formation conveyed by the message is deemed innovative to the system, and whether

it is innovative is determined via a user-defined function that takes the deviation

between the actual system state and the state just broadcast as an argument. The

hope of event-triggered control is to reduce the communication load while largely pre-

serving the control performance. To exploit this attractive feature in decentralized

10

optimization, event-triggered communication has been incorporated into decentral-

ized optimization algorithms lately [10, 23, 30, 41, 51, 54]. For example, the authors

developed their event-triggered variants based on the decentralized optimization al-

gorithm in [65]. Although reductions in communication were observed in numerical

experiments, due to the use of diminishing step sizes, the convergence rates are rather

slow: O
(

log t√
t

)
in [41] and O

(
1

log t

)
in [30]. To speed up the convergence, constant

step sizes were used in event-triggered DGD [51]. Based on [73], the authors in [23]

developed an event-triggered algorithm for strongly convex and smooth objective

functions, where an additional event-triggered dynamic average consensus scheme is

used to track the mean of local gradients. Recent work in [54] presented an event-

triggered decentralized ADMM method that only requires each agent to broadcast

the primal variable to its neighbors, and prove the convergence of the algorithm when

the objective function is general convex. Convergence rates are analyzed for strongly

convex and smooth objective functions. Furthermore, it is remarked in [54] that the

event-triggered zero-gradient-sum decentralized optimization method in [10] can be

seen as an event-triggered version of dual decomposition that is empirically slower

than ADMM. In these schemes, each agent at every generic time instant is required

to exactly solve a subproblem, which may be not practical in most cases.

Decentralized optimization with quantization/compression. In digital sig-

nal processing, quantization refers to the process of mapping input values from a

continuous set to output values in a countable set. Typical examples of quantization

processes include rounding and truncation. Quantization has been incorporated into

the design of decentralized averaging protocols [32, 43], where the focus was placed

on minimizing the effect of quantization error on the performance of algorithms.

Recently, significant efforts have been devoted to designing quantized decentralized

optimization algorithms. For example, the authors in [115] developed a quantized

decentralized subgradient algorithm in undirected networks. Using a random quanti-

zation strategy, a decentralized gradient method was proposed in [16]. However, they

have sublinear rates of convergence even when the objective functions are strongly

convex. To achieve linear convergence, the authors in [34, 53] developed the DQOA

and LEAD algorithm, respectively. Under the assumption that the random quan-

tizer is unbiased and δ-contracted, i.e., E[Q(x)] = x and E[‖Q(x) − x‖2] ≤ δ‖x‖2

for all x ∈ Rm, the algorithms are proved to converge linearly. Reference [57] in-

vestigated the tradeoff between the convergence speed and the communication cost.

11

Linearly convergent quantized algorithms have also been extended to handle directed

networks in [107]. Note that event-triggered broadcasting and quantization are or-

thogonal; they have been combined to design communication-efficient decentralized

optimization methods [87].

Other communication-efficient decentralized optimization algorithms. Be-

sides the above two strategies, some other types of asynchronous decentralized op-

timization algorithms have been reported in the literature to alleviate the commu-

nication burden. For instance, the authors in [61] considered the DGD operated

in a network with random communication link failures, and established convergence

rate and error bound for decaying and constant step sizes, respectively. Using a

similar idea, reference [25] presented an asynchronous DGD where only a random-

ized set of working agents choose to update their local iterates at each time instant.

The authors proved that the local estimates converge to a neighborhood of the min-

imizer provided that the activation probability grows to one asymptotically. The

works [6, 102] developed asynchronous ADMM methods, and proved their rates of

convergence. However, in these methods each agent still needs to exactly solve a sub-

problem at each local iteration. Recently, reference [104] designed an asynchronous

decentralized consensus optimization algorithm based on [83] for a network of agents

where communication delays may occur, and proved the convergence of the algorithm.

Another communication-efficient decentralized gradient method was reported in [118];

its novelty may lie in the use of only signs of relative variable information between

immediate neighbors. However, the convergence is rather slow, i.e., O
(

log t√
t

)
, due to

diminishing step sizes. A random walk incremental strategy was used in [58] to design

a communication-efficient asynchronous decentralized optimization algorithm, where

a constant step size is used to achieve fast convergence to the global optimum ex-

actly. The authors in [9] considered a communication scenario where a central server

does not periodically request gradients from all workers in decomposable convex opti-

mization. The authors in [35] co-designed the primal-dual decentralized optimization

algorithm in outer loop and the subproblem-solving process in inner loop to save

communication resources.

12

Algorithms
Communication strategy Convergence rate

Event-triggered Compression Cvx Strongly cvx

[41]
√

× O(log t√
t

) -

[30]
√

× O(1
log t

) -

[10,23,51,54]
√

× - Linear
Ch. 6

√
× O(1/t) Linear

[115] ×
√

- -

[16] ×
√

O(1/ 4
√
t) O(1/ 3

√
t)

[34,53] ×
√

- Linear
[87]

√ √
- O(1/t)

Table 1.3: An overview of communication-efficient decentralized convex optimization
algorithms.

1.2 Organization and Contributions

In this dissertation, four concrete settings in decentralized optimization are consid-

ered. The outline and main contributions of this dissertation are summarized below:

• In Chapter 2, we introduce the notation and review some preliminaries that

are useful throughout this work.

• In Chapter 3, we consider non-smooth cost-coupled and constraint-coupled

decentralized optimization in networks. Most decentralized non-smooth opti-

mization algorithms cannot generate a convergent sequence of local variables.

For decentralized dual Lagrangian problems where the local dual variable is

further used to coordinate subproblems, they become not applicable. To relieve

the difficulty, we proposed a decentralized subgradient method with double av-

eraging (DSA2) that is able to generate a convergent sequence of local iterates.

Thanks to this property, an extension of DSA2 is made to decentralized dual

Lagrangian problems. Sublinear rates of convergence are established for both

settings. Numerical experiment and comparison are conducted to illustrate the

advantage of DSA2 and validate our theoretical findings.

• In Chapter 4, we study composite cost-coupled decentralized optimization in

stochastic networks, for which existing algorithms do not guarantee linear con-

vergence. We propose a new DDA algorithm to solve this problem. Under a

rather mild condition on stochastic networks, we show that the proposed algo-

13

rithm attains an O(1/t) rate of convergence in the general case and a global

linear rate of convergence if each local objective function is strongly convex.

Our algorithm substantially improves the existing DDA-type algorithms as the

latter were only known to converge sublinearly prior to our work. The key to

achieving the improved rate is the design of a novel dynamic averaging consen-

sus protocol for DDA, which intuitively leads to more accurate local estimates

of the global dual variable. Numerical results are also presented to support our

design and analysis.

• In Chapter 5, we study accelerated decentralized optimization for smooth cost-

coupled problems. We develop an accelerated DDA (ADDA) algorithm, where

each agent employs the first-order dynamic average consensus to estimate the

average of local gradients. Upon scaling the estimates with monotonically in-

creasing weights and accumulating the resultant variable over time, each agent

generates a local dual variable. Then, the convex conjugate of a 1-strongly

convex function over the dual variable is identified and used to construct two

sequences of primal variables in an iterative manner based on the extrapolation

technique and the average consensus protocol. The rate of convergence is proved

to be O(1)
(

1
t2

+ 1
t(1−β)2

)
, where β denotes the second largest singular value of

the mixing matrix. Notably, the condition for the algorithmic parameter to

guarantee convergence does not rely on the mixing matrix. Establishing such

a condition that is independent on the mixing matrix offers the appealing ad-

vantage of convenient verification in practical applications. Finally, numerical

results are presented to demonstrate the efficiency of ADDA.

• In Chapter 6, we investigate the communication-efficient decentralized op-

timization problem. Upon modeling decentralized optimization as a linearly

constrained problem, we leverage the linearized augmented Lagrangian method

(LALM) and the event-triggered broadcasting strategy to design a

communication-efficient decentralized optimization algorithm that only requires

light local computation at generic time instants and peer-to-peer communi-

cation at sporadic triggering time instants. The triggering time instants for

each agent are locally determined by comparing the deviation between true

and broadcast primal variables with time-varying triggering thresholds. Pro-

vided that the threshold is summable over time, we prove an O(1/t) rate of

convergence for convex composite problems. Stronger convergence results are

14

obtained for strongly convex and smooth problems, that is, the iterates linearly

converge when the triggering thresholds are geometrically diminishing. Finally,

the developed strategy is examined with two common optimization problems;

comparison results illustrate its performance and superiority in exploiting com-

munication resources.

• In Chapter 7, we conclude the dissertation and present several avenues for

future research.

15

Chapter 2

Preliminaries

In this chapter, we introduce the main notation, the communication model, and some

basic concepts in optimization, which are useful for the subsequent analysis.

2.1 Notation

R, Rm, and Rm×m denote the set of real valued numbers, vectors, and matrices, re-

spectively. Column vectors are considered as the default orientation unless otherwise

stated. We let 1 be a vector with all entries equal to one, where the dimension should

be understood from the context. Notation ‘≥’ is element-wise when applied to vec-

tors. All norms are 2-norms unless otherwise stated. Given a vector x ∈ Rm and a

positive semi-definite matrix P ∈ Rm×m, the notation ‖x‖2P denotes xTPx. We use

diag{ηi}ni=1 to denote a diagonal matrix where the diagonal entries are η1, · · · ηn. For

matrix P , the i-th largest singular value (eigenvalue) is written as σi(P)(λi(P)). Let

ρ(P) = maxi=1,···m|λi(P)|. The Kronecker product is denoted by ⊗. Given a real

number a, we let dae be the ceiling function that maps a to the least integer greater

than or equal to a. We denote by O(α) the values in the order of the scalar α, e.g.,

O(α) = aα for some constant a independent of α.

2.2 Communication Model

2.2.1 Network Topology

In this dissertation, we consider solving finite-sum optimization problems in a decen-

tralized manner. That is, each agent is able to communicate with other agents at

16

time t only if they are connected in the communication network at t. To describe the

network topology at time t, we use a bidirectional graph G(t) = {V , E (t)} (we omit the

superscript for t when the graph is time-invariant), where V = {1, · · · , n} denotes

the set of n agents and E (t) ⊆ V × V represents the set of links, i.e., (i, j) ∈ E (t)

indicates that nodes i and j can send information to each other at time t. Agent j

is said to be a neighbor of i at t if there exists a link between them at t, and the set

of i’s neighbors at t is denoted by N (t)
i = {j ∈ V|(j, i) ∈ E (t)}. For G(t), three n × n

matrices are defined: The adjacency matrix A(t) = [a
(t)
ij] where each entry a

(t)
ij = 1 if

(i, j) ∈ E (t) and a
(t)
ij = 0 otherwise, the diagonal degree matrix D(t) = diag{|N (t)

i |}ni=1,

and the graph Laplacian L(t) = D(t) −A(t). For undirected graphs, the matrix L(t) is

ensured to be positive semi-definite.

2.2.2 Mixing Matrix

Given a communication graph G(t), for each pair (i, j) ∈ E (t) we assign a positive

weight p
(t)
ij > 0 to agent i to weigh the information received from j. We let p

(t)
ij = 0

if j is not an immediate neighbor of agent i. Denote the mixing matrix constructed

from these weights by

P (t) := [p
(t)
ij] ∈ [0, 1]n×n.

Given a graph G(t), there exist many rules to determine the weights in a decentralized

manner [63,105]. For example, one can use the Metropolis rule [60] as follows

p
(t)
ij =


1

1+max{|Ni|,|Nj |} , if (j, i) ∈ E (t),
1−

∑
k∈Ni pik, if j = i,

0, otherwise.

2.3 Optimization Background

In this section, some basic optimization concepts [3] are briefly reviewed.

Definition 2.1. (Convex set) A set C is said to be convex if for every pair of points

x and y in C, the entire line segment connecting x and y is also contained in C.

Definition 2.2. (Convex function) A function f : Rm → R is said to be convex if

for any λ ∈ [0, 1] and x, y ∈ Rm

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

17

Definition 2.3. (µ-strongly convex function) A function f : Rm → R is said to

be µ-strongly convex if for any λ ∈ [0, 1] and x, y ∈ Rm

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− µ

2
λ(1− λ)‖x− y‖2.

If f is also differentiable, then µ-strong convexity leads to

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖2. (2.1)

Definition 2.4. (Lipschitz continuity) A function f : C → R is called G-Lipschitz

over a set C if for any x, y ∈ C

|f(x)− f(y)| ≤ G‖x− y‖.

A differentiable function f is said to have L-Lipschitz continuous gradient or

equivalently L-smooth if

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖,∀x, y ∈ Rm. (2.2)

If f is also convex, one has

f(y) ≤ f(x) + 〈Of(x), y − x〉+
L

2
‖y − x‖2. (2.3)

Definition 2.5. (Subdifferential) The subdifferential of a function f : Rm → R at

some x ∈ Rm is the set of all the subgradients

∂f(x) = {gx|f(y) ≥ f(x) + 〈gx, y − x〉 ,∀y ∈ Rm} .

18

Chapter 3

Decentralized Subgradient

Methods with Double Averaging

3.1 Introduction

In this chapter, we consider the cost-coupled decentralized optimization problem,

where n agents connected via a bidirectional network aim to collaboratively solving

the following constrained optimization problem:

min
x∈X

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
(3.1)

where fi denotes the local non-smooth objective function of agent i, and X ⊆ Rm

represents the constraint set shared by all the agents.

Generally speaking, the design of decentralized optimization algorithms [18, 63,

73,83,85,111,112,116] consists of two crucial steps. In the first step, one assigns local

copies of the global variable to each agent such that each agent has a local version of

the optimization variable to work with, and imposes a consensus constraint on all the

local variables to guarantee the equivalence between the problems before and after

transformation. Then, a local iteration rule associated with an appropriate consensus-

building mechanism is designed. Existing methods essentially differ from each other

in terms of the second step. For example, the algorithms reported in [63,73,83,85,111,

112,116] produced local iterates based on primal methods that generate points in the

feasible set that is contained in the primal space of variables. One typical example of

primal methods is the projected subgradient method, where the iterates are generated

19

by gradually shifting them along the opposite directions of subgradients, followed by

a projection step; see [66] for more details. In this class of methods, consensus among

local iterates is usually enforced by distributed averaging based on doubly stochastic

mixing matrices. There are also some decentralized optimization algorithms available

in the literature [18, 81] where the local iteration rule imitates dual methods, e.g.,

dual averaging [69]. It is shown in [18] that agreeing on the linear model of the global

objective function can alleviate some technical difficulties faced by primal methods

due to the consensus-projection coupling.

When the objective function is non-smooth, most existing decentralized optimiza-

tion algorithms may not be able to generate a convergent sequence of iterates. Indeed,

they only guarantee the convergence of the objective error over the running average of

local iterates, i.e., ergodic convergence properties. This essentially allows undesired

jumps of the objective function values at some iterations, possibly threatening the

stability of the decentralized system. In centralized optimization, this problem may

be mitigated by further considering the best iterates achieved so far. This procedure,

however, may be not implementable in decentralized scenarios since it requires the

global objective function that is not available locally.

Contribution. The main contributions of this chapter are summarized in the fol-

lowing.

i) For non-smooth cost-coupled optimization, we propose a decentralized subgra-

dient method with double averaging (abbreviated as DSA2) which ensures con-

vergence in non-ergodic sense, i.e, each local sequence of iterates is convergent.

Compared with existing decentralized dual averaging methods [18], we intro-

duce an averaging step to the iteration scheme and theoretically show that it

is this additional averaging step that makes the sequence of local test points

convergent. We prove an O(1/
√
t) rate of convergence for DSA2.

ii) Extension is made to solving constraint-coupled decentralized optimization by

combining dual decomposition and DSA2. In particular, the coupling in con-

straints of the primal problem is transformed into that in objective functions of

the dual problem by following Lagrangian relaxation. Then, a primal-dual se-

quence is constructed by solving the dual problem via DSA2 and using the local

dual iterates to determine the corresponding primal variables. We proved that

the dual objective error and the quadratic penalty for the violation of coupled

20

constraints have O(1/
√
t) subliear rates of convergence, and the primal objec-

tive error vanishes asymptotically. Numerical experiment results are provided

to verify our theoretical findings.

3.2 Problem Setup and Preliminaries

3.2.1 Basic Setup

We consider the finite-sum optimization problem in (3.1), in which X is a closed

convex constraint set and fi satisfies the following assumptions for all i = 1, · · · , n.

Assumption 3.1. i) fi is convex on X ;

ii) fi is G-Lipschitz continuous on X .

Throughout this chapter, we denote by x∗ an optimal solution of Problem (3.1).

Assumption 3.1 is satisfied for a host of functions, e.g., any convex function on a closed

domain or polyhedral function on an arbitrary domain. A consequence of Assumption

3.1-ii) is that any subgradient gi ∈ ∂fi(x) for any ∀x ∈ X is bounded [18], i.e.,

‖gi‖ ≤ G.

3.2.2 Communication Network

We consider solving Problem (3.1) in a decentralized manner. That is, each agent i

holds a local objective function fi and is able to communicate with other agents only

if they are connected in the communication network. To model the decentralized

communication, we consider a fixed bidirectional graph G = {V , E} and a mixing

matrix P = [pij]. We make the following standard assumption for them.

Assumption 3.2. i) The graph G is connected;

ii) P has a strictly positive diagonal, i.e., pii > 0;

iii) P is doubly stochastic, i.e., P1 = 1 and 1TP = 1T.

Assumption 3.2 ensures σ2(P) < 1. In particular, Assumptions 3.2 (i) and 3.2 (ii)

make the matrix PTP irreducible and primitive, respectively. This fact together with

Assumption 3.2 (iii) gives that PTP has a unique Perron-Frobenius eigenvalue which

is 1, meaning that σ2(P) < 1.

21

3.2.3 Subgradient Method with Double Averaging

Let d : X → R be a 1-strongly convex function on X such that

x(0) = argmin
x∈X

d(x) and d(x(0)) = 0 (3.2)

The centralized subgradient method with double averaging (SA2) [67] generates

{x(t)}t≥0 iteratively according to

x̂(t) = argmin
x∈X

{〈
t−1∑
τ=0

g(τ), x

〉
+ γt−1d(x)

}
(3.3a)

x(t) =
t

t+ 1
x(t−1) +

1

t+ 1
x̂(t), (3.3b)

where g(t) ∈ ∂f(x(t)) with f = 1
n

∑n
i=1 fi, γt is a non-decreasing sequence of positive

parameters. Compared with the dual averaging method [18, 69], this scheme has an

averaging step in (3.3b) that makes the sequence {x(t)}t≥0 convergent in a non-ergodic

sense [67].

3.3 Algorithm and Convergence Results

In this section, we develop the DSA2 algorithm and present its convergence results.

From (3.3), we observe that the update of x̂(t) depends on the subgradient accu-

mulated over time, e.g.,
∑t−1

τ=0 g
(τ). Then, x̂(t) is averaged over time to update x(t). To

imitate the update (3.3) in decentralized optimization, a local estimate of
∑t−1

τ=0 g
(τ)

may be necessary. And it is reasonable to expect that, if the estimate is sufficiently

accurate, then decentralized optimization can be fulfilled.

We employ the following consensus scheme to estimate
∑t−1

τ=0 g
(τ):

z
(t)
i =

n∑
j=1

pijz
(t−1)
j + g

(t−1)
i , (3.4)

where g
(t)
i ∈ ∂fi(x

(t)
i). Equipped with z

(t)
i , each agent is able to run an inexact version

22

of (3.3)

x̂
(t)
i = argmin

x∈X

{〈
z
(t)
i , x

〉
+ γt−1d(x)

}
(3.5a)

x
(t)
i =

t

t+ 1
x
(t−1)
i +

1

t+ 1
x̂
(t)
i , (3.5b)

where x
(t)
i represents the local iterate updated by agent i at time instant t. We take

γ−1 = γ0 by convention. The entire algorithm is summarized in Algorithm 1.

Algorithm 1 Decentralized Subgradient Method with Double Averaging (DSA2)

1: Input: {γt}t≥0, x(0) ∈ X , and a strongly convex function d with parameter 1 on

X such that (3.2) holds

2: Initialize: x
(0)
i = x(0), and z

(0)
i = 0 for all i = 1, · · · , n

3: for t = 1, 2, · · · do

4: In parallel (task for agent i, i = 1, · · · , n)

5: collect z
(t)
j from all agents j ∈ Ni

6: update z
(t)
i by (3.4)

7: update x
(t)
i by (3.5)

8: broadcast z
(t)
i to all agents j ∈ Ni

9: end for

Theorem 3.1. Suppose that d(x∗) ≤ R2 and γt = γ
√
t+ 1 where γ > 0, and As-

sumptions 3.1, 3.2 hold. For the sequences {x(t)i }t≥0 generated by Algorithm 1, we

have

f(x
(t)
i)− f(x∗) ≤ 1√

t+ 1

(
G2

γ

(
6
√
n

1− σ2(P)
+ 13

)
+ γR2

)
. (3.6)

3.4 Proofs of Convergence Results

Motivated by the literature regarding consensus-based decentralized optimization, we

set up an auxiliary sequence {y(t)}t≥0 whose update obeys the following

ŷ(t) = arg min
x∈X

{〈
z(t), x

〉
+ γt−1d(x)

}
y(t) =

t

t+ 1
y(t−1) +

1

t+ 1
ŷ(t),

(3.7)

23

where z(t) = 1
n

∑n
i=1 z

(t)
i and y(0) = x(0).

Before proving Theorem 3.1, we present three technical lemmas.

Lemma 3.1. For the sequence {x̂(t)i : i = 1, . . . , n}t≥0 generated by Algorithm 1 and

the auxiliary sequence {ŷ(t)}t≥0 in (3.7), one has that for all t ≥ 0 and i = 1, · · · , n,

‖x̂(t)i − ŷ(t)‖ ≤
1

γt−1
‖z(t)i − z(t)‖. (3.8)

Proof of Lemma 3.1. For t = 0, the inequality holds because both sides of (3.8) equal

0. Now, suppose that t ≥ 1. Recall that d is strongly convex with modulus 1. Let

the mapping R : Rm → Rm be defined as

R(ω) := argmin
x∈X

{〈ω, x〉+ γt−1d(x)} . (3.9)

By (3.5a) and (3.7), we have

ŷ(t) = R(z(t)), x̂
(t)
i = R(z

(t)
i), ∀i = 1, . . . , n

The mapping R is Lipschitz continuous with Lipschitz constant γ−1t−1; see, e.g., Propo-

sition 4.9 in [29]. Therefore (3.8) holds.

Before establishing the relation between {z(t)i : i = 1, . . . , n}t≥0 and {z(t)}t≥0, we

introduce the following notation:

z̃(t) = z
(t)
i − z(t), g(t) =

1

n

n∑
i=1

g
(t)
i , (3.10)

z(t) =


z
(t)
1
...

z
(t)
n

 , z̃(t) =


z̃
(t)
1
...

z̃
(t)
n

 , g(t) =


g
(t)
1
...

g
(t)
n

 . (3.11)

Equipped with these notation, we can re-write the update rule (3.4) in the following

compact form:

z(t) = Pz(t−1) + g(t−1), (3.12)

where P = P ⊗ I with I being an identity matrix of size m×m.

24

Lemma 3.2. For the sequence {z(t)i : i = 1, . . . , n}t≥0 and {z(t)}t≥0, we have

‖z̃(t)i ‖ ≤
√
nG

1− σ2(P)
+ 2G. (3.13)

Proof of Lemma 3.2. We start by iterating (3.12)

z(t) = Ptz(0) +
t−2∑
τ=0

Pt−1−τg(τ) + g(t−1). (3.14)

Summing over (3.4) from i = 1 to i = n, we obtain

z(τ) =
1

n

n∑
i=1

z
(τ)
i =

1

n

n∑
i=1

(
n∑
j=1

pijz
(τ−1)
j + g

(τ)
i

)
= z(τ−1) + g(τ−1),

which implies

z(t) = z(0) +
t−2∑
τ=0

g(τ) + g(t−1). (3.15)

Upon subtracting 1⊗ z(t) on both sides of (3.14), and using (3.15) and

z
(0)
i = 0, i = 1, · · · , n,

we obtain

z̃(t) =
t−2∑
τ=0

(
Pt−1−τ −

(
11T

n
⊗ I
))

g(τ) + g(t−1) − 1⊗ g(t−1)

=
t−2∑
τ=0

((
P t−1−τ − 11T

n

)
⊗ I
)

g(τ) + g(t−1) − 1⊗ g(t−1)

where 1 is an all-one column vector of dimension n. Therefore

z̃
(t)
i =

t−2∑
τ=0

n∑
j=1

(
[P t−1−τ]ij − 1/n

)
g
(τ)
j + g

(t−1)
i − g(t−1)

where [P t−1−τ]ij represents the (i, j)-th entry of P t−1−τ . Taking norm on both sides

25

gives rise to

‖z̃(t)i ‖ =

∥∥∥∥∥
t−2∑
τ=0

n∑
j=1

(
[P t−1−τ]ij − 1/n

)
g
(τ)
j + g

(t−1)
i − g(t−1)

∥∥∥∥∥
≤

t−2∑
τ=0

n∑
j=1

∥∥[P t−1−τ]ij − 1/n
∥∥ ‖g(τ)j ‖+ ‖g(t−1)i − g(t−1)‖

≤
t−2∑
τ=0

n∑
j=1

∣∣[P t−1−τ]ij − 1/n
∣∣G+ 2G

≤
t−2∑
τ=0

∥∥[P t−1−τ]i − 1T/n
∥∥
1
G+ 2G.

Recall that for a stochastic matrix P one has
∥∥[P t−1−τ]i−1/n

∥∥
1
≤ σ2(P)t−1−τ

√
n [18].

Then the inequality in (3.13) follows, thereby concluding the proof.

We present a slightly modified result in dual averaging (Theorem 2 in [69], Lemma

3 in [18]).

Lemma 3.3. Suppose Assumptions 3.1, 3.2 hold true. For any non-decreasing se-

quence {γt}t≥0 of positive parameters, and x ∈ X , we have

t∑
τ=0

〈g(τ), ŷ(τ) − x〉 ≤ 1

2

t∑
τ=0

1

γτ−1
‖g(τ)‖2 + γtd(x). (3.16)

A proof of Lemma 3.3 is presented here for completeness.

Proof of Lemma 3.3. Define

Ψ∗γτ (w) = sup
x∈X
{〈w, x〉 − γτd(x)}

Recall (3.15) that z(τ) =
∑τ−1

k=0 g
(k). Since γτ is non-decreasing,

Ψ∗γτ (−z
(τ+1)) ≤ Ψ∗γτ−1

(−z(τ+1)) = Ψ∗γτ−1
(−z(τ) − g(τ)). (3.17)

Note that

∇Ψ∗γτ−1
(−z(τ)) = R(z(τ)) = ŷ(τ)

where R is defined in (3.9). Therefore Ψ∗γτ−1
(z) has γ−1τ−1-Lipschitz continuous gradi-

26

ent, and

Ψ∗γτ−1
(−z(τ+1)) ≤ Ψ∗γτ−1

(−z(τ))− 〈ŷ(τ), g(τ)〉+
1

2γτ−1
‖g(τ−1)‖2.

Upon substituting the above inequality into (3.17), we obtain

〈ŷ(τ), g(τ)〉 ≤ Ψ∗γτ−1
(−z(τ))−Ψ∗γτ (−z

(τ+1)) +
1

2γτ−1
‖g(τ−1)‖2.

By further summing up the above inequality from τ = 0 to τ = t, it follows

t∑
τ=0

〈g(τ), ŷ(τ)〉 ≤ Ψ∗γ−1
(−z(0))−Ψ∗γτ (−z

(t+1)) +
t∑

τ=0

1

2γτ−1
‖g(τ−1)‖2.

Because

t∑
τ=0

〈g(τ),−x〉 ≤ sup
x∈X

{
t∑

τ=0

〈g(τ),−x〉 − γtd(x)

}
+ γtd(x)

= Ψ∗γt(−z
(t+1)) + γtd(x),∀x ∈ X

we have

t∑
τ=0

〈g(τ), ŷ(τ) − x〉 ≤ Ψ∗γ−1
(−z(0)) +

t∑
τ=0

1

2γτ−1
‖g(τ−1)‖2 + γtd(x),∀x ∈ X

which together with (3.2) and z
(0)
i = 0, i = 1, · · · , n leads to (3.16) as desired.

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. By convexity of fj, we have

(t+ 1)fj(x
(t)
j)−

t∑
τ=0

fj(x
(τ)
j) = tfj(x

(t)
j)−

t−1∑
τ=0

fj(x
(τ)
j) =

t∑
τ=1

τ
(
fj(x

(τ)
j)− fj(x(τ−1)j)

)
≤

t∑
τ=1

τ
〈
g
(τ)
j , x

(τ)
j − x

(τ−1)
j

〉
(3.18)

27

and

fj(x
(τ)
j)− fj(x) ≤

〈
g
(τ)
j , x

(τ)
j − x

〉
. (3.19)

Using inequalities (3.18) and (3.19), we consider

(t+ 1)
(
fj(x

(t)
j)− fj(x)

)
= (t+ 1)fj(x

(t)
j)−

t∑
τ=0

fj(x
(τ)
j) +

t∑
τ=0

(
fj(x

(τ)
j)− fj(x)

)
≤

t∑
τ=1

〈
g
(τ)
j , (τ + 1)x

(τ)
j − τx

(τ−1)
j − x

〉
+
〈
g
(0)
j , x

(0)
j − x

〉
,∀x ∈ X

(3.20)

which in conjunction with an equivalent expression of (3.5b)

(τ + 1)x
(τ)
j = τx

(τ−1)
j + x̂

(τ)
j

leads to

(t+ 1)
(
fj(x

(t)
j)− fj(x)

)
≤

t∑
τ=0

〈
g
(τ)
j , x̂

(τ)
j − x

〉
.

Upon summing the above inequality from j = 1 to j = n, we obtain

(t+ 1)
n∑
j=1

(
fj(x

(t)
j)− fj(x)

)
≤

n∑
j=1

t∑
τ=0

(〈
g
(τ)
j , x̂

(τ)
j − ŷ(τ)

〉
+
〈
g
(τ)
j , ŷ(τ) − x

〉)
=

t∑
τ=0

(
n∑
j=1

〈
g
(τ)
j , x̂

(τ)
j − ŷ(τ)

〉
+ n

〈
g(τ), ŷ(τ) − x

〉)
.

(3.21)

28

Due to f = 1
n

∑n
j=1 fj, we have

f(x
(t)
i)− f(x) = f(x

(t)
i)− f(y(t)) + f(y(t))− f(x)

≤L‖x(t)i − y(t)‖+
1

n

(
n∑
j=1

(
fj(y

(t))− fj(x(t)j)
)

+
n∑
j=1

(
fj(x

(t)
j)− fj(x)

))

≤L

(
‖x(t)i − y(t)‖+

1

n

n∑
j=1

‖x(t)j − y(t)‖

)
+

1

n

n∑
j=1

(
fj(x

(t)
j)− fj(x)

)
≤L

(
‖x(t)i − y(t)‖+

1

n

n∑
j=1

‖x(t)j − y(t)‖

)

+
1

t+ 1

t∑
τ=0

(
1

n

n∑
j=1

〈
g
(τ)
j , x̂

(τ)
j − ŷ(τ)

〉
+
〈
g(τ), ŷ(τ) − x

〉)
(3.22)

where we use the G-Lipschitz continuity of f and fi to derive the first and second

inequality, respectively, and (3.21) for the third inequality. Since

y(t) = (t+ 1)−1

(
y(0) +

t∑
τ=1

ŷ(τ)

)
, x

(t)
i = (t+ 1)−1

(
x
(0)
i +

t∑
τ=1

x̂
(τ)
i

)

and y(0) = x
(0)
i , we obtain

f(x
(t)
i)− f(x) ≤ G

t+ 1

t∑
τ=1

(
‖x̂(τ)i − ŷ(τ)‖+

1

n

n∑
j=1

‖x̂(τ)j − ŷ(τ)‖
)

+
1

t+ 1

t∑
τ=0

(1

n

n∑
j=1

〈Ofj(x(τ)j), x̂
(τ)
j − ŷ(τ)〉+ 〈g(τ), ŷ(τ) − x〉

)
≤ 1

t+ 1

(
G

t∑
τ=1

(
‖x̂(τ)i − ŷ(τ)‖+

2

n

n∑
j=1

‖x̂(τ)j − ŷ(τ)‖
)

+
t∑

k=0

〈g(τ), ŷ(τ) − x〉

)
.

29

It follows from Lemmas 3.1, 3.2, 3.3 and the boundedness of ‖g(τ)‖2 that

f(x
(t)
i)− f(x)

≤ 1

t+ 1

(
t∑

τ=1

G
(
‖x̂(τ)i − ŷ(τ)‖+

2

n

n∑
j=1

‖x̂(τ)j − ŷ(τ)‖
)

+
t∑

τ=0

1

2γτ−1
‖g(τ)‖2 + γtd(x)

)

≤ 1

t+ 1

(
3G

(√
nG

1− σ2(P)
+ 2G

) t∑
τ=1

1

γτ−1
+

t∑
τ=0

1

2γτ−1
‖g(τ)‖2 + γtd(x)

)

≤ 1

t+ 1

((
3
√
nG2

1− σ2(P)
+ 6G2

) t∑
τ=1

1

γτ−1
+
G2

2

t∑
τ=0

1

γτ−1
+ γtd(x)

)
.

(3.23)

Due to

t∑
τ=0

1

γτ−1
=

1

γ0
+

t−1∑
τ=0

1

γτ
=

1

γ
+

1

γ

t−1∑
τ=0

1√
τ + 1

≤ 2

γ

√
t+ 1,

we get

f(x
(t)
i)− f(x) ≤ 1√

t+ 1

(
G2

γ

(
6
√
n

1− σ2(P)
+ 13

)
+ γd(x)

)
.

We arrive at (3.6) as desired by using the assumption that d(x∗) ≤ R2.

3.5 Extension to Constraint-Coupled Decentralized

Optimization

Consider the following constraint-coupled optimization problem

min
{xi∈Xi}ni=1

n∑
i=1

Ji(xi)

s.t.
n∑
i=1

qi(xi) ≤ 0,

(3.24)

where the set Xi ⊂ Rsi , and the functions Ji : Xi → R and qi : Xi → Rm. We make

the following assumption for Problem (3.24).

30

Assumption 3.3. i) Each function Ji is convex, and each Xi is a nonempty com-

pact convex set.

ii) Each qi is a componentwise convex function, i.e., for all j = 1, · · · , si, each

component qij is a convex function.

Assumption 3.4. There exists x1 ∈ X1, · · · , xn ∈ Xn such that
∑n

i=1 qi(xi) < 0.

Assumptions 3.3, 3.4 are standard and ensure that (3.24) has at least one optimal

solution. We denote by {x∗i }ni=1 one of the optimal solutions to Problem (3.24) and

J∗ =
∑n

i=1 Ji(x
∗) the minimal function value.

One powerful methodology for solving this problem is to alternatively consider the

corresponding dual Lagrangian problem. In doing so, the coupling in constraints can

be transformed into that in objective functions of the dual problem, thus allowing us

to solve it via DSA2. The Lagrangian of (3.24) is

n∑
i=1

(Ji(xi) + 〈λ, qi(xi)〉) ,

where λ ≥ 0 represents the dual variable associated with the coupled constraint, and

the dual Lagrangian problem is

max
λ≥0

min
{xi∈Xi}ni=1

{
n∑
i=1

Ji(xi) + 〈λ, qi(xi)〉

}
,

which is equivalent to

min
λ≥0

max
{xi∈Xi}ni=1

−

{
n∑
i=1

Ji(xi) + 〈λ, qi(xi)〉

}
.

Let

ψi(λ) = max
xi∈Xi

{−Ji(xi)− 〈λ, qi(xi)〉}

and rewrite the dual Lagrangian problem as

min
λ≥0

ψ(λ) :=
n∑
i=1

ψi(λ). (3.25)

Clearly, the dual Lagrangian problem has the same structure with (3.1). In this

section, we denote one of the optimal dual variables by λ∗.

31

We use Algorithm 1 to solve the dual problem in (3.25), where d(λ) = ‖λ‖2/2
is chosen as the prox-function. The steps are detailed in the following. Each agent

initializes the algorithm by setting λ
(0)
i = 0, and

xi(λ
(0)
i) = argmax

xi∈Xi
{−Ji(xi)} . (3.26)

At time t = 1, 2, · · · , each agent updates its Lagrangian dual variable according to

λ̂
(t)
i = argmin

λ≥0

{
〈z(t)i , λ〉+ γt−1‖λ‖2/2

}
(3.27a)

λ
(t)
i =

t

t+ 1
λ
(t−1)
i +

1

t+ 1
λ̂
(t)
i . (3.27b)

where

z
(t)
i =

n∑
j=1

pijz
(t−1)
j − qi(xi(λ(t−1)i)). (3.28)

It is worth to mention that −qi(xi(λ(t−1)i)) ∈ ∂ψi(λ(t−1)i) by Danskin’s Theorem [68].

Then, based on the dual update, the primal variable is determined in the following

way:

xi(λ
(t)
i) = argmax

xi∈Xi

{
−Ji(xi)−

〈
λ
(t)
i , qi(xi)

〉}
(3.29a)

x
(t)
i =

t

t+ 1
x
(t−1)
i +

1

t+ 1
xi(λ

(t)
i). (3.29b)

The step in (3.29b) can be seen as the primal recovery step that is common in dual de-

composition algorithms [19,86]. This step is needed since the dual objective function

at the optimum is typically non-smooth, and the optimal dual variable does not nec-

essarily lead to an optimal primal solution [68]. The overall algorithm is summarized

in Algorithm 2.

32

Algorithm 2 DSA2-based Dual Decomposition

1: Input: {γt}t≥0, d(λ) = ‖λ‖2/2
2: Initialize: λ

(0)
i = 0, z

(0)
i = 0, and xi(λ

(0)
i) according to (3.26) for all i = 1, · · · , n

3: for t = 1, 2, · · · do

4: In parallel (task for agent i, i = 1, · · · , n)

5: collect z
(t−1)
j from all agents j ∈ Ni

6: update z
(t)
i by (3.28)

7: update λ
(t)
i by (3.27)

8: update x
(t)
i by (3.29)

9: broadcast z
(t)
i to all agents j ∈ Ni

10: end for

Theorem 3.2. Suppose Assumptions 3.2, 3.3, and 3.4 hold true. Let the sequences

{λ(t)i }t≥0 and {x(t)i }t≥0 be generated by Algorithm 2. If γt = γ
√
t+ 1 where γ > 0,

then the dual objective error

n∑
j=1

(
ψj(λ

(t)
i)− ψj(λ∗)

)
≤ n√

t+ 1

((
6
√
n

1−σ2(P)
+ 13

)
D

γ
+
γ‖λ∗‖2

2

)
, (3.30)

the quadratic penalty for the coupled constraint

∥∥(n∑
j=1

qj(x
(t)
j)
)
+

∥∥2 ≤ 4n
(√

n
1−σ2(P)

+ 5
2

)
D

t+ 1
+

2γC√
t+ 1

, (3.31)

and the primal objective error

−‖λ∗‖

√√√√2n2
(

2
√
n

1−σ2(P)
+ 5
)
D

t+ 1
+

2nγC√
t+ 1

≤
n∑
j=1

Jj(x
(t)
j)− J∗ ≤

n
(

2
√
n

1−σ2(P)
+ 5
)
D

γ
√
t+ 1

,

where D = maxj∈{1,··· ,n}maxxj∈Xj‖qj(xj)‖2 and C = J∗ − min{xj∈Xj}nj=1

∑n
j=1 Jj(xj)

are constants.

Proof. We begin by recalling

−qj(xj(λ(τ)j)) ∈ ∂ψj(λ(τ)j).

33

Then, in light of (3.18), we readily have

(t+ 1)ψj(λ
(t)
j)−

t∑
τ=0

ψj(λ
(τ)
j) ≤

t∑
τ=1

τ
〈
−qj(xj(λ(τ)j)), λτj − λ

(τ−1)
j

〉
.

By adding
∑t

τ=0〈−qj(xj(λ
(τ)
j)), λ

(τ)
j −λ〉,∀λ ≥ 0 on both sides of the above inequality,

we obtain

(t+ 1)ψj(λ
(t)
j)−

t∑
τ=0

(〈
−qj(xj(λ(τ)j)), λ− λ(τ)j

〉
+ ψj(λ

(τ)
j)
)

≤
t∑

τ=1

〈
−qj(xj(λ(τ)j)), (τ + 1)λ

(τ)
j − τλ

(τ−1)
j − λ

〉
+
〈
−qj(xj(λ(0)j)), λ

(0)
j − λ

〉
=

t∑
τ=0

〈
−qj(xj(λ(τ)j)), λ̂

(τ)
j − λ

〉
,

(3.32)

where (3.27b) is used to get the last equality. Due to〈
−qj(xj(λ(τ)j)), λ− λ(τ)j

〉
+ ψj(λ

(τ)
j)

=
〈
−qj(xj(λ(τ)j)), λ− λ(τ)j

〉
− Jj

(
x(λ

(τ)
j)
)
−
〈
λ
(τ)
j ,−qj(xj(λ(τ)j))

〉
=−

〈
qj(xj(λ

(τ)
j)), λ

〉
− Jj

(
xj(λ

τ
j)
)
,

we obtain

t∑
τ=0

(
Jj
(
xj(λ

(τ)
j)
)

+
〈
qj
(
xj(λ

(τ)
j)
)
, λ
〉)

+ (t+ 1)ψj(λ
(t)
j)

≤
t∑

τ=0

〈
−qj(xj(λ(τ)j)), λ̂

(τ)
j − λ

〉
.

(3.33)

Upon using

x
(t)
j =

1

t+ 1

t∑
τ=0

xj(λ
(τ)
j)

and convexity of Jj and qj, we obtain

(t+ 1)
(
Jj(x

(t)
j) +

〈
qj(x

(t)
j), λ

〉
+ ψj(λ

(t)
j)
)
≤

t∑
τ=0

〈
−qj(xj(λ(τ)j)), λ̂

(τ)
j − λ

〉
.

34

By summing up the above inequality from j = 1 to j = n and following the same line

with (3.21)-(3.23), we have

(t+ 1)
n∑
j=1

(
Jj(x

(t)
j) +

〈
qj(x

(t)
j), λ

〉
+ ψj(λ

(t)
j)
)

≤n

(
t∑

τ=0

D

γτ−1

(√
n

1− σ2(P)
+

5

2

)
+
γt
2
‖λ‖2

)
.

Rewrite the above inequality as

n∑
j=1

(
Jj(x

(t)
j)−

(
−ψj(λ(t)j)

))

≤ 1

t+ 1

(
t∑

τ=0

(√
n

1−σ2(P)
+ 5

2

)
nD

γτ−1
+ min

λ≥0

{
nγt

2(t+ 1)
‖λ‖2 −

〈
n∑
j=1

qj(x
(t)
j), λ

〉})
,

Due to

min
λ≥0

{
nγt

2(t+ 1)
‖λ‖2 −

〈
n∑
j=1

qj(x
(t)
j), λ

〉}
= −t+ 1

2nγt

∥∥(n∑
j=1

qj(x
(t)
j)
)
+

∥∥2
we have

n∑
j=1

(
Jj(x

(t)
j)−

(
−ψj(λ(t)j)

))
+
t+ 1

2nγt

∥∥∥∥∥∥
(

n∑
j=1

qj(x
(t)
j)

)
+

∥∥∥∥∥∥
2

≤ 1

t+ 1

t∑
τ=0

n
(√

n
1−σ2(P)

+ 5
2

)
D

γτ−1
≤
n
(

2
√
n

1−σ2(P)
+ 5
)
D

γ
√
t+ 1

.

(3.34)

Recall the saddle point inequality

J∗ ≤
n∑
j=1

(
Jj(x

(t)
j) +

〈
λ∗, qj(x

(t)
j)
〉)

. (3.35)

Upon adding (t+ 1)

∥∥∥∥(∑n
j=1 qj(x

(t)
j)
)
+

∥∥∥∥2 /(2nγt) and subtracting
∑n

j=1

(
− ψj(λ(t)j)

)

35

on both sides, we obtain

n∑
j=1

(
J∗j −

(
−ψj(λ(t)j)

)
−
〈
λ∗, qj(x

(t)
j)
〉)

+
t+ 1

2nγt

∥∥∥∥∥∥
(

n∑
j=1

qj(x
(t)
j)

)
+

∥∥∥∥∥∥
2

≤
n∑
j=1

(
Jj(x

(t)
j)−

(
− ψj(λ(t)j)

))
+
t+ 1

2nγt

∥∥∥∥∥∥
(

n∑
j=1

qj(x
(t)
j)

)
+

∥∥∥∥∥∥
2

≤
n
(

2
√
n

1−σ2(P)
+ 5
)
D

γ
√
t+ 1

.

Since

−

〈
λ∗,

n∑
j=1

qj(x
(t)
j)

〉
+
t+ 1

2nγt

∥∥∥∥∥∥
(

n∑
j=1

qj(x
(t)
j)

)
+

∥∥∥∥∥∥
2

≥ min
z∈Rm

{
−〈λ∗, z〉+

t+ 1

2nγt
‖(z)+‖2

}

= − nγt
2(t+ 1)

‖λ∗‖2 = −nγ‖λ
∗‖2

2
√
t+ 1

and J∗ =
∑n

j=1−ψj(λ∗), we have

n∑
j=1

(
ψj(λ

(t)
j)− ψj(λ∗)

)
≤ n√

t+ 1

((
2
√
n

1−σ2(P)
+ 5
)
D

γ
+
γ‖λ∗‖2

2

)
.

By a similar reasoning to (3.22), we further have (3.30). To establish the upper bound

on the violation of the coupled constraint, we consider ∀λ ≥ 0,

J∗ ≥
n∑
j=1

(
J∗j + 〈λ, qj(x∗j)〉

)
≥ min
{xj∈Xj}nj=1

n∑
j=1

(Jj(xj) + 〈λ, qj(xj)〉) = −
n∑
j=1

ψj(λ).

(3.36)

Upon using (3.34), we obtain

t+ 1

2nγt

∥∥∥∥∥∥
(

n∑
j=1

qj(x
(t)
j)

)
+

∥∥∥∥∥∥
2

≤
n
(

2
√
n

1−σ2(P)
+ 5
)
D

γ
√
t+ 1

+ J∗ − min
{xj∈Xj}nj=1

n∑
j=1

Jj(xj).

36

Therefore, (3.31) holds. By (3.34) and (3.36), we readily have

n∑
j=1

(
Jj(x

(t)
j)− J∗j

)
≤
n
(

2
√
n

1−σ2(P)
+ 5
)
D

γ
√
t+ 1

.

Again, by the saddle point inequality (6.16), the fact

(n∑
j=1

qj(x
(t)
j)
)
+
≥

n∑
j=1

qj(x
(t)
j),

and λ∗ ≥ 0, one obtains

n∑
j=1

Jj(x
(t)
j)− J∗ ≥ −‖λ∗‖

∥∥(n∑
j=1

qj(x
(t)
j)
)
+

∥∥ ≥ −‖λ∗‖
√√√√2n2

(
2
√
n

1−σ2(P)
+ 5
)
D

t+ 1
+

2nγC√
t+ 1

.

This completes the proof.

3.6 Experiment

In this section, we verify our theoretical findings by applying them to a setting where

an MAS of n = 50 agents aim to solving the following constraint-coupled decentralized

optimization problem [59]:

min
xi∈[0,1]

50∑
i=1

cixi

s.t.
50∑
i=1

−di log(1 + xi) ≤ −b.

As explained in Section 3.5, we consider its Lagrangian

n∑
i=1

(
cixi +

〈
λ,

b

50
− di log(1 + xi)

〉)

and the corresponding dual problem

min
λ≥0

n∑
i=1

ψi(λ),

37

where

ψi(λ) = max
xi∈[0,1]

{
−cixi −

〈
λ,

b

50
− di log(1 + xi)

〉}
.

In this simulation, the parameters ci and di for each agent i ∈ {1, · · · , 50} are

randomly chosen from a uniform distribution, and b is set as 5. We use the solver

fmincon with the interior point algorithm in Optimization Toolbox in MATLAB to

identify the optimal solution. The communication topology among agents is charac-

terized by a fixed connected small world graph [101], and the weighting matrix P is

selected as the Metropolis constant edge weight matrix [106]. The prox-function is

chosen as d(λ) = ‖λ‖2/2. Set γt = 0.2
√
t+ 1. In the simulation, the bound for the

subgradient of the dual objective is identified as 0.55, σ2(P) is calculated as 0.9788,

and C is estimated as 27.2067. Therefore, the following theoretical bounds can be

calculated based on Theorem 3.2:∣∣∣∣∣
n∑
j=1

Jj(x
(t)
j)− J∗

∣∣∣∣∣ ≤ max

{
5.0849× 104

√
t+ 1

,
91.5467√
t+ 1

+
6.9856

(t+ 1)
1
4

}
,

∥∥∥∥∥∥
(

n∑
j=1

hj(x
(t)
j)

)
+

∥∥∥∥∥∥
2

≤ 2.0340× 104

t+ 1
+

10.8827√
t+ 1

.

For comparison, we also simulate the consensus-based dual decomposition strategies

in [19,59,86]. For [19], according to the sufficient conditions for ensuring convergence,

the step size is chosen as 10/(t+ 1). For [86], we use a constant step size 0.05.

For [59], we derive the critical feasible step size for consensus-building according to

Proposition 4 therein as σ = 0.1103, and use the Slater vector (1, 0) to get the bound

on the optimal dual set as D = 3.3130. The step size is chosen by following the

Doubling Trick scheme. All the algorithms are initialized with λ
(0)
i = 0 for all the

agents.

The simulation results are illustrated in Figure 3.1. In particular, the left and

the right plot present the trajectories of the primal objective error and the quadratic

penalty for violation of the coupled constraint by all algorithms, respectively. Note

that for the algorithms in [19,59,86], the performance is evaluated over the running av-

erage of the primal variables, which is in line with the theoretical results. We observe

that the proposed algorithm demonstrates a slightly better performance than [59].

The trajectories of the proposed algorithm are within the theoretical upper bounds.

Among the three algorithms, the algorithm in [19] has the slowest convergence. This

38

may be because that the step sizes for [59] and the proposed one are of order 1/
√
t

while the step size for [19] is chosen to be of order 1/t to fulfill the conditions for

convergence. The method in [86] does not ensure exact convergence partially due to

using a constant step size, . Note that the value of
∑50

i=1 cixi,t −
∑50

i=1 cix
∗
i can take

both negative and positive values due to possible violation of the coupled constraint.

When it jumps from negative to positive, the trajectory of
∣∣∑50

i=1 cixi,t −
∑50

i=1 cix
∗
i

∣∣
presents a peak. This phenomenon is typically observed in dual Lagrangian problems.

Iteration Number

P
ri
m

a
l
O

b
je

c
ti
v
e
 E

rr
o
r

Iteration Number

C
o
n
s
tr

a
in

t
V

io
la

ti
o
n

Figure 3.1: Trajectories of the primal objective error
∣∣∑50

i=1 cix
(t)
i −

∑50
i=1 cix

∗
i

∣∣
(left-hand side) and the quadratic penalty for the coupled constraint∥∥∥∥(b−∑50

i=1 di log(1 + x
(t)
i)
)
+

∥∥∥∥2.

3.7 Conclusion

In this chapter, we have proposed a decentralized subgradient method with double

averaging, termed as DSA2, for non-smooth cost-coupled optimization problems de-

fined over networks. We proved a non-ergodic convergence rate ofO(1/
√
t) in terms of

objective error for DSA2. Furthermore, we have developed a DSA2-based dual decom-

position strategy for solving constraint-coupled decentralized optimization problems.

We proved that the dual objective error and the quadratic penalty for violation of

the coupled constraint converge at rate O(1/
√
t). Simulation experiments and com-

parisons have been performed to verify the advantages of the proposed methods.

39

Chapter 4

Decentralized Dual Averaging

Methods

4.1 Introduction

Consider a group of n agents, each of which has its own objective function. They are

connected via a bidirectional communication network and aim to cooperatively solving

the following convex composite optimization problem in a decentralized manner:

min
x∈Rm

{
F (x) :=

1

n

n∑
i=1

fi(x) + h(x)

}
, (4.1)

where fi is the local smooth objective function of agent i and h is a non-smooth

regularization term that is shared across all the agents. Problem (4.1) is referred to

as decentralized convex composite optimization [1,84] and finds broad applications in

optimal control of multi-agent systems [76], resource allocation [92], and large-scale

machine learning [46], just to name a few.

In this chapter, we focus on solving Problem (4.1) when the communication net-

work is stochastic. There are many practical reasons that promote the consideration

of stochastic communication networks. Indeed, communication in real networks is

usually subject to congestion, errors, and random dropouts, which is typically mod-

eled as a stochastic process. Besides, stochastic networks are useful for proactively

reducing communication cost. For instance, the gossip protocol [4] and Bernoulli

protocol [31], which randomly choose a subset of communication links from an under-

lying dense graph in each iteration, have been widely regarded as effective strategies

40

to avoid high communication cost and network congestion. Therefore, it is highly

desirable to develop decentralized algorithms that solve Problem (4.1) over stochastic

communication networks and attain a favorable convergence rate.

Over the past decade, many algorithms have been proposed for solving Prob-

lem (4.1). Some of them exploit the composite structure in (4.1) and attain global

linear convergence if Problem (4.1) is strongly convex (see, e.g., [1, 36]), which is

the fastest rate of convergence that one can expect from a first-order decentralized

algorithm. However, such linear convergence results are limited to time-invariant

communication networks, because the design of these algorithms inherently requires

knowledge of network topology a priori. Indeed, these algorithms are typically de-

veloped upon leveraging centralized primal-dual optimization paradigms, such as the

alternating direction method of multipliers [5], to solve the following problem that is

equivalent to (4.1):

min
x1,...,xn∈Rm

1

n

n∑
i=1

(
fi(xi) + h(xi)

)
s.t. (L ⊗ I)x = 0, (4.2)

where x = [xT1 , . . . , x
T
n]T , I is an identity matrix of sizem×m, and L denotes the graph

Laplacian associated with the communication network. Since L needs to be explicitly

given in formulation (4.2), these algorithms and their associated linear convergence

results cannot be extended to stochastic communication networks, where the network

topology is time-varying and random.

Among the existing decentralized optimization methods, the decentralized dual

averaging (DDA) algorithm proposed by [18] and its later extensions [12,38,89] have

been recognized as a powerful framework that can handle stochastic networks. How-

ever, the convergence rates of existing DDA-type algorithms are rather slow. In fact,

even for decentralized convex smooth optimization in time-invariant networks, which

is deemed to be much simpler than Problem (4.1) in stochastic networks, these al-

gorithms were only known to converge sublinearly. Specifically, existing DDA-type

algorithms, when applied to Problem (4.1), only attain an O(1/
√
t) sublinear rate of

convergence. For the special case of Problem (4.1) with h ≡ 0, [50] recently showed

that the convergence rate can be improved to O(1/t). Nevertheless, it remains open

whether a DDA-type algorithm can attain linear rate of convergence.

41

Contribution. In this chapter, we propose a new DDA algorithm that solves Prob-

lem (4.1) in stochastic networks. Under a rather mild condition on the stochastic net-

work, we show that the proposed algorithm has an O(1/t) rate of convergence in the

general case and a global linear rate of convergence if each local objective function is

strongly convex. Our work contributes to the literature of decentralized optimization

in the following two aspects:

i) We develop the first decentralized algorithm that attains global linear conver-

gence for solving Problem(4.1) in stochastic networks. Existing linearly con-

vergent decentralized algorithms for Problem (4.1) only work in time-invariant

networks and cannot be extended to stochastic networks because they inher-

ently need knowledge of network topology a priori. Our algorithm is based on

a DDA framework that is fundamentally different from these algorithms.

ii) Our algorithmic design and convergence analysis shed new light on DDA-type

algorithms. Notably, it is the first DDA-type algorithm that attains linear con-

vergence. Prior to our work, even for decentralized convex smooth optimization

in time-invariant networks, which is deemed to be much simpler than Problem

(4.1) in stochastic networks, existing DDA-type algorithms were only known to

converge sublinearly. The key to achieving the improved rate is the design of

a novel dynamic averaging consensus protocol for DDA, which intuitively leads

to more accurate local estimates of the global dual variable.

4.2 Related Work

Decentralized algorithms for Problem (4.1) in time-invariant networks.

Due to its broad applications, Problem (4.1) has received attention in the commu-

nity of decentralized optimization for many years; see, e.g., [84] for an early attempt.

It is only until recently that linearly convergent decentralized algorithms have been

developed for solving Problem (4.1) in time-invariant networks. [1] developed a de-

centralized proximal gradient method, where the diffusion step and the proximal

step are designed differently from [84] such that not only the fixed point meets the

global optimality condition but also linear convergence can be attained for strongly

convex problems. [36] proposed a distributed algorithm based on randomized block-

coordinate proximal method, which exhibits an asymptotic linear convergence if the

monotone operator associated with Problem (4.1) is metrically subregular (a much

42

weaker condition than strong convexity). Very recently, [110] proposed a unified

decentralized algorithmic framework based on the operator splitting theory, which

attains linear convergence for the strongly convex case. Nevertheless, these algo-

rithms are only applicable to time-invariant networks and cannot be extended to the

stochastic networks, which motivates the new algorithm development and convergence

analysis in this paper.

Decentralized optimization in stochastic networks. The study of decentral-

ized algorithms over stochastic networks dates back to [55], who proposed a subgradient-

based algorithm with diminishing step sizes. The decentralized dual averaging algo-

rithm, which combines dual averaging method [69] and consensus-seeking, was re-

ported by [18] and can handle stochastic networks with an O(1/
√
t) sublinear rate

of convergence. The decentralized accelerated gradient algorithm with a random

network model was proposed by [27], where an O(log t
t

) sublinear convergence rate is

obtained for smooth problems. Later, [111] validated the use of a constant step size in

decentralized gradient descent over stochastic networks, leading to a global linear rate

of convergence for strongly convex and smooth problems. Recently, [33] developed a

unified framework for decentralized stochastic gradient descent over stochastic net-

works. It is worth mentioning that the aforementioned studies either consider general

non-smooth problems or focus on smooth problems. In particular, they cannot ex-

ploit the composite structure of Problem (4.1), partially due to the technical difficulty

caused by the so-called projection-consensus coupling [18] for methods integrating

consensus-seeking and projected/proximal gradient descent.

In summary, to the best of our knowledge, no existing methods can solve or can

be easily extended to solve Problem (4.1) in stochastic networks with global linear

convergence.

4.3 Problem Setup and Preliminaries

4.3.1 Basic Setup

We consider the finite-sum optimization problem (4.1), in which h : Rm → R∪{+∞}
is a proper closed convex function with its domain, denoted by dom(h) := {x ∈
Rm|h(x) < +∞}, being non-empty and fi satisfies the following assumptions for all

i = 1, . . . , n:

43

Assumption 4.1. i) fi is continuously differentiable on an open set that contains

dom(h);

ii) fi is (strongly) convex with modulus µ ≥ 0 on dom(h);

iii) ∇fi is Lipschitz continuous on dom(h) with Lipschitz constant L > 0.

The above assumptions are standard in the study of decentralized algorithms for

convex optimization problems. It is worth noting that we allow µ = 0 in Assumption

4.1(ii), which reduces to the general convex case. Throughout the paper, we denote

by x∗ an optimal solution of Problem (4.1).

4.3.2 Stochastic Communication Network

We consider solving Problem (4.1) in a decentralized manner, that is, each agent

i holds a local objective function Fi := fi + h and a pair of agents can exchange

information only if they are connected in the communication network. Similar to

existing works, we use a doubly stochastic matrix P (t) ∈ [0, 1]n×n to encode the

network topology and the averaging weights of connected links at time t. We focus on

the fairly general setting of stochastic communication network, i.e., P (t) is a random

matrix for every t. For the convergence of the proposed decentralized algorithm, we

make the following assumption on P (t).

Assumption 4.2. For every t ≥ 0, it holds that

i) P (t)1 = 1 and 1TP (t) = 1T ;

ii) P (t) is independent of the random events that occur up to time t− 1;

iii) there exists a constant β ∈ (0, 1) such that√
ρ

(
Et
[
P (t)TP (t)

]
− 11T

n

)
≤ β, (4.3)

where ρ(·) denotes the spectral radius and the expectation Et[·] is taken with

respect to the distribution of P (t) at time t.

Assumption 4.2 has been used for analyzing the convergence of a host of de-

centralized algorithms; see, e.g., [4, 33, 111]. An example of {P (t)}t≥0 that satisfies

44

Assumption 4.2 is in the random gossip setting, where at time t, one communi-

cation link (i, j) is sampled from an underlying graph G. Suppose that we take

P (t) = I − 1
2
(ei − ej)(ei − ej)T , where I is the identity matrix and ei ∈ Rn is a vector

with 1 in the i-th position and 0 otherwise. Then, it is known that Assumption 4.2

is satisfied provided that the underlying graph G is connected; see, e.g., [4].

4.3.3 Centralized Dual Averaging Method

Our algorithm is based on the dual averaging method that was originally proposed in

[69]. It can be directly applied to solving the considered Problem (4.1) in a centralized

manner. In particular, let d be a strongly convex function with modulus 1 on dom(h)

such that

x(0) = argmin
x∈Rm

d(x) ∈ dom(h) and d(x(0)) = 0. (4.4)

Then, the dual averaging method starts with x(0) and iteratively generates {x(t)}t≥1
according to

x(t) = argmin
x∈Rm

{
t−1∑
τ=0

aτ+1`(x;x(τ)) + d(x)

}
, (4.5)

where

at =
a

(1− aµ)t
, t = 1, 2, . . . (4.6)

for some constant a > 0, ` : Rm × Rm → R is defined as

`(y; z) := f(z) + 〈∇f(z), y − z〉+
µ

2
‖y − z‖2 + h(y) (4.7)

for any y, z ∈ Rm, and f = 1
n

∑n
i=1 fi. It is worth noting that for the strongly convex

case (i.e., µ > 0), the sequence {at}t≥1 is geometrically increasing; for the general

convex case (i.e., µ = 0), the sequence {at}t≥1 equals the constant a. Moreover, both

(4.5) and (4.6) requires the modulus µ of strong convexity. In practice, one can use

a lower bound of µ or simply set µ = 0 in (4.5) and (4.6) if no valid lower bound is

available.

The following theorem summarizes the convergence property of the above dual

averaging method, which is a direct extension of Theorem 3.2 in [56] to problems with

non-smooth regularization terms. For completeness, we provide a proof of Theorem

4.1.

45

Theorem 4.1. Suppose that Assumption 4.1 is satisfied. Let {x(t)}t≥0 be the sequence

of iterates generated by the dual averaging method (4.5). If a ≤ L−1, then

F (x̃(t))− F (x∗) ≤ d(x∗)

At
, t = 1, 2, . . . ,

where At =
∑t

τ=1 aτ and x̃(t) = A−1t
∑t

τ=1 aτx
(τ). Moreover, the following estimates

on A−1t holds:

i) If µ > 0, then
1

At
≤ (1− aµ)t

a
.

ii) If µ = 0, then
1

At
=

1

at
.

From Theorem 4.1, one can observe that the dual averaging method, when applied

to solving Problem (4.1) in a centralized manner, attains global linear convergence if

µ > 0 and global O(1/t) convergence rate if µ = 0.

Before presenting the proof of Theorem 4.1, we first provide a technical lemma.

Lemma 4.1. Suppose that the premise of Theorem 4.1 holds. For the sequence

{x(t)}t≥0 generated by (4.5), it holds that

t∑
τ=1

aτ
(
〈∇f(x(τ−1)), x(τ) − x∗〉+ h(x(τ))− h(x∗)

)
≤ d(x∗)− 1

2

t∑
τ=1

(
1 + µAτ

)
‖x(τ) − x(τ−1)‖2 − µ

2

t∑
τ=1

aτ‖x(τ−1) − x∗‖2.
(4.8)

Proof. We define

rt(x) :=
t−1∑
τ=0

aτ+1`(x;x(τ)) + d(x), t = 0, 1, . . . ,

where r0(x) = d(x) and `(x;x(τ)) is defined in (4.7). It then follows that for any

τ ≥ 1,

rτ (x) = rτ−1(x) + aτ

(
〈∇f(x(τ−1)), x〉+

µ

2
‖x− x(τ−1)‖2 + h(x)

)
. (4.9)

46

By (4.5), we know that x(τ−1) = argminx∈Rm rτ−1(x). Moreover, rτ−1(x) is strongly

convex with modulus 1 + µAτ−1. Then, we obtain

rτ−1(x)− rτ−1(x(τ−1)) ≥
1

2
(1 + µAτ−1)‖x− x(τ−1)‖2, ∀x ∈ dom(h).

Therefore,

0 ≤rτ−1(x(τ))− rτ−1(x(τ−1))−
1

2

(
1 + µAτ−1

)
‖x(τ) − x(τ−1)‖2

=rτ (x
(τ))− aτ

(
〈∇f(x(τ−1)), x(τ)〉+

µ

2
‖x(τ) − x(τ−1)‖2 + h(x(τ))

)
− rτ−1(x(τ−1))−

1

2

(
1 + µAτ−1

)
‖x(τ) − x(τ−1)‖2,

where the equality follows from (4.9). This, together with Aτ = Aτ−1 + aτ , leads to

aτ
(
〈∇f(x(τ−1)), x(τ)〉+ h(x(τ))

)
≤ rτ (x

(τ))− rτ−1(x(τ−1))−
1

2

(
1 + µAτ

)
‖x(τ) − x(τ−1)‖2.

Summing up the above inequality from τ = 1 to τ = t yields

t∑
τ=1

aτ
(
〈∇f(x(τ−1)), x(τ)〉+ h(x(τ))

)
≤ rt(x

(t))− r0(x(0))−
t∑

τ=1

1

2

(
1 + µAτ

)
‖x(τ) − x(τ−1)‖2

= rt(x
(t))−

t∑
τ=1

1

2

(
1 + µAτ

)
‖x(τ) − x(τ−1)‖2,

(4.10)

47

where the equality follows from r0(x) = d(x) and (5.2). Then, we turn to consider

t∑
τ=1

aτ 〈∇f(x(τ−1)),−x∗〉

≤max
x∈Rm

{
t∑

τ=1

aτ

(
〈∇f(x(τ−1)),−x〉 − µ

2
‖x− x(τ−1)‖2 − h(x)

)
− d(x)

}

+ d(x∗) +
t∑

τ=1

aτ

(µ
2
‖x(τ−1) − x∗‖2 + h(x∗)

)
=− min

x∈Rm

{
t∑

τ=1

aτ

(
〈∇f(x(τ−1)), x〉+

µ

2
‖x− x(τ−1)‖2 + h(x)

)
+ d(x)

}

+ d(x∗) +
t∑

τ=1

ak

(µ
2
‖x(k−1) − x∗‖2 + h(x∗)

)
=− rt(x(t)) + d(x∗) +

t∑
τ=1

aτ

(µ
2
‖x(τ−1) − x∗‖2 + h(x∗)

)
.

(4.11)

Upon summing up (4.10) and the above inequality, we obtain (4.8) as desired.

Proof of Theorem 4.1. Recall that f = 1
n

∑n
i=1 fi. Using (2.3) and (2.1) sequentially,

we have

aτ
(
f(x(τ))− f(x∗)

)
≤ aτ

(
L

2
‖x(τ) − x(τ−1)‖2 + f(x(τ−1)) + 〈∇f(x(τ−1)), x(τ) − x(τ−1)〉 − f(x∗)

)
≤ aτ

(L
2
‖x(τ) − x(τ−1)‖2 +

〈
∇f(x(τ−1)), x(τ) − x∗

〉
− µ

2
‖x(τ−1) − x∗‖2

)
.

Upon summing up the above inequality from τ = 1 to τ = t and using Lemma 4.1

and F = f + h, we obtain

t∑
τ=1

aτ
(
F (x(τ))− F (x∗)

)
≤

t∑
τ=1

(
aτ
2

(
L‖x(τ) − x(τ−1)‖2 − 1 + µAτ

aτ
‖x(τ) − x(τ−1)‖2

))
+ d(x∗).

48

According to (4.6) and At =
∑t

τ=1 aτ , one has

1 + µAτ
aτ

=
(1
1−aµ)τ

a
1−aµ

(
1

1−aµ

)τ−1 =
1

a
. (4.12)

By substituting this into the above inequality and using the condition a ≤ L−1, we

obtain

t∑
τ=1

aτ
(
F (x(τ))− F (x∗)

)
≤
(
L− 1

a

) t∑
τ=1

aτ
2
‖x(τ) − x(τ−1)‖2 + d(x∗) ≤ d(x∗).

Upon dividing both sides of the above inequality by At and using the convexity of F

and x̃(t) = A−1t
∑t

τ=1 aτx
(τ), we obtain

F (x̃(t))− F (x∗) ≤ d(x∗)

At
.

Now it remains to show the statements i) and ii) in Theorem 4.1. By the definitions

of at and At, we readily have At = at when µ = 0 and

1

At
=

µ

(1
1−aµ)t − 1

when µ > 0. Moreover, by 0 < a < L−1 and L ≥ µ, one has 0 < aµ < 1 when µ > 0.

This, together with the above identity, yields that when µ > 0,

1

At
=

µ

(1
1−aµ)t − 1

=
µ(1− aµ)t

1− (1− aµ)t
≤ µ(1− aµ)t

1− (1− aµ)
=

(1− aµ)t

a
.

This completes the proof.

4.4 Algorithm and Convergence Results

The standard dual averaging method (4.5) requires the computation of
∑n

i=1∇fi(x(t))
at every iteration t. Thus, it cannot be executed in a decentralized manner, where

communication can only occur between each connected pair of agents. In this section,

we propose a decentralized dual averaging (DDA) method for solving Problem (4.1)

and show that it has a nice convergence guarantee that is similar to its centralized

49

counterpart. In particular, we show that if µ > 0, then the proposed DDA method

attains a global linear rate of convergence. To the best of our knowledge, this is

the first global linear convergence result for decentralized composite optimization

problems in stochastic networks.

To motivate the design of DDA, observe that by letting At =
∑t

τ=1 aτ and

z(t) =
t−1∑
τ=0

aτ+1

(
1

n

n∑
i=1

∇fi(x(τ))− µx(τ)
)
,

the update rule (4.5) can be written as

x(t) = argmin
x∈Rm

{
〈z(t), x〉+ At

(µ
2
‖x‖2 + h(x)

)
+ d(x)

}
.

Thus, it is sensible for each agent to locally estimate the global variable z(t) to fulfill

decentralization. To this end, we propose the following consensus-based estimation

protocol:

z
(t)
i =

n∑
j=1

p
(t−1)
ij

(
z
(t−1)
j + ats

(t−1)
j

)
, (4.13a)

s
(t)
i =

n∑
j=1

p
(t−1)
ij s

(t−1)
j +

(
∇fi(x(t)i)− µx(t)i

)
−
(
∇fi(x(t−1)i)− µx(t−1)i

)
,

where p
(t)
ij is the (i, j)-th element in the mixing matrix P (t), z

(t)
i is the i-th agent’s

local estimate of z(t) at time t and s
(t)
i is an auxiliary vector for reducing consensus

error. Equipped with these, each agent i can perform a local computation to update

its estimate of the global variable x(t):

x
(t)
i = argmin

x∈Rm

{
〈z(t)i , x〉+ At

(µ
2
‖x‖2 + h(x)

)
+ d(x)

}
. (4.14)

We denote by N (t)
i the set of agents that are connected with agent i at time t. Then,

the entire algorithm can be summarized in Algorithm 3.

Before proceeding, we make some remarks on Algorithm 3:

i) Algorithm 3 provides a unified treatment for both general convex and strongly

convex cases. In particular, if µ = 0, we simply set at = a and At = at for all t.

ii) To satisfy the condition in (5.2), one can choose an arbitrary x(0) ∈ dom(h) and

50

Algorithm 3 Decentralized Dual Averaging for Problem (4.1)

Input: µ ≥ 0, a > 0, x(0) ∈ dom(h) and a strongly convex function d with modulus
1 on dom(h) such that (5.2) holds

Initialize: a0 = a, A0 = 0, x
(0)
i = x(0), z

(0)
i = 0, and s

(0)
i = ∇fi(x(0))− µx(0) for all

i = 1, . . . , n
for t = 1, 2, · · · do

set at = at−1/(1− aµ) and At = At−1 + at
In parallel (task for agent i, i = 1, . . . , n)

collect z
(t−1)
j and s

(t−1)
j from all agents j ∈ N (t−1)

i

update z
(t)
i and s

(t)
i by (4.13)

compute x
(t)
i by (4.14)

broadcast z
(t)
i and s

(t)
i to all agents j ∈ N (t)

i

end for

let

d(x) := d̃(x)− d̃(x(0))− 〈∇d̃(x(0)), x− x(0)〉,

where d̃ is any strongly convex function with modulus 1, e.g., d̃(x) = ‖x‖2/2.

It is easy to verify that such x(0) and d satisfy (5.2).

iii) Similar to the standard dual averaging method, we assume that the subproblem

(4.14) can be computed easily. This holds for a host of applications. For

example, if we choose d(x) = ‖x − x(0)‖2, then the subproblem (4.14) reduces

to computing the proximal operator of h, which admits a closed-form solution

in many applications.

iv) Compared to existing decentralized optimization algorithms, a different dy-

namic consensus protocol is tailored within the dual averaging framework. With

it, each agent is able to track 1
n

∑n
i=1∇fi(x(t)) and µx(t) simultaneously. An-

other notable feature is that when µ > 0, the estimated information {s(t−1)j : j ∈
N (t−1)
i } enters the consensus model z

(t)
i with exponentially increasing weights

in (4.13a), and therefore necessitates new analysis in quantifying the consensus

error.

Next, we present the convergence guarantee of Algorithm 3. To proceed, we

introduce the following 2× 2 matrix:

M =

[
β β

a(L+µ)
1−aµ

(
β + 1

1−aµ

)
β+aβ(L+µ)

1−aµ

]
, (4.15)

51

where L and µ are given in Assumption 4.1, β ∈ (0, 1) is defined in Assumption 4.2,

and a is an input of Algorithm 3. The matrix M is key to our convergence analysis

as it defines the dynamic of the iterates generated by Algorithm 3. Let ρ(M) be the

spectral radius of M. To facilitate the presentation of our convergence analysis, we

define
ν := ρ(M)

√
1− aµ,

η := (1− aµ)(1− ν)2,

θ := (1− aµ)(1− ν2).

(4.16)

The following result on ν, η, and θ is fundamental to our convergence analysis, whose

proof can be found in Section 4.6.1.

Lemma 4.2. The value of ν monotonically increases with a if a ∈ (0, 1/µ). Moreover,

if
1

a
>
β(2L+ 3µ)

(1− β)2
+ µ, (4.17)

then ν < 1. Consequently, η and θ are both positive and monotonically decrease with

a if (4.17) is satisfied.

Equipped with Lemma 4.2, we are ready to present the main results of this paper,

which pertain to the convergence property of Algorithm 3. Similar to some existing

works, we first present the convergence property of an auxiliary sequence {y(t)}t≥0,
which would then immediately imply the convergence property of the sequence {x(t)i :

i = 1, . . . , n}t≥0 generated by Algorithm 3. In particular, we define

y(t) = argmin
x∈Rm

{
〈z(t), x〉+ At

(µ
2
‖x‖2 + h(x)

)
+ d(x)

}
, (4.18)

where y(0) = x(0), z(t) = 1
n

∑n
i=1 z

(t)
i and {z(t)i : i = 1, . . . , n}t≥0 are generated by

Algorithm 3.

Theorem 4.2. Suppose that Assumptions 4.1 and 4.2 are satisfied. Besides, suppose

that the constant a in Algorithm 3 satisfies (4.17) and

γ :=
1

a
− 2L+ µ− 4L− 2µ

η
> 0, (4.19)

where η is defined in (4.16). Then, for all t ≥ 1, it holds that

E[F (ỹ(t))]− F (x∗) ≤ C

At
, (4.20)

52

where ỹ(t) = A−1t
∑t

τ=1 aτy
(τ) with y(τ) defined in (4.18),

C := d(x∗) +
a
(
2L− µ

)
σ2

nθ(L+ µ)2
> 0,

and σ2 is the variance of local gradients at t = 0, i.e.,

σ2 =
n∑
i=1

∥∥∥∥∥∇fi(x(0))− 1

n

n∑
j=1

∇fj(x(0))

∥∥∥∥∥
2

.

Moreover, for all t ≥ 1 and i = 1, . . . , n, we have

E[‖x̃(t)i − ỹ(t)‖2] ≤
D

At
, (4.21)

where x̃
(t)
i = A−1t

∑t
τ=1 aτx

(τ)
i and

D :=
4nC

ηγ
+

2aσ2

θ(L+ µ)2
> 0.

Theorem 4.2 can be regarded as a decentralized counterpart of Theorem 4.1. Due

to the presence of consensus error in the decentralized setting, Theorem 4.2 requires

a more delicate choice of a for convergence. Nevertheless, an a that satisfies the

condition in Theorem 4.2 always exists. In particular, upon using Lemma 4.2, it is

not hard to observe that there exists an ā ∈ (0, µ−1) such that (4.17) and (4.19)

are both satisfied for any a ∈ (0, ā). While finding the largest possible ā is difficult

because it requires solving a nonlinear equation associated with (4.19), a conservative

estimation of ā can be obtained. Recall ρ(M) = λ1 = (ξ1 + ξ2)/2, where ξ1, ξ2 are

defined in (4.40). Then, one can verify that by taking a = 1/(2µ), we have

η

(
1

2µ

)
=

(
1− β(

√
2 + L

2
√
2µ

)−
√

β2L2

8µ2
+ β(β + 1)(1 + L

µ
)
)2

2
.

We have shown in Lemma 4.2 that η decreases with a if (4.17) is satisfied, so

η(a) > η

(
1

2µ

)

53

for all a satisfying 0 < a < 1/(2µ) and (4.17). Then, as long as a satisfies

1

a
>
β(2L+ 3µ)

(1− β)2
+ µ,

1

a
> 2L− µ+

4L− 2µ

η(1
2µ)

= 2L− µ+
8L− 4µ(

1− β(
√
2 + L

2
√
2µ
)−

√
β2L2

8µ2
+ β(β + 1)(1 + L

µ)
)2 ,

1

a
> 2µ,

(4.22)

then a also satisfies (4.17) and (4.19). This implies that we can take

a = min


1

2µ
,

1
β(2L+3µ)
(1−β)2 + µ

,

(
1− β(

√
2 + L

2
√
2µ

)−
√

β2L2

8µ2 + β(β + 1)(1 + L
µ)
)2

(2L− µ)
(
4 +

(
1− β(

√
2 + L

2
√
2µ

)−
√

β2L2

8µ2 + β(β + 1)(1 + L
µ)
)2)

 .

It would be interesting to estimate the order of ā when the condition number κ = L/µ

goes to∞ and the β, which relates to the connectivity of the stochastic network, goes

to 1. By the standard limiting argument, one can verify that the dominating term

inside the above brace is the second term, which is in the order O((1− β)2/L).

As a consequence of Theorem 4.2, we show that Algorithm 3 attains a global linear

rate of convergence if µ > 0.

Corollary 4.1. Suppose that the premise of Theorem 4.2 holds. If µ > 0, then for

all t ≥ 1 and i = 1, . . . , n, we have

E[‖x̃(t)i − x∗‖2] ≤
2

a

(
2C

µ
+D

)
(1− aµ)t, (4.23)

where x̃
(t)
i = A−1t

∑t
τ=1 aτx

(τ)
i and C,D are positive constants given in Theorem 4.2.

Moreover, for the case µ = 0, Theorem 4.2 implies that Algorithm 3 has a global

O(1/t) rate of convergence.

Corollary 4.2. Suppose that the premise of Theorem 4.2 holds. If µ = 0, then for

all t ≥ 1 and i = 1, . . . , n, we have

E[F (ỹ(t))]− F (x∗) ≤ C

at
, (4.24)

E[‖x̃(t)i − ỹ(t)‖2] ≤
D

at
, (4.25)

54

where ỹ(t) = 1
t

∑t
τ=1 y

(τ), x̃
(t)
i = 1

t

∑t
τ=1 x

(τ)
i , and C,D are positive constants given in

Theorem 4.2. In addition, if h ≡ 0 in Problem (4.1), d(x) = ‖x‖2/2, and

1

a
> 2L ·max

{
β

(1− β)2
, 1 +

6

(1− ν)2

}
, (4.26)

where β and ν are given in (4.3) and (4.16), respectively, then we further have

E[F (x̃
(t)
i)]− F (x∗) ≤ 1

t

(
n‖x∗‖2

2a
+

6σ2

L
(
1− ν2

)) . (4.27)

Note that when h 6≡ 0, we can only ensure the O(1/t) rate for the objective value

at the auxiliary sequence {ỹ(t)}t≥1 and the distance of each agent’s local estimate x̃
(t)
i

to ỹ(t); see (4.24) and (4.25) respectively. It remains open whether the O(1/t) rate

for the objective value at {x̃(t)i }t≥1, as in (4.27), can be established when h 6≡ 0.

4.5 Proofs of Convergence Results

In this section, we provide the proofs of Theorem 4.2, Corollary 4.1, and Corollary

4.2. Throughout this section, we assume that Assumptions 4.1 and 4.2 are satisfied.

Before proceeding, we introduce the following notation:

x(t) =


x
(t)
1
...

x
(t)
n

 ,y(t) =


y(t)

...

y(t)

 ,

∆x(t−1) = x(t)−x(t−1), ∆y(t−1) = y(t)−y(t−1), x(t) =
1

n

n∑
i=1

x
(t)
i , g

(t) =
1

n

n∑
i=1

∇fi(x(t)i).

To start, we show the following result that quantifies the deviation between local

estimates {x(t)i }t≥0 and the auxiliary sequence {y(t)}t≥0.

Lemma 4.3. Suppose that a satisfies (4.17). Then, for all t ≥ 0, it holds that

t∑
τ=0

aτ+1E[‖x(τ) − y(τ)‖2] ≤ 2

η

t−1∑
τ=0

aτ+1E[‖∆y(τ)‖2] +
2aσ2

θ(L+ µ)2
, (4.28)

where σ is defined in Theorem 4.2, η and θ are given in (4.16), and both η and θ are

positive due to (4.17) and Lemma 4.2.

55

Lemma 4.3 states that if a satisfies (4.17), then the accumulative deviation be-

tween y(t) and x(t) admits an upper bound constituted by the successive change of

y(t) plus a constant.

Next, we present the following lemma that pertains to a descent-like property of

Algorithm 3.

Lemma 4.4. For all t ≥ 1, it holds that

t∑
τ=1

aτ
(〈
g(τ−1), y(τ) − x∗

〉
+ h(y(τ))− h(x∗)

)
≤ µ

2

t∑
τ=1

aτ
(
‖x(τ−1) − x∗‖2 − ‖x(τ−1) − y(τ)‖2

)
− 1

2

t∑
τ=1

(1 + µAτ−1)‖y(τ) − y(τ−1)‖2 + d(x∗). (4.29)

Equipped with the above two technical lemmas, we are ready to present the proof

of Theorem 4.2.

Proof of Theorem 4.2. For all τ ≥ 0, one has

1

n

n∑
i=1

aτ
(
fi(y

(τ))− fi(x∗)
)

≤ 1

n

n∑
i=1

aτ

(
fi(x

(τ−1)
i)− fi(x∗) +

L

2
‖y(τ) − x(τ−1)i ‖2 + 〈∇fi(x(τ−1)i), y(τ) − x(τ−1)i 〉

)
≤ 1

n

n∑
i=1

aτ

(L
2
‖y(τ) − x(τ−1)i ‖2 − µ

2
‖x(τ−1)i − x∗‖2 + 〈∇fi(x(τ−1)i), y(τ) − x∗〉

)
=

1

n

n∑
i=1

aτ

(L
2
‖y(τ) − x(τ−1)i ‖2 − µ

2
‖x(τ−1)i − x∗‖2

)
+ aτ

〈
g(τ−1), y(τ) − x∗

〉
, (4.30)

where the two inequalities follow from (2.3) and (2.1), respectively, and the equality

uses the definition of g(τ−1). Upon summing up (4.30) from τ = 1 to τ = t and using

56

Lemma 4.4 and F = 1
n

∑n
i=1 fi + h, we obtain

t∑
τ=1

aτ
(
F (y(τ))− F (x∗)

)
≤ 1

n

t∑
τ=1

n∑
i=1

aτ

(L
2
‖y(τ) − x(τ−1)i ‖2 − µ

2
‖x(τ−1)i − x∗‖2

)
+
µ

2

t∑
τ=1

aτ
(
‖x(τ−1) − x∗‖2 − ‖x(τ−1) − y(τ)‖2

)
− 1

2

t∑
τ=1

(1 + µAτ−1)‖y(τ) − y(τ−1)‖2 + d(x∗).

Using the definition of ∆y(τ−1) and the fact

‖x(τ−1) − x∗‖2 =

∥∥∥∥∥ 1

n

n∑
i=1

x
(τ−1)
i − x∗

∥∥∥∥∥
2

≤ 1

n

n∑
i=1

‖x(τ−1)i − x∗‖2,

the above inequality can be simplified to

t∑
τ=1

aτ
(
F (y(τ))− F (x∗)

)
≤ 1

n

t∑
τ=1

n∑
i=1

aτ

(
L

2
‖y(τ) − x(τ−1)i ‖2 − µ

2
‖yτ − x(τ−1)‖2

)

− 1

n

t∑
τ=1

1 + µAτ−1
2

‖∆y(τ−1)‖2 + d(x∗). (4.31)

57

By the definition of x(τ−1), x(τ), and y(τ), one can verify

n∑
i=1

‖y(τ) − x(τ−1)‖2

=
n∑
i=1

(
‖x(τ−1)‖2 − ‖x(τ−1)i ‖2 + ‖y(τ) − x(τ−1)i ‖2

)
=

n∑
i=1

(
‖x(τ−1) − y(τ−1)‖2 − ‖x(τ−1)i − y(τ−1)‖2

)
+

n∑
i=1

‖y(τ) − x(τ−1)i ‖2

≥
n∑
i=1

(
‖y(τ) − x(τ−1)i ‖2 − ‖x(τ−1)i − y(τ−1)‖2

)
= ‖y(τ) − x(τ−1)‖2 − ‖y(τ−1) − x(τ−1)‖2.

Besides, recall that F is convex , ỹ(t) = A−1t
∑t

τ=1 aτy
(τ), and At =

∑t
τ=1 aτ . These,

together with (4.31), yields

At
(
F (ỹ(t))− F (x∗)

)
≤ 1

n

t∑
τ=1

aτ

(
L− µ

2
‖y(τ) − x(τ−1)‖2 +

µ

2
‖x(τ−1) − y(τ−1)‖2

)
+ d(x∗)

− 1

n

t∑
τ=1

1 + µAτ−1
2

‖∆y(τ−1)‖2.

Upon using the inequality

‖y(τ) − x(τ−1)‖2 ≤ 2‖∆y(τ−1)‖2 + 2‖y(τ−1) − x(τ−1)‖2,

we further obtain

At
(
F (ỹ(t))− F (x∗)

)
≤ 1

n

t∑
τ=1

aτ

(
L− µ− 1 + µAτ−1

2aτ

)
‖∆y(τ−1)‖2

+
2L− µ

2n

t∑
τ=1

aτ‖x(τ−1) − y(τ−1)‖2 + d(x∗)

=
2L− µ− 1

a

2n

t∑
τ=1

aτ‖∆y(τ−1)‖2 +
2L− µ

2n

t∑
τ=1

aτ‖x(τ−1) − y(τ−1)‖2 + d(x∗),

58

where the equality follows from the identity

1 + µAτ−1
aτ

=
1− aµ
a

,

which holds due to the update rule of {at}t≥0 and {At}t≥0. Upon taking expectation

on both sides of the above inequality and using Lemma 4.3, one has

At
(
E[F (ỹ(t))]− F (x∗)

)
+

γ

2n

t∑
τ=1

aτE[‖∆y(τ−1)‖2]

≤ d(x∗) +
(2L− µ)aσ2

nθ(L+ µ)2
= C, (4.32)

where γ > 0 is defined in (4.19). This implies (6.25) as desired. Moreover, it follows

from (4.32) and At
(
E[F (ỹ(t))]− F (x∗)

)
≥ 0 that

t∑
τ=1

aτE[‖∆y(τ−1)‖2] ≤ 2nC

γ
.

This, together with the convexity of ‖·‖2, Jensen’s Inequality, at ≤ at+1 for all t ≥ 0,

and Lemma 4.3, yields

AtE[‖x̃(t) − ỹ(t)‖2] ≤
t∑

τ=1

aτE[‖x(τ) − y(τ)‖2] ≤
t∑

τ=0

aτ+1E[‖x(τ) − y(τ)‖2]

≤ 2

η

t−1∑
τ=0

aτ+1E[‖∆y(τ)‖2] +
2aσ2

θ(L+ µ)2

≤ 4nC

ηγ
+

2aσ2

θ(L+ µ)2
= D,

which implies (4.21) as desired.

Next, we provide the proof of Corollary 4.1.

Proof of Corollary 4.1. Since µ > 0, we obtain from the update of At in Algorithm 3

that
1

At
=

µ(
1

1−aµ

)t
− 1
≤ (1− aµ)t

a
.

Besides, upon using the fact that F is strongly convex with modulus µ, one has that

59

for all t ≥ 0 and i = 1, . . . , n,

‖x(t)i − x∗‖2 ≤ 2‖x(t)i − y(t)‖2 + 2‖y(t) − x∗‖2

≤ 2‖x(t)i − y(t)‖2 +
1

µ

(
F (y(t))− F (x∗)

)
.

These, together with (6.25) and (4.21), yields (4.23).

Proof of Corollary 4.2. The upper bounds in (4.24) and (4.25) directly follow from

the results in Theorem 4.2 and
1

At
=

1

at
.

For the special case h(x) = 0 and d(x) = 1
2
‖x‖2, we consider

F (x
(τ)
i)− F (y(τ)) = f(x

(τ)
i)− f(y(τ))

≤ 1

n

n∑
j=1

(
fj(x

(τ)
i)− 〈∇fj(x(τ)j), y(τ) − x(τ)j 〉 − fj(x

(τ)
j)
)

≤ 1

n

n∑
j=1

(
〈∇fj(x(τ)j), x

(τ)
i − x

(τ)
j 〉 − 〈∇fj(x

(τ)
j), y(τ) − x(τ)j 〉+

L

2
‖x(τ)i − y(τ) + y(τ) − x(τ)j ‖2

)

=
1

n

n∑
j=1

(
〈∇fj(x(τ)j), x

(τ)
i − y(τ)〉+ L‖x(τ)i − y(τ)‖2 + L‖y(τ) − x(τ)j ‖2

)
=
〈
g(τ), x

(τ)
i − y(τ)

〉
+ L‖x(τ)i − y(τ)‖2 +

L

n
‖y(τ) − x(τ)‖2,

(4.33)

where the two inequalities follow from (2.1) and (2.3), respectively. The closed-form

solutions for (4.14) and (4.18) can be derived as

x
(τ)
i = − z

(τ)
i

1 + µAτ
, y(τ) = − z(τ)

1 + µAτ
.

Therefore y(τ) = x(τ). We sum up (4.33) from i = 1 to i = n to get

n∑
i=1

(
F (x

(τ)
i)− F (y(τ))

)
≤ 2L‖y(τ) − x(τ)‖2. (4.34)

60

Upon summing up (4.34) from τ = 1 to τ = t and using the convexity of F , we obtain

t

n∑
i=1

(
F (x̃

(t)
i)− F (y(τ))

)
≤

t∑
τ=1

n∑
i=1

(
F (x

(τ)
i)− F (y(τ))

)
≤ 2L

t∑
τ=1

‖y(τ) − x(τ)‖2,

(4.35)

where x̃
(t)
i = 1

t

∑t
τ=1 x

(τ)
i . After taking expectation on both sides of the above in-

equality and using Lemma 4.3 with aτ = a, we get

t

n∑
i=1

E
[
F (x̃

(t)
i)− F (y(t))

]
≤ 4L

η

t∑
τ=1

E[‖∆y(τ−1)‖2] +
4Lσ2

θ(L+ µ)2
=

4L

(1− ν)2

t∑
τ=1

E[‖∆y(τ−1)‖2] +
4σ2

L(1− ν2)
.

(4.36)

By setting µ = 0 and d(x∗) = 1
2
‖x∗‖2 in (4.32), we have

at
(
E[F (ỹ(t))]− F (x∗)

)
≤ −

(
1

2a
− L− 2L

(1− ν2)

)
a

n

t∑
τ=1

E[‖∆y(τ−1)‖2] +
‖x∗‖2

2
+

2aσ2

nL(1− ν2)
.

(4.37)

Also, by multiplying n/a > 0 on both sides of the above inequality and adding the

resultant inequality to (4.36), we obtain

t
(
E[F (x̃

(t)
i)]− F (x∗)

)
≤ t

n∑
i=1

(
E[F (x̃

(t)
i)]− F (x∗)

)
≤ −

(1

2a
− L− 6L

(1− ν)2

) t∑
τ=1

E[‖∆y(τ−1)‖2] +
n

2a
‖x∗‖2 +

6σ2

L
(
1− ν2

) . (4.38)

Now, using the condition in (4.26), we arrive at (4.27).

61

4.6 Proofs of Supporting Lemmas for Theorem 4.2

4.6.1 Proof of Lemma 4.2

Proof of Lemma 4.2. We first show that ν monotonically increases with a if a ∈
(0, 1/µ). Recall that M is defined in (4.15). Then, the characteristic polynomial of

M, denoted by p(λ), is a quadratic function:

p(λ) : = det(λI −M) = (λ−M11)(λ−M22)−M12M21

= λ2 − β(2 + aL)

1− aµ
λ+

β2

1− aµ
− aβ(L+ µ)

(1− aµ)2
.

(4.39)

Using this, we obtain that M has two real eigenvalues λ1 = (ξ1 + ξ2)/2 and λ2 =

(ξ1 − ξ2)/2, where

ξ1 =
β(2 + aL)

1− aµ
, ξ2 =

√
a2β2L2 + 4aβ(β + 1)(L+ µ)

1− aµ
. (4.40)

Notice that ξ1 > 0 and ξ2 > 0 for any a ∈ (0, 1/µ). Thus, we have λ1 > 0 and

|λ1| > |λ2| for any a ∈ (0, 1/µ). It then follows that ρ(M) = λ1 and

ν(a) = ρ(M)
√

1− aµ = λ1
√

1− aµ =
β(2 + aL)

2
√

1− aµ
+

√
a2β2L2 + 4aβ(β + 1)(L+ µ)

2
√

1− aµ
.

(4.41)

By routine calculation, one can verify that ν ′(a) > 0 if a ∈ (0, µ−1). Therefore, the

value of ν monotonically increases with a if a ∈ (0, µ−1).

Next, we show that ν < 1 if (4.17) is satisfied. Note that (4.17) implies that

0 < a < µ−1 and

β(2L+ 3µ)

(1− β)2
<

1

a
− µ =

1− aµ
a

.

It then follows that 1− aµ ∈ (0, 1] and hence

0 < (1− β)2 − aβ(2L+ 3µ)

1− aµ
= 1 + β2 −

(
β +

β + aβ(L+ µ)

1− aµ

)
− aβ(L+ µ)

1− aµ
.

62

Upon dividing both sides of the above inequality by 1− aµ, we obtain

0 <
1

1− aµ
+

β2

1− aµ
− 1

1− aµ
(
β +

β + aβ(L+ µ)

1− aµ
)
− aβ(L+ µ)

(1− aµ)2

≤ 1

1− aµ
+

β2

1− aµ
− 1√

1− aµ
(
β +

β + aβ(L+ µ)

1− aµ
)
− aβ(L+ µ)

(1− aµ)2

= p

(
1√

1− aµ

)
, (4.42)

where the second inequality is due to 1 − aµ ∈ (0, 1] and the equality follows from

(4.39). Besides, using the definition of characteristic polynomial, one further has

0 < p

(
1√

1− aµ

)
=

(
1√

1− aµ
−M11

)(
1√

1− aµ
−M22

)
−M12M21.

By (4.15), β ∈ (0, 1), and 1 − aµ ∈ (0, 1], we have that M12 > 0, M21 > 0, and

1/
√

1− aµ > M11. It then follows that 1/
√

1− aµ > M22 and hence

p′
(

1√
1− aµ

)
=

2√
1− aµ

−M11 −M22 > 0.

This, together with the fact that q is a quadratic function, implies that q(λ) is mono-

tonically increasing on [1/
√

1− aµ,∞). It then follows from (4.42) that

1√
1− aµ

> λ1 = ρ(M),

which implies that ν < 1.

4.6.2 Proof of Lemma 4.3

In this subsection, we first present three technical lemmas, and then provide the proof

of Lemma 4.3. Before proceeding, we introduce the following notation:

x(t) =


x
(t)
1
...

x
(t)
n

 , s(t) =


s
(t)
1
...

s
(t)
n

 , z(t) =


z
(t)
1
...

z
(t)
n

 , ∇(t) =


∇f1(x(t)1)

...

∇fn(x
(t)
n)

 , y(t) =


y(t)

...

y(t)

 ,
(4.43)

63

x(t) =
1

n

n∑
i=1

x
(t)
i , g(t) =

1

n

n∑
i=1

∇fi(x(t)i), s(t) =
1

n

n∑
i=1

s
(t)
i , z(t) =

1

n

n∑
i=1

z
(t)
i ,

(4.44)

s̃(t) = s(t) − 1⊗ s(t), z̃(t) = z(t) − 1⊗ z(t), ∆x(t−1) = x(t) − x(t−1), (4.45)

∆x(t−1) = x(t) − x(t−1), ∆y(t−1) = y(t) − y(t−1), ∆y(t−1) = y(t) − y(t−1), (4.46)

where 1 is an all-one column vector of dimension n. We remark that bold lowercase

letters represent a vector of dimension m×n, while normal lowercase letters represent

a vector of dimension m. Equipped with these notation, we can re-write the update

rule (4.13) in the following compact form:

z(t) = P(t−1)
(
z(t−1) + ats

(t−1)
)
, (4.47a)

s(t) = P(t−1)s(t−1) +∇(t) −∇(t−1) − µ∆x(t−1), (4.47b)

where P(t) = P (t) ⊗ I with I being an identity matrix of size n× n.

For a real-valued random vector x, we define

‖x‖E =
√
E[‖x‖2]. (4.48)

Accordingly, for a square random matrix W , we define ‖W‖E = sup‖x‖E=1‖Wx‖E.

Given two real-valued random vectors x, y, the Minkowski inequality [22] states that

‖x+ y‖E ≤ ‖x‖E + ‖y‖E. (4.49)

Now, we are ready to present three technical lemmas.

Lemma 4.5. For the sequences {s(t)}t≥0 and {z(t)}t≥0 defined in (4.44), one has that

for any t ≥ 0,

s(t) = g(t) − µx(t), z(t) =
t−1∑
τ=0

aτ+1s
(τ). (4.50)

Proof. We prove by an induction argument. Since s
(0)
i = ∇fi(x(0)) − µx(0), z(0)i = 0

and x
(0)
i = x(0) for all i, we readily have that (4.50) holds when t = 0. Now, suppose

that (4.50) holds for t − 1. From (4.43) and (4.44), we observe that the following

64

identities hold for any τ ≥ 0:

x(τ) =
1

n
(1T⊗I)x(τ), g(τ) =

1

n
(1T⊗I)∇(τ), s(τ) =

1

n
(1T⊗I)s(τ), z(τ) =

1

n
(1T⊗I)z(τ).

(4.51)

It then follows this and (4.47b) that

s(t) =
1

n
(1T ⊗ I)s(t)

=
1

n
(1T ⊗ I)(P (t−1) ⊗ I)s(t−1) +

1

n
(1T ⊗ I)∇(t) − 1

n
(1T ⊗ I)∇(t−1) − µ

n
(1T ⊗ I)∆x(t−1)

=
1

n
(1TP (t−1) ⊗ I)s(t−1) + g(t) − g(t−1) − µx(t) + µx(t−1)

=
1

n
(1T ⊗ I)s(t−1) + g(t) − g(t−1) − µx(t) + µx(t−1)

=s(t−1) + g(t) − g(t−1) − µx(t) + µx(t−1)

=g(t) − µx(t),

where the second equality is due to (4.47b), the third equality uses the fact that

(A⊗B)(C ⊗D) = (AC ⊗BD), the fourth equality follows from the fact that P (t−1)

is doubly stochastic, and the last equality is due to the assumption that (4.50) holds

for t− 1. Similarly, by (4.47a) and (4.51), we obtain

z(t) =
1

n
(1T ⊗ I)z(t)

=
1

n
(1T ⊗ I)(P (t−1) ⊗ I)

(
z(t−1) + ats

(t−1)) =
1

n
(1T ⊗ I)

(
z(t−1) + ats

(t−1))
=z(t−1) + ats

(t−1) =
t−2∑
τ=0

aτ+1s
(τ) + ats

(t−1) =
t−1∑
τ=0

aτ+1s
(τ).

Therefore, (4.50) holds for t and the induction argument is completed.

Lemma 4.6. For the sequence {x(t)i : i = 1, . . . , n}t≥0 generated by Algorithm 3 and

the auxiliary sequence {y(t)}t≥0 defined in (4.18), one has that for all t ≥ 0 and

i = 1, . . . , n,

‖x(t)i − y(t)‖ ≤
1

1 + µAt

∥∥z(t)i − z(t)‖, (4.52)

where z(t) is defined in (4.44).

Proof of Lemma 4.6. It is easy to see that (4.52) holds when t = 0 because both sides

65

of (4.52) equal 0. Now, suppose that t ≥ 1. Recall that d is strongly convex with

modulus 1. Let the mapping R : Rm → Rm be defined as

R(ω) := argmin
x∈Rm

{〈ω, x〉+ φ(x)} ,

where φ(x) = At(µ‖x‖2/2 + h(x)) + d(x) is strongly convex with modulus 1 + µAt.

Then, by (4.14) and (4.18), we have

y(t) = R(z(t)), x
(t)
i = R(z

(t)
i), ∀i = 1, . . . , n.

Moreover, the mapping R is Lipschitz continuous with Lipschitz constant (1+µAt)
−1;

see, e.g., Proposition 4.9 in [29]. This immediately implies (4.52) as desired.

Next, we recall a lemma from [111]. For completeness, we provide a proof here.

Lemma 4.7. Suppose that {q(t)}t≥0 and {p(t)}t≥0 are two sequences of positive scalars

such that for all t ≥ 0,

q(t) ≤ νtq(0) +
t−1∑
τ=0

νt−τ−1p(τ)

where ν ∈ (0, 1). Then, the following holds for all t ≥ 0:

t∑
τ=1

(q(τ))2 ≤ 2

(1− ν)2

t−1∑
τ=0

(p(τ))2 +
2

1− ν2
(q(0))2.

Proof of Lemma 4.7. For any τ ≥ 0, we have

(q(τ))2 ≤ 2ν2τ (q(0))2 + 2

(
τ−1∑
l=0

ντ−l−1p(l)

)2

≤ 2ν2τ (q(0))2 + 2

(
τ−1∑
l=0

(ν
τ−l−1

2)2

)(
τ−1∑
l=0

(ν
τ−l−1

2 p(l))2

)

≤ 2ν2τ (q(0))2 +
2

1− ν

τ−1∑
l=0

ντ−l−1(p(l))2,

where the first inequality is due to (a+b)2 ≤ 2a2+2b2 for any a, b ∈ R and the second

one uses Cauchy-Schwartz inequality. Upon summing up the above inequality from

66

τ = 1 to τ = t, we obtain

t∑
τ=1

(q(τ))2 ≤
t∑

τ=1

(
2ν2k(q(0))2 +

2

1− ν

τ−1∑
l=0

ντ−l−1(p(l))2

)

≤ 2

1− ν2
(q(0))2 +

2

1− ν

t∑
τ=1

τ−1∑
l=0

ντ−l−1(p(l))2

=
2

1− ν2
(q(0))2 +

2

1− ν

t−1∑
l=0

t−l−1∑
τ=0

ντ (p(l))2

≤ 2

1− ν2
(q(0))2 +

2

(1− ν)2

t−1∑
l=0

(p(l))2,

where the equality follows from exchanging the order of the summation.

Now we are ready to prove Lemma 4.3.

Proof of Lemma 4.3. From Lemma 4.5, we have

z(τ) = z(τ−1) + aτs
(τ−1).

This, together with (4.47a) and the definition of z̃(τ) in (4.45), yields

z̃(τ) = P(τ−1)z(τ−1) − 1⊗ z(τ−1) + aτ
(
P(τ−1)s(τ−1) − 1⊗ s(τ−1)

)
. (4.53)

It then follows from (4.49) that

‖z̃(τ)‖E ≤
∥∥P(τ−1)z(τ−1) − 1⊗ z(τ−1)

∥∥
E + aτ

∥∥P(τ−1)s(τ−1) − 1⊗ s(τ−1)
∥∥
E . (4.54)

Note that 1 ⊗ z̄(τ−1) = (1 ⊗ I)z̄(τ−1), which, together with (4.51) and the identity

(A⊗B)(C ⊗D) = (AC ⊗BD), yields

1⊗ z̄(τ−1) =
1

n
(1⊗ I)(1T ⊗ I)z(τ−1) =

(
11T

n
⊗ I
)

z(τ−1).

67

Using this and P(τ−1) = P (τ−1) ⊗ I, we obtain

P(τ−1)z(τ−1) − 1⊗ z(τ−1)

= (P (τ−1) ⊗ I)z(τ−1) −
(

11T

n
⊗ I
)

z(τ−1)

=

((
P (τ−1) − 11T

n

)
⊗ I
)

z(τ−1).

=

((
P (τ−1) − 11T

n

)
⊗ I
)(

z̃(τ−1) + (1⊗ I)z̄(τ−1)
)

=

((
P (τ−1) − 11T

n

)
⊗ I
)

z̃(τ−1) +
((
P (τ−1)1− 1

)
⊗ I
)
z̄(τ−1)

=

((
P (τ−1) − 11T

n

)
⊗ I
)

z̃(τ−1),

(4.55)

where the third equality uses (4.45) and 1⊗ z̄(τ−1) = (1⊗I)z̄(τ−1), the fourth equality

follows from the identity (A⊗ B)(C ⊗D) = (AC ⊗ BD), and the last one is due to

the fact that P (τ−1) is doubly stochastic. Then, by (4.48) and Assumption 4.2, one

has

∥∥P(τ−1)z(τ−1) − (1⊗ I)z(τ−1)
∥∥
E =

∥∥∥∥((P (τ−1) − 11T

n

)
⊗ I
)

z̃(τ−1)
∥∥∥∥
E

(i)
=

√√√√E

[
z̃(τ−1)T

((
P (τ−1) − 11T

n

)T
⊗ IT

)((
P (τ−1) − 11T

n

)
⊗ I
)

z̃(τ−1)

]

(ii)
=

√√√√E

[
z̃(τ−1)TE

[((
P (τ−1) − 11T

n

)T (
P (τ−1) − 11T

n

))
⊗ I

∣∣∣∣∣ z̃(τ−1)

]
z̃(τ−1)

]

(iii)

≤ ‖z̃(τ−1)‖E

√√√√ρ

(
E

[(
P (τ−1) − 11T

n

)T (
P (τ−1) − 11T

n

)])

= ‖z̃(τ−1)‖E

√
ρ

(
E
[
P (τ−1)TP (τ−1)

]
− 11T

n

)
≤ β‖z̃(τ−1)‖E

where (A⊗B)T = AT ⊗BT and (A⊗B)(C ⊗D) = AC ⊗BD are used to obtain (i)

and (ii), respectively, and in (iii) we use that P (τ−1) is independent of z̃(τ−1). Using

68

the same arguments as above, we have

∥∥P(τ−1)s(τ−1) − 1⊗ s(τ−1)
∥∥
E ≤ β‖s̃(τ−1)‖E. (4.56)

It then follows from (4.54) that

‖z̃(τ)‖E ≤ β
(
‖z̃(τ−1)‖E + aτ‖s̃(τ−1)‖E

)
. (4.57)

Similarly, from Lemma 4.5, (4.45), and (4.47b), we obtain

‖s̃(τ)‖E =
∥∥P(τ−1)s(τ−1) − (1⊗ I) s(τ−1) − (1⊗ I)

(
g(τ) − g(τ−1) − µ∆x(τ−1)

)
+∇(τ) −∇(τ−1) − µ∆x(τ−1)∥∥

E

≤
∥∥P(τ−1)s(τ−1) − (1⊗ I) s(τ−1)

∥∥
E + µ

∥∥(1⊗ I)∆x(τ−1) −∆x(τ−1)∥∥
E

+
∥∥∇(τ) −∇(τ−1) − (1⊗ I) (g(τ) − g(τ−1))

∥∥
E . (4.58)

By (4.51), one can verify that

∇(τ) −∇(τ−1) − (1⊗ I)(g(τ) − g(τ−1)) =

((
I − 11T

n

)
⊗ I
)(
∇(τ) −∇(τ−1)) ,

∆x(τ−1) − (1⊗ I) ∆x(τ−1) =

((
I − 11T

n

)
⊗ I
)

∆x(τ−1),

which respectively imply that

‖∇(τ) −∇(τ−1) − (1⊗ I)(g(τ) − g(τ−1))‖E ≤
∥∥∥∥(I − 11T

n

)
⊗ I
∥∥∥∥ ‖∇(τ) −∇(τ−1)‖E

≤ ‖∇(τ) −∇(τ−1)‖E,

‖∆x(τ−1) − (1⊗ I) ∆x(τ−1)‖E ≤
∥∥∥∥(I − 11T

n

)
⊗ I
∥∥∥∥ ‖∆x(τ−1)‖E

≤ ‖∆x(τ−1)‖E.

Besides, it follows from (2.2) that ‖∇(τ)−∇(τ−1)‖E ≤ L‖∆x(k−1)‖E. Upon substituting

these and (4.56) into (4.58), we obtain

‖s̃τ‖E ≤ β‖s̃(τ−1)‖E + (L+ µ)‖∆x(τ−1)‖E. (4.59)

69

Multiplying the both sides of the above inequality by aτ+1 = aτ/(1− aµ), we have

aτ+1‖s̃(τ)‖E ≤
1

1− aµ
(
βaτ‖s̃(τ−1)‖E + (L+ µ)aτ‖∆x(τ−1)‖E

)
. (4.60)

Upon using Lemma 4.6 and

‖∆x(τ−1)‖E ≤ ‖x(τ) − y(τ)‖E + ‖x(τ−1) − y(τ−1)‖E + ‖∆y(τ−1)‖E,

one has

aτ‖∆x(τ−1)‖E ≤
aτ

1 + µAτ
‖z̃(τ)‖E +

aτ
1 + µAτ−1

‖z̃(τ−1)‖E + aτ‖∆y(τ−1)‖E

= a‖z̃(τ)‖E +
a

1− aµ
‖z̃(τ−1)‖E + aτ‖∆y(τ−1)‖E,

where the equality follows from (4.12). In light of (4.57), we have

aτ‖∆x(τ−1)‖E ≤
(
aβ +

a

1− aµ

)
‖z̃(τ−1)‖E + aβaτ‖s̃(τ−1)‖E + aτ‖∆y(τ−1)‖E.

Therefore

aτ+1‖s̃(τ)‖E ≤
β + aβ(L+ µ)

1− aµ
aτ‖s̃(τ−1)‖E +

a(L+ µ)

1− aµ

(
β +

1

1− aµ

)
‖z̃(τ−1)‖E

+
L+ µ

1− aµ
aτ‖∆y(τ−1)‖E.

(4.61)

By combining (4.57) and (4.61), the following linear system inequality can be estab-

lished: [
‖z̃(τ)‖E

aτ+1‖s̃(τ)‖E

]
≤M

[
‖z̃(τ−1)‖E
aτ‖s̃(τ−1)‖E

]
+
L+ µ

1− aµ

[
0

aτ‖∆y(τ−1)‖E

]

where M is defined in (4.15). By iterating the preceding linear system inequality and

using

‖z̃(0)‖= 0, ‖s̃(0)‖=

√√√√ n∑
i=1

∥∥∇fi(x(0))− g(0)∥∥2 := σ,

70

we obtain[
‖z̃(t)‖E

at+1‖s̃(t)‖E

]
≤ L+ µ

1− aµ

t−1∑
τ=0

Mt−τ−1√aτ+1

[
0

√
aτ+1‖∆y(τ)‖E

]
+ Mt

[
0

a1σ

]

=
√
at
L+ µ

1− aµ

t−1∑
τ=0

(
M
√

1− aµ
)t−τ−1 [0

√
aτ+1‖∆y(τ)‖E

]
+ Mt

[
0

a1σ

]
.

Recall the eigenvalues for matrix M are λ1 = (ξ1 + ξ2)/2 and λ2 = (ξ1 − ξ2)/2, where

ξ1 =
β(2 + aL)

1− aµ
, ξ2 =

a(L+ µ)

1− aµ

√
β2L2

(L+ µ)2
+

4β(β + 1)

a(L+ µ)
.

Thus, the analytical form for the nth power of M is (see, e.g., [103])

Mn = λn1

(
M− λ2I
λ1 − λ2

)
+ λn2

(
M− λ1I
λ2 − λ1

)
= λn1

(
M− λ2I
λ1 − λ2

)
− λn2

(
M− λ1I
λ1 − λ2

)
.

It then follows that

(Mn)12 =
M12(λ

n
1 − λn2)

λ1 − λ2
=
β(λn1 − λn2)

λ1 − λ2
≤ 2β(ρ(M))n

ξ2
,

where ρ(M) is the spectral radius of M. Due to our assumption that

1

a
>
β(2L+ 3µ)

(1− β)2
+ µ >

2β(L+ µ)

(1− β)2

and β ∈ (0, 1), we have

ξ2 >
2aβ(L+ µ)

1− aµ
.

Therefore,

‖z̃(t)‖E ≤
2β L+µ

1−aµ
√
at

ξ2

t−1∑
τ=0

νt−τ−1
√
aτ+1‖∆y(τ)‖E +

2β

ξ2
(ρ(M))t a1σ

≤
√
at
a

t−1∑
τ=0

νt−τ−1
√
aτ+1‖∆y(τ)‖E +

1− aµ
a(L+ µ)

(ρ(M))t a1σ.

(4.62)

71

This bound, together with Lemma 4.6, yields

√
at+1‖x(t) − y(t)‖E ≤

√
at+1

1 + µAt

(√
at
a

t−1∑
τ=0

νt−τ−1
√
aτ+1‖∆y(τ)‖E +

(ρ(M))t

L+ µ
σ

)

≤
∑t−1

τ=0 ν
t−τ−1√aτ+1‖∆y(τ)‖E√

1− aµ
+

√
a

1−aµν
tσ

L+ µ
.

(4.63)

The desired inequality (4.28) then follows from this and Lemma 4.7.

4.6.3 Proof of Lemma 4.4

Proof of Lemma 4.4. Define

mt(x) :=
t−1∑
τ=0

aτ+1

(
〈g(τ), x〉+

µ

2
‖x− x(τ)‖2 + h(x)

)
+ d(x)

where m0(x) = d(x). Due to z(t) =
∑t−1

τ=0 aτ+1(g
(τ) − µx(τ)) in Lemma 4.5, we can

equivalently express (4.18) as

y(t) = argmin
x∈Rm

mt(x).

Since mτ−1(x) is strongly convex with modulus 1 + µAτ−1, we have

mτ−1(x)−mτ−1(y
(τ−1)) ≥ 1

2
(1 + µAτ−1)‖x− y(τ−1)‖2,∀x ∈ dom(h).

Further, by noticing

mτ (x) = mτ−1(x) + aτ

(
〈g(τ−1), x〉+

µ

2
‖x− x(τ−1)‖2 + h(x)

)
,

we have

0 ≤mτ−1(y
(τ))−mτ−1(y

(τ−1))− 1

2
(1 + µAτ−1) ‖y(τ) − y(τ−1)‖2

=mτ (y
(τ))− aτ

(
〈g(τ−1), y(τ)〉+

µ

2
‖y(τ) − x(τ−1)‖2 + h(y(τ))

)
−mτ−1(y

(τ−1))

− 1

2
(1 + µAτ−1) ‖y(τ) − y(τ−1)‖2,

72

which is equivalent to

aτ
(
〈g(τ−1), y(τ)〉+ h(y(τ))

)
≤ mτ (y

(τ))−mτ−1(y
(τ−1))− 1

2

(
1 + µAτ−1

)
‖y(τ) − y(τ−1)‖2 − µ

2
aτ‖y(τ) − x(τ−1)‖2.

Summing up the above inequality from τ = 1 to τ = t leads to

t∑
τ=1

aτ
(
〈g(τ−1), y(τ)〉+ h(y(τ))

)
≤ mt(y

(t))−m0(y
(0))−

t∑
τ=1

1

2

(
(1 + µAτ−1)‖∆y(τ−1)‖2 + µaτ‖y(τ) − x(τ−1)‖2

)
= mt(y

(t))−
t∑

τ=1

1

2

(
(1 + µAτ−1)‖y(τ) − y(τ−1)‖2 + µaτ‖y(τ) − x(τ−1)‖2

)
.

(4.64)

where the equality is due to y(0) = x(0) and (5.2). By a similar argument to (4.11),

we obtain

t∑
τ=1

〈aτg(τ−1),−x∗〉 ≤ −mt(y
(t)) + d(x∗) +

t∑
τ=1

aτ

(µ
2
‖x∗ − x(τ−1)‖2 + h(x∗)

)
,

which in conjunction with (4.64) leads to the inequality in (4.29).

4.7 Experiments

For the experiments, we consider the decentralized sparse logistic regression prob-

lem [1] and the decentralized LASSO problem [96]. We present numerical results of

Algorithm 3 (named as DDA below), and compare it with the following algorithms:

i) PG-EXTRA in [84]:

z(t) =z(t−1) − x(t−1) + P̃(2x(t−1) − x(t−2))− a(∇(t−1) −∇(t−2))

x(t) =Proxah(z(t)),

73

where P̃ = (I+P)⊗I
2

, h(x) =
∑n

i=1 h(xi), and

Proxah(z) := argmin
x∈Rmn

{
h(x) +

1

2a
‖x− z‖2

}
.

ii) P2D2 in [1]:

z(t) = (I − αB) z(t−1) + (I −B) (x(t−1) − x(t−2))− a(∇(t−1) −∇(t−2))

x(t) =Proxah(z(t)),

where B = (I−P)⊗I
2

.

iii) DSM in [55]:

x(t) = P(t−1)x(t−1) − at−1r(t−1),

where r(t) ∈ ∂F(x(t)) and F(x) =
∑n

i=1 F (xi).

iv) Conventional DDA (named as C-DDA below) in [18]:

z(t) =P(t−1)z(t−1) + r(t−1)

x(t) = argmin
x∈Rmn

{
at−1〈z(t),x〉+ d(x)

}
,

where d(x) =
∑n

i=1 d(xi).

We note that when applied to solve Problem (4.1) in stochastic networks, PG-EXTRA

and P2D2 have no convergence guarantees and DSM and C-DDA have sublinear

convergence in theory.

4.7.1 Decentralized Logistic Regression

The aforementioned algorithms are applied to the following problem:

min
x∈Rm

1

n

n∑
i=1

fi(x)+φ‖x‖1, fi(x) =
1

mi

mi∑
j=1

ln(1+exp(−yijM iT
j x))+

µ

2
‖x‖2, (4.65)

where {M i
j , y

i
j}
mi
j=1 are data samples private to agent i. In our experiment, we set

φ = 0.001, µ = 0.02, and use Spambase data set in the UCI Machine Learning

74

Repository [17] to generate our problem instance. In particular, we extract 3000 out

of the total 4601 samples in the original data set and evenly distribute them to the

n = 30 agents, i.e., mi = 100 for all i.

We consider two common configurations of stochastic communication networks.

The first one is Bernoulli networks [31], where a fixed graph is first generated and at

any time t, each edge of the fixed graph is sampled with probability ι ∈ (0, 1), which

results in a random sub-graph of the fixed graph. In our experiment, we generate two

fixed graphs in the same way as [85], where the sparsity parameter ξ, i.e., the ratio

between the number of edges in the generated fixed graph and the number of edges

in the complete graph, is chosen to be 0.2 and 0.4, respectively. Based on each fixed

graph, we generate two Bernoulli networks with ι set to be 0.1 and 0.2, respectively.

The second one is randomized gossip networks [4], where only a single edge of a fixed

graph is sampled at any time t. In particular, the probability to sample the link (i, j)

is set as 1
n(|Ni|+1)

with |Ni| representing the number of neighbors of i in the supergraph

at every time t. In our experiment, we consider cycle graph, 2D grid, and complete

graph as the fixed graphs for generating randomized gossip networks.

For all the tested algorithms, we evaluate their performance in terms of the relative

square error (RSE) defined by RSE =
∑n
i=1‖x

(t)
i −x

∗‖2∑n
i=1‖x

(0)
i −x∗‖2

, where x∗ is identified by applying

the centralized proximal gradient method [72] to Problem (4.65) such that the norm

of the difference of two consecutive iterates is less than 10−14. All the algorithms

are initialized with x
(0)
i = 0 for all agents i. The parameters of each algorithm are

chosen properly to reflect their performance. For DDA and C-DDA, we simply choose

d(x) = ‖x‖2/2. We choose α = 0.5 in P2D2 and set at = 1/
√
t+ 1 for C-DDA and

DSM. For the first group of Bernoulli networks, i.e., those sampled from a supergraph

with sparsity parameter 0.2 (first row of Figure 4.1), we set the same a = 0.1 for

DDA, P2D2, and PG-EXTRA. For the second group of Bernoulli networks, i.e., those

sampled from a supergraph with sparsity parameter 0.4 (second row of Figure 4.1),

we use the same a = 0.2 for DDA, P2D2, and PG-EXTRA. For randomized gossip,

we use a = 0.1 for DDA, and set 10−4 for the step sizes in P2D2 and PG-EXTRA.

We note that choosing a smaller step size in P2D2 and PG-EXTRA generally makes

them more stabilizing. In fact, a larger step size will result in even worse behaviour

of these two methods in randomized gossip networks.

The simulation results are plotted in Figure 4.1. Specifically, the first two rows

of Figure 4.1 present the performance on Bernoulli networks and the last row shows

the performance on randomized gossip networks. We note that the rightmost two

75

Figure 4.1: Comparison results for decentralized logistic regression in different net-
work configurations.

76

plots of the first two rows are for time-invariant networks, which are the fixed graphs

for generating the Bernoulli networks in the first two rows, respectively. One can

observe that our DDA converges linearly and is substantially faster than DSM and

C-DDA in all the network settings, which supports our theoretical development. In

addition, while P2D2 and PG-EXTRA perform very similar to DDA on time-invariant

networks, they both diverge when applied to stochastic networks. This suggests that

decentralized algorithms that are designed for time-invariant networks may not work

effectively in stochastic networks.

4.7.2 Decentralized LASSO

The following decentralized LASSO problem is considered

min
x∈Rm

1

n

n∑
i=1

1

2
‖bi − Cix‖2, s.t. ‖x‖1 ≤ R,

where R > 0 is a constant, and (Ci, bi) represents the data tuple available to agent

i with Ci ∈ R60×50 and bi ∈ R60. The data is randomly generated according to

the setting by [45]. Firstly, a sparse signal x] ∈ R50 is randomly generated, where

the probability for each element being nonzero is 0.25. Then, each Ci is randomly

generated and then normalized such that Assumption 4.1 holds with L = 1 and

µ = 0.5. Set R = 1.1‖x]‖1. produced based on bi = Cix
] + εi, where εi is a random

noise vector.

Two types of stochastic communication networks are considered. For Bernoulli

networks, we generate two fixed graphs with the sparsity parameter ξ = 0.1 and

0.2. Based on each fixed graph, we construct two Bernoulli networks by setting

ι = 0.05 and ι = 0.1, respectively. In the second setting, we also consider cycle graph,

2D grid, and complete graph as the fixed graphs for generating randomized gossip

networks. We identify x∗ by using the centralized proximal gradient method, where

the stopping criterion is set as the norm of the difference of two consecutive iterates

smaller than 10−14. The performance of all the tested algorithms is evaluated in terms

of RSE =
∑n
i=1‖x

(t)
i −x

∗‖2∑n
i=1‖x

(0)
i −x∗‖2

. The algorithm by [13] is used to perform projection onto

l1-norm ball. All the algorithms are initialized with x
(0)
i = 0 for all i. The parameters

for each algorithm are chosen in the following way. For DDA and C-DDA, we employ

d(x) = ‖x‖2/2. We choose α = 0.5 in P2D2 and set at = 1/
√
t+ 1 for C-DDA. For

the two groups of Bernoulli networks, we set the a in DDA to be 0.1 and set 0.1 for

77

the step sizes in P2D2 and PG-EXTRA. For randomized gossip, we use a = 0.1 for

DDA, and set 10−4 for the step sizes in P2D2 and PG-EXTRA. Since DSM can not

be applied to constrained problems, it is not considered in this setting.

The simulation results are plotted in Figure 4.2. In particular, the performance

on Bernoulli networks and randomized gossip networks is presented in the first two

rows and the last row of Figure 4.2, respectively. In the first two rows, the rightmost

two plots demonstrate the performance in time-invariant networks that are used for

generating Bernoulli networks. Although P2D2 and PG-EXTRA demonstrate a sim-

ilar performance with DDA on time-invariant networks, they do not converge to the

minimizer when applied to stochastic networks. In line with our theoretical results,

DDA linearly converges and outperforms C-DDA in all the network configurations.

To summarize, the simulation results confirm our theoretical findings and demon-

strate the superior performance of the proposed Algorithm 3 on both time-invariant

and stochastic networks.

4.8 Conclusion

In this chapter, we have proposed a new decentralized algorithm for solving Problem

(4.1) in stochastic networks. The proposed algorithm, based on the framework of dual

averaging method, is facilitated by designing a novel dynamic averaging consensus

protocol. To the best of our knowledge, this is the first linearly convergent DDA-

type decentralized algorithm and also the first algorithm that attains global linear

convergence for solving Problem (4.1) in stochastic networks.

78

Figure 4.2: Comparison results for decentralized LASSO in different network config-
urations.

79

Chapter 5

Accelerated Decentralized Dual

Averaging Method

5.1 Introduction

Consider an MAS consisting of n agents. They are connected via a communication

network in order to collaboratively solve the following optimization problem:

min
x∈X

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
(5.1)

where fi represents the local smooth objective function of agent i and X ⊆ Rm

denotes the constraint set shared by all the agents.

Over the last decade, several accelerated decentralized optimization algorithms

have been proposed for solving Problem (5.1). For unconstrained problems, i.e.,

X = Rm, the authors in [74] developed a decentralized Nesterov gradient descent,

where the rate of convergence is accelerated to O(1/t1.4−ε) for any ε ∈ (0, 1.4) at

the expense of exchanging an additional variable among agents at each time instant.

In [26], the authors proposed an accelerated decentralized algorithm with multiple

consensus rounds at each time instant, and proved that after t local iterations and

O(t log t) communication rounds the objective error is bounded by O(1/t2). By mod-

eling Problem (5.1) as a linearly constrained optimization problem, centralized primal-

dual paradigms such as the augmented Lagrangian method (ALM), the alternating

direction method of multipliers (ADMM) and the dual ascent can also be used to de-

sign decentralized algorithms [24,85,91]. In particular, the authors in [91] developed

80

a modified dual formulation whose solution solves the original problem with prescribed

accuracy for non-strongly convex and smooth objectives. In doing so, the primal ob-

jective becomes strongly convex, which leads to better theoretical results. Based on

the primal-dual reformulation, an accelerated decentralized primal-dual method was

developed in [109]. The rate of convergence is improved to O(1)
(
L
t2

+ 1
t
√
ηt

)
, where L

denotes the smoothness parameter of each objective function and η = λ2(L)/λm(L)

is the eigengap of the graph Laplacian L. Notably, the authors in [109] established a

lower bound for a class of decentralized primal-dual methods, suggesting that the de-

veloped algorithm therein is optimal in terms of gradient computations. The authors

in [77] considered the Lagrangian dual formulation of the decentralized optimization

problem and developed two algorithms based on dual accelerated methods. The algo-

rithms are proved to be linearly convergent for strongly convex and smooth problems.

Note that such a framework requires computing the convex conjugate of the objective

at each iteration. For constrained problems, the authors in [40] proposed an acceler-

ated decentralized penalty method (APM), where the constraint can be handled by

incorporating a non-smooth indicator to the objective function.

For Problem (5.1), we provided a DDA method in Chapter 4 that has an O(1/t)

rate of convergence under the smoothness assumption. Considering this, a question

naturally arises: Is it possible to further accelerate the convergence rate of DDA?

We provide affirmative answer to this question in this chapter. The main results and

contributions are summarized in the following:

i) We propose an accelerated DDA (ADDA) algorithm. Different from DDA in

Chapter 4 , each agent employs a first-order dynamic average consensus protocol

to estimate the mean of local gradients and accumulates the estimate over time

to generate a local dual variable. By solving the convex conjugate of a 1-strongly

convex function over this local dual variable, each agent produces a primal

variable and uses it to construct another two sequences of primal variables in

an iterative manner based on the extrapolation technique in [11] and the average

consensus protocol. The rate of convergence is proved to be O(1)
(

1
t2

+ 1
t(1−β)2

)
,

where β denotes the second largest singular value of the mixing matrix. Notably,

the condition for the algorithmic parameter to ensure convergence does not rely

on the mixing matrix. Establishing such a condition that is independent on

the mixing matrix offers the appealing advantage of convenient verification in

practical applications.

81

ii) The proposed algorithms are tested and compared with a few methods in the

literature on decentralized LASSO problems characterized by synthetic and real

datasets. The comparison results demonstrate the efficiency of the proposed

methods.

5.2 Problem Setup and Preliminaries

5.2.1 Problem Setup

We consider the finite-sum optimization problem (5.1), in which fi satisfies the fol-

lowing assumptions for all i = 1, . . . , n:

Assumption 5.1. i) fi is continuously differentiable on X ;

ii) fi is convex with on X ;

iii) ∇fi is Lipschitz continuous on X with constant L > 0.

Throughout the paper, we denote by x∗ an optimal solution of Problem (5.1). We

consider solving Problem (5.1) in a decentralized fashion, that is, a pair of agents can

exchange information only if they are connected in the communication network. We

use a fixed undirected graph G = {V , E} and a mixing matrix P = [pij] to describe

the network topology. The following standard assumption is made for P .

Assumption 5.2. i) P1 = 1 and 1TP = 1T;

ii) P has a strictly positive diagonal.

5.2.2 Centralized Accelerated Dual Averaging

Our algorithm is based on the centralized accelerated dual averaging method [11] that

is applicable to solving Problem (5.1) in a centralized manner. Let d be a strongly

convex and differentiable function with modulus 1 on X such that

x(0) = argmin
x∈X

d(x) and d(x(0)) = 0. (5.2)

Starting with u(1) = w(0) = x(0), v(1) = w(1), and

v(1) = w(1) = argmin
x∈X

{
2a
〈
∇f(u(1)), x

〉
+ d(x)

}
,

82

the variables {u(t)}t≥1, {v(t)}t≥1, and {w(t)}t≥1 are generated iteratively according to

u(t) =
At−1
At

v(t−1) +
at
At
w(t−1) (5.3a)

v(t) =
At−1
At

v(t−1) +
at
At
w(t), (5.3b)

where at = a(t+ 1) for some a > 0, At =
∑t

τ=1 aτ and

w(t) = argmin
x∈X

{
t∑

τ=1

aτ
〈
∇f(u(τ)), x

〉
+ d(x)

}
(5.4)

For convex and smooth objective functions, it is proved that f(v(t))−f(x∗) ≤ O(1/t2)

[11].

5.3 Algorithm and Convergence Result

To solve Problem (5.1) over networks, we develop a decentralized variant of the accel-

erated dual averaging method in (5.3) and (5.4). In particular, we consider building

consensus among variables {v(t)i , i = 1, · · · , n} and propose the following iteration

rule:

u
(t)
i =

At−1
At

n∑
j=1

pijv
(t−1)
j +

at
At
w

(t−1)
i (5.5a)

v
(t)
i =

At−1
At

n∑
j=1

pijv
(t−1)
j +

at
At
w

(t)
i , (5.5b)

where

w
(t)
i = argmin

x∈X

{
t∑

τ=1

aτ

〈
q
(τ)
i , x

〉
+ d(x)

}
, (5.6)

and {q(τ)i , i = 1, · · · , n}t≥1 is updated via the following dynamic average consensus

protocol

q
(t)
i =

n∑
j=1

pijq
(t−1)
j +∇fi(u(t)i)−∇fi(u(t−1)i). (5.7)

The overall algorithm is summarized in Algorithm 4.

Assumption 5.3. For the problem in (5.1), the constraint set X is bounded with the

83

Algorithm 4 Accelerated Decentralized Dual Averaging

Input: a > 0, x(0) ∈ X and a strongly convex function d with modulus 1 such that
(5.2) holds

Initialize: A1 = a1 = 2a, u
(1)
i = w

(0)
i = x(0), q

(1)
i = ∇fi(x(0)), and v

(1)
i = w

(1)
i for

all i = 1, . . . , n
for t = 2, 3, · · · do

set at = at−1 + a and At = At−1 + at
In parallel (task for agent i, i = 1, . . . , n)

collect v
(t−1)
j and q

(t−1)
j from all agents j ∈ Ni

update u
(t)
i by (5.5a)

update q
(t)
i by (5.7)

compute w
(t)
i by (5.6)

update v
(t)
i by (5.5b)

broadcast v
(t)
i and q

(t)
i to all agents j ∈ Ni

end for

following diameter:

G = max
x,y∈X

‖x− y‖.

Theorem 5.1. For Algorithm 4, if Assumptions 5.1, 5.2, and 5.3 are satisfied, and

a ≤ 1

6L
, (5.8)

then, for all t ≥ 1, it holds that

f(v(t))− f(x∗) ≤ d(x∗)

At
+

t

At

(
2G(LCp + Cg)√

n
+

6LC2
p

n

)
, (5.9)

where

Cp := d 3

1− β
e
√
nG

and

Cg := 2Ld 3

1− β
e
√
nG+ Cp
1− β

.

In addition, for all t ≥ 1 and i = 1, · · · , n, we have∥∥∥v(t)i − v(t)∥∥∥2 ≤ 2aCp
At

. (5.10)

Proof. The proof is postponed to Appendix C.

84

For Algorithm 4 and Theorem 5.1, the following remarks are in order.

i) Comparison with existing accelerated algorithms. Accelerated methods

for decentralized constrained optimization are rarely reported in the literature. Re-

cently, the authors in [39] developed the APM algorithm, where the iteration rule

reads

y
(t)
i =x

(t)
i +

θt(1− θt−1)
θt−1

(
x
(t)
i − x

(t−1)
i

)
(5.11a)

s
(t)
i =∇fi(y(t)i) +

β0
θt

n∑
i=1

pij

(
y
(t)
i − y

(t)
j

)
(5.11b)

x
(t+1)
i = argmin

x∈X

∥∥∥∥∥x− y(t)i +
s
(t)
i

L+ β0/θt

∥∥∥∥∥
2

(5.11c)

where β0 = L/
√

1− λ2(P) and θt is a decreasing parameter satisfying

θt =
θt−1

1 + θt−1

with θ0 = 1. Letting ŝ
(t)
i = θks

(t)
i , we can equivalently rewrite (5.11b) and (5.11c) as

ŝ
(t)
i =θt∇fi(y(t)i) + β0

n∑
i=1

pij

(
y
(t)
i − y

(t)
j

)
x
(t+1)
i = argmin

x∈X

∥∥∥∥∥x− y(t)i +
ŝ
(t)
i

Lθt + β0

∥∥∥∥∥
2

,

from which we can see that new gradients are assigned with decreasing weights,

whereas increasing weights are used for ADDA in (5.6). The reason for such different

choices of parameters may be two-fold. First, parameter choices in (centralized) pri-

mal gradient descent and dual averaging methods are intrinsically different. Second,

APM gradually increases the penalty parameter 1/θt in order to enforce consensus,

which essentially dilutes the weight for gradients, as shown above. We will show in

simulation that decreasing weights over time slows down convergence.

There are also a few other accelerated decentralized methods such as [74, 109],

however they do not apply to constrained problems.

ii) Discussion about optimality. For ADDA, the rate of convergence is proved

85

to be

O(1)

(
1

t2
+

1

t(1− β)2

)
.

In light of the lower bound in [109], it is not optimal in terms of the dependence

on β. In particular, the dominant term of the error in O(1/(t(1 − β)2)) becomes

larger as β grows, i.e., the network becomes more sparsely connected. This is mainly

because we consider a one-consensus-one-gradient update in the algorithm. However,

extending the algorithm in [109] to handle constraints may require further investiga-

tion. In the simulation section, we demonstrate the superiority of ADDA over existing

decentralized constrained optimization algorithms.

5.4 Proof of Convergence Result

5.4.1 Notations and Supporting Lemmas

For Algorithm 4, we define

u(t) =


u
(t)
1
...

u
(t)
n

 , v(t) =


v
(t)
1
...

v
(t)
n

 , w(t) =


w

(t)
1
...

w
(t)
n

 , q(t) =


q
(t)
1
...

q
(t)
n

 , ∇̂(t) =


∇f1(u(t)1)

...

∇fn(u
(t)
n)

 ,

u(t) =
1

n

n∑
i=1

u
(t)
i , v

(t) =
1

n

n∑
i=1

v
(t)
i , w

(t) =
1

n

n∑
i=1

w
(t)
i ,

ĝ
(t)

=
1

n

n∑
i=1

∇fi(u(t)i), qt =
1

n

n∑
i=1

q
(t)
i , w̃(t) = w(t) − 1⊗ w(t),

ũ(t) = u(t) − 1⊗ u(t), ṽ(t) = v(t) − 1⊗ v(t), q̃(t) = q(t) − 1⊗ q(t).

Based on these notation, we present the steps in (5.5) and (5.7) in the following

compact form

u(t) =
At−1
At

(
Pv(t−1))+

at
At

w(t−1), (5.12a)

v(t) =
At−1
At

(
Pv(t−1))+

at
At

w(t), (5.12b)

q(t) = Pq(t−1) + ∇̂(t) − ∇̂(t−1), (5.12c)

86

where P = P ⊗ I. According to (5.5), we have

u(t) =
At−1
At

v(t−1) +
at
At
w(t−1), (5.13a)

v(t) =
At−1
At

v(t−1) +
at
At
w(t). (5.13b)

Before proving Theorem 5.1, we present Lemma 5.1 that establishes decreasing

upper bounds for consensus error vectors ũ(t) and ṽ(t).

Lemma 5.1. For Algorithm 4, if Assumptions 5.1, 5.2, and 5.3 are satisfied, then

‖ṽ(t)‖ ≤ at
At
Cp, ‖ũ(t)‖ ≤ at

At
Cp (5.14)

for all t ≥ 1, where Cp = d 3
1−β e
√
nG, and β = σ2(P).

Proof of Lemma 5.1. Since both u
(t)
i , v

(t)
i , i = 1, · · · , n, u(t) and v(t) are within the

constraint set, we readily have

‖u(t) − 1⊗ u(t)‖ ≤
√
nG

‖v(t) − 1⊗ v(t)‖ ≤
√
nG

by Assumption 5.3. Upon using

at
At

=
2(t+ 1)

t(t+ 3)
≥ 1

t
, ∀t ≥ 1

and the definition of Cp = d 3
1−β e
√
nG, we have that (5.14) holds for

1 ≤ t < d 3

1− β
e.

When

t ≥ d 3

1− β
e,

we prove by an induction argument. Suppose that (5.14) holds for some t ≥ d 3
1−β e.

Next, we examine the upper bounds for ‖ṽ(t+1)‖ and ‖ũ(t+1)‖, respectively.

i) Upper bound for ‖ṽ(t+1)‖. Using

Pv(t) − 1⊗ v(t) =

((
P − 11T

n

)
⊗ I
)

ṽ(t),

87

(5.12b) and (5.13b), we obtain

ṽ(t+1) =
At
At+1

((
P − 11T

n

)
⊗ I
)

ṽ(t) +
at+1

At+1

w̃(t+1).

Calculating the norm of both sides of the above equality yields

‖ṽt+1‖ =

∥∥∥∥ At
At+1

((
P − 11T

n

)
⊗ I
)

ṽ(t) +
at+1

At+1

w̃(t+1)

∥∥∥∥
≤β‖ṽ(t)‖+

at+1

At+1

∥∥w̃(t+1)
∥∥

≤ at
At
βCp +

at+1

At+1

√
nCp,

where the last inequality follows from the hypothesis that ‖ṽ(t)‖ ≤ atCp/At and

Assumption 5.3. Since at/At monotonically decreases with t, we have

‖ṽt+1‖ ≤ at
At

(
βCp +

√
nG
)
≤ at
At
Cp

(
β +

1

d 3
1−β e

)
,

where the last inequality is due to
√
nG = Cp

d 3
1−β e

. It then remains to prove

(
β +

1

d 3
1−β e

)
≤ At
at
· at+1

At+1

, ∀t ≥ d 3

1− β
e (5.15)

to obtain the bound for ‖ṽ(t+1)‖ as desired. To prove (5.15), we let

t0 = d 3

1− β
e,

which implies
3

t0
≤ 1− β.

Based on the above relation, we further obtain

β +
1

t0
≤ t0 − 2

t0
≤ t0 + 2

t0 + 4
. (5.16)

This in conjunction with

t(t+ 3)

(t+ 1)(t+ 1)
≥ 1, ∀t ≥ 1

88

and the definitions of at and At yields

β +
1

t0
≤t0 + 2

t0 + 4
· t0(t0 + 3)

(t0 + 1)(t0 + 1)
=
At0
at0
· at0+1

At0+1

.

Since Atat+1

atAt+1
monotonically increases with t, we have (5.15) satisfied.

ii) Upper bound for ‖ũ(t+1)‖. Using the same arguments as above, we have

‖ũt+1‖ =

∥∥∥∥ At
At+1

((
P − 11T

n

)
⊗ I
)

ṽ(t) +
at+1

At+1

w̃(t)

∥∥∥∥
≤β‖ṽ(t)‖+

at+1

At+1

∥∥w̃(t)
∥∥

≤ at
At
βCp +

at+1

At+1

√
nCp.

By following the same line of reasoning as in the first part, we are able to obtain

‖ũ(t+1)‖ ≤ at+1

At+1

Cp.

Summarizing the above bounds, the proof is completed.

Lemma 5.2 proves the upper bound for the consensus vector q̃(t).

Lemma 5.2. Suppose Assumptions 5.1, 5.2, and 5.3 are satisfied. For Algorithm 4,

we have

q(t) = ĝ
(t)

(5.17)

and

‖q̃(t)‖ ≤ at
At
Cg (5.18)

for all t ≥ 1, where Cg = d 3
1−β eL

(
2
√
nG+ 2Cp

)
/(1− β), and β = σ2(P).

Proof of Lemma 5.2. The proof of (5.17) directly follows from the proof of Lemma

4.5, and is omitted here for brevity.

For (5.18), we subtract 1⊗ q(t) from both sides of (5.12c) to get

q(t) − 1⊗ q(t) =Pq(t−1) − 1⊗ q(t−1)

+ ∇̂(t) − ∇̂(t−1) − 1⊗ (q(t) − q(t−1)).
(5.19)

89

Using the same procedure in (4.55) leads to

‖q̃(t)‖ ≤ β‖q̃(t−1)‖+ ‖∇̂(t) − ∇̂(t−1) − 1⊗ (q(t) − q(t−1))‖. (5.20)

Since the objective is smooth, we obtain∥∥∥∇̂(t) − ∇̂(t−1) − 1⊗
(
q(t) − q(t−1)

)∥∥∥
=
∥∥∥∇̂(t) − ∇̂(t−1) − 1⊗

(
ĝ
(t) − ĝ(t−1)

)∥∥∥
=

∥∥∥∥∇̂(t) − ∇̂(t−1) −
(

11T

n
⊗ I
)(
∇̂(t) − ∇̂(t−1)

)∥∥∥∥
≤
∥∥∥∇̂(t) − ∇̂(t−1)

∥∥∥ ≤ L
∥∥u(t) − u(t−1)∥∥ .

To bound
∥∥u(t) − u(t−1)

∥∥, we consider

u(t) − u(t−1)

=
At−1
At

Pv(t−1) +
at
At

w(t−1) − u(t−1)

=
At−1
At

P
(
v(t−1) − u(t−1))+

At−1
At

(P− I ⊗ I) u(t−1)

+
at
At

(
w(t−1) − u(t−1))

where the first equality is due to (5.12a). From (5.12a) and (5.12b), we have

v(t−1) − u(t−1) =
at−1
At−1

(
w(t−1) −w(t−2)) .

In addition, we have

(P− I ⊗ I) u(t−1) = (P− I ⊗ I) (u(t−1) − 1⊗ u(t−1)).

90

Therefore, it holds that∥∥u(t) − u(t−1)∥∥
≤At−1

At

at−1
At−1

∥∥w(t−1) −w(t−2)∥∥+
2At−1
At

∥∥ũ(t−1)∥∥+
at
At

∥∥w(t−1) − u(t−1)∥∥
≤ at
At

√
nG+

2at
At
Cp +

at
At

√
nG

=
at
At

(
2
√
nG+ 2Cp

)
(5.21)

where Lemma 5.1 and Assumption 5.3 are used to get the second inequality. By

substituting (5.21) into (5.20), we obtain

‖q̃(t)‖ ≤ β‖q̃(t−1)‖+
at
At
L
(
2
√
nG+ 2Cp

)
. (5.22)

By initialization, we have q̃(0) = 0 and therefore

∥∥q̃(t0)
∥∥ ≤L (2√nG+ 2Cp

) t0∑
τ=1

βt0−τ
aτ
Aτ
≤ L (2

√
nG+ 2Cp)

1− β
,

implying that (5.18) is valid for 1 ≤ t < d 3
1−β e. Next, we prove that (5.18) also holds

for t ≥ d 3
1−β e by mathematical induction. Suppose that (5.18) holds true for some

t ≥ d 3
1−β e. Using this hypothesis and (5.22), we obtain

‖q̃(t+1)‖ ≤ at
At
βCg +

at+1

At+1

L
(
2
√
nG+ 2Cp

)
≤ at
At
Cg

(
β +

1

d 3
1−β e

)
.

Finally, using the same argument with (5.15) and (5.16) in the proof of Lemma 5.1,

we arrive at (5.18) as desired.

Here, a variant of Lemma 4.4 is presented. For completeness, a proof is given.

Lemma 5.3. Given a sequence of variables {ζ(t)}t≥0 and a positive sequence {at}t≥0,
for {ν(t)}t≥0 generated by

ν(t) = argmin
x∈X

{
t∑

τ=1

aτ
〈
ζ(τ), x

〉
+ d(x)

}
,

91

where ν(0) = x(0) in (5.2), it holds

t∑
τ=1

aτ
〈
ζ(τ), ν(τ) − x∗

〉
≤ d(x∗)−

t∑
τ=1

1

2
‖ν(τ) − ν(τ−1)‖2. (5.23)

Proof of Lemma 5.3. Define

mt(x) =
t∑

τ=1

aτ
〈
ζ(τ), x

〉
+ d(x)

where m0(x) = d(x). Since

ν(τ−1) = argmin
x∈X

mτ−1(x)

and mτ−1(x) is strongly convex with modulus 1, we have

mτ−1(x)−mτ−1(ν
(τ−1)) ≥ 1

2
‖x− ν(τ−1)‖2,∀x ∈ X .

Upon taking x = ν(τ) in the above inequality and using

mτ (x) = mτ−1(x) + aτ
〈
ζ(τ), x

〉
,

we obtain

0 ≤mτ−1(ν
(τ))−mτ−1(ν

(τ−1))− 1

2
‖ν(τ) − ν(τ−1)‖2

=mτ (ν
(τ))− aτ

〈
ζ(τ), ν(τ)

〉
−mτ−1(ν

(τ−1))− 1

2
‖ν(τ) − ν(τ−1)‖2,

which is equivalent to

aτ
〈
ζ(τ), ν(τ)

〉
≤mτ (ν

(τ))−mτ−1(ν
(τ−1))− 1

2
‖ν(τ) − ν(τ−1)‖2.

Iterating the above equation from τ = 1 to τ = t yields

t∑
τ=1

aτ
〈
ζ(τ), ν(τ)

〉
≤mt(ν

(t))−m0(ν
(0))−

t∑
τ=1

1

2
‖ν(τ) − ν(τ−1)‖2

=mt(ν
(t))−

t∑
τ=1

1

2
‖ν(τ) − ν(τ−1)‖2

(5.24)

92

We turn to consider

t∑
τ=1

aτ
〈
ζ(τ),−x∗

〉
≤ max

x∈X

{
t∑

τ=1

aτ
〈
ζ(τ),−x

〉
− d(x)

}
+ d(x∗)

= −min
x∈X

{
t∑

τ=1

aτ
〈
ζ(τ), x

〉
+ d(x)

}
+ d(x∗)

= −mt(ν
(t)) + d(x∗),

which together with (5.24) leads to the inequality in (5.23), thereby concluding the

proof.

5.4.2 Proof of Theorem 5.1

Proof of Theorem 5.1. Using Aτ−1 = Aτ − aτ , we have

At

(
f(v(t))− f(x∗)

)
=

t∑
τ=1

(
Aτf(v(τ))− Aτ−1f(v(τ−1))

)
−

t∑
τ=1

aτf(x∗)

=
t∑

τ=1

(
Aτ
(
f(v(τ))− f(u(τ))

)
+ aτ

(
f(u(τ))− f(x∗)

)
+ Aτ−1

(
f(u(τ))− f(v(τ−1))

))
Upon using the convexity of f , we obtain

At
(
f(v(t))− f(x∗)

)
≤

t∑
τ=1

(
Aτ
(
f(v(τ))− f(u(τ))

)
+ aτ

〈
∇f(u(τ)), u(τ) − x∗

〉
+ Aτ−1

〈
∇f(u(τ)), u(τ) − v(τ−1)

〉)

93

By (5.13b), we obtain

At

(
f(v(t))− f(x∗)

)
≤

t∑
τ=1

Aτ

(
f(v(τ))− f(u(τ)) +

〈
∇f(u(τ)), u(τ) − v(τ)

〉)
+

t∑
τ=1

aτ
〈
∇f(u(τ)), w(τ) − x∗

〉
≤

t∑
τ=1

AτL

2
‖u(τ) − v(τ)‖2︸ ︷︷ ︸

(I)

+
1

n

n∑
i=1

t∑
τ=1

aτ

〈
q
(τ)
i , w

(τ)
i − x∗

〉
︸ ︷︷ ︸

(II)

+
1

n

t∑
τ=1

n∑
i=1

aτ

〈
∇f(u(τ))− q(τ)i , w

(τ)
i − x∗

〉
︸ ︷︷ ︸

(III)

(5.25)

where the last inequality is due to the smoothness of f . To bound (I), we consider

‖u(τ) − v(τ)‖2

=
1

n

n∑
i=1

∥∥∥u(τ) − u(τ)i + u
(τ)
i − v

(τ)
i + v

(τ)
i − v(τ)

∥∥∥2
≤ 1

n

n∑
i=1

(
3
∥∥∥u(τ) − u(τ)i

∥∥∥2 + 3
∥∥∥u(τ)i − v

(τ)
i

∥∥∥2 + 3
∥∥∥v(τ)i − v(τ)

∥∥∥2)
≤
(
aτ
Aτ

)2 6C2
p + 3

∥∥w(τ) −w(τ−1)
∥∥2

n

(5.26)

where the first inequality follows from

‖x+ y + z‖2 ≤ 3‖x‖2 + 3‖y‖2 + 3‖z‖2,

and the last inequality is due to Lemma 5.1 and (5.13). For (II), by letting ζ(τ) = q
(τ)
i

and ν(τ) = w
(τ)
i in Lemma 5.3, we have

t∑
τ=1

aτ

〈
q
(τ)
i , w

(τ)
i − x∗

〉
≤ d(x∗)−

t∑
τ=1

1

2
‖w(τ)

i − w
(τ−1)
i ‖2. (5.27)

94

To bound (III), we use (5.17) to get

aτ

〈
∇f(u(τ))− q(τ)i , w

(τ)
i − x∗

〉
≤Gaτ

∥∥∥∇f(u(τ))− ĝ(τ) + q(τ) − q(τ)i

∥∥∥
≤Gaτ

(∥∥∥∇f(u(τ))− ĝ(τ)
∥∥∥+

∥∥∥q(τ) − q(τ)i

∥∥∥) .
Upon using Lemma 5.1, we obtain

∥∥∥∇f(u(τ))− ĝ(τ)
∥∥∥ ≤ 1

n

n∑
i=1

∥∥∥∇fi(u(τ))−∇fi(u(τ)i)
∥∥∥

≤L
n

n∑
i=1

∥∥∥u(τ) − u(τ)i

∥∥∥ ≤ L

√
‖ũ‖2
n

≤
(
aτ
Aτ

)
LCp√
n
.

Recall Lemma 5.2 that
∥∥∥q(τ) − q(τ)i

∥∥∥ ≤ Cgaτ/(
√
nAτ). Therefore

n∑
i=1

aτ

〈
∇f(u(τ))− q(τ)i , w

(τ)
i − x∗

〉
≤
(
a2τ
Aτ

)√
nG(LCp + Cg). (5.28)

Finally, by collectively substituting (5.26), (5.27), and (5.28) into (5.25), we get

At
(
f(v(t))− f(x∗)

)
≤
(
G(LCp + Cg)√

n
+

3LC2
p

n

) t∑
τ=1

a2τ
Aτ

+ d(x∗) +
1

2n

t∑
τ=1

(
3La2τ
Aτ
− 1

)∥∥w(τ) −w(τ−1)∥∥2 .
Based on the condition in (5.8) and the fact that a2τ/Aτ ≤ 2a, we obtain (5.9) as

desired.

The inequality in (5.10) directly follows from Lemma 5.1.

95

5.5 Experiments

In this section, we verify the proposed methods by applying them to solve the following

constrained LASSO problems:

min
x∈Rm

{
f(x) =

1

2n

n∑
i=1

‖Mix− ci‖2
}
, s.t. ‖x‖1 ≤ R

whereMi ∈ Rpi×m, ci ∈ Rpi , andR is a constant parameter that defines the constraint.

In the simulation, each agent i has access to a local data tuple (yi, Ai) and R. Two

different problem instances characterized by both real and synthetic datasets are

considered.

5.5.1 Case I: Real Dataset

In this setting, we use sparco7 [93, 96] to define the LASSO problem, and consider

a cycle graph and a complete graph of n = 50 nodes. The corresponding weight

matrix P is determined by following the Metropolis-Hastings rule [105]. Each local

measurement matrix Mi ∈ R12×2560, and the local corrupted measurement ci ∈ R12.

The constraint parameter is set as R = 1.1 · ‖xg‖1, where xg with ‖xg‖0 = 20 denotes

the unknown variable to be recovered via solving LASSO. In this case, the simulation

experiments were performed using MATLAB R2020b.

For comparison, the PG-EXTRA method in [84] and the APM method in [52] are

simulated. For their algorithmic parameters, the step size for PG-EXTRA is set as

10−4, and the parameters for APM are set as L = 250 and β0 = L/
√

1− λ2(P). For

DDA in Chapter 4 and ADDA in this chapter, we use a = 5·10−4 and at = (t+1)·10−4,

respectively, and ‖x‖2/2 as the prox-function. The projection onto an l1 ball is carried

out via the algorithm in [13]. All the methods are initialized with x
(0)
i = 0,∀i ∈ V .

The performance of four algorithms is displayed in Figure 5.1. Particularly, the

performance is evaluated in terms of the objective error f(1
n

∑n
i=1 x

(t)
i)−f(x∗), where

x∗ is identified using CVX [21]. It demonstrates that the DDA method outperforms

other methods when the graph is a cycle. As the graph becomes denser, i.e, complete

graph, the convergence of all algorithms becomes faster. Among them, the ADDA

method demonstrates the most significant improvement. This is in line with Theo-

rem 5.1, where the network connectivity impacts the convergence error in O(1/t) as

opposed to O(1/t2).

96

5.5.2 Case II: Synthetic Dataset

For the synthetic dataset, the parameters are set as n = 8, m = 30000, pi = 2000,∀i ∈
V , and the data is generated in the following way. First, each local measurement

matrix Mi is randomly generated where each entry follows the normal distribution

N (0, 1). Next, each entry of the sparse vector xg to be recovered via LASSO is

randomly generated from the normal distribution N (0, 1) with ‖xg‖0 = 1500. Then

the corrupted measurement ci is produced based on

ci = Mixg + bi,

where bi represents the Gaussian noise with zero mean and variance 0.01. The con-

straint parameter is set as R = 1.1 · ‖xg‖1. For this setting, we employed the message

passing interface (MPI) in Python 3.7.3 to simulate a network of 8 nodes, where each

node i is connected to a subset of nodes {1+imod 8, 1+(i+3) mod 8, 1+(i+6) mod 8}.
For comparison, the DDA in Chapter 4 and ADDA in this chapter are compared to

their centralized counterparts. The parameters for dual averaging and accelerated

dual averaging are set as a = 1/(3 · 105) and at = a(t+ 1), respectively. Similarly, the

function ‖x‖2/2 is used as a prox-function, and the algorithms are initialized with

x
(0)
i = 0,∀i ∈ V .

The performance of the developed algorithm and its centralized counterpart, i.e.,

is illustrated in Figure 5.2. In particular, the performance is evaluated in terms of

objective function value versus iteration number and computing time. It demonstrates

that ADDA outperforms the centralized method in the sense that ADDA consumes

less computing time to reach the same degree of accuracy than the centralized method.

5.6 Conclusion

In this chapter, we have designed an accelerated DDA algorithm for solving decen-

tralized constrained optimization problems. In this algorithm, each agent retains the

conventional first-order dynamic average consensus method to estimate the average of

local gradients. Alternatively, the extrapolation technique together with the average

consensus protocol is used to achieve acceleration over a decentralized network.

97

0 500 1000 1500 2000

Iteration Number

10-6

10-4

10-2

O
b
je

c
ti
v
e
 E

rr
o
r

Peformance with Cycle Graph

0 500 1000 1500 2000

Iteration Number

10-6

10-4

10-2

O
b
je

c
ti
v
e
 E

rr
o
r

Peformance with Complete Graph

Figure 5.1: Comparison of objective error in Case I.

0 500 1000 1500 2000

Iteration Number

102

104

106

O
b

je
c
ti
v
e

 V
a

lu
e

0 200 400 600 800 1000

Time (s)

102

104

106

O
b

je
c
ti
v
e

 V
a

lu
e

788 790 792 794 796

495

500

Figure 5.2: Comparison of objective value in Case II.

98

Chapter 6

Communication-Efficient

Decentralized Primal-Dual

Algorithms

6.1 Introduction

In previous chapters, the decentralized optimization algorithms require all the agent

to synchronously communicate with their neighbors at every iteration. For cyber-

physical systems operated in a communication-limited environment, these algorithms

may become undesirable as they may consume more communication resources than

they necessarily need. Event-triggered scheduling of network transmissions is a promis-

ing solution to this problem, and has been exploited to design communication-efficient

controllers lately [2, 88, 98]. The idea is to generate network transmission only when

the information conveyed by the message is deemed innovative to the system, and

whether or not it is innovative is determined via an event-triggered function that

takes the deviation between the actual system state and the state just broadcast as

an argument.

Inspired by this attractive feature, event-triggered communication has been in-

corporated into decentralized optimization algorithms [10,23,30,41,51,54]. Recently,

the work in [54] presented an event-triggered decentralized ADMM that only requires

each agent to broadcast the local primal variable to its neighbors, and proved the

convergence of the algorithm when the objective function is convex. Convergence

rates are analyzed for special strongly convex and smooth objectives. In [54], each

99

agent at every generic time instant is required to exactly solve a subproblem, which

may be not practical in most cases. Considering this, two questions naturally arise:

i) For general convex functions, is it possible to devise an event-triggered decentral-

ized optimization algorithm that enjoys the same order of convergence with periodic

algorithms even in the presence of variable errors due to event-triggered communi-

cation? ii) If the objective functions exhibit some desired properties, e.g., smooth

or/and strongly convex, is it possible to simplify the subproblem-solving process to

simple algebraic operations without sacrificing the rate of convergence?

We give affirmative answers to these questions in this chapter. First, the primal-

dual methodology is used to tackle the decentralized optimization problem. More

specifically, the linearized augmented Lagrangian method (LALM) in [114] with a

specific pre-conditioning strategy is used to design a periodic decentralized algorithm.

Then, each agent employs an event-triggered broadcasting strategy to communicate

with its neighbors to avoid unnecessary network utilization. Compared with the state-

of-the-art, the developed event-triggered method features the following. i) It ensures

exact minimization with individual constant step sizes to improve the speed that is

usually determined by the slowest agent in existing methods. This is made possible by

adjusting the diagonal entries in the weight matrix that approximates the curvature of

the objective. ii) It provides simplified (algebraic) local iteration rules for composite

(smooth) problems to ease computational burden. iii) Convergence rates for different

types of objective functions are proved for the first time, that is, an O(1/t) rate

of convergence for non-smooth objective functions and linear convergence when the

objective functions are strongly convex and smooths. To achieve this, a significantly

different analysis from LALM is carried out since triggering schedulers inject errors

into each iteration. In particular, we establish a new upper bound for the effect of

errors on the primal-dual residual. Based on this, the same convergence rate O(1/t)

with the standard primal-dual algorithm can be guaranteed for non-smooth convex

problems.

100

6.2 Problem Setup and Preliminaries

6.2.1 Basic Setup

Consider an MAS consisting of n agents connected via a bidirectional network. They

aim to solving the following cost-coupled optimization problem

min
x∈Rm

{
n∑
i=1

Fi(x) := fi(x) + hi(x)

}
(6.1)

where fi and hi represent the local smooth objective function and non-smooth regu-

larization term of agent i, respectively.

The communication network among agents is characterized by a fixed undirected

graph G = (V , E). We make the following assumption for the communication graph.

Assumption 6.1. G is fixed and connected.

Our goal is to design an event-triggered decentralized first-order algorithm with

individual constant step sizes for the cost-coupled optimization problem in (6.1) to

save communication resources. In this framework, simplified local implementations

will be used for composite and smooth problems to ease computational load. Fur-

thermore, we will rigorously analyze the effect of triggering behavior on the iterates,

and prove the rates of convergence for the algorithm under different settings.

6.2.2 Primal-Dual Formulation

Define x = [xT1 , · · · , xTn]T, F(x) =
∑n

i=1 Fi(xi), f(x) =
∑n

i=1 fi(xi), and h(x) =∑n
i=1 hi(xi). Following [80], the problem in (6.1) can be equivalently written as the

following linearly constrained optimization problem

min
x∈Rmn

F(x) s.t.
(√
L⊗ I

)
x = 0 (6.2)

The augmented Lagrangian for (6.2) is written as

F(x) +
〈
y,
(√
L⊗ I

)
x
〉

+
β

2

∥∥x∥∥2L⊗I
where y = [yT1 , · · · , yTn]T ∈ Rmn denotes the dual variable and β > 0 a designable

parameter. The KKT conditions can be identified as

101

0 ∈ ∂F(x∗) +
(√
L⊗ I

)
y∗ (6.3a)

0 =
(√
L⊗ I

)
x∗ (6.3b)

where (x∗,y∗) is an optimal primal-dual pair and ∂F(x∗) the set of all subgradients

of F over x∗.

6.3 Algorithm and Convergence Results

6.3.1 Algorithm Development

Based on the above primal-dual formulation, we recruit the LALM [114] to solve the

decentralized composite optimization problem in (6.1):

x(t) = argmin
x

{
R(x; x(t−1)) + h(x) +

〈(√
L⊗ I

)
y(t−1),x

〉
+
β

2

∥∥x∥∥2L⊗I}
y(t) = y(t−1) + β(

√
L⊗ I)x(t),

(6.4)

where

R(x; x(t−1)) = f(x(t−1)) +
〈
∇f(x(t−1)),x

〉
+

1

2

∥∥x− x(t−1)∥∥2
(H−βL)⊗I

is a quadratic approximation of f , and H = diag{ηi}ni=1 � 0 is a diagonal matrix.

Further by letting z = (
√
L⊗ I)y [37, 91,114], the iteration rule becomes

x(t) = argmin
x

{
R(x; x(t−1)) + h(x) +

〈
z(t−1),x

〉
+
β

2

∥∥x∥∥2L⊗I}
z(t) =z(t−1) + β(L ⊗ I)x(t).

and therefore

x(t) = argmin
x

{
R′(x; x(t−1)) + h(x) +

〈
z(t−1) + β(L ⊗ I)x(t−1),x

〉}
z(t) =z(t−1) + β(L ⊗ I)x(t).

where

R′(x; x(t−1)) = f(x(t−1)) +
〈
∇f(x(t−1)),x

〉
+

1

2

∥∥x− x(t−1)∥∥2
H⊗I .

102

Element-wisely,

x
(t)
i = argmin

x

{
R′i(x;x

(t−1)
i) + hi(x) +

〈
z
(t−1)
i + β

∑
j∈Ni

(
x
(t−1)
i − x(t−1)j

)
, x
〉}

z
(t)
i =z

(t−1)
i + β

∑
j∈Ni

(
x
(t)
i − x

(t)
j

) (6.5)

where

R′i(x;x
(t−1)
i) = fi(x

(t−1)
i) +

〈
∇fi(x(t−1)i), x

〉
+
ηi
2

∥∥x− x(t−1)i

∥∥2.
Denote the set of generic time instants by κ = {t|t ∈ N}. It serves a global clock

that synchronizes all the agents. At each time t, we define the true and broadcast

primal variables x
(t)
i and x̃

(t)
i for agent i. Note that the variable x̃

(t)
i is the same across

all j ∈ Ni. Let κi = {t[l]i |l ∈ N} ⊆ κ be the set of triggering time instants for agent i,

where

t
[l+1]
i = min

{
t ∈ κ|t > t

[l]
i ,
∥∥x(t)i − x̃(t−1)i

∥∥ > E
(t)
i

}
, (6.6)

t ≥ 1, and E
(t)
i ≥ 0 represents the triggering threshold. The broadcast variable x̃

(t)
i

is defined as

x̃
(t)
i =

x
(t)
i , t ∈ κi
x̃
(t−1)
i , otherwise

(6.7)

It can be verified from the definition that the deviation between x
(t)
i and x̃

(t)
i is always

bounded from above by E
(t)
i , that is,

∥∥x(t)i − x̃(t)i ∥∥ ≤ E
(t)
i .

For the triggering threshold, we make the following assumption.

Assumption 6.2. Let E(t) = maxi∈N[1,n]
E

(t)
i for all t ∈ N. E(t) is non-increasing

and summable, i.e.,
∑∞

t=0E
(t) <∞.

Based on the above communication pattern, we modify the iteration rule in (6.5)

to

x
(t)
i = argmin

x

{
R′i(x;x

(t−1)
i) + hi(x) +

〈
z
(t−1)
i + β

∑
j∈Ni

(
x̃
(t−1)
i − x̃(t−1)j

)
, x
〉}

(6.8a)

z
(t)
i =z

(t−1)
i + β

∑
j∈Ni

(
x̃
(t)
i − x̃

(t)
j

)
. (6.8b)

103

The overall algorithm is summarized in Algorithm 5.

Algorithm 5 Event-triggered Decentralized Optimization

Input: ηi > 0 for all i = 1, . . . , n
Initialize: z

(0)
i = 0 for all i = 1, . . . , n, each agent i broadcasts x

(0)
i to its neighbors

for t = 1, 2, · · · do
In parallel (task for agent i, i = 1, . . . , n)

update x
(t)
i by (6.8a)

test the event condition in (6.6)
if triggered then

broadcast x
(t)
i to its neighbors j ∈ Ni

end if
construct x̃

(t)
j , j ∈ Ni according to (6.7)

update z
(t)
i by (6.8b)

end for

6.3.2 Convergence Results

Assumption 6.3. For i = 1, . . . , n, fi is convex and lfi-smooth, and gi is a proper

closed convex function.

By Assumption 6.3 and the Cauchy-Schwartz inequality, we have that the gradient

of f(x) satisfies

〈∇f(x)−∇f(y),x− y〉 ≤ ‖x− y‖2Lf⊗I ,∀x,y ∈ Rmn,

where Lf = diag{lfi}ni=1. Then, we examine the convergence rate for Algorithm 5

with Assumptions 6.1, 6.2, and 6.3 satisfied.

Theorem 6.1. If Assumptions 6.1, 6.2, and 6.3 hold and

P − Lf � 0,

then

∥∥∥(
√
L⊗ I)x̂(t)

∥∥∥ ≤
(∥∥x(0) − x∗

∥∥
P⊗I + ρ

∥∥L(βL+ 11T

n
)−1
∥∥+
√

2bAt

)2
2t (ρ− ‖y∗‖)

, (6.9)

104

and

−
‖y∗‖

(∥∥x(0) − x∗
∥∥
P⊗I + ρ

∥∥∥L(β(L ⊗ I) + 11T

n
)−1
∥∥∥+
√

2bAt

)2
2t (ρ− ‖y∗‖)

≤F(x̂(t))− F(x∗) ≤

(∥∥x(0) − x∗
∥∥
P⊗I + ρ

∥∥L(βL+ 11T

n
)−1
∥∥+
√

2bAt

)2
2t

,

(6.10)

where P = H − βL, x̂(t) = t−1
∑t

τ=1 x(τ),
∥∥y∗∥∥ < ρ < ∞, At = 2a

√
n

b

∑t
τ=1E

(τ−1),

a = max
{

2βλ(L), 1
}

, and b = min
{
λ(Lf), 1/λ(βL+ 11T

n
)
}

.

Proof. Please refer to Appendix A.

Remark 6.1. In this chapter, the triggering scheduler imposes conditions on the

information that is outdated but deemed effective, that is, the error between it and

the real-time information should be decreasing fast enough (summable). A rigorous

analysis that heavily exploits this property is then carried out. In particular, the

effect of triggering behavior on the primal-dual residual is proved bounded when the

triggering threshold is summable over time.

The results in Theorem 6.1 are explained as follows.

i) Comparison of sufficient conditions with [54]: Theorem 6.1 states that both the

consensus error
∥∥∥(
√
L⊗ I)x̂(t)

∥∥∥ and the objective error F(x̂(t))−F(x∗) converge

to zero at an ergodic convergence rate of O(1/t) if some reasonable assumptions

hold true. Note that the result remains valid for smooth objective functions,

i.e., h(x) = 0. For completely non-smooth objective functions, i.e., f(x) = 0,

the condition for step size to ensure the same convergence rate is relaxed to

H − βL � 0.

Note that the diagonal matrix H allows the use of different step sizes for agents,

depending on the local Lipschitz modulus. By setting H = ηI, the sufficient

condition reduces to

η > βλ(L).

When the free parameter β approaches zero, this condition becomes equivalent

to that in [54] for convergence.

105

ii) Choices of β, H and E(t): Theorem 6.1 indicates that, given a graph Laplacian,

a larger β necessitates an H with larger diagonal entries that is used in the

quadratic approximation. If H over-approximates the curvature of f in (6.4),

the convergence of primal variables x(t) will be slow. However, if ηi is too small

and under-approximates the curvature, the primal iterate may oscillate quickly.

In practice, the designable matrix H and parameter β should be carefully tuned

to achieve a reasonable convergence rate. An appropriate choice would be to

set β = 1/(λ(L) + 1) and H = I + Lf . Theorem 6.1 also suggests that the

threshold sequence E(t) will affect convergence. In particular, a more slowly

decreasing E(t) satisfying Assumption 6.2 will result in a larger At and therefore

a larger base in convergence constants. For composite optimization, one can

set a threshold sequence that converges slightly faster than the guaranteed rate

O(1/t), e.g., E
(0)
i /t2. In addition, a base constant E

(0)
i that is sufficiently smaller

than the magnitude of z
(0)
i + ∇fi(x(0)i) + β

∑
j∈Ni(x

(0)
i − x

(0)
j) is suggested to

prevent oscillation in the beginning.

Next, we consider strongly convex and smooth objective functions, for which

stronger convergence results can be stated. Formally, the following assumption is

made for the objective functions.

Assumption 6.4. For i = 1, . . . , n, hi(θ) ≡ 0 and fi is µfi-strongly convex.

As a direct consequence, the gradient of f satisfies

〈∇f(x)−∇f(y),x− y〉 ≥ ‖x− y‖2M⊗I ,∀x,y ∈ Rmn,

where M = diag{µfi}ni=1.

Theorem 6.2. If Assumptions 6.1-6.4 hold and

P − L2
f/k1 � 0 (6.11)

for some 0 < k1 < 2λ(M), then there exists some positive σ such that

1

2

∥∥x(t) − x∗
∥∥2
(P+k4Q)⊗I +

1

2

∥∥z(t) − z∗
∥∥2(

(βL+11T

n
)⊗I

)−1 + nC(E(t))2

≥ σ + 1

2

(∥∥x(t+1) − x∗
∥∥2
(P+k4Q)⊗I +

∥∥z(t+1) − z∗
∥∥2(

βL+11T

n

)−1

) (6.12)

106

where P = H − βL, Q = 2M − k1I,0 < k2, 2 < k3, 0 < k4 < 1, 0 < k5, and

C =

(
2
(
k3 + 1/k2 − 1

)
(σ + k5)λ(β2L2)

(1− 2/k3)λ(βL+ 11T

n
)

+
λ(βL+ 11T

n
)

2k5
+

2λ(β2L2)

k5λ(P + k4Q)

)
.

Proof. The proof is postponed to Appendix B.

Some remarks on the results in Theorem 6.2 are in order.

i) Linear convergence: It is stated in Theorem 6.2 that if the objective function

is further assumed to be strongly convex and the step size satisfies a relatively

stricter condition then a much faster convergence rate can be obtained. In

particular, if E(t) linearly converges then we obtain a linear convergence rate

for the primal-dual residual. And if the rate constant for a linearly convergent

E(t) is smaller than
√

1/(1 + σ) then the convergence of the primal-dual residual

is linear with constant 1/(1 + σ) as in a periodic algorithm.

ii) Impact of free parameters: In Theorem 6.2, several free parameters such as

k1, k2, k3, k4, k5 are used to describe convergence results. How the specific values

of them affect the result is explained in the following.

– k1 is used in (6.30) and should be selected in set (0, 2λ(M)). It directly

affects the choices of H and β, as suggested by the sufficient condition in

(6.11) for convergence.

– k2 and k3 are used in (6.20) to separate triggering errors from the primal-

dual residual, and should be chosen in (0,∞) and (2,∞), respectively. A

smaller k2 and a larger k3 give a conservative constant C in (6.12), but

allow us to get a larger σ and therefore faster convergence.

– k4 should be in (0, 1). Its role can be observed in (6.35) and (6.36), where

the relation between
∥∥(P ⊗ I)

(
x(t+1) − x(t)

)∥∥2 and the primal-dual resid-

ual is established. A larger k4 renders the weight on the primal residual in

(6.12) heavier, but makes σ smaller to get (6.35) satisfied.

– The proof shows that the key for linear convergence is the satisfaction of

(6.35) with a sufficiently small σ + k5. This implies that σ + k5 can only

take values in

(0,min{R1, R2, R3}), (6.13)

107

where

R1 :=
λ
(
k4Q(L−1f)

2)
(1− 2/k3)λ(βL+ 11T

n
)

k2 + k3 − 1

R2 := λ
(
P−1 − Lf (P−1)2/k1

)
λ(βL+

11T

n
)(1− 2/k3)

R3 := (1− k4)Q(P + k4Q)−1,

to ensure (6.35). Therefore setting a larger k5 in (6.13) leads to a smaller

σ and slower convergence. In particular, given k5 and a linearly decreasing

threshold E(t) = E(0)ρt, the convergence rate becomes

O

(
max

{
ρ2,

1

min{R1, R2, R3} − k5

}t)
.

iii) Choices of β, H and E(t): Selecting a larger ηi and a smaller β generally leads to

heavier weights, i.e., P+k4Q and
(
βL+ 11T

n

)−1
, on the primal and dual residuals

in (6.12). However, a larger spectral radius of H − βL also results in a smaller

min(R1, R2, R3) in (6.13) and therefore slower convergence. For the reasonable

choices of these parameters, one can set β = 1/(λ(L) + 1) and H = I + L2
f/k1.

Since the slower one in E(t) and 1/
√

(1 + σ)t will dominate the convergence, it

is then always preferable to choose an exponentially decreasing sequence for the

triggering threshold in decentralized strongly convex optimization. For the base

constant, E
(0)
i = 0.1|z(0)i + ∇fi(x(0)i) + β

∑
j∈Ni(x

(0)
i − x

(0)
j)| is an appropriate

choice.

6.4 Proofs of Convergence Results

6.4.1 Proof of Theorem 6.1

Before developing the proof for Theorem 6.1, several useful technical lemmas are

presented.

Lemma 6.1. [114] Given a positive semidefinite matrix W ∈ Rm×m, it holds

2 〈Wu, v〉 = ‖u‖2W + ‖v‖2W − ‖u− v‖
2
W ,∀u, v ∈ Rm. (6.14)

Lemma 6.2. [112] If Assumption 6.1 holds, then for each y ∈ span⊥(1⊗ I), there

108

exists a unique y′ ∈ span⊥(1⊗ I) such that y = (L ⊗ I)y′ and vice versa.

Lemma 6.3. If all the conditions in Theorem 6.1 hold, then, for any x ∈ null(L⊗I)

and z ∈ span⊥(1⊗ I),

F(x(τ+1))− F(x) +
〈
z,x(τ+1)

〉
≤− 1

2

∥∥x(τ+1) − x(τ)
∥∥2
(P−Lf)⊗I

− 1

2

(∥∥x(τ+1) − x
∥∥2
P⊗I −

∥∥x(τ) − x
∥∥2
P⊗I

)
−
〈
x(τ+1) − x, β(L ⊗ I)

(
e(τ) − e(τ+1)

)〉
+
〈
e(τ+1), z(τ+1) − z

〉
+

1

2

(∥∥z− z(τ)
∥∥2(

(βL+11T

n
)⊗I

)−1 −
∥∥z− z(τ+1)

∥∥2(
(βL+11T

n
)⊗I

)−1

)
− 1

2

∥∥z(τ+1) − z(τ)
∥∥2(

(βL+11T

n
)⊗I

)−1

(6.15)

where P is defined in Theorem 6.1 and e(τ) = x̃(τ) − x(τ).

Proof of Lemma 6.3. By the smoothness of f , we have

f(x(τ+1)) ≤ f(x(τ)) +
〈
∇f(x(τ)),x(τ+1) − x(τ)

〉
+

1

2

∥∥x(τ+1) − x(τ)
∥∥2
Lf⊗I

.

It follows from the convexity of f

f(x(τ)) +
〈
∇f(x(τ)),x− x(τ)

〉
≤ f(x)

and h

h(x(τ+1))− h(x) ≤
〈
x(τ+1) − x, ∇̃h(x(τ+1))

〉
that

F(x(τ+1))− F(x) ≤
〈
∇f(x(τ)) + ∇̃h(x(τ+1)),x(τ+1) − x

〉
+

1

2

∥∥x(τ+1) − x(τ)
∥∥2
Lf⊗I

(6.16)

where ∇̃h(x(τ+1)) is a subgradient of h evaluated at x(τ+1). From the iteration rule,

we have

0 =∇f(x(τ)) + z(τ) + ∇̃h(x(τ+1))− (H ⊗ I)(x(τ) − x(τ+1)) + β(L ⊗ I)x̃(τ)

0 =z(τ+1) − z(τ) − β(L ⊗ I)x̃(τ+1).

109

This implies

0 = ∇f(x(τ)) + ∇̃h(x(τ+1)) + z(τ+1) + (P ⊗ I)(x(τ+1) − x(τ)) + β(L ⊗ I)(e(τ) − e(τ+1)).

(6.17)

Calculating the inner products of x(τ+1) − x with both sides of the above equation

leads to 〈
x(τ+1) − x,∇f(x(τ)) + ∇̃h(x(τ+1))

〉
=−

〈
x(τ+1) − x, z(τ+1) − z

〉
−
〈
x(τ+1) − x, (P ⊗ I)(x(τ+1) − x(τ))

〉
−
〈
x(τ+1) − x, β(L ⊗ I)

(
e(τ) − e(τ+1)

)〉
−
〈
x(τ+1), z

〉 (6.18)

for any x ∈ null(L ⊗ I) and z ∈ span⊥(1⊗ I). From Lemma 6.2 and the fact that

z(τ+1) = β(L ⊗ I)
τ+1∑
ι=0

x̃(ι),

we obtain〈
x(τ+1) − x, z(τ+1) − z

〉
=
〈
x̃(τ+1), z(τ+1) − z

〉
−
〈
e(τ+1), z(τ+1) − z

〉
=
〈
β(L ⊗ I)x̃(τ+1), z

′(τ+1) − z′
〉
−
〈
e(τ+1), z(τ+1) − z

〉
=
〈
β(L ⊗ I)

(
z
′(τ+1) − z

′(τ)
)
, z
′(τ+1) − z′

〉
−
〈
e(τ+1), z(τ+1) − z

〉
.

(6.19)

It follows

F(x(τ+1))− F(x) +
〈
z,x(τ+1)

〉
i

≤1

2

∥∥x(τ+1) − x(τ)
∥∥2
Lf⊗I

−
〈
x(τ+1) − x, (P ⊗ I)

(
x(τ+1) − x(τ)

)〉
+
〈
e(τ+1), z(τ+1) − z

〉
−
〈
x(τ+1) − x, β(L ⊗ I)

(
e(τ) − e(τ+1)

)〉
−
〈
β(L ⊗ I)

(
z
′(τ+1) − z

′(τ)
)
, z
′(τ+1) − z′

〉
ii
=− 1

2

∥∥x(τ+1) − x(τ)
∥∥2
(P−Lf)⊗I

− 1

2

(∥∥x(τ+1) − x
∥∥2
P⊗I −

∥∥x(τ) − x
∥∥2
P⊗I

)
−
〈
x(τ+1) − x, β(L ⊗ I)

(
e(τ) − e(τ+1)

)〉
+
〈
e(τ+1), z(τ+1) − z

〉
+

1

2

(∥∥∥z′ − z
′(τ)
∥∥∥2
β(L⊗I)

−
∥∥z′(τ+1) − z′

∥∥2
β(L⊗I)

)
− 1

2

∥∥∥z′(τ+1) − z
′(τ)
∥∥∥2
β(L⊗I)

,

(6.20)

110

where we plug (6.18) and (6.19) into (6.16) to get “i” and use Lemma 6.1 and

P � Lf � 0, βL � 0

to get “ii”. Due to z, z′, z
′(k) ∈ span⊥(1⊗ I), we have

z− z(τ) = β(L ⊗ I)
(
z′ − z

′(τ)
)

=

(
β(L ⊗ I) +

(11T)⊗ I
n

)(
z′ − z

′(τ)
)
.

and therefore z′ − z
′(τ) =

(
(βL+ 11T

n
)⊗ I

)−1 (
z− z(τ)

)
. Then we consider

∥∥∥z′ − z
′(τ)
∥∥∥2
β(L⊗I)

=
〈
z− z(τ), z′ − z

′(τ)
〉

=
∥∥z− z(τ)

∥∥2(
(βL+11T

n
)⊗I

)−1 ,

which together with (6.20) gives the desired inequality.

Lemma 6.4. If all the conditions in Theorem 6.1 hold, then, for τ ≤ t,

∥∥x(τ) − x∗
∥∥+

∥∥z∗ − z(τ)
∥∥ ≤ 2At +

√
2/b

(∥∥x(0) − x∗
∥∥
P⊗I +

∥∥z(0) − z∗
∥∥(

(βL+11T

n
)⊗I

)−1

)
where P , b and At are defined in Theorem 6.1.

Proof of Lemma 6.4. First, we use the convexity of F and the KKT conditions (6.3)

to obtain

F(x)− F(x∗) +
〈
y∗,
(√
L⊗ I

)
x
〉

≥
〈
∇̃F(x∗),x− x∗

〉
+
〈
y∗,
(√
L⊗ I

)
(x− x∗)

〉
=
〈
∇̃F(x∗) +

(√
L⊗ I

)
y∗,x− x∗

〉
= 0,∀x

(6.21)

111

where ∇̃F(x∗) ∈ ∂F(x∗). Then, we let x = x∗ and z = z∗ = (
√
L ⊗ I)y∗ in (6.15),

and sum the resultant inequality from k = 0 to k = t− 1 to get

0 ≤
t−1∑
τ=0

(
F(x(τ+1))− F(x∗) +

〈
y∗, (
√
L⊗ I)x(τ+1)

〉)
≤− 1

2

(
t−1∑
τ=0

∥∥x(τ+1) − x(τ)
∥∥2
(P−Lf)⊗I

+
∥∥x(t) − x∗

∥∥2
P⊗I −

∥∥x(0) − x∗
∥∥2
P⊗I

)
− 1

2

∥∥z∗ − z(t)
∥∥2(

(βL+11T

n
)⊗I

)−1 +
1

2

∥∥z∗ − z(0)
∥∥2(

(βL+11T

n
)⊗I

)−1

+
t−1∑
τ=0

(〈
x∗ − x(τ+1), β(L ⊗ I)

(
e(τ) − e(τ+1)

)〉
+
〈
z(τ+1) − z∗, e(τ+1)

〉)
− 1

2

t−1∑
τ=0

∥∥z(τ+1) − z(τ)
∥∥2(

(βL+11T

n
)⊗I

)−1 .

(6.22)

Since P − Lf � 0 and (βL+ 11T

n
)−1 � 0, it holds

1

2

∥∥x(t) − x∗
∥∥2
P⊗I +

1

2

∥∥z∗ − z(t)
∥∥2(

(βL+11T

n
)⊗I

)−1

≤1

2

∥∥x(0) − x∗
∥∥2
P⊗I +

1

2

∥∥z(0) − z∗
∥∥2(

(βL+11T

n
)⊗I

)−1

+
t∑

τ=1

(〈
x∗ − x(τ), βL

(
e(τ−1) − e(τ)

)〉
+
〈
z(τ) − z∗, e(τ)

〉)
.

By the monotonicity of E(t) and the Cauchy-Schwarz inequality, we further have

1

4
min

{
λ(Lf),

1

λ(βL+ 11T

n
)

}(∥∥x(t) − x∗
∥∥+

∥∥z∗ − z(t)
∥∥)2

≤1

2

∥∥x(t) − x∗
∥∥2
P⊗I +

1

2

∥∥z∗ − z(t)
∥∥2(

(βL+11T

n
)⊗I

)−1

+
t∑

τ=1

(〈
x∗ − x(τ), βL

(
e(τ−1) − e(τ)

)〉
+
〈
z(τ) − z∗, e(τ)

〉)
≤1

2

∥∥x(0) − x∗
∥∥2
P⊗I +

1

2

∥∥z(0) − z∗
∥∥2(

(βL+11T

n
)⊗I

)−1

+
t∑

τ=1

max
{

2βλ(L), 1
}√

nE(τ−1) (∥∥x∗ − x(τ)
∥∥+

∥∥z(τ) − z∗
∥∥) .

(6.23)

112

Upon using Lemma 1 in [79], we obtain∥∥x(t) − x∗
∥∥+

∥∥z∗ − z(t)
∥∥

≤ At +

√√√√2 ‖x(0) − x∗‖P⊗I + 2 ‖z(0) − z∗‖(
(βL+11T

n
)⊗I

)−1

b
+ A2

t

where b and At are defined in Theorem 6.1. By the monotonicity and positivity of

At, the desired result follows.

We are now in a position to present the proof for Theorem 6.1.

Proof of Theorem 6.1. Manipulating (6.24) and using the similar procedure as in

(6.23) allow us to get

1

2

t−1∑
τ=0

(∥∥x(τ+1) − x(τ)
∥∥2
(P−Lf)⊗I

+
∥∥z(τ+1) − z(τ)

∥∥2(
(βL+11T

n
)⊗I

)−1

)
≤1

2

∥∥x(0) − x∗
∥∥2
P⊗I +

1

2

∥∥z∗ − z(0)
∥∥2(

(βL+11T

n
)⊗I

)−1

+
(∥∥x∗ − x(t)

∥∥+
∥∥z∗ − z(t)

∥∥) t∑
τ=1

a
√
nE(τ−1)

(6.24)

where a is defined in Theorem 6.1. In light of Lemma 6.4, we have that if E(τ) is

summable, then

∞∑
τ=0

(∥∥x(τ+1) − x(τ)
∥∥2
(P−Lf)⊗I

+
∥∥z(τ) − z(τ+1)

∥∥2(
(βL+11T

n
)⊗I

)−1

)
<∞.

Since P − Lf � 0,
(
βL+ 11T

n

)−1 � 0, we further have

lim
τ→∞

(
x(t+1), z(t+1)

)
−
(
x(t), z(t)

)
= 0.

Denote the limit point of
{(

x(t), z(t)
)}

t≥1 by (x∞, z∞). Note that lim
t→∞

E(t) = 0 by

assumptions. From

β(L ⊗ I)
(
e(τ+1) + x(τ+1)

)
= z(τ+1) − z(τ),

113

and

0 = ∇̃F(x(τ+1)) + z(τ) − (H ⊗ I)x(τ) + β(L ⊗ I)
(
e(τ) + x(τ)

)
+ (H ⊗ I)x(τ+1)

where ∇̃F(x(τ+1)) is a subgradient of F over x(τ+1), we obtain (L ⊗ I)x∞ = 0 and

∇̃F(x∞) + z∞ = 0, respectively. This implies that (x∞,y∞) is a KKT point, where

z∞ = (
√
L⊗ I)y∞. Again, from (6.24), we have

t−1∑
τ=0

(
F(x(τ+1))− F(x∗) +

〈
y∗, (
√
L⊗ I)x(τ+1)

〉)
≤1

2

∥∥x(0) − x∗
∥∥2
P⊗I +

1

2

∥∥z(0) − z∗
∥∥2(

(βL+11T

n
)⊗I

)−1

+
b

2
At

(
2At +

√
2/b

(∥∥x(0) − x∗
∥∥
P⊗I +

∥∥z(0) − z∗
∥∥(

(βL+11T

n
)⊗I

)−1

))

≤


∥∥x(0) − x∗

∥∥
P⊗I +

∥∥z(0) − z∗
∥∥(

(βL+11T

n
)⊗I

)−1

√
2

+
√
bAt

2

,

(6.25)

which in conjunction with

t
(
F(x̂(t))− F(x∗) +

〈
y∗, (
√
L⊗ I)x̂(t)

〉)
≤

t−1∑
τ=0

(
F(x(τ+1))− F(x∗) +

〈
y∗, (
√
L⊗ I)x(τ+1)

〉)
gives

F(x̂(t))− F(x∗) +
〈
y∗, (
√
L⊗ I)x̂(t)

〉
≤ 1

2t

(∥∥x(0) − x∗
∥∥
P⊗I +

∥∥z(0) − z∗
∥∥(

(βL+11T

n
)⊗I

)−1 +
√

2bAt

)2

=
1

2t

(∥∥x(0) − x∗
∥∥
P⊗I +

∥∥∥(
√
L⊗ I)y∗

∥∥∥(
(βL+11T

n
)⊗I

)−1 +
√

2bAt

)2

where the initialization step z(0) = 0 is used to get the last equality. Finally, we

114

consider

F(x̂(t))− F(x∗) ≤ F(x̂(t))− F(x∗) + ρ
∥∥∥(
√
L⊗ I)x̂(t)

∥∥∥
≤ sup
‖y∗‖≤ρ

(∥∥x(0) − x∗
∥∥
P⊗I +

∥∥∥(
√
L⊗ I)y∗

∥∥∥(
(βL+11T

n
)⊗I

)−1 +
√

2bAt

)2

2t

≤

(∥∥x(0) − x∗
∥∥
P⊗I + ρ

∥∥L(βL+ 11T

n
)−1
∥∥+
√

2bAt

)2
2t

.

(6.26)

By (6.21), it holds that

F(x̂(t))− F(x∗) ≥ −‖y∗‖
∥∥(
√
L⊗ I)x̂(t)

∥∥. (6.27)

By combining (6.27) with (6.26), one gets

(ρ− ‖y∗‖)
∥∥∥(
√
L⊗ I)x̂(t)

∥∥∥ ≤
(∥∥x(0) − x∗

∥∥
P⊗I + ρ

∥∥∥L(βL+ 11T

n
)−1
∥∥∥+
√

2bAt

)2
2t

.

Therefore the bound for
∥∥∥(
√
L⊗ I)x̂(t)

∥∥∥ in (6.9) holds. Using (6.27) again allows us

to obtain the lower bound for F(x̂(t))−F(x∗) in (6.10). This completes the proof.

6.4.2 Proof of Theorem 6.2

Proof of Theorem 6.2. By setting ∇̃h(x(t+1)) = 0 in (6.17) and z∗ = (
√
L ⊗ I)y∗ in

(6.3a), we have

0 =∇f(x(t))−∇f(x∗) + z(t+1) − z∗ + (P ⊗ I)
(
x(t+1) − x(t)

)
+ β(L ⊗ I)

(
e(t) − e(t+1)

)
.

(6.28)

115

As in the proof of Lemma 6.3, we consider the inner products of x(t+1)−x∗ with both

sides of the above equality〈
x(t+1) − x∗,∇f(x(t))−∇f(x∗)

〉︸ ︷︷ ︸
i

+
〈
x(t+1) − x∗, z(t+1) − z∗

〉︸ ︷︷ ︸
ii

+
〈
x(t+1) − x∗, (P ⊗ I)

(
x(t+1) − x(t)

)〉︸ ︷︷ ︸
iii

+
〈
x(t+1) − x∗, β(L ⊗ I)

(
e(t) − e(t+1)

)〉
= 0.

(6.29)

For “i”, we consider ∇f(x(t))−∇f(x∗) = ∇f(x(t))−∇f(x(t+1)) +∇f(x(t+1))−∇f(x∗)

and get from the strong convexity and smoothness of f that

i ≥
∥∥x(t+1) − x∗

∥∥2
M⊗I −

1

2k1

∥∥∇f(x(t))−∇f(x(t+1))
∥∥2 − k1

2

∥∥x(t+1) − x∗
∥∥2

≥1

2

∥∥x(t+1) − x∗
∥∥2
Q⊗I −

1

2k1

∥∥x(t) − x(t+1)
∥∥2
L2
f⊗I

.

(6.30)

Using the same reasoning as in (6.19), we have

ii =
1

2

∥∥z∗ − z(t+1)
∥∥2(

(βL+11T

n
)⊗I

)−1 +
1

2

∥∥z(t) − z(t+1)
∥∥2(

(βL+11T

n
)⊗I

)−1

− 1

2

∥∥z(t) − z∗
∥∥2(

(βL+11T

n
)⊗I

)−1 −
〈
e(t+1), z(t+1) − z∗

〉
.

(6.31)

Using Lemma 6.1 allows us to obtain

iii =
1

2

(∥∥x(t+1) − x∗
∥∥2
P⊗I +

∥∥x(t+1) − x(t)
∥∥2
P⊗I −

∥∥x(t) − x∗
∥∥2
P⊗I

)
. (6.32)

Combing equations. (6.29)-(6.32) yields

1

2

∥∥x(t) − x∗
∥∥2
P⊗I +

1

2

∥∥z(t) − z∗
∥∥2(

(βL+11T

n
)⊗I

)−1

+
〈
e(t+1), z(t+1) − z∗

〉
−
〈
x(t+1) − x∗, β(L ⊗ I)

(
e(t) − e(t+1)

)〉
≥1

2

∥∥x(t+1) − x∗
∥∥2
(P+Q)⊗I +

1

2

∥∥x(t+1) − x(t)
∥∥2
(P−L2

f/k1)⊗I

+
1

2

∥∥z∗ − z(t+1)
∥∥2(

(βL+11T

n
)⊗I

)−1 +
1

2

∥∥z(t) − z(t+1)
∥∥2(

(βL+11T

n
)⊗I

)−1 .

(6.33)

In order to obtain linear convergence from (6.33), we establish a relation between∥∥x(t+1) − x(t)
∥∥2 and the primal-dual residual in the following. By (6.28) and the

116

inequality

2 〈u,v〉 ≥ −w ‖u‖2 − 1

w
‖v‖2 ,∀u,v ∈ Rmn, w > 0,

it holds ∥∥(P ⊗ I)
(
x(t+1) − x(t)

)∥∥2
=
∥∥∇f(x(t))−∇f(x∗) + z(t+1) − z∗ + β(L ⊗ I)

(
e(t) − e(t+1)

)∥∥2
≥ (1− k2 − k3)

∥∥x(t) − x∗
∥∥2
L2
f⊗I

+ (1− 2/k3)
∥∥z(t+1) − z∗

∥∥2
+ (1− 1/k2 − k3)

∥∥β(L ⊗ I)
(
e(t) − e(t+1)

)∥∥2
(6.34)

for any k2 > 0 and k3 > 2. If σ + k5 is sufficiently small such that

(k2 + k3 − 1)(σ + k5)L
2
f

(1− 2/k3)λ(βL+ 11T

n
)
� k4Q (6.35a)

(σ + k5)P
2

(1− 2/k3)λ(βL+ 11T

n
)
� P − L2

f/k1 (6.35b)

(σ + k5)(P + k4Q) � (1− k4)Q (6.35c)

for some 0 < k4 < 1, then we can get from (6.34) that

1

2

∥∥x(t+1) − x∗
∥∥2
(1−k4)Q⊗I

+
1

2

∥∥x(t+1) − x(t)
∥∥2
(P−L2

f/k1)⊗I
+

1

2

∥∥x(t) − x∗
∥∥2
k4Q⊗I

+
1

2

∥∥z(t) − z(t+1)
∥∥2(

(βL+11T

n
)⊗I

)−1 +
(k3 + 1/k2 − 1) (σ + k5)

2(1− 2/k3)λ(βL+ 11T

n
)

∥∥β(L ⊗ I)
(
e(t) − e(t+1)

) ∥∥2
≥ σ + k5

2

(∥∥x(t+1) − x∗
∥∥2
(P+k4Q)⊗I +

∥∥z(t+1) − z∗
∥∥2(

(βL+11T

n
)⊗I

)−1

)
.

(6.36)

Combining (6.36) and (6.33) leads to

1

2

∥∥x(t) − x∗
∥∥2
(P+k4Q)⊗I +

1

2

∥∥z(t) − z∗
∥∥2(

(βL+11T

n
)⊗I

)−1 +
〈
e(t+1), z(t+1) − z∗

〉
+

(k3 + 1/k2 − 1) (σ + k5)

2(1− 2/k3)λ(βL+ 11T

n
)

∥∥β(L ⊗ I)
(
e(t) − e(t+1)

)∥∥2
−
〈
x(k+1) − x∗, β(L ⊗ I)

(
e(t) − e(t+1)

)〉
≥σ + k5 + 1

2

(∥∥x(t+1) − x∗
∥∥2
(P+k4Q)⊗I +

∥∥z∗ − z(t+1)
∥∥2(

(βL+11T

n
)⊗I

)−1

)
.

117

By monotonicity of E(t) and the inequality

〈u,v〉 ≤ k5
2
‖u‖2O +

1

2k5
‖v‖2O−1 ,∀u,v ∈ Rmn, O � 0,

we are able to separate triggering errors from the primal-dual residual and arrive at

(6.12). This completes the proof.

6.5 Experiments

In this section, we test the proposed algorithm and compare it with some recent

event-triggered decentralized optimization algorithms in the literature.

6.5.1 Decentralized l1-l2 Minimization

Consider the decentralized l1-l2 minimization problem:

min
x

n∑
i=1

{
1

2
‖bi − Aix‖2 + τi ‖x‖1

}
,

where data Ai ∈ Rpi×m, bi ∈ Rpi and regularization parameter τi > 0 are private to

agent i. The two component functions for each agent are fi(x) = ‖bi − Aix‖2/2 that

is convex with Lipschitz continuous gradient, and hi(x) = τi‖x‖1 that is convex but

non-differentiable. The parameters are chosen as pi = 3, m = 50, and n = 100; the

data Ai and bi are randomly generated with normalization.

In the simulation, a network of n = 100 agents is randomly chosen with connec-

tivity ratio r = 0.4 [101], where r is defined as the number of links divided by the

number of all possible links n(n− 1)/2. We compare the performance of the pro-

posed methods with the ADMM-based algorithm [85] and its event-triggered variant

(COCA) [54]. For [54, 85], the projected scaled subgradient method available as a

Matlab function L1General2 PSSgb in [78] is used to solve the subproblems with

an accuracy of 10−10 in terms of the l∞ norm of the subgradient. Communication

strategies in which each agent triggers network transmission every two iterations or

four iterations are also simulated. The parameters for these algorithms are manually

tuned in periodic setting to achieve the best performance: H = 0.6I, β = 0.0025 and

c = 0.0025 are considered for the proposed method and [54, 85], respectively. For

event-triggered methods, the triggering thresholds for agents are set as E
(t)
i = 20/t1.2.

118

The primal and dual iterates of all the methods are initialized with 0. The perfor-

mance is evaluated in terms of the objective error |F(x̂(t))− F(x∗)| over the number

of iteration steps and broadcasting times of the first agent.

The results are plotted in Figure 6.1. We observe that event-triggered LALM

and COCA, while demonstrating comparable performance with their periodic coun-

terparts, achieve significant communication reductions. Note that ADMM-based ap-

proaches outperform LALM-based ones, because the former used the original aug-

mented Lagrangian while the latter used a linearized one to ease the computational

burden of solving subproblems. As a consequence, ADMM and COCA consume much

more computational resources than the proposed methods at each iteration. For this

specific example, the time spent per iteration for COCA is 0.2431s on average and

the time for the proposed method is 0.0068s. In practice, a trade-off between network

utilization and computational resource consumption should be made. The periodic

scheme of 2 periods halves the number of communication rounds for each agent. How-

ever, when the number of periods increases to 4, the iterates diverge. Compared to the

periodic scheme of 2 periods, the proposed algorithm consumes less communication

cost and is guaranteed to converge.

Then, a sparser random network with r = 0.04 is considered. The parameters

are tuned as H = 0.6I, β = 0.01 to achieve the best performance. The results are

presented in Figure 6.2. They indicate that the denser configuration (r = 0.4) leads

to faster convergence, and each agent broadcasts less in denser networks to achieve a

given accuracy. This is primarily because that a denser network has a more balanced

set of weights for agents, and more information from neighbors can be used in each

iteration/communication round.

119

Iteration Number

O
b

je
c
ti
v
e

 E
rr

o
r

Broadcasting Times

O
b

je
c
ti
v
e

 E
rr

o
r

Figure 6.1: Objective error |F(x̂(t))−F(x∗)| versus iteration number and broadcasting
times when r = 0.4.

Algorithms Time spent per iteration (sec)

COCA 0.2431

Event-triggered LALM 0.0068

Table 6.1: The time spent per iteration for COCA and event-triggered LALM

Iteration Number

O
b
je

c
ti
v
e
 E

rr
o
r

Broadcasting Times

O
b
je

c
ti
v
e
 E

rr
o
r

Figure 6.2: Objective error |F(x̂(t))−F(x∗)| versus iteration number and broadcasting
times in different random networks.

120

6.5.2 Decentralized Logistic Regression

Consider the following decentralized logistic regression problem:

min
x

n∑
i=1

{ mi∑
j=1

ln
(

1 + exp
(
− yij(M iT

j x)
))}

.

where the input featuresM i
j ∈ Rm and the class labels yij ∈ {−1, 1} with j = 1, · · · ,mi

are private to each agent i. Note that we set the last element of the feature vector

M i
j ∈ Rm to 1 as in standard logistic regression, then the last element of the decision

variable x becomes the adjustable bias of the logistic regression model. The number

of samples for each agent i is mi = 8, and the dimension for decision variable is

m = 10. In the simulation, all the 400 samples are generated randomly. A network

of n = 100 with r = 0.04 is considered.

The linearized ADMM-based algorithm (DLM) in [49] and the gradient-tracking

method in [73], and their event-triggered variants [44] (COLA) and [23] are simulated

for comparison. Their parameters are manually tuned in periodic setting to achieve

the best performance: H = 55In, β = 1 for the proposed method, c = 1, ρ = 50

for [44,49], and η = 0.06 for [23,73]. The mixing matrix in [23,73] is selected with the

Metropolis rule [105]. The primal and dual iterates of all the methods are initialized

with 0. The triggering threshold for exchanging primal variables is set as E(t) = 0.90.1t

for all the event-triggered methods. For [23], another triggering threshold is selected

as 0.30.1t for the event-triggered dynamic average consensus scheme used to track

the gradient. We evaluate the performance by considering the relative square error

(RSE) defined by ‖x(t)−x∗‖F
‖x(0)−x∗‖F

over the number of local iteration iteration number and

communication times of the first agent.

The results are reported in Figure 6.3. All the methods exactly converge. However,

the gradient-tracking method converges at a much slower rate than other two types

of methods. This is primarily because this algorithm only allows one parameter to

be tuned while other methods have two. The results also show that generally event-

triggered methods converge at slower rates and present more oscillatory trajectories

than their periodic counterparts, mainly due to the variable errors caused by event-

triggered communication. However, significant reductions in network utilization are

observed in event-triggered methods. In particular, the proposed method and COLA

save ∼ 1
2

communication cost to achieve an accuracy of 10−4. The gradient-tracking

method consumes much heavier communication cost since both the estimated gradient

121

Iteration Number

R
S

E

Broadcasting Times

R
S

E

Figure 6.3: RSE versus iteration number and broadcasting times when r = 0.04.

and the local decision variable have to be exchanged.

6.6 Conclusion

This chapter has investigated the communication-efficient decentralized optimization

problem. Based on the primal-dual formulation and LALM, we have designed a new

event-triggered decentralized optimization algorithm, where each agent is allowed to

communicate with its neighbors sporadically. We have proved the rates of convergence

for the proposed algorithm under different problem settings. Numerical experiments

have demonstrated the capability of the proposed method in reducing the utilization

of network resources.

122

Chapter 7

Conclusion and Future Directions

This dissertation considers four concrete settings in decentralized optimization, that

is, constraint-coupled and cost-coupled decentralized optimization in fixed networks

(Chapters 3 and 5), composite cost-coupled decentralized optimization in stochastic

networks (Chapter 4), and communication-efficient decentralized optimization (Chap-

ter 6). We design four new algorithms for solving them, respectively, and rigorously

analyze their rates of convergence.

7.1 Conclusions

Chapter 3 has addressed the non-smooth constraint-coupled decentralized optimiza-

tion problem. We have leveraged Lagrangian relaxation to transform the coupling in

constraints into that in objective function of the dual problem. For dual Lagrangian

problems, most decentralized optimization algorithms cannot generate a convergent

sequence of dual iterates and therefore are not directly applicable. To solve this issue,

we have proposed the DSA2 algorithm that guarantees the convergence of the local

last iterate. We have proved that the dual objective error and the quadratic penalty

for the violation of coupled constraints converge at rate O(1/
√
t), and the primal

objective error asymptotically vanishes.

Chapter 4 has investigated the decentralized composite optimization problem in

stochastic networks. Most existing approaches cannot exploit the composite structure

when the communication network is stochastic and thus converge only sublinearly. To

tackle this challenging problem, we have designed a novel dynamic consensus protocol

and a new DDA algorithm. Under a rather mild condition on the stochastic network,

123

our algorithm enjoys an O(1/t) rate of convergence in the general case and a global

linear rate of convergence if each local objective function is strongly convex. To

the best of our knowledge, this is the first algorithm that attains linear convergence

for solving decentralized composite optimization in stochastic networks. Numerical

results have been presented to support our design and analysis.

Chapter 5 has studied the accelerated decentralized constrained optimization

problem. We have developed the ADDA algorithm, where the extrapolation tech-

nique together with the average consensus protocol is used to achieve acceleration

over a decentralized network. Particularly, i) each agent uses the conventional first-

order dynamic average consensus method to estimate the average of local gradients.

ii) After deriving a local dual variable based on the estimates, each agent further

generates a primal variable via solving the convex conjugate of a 1-strongly convex

function over this dual variable. iii) Taking such a primal variable as an input, two

additional sequences of primal variables are constructed based on the average con-

sensus protocol. Let β be the second largest singular value of the mixing matrix, we

have proved an O
(

1
t2

+ 1
t(1−β)2

)
rate of convergence for ADDA, provided that each

objective function is smooth. Numerical results have been presented to demonstrate

the efficiency of the proposed methods.

Chapter 6 has tackled the communication-efficient decentralized optimization prob-

lem. For general composite objectives, we have designed an event-triggered decentral-

ized primal-dual algorithm that only requires peer-to-peer communication at sporadic

triggering time instants. The event-triggered broadcasting strategy is implemented

by locally comparing the difference between true and broadcast variables with time-

varying triggering thresholds. We have proved an O(1/t) rate of convergence in the

general case provided that the threshold is summable over time, and a linear rate of

convergence if the objective function is strongly convex and smooth, and the trig-

gering threshold geometrically decreases. Numerical comparison results have been

reported to highlight its performance and superiority in exploiting communication

resources.

124

7.2 Future Work

7.2.1 Privacy-Preserving and Resilient Decentralized Opti-

mization

The distributed nature of multi-agent optimization renders the system vulnerable to

various network-induced issues such as eavesdropping and malicious cyber attacks.

However, most algorithms assume the agents and the communication channels be-

tween agents to be completely trustworthy. This is rarely the case in practice. For

example, an attacker can intrude a sub-system operated by the agents, and delib-

erately edit the message to be shared, i.e., deception attacks. This may result in

an unstable system with possible damages to hardware and the system overall. To

tackle this practical issue systematically, the techniques from robust statistics [90] and

graph augmentation [99] may be incorporated into the decentralized dual averaging

framework in Chapter 4.

7.2.2 Dual Averaging Methods for Decentralized Online Op-

timization

In various areas, e.g., scheduling of energy systems, the environment is highly dynamic

and difficult to model. Therefore, the cost function to be minimized changes with

time, and its value is observed only in hindsight. This is referred to as the online

optimization problem in the literature [71], where the goal is to minimize the following

regret function

RegretT (u) :=
T∑
t=1

f (t)(x(t))−
T∑
t=1

f (t)(u)

with respect to any u. For this type of problems, the algorithms in this dissertation

cannot be directly applied. Interestingly, the online version dual averaging method,

that is, follow-the-regularized-leader, is a powerful and generic algorithm to do online

convex optimization. Motivated by this, future works will be devoted to the extensions

of the algorithms in Chapters 4 and 5 to online optimization [120].

125

7.2.3 Rate Analysis of DDA Methods Under Error Bound

Conditions

Lately, some researchers discerned the linear convergence of a class of first-order

algorithms, e.g., the proximal gradient method (PGM) and the randomized block

coordinate PGM, for convex [28] and nonconvex [97] optimization problems based on

error bound conditions. Note that the strong convexity of fi assumed in Chapter 4

is stronger than the metric subregularity of the subdifferential ∂fi. An interesting

direction of future work is whether or not the linear convergence of dual averaging

methods can be established for the following two general classes of problems under

similar conditions: i) Each fi : Rm → R ∪ {+∞} is a function of the form

fi(x) = qi(Ax) + 〈si, x〉

where A is some l ×m matrix, si is some vector in Rm, and qi : Rl → R ∪ {+∞} is

strongly convex and smooth on any convex compact subset of dom(qi). ii) Each fi is

nonconvex.

126

Appendix A

Publications

• Journal Papers

1. C. Liu, H. Li, and Y. Shi. Resource-aware exact decentralized optimiza-

tion using event-triggered broadcasting. IEEE Transactions on Automatic

Control, 66(7): 2961-2974, 2021. (Full Paper)

(This work is presented in Chapter 6.)

2. C. Liu, H. Li, and Y. Shi. A unitary distributed subgradient method for

multi-agent optimization with different coupling sources. Automatica, 114,

Paper ID: 108834, 2020. (Regular Paper)

(This work is presented in Chapter 3.)

3. C. Liu, H. Li, Y. Shi, and D. Xu. Distributed event-triggered gradient

method for constrained convex minimization. IEEE Transactions on Au-

tomatic Control, 65(2): 778-785, 2020. (Technical Note)

4. D. Ji, J. Ren, C. Liu, and Y. Shi. Stabilizing terminal constraint-free

nonlinear MPC via sliding mode-based terminal cost. Automatica, 2021.

(Accepted as Regular Paper)

• Journal Paper Under Review

1. C. Liu, Y. Shi, H. Li, and W. Du. Accelerated dual averaging methods

for decentralized constrained optimization. Submitted.

(This work is presented in Chapter 5.)

127

• Conference Papers

1. C. Liu, H. Li, and Y. Shi. Towards an O(1/t) convergence rate for dis-

tributed dual averaging, in Proceedings of the 21st IFAC World Congress,

Berlin, Germany, July 12-17, 2020.

2. C. Liu, H. Li, Y. Shi, and D. Xu. Event-triggered broadcasting for dis-

tributed smooth optimization, in Proceedings of the 58th IEEE Conference

on Decision and Control, Nice, France, December 11-13, 2019.

3. C. Liu, H. Li, and Y. Shi. Distributed dual subgradient method with

double averaging: Application to QoS optimization in wireless networks,

in Proceedings of the 28th IEEE International Symposium on Industrial

Electronics, Vancouver, Canada, June 12-14, 2019.

4. K. Zhang, C. Liu, and Y. Shi. Computationally efficient adaptive model

predictive control for constrained linear system with parametric uncertain-

ties, in Proceedings of the 28th IEEE International Symposium on Indus-

trial Electronics, Vancouver, Canada, June 12-14, 2019.

• Conference Paper Under Review

1. C. Liu, Z. Zhou, J. Pei, Y. Zhang, and Y. Shi. Decentralized composite

optimization in stochastic networks: A dual averaging approach with linear

convergence. Submitted.

(This work is presented in Chapter 4.)

128

Bibliography

[1] Sulaiman Alghunaim, Kun Yuan, and Ali H Sayed. A linearly convergent prox-

imal gradient algorithm for decentralized optimization. In Advances in Neural

Information Processing Systems, pages 2848–2858, 2019.

[2] Karl Johan Astrom and Bo M Bernhardsson. Comparison of riemann and

lebesgue sampling for first order stochastic systems. In Proceedings of the 41st

IEEE Conference on Decision and Control, 2002., volume 2, pages 2011–2016.

IEEE, 2002.

[3] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimiza-

tion. Cambridge university press, 2004.

[4] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Random-

ized gossip algorithms. IEEE Transactions on Information Theory, 52(6):2508–

2530, 2006.

[5] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.

Distributed optimization and statistical learning via the alternating direction

method of multipliers. Machine Learning, 3(1):1–122, 2010.

[6] Tsung-Hui Chang, Mingyi Hong, Wei-Cheng Liao, and Xiangfeng Wang. Asyn-

chronous distributed admm for large-scale optimization—part i: Algorithm and

convergence analysis. IEEE Transactions on Signal Processing, 64(12):3118–

3130, 2016.

[7] Nikolaos Chatzipanagiotis, Darinka Dentcheva, and Michael M Zavlanos. An

augmented lagrangian method for distributed optimization. Mathematical Pro-

gramming, 152(1-2):405–434, 2015.

129

[8] Nikolaos Chatzipanagiotis and Michael M Zavlanos. On the convergence of a

distributed augmented lagrangian method for nonconvex optimization. IEEE

Transactions on Automatic Control, 62(9):4405–4420, 2017.

[9] Tianyi Chen, Georgios Giannakis, Tao Sun, and Wotao Yin. Lag: Lazily aggre-

gated gradient for communication-efficient distributed learning. In Advances in

Neural Information Processing Systems, pages 5050–5060, 2018.

[10] Weisheng Chen and Wei Ren. Event-triggered zero-gradient-sum distributed

consensus optimization over directed networks. Automatica, 65:90–97, 2016.

[11] Michael Cohen, Jelena Diakonikolas, and Lorenzo Orecchia. On acceleration

with noise-corrupted gradients. In International Conference on Machine Learn-

ing, pages 1019–1028, 2018.

[12] Igor Colin, Aurelien Bellet, Joseph Salmon, and Stéphan Clémençon. Gos-

sip dual averaging for decentralized optimization of pairwise functions. In

Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of The

33rd International Conference on Machine Learning, volume 48 of Proceedings

of Machine Learning Research, pages 1388–1396, New York, New York, USA,

20–22 Jun 2016. PMLR.

[13] Laurent Condat. Fast projection onto the simplex and the l1 ball. Mathematical

Programming, 158(1-2):575–585, 2016.

[14] Antonio J Conejo, Enrique Castillo, Roberto Minguez, and Raquel Garcia-

Bertrand. Decomposition techniques in mathematical programming: engineering

and science applications. Springer Science & Business Media, 2006.

[15] Jeffrey Dean, Greg S Corrado, Rajat Monga, Kai Chen, Matthieu Devin,

Quoc V Le, Mark Z Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker,

et al. Large scale distributed deep networks. In Proceedings of the 25th Interna-

tional Conference on Neural Information Processing Systems-Volume 1, pages

1223–1231, 2012.

[16] Thinh T Doan, Siva Theja Maguluri, and Justin Romberg. Convergence rates

of distributed gradient methods under random quantization: A stochastic ap-

proximation approach. IEEE Transactions on Automatic Control, 2020.

130

[17] Dheeru Dua and Casey Graff. UCI Machine Learning Repository, 2017.

[18] John C Duchi, Alekh Agarwal, and Martin J Wainwright. Dual averaging for

distributed optimization: Convergence analysis and network scaling. IEEE

Transactions on Automatic control, 57(3):592–606, 2011.

[19] Alessandro Falsone, Kostas Margellos, Simone Garatti, and Maria Prandini.

Dual decomposition for multi-agent distributed optimization with coupling con-

straints. Automatica, 84:149–158, 2017.

[20] Alessandro Falsone, Ivano Notarnicola, Giuseppe Notarstefano, and Maria

Prandini. Tracking-admm for distributed constraint-coupled optimization. Au-

tomatica, 117:108962, 2020.

[21] Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex

programming, version 2.1, 2014.

[22] Allan Gut. Probability: A Graduate Course, volume 75. Springer Science &

Business Media, 2013.

[23] Naoki Hayashi, Tomohiro Sugiura, Yuichi Kajiyama, and Shigemasa Takai.

Event-triggered consensus-based optimization algorithm for smooth and

strongly convex cost functions. In 2018 IEEE Conference on Decision and

Control (CDC), pages 2120–2125. IEEE, 2018.

[24] Dušan Jakovetić. A unification and generalization of exact distributed first-

order methods. IEEE Transactions on Signal and Information Processing over

Networks, 5(1):31–46, 2018.

[25] Dušan Jakovetić, Dragana Bajović, Nataša Krejić, and Nataša Krklec Jerinkić.

Distributed gradient methods with variable number of working nodes. IEEE

Transactions on Signal Processing, 64(15):4080–4095, 2016.

[26] Dušan Jakovetić, Joao Xavier, and José MF Moura. Fast distributed gradient

methods. IEEE Transactions on Automatic Control, 59(5):1131–1146, 2014.

[27] Dušan Jakovetić, Joao Manuel Freitas Xavier, and José MF Moura. Conver-

gence rates of distributed nesterov-like gradient methods on random networks.

IEEE Transactions on Signal Processing, 62(4):868–882, 2013.

131

[28] J Ye Jane, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. Variational analysis

perspective on linear convergence of some first order methods for nonsmooth

convex optimization problems. Set-Valued and Variational Analysis, pages 1–

35, 2021.

[29] Anatoli Juditsky, Joon Kwon, and Éric Moulines. Unifying mirror descent and

dual averaging. arXiv preprint arXiv:1910.13742, 2019.

[30] Yuichi Kajiyama, Naoki Hayashi, and Shigemasa Takai. Distributed subgradient

method with edge-based event-triggered communication. IEEE Transactions on

Automatic Control, 63(7):2248–2255, 2018.

[31] Soummya Kar and José MF Moura. Sensor networks with random links: Topol-

ogy design for distributed consensus. IEEE Transactions on Signal Processing,

56(7):3315–3326, 2008.

[32] Soummya Kar and José MF Moura. Distributed consensus algorithms in sensor

networks: Quantized data and random link failures. IEEE Transactions on

Signal Processing, 58(3):1383–1400, 2009.

[33] Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebas-

tian Stich. A unified theory of decentralized sgd with changing topology and

local updates. In International Conference on Machine Learning, pages 5381–

5393. PMLR, 2020.

[34] Dmitry Kovalev, Anastasia Koloskova, Martin Jaggi, Peter Richtarik, and Se-

bastian Stich. A linearly convergent algorithm for decentralized optimization:

Sending less bits for free! In International Conference on Artificial Intelligence

and Statistics, pages 4087–4095. PMLR, 2021.

[35] Guanghui Lan, Soomin Lee, and Yi Zhou. Communication-efficient algorithms

for decentralized and stochastic optimization. Mathematical Programming,

pages 1–48, 2018.

[36] Puya Latafat, Nikolaos M Freris, and Panagiotis Patrinos. A new randomized

block-coordinate primal-dual proximal algorithm for distributed optimization.

IEEE Transactions on Automatic Control, 64(10):4050–4065, 2019.

132

[37] Puya Latafat, Lorenzo Stella, and Panagiotis Patrinos. New primal-dual prox-

imal algorithm for distributed optimization. In 2016 IEEE 55th Conference on

Decision and Control (CDC), pages 1959–1964. IEEE, 2016.

[38] Soomin Lee, Angelia Nedić, and Maxim Raginsky. Coordinate dual averaging

for decentralized online optimization with nonseparable global objectives. IEEE

Transactions on Control of Network Systems, 5(1):34–44, 2016.

[39] Huan Li, Cong Fang, Wotao Yin, and Zhouchen Lin. A sharp convergence

rate analysis for distributed accelerated gradient methods. arXiv preprint

arXiv:1810.01053, 2018.

[40] Huan Li, Cong Fang, Wotao Yin, and Zhouchen Lin. Decentralized accelerated

gradient methods with increasing penalty parameters. IEEE Transactions on

Signal Processing, 68:4855–4870, 2020.

[41] Huaqing Li, Shuai Liu, Yeng Chai Soh, and Lihua Xie. Event-triggered com-

munication and data rate constraint for distributed optimization of multia-

gent systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems,

48(11):1908–1919, 2017.

[42] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed,

Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling

distributed machine learning with the parameter server. In 11th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 14),

pages 583–598, 2014.

[43] Tao Li, Minyue Fu, Lihua Xie, and Ji-Feng Zhang. Distributed consensus with

limited communication data rate. IEEE Transactions on Automatic Control,

56(2):279–292, 2010.

[44] Weiyu Li, Yaohua Liu, Zhi Tian, and Qing Ling. Communication-censored

linearized admm for decentralized consensus optimization. IEEE Transactions

on Signal and Information Processing over Networks, 6:18–34, 2019.

[45] Zhi Li, Wei Shi, and Ming Yan. A decentralized proximal-gradient method

with network independent step-sizes and separated convergence rates. IEEE

Transactions on Signal Processing, 67(17):4494–4506, 2019.

133

[46] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu.

Can decentralized algorithms outperform centralized algorithms? a case study

for decentralized parallel stochastic gradient descent. In Advances in Neural

Information Processing Systems, pages 5330–5340, 2017.

[47] Shu Liang, George Yin, et al. Distributed smooth convex optimization with

coupled constraints. IEEE Transactions on Automatic Control, 65(1):347–353,

2019.

[48] Shu Liang, George Yin, et al. Dual averaging push for distributed convex op-

timization over time-varying directed graph. IEEE Transactions on Automatic

Control, 65(4):1785–1791, 2019.

[49] Qing Ling, Wei Shi, Gang Wu, and Alejandro Ribeiro. Dlm: Decentralized

linearized alternating direction method of multipliers. IEEE Transactions on

Signal Processing, 63(15):4051–4064, 2015.

[50] Changxin Liu, Huiping Li, and Yang Shi. Towards an O(1/t) convergence rate

for distributed dual averaging. IFAC-PapersOnLine, 53(2):3254–3259, 2020.

[51] Changxin Liu, Huiping Li, Yang Shi, and Demin Xu. Distributed event-

triggered gradient method for constrained convex minimization. IEEE Trans-

actions on Automatic Control, 65(2):778–785, 2019.

[52] Sijia Liu, Pin-Yu Chen, and Alfred O Hero. Accelerated distributed dual av-

eraging over evolving networks of growing connectivity. IEEE Transactions on

Signal Processing, 66(7):1845–1859, 2018.

[53] Xiaorui Liu, Yao Li, Rongrong Wang, Jiliang Tang, and Ming Yan. Lin-

ear convergent decentralized optimization with compression. arXiv preprint

arXiv:2007.00232, 2020.

[54] Yaohua Liu, Wei Xu, Gang Wu, Zhi Tian, and Qing Ling. Communication-

censored admm for decentralized consensus optimization. IEEE Transactions

on Signal Processing, 67(10):2565–2579, 2019.

[55] Ilan Lobel and Asuman Ozdaglar. Distributed subgradient methods for convex

optimization over random networks. IEEE Transactions on Automatic Control,

56(6):1291–1306, 2010.

134

[56] Haihao Lu, Robert M Freund, and Yurii Nesterov. Relatively smooth convex

optimization by first-order methods, and applications. SIAM Journal on Opti-

mization, 28(1):333–354, 2018.

[57] Sindri Magnússon, Hossein Shokri-Ghadikolaei, and Na Li. On maintaining

linear convergence of distributed learning and optimization under limited com-

munication. IEEE Transactions on Signal Processing, 68:6101–6116, 2020.

[58] Xianghui Mao, Kun Yuan, Yubin Hu, Yuantao Gu, Ali H Sayed, and Wotao Yin.

Walkman: A communication-efficient random-walk algorithm for decentralized

optimization. IEEE Transactions on Signal Processing, 68:2513–2528, 2020.

[59] David Mateos-Núnez and Jorge Cortés. Distributed saddle-point subgradient

algorithms with Laplacian averaging. IEEE Transactions on Automatic Control,

62(6):2720–2735, 2016.

[60] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Au-

gusta H Teller, and Edward Teller. Equation of state calculations by fast

computing machines. The journal of chemical physics, 21(6):1087–1092, 1953.

[61] Angelia Nedic. Asynchronous broadcast-based convex optimization over a net-

work. IEEE Transactions on Automatic Control, 56(6):1337–1351, 2010.

[62] Angelia Nedić, Alex Olshevsky, and Michael G Rabbat. Network topology and

communication-computation tradeoffs in decentralized optimization. Proceed-

ings of the IEEE, 106(5):953–976, 2018.

[63] Angelia Nedic, Alex Olshevsky, and Wei Shi. Achieving geometric convergence

for distributed optimization over time-varying graphs. SIAM Journal on Opti-

mization, 27(4):2597–2633, 2017.

[64] Angelia Nedić and Asuman Ozdaglar. Approximate primal solutions and

rate analysis for dual subgradient methods. SIAM Journal on Optimization,

19(4):1757–1780, 2009.

[65] Angelia Nedic, Asuman Ozdaglar, and Pablo A Parrilo. Constrained consensus

and optimization in multi-agent networks. IEEE Transactions on Automatic

Control, 55(4):922–938, 2010.

135

[66] Arkadii Semenovich Nemirovsky and David Borisovich Yudin. Problem com-

plexity and method efficiency in optimization. 1983.

[67] Yu Nesterov and Vladimir Shikhman. Quasi-monotone subgradient methods

for nonsmooth convex minimization. Journal of Optimization Theory and Ap-

plications, 165(3):917–940, 2015.

[68] Yu Nesterov and Vladimir Shikhman. Dual subgradient method with averaging

for optimal resource allocation. European Journal of Operational Research,

270(3):907–916, 2018.

[69] Yurii Nesterov. Primal-dual subgradient methods for convex problems. Math-

ematical programming, 120(1):221–259, 2009.

[70] Ivano Notarnicola and Giuseppe Notarstefano. Constraint-coupled distributed

optimization: a relaxation and duality approach. IEEE Transactions on Control

of Network Systems, 7(1):483–492, 2019.

[71] Francesco Orabona. A modern introduction to online learning. arXiv preprint

arXiv:1912.13213, 2019.

[72] Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends

in Optimization, 1(3):127–239, 2014.

[73] Guannan Qu and Na Li. Harnessing smoothness to accelerate distributed opti-

mization. IEEE Transactions on Control of Network Systems, 5(3):1245–1260,

2017.

[74] Guannan Qu and Na Li. Accelerated distributed nesterov gradient descent.

IEEE Transactions on Automatic Control, 65(6):2566–2581, 2019.

[75] Michael Rabbat and Robert Nowak. Distributed optimization in sensor net-

works. In Proceedings of the 3rd international symposium on Information pro-

cessing in sensor networks, pages 20–27, 2004.

[76] Robin L Raffard, Claire J Tomlin, and Stephen P Boyd. Distributed optimiza-

tion for cooperative agents: Application to formation flight. In 2004 43rd IEEE

Conference on Decision and Control (CDC), volume 3, pages 2453–2459. IEEE,

2004.

136

[77] Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent

Massoulié. Optimal algorithms for smooth and strongly convex distributed

optimization in networks. In International Conference on Machine Learning,

pages 3027–3036. PMLR, 2017.

[78] Mark Schmidt, Glenn Fung, and Rmer Rosales. Fast optimization methods for

l1 regularization: A comparative study and two new approaches. In European

Conference on Machine Learning, pages 286–297. Springer, 2007.

[79] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Convergence rates of in-

exact proximal-gradient methods for convex optimization. In Proceedings of

the 24th International Conference on Neural Information Processing Systems,

pages 1458–1466, 2011.

[80] Jacob H Seidman, Mahyar Fazlyab, George J Pappas, and Victor M Preciado. A

chebyshev-accelerated primal-dual method for distributed optimization. In 2018

IEEE Conference on Decision and Control (CDC), pages 1775–1781. IEEE,

2018.

[81] Shahin Shahrampour and Ali Jadbabaie. Distributed online optimization in

dynamic environments using mirror descent. IEEE Transactions on Automatic

Control, 63(3):714–725, 2017.

[82] Thomas Sherson, Richard Heusdens, and W Bastiaan Kleijn. On the duality of

globally constrained separable problems and its application to distributed signal

processing. In 2016 24th European Signal Processing Conference (EUSIPCO),

pages 1083–1087. IEEE, 2016.

[83] Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. Extra: An exact first-order

algorithm for decentralized consensus optimization. SIAM Journal on Opti-

mization, 25(2):944–966, 2015.

[84] Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. A proximal gradient algo-

rithm for decentralized composite optimization. IEEE Transactions on Signal

Processing, 63(22):6013–6023, 2015.

[85] Wei Shi, Qing Ling, Kun Yuan, Gang Wu, and Wotao Yin. On the linear conver-

gence of the admm in decentralized consensus optimization. IEEE Transactions

on Signal Processing, 62(7):1750–1761, 2014.

137

[86] Andrea Simonetto and Hadi Jamali-Rad. Primal recovery from consensus-based

dual decomposition for distributed convex optimization. Journal of Optimiza-

tion Theory and Applications, 168(1):172–197, 2016.

[87] Navjot Singh, Deepesh Data, Jemin George, and Suhas Diggavi. Sparq-sgd:

Event-triggered and compressed communication in decentralized optimization.

In 2020 59th IEEE Conference on Decision and Control (CDC), pages 3449–

3456. IEEE, 2020.

[88] Paulo Tabuada. Event-triggered real-time scheduling of stabilizing control tasks.

IEEE Transactions on Automatic Control, 52(9):1680–1685, 2007.

[89] Konstantinos I Tsianos, Sean Lawlor, and Michael G Rabbat. Push-sum dis-

tributed dual averaging for convex optimization. In 2012 51st IEEE Conference

on Decision and Control (CDC), pages 5453–5458. IEEE, 2012.

[90] Berkay Turan, Cesar Uribe, Hoi-To Wai, and Mahnoosh Alizadeh. Re-

silient primal-dual optimization algorithms for distributed resource alloca-

tion. IEEE Transactions on Control of Network Systems, 2020. doi:

10.1109/TCNS.2020.3024485.

[91] César A Uribe, Soomin Lee, Alexander Gasnikov, and Angelia Nedić. A dual

approach for optimal algorithms in distributed optimization over networks. Op-

timization Methods and Software, pages 1–40, 2020.

[92] César A Uribe, Hoi-To Wai, and Mahnoosh Alizadeh. Resilient distributed

optimization algorithms for resource allocation. In 2019 58th IEEE Conference

on Decision and Control (CDC), pages 8341–8346. IEEE, 2019.

[93] Ewout van den Berg, MP Friedlander, G Hennenfent, F Herrmann, R Saab, and

O Yılmaz. Sparco: A testing framework for sparse reconstruction. Dept. Com-

put. Sci., Univ. British Columbia, Vancouver, Tech. Rep. TR-2007-20,[Online].

Available: http://www. cs. ubc. ca/labs/scl/sparco, 2007.

[94] Damiano Varagnolo, Filippo Zanella, Angelo Cenedese, Gianluigi Pillonetto,

and Luca Schenato. Newton-raphson consensus for distributed convex opti-

mization. IEEE Transactions on Automatic Control, 61(4):994–1009, 2015.

138

[95] Robin Vujanic, Peyman Mohajerin Esfahani, Paul J Goulart, Sébastien

Mariéthoz, and Manfred Morari. A decomposition method for large scale milps,

with performance guarantees and a power system application. Automatica,

67:144–156, 2016.

[96] Hoi-To Wai, Jean Lafond, Anna Scaglione, and Eric Moulines. Decentralized

frank–wolfe algorithm for convex and nonconvex problems. IEEE Transactions

on Automatic Control, 62(11):5522–5537, 2017.

[97] Xiangfeng Wang, J Ye Jane, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang.

Perturbation techniques for convergence analysis of proximal gradient method

and other first-order algorithms via variational analysis. Set-Valued and Vari-

ational Analysis, pages 1–41, 2021.

[98] Xiaofeng Wang and Michael D Lemmon. Event-triggering in distributed net-

worked control systems. IEEE Transactions on Automatic Control, 56(3):586–

601, 2010.

[99] Yongqiang Wang. Privacy-preserving average consensus via state decomposi-

tion. IEEE Transactions on Automatic Control, 64(11):4711–4716, 2019.

[100] Zheming Wang and Chong-Jin Ong. Accelerated distributed mpc of linear

discrete-time systems with coupled constraints. IEEE Transactions on Auto-

matic Control, 63(11):3838–3849, 2018.

[101] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-

world’networks. nature, 393(6684):440–442, 1998.

[102] Ermin Wei and Asuman Ozdaglar. On the o (1= k) convergence of asynchronous

distributed alternating direction method of multipliers. In 2013 IEEE Global

Conference on Signal and Information Processing, pages 551–554. IEEE, 2013.

[103] Kenneth S Williams. The n th power of a 2× 2 matrix. Mathematics Magazine,

65(5):336–336, 1992.

[104] Tianyu Wu, Kun Yuan, Qing Ling, Wotao Yin, and Ali H Sayed. Decentralized

consensus optimization with asynchrony and delays. IEEE Transactions on

Signal and Information Processing over Networks, 4(2):293–307, 2017.

139

[105] Lin Xiao and Stephen Boyd. Fast linear iterations for distributed averaging.

Systems & Control Letters, 53(1):65–78, 2004.

[106] Lin Xiao, Stephen Boyd, and Seung-Jean Kim. Distributed average consensus

with least-mean-square deviation. Journal of parallel and distributed computing,

67(1):33–46, 2007.

[107] Yongyang Xiong, Ligang Wu, Keyou You, and Lihua Xie. Quantized distributed

gradient tracking algorithm with linear convergence in directed networks. arXiv

preprint arXiv:2104.03649, 2021.

[108] Cuixia Xu, Junlong Zhu, Youlin Shang, and Qingtao Wu. A distributed conju-

gate gradient online learning method over networks. Complexity, 2020, 2020.

[109] Jinming Xu, Ye Tian, Ying Sun, and Gesualdo Scutari. Accelerated primal-

dual algorithms for distributed smooth convex optimization over networks. In

International Conference on Artificial Intelligence and Statistics, pages 2381–

2391. PMLR, 2020.

[110] Jinming Xu, Ye Tian, Ying Sun, and Gesualdo Scutari. A unified algorithmic

framework for distributed composite optimization. In 2020 59th IEEE Confer-

ence on Decision and Control (CDC), pages 2309–2316. IEEE, 2020.

[111] Jinming Xu, Shanying Zhu, Yeng Chai Soh, and Lihua Xie. Convergence of

asynchronous distributed gradient methods over stochastic networks. IEEE

Transactions on Automatic Control, 63(2):434–448, 2017.

[112] Jinming Xu, Shanying Zhu, Yeng Chai Soh, and Lihua Xie. A bregman split-

ting scheme for distributed optimization over networks. IEEE Transactions on

Automatic Control, 63(11):3809–3824, 2018.

[113] Jinming Xu, Shanying Zhu, Yeng Chai Soh, and Lihua Xie. A dual splitting

approach for distributed resource allocation with regularization. IEEE Trans-

actions on Control of Network Systems, 6(1):403–414, 2018.

[114] Yangyang Xu. Accelerated first-order primal-dual proximal methods for linearly

constrained composite convex programming. SIAM Journal on Optimization,

27(3):1459–1484, 2017.

140

[115] Peng Yi and Yiguang Hong. Quantized subgradient algorithm and data-rate

analysis for distributed optimization. IEEE Transactions on Control of Network

Systems, 1(4):380–392, 2014.

[116] Kun Yuan, Qing Ling, and Wotao Yin. On the convergence of decentralized

gradient descent. SIAM Journal on Optimization, 26(3):1835–1854, 2016.

[117] Jiaojiao Zhang, Qing Ling, and Anthony Man-Cho So. A newton tracking algo-

rithm with exact linear convergence for decentralized consensus optimization.

IEEE Transactions on Signal and Information Processing over Networks, 2021.

[118] Jiaqi Zhang, Keyou You, and Tamer Başar. Distributed discrete-time optimiza-

tion in multiagent networks using only sign of relative state. IEEE Transactions

on Automatic Control, 64(6):2352–2367, 2018.

[119] Jiaqi Zhang, Keyou You, and Kai Cai. Distributed dual gradient tracking

for resource allocation in unbalanced networks. IEEE Transactions on Signal

Processing, 68:2186–2198, 2020.

[120] Yan Zhang, Robert J Ravier, Michael M Zavlanos, and Vahid Tarokh. A dis-

tributed online convex optimization algorithm with improved dynamic regret.

In 2019 IEEE 58th Conference on Decision and Control (CDC), pages 2449–

2454. IEEE, 2019.

[121] Yan Zhang and Michael M Zavlanos. A consensus-based distributed augmented

lagrangian method. In 2018 IEEE Conference on Decision and Control (CDC),

pages 1763–1768. IEEE, 2018.

[122] Minghui Zhu and Sonia Mart́ınez. Discrete-time dynamic average consensus.

Automatica, 46(2):322–329, 2010.

