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Abstract

Building design processes are dynamic and complex. The context of a building pro-
ject is manifold and depends on the cultural context, climatic conditions and personal
design preferences. Many stakeholders may be involved in deciding between a large
space of possible designs defined by a set of influential design parameters.
Building performance simulation is the state-of-the-art way to provide estimates of
the energy and environmental performance of various design alternatives. However,
setting up a simulation model can be labour intensive and evaluating it can be com-
putationally costly. As a consequence, building simulations often occur towards the
end of the design process instead of being an active component in design processes.
This observation and the growing availability of machine learning algorithms as an
aid to exploring analytical problems has lead to the development of surrogate mo-
dels. The idea of surrogate models is to learn from a high-fidelity counterpart, here
a building simulation model, by emulating the simulation outputs given the simula-
tion inputs. The key advantage is their computational efficiency. They can produce
performance estimates for hundreds of thousands of building designs within seconds.
This has great potential to innovate the field. Instead of only being able to assess
a few specific designs, entire regions of the design space can be explored, or instan-
taneous feedback on the sustainability of building can be given to architects during
design sessions.

This PhD thesis aims to advance the young field of building energy simulation
surrogate models. It contributes by: (a) deriving Bayesian surrogate models that are
aware of their uncertainties and can warn of large approximation errors; (b) deriving
surrogate models that can process large weather data (≈150’000 inputs) and estimate
the associated impact on building performance; (c) calibrating a simulation model via
fast iterations of surrogate models, and (d) benchmarking the use of surrogate-based
calibration against other approaches.
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Key contributions

The key contribution of this thesis is the advancement of fast machine learning sur-
rogate models to become a second pillar in sustainable building design alongside
common physics-based performance simulation. We lay the technical foundations to
robust, uncertainty-aware surrogate models that generalize over a large scope of de-
sign tasks that architect and building designers may face.
The thesis is divided into two parts. First, we focus on deriving more robust surro-
gate models where we integrate powerful methods from machine learning literature
into our domain. In the second part, we take advantage of computational efficiency
of surrogate models to efficiently calibrate building performance models to measured
sensor data. This is an essential prior step to well-informed retrofit design for existing
buildings.
The main contributions are listed below:

Part I

Collection of relevant literature [P1]: The field of surrogate modelling is young.
As a first contribution we provided the first collection of relevant studies that
used surrogate modelling to facilitate building design. We extracted major
achievements and research trends, and conceptualized surrogate models aug-
menting simulation tools to form a two-system-based building performance as-
sessment tool. Similar to a human brain, a fast, intuitive surrogate model
(System 1) can be used to analyse frequently occurring design problems, and
a high-fidelity, physics-based model can be used to assess more complex de-
signs which integrate new technologies (System 2). The following research was
grounded on that literature review.

Surrogate models in use [P2]: A tool is being developed that hosts surrogate mo-
dels on a web server, such that it can be actively used by building designers and
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architects for fast, interactive design of net-zero energy buildings. In the study,
we train a surrogate model that covers a large number of design parameters
(inputs) and performance metrics (outputs), which pushes the current state of
research.

Uncertainty aware surrogate models [P3]: Surrogate models are a statistical
approximation of a high-fidelity model. Although they achieve high emula-
tion accuracy on average, large errors can occur. We transfer novel findings
from the machine learning literature, i.e. Bayesian deep learning approaches,
to our domain. As a result, our surrogate models are capable of quantifying the
uncertainty associated with the approximation process. This may be crucial for
a robust use of surrogates in the future, and can also be used to train them
more efficiently, by actively picking training samples in regions of the design
space where high uncertainty was observed [P4].

Generalization of surrogate models [P5]: One fundamental criticism of surro-
gate models is that they are only valid to the narrow scope of design problems
that they have been trained for. Expensive retraining of the surrogate model
is necessary if the design task slightly changes. Until this study, a generalized
surrogate model that is trained to cover different climate impacts was lacking in
the literature. The climate is directly linked to a specific location so, a surrogate
model was location-bound. We derived a deep temporal convolutional network
that can process the exact same weather inputs as the high-fidelity simulation
model, such that we could significantly improve the generalizability of a trained
surrogate model to multiple design problems.

Part II

Energy signatures for building characterization [P6]: The inputs to a calibra-
tion process are measured building sensor data and a raw, uncalibrated model.
Smart meter data is the most prevalent source of measured building data, in
particular in Canada [11], and it is suitable to calibrate a large stock of buil-
dings. Automatically determining a suitable structure of an uncalibrated model
for a large number of buildings remains challenging.
We developed a method that integrates building domain knowledge with data
driven algorithms. It extracts qualitative building properties from the same
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smart meter data, which subsequently are used to set up the uncalibrated mo-
del. We use the concept of energy signatures, a scatter plot with outside air
temperature on the x-axis and electricity consumption on the y-axis, which con-
denses each building’s electricity use into one highly informative graph. They
allow us to automatically infer the installed heating system type and building
type without requiring any additional data. This was shown on two smart meter
data sets covering 889 buildings. Afterwards, the calibration process can begin.

Surrogate-based calibration benchmarking [P7]: In this study, surrogate mo-
delling was compared to other calibration approaches. To allow detailed analysis
of the performance and to design informative experiments, synthetic building
measurement data was generated using parametric building simulation runs. We
showed that surrogate model-based calibration outperforms many other appro-
aches in estimating the building’s heat loss coefficient, a metric that quantifies
whole building energy efficiency. Future work will inform how well surrogate-
calibration works in the real world environment.
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Chapter 1

Introduction

1.1 Sustainable building design for the clean energy

transition

According to the International Energy Agency (IEA), the building sector accounted

for 28% of global carbon emissions in 2019, reaching an all-time high of 10 GtCO2,e

[12]. Current efforts decrease energy use per floor area (0.5% - 1% per year since

2010) but are not enough to outweigh the ever growing building stock (2.5% per year

since 2010). The IEA recommends significantly increasing quality and coverage of

building energy codes, fostering retrofits, ramping up heat pump installations, and

improving air conditioning efficiency.

Architects and building designers are responsible for transferring these high level

paradigms to the level of individual projects. This is a challenging endeavour as each

real estate project is unique, differing in climate, built environment, occupant beha-

viour and design preferences of the owners. An optimal sustainability strategy for

one building is not necessarily suitable for another. Furthermore, the preferences of

the many stakeholders involved in a project can differ strongly.
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1.2 Building performance simulation

Given the large set of variables in a sustainable building design task, the design pro-

cess is often supported by building performance simulation (BPS) software to predict

and assess the performance of a building design [10]. BPS software is based on a

steadily growing knowledge of building physics and used to model the thermal loads

of a building given material properties, the setup of heating, cooling, ventilation and

air-conditioning (HVAC) systems, the occupant behaviour and comfort preferences,

the external climate conditions, the indoor daylight conditions, hygrothermal effects

and other influences. EnergyPlus is the BPS program used throughout this thesis [3].

While accuracy in the outputs is desirable, the major goal of BPS is to increase

problem understanding, where design parameter sensitivity analysis and performance

uncertainty analysis are fundamental aspects. It is widely known that there is an

expected performance gap between simulated and measured buildling performance,

caused by mistakes by the modellers, by mistakes in the construction phase, and by

the probabilistic nature of building loads (e.g. occupant behaviour) [4].

While this thesis focusses on the use of BPS for architects and building designers to

design better buildings or assess retrofit options, it can also be applied for high-level

policy design, or by HVAC engineers to optimize the operation of a building.

1.2.1 Towards an exploration of sustainable building designs

In the last two decades, a large set of computational methods have been developed

to augment stand-alone BPS. In particular, the use of heuristic or gradient-based

optimization approaches which operate over the BPS software have received a lot of
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Figure 1.1: The modelling scope of typical building performance simulation
programs, from [10].



4

attention in the past [5]. However, it was found that optimization is often not robust

towards rapid changes at the conceptual design stage caused by uncertainty in the

project requirements, or that it does not suit the need for architectural freedom by

the designers [1].

Instead, methods allowing interactive exploration of design alternatives have recently

been favoured over automated tools to find a particular optimal design [20]. Currently

parametric modelling is used for this purpose. The idea is to automatically run a large

number of simulations covering a multitude of design options. The simulation inputs

and outputs are stored in a database such that the architect has immediate access to

performance estimates without interacting with complex simulation software or wai-

ting for a simulation run to finish. The data can also be incorporated into interactive

user interfaces, e.g. parallel coordinate plots [18], that can guide the designer through

the space of possible design options [24].

In a recent empirical study, the use of interactive BPS-based tools was shown to be

popular among architects and also enabled them to produce better performing de-

signs compared to conventional approaches [1].

1.2.2 Challenges

The use of interactive tools circumvents the hurdles of the BPS process, in which

architects and project developers hire a BPS expert who collects all relevant project

information, sets up the simulation model and conducts the simulation runs. This

can be tedious and pushes BPS towards the end of the design process to ensure com-

pliance to performance targets or to building codes. Authors have referred to this

as the problem of BPS being an elaborative tool rather than a proactive element in

design processes [23].
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Using parametric models has been the first step to tackle these challenges - with

significant drawbacks. First, the design parameter combinations must be selected

prior to the design space analysis. When the studied building is large and complex

the runtime of a BPS constrains the selection process to relatively few samples (≈

100). This is particularly limiting, as building design problems are commonly cha-

racterized by a large number of design parameters which span a large, multi-modal

design space [21][27].

A coarse set of parameter combinations restricts the freedom of architects and also

may not capture high performing design alternatives. One way around this is to use

powerful computational hardware to increase simulation speed, as already available

in some BPS software products [9], and the use of Design-of-Experiment methods

(DoE) [6] to pick samples efficiently throughout the space of options. However, stu-

dies have shown that the required number of samples to provide a detailed view on the

design space is large. For example, 5000 parametric simulations did not include any

design alternative after the architect imposed filters on certain design parameters [19].

These limitations of parametric analysis on the one side, and the strength of

machine learning methods to quickly and automatically extract understanding of

correlations in data on the other, has brought the field of surrogate modelling to

innovate traditional BPS [26][21].

1.3 Surrogate modelling for BPS

The idea of surrogate modelling is to train a machine learning model on BPS input

and output data (see Figure 1.2, left). The approximate statistical method is evalua-
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Figure 1.2: Building surrogate modelling. On the left, the general surrogate
modelling process is showcased. Details can be found in Chapter 2. On the right,
we show an example of a low dimensional design problem. The red dots depict the
training data, and the blue grid shows the surrogate evaluated at the grid’s nodes.

ted much faster than the BPS model counterpart, which allows to produce thousands

of performance estimates within seconds, as shown in Figure 1.2 (right) by the eva-

luation of a surrogate model on a tight grid of points. In comparison to parametric

runs, the parameters (here the window-to-wall ratio, WWR, and the window’s solar

heat gain coefficient, SHGC) can be chosen freely.

1.3.1 Simulating, fast and slow

The core contribution of this thesis is to integrate BPS with surrogate models which

is similar to producing building performance estimates with both a fast and a slow

system. We use the slow high-fidelity model to synthesise a large set of physical laws
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explaining the building design performance estimates. It is considered a white-box

model, where we know the underlying rational. The laws are scientific generalizations

and are not bound to a certain design parameter range. The fast surrogate model,

which represents the second system, is very different. It relies on statistical learning,

which is bound to the domain of the training data. When using a machine learning

model as surrogate, an algorithm determines the model structure making the model

hard to interpret (black-box model).

The characteristics of the two systems are reminiscient of Kahneman’s definition

of how the brain forms thoughts, which he published in his book "Thinking, fast and

slow" [14]. He found that humans use two thought processes; one is fast and one is

slow. The fast system is non-logical, effortless, intuitive and emotion-driven. The

slow system is more energy-intensive, based on rationales, more logical and we con-

sciously perceive the thinking process. Kahneman points out that the two systems

are concurrent and even the fast process can be used for complex tasks, e.g. a chess

player is able to play speed chess after he trained reading books and playing matches

over several years. Determining which system to use is crucial, and wrong decisions

can cause mistakes.

This analogy inspired this work, and will be referred to throughout the thesis. For

example, the challenge of determining when to use a surrogate model and when to

refer to an actual simulation run was explored in the research below (see Chapter 4).
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1.4 Research questions

In the following we formulate specific research objectives to advance the integration of

BPS with surrogate modelling. The objectives are split into two parts, Part I focusses

on improving the use of surrogate models to augment BPS and is the primary focus

of this thesis, and Part II uses surrogate modelling to extract building properties

from building sensor measurement data through model calibration. All objectives are

based on a thorough literature review, which is presented below.

Part I

Research Question 1.1: How can surrogate models be more robust and is there a way

to quantify their uncertainty in emulation?

Surrogate models inherently introduce error to building performance estimates.

First comparative studies have shown that they are very accurate on average [21][26],

however, this does not ensure that the surrogate model performs well for the part

of the design space the architect is most interested in. The objective behind this

research question is to identify these inaccuries and to quantify confidence intervals.

This potentially also allows us to hybridize the two systems, i.e. the slow high-

fidelity BPS software and fast surrogate model, to jointly produce building design

performance estimates as fast as possible within a specified certainty band (see Section

1.3.1). This may include that the surrogate model may actively learn, by targeting

simulation runs that it is most uncertain about.

Research Question 1.2: How can surrogate models generalize to more building design

problems and more locations, which differ in climate?
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In existing studies surrogate models are derived to approximate a specific buil-

ding simulation model that is designed for a specific project. Hence the sampling

and training of a surrogate has to be repeated if the project changes. Some aut-

hors compartmentalized surrogate modelling into multiple tasks, e.g. to specifically

emulate the heat flux through walls, floors and ceilings [7]. This envisions that the

compartmentalized surrogate models can be combined to approximate any geometry.

Among other limitations, this approach still binds the surrogate to the specific cli-

mate it has been trained for. We aim to find representations of climate data as input

to a surrogate such that it can quantify the impact of different climates on building

performance. This will make surrogates much more reusable and readily applicable

without the need for sampling and training prior to application.

Part II

Research Question 2.1: How can we extract fundamental building mechanical system

properties from smart meter data prior to surrogate-based model calibration?

In the previous section, we introduced the challenge of finding a suitable base

model for a large number of buildings. Essential parameters for a base model include

building location and climate conditions, primary building usage, building geometry

and mechanical system configurations. Only with satisfactory prior knowledge of

these properties is it possible to derive a physically meaningful quantitative calibration

of parameters like the envelope R-value, heating system efficiency, infiltration rate,

or heat recovery efficiency.

Some of these underlying properties are easier to collect than others, e.g. occupancy

behaviour can be extracted from load profiles and building location and geometry

can be collected using satellite data. Currently, we are lacking an approach to derive
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which mechanical system type is installed. An automated smart-meter-based estimate

is developed in this thesis.

Research Question 2.2: How does the performance of surrogate-based building model

calibration compare to other methods to extract thermal building properties?

Having accurate knowledge of the building at hand still does not guarantee that

a bottom-up surrogate-based building characteristic estimate is the best option to

collect quantitative building properties prior to designing the building retrofit. We

benchmark surrogate-based calibration against other bottom-up approaches and top

down deep learning methods [2].

1.5 Structure of the thesis

The structure of the thesis chronologically follows the outline given in the research

questions. In Chapter 2, we present a thorough literature review. It is the first publi-

cation summarizing significant works on surrogate modelling for sustainable building

design. Part I of the research questions follows. We start be giving a detailed example

on the use of surrogate models for building design (Chapter 3). Afterwards, we tackle

the research questions of Part I in Chapters 4 and 5. The research questions of Part

II are addressed in Chapter 6. Additional contributions that cover the use of machine

learning for related fields like building controls, or retrofit analysis, are found in the

Appendix.
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Chapter 2

Literature Review

The motivation of surrogate modelling is driven by the ability to provide instantane-

ous feedback to architects at the early design stage, but their evaluation speed makes

them attractive for a variety of design analysis tasks. This includes design optimiza-

tion, global sensitivity analysis, and uncertainty analysis.

Quickly mapping design parameters to building performance metrics can also be useful

for determining parameters of an existing building. Either by using an optimization

approach or a Bayesian paradigm, we can use the surrogate model to calibrate buil-

ding parameters of existing buildings. In comparison to other calibration methods,

surrogate based calibration is fast while retaining the link to detailed building per-

formance simulation models (white-box models), whereas in other approaches rather

simplified physics-based models (grey-box models) are used. Detailed BPS models

allow us a larger flexibility when implementing retrofit scenarios post-calibration in

comparison to simplified models.

In the following we review the use of surrogate models for the design of new

buildings. That review article does not feature a section on surrogate-based model

calibration. The associated literature is summarized in Section 6.1.
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Statistical models can be used as surrogates of detailed simulation models. Their key advantage is that 

they are evaluated at low computational cost which can remove computational barriers in building per- 

formance simulation. This comprehensive review discusses significant publications in sustainable building 

design research where surrogate modelling was applied. 
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As surrogate modelling may contribute to many sustainable building design problems, this review 
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accessible for future researchers. 
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1. Introduction 

The Intergovernmental Panel on Climate Change (IPCC) recog- 

nizes the potential for the current building stock to stabilize or 

reduce its global energy use by mid-century [1] . The high perfor- 

mance of current building technologies and understanding of how 

to integrate them, make energy efficient buildings and retrofits also 

economically viable. 

However, the building sector transforms slowly. The Interna- 

tional Energy Agency (IEA) observed that it lags behind in the 

clean-energy transition as defined in the Paris Agreement [2] . One 

key challenge faced by the sector is that each building and retrofit 

is unique and has to be customized due to varying purpose, lo- 

cation and cultural context. Taking into account that the existing 

building stock of 150 billion square meters will grow by an annual 

rate of 3.7 billion square meters until 2026 [3] and that build- 

ings are currently designed in a largely individual fashion by ar- 

Abbreviations: BPS, Building Performance Simulation; GP, Gaussian Process 

model; ANN, artificial neural network; MARS, multivariate regression splines; SVM, 

support vector machine; PCE, polynomial chaos expansion; RF, random forest; RBF, 

radial basis function; LSTM, long-short term memory network; LHS, latin hypercube 

sampling; DoE, design of experiments; iid, independent and ideally distributed; SA, 

sensitivity analysis; UA, uncertainty analysis; BDO, building design optimisation. 
∗ Corresponding author. 

E-mail addresses: pwestermann@uvic.ca (P. Westermann), revins@uvic.ca 

(R. Evins). 

chitects and engineers, facilitating and automating the design pro- 

cesses will be crucial to the spread of sustainable buildings. 

Recent advances in machine learning paired with growing data 

availability are pushing the automation of analytical problems like 

sustainable building design [4,5] . Three fundamental types of data 

exist in the building domain: 

(a) Building sensor data (e.g. smart meters, internet of things 

(IoT) sensors, building management systems) 

(b) Building stock data (e.g. annual energy demand and floor 

area for a large set of buildings) 

(c) Building simulation data (stored results of building simula- 

tion) 

The first two types are particularly useful for optimising build- 

ing operation [6,7] , designing building-specific retrofit options 

[8] (a) , or for conducting energy mapping and building perfor- 

mance benchmarking in a certain geographic area covered by the 

building stock data (b) [9] . 

Both types of data are composed of historical observations on 

already existing buildings. Statistical prediction models trained on 

that data clearly may not be accurate for new building technologies 

or unique design concepts. Hence, building simulation relying on 

physical laws remains crucial for the design of new buildings. Its 

validity is not bound to observations, but instead any new design, 

retrofit option or building technology can be modelled. 

https://doi.org/10.1016/j.enbuild.2019.05.057 

0378-7788/© 2019 Elsevier B.V. All rights reserved. 
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Fig. 1. Example of the application of surrogate modelling for sustainable building 

design evaluation. This surrogate estimates annual energy consumption based on 

window-to-wall ratio (WWR) and solar heat gain coefficient (SHGC). It was fitted 

to previously collected simulation samples (red dots) and was then evaluated at 

a finer resolution (every intersection of the blue mesh). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

However, current building simulation software has high compu- 

tational cost and setting up a building model is time intensive [10] . 

Needed architects and designers do not fully integrate it into their 

daily work [11] . Surrogate models [12–14] , or meta-models, are 

promising to provide building performance assessment which is 

physical knowledge based but much faster than simulation-based 

design analysis [15] . 

The idea of surrogate modelling is to emulate an expensive 

high-fidelity model, in this case a building simulation model, us- 

ing a statistical model. The surrogate is trained on a small set of 

simulation in- and output data ( c ). Once it is validated to approxi- 

mate the detailed simulation model well enough, it can be used to 

almost instantly predict outcomes of the high-fidelity simulation 

given an appropriate set of building design information. 

In this work we are largely concerned with surrogates that pre- 

dict aggregated design metrics (e.g. annual energy use) rather than 

detailed time series (e.g. hourly energy use). The process is illus- 

trated in Fig. 1 for a problem with two inputs and one output. Here 

a Gaussian process model was trained to predict annual energy 

demand based on window-to-wall ratio and solar-heat-gain coef- 

ficient. In general (deep) artificial neural networks, support vector 

machines, or radial-basis function networks are common choices 

[16] . 

It is important to stress that the models studied in this review 

are trained on synthetic data. They are only accurate within the 

limitations of the simulation program and the input data used. 

The error induced by the simulation program as well as the mod- 

elling error of the surrogate must be balanced against the signif- 

icant benefits that surrogate models bring. Both causes of errors 

must be addressed together, as the more accurate the simulation, 

the more accurate the surrogate must be to capture its behaviour. 

We assume that the reader is familiar with the possible errors in 

building simulation [17] and therefore take synthetic data as suffi- 

cient. 

The review is structured as follows: 

In the first two sections we familiarize the reader with the field. 

Section 2 covers the background on the use of surrogate modelling 

for the conceptual design stage (2.1) , sensitivity and uncertainty 

analysis ( 2.2 –2.2 ) and design optimization (2.4) . Section 3 gives de- 

tails on the steps to derive a surrogate model split into problem 

definition (3.1) , simulation base model implementation (3.2) , sam- 

pling (3.3) and surrogate model fitting (3.4) . This is complemented 

with a list of existing surrogate modelling tools (3.5) . 

The reviewed literature is presented in Sections 4 and 5 . First, 

we outline the scope of this review and refer to other reviews 

in related fields like energy demand forecasting (4.1) . After giving 

an overview of the research topics (4.2) and the applied methods 

found ( 4.2.1 –4.2.3 ), the papers are discussed thoroughly grouped 

by the four use cases as introduced in Section 2 . We summa- 

rize findings drawn from the literature in a comprehensive list in 

Section 5 covering research trends and practical aspects of surro- 

gate model fitting. 

Finally, we conclude and give suggestions for future research in 

Section 6 . 

2. Surrogate models for building design 

Based on existing literature (see Table 2 ), four stages of the 

building design process are found to significantly benefit from sur- 

rogate modelling: 

1. Conceptual design stage 

2. Sensitivity analysis 

3. Uncertainty analysis 

4. Optimisation 

In the following section, each stage is explained in detail and 

the associated use of surrogate modelling explained. The section is 

summarized in Table 1 . 

2.1. Conceptual design stage 

The early design or conceptual design stage happens at the very 

beginning of the building design process. At this point, the de- 

sign is most flexible. Many parameters are roughly determined (e.g. 

building geometry and system types), which have a substantial im- 

pact on the final environmental and economic performance of the 

building [18] . 

Architects derive design concepts together with other stake- 

holders in a dynamic process. This can involve quick and drastic 

design changes [19] where the whole concept of the building is 

Table 1 

Summary on the use of surrogate models for building performance design analysis. 

Analysis type Use of surrogate 

Conceptual design • Fast feedback for design concepts; design space exploration 
• Fast analysis of impact of design decisions on design variability 

Sensitivity analysis • Fast variance-based global SA 

Uncertainty analysis • Fast building performance probability distribution derivation 
• (Model calibration) a 

Optimisation • Acceleration of optimisation process 
• Enabling gradient-based optimisation 

a Beyond the scope of this review. 
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modified. Currently, building simulation cannot keep up with the 

speed in the early design phase [11,20] . One reason is that setting 

up a simulation for one specific concept involves the manual def- 

inition of many parameters [21] . Furthermore, the simulation run- 

time itself is long and may interrupt the train of thought in the 

creativity process of the architect: ideally the program feedback 

time would be less than 10 seconds [22] . 

As a consequence of these drawbacks, researchers have derived 

requirements for early design tools. [23] point out that a tool for 

fast global design space exploration is required to quickly evalu- 

ate a large bandwidth of different initial design concepts. To re- 

duce complexity in that process, only a few interesting parameters 

should be considered [20] . This may lead to facilitation of simula- 

tion, but should be balanced with simplification [19] . Lastly, Hes- 

ter et al. [21] and Basbagill et al. [24] suggest early design tools 

should provide distributions of the performance of the building as 

an output. This is because at early stage many parameters are un- 

certain or defined as a range of possible values ( design variability ), 

and hence simulation results should incorporate that uncertainty. 

How a surrogate model helps. Surrogate modelling simplifies the 

interaction between the building designer and the building simu- 

lation process in two ways. First, as surrogates are evaluated in- 

stantly ( < 0.1 s [15] ), they are able to provide rapid point esti- 

mates [25] , or distribution estimates [21] of the building perfor- 

mance. This enables designers to rapidly assess a design concept 

and explore the design space. Second, in comparison to simulation- 

based parametric analysis which generates discrete results, surro- 

gate models provide continuous relationships between design vari- 

ables and building performance metrics. Due to the complexity of 

the state-of-the art surrogate models, they are capable to capture 

variable interactions and extract non-linear, multi-modal behaviour 

[23] . 

Lastly, the computational layout of surrogate models is 

lightweight and could be embedded into existing modelling soft- 

ware [26] . 

2.2. Sensitivity analysis 

Sensitivity analysis (SA) is used to rank the importance of pa- 

rameters on some outcome variable [27,28] . Often it serves as a 

preliminary step prior to early design, uncertainty analysis (see 

Section 2.3 ) or optimisation (see Section 2.4 ) to reduce problem 

complexity. There are two different approaches: local and global 

methods. 

In local methods inputs of one specific design are perturbed to 

approximate their partial derivatives. This provides sensitivities of 

inputs for the considered design. However, in a non-linear build- 

ing design space sensitivities may change among different building 

designs [29,30] and local methods may not be suitable for general 

conclusions on the sensitivity of parameters. 

Global methods study the influence of parameters over the 

whole design space. Apart from fast parameter screening methods, 

global analysis is computationally more demanding compared to 

local methods [29] . Two different methods for global analysis ex- 

ist. First, the structure of the model and its parameters (or: co- 

efficients) may be interpreted as for example in linear regression 

based SA. Second, in the variance-based approach a large set of 

simulation samples is statistically analysed. The latter is model-free 

and studies the impact of one parameter ( first order sensitivity) or 

the combinatorial impact of multiple parameters ( total sensitivity) 

on the variance of the output. 

How a surrogate model helps. Local and global methods are based 

on simulation samples. Fast surrogate model evaluations speed up 

the process of sample generation [27] . They could be particularly 

helpful for variance-based methods which demand large number 

of samples. For example, the derivation of Sobol indices is sam- 

ple intensive and usually limited to a small number of parameters 

due to computational costs [31] . In this case, the speed of a surro- 

gate model enables an increase in the number of parameters to be 

studied [32] . 

On the other side, SA also plays a crucial role for surrogate 

models. Using SA, the most relevant surrogate model inputs can be 

determined and thus the model complexity reduced. Furthermore, 

when the surrogate model is very complex (as with a black-box 

model), SA can be used alongside the surrogate model to obtain a 

better understanding of the model behaviour. 

2.3. Uncertainty analysis 

While the purpose of SA is to quantify the effect of a change in 

one input on the output, uncertainty analysis (UA) studies the like- 

liness of a change in outputs induced by uncertain inputs [33,34] . 

A probabilistic view of building performance is very important. It 

enables quality assurance of building performance under uncer- 

tainty as for example required for energy performance contracting 

[32] , to quantify the robustness of the design towards some ex- 

ogenous variable change (e.g. climate change [35] ) or to support 

the early design stage when many design parameters are uncer- 

tain (see Section 4.3.1.2 ). Sensitivity analysis may be a part of UA 

to screen the parameter set for the most impactful ones to reduce 

computational cost [31,32] . 

Ongoing research was reviewed in [36] . Generally, uncertainties 

in building design may be grouped into three categories [37] : 

• Uncertainty in design parameters during the planning phase, 
• uncertainty in physical parameters caused by fluctuations of 

material properties, 
• uncertainty in scenario parameters due to assumptions of 

internal (e.g. usage of the building) and external (weather 

and climate data) conditions. 

Different ways to quantify that uncertainty exist. Most com- 

monly, uncertainty in parameters is forward propagated to receive 

a probability distribution of building performance like energy con- 

sumption or carbon emissions [36] . This may be done following 

the external or the internal approach [33] . 

The former assumes a building simulation model to be a black- 

box model. The model is used to produce a probability distribu- 

tion of outcomes given a random set of possible design parameter 

combinations. The Monte-Carlo method may be the most popular 

external approach method. In the internal approach the simulation 

model is modified and uncertainty distributions in parameters is 

propagated to the model outputs [33] . 

To conduct the external approach the uncertainty of parame- 

ters is required. Usually, it is based on expert knowledge or re- 

sults from inverse parameter uncertainty estimation if measure- 

ment data is available [38] . Bayesian calibration is a common ap- 

proach for parameter uncertainty estimates and found in [38] or 

[39] for the building design context. 

How a surrogate model helps. Surrogate models are particularly 

useful to accelerate the derivation of building performance dis- 

tributions with the external approach which requires a signifi- 

cant number of simulation samples. Depending on the specific ap- 

proach different numbers of simulation runs are required, varying 

between 60 and 80 samples for joint uncertainty propagation of all 

parameters in a Monte Carlo simulation [40] to larger numbers like 

2 N or 2 N + 1 if the impact of individual parameters and their inter- 

actions are broken down as in the factorial or differential method 

[33] . 
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Fig. 2. Overview of the steps to derive a surrogate model. Two approaches exist. In 

the sequential approach sampling and surrogate model fitting happens subsequently. 

In the iterative approach , sampling and surrogate fitting happens iteratively where 

samples are picked by identifying parts of the design space with unsatisfying model 

accuracy (a) or based on an optimality criterion defined for an optimisation task (b) . 

2.4. Design optimisation 

Building design optimisation (BDO) is one of the fastest grow- 

ing fields in building simulation research. It is reviewed in [41] and 

[42] . The goal is to find building designs which optimize a perfor- 

mance objective subject to constraints (e.g. comfort, system size, 

etc.). 

In most common BDO, the fitness function to be optimized is 

computed using building simulation software. Different optimiza- 

tion algorithms exist that range from direct search, integer pro- 

gramming and gradient-based methods to meta-heuristics like ge- 

netic algorithms (GA). Many algorithms are introduced in the re- 

views above and some of them compared in [43] . The most preva- 

lent approach is GA [41] , which is easily implemented and capable 

of dealing with a wide variety of problems including discrete and 

continuous variables (e.g. heating system type versus wall thick- 

ness), multiple objectives, and discontinuities prevailing in building 

simulation software [44] . 

Following [42] an optimisation process may be split into three 

steps: 

1) Preprocessing: Formulation of the optimization problem; 

selection of optimizer 

2) Optimization: Running and monitoring of the optimizer; 

checking of termination criterion 

3) Postprocessing: Visualization of optimization results (e.g. Pareto front); 

possibly robustness evaluation 

The procedure of numerical optimization is iterative, which in- 

volves many building simulation runs and may take multiple hours 

or days until convergence is achieved. 

How a surrogate model helps. Surrogate models may speed up con- 

vergence rate of BDO. They are applied in two different ways (see 

Fig. 2 in [13] ). In the direct surrogate-based optimisation approach 

the surrogate model is fitted initially and then used for optimisa- 

tion. 1 The iterative approach iterates between fitting the surrogate 

and adding potentially optimal points to the training data. 

In other engineering domains where complex simulations are 

imperative and too expensive without surrogate models (e.g. 

1 Some existing literature refers to model-based optimisation instead of 

surrogate-based optimisation. This should not be confused with simulation models 

used for optimization. For clarity we specifically refer to surrogate models. 

aerospace engineering [13,14,45] ), surrogate models are well es- 

tablished and extensive know-how exists that is yet to be trans- 

ferred to the building domain. Regarding building performance op- 

timisation, the characteristic of surrogate models to smooth the 

original fitness function [46] is especially promising as building 

simulation results were found to have discontinuities [43] . Remov- 

ing the discontinuities enables the use of optimization algorithms 

with potentially better performance than meta-heuristics like 

GA. 

3. Surrogate model derivation 

The steps to derive a surrogate model are shown in Fig. 2 . 

First, the design problem and the associated design parameters 

have to be defined. Then the building designer implements an ini- 

tial building model and picks design samples to be simulated us- 

ing some sampling strategy. The parameter set defined for each 

sample is used to modify the base model and run building sim- 

ulations with it. Results are stored in a database of inputs (de- 

sign parameter values) and outputs (simulation results, e.g. an- 

nual energy consumption). Afterwards, a surrogate model is fit- 

ted to the input-output data. Last, the model is validated by com- 

puting the model accuracy. It quantifies the deviation of surro- 

gate predictions from simulation outcomes for the same set of 

inputs. 

Most commonly surrogate derivation happens sequentially . First 

sample locations are generated using some Design of Experiments 

(DoE) strategy and then the surrogate model is fitted. As the sam- 

ples are defined prior to simulation and not adjusted depending on 

model outcomes, we refer to this approach as static sampling . 

The iterative approach intertwines sample definition and surro- 

gate model fitting. Samples are iteratively added to the database 

based on surrogate predictions and simulation results. Therefore, 

surrogate accuracy and design space complexity (a) , or an opti- 

misation criterion (b) are evaluated to identify optimal choices for 

further samples. 

In the following we provide details on each step in Fig. 2 . 

3.1. Problem definition 

In the first step design parameters, the inputs to the surrogate 

model (also known as ‘features’), and design objectives, the out- 

puts of the surrogate model, are defined. The selection of inputs 

and outputs is important as changing them at later stage may re- 

quire additional high-fidelity model simulations. 

Outputs are chosen based on the design objective. Similar to 

optimisation methods, a surrogate supports studying a specific as- 

pect of building design, e.g. energy efficiency, which is encoded in 

the surrogate outputs. 

The number of design parameters should be limited to circum- 

vent the curse of dimensionality: the number of simulation sam- 

ples that are needed to create an accurate surrogate of the design 

space grows exponentially with the number of parameters [47] . Pa- 

rameters may be chosen based on the design task, or global SA if 

the most important parameters should be considered [4 8,4 9] (see 

Section 2.2 ). Besides deciding which parameters to choose, an as- 

sociated range of possible values needs to be defined. 

3.2. Base model implementation 

In this step, an initial building design is implemented in 

physics-based building simulation software like EnergyPlus [50] . 

Contextual parameters, i.e. those not part of the list of design pa- 

rameters, are carefully set depending on the problem (e.g. building 

location, climate, etc.). 
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Fig. 3. Overview of different sampling methods [52] . 

3.3. Database generation 

After the selection of parameter inputs and their range, a sam- 

pling strategy is chosen (see Fig. 3 ). The goal of all sampling strate- 

gies (also known as design of experiments, DoE) is to select points 

in the design space to maximise information gain per simula- 

tion run while minimizing sampling time. Recent reviews on DoE 

strategies are given by Yondo et al. [51] and Garud et al. [52] . 

As outlined above, two types of sampling methods exist. In 

static sampling all sample locations are defined in one shot prior 

to model fitting. This provides a global surrogate model being 

accurate on the whole design space. Common methods include 

pseudo-random sampling like Monte Carlo sampling, quasi-random 

sampling like Hammersly, Halton or Sobol’s sequences, and strati- 

fied pseudo-random sampling like stratified Monte Carlo sampling, 

latin-hypercube sampling (LHS), or orthogonal array sampling. It is 

not obvious which of the provided algorithms performs best and 

depends on the number of variables and samples. A comparison of 

the methods is given in [52] . Looking at building related literature, 

we found that LHS is the most applied sampling scheme. 

A caveat of static sampling is that it may require a lot of sam- 

ples to reach an acceptable level of accuracy and therefore, adap- 

tive sampling algorithms are sometimes favourable [51] . The goal 

of adaptive sampling is to balance exploration of under-sampled 

areas of the design space and exploitation of information gained 

from surrogate or simulation outcomes. Different exploration and 

exploitation metrics exist, called space infill criteria. They enable 

to identify under-sampled and complex (a) , or potentially optimal 

(b) areas. Before adaptive sampling is applied the surrogate is ini- 

tiated on a seed of samples (found using a static sampling algo- 

rithm). While the adaptive sampling strategy (a) produces a global 

surrogate, (b) generates a surrogate model which is accurate lo- 

cally where the design space is interesting with regard to a cer- 

tain design objective. Adaptive sampling methods for global surro- 

gate derivation (a) are addressed in [52] and for optimisation (b) 

in [53] . 

If a global surrogate is wanted, a straight-forward way of adap- 

tive sampling is to iteratively reapply space-filling sampling (see 

static sampling algorithms) which is purely explorative . However, 

this may lead to inefficient sampling as it does not differentiate 

between complex and rather uniform areas. Therefore, taking both 

exploration and exploitation into account may be favourable ( hy- 

brid ). For optimisation purposes, we only consider hybrid adaptive 

sampling methods. Pure exploitation would cause the algorithm 

to get stuck in local optima. An often applied sample infill cri- 

terion for optimisation is the expected improvement (EI) metric 

which balances model uncertainty with potential optimal perfor- 

mance [54] . 

To visualise the difference between static and adaptive sam- 

pling we derive a surrogate model (Gaussian Process) for optimisa- 

tion of the Branin test function as shown in Fig. 4 . We selected 20 

samples using static sampling as well as adaptive sampling (path 

(b) in Fig. 3 ). The white dots in both plots show the locations of 

samples using the static approach. In case of adaptive sampling the 

white dots represent the initial seed to train a first model. 

While static sampling leads to a uniform placement of the sam- 

ples, adaptive sampling quickly identifies the areas where the test 

function may be optimal (here minimal). This is done by picking 

locations where the expected improvement criterion is the highest 

[54] . 

This small experiment showcases how sampling can follow 

a specific objective and possibly, increase sampling efficiency to 

achieve a certain accuracy in the area of interest. 

3.4. Surrogate model fitting 

Model construction happens in three steps. 

1. Data preprocessing and model type selection 

2. Model training and hyper-parameter optimisation 

3. Model validation 

For brevity and because of an abundance of existing literature, 

we only provide a small introduction to the field and the exist- 

ing types of surrogate models. The interested reader is referred to 

[55] for an introduction on machine learning, to [14] for a book on 

surrogate modelling, and to [30] where different surrogate mod- 

elling techniques for building design are compared. 

3.4.1. Data preprocessing and model type selection 

The input and output data format must be suitable for the 

surrogate modelling approach of choice. For example, most ap- 

proaches require the inputs to be numerical instead of categorical. 

In that case, categorical variables can be transformed to dummy 

variables [55] . Once formatted correctly, the data is split into train- 

ing and test samples. A random separation of 20% of the data for 

testing is suitable. Finally, some model types require the inputs to 
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Fig. 4. Showcasing the difference between static (left) and adaptive (right) sampling. On the left 20 samples are chosen based on LHS. On the right, first an initial set of 10 

samples was picked using static sampling (LHS) followed by 10 adaptively selected samples using the expected improvement criterion [54] . 

Fig. 5. Comparison of different non-parametric surrogate models based on [55, 

p. 351] . Green, blue and red dots indicate good, medium and poor performance with 

regard to the characteristics listed. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

be normalized to the same range which ensures equal weighting 

of variables during model training. 

The selection of the surrogate model type is primarily driven 

by reaching the highest surrogate accuracy possible. Sometimes a 

trade-off between optimum accuracy and an interpretable model 

structure is favoured [48,56] . Although each model type has advan- 

tages and disadvantages with regard to certain modelling require- 

ments as shown in Fig. 5 , many authors suggest the initial use of 

multiple models to find the most suitable one [13,15] . 

Model types may be grouped into parametric models and non- 

parametric models [56,57] . The former uses assumptions on the 

functional relationship of inputs and outputs. Based on that as- 

sumption, a data model is derived whose parameters are cali- 

brated using the collected data. In non-parametric modelling the 

goal is not to find the correct parameter values of a predefined 

data model but to find the underlying functional relationship be- 

tween inputs X and outputs y [57] . In building design, performance 

metrics like energy consumption may behave non-linearly, featur- 

ing discontinuities and multiple modes [30,43,44] . Understanding 

that behaviour and manually encoding it in a parametric model 

may be difficult and time consuming. Non-parametric, algorithmic 

modelling automates this process and thus, may be more suitable 

for to quickly modelling the relationship of design parameters and 

performance metrics. In the following, examples for the two model 

types are given. 

3.4.1.1. Parametric models. Multiple linear regression is the most 

popular parametric model. Its structure and variables are specified 

manually preliminary to model training. The structure can include 

variable interaction terms or variables transformed by taking its 

n th order as done in polynomial regression. Even if variables are 

combined or transformed, linear regression remains linear in pa- 

rameter meaning no model parameter appears as an exponent or 

is multiplied or divided by another parameter. 

Other parametric models can be developed but they all share a 

common disadvantage. Unless knowledge allows to derive a valid 

assumption for the structure of the data model, they are prone to 

provide questionable analytical findings and lower prediction per- 

formance in comparison to algorithmic models [57] . 

3.4.1.2. Non-parametric models. Different types of non-parametric 

methods exist. They include artificial neural networks (ANN), radial 

basis functions networks (RBF), support vector machines (SVM), 

multivariate adaptive regression splines (MARS), Gaussian Process 

models (GP) and others. The model types differ in their generic 

structure. 

MARS models may be considered as an extension to linear re- 

gression models which automatically identify variable interactions 

and suitable variable transformations. This is done by a linear com- 

bination of multiple basis functions applied to the input vector. 

Here, the basis function is commonly a hinge function or a mul- 

tiplication of multiple hinge functions [58] . The hinge function en- 

ables piecewise behaviour of the resulting model which is char- 

acteristic for MARS models. The multiplication of multiple hinge 

functions enables to model arbitrary high order relationships and 

variable interactions. 

RBF networks also use linear combinations of basis functions 

[59] . They use Gaussians as basis functions and apply them to the 

distance of the input vector to a center vector associated to each 

Gaussian. Functions that only depend on the distance to a cen- 

ter vector are radially symmetric which explains the name of this 

model. 

Another model type pivoting non-linear basis functions to 

model versatile mathematical relationships is the ANN. An ANNs 

consists of multiple cells, called neurons, which receive inputs 

from and send their outputs to other neurons. Inside a cell the in- 

puts are weighted, summed up and used in a basis function. Typi- 

cally, sigmoid basis functions are used which imitate the spiking of 

a neuron in a human brain. Chaining up multiple layers consisting 

of multiple neurons gives the ANN a high degree of flexibility and 

in theory, it is capable to model any mathematical function [55] . 

In GP, observations are considered as realisations of a multi- 

variate Gaussian distribution. The multivariate Gaussian is used as 

a prior distribution and this distribution is conditioned by exist- 

ing data. This leads to a posterior distribution of possible functions 

which generated the data [60] . 

Support vector machines were originally designed for classifi- 

cation problems. In support vector classification a hyperplane is 

determined with maximal margin towards the closest observation 
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of each class. The same method is used in support vector regres- 

sion to find the hyperplane which centres all observations opti- 

mally [61] . 

3.4.2. Model training and hyper-parameter optimisation 

After the data is prepared and the model is selected, its param- 

eters and weights are found using a specific training algorithm. For 

example ANNs are trained via the well-known backpropagation al- 

gorithm. Apart from training the model weights, non-parametric 

models require hyper-parameters to be specified. Hyper-parameters 

allow to tune the variance of the predictions of the surrogate. They 

should be optimised to balance variance with bias to avoid over- 

fitting the model on the training data. An overfitted model does 

not generalize well on unseen data. To select the hyper-parameters 

usually multiple different settings are compared in a grid-search or 

Bayesian optimisation is used [62] . 

3.4.3. Model validation 

Model validation is done using dedicated test data. The accu- 

racy of the model is quantified using different performance met- 

rics. Typical choices are mean absolute error (MAE) or the coeffi- 

cient of determination ( R 2 ) which quantifies how much of the vari- 

ance in the data is explained by the model. 

3.5. Tools 

Existing tools may be sorted into two groups: dedicated surro- 

gate modelling toolboxes and those covering portions of the surro- 

gate derivation process. 

The first group of tools covers all steps from 3 to 5 from above. 

They offer different DoE strategies and surrogate types. Due to 

the excellent performance of surrogate models on optimisation 

problems, toolboxes are often designed specifically for optimisa- 

tion purposes. Matlab users are referred to Matsumoto [63] or to 

SUMO [64] . A Python option is the SMT toolbox, which focusses 

on gradient-based optimisation, 2 although the choice of methods 

is rather limited. 

Other tools only provide software for specific steps of surrogate 

model derivation. The Python toolbox PyDOE offers a set of dif- 

ferent static sampling methods. 3 The EPPY toolbox allows to ac- 

cess EnergyPlus input files in Python, which enables to quickly 

transfer generate simulation models given a set of samples. 4 The 

well known machine learning toolboxes ScikitLearn [65] , Tensor- 

flow [66] and PyTorch [67] all feature different surrogate model 

types and model validation schemes. 

Opossum, a plug-in to Grasshopper, is the only surrogate tool- 

box dedicated to building design [68] . It can only be used for BDO 

problems and not for deriving global surrogate models. Opossum 

is based on the Python toolbox RBFOpt [69] . 

4. Review of surrogate modelling for building design 

A significant amount of literature exists to explore and re- 

alise the potential of surrogate models, also termed meta-model 

or response surface model, for building design. The literature re- 

view was started with a search through publications listed in 

Google Scholar and Web of Science using the terms “surrogate 

model”, “building design” and “building performance design”. 5 

This provided a list of 30 publications. The list was extended by 

2 https://github.com/SMTorg/smt . 
3 https://pythonhosted.org/pyDOE/ . 
4 https://pythonhosted.org/eppy/ . 
5 As Google Scholar does not support the use of parentheses multiple searches 

equivalent to [(“surrogate model” or “meta-model” or “metamodel”) AND (“building 

design” or “building performance design”)] were conducted. 

analysing their bibliography. Finally, 57 sources were found, shown 

in Table 2 . 

Apart from that, previous reviews in the wider context of sur- 

rogate modelling applications were collected. They are introduced 

in the following Section (4.1) . 

Although a lot of effort was invested to compile a represen- 

tative set of ongoing research, the intention of this review is not 

to be exhaustive. In particular, applications of statistical models 

trained on non-simulation data (e.g. [70] ) or simplified physical 

models are disregarded (e.g. [71] ). This also involves applications 

of surrogate models for model calibration as in [38] . 

4.1. Previous reviews 

This is the first review on the use of surrogate models for 

Building Performance Simulation (BPS). However, multiple papers 

include review sections addressing applications of surrogates for 

building design. 

A review and comparison of model types are found in [16] and 

[15] . Prada et al. [72] looked at the suitability of different types of 

surrogate models for evolutionary building design optimisation. A 

comprehensive review of the use of data for building design may 

be found in [5] . In [73] and [36] surrogates are mentioned in an 

overview of literature in the field of uncertainty quantification and 

in [27] they are part of a review on sensitivity analysis. In [42] and 

[41] sections cover surrogate models applied to building design op- 

timisation. 

Other fields in computational building science use similar tech- 

niques as in surrogate modelling, for example [74] and [6] re- 

viewed data driven energy demand forecasting. 

In other engineering domains where computational experi- 

ments are costly surrogate modelling has been applied extensively. 

An overview of the application of surrogate modelling in aerospace 

engineering is given by Wang and Shan [13] , Forrester et al. [14] , 

Simpson et al. [45] and Queipo et al. [75] . 

4.2. Overview of publications 

Table 2 and Fig. 6 give a summary of each publication including 

subject, surrogate model type and sampling strategy. Most of the 

papers address building design optimisation (22 publications), and 

leverage surrogate models at the early design stage. Also a wide 

distribution in the fields of sensitivity (16) and uncertainty analysis 

(9) was found. 

Aside from the applications of surrogates for building design 

problems, 16 papers compare the suitability of different types of 

surrogate models for building design. 

4.2.1. Surrogate model types 

Fig. 6 (b) shows that in half of the studies, parametric models 

are used (compare Section 3 ). Apart from multiple linear regres- 

sion, this group encompasses polynomial, stepwise, and LASSO re- 

gression. The second most models found in literature are Gaussian 

Process models (GP) and third most common are artificial neural 

networks (ANN). Other model types include multivariate regression 

splines (MARS), support vector machine (SVM), random forest (RF), 

radial basis function (RBF) and model ensembles. An introduction 

to the models is found in [76] . 

4.2.2. Sampling strategies 

Eleven studies used adaptive sampling ( Fig. 6 (d)). All but five 

use them in combination with a GP model. The majority of papers 

used static sampling strategies with a strong preference towards 

latin hypercube sampling (LHS)(15). Other sampling strategies in- 

clude random, orthogonal array, full-factorial, Box-Behnken design 
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Fig. 6. Overview of publications. Figure (a) highlights the applications of surrogate modelling found in the building design research domain. Figure (b) shows the different 

surrogate model types used. Figures (c) and (d) focus on the sampling methods to derive an accurate surrogate. Figure (c) shows the share of papers that used static sampling 

instead of adaptive sampling. Figure (c) indicates how many samples per input were collected in each paper. 

and L12-Taguchi tables based sampling. A limited number of stud- 

ies used manual sampling or evaluated all possible combinations 

of design parameters (full-factorial). 

The number of simulation samples per input is shown in 

Fig. 6 (c) and Table 2 . The range is large spanning from single digits 

to thousands of samples per input. Quantifying the sampling effi- 

ciency by number of samples per input is questionable as the de- 

sign space does not increase linearly but exponentially with each 

input parameter added. Another option would be to quantify the 

share of the design space covered by samples [25] . However, as in- 

put variables may be continuous, discrete or categorical, and their 

ranges change drastically among the different studies, the design 

space size of each study would have to be calculated individually. 

This is beyond the scope of this review. 

4.2.3. Model objectives (outputs) and parameters (inputs) 

Fig. 7 shows which inputs were used for different model objec- 

tives (outputs). Annual energy demand (and energy use intensity) 

is the most common output. Another big fraction of papers approx- 

imated heating and cooling demand. 

Fig. 7. Usage of in- and output variables in the literature. The figure shows the share of models which used a specific input for a specific output. Next to the outputs ( y -axis) 

the number of associated studies is shown in brackets. 
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To model the energy demand mainly inputs on building geome- 

try, window geometry and material properties are used. Many au- 

thors rely on window-to-wall ratio and wall thermal transmittance 

as model inputs. 

4.3. Discussion of papers grouped by purpose 

4.3.1. Early design 

As presented in Section 2.1 , surrogate models may play a key 

role in overcoming current limitations of building simulation tools 

for early design applications. The following literature used surro- 

gates 

• To provide rapid feedback during early design, 
• and to run large amounts of simulations quickly to provide 

estimates of design variability . 

As the amount of existing literature is large, we subdivide the 

literature corresponding to the geographical scope on which the 

surrogate model was validated. The scope ranges from one specific 

building location to multiple climate zones. 

4.3.1.1. Rapid feedback. The first group of authors used surrogates 

for the design of one building : 

In an early work from 2002, [77, #1] embedded a polynomial 

regression model into an early design tool which computes energy 

demand based on 10 parameter inputs. The paper shows that the 

concept of surrogates has existed for a long time. However, the 

provided method is not as robust in comparison to more recent 

publications. For example, surrogate modelling errors are not com- 

puted on separate test data. 

A similar tool, the design space exploration assistance method 

(DSEAM), embeds a surrogate model into a CAD tool to provide 

instant feedback during early design [26, #2] . Performance predic- 

tions are visualised as a three-dimensional surface and in a parallel 

coordinate plot. The method is showcased for the design process of 

an urban office building. The visualisation techniques enabled to 

intuitively identify the most influential design parameters for re- 

ducing energy consumption. 

Geyer and Schlueter [25, #3] considers the use of surrogate 

models covering a large geographical scope and multiple build- 

ing types rather suitable for educational purposes but foresees 

the need for highly individualised surrogates to ensure high ac- 

curacy for a specific building. Therefore, they developed an auto- 

mated surrogate derivation method customized for building design 

practitioners. They fitted a polynomial model with an algorithm 

which automatically selects exponents and interaction terms. Con- 

sequently, their modelling scheme is non-parametric, which is un- 

usual for polynomials, and allows to combine high surrogate inter- 

pretability and accuracy. 

Instead of developing holistic tools the following papers looked 

at more specific elements of surrogate modelling. The authors of 

[78, #4] tried to overcome the curse of dimensionality, i.e. the 

computational cost incurred by high numbers of surrogate in- 

puts and outputs. They used ANNs and LASSO regression, which 

scale more efficiently than MARS, GP and RBF, to build models 

with 156 inputs and 80 to 90 outputs that are time resolved 

at 15 min. Their model was trained on an extensive EnergyPlus 

dataset (267 TB) generated on large cluster computer. This clearly 

bound their method to users with access to large hardware, unless 

their surrogate would generalize well, i.e. it could be reused for 

a variety of building design problems. Unfortunately, this was not 

addressed by the authors. An advantage of the 15 min-resolution 

is that it enables users to not only speed up building design, but 

also automate tasks like system sizing and demand profiling. 

Yi et al. [79, #5] computed emergy 6 using EnergyPlus output 

data and trained a surrogate model on that postprocessed data. 

They achieved a prediction performance of R 2 ≈ 0.62 7 which is low 

in comparison to studies where surrogates estimated energy de- 

mand. 

Maltais and Gosselin [81, #6] studied daylighting with regard 

to comfort (glare index) and lighting demand. They fitted a poly- 

nomial model for both outputs and found a large accuracy differ- 

ence although the same simulation data was used for model fit- 

ting ( R 2 
GI 

≈ 0 . 95 , R 2 
LD 

≈ 0 . 78 ). The finding that accuracy varies for 

different model outputs was observed in other publications (e.g. 

[30,82,83] ). 

Lastly, Korolija et al. [84, #7] provides an interesting extension 

to surrogates of whole building simulation programs. The authors 

state that including detailed HVAC systems into simulations in- 

crease simulation run time by 1.3 to 3.7 and that it requires ad- 

vanced know-how which architects may not have. Therefore, they 

derived a polynomial model to map building energy demand to 

energy requirements of secondary HVAC systems which distribute 

thermal energy inside the building (e.g. ducts). They found that, 

although a simplistic polynomial was used, accuracy is satisfac- 

tory with a relative error of less than 10% in more than 80% of 

the cases for cooling and heating requirement. In future work one 

could study if accuracy can be improved with a non-parametric in- 

stead of a polynomial model. Nonetheless, the given performance 

seems good enough to save time by replacing detailed HVAC mod- 

elling with a surrogate during early design. 

In the second group of studies, surrogates were derived consid- 

ering multiple climate regions : 

Catalina et al. conducted two studies to apply linear regression 

to receive rapid information on heating demand during early de- 

sign [85] [86, #8] . In their latter study the regression model in- 

cluded quadratic terms and was fitted using iteratively re-weighted 

terms. The model uses only three inputs (heat loss coefficient, 

south equivalent surface and difference of indoor to outdoor tem- 

perature). Although the model was trained and validated on sim- 

ulation data, the model predictions were also compared to actual 

measurements of buildings. A significant difference of predicted to 

measured annual heating demand is found and could only be taken 

into account by introducing a building-specific correction term to 

their polynomial. 

Hygh et al. [87, #9] applied multivariate linear regression to ap- 

proximate energy use in four different climate zones. In compari- 

son to the previous study, 27 input parameters were used lead- 

ing to only slightly higher accuracy ( R 2 > 0.98) than the previous 

paper ( R 2 ≈ 0.97) but allowing a wider variety of designs to be 

analysed using one surrogate. Similar to [87] , [88, #10] and [89, 

#11] used one multivariate linear regression model per climate 

zone. Both authors point out that the accuracy varied for differ- 

ent climate zones. All three studies used multiple models for each 

climate zone. 

The question arises if variables capturing the characteristics of 

different climate zones can be found. When used as inputs, they 

could enable the use of one surrogate covering all climate zones. 

An approach is given in [90, #12] , where a SVM model is de- 

rived that estimates energy use of naturally ventilated commer- 

cial buildings in Brazil. They generated a dataset with 418 different 

weather files. The weather data was then reduced to a few statisti- 

cal variables and used as surrogate model inputs. Romani et al. [91, 

#13] also used only one model (full quadratic polynomial model) 

to predict the heating and cooling demand in Morocco (four cli- 

6 Energy refers to the amount of solar energy embodied in the energy used up 

during a service or production [80] . 
7 Calculated from the provided F-score. 
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mate zones). They found variable interaction helped to compensate 

for the use of one model only. 

Thirdly, one study was found covering multiple building types 

within one climate region [92, #14] . They derived multiple single- 

output ANNs to find optimal retrofit strategies for Southern Italy. 

Their six separate networks estimate heating demand, cooling de- 

mand and occupant comfort of the existing non-retrofitted and 

retrofitted building stock. 

Recently, some researchers focussed on finding general surro- 

gate models without a climatic or geographical scope. 

In [93, #15] the same authors as in [89] tried to find more 

generalizable surrogates by integrating know-how on building 

physics to derive more meaningful features (inputs) from com- 

mon design parameters. Their features include energy gains due 

to transmission, air change rate and solar heat gain. Thy were 

calculated assuming steady-state behaviour but fed to a surro- 

gate which approximates dynamic, i.e. non-steady-state, simula- 

tion. They achieved high accuracy scores for a single-building case 

study ( R 2 ≈ 0.99) but further details and benchmarking are re- 

quired. 

Singaravel and Geyer aimed to decompose a “monolithic sur- 

rogate model” into multiple components [82 , 94, #16] . In the first 

approach they suggest fitting multiple ANNs, each approximating 

heat gain through an individual building element like a wall or a 

window. Adding up the outputs of the individual models they com- 

puted the whole building performance. In their second approach 

they compartmentalised one surrogate into multiple approximat- 

ing heating and cooling demand. The use of the recurrent long- 

short term memory network (LSTM) allowed to model dynamic ef- 

fects. They studied the generalizability of both approaches on three 

test cases. Based on the results of the most complex building de- 

sign case, the first approach ( R 2 
cooling 

≈ 0 . 98 , R 2 
heating 

≈ 0 . 85 ) seems 

to outperform the zonal LSTM model, but no final conclusion is 

drawn by the authors. 

4.3.1.2. Design Variability. After studying methods for early build- 

ing design [11, #17] , Ostergard et al. developed a new design 

methodology to guide sustainable building design with multiple 

stakeholders involved [23] . They propose to first evaluate the per- 

formance of large number of designs, using a surrogate model, and 

sequentially filter them using specifications on the final building 

performance (outputs). This provides distributions of possible de- 

sign choices (inputs). To visualise the impact of performance spec- 

ifications, the parallel coordinates plot was favoured. 

Instead of specifying outputs, Hester et al. [21] determine the 

change of the output distribution if one of the design parameters 

is decided. They used a linear regression model to run Monte Carlo 

simulations after each design choice. Part of the authors conclusion 

is that not only the speed of the surrogate is helpful, but also the 

reduced number of parameters required to provide a performance 

estimate. 

A similar study was done by Basbagill et al. [24, #18] . The au- 

thors constructed probability distributions for life cycle cost and 

performance treating decision parameters as random variables. The 

distributions are derived from a database generated with eQuest 

[95] using orthogonal array sampling. Although no surrogate is 

used (but a fast physics based simulation model instead), the 

methodological steps are similar to those of surrogate modelling, 

and show that fast simulation software is an alternative to surro- 

gate modelling. 

4.3.2. Sensitivity analysis 

There are three cases found in literature where surrogate mod- 

elling and SA are combined (compare Section 2.2 ). (i) use SA prior 

to surrogate modelling for variable selection, (ii) use surrogates 

to accelerate variance-based SA, and (iii) use SA complementary 

to surrogate modelling to increase analytical insight into the data. 

While in general non-parametric methods are preferred for build- 

ing surrogate models, parametric methods are a regular choice for 

SA as one can easily access variable importance estimates by look- 

ing at the regression coefficients (e.g. linear regression). 

For brevity, this section does not cover the full literature on SA 

in which linear regression was applied. Further literature can be 

found in [27] . 

4.3.2.1. Variable selection for surrogate models. Many studies use 

SA for variable selection. Here we summarize eight contributions 

which share a similar approach. 

Dhariwal and Banerjee [96 , #41] conducted fractional factorial 

design-based sampling and determined the most impactful param- 

eters using Morris’ method. The parameters found are used as 

model inputs to a second order polynomial surrogate (response 

surface model). 

Hopfe et al. [97] computed standardized rank regression coeffi- 

cients (SRRC) to quantify the impact of uncertain parameters. They 

chose the five most influential to complement the design parame- 

ters as inputs of the GP. Similarly, SRRCs were used in [98, #20] . 

Multiple SA methods (Pearsson, Spearman, Kolm and Krusk co- 

efficient) were computed in [99, #22] to take linear, monotonic and 

non-monotonic, and asymmetric variable correlations into account. 

The most important variables were used as inputs of an ANN to 

emulate internal air quality simulations of a building stock. They 

found differing results, which may be caused by the way the four 

SA methods handle non-linearities. They suggest the use of simple 

scatter plots to discover non-linearities and to pick the SA accord- 

ingly. 

Maltais and Gosselin [81 , #6] used linear regression and 

variance-based SA prior to fitting a polynomial to estimate natu- 

ral daylighting performance. As part of their study, they looked at 

the numbers of samples required to achieve stable sensitivity coef- 

ficients. While standard regression coefficients stabilized after 600 

runs, the Sobol indices (variance-based SA) converged after 1900 

runs. The data generated from those 1900 runs was subsequently 

used to train a surrogate model. 

Ostergard et al. [30 , #56] compared different surrogate mod- 

elling techniques. To facilitate model fitting of many different 

model types, they applied a global SA on the hyper-parameters us- 

ing Smirnov two-sample statistics. 

The same authors in [23] and [32] chose surrogate inputs by 

ranking parameters with the Morris screening method. The method 

was favoured as it is fast, requires fewer simulation samples and its 

qualitative ranking of variable sensitivities is close to more com- 

plex SA methods. 

4.3.2.2. Surrogate model based sensitivity analysis. In [32, #23] two 

different kinds of surrogate models and two types of sensitiv- 

ity analysis are applied. The authors fitted a surrogate (polyno- 

mial chaos expansion model) to conduct a variance-based SA with 

24,0 0 0 samples. For the derivation of the surrogate, Morris screen- 

ing was conducted beforehand to find input parameters as intro- 

duced in the section above. 

Eisenhower et al. [29, #24] emulates the design space with high 

dimensional model representations [100] to compute variance- 

based global sensitivities for thousands of parameters. This would 

take multiple days without a surrogate. 

Tsanas and Xifara [101, #25] used a random forest model (RF) to 

estimate the energy performance of a building. RFs provide param- 

eter importance ranking through the impurity metric which the 

authors compared to SRRC-based ranking. They found slight differ- 

ences and warned of the limitations of linear regression in dealing 

with collinearity. 
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In [102, #26] both variance-based SA metrics using a MARS 

model and SRRCs were computed to find the most important 

parameters for building-related carbon emissions taking climate 

change into account. Although the latter ignores variable interac- 

tions, both approaches provided similar results. 60 0 0 simulations 

were required to conduct the variance-based SA in their case study 

on a UK office building. Without the use of a MARS model this 

analysis would take multiple days. 

4.3.2.3. Interpretation of surrogate models. The last application of 

SA is to provide insight into the functional behaviour of a surrogate 

model, if its mathematical structure is too complex to be compre- 

hensible intuitively. 

[103, #27] use the Correlation-Adjusted corRelation (CAR) score 

[104] to understand variable importance for a set of campus build- 

ings. The same data is used to derive multiple surrogates. The com- 

bination of both statistical approaches provides interpretive and 

predictive tools to the building designer. 

Similarly, Hygh et al. [87 , #9] and Chen et al. [105, #28] com- 

puted standardized regression coefficients alongside training a 

stepwise linear regression and a MARS surrogate model. The lat- 

ter also used bootstrapping methods to validate the robustness of 

the sensitivity coefficients. The same authors conducted a SA and 

a heuristic optimisation in [106] . 

4.3.3. Uncertainty analysis 

Output uncertainty quantification is similar to the assessment 

of design variability during the conceptual design stage (see 

Section 4.3.1 ), and often conducted alongside a sensitivity analy- 

sis (see Section 4.3.2 ). Like design variability assessment and sen- 

sitivity analysis, current uncertainty quantification methods mostly 

rely on sampling based methods, i.e. input parameter distributions 

are converted to output distributions using Monte Carlo simula- 

tions [73] . The idea is to use surrogates to accelerate Monte Carlo 

simulations [36] , however the existing literature is rather limited. 

Hester et al. [21, #29] sequentially generate probability distri- 

butions of the output after each design parameter is specified. This 

visualises the converging distribution of the output with each de- 

sign decision taken. Here, they used a linear regression surrogate 

model to avoid long computation times. 

Eisenhower et al. also derived probability distribution on com- 

fort and annual energy demand based on 1009 input parameters 

uniformly distributed within 20% of their baseline [107] . They com- 

pared the distributions of both 50 0 0 simulation runs as well as 

SVM evaluations and found high agreement in the mean and vari- 

ance. 

Rivalin et al. [32 , #23] and Kim [98 , #20] studied the use of 

Gaussian process emulators and polynomial chaos expansion (PCE). 

The former paper first applies LHS to derive the PCE model. Once 

they have an accurate model they re-apply LHS to derive the model 

output dispersion and distribution faster than with random Monte 

Carlo simulation. 

Papadopoulos and Azar [108, #30] use a surrogate model to 

study the influence of varying levels of control of occupants and 

facility management under uncertain occupant behaviour. After 

training the surrogate, a linear regression model, they generate 

11 3 cases each with a different level of control of occupants on 

lighting, equipment and thermostat setpoints. They underpin the 

cases with uncertainty of human behaviour and generate 25 sam- 

ples for each case, such that the surrogate model is evaluated for 

33275 samples. They visualise the results in an appealing three- 

dimensional map. 

One of the reasons for the scarcity of existing literature may 

be the findings of Macdonald [109] and Lomas and Eppel [40] , 

who stated that, disregarding the number of uncertain parame- 

ters, between 60 and 100 samples are required to receive an ac- 

curate probability distribution of the outputs. Based on existing 

literature this number of samples is probably not sufficient to de- 

rive an accurate surrogate model (see column “number of samples”

in Table 2 ). Thus the majority of papers used standard building 

performance simulation for sampling, sometimes running them on 

high performance computing facilities [29,35,110,111] . A workbench 

for propagating input uncertainties to performance uncertainties 

using EnergyPlus may be found in [112] . 

4.3.4. Design optimisation 

In this section we review the papers which replace simula- 

tion models by surrogate models to accelerate the search for op- 

timal building design parameters. The literature can be sorted into 

two different groups: (i) Direct surrogate-based optimisation ( (a) 

in Figs. 2 and 3 ) and (ii) iterative surrogate-based optimisation ( (b) 

in Figs. 2 and 3 ). 

4.3.4.1. Direct surrogate-based optimisation. An early application of 

surrogate models for BDO is found in [113, #31] . Wong et al. used 

an ANN based grid search to determine optimal selections of solar 

aperture, daylight aperture, overhangs and side fins to minimize 

annual energy consumption. The authors limited the grid search 

to only 41 surrogate model runs although their surrogate model 

should be cheap to evaluate much more samples. 

Magnier and Haghigat [114, #32] used an ANN and the NSGA-II 

optimizer to minimize energy consumption and comfort. They re- 

ported that the surrogate-based optimisation achieved an accuracy 

of within 1% of simulation-based optimisation and only required 

seven minutes, but stress that generating the database underlying 

the surrogate took three weeks. Nonetheless, if the same number 

of model evaluations during optimisation would have been con- 

ducted with a simulation, the process would have taken 10 years. 

The relatively long simulation time might be caused by choosing 

2 min time-steps for their simulation, while having a workstation 

with a 1.66 GHz processor. 

Shortly after that Asadi et al. [115, #33] published a similar 

study focussing on retrofit optimisation (between one and three 

objectives) using a validated EnergyPlus base model for the surro- 

gate derivation. Sample simulation took three days and their model 

achieved a decent accuracy (MRE < 2.5%) on a validation set. Like 

other authors, they did not report the accuracy of the optimal- 

ity candidates. They point out that the speed of surrogate-based 

optimisation ( < 9 min ) enables designers to explore different de- 

sign strategies at early stage. In comparison, simulation-based ex- 

haustive search would have taken 75 days. They suggest increasing 

the number of design parameters and incorporating surrogate un- 

certainty prediction to further expand the insight for architects. A 

study similar to [114] and [115] can be found in [116, #34] , which 

focussed on L-shaped multi-story office buildings. 

While the previous authors used an ANN model in combina- 

tion with a genetic algorithm, Eisenhower et al. [107, #35] and 

Chen et al. [106, #36] [117, #37] used SVM models. While the lat- 

ter used NSGA-II like previous papers, Eisenhower et al. leveraged 

that a surrogate model enables the use of gradient-based instead of 

derivative-free optimizers. Comparing both on a multi-object opti- 

mization of comfort and energy demand, the results were equally 

stable but gradient-based optimizers converged significantly faster 

(a few seconds instead of some minutes). In all three studies sen- 

sitivity analysis was conducted to reduce the number of design 

parameters prior to optimization. Eisenhower et al. showed that 

similar optima were found with seven input parameters as with 

1009 parameters. Hence, increasing the number of inputs barely 

increased the optimality score. 

Constrained gradient-based optimisation (sequential-quadratic 

programming [118] ) was used in [119, #38] together with an RBF 

model to maximise comfort of naturally ventilated buildings using 
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window geometry. Their surrogate was trained on simulation data 

generated by a sequence of computational fluid dynamics (CFD) 

and building energy simulation. To validate the optima, they also 

ran simulation at the optima and found a MAE of < 10% in the 

RBF-optimization outcomes. The validation did not include a com- 

parison of surrogate-based and simulation-based optimization. As 

the building considered was simplistic, further research is required 

for a general conclusion on their method. 

A comparison of different surrogate models and different sam- 

pling approaches for evolutionary design optimisation is given in 

[72, #39] . The models were compared with regard to their effi- 

ciency, efficacy and solution quality. The authors recommend MARS 

models over GP, RBF and SVM models due to higher accuracy. Part 

of their study was an analysis of potential time savings using sur- 

rogate models (including sampling). They found savings of more 

than 80% to be feasible, particularly for complex design spaces. 

In comparison to the other papers they measured optimum ac- 

curacy not only at specific points, but computed the generational 

distance between the surrogate-based and the simulation-based 

Pareto fronts. One of many findings is that increasing the number 

of training samples leads to a lower generational distance. 

Above, only non-parametric models were presented which are 

complex and difficult to interpret. Some authors prefer simpler ap- 

proaches like polynomials. [96, #40] used a second-order approxi- 

mation and benchmarked it against simulation-based optimization 

with and without parameter importance analysis. Carreras et al. 

[120, #40] optimised a cubic house to minimize cost and environ- 

mental life-cycle performance. They used cubic spline interpolation 

as a surrogate and reduced gradient optimization to determine the 

best insulation thickness. Including the time for database genera- 

tion they found a time reduction of 8 times, down to 21.3 hours in 

comparison to simulation-based optimisation. 

4.3.4.2. Iterative surrogate-based optimisation. In comparison to di- 

rect optimisation, iterative surrogate-based optimisation relies on 

a space infill criterion which balances exploration and exploitation. 

This difference leads to a changing preference on surrogate model 

type. While in the previous section a lot of studies used ANN or 

SVM models, here often GP models are applied which can quan- 

tify model uncertainty. This can serve as an exploration criterion 

for adaptive sampling (see Section 2 ). 

An early work on the use of GP in the BDO domain by Gengem- 

bre et al. [121, #42] minimized life-cycle cost and energy con- 

sumption using the constrained efficient global optimizer [122] . 

The GP model was updated with samples chosen to maximise the 

expected improvement criterion. 

Similarly, in [123, #43] and [124, #44] the expected improve- 

ment criterion is used. In the former study, the optimisation pro- 

cess is benchmarked against simulation-based optimisation using 

NSGA-II. It was found to have a steeper convergence curve and to 

require fewer high-fidelity model simulations. However, in the case 

of multi-objective optimisation this could not be confirmed. 

Gilan et al. [125, #45] used a combination of GP and NSGA-II. 

In comparison to other studies, they computed the space infill cri- 

terion based on a whole area of the design space instead of an in- 

dividual point. They calculated the mean posterior variance of the 

offspring from each iteration of the optimizer (50 samples). Com- 

paring their method to direct surrogate-based optimisation, they 

found good agreement of the Pareto Front while cutting runtime 

by two thirds. 

Hopfe et al. [97, #19] performed optimisation using the SMS- 

EMOA algorithm [126] . As the objective function they used the 

mean value of 201 perturbations around a point proposed by the 

optimizer. The goal is to find more robust solutions. To the best of 

our knowledge, they could replace their GP model with any other 

surrogate model type. They claimed that their approach helps to 

reduce the number of samples needed to find an optimal solution 

by 5–20% compared to simulation-based optimization. 

Besides the literature on GP, the following publications used 

methods which are independent of the surrogate type. They rely 

only on model predictions instead of posterior variance estimates 

provided by GP models. One early study [127, #46] updated ANNs 

at each iteration with samples selected by NSGA-II leading to a 

locally accurate surrogate. The model was initialised on a set of 

50 samples and the optimizer provided 50 samples at each itera- 

tion. In a similar fashion, [128, #47] used an SVM and [129, #48] a 

RBF model to minimize building cost. The former reported their 

method reduced optimization time by up to 60% on a case study. 

Lastly, Wortmann developed Opossum as plug-in for Grasshop- 

per. His tool, which is based on RBFOpt [69] , adaptively trains and 

optimizes an RBF model [130, #49] . In a comparison with eight 

other optimization schemes, RBFopt was found to be the fastest 

converging and second most stable (after direct search) to opti- 

mize the energy demand of a building with 13 design parameters. 

Furthermore, it was the best performing algorithm in maximizing 

useful daylight illuminance (UDI) while minimizing glaring effects. 

This paper clearly shows the great potential of iterative surrogate- 

based optimization for building design problems. 

5. Trends and practical aspects 

This review confirms that surrogate models are a strong ele- 

ment in current building performance simulation and optimisa- 

tion research, and results have shown that they are a suitable al- 

ternative to common building simulation models in certain cases. 

Performance analysis during the conceptual building design stage, 

sensitivity and uncertainty analysis, as well as building design op- 

timisation are more accessible, primarily due to the large reduction 

of computational cost. 

In the following section, we list application trends and practical 

aspects extracted from the reviewed literature. 

5.1. Trends in the application of surrogate models 

• As surrogate models lower the computational burden of 

early design, sensitivity and uncertainty analysis, it becomes 

possible to get insight into building performance over the 

whole space of potential design options. 

A good way to visualise this is the parallel coordinates 

plot [23,26] . In comparison to simulation-based design ex- 

ploration, this allows users to intuitively explore multi- 

dimensional spaces and find promising designs in a limited 

time. 
• The value of surrogate models hinges on the decrease in 

time to conduct a certain analysis while maintaining high 

accuracy. Although many examples on the use of surrogates 

for early design, SA and UA exist, there is a lack of under- 

standing how large the time savings can be. Only in papers 

on optimisation analysis, thorough analyses of time savings 

were found. 
• Surrogate-based optimisation showed promising first results 

to speed-up building design optimisation. 

The listed publications achieved a time reduction of up to 

80% [72] and the identified optima have proven to have 

high quality in comparison to full simulation-based black- 

box optimisation [72,107,130] . Examples for time savings are 

given in Table 3 . An open question is whether direct or it- 

erative surrogate-based optimisation better fits the require- 

ments of building designers. Iterative surrogate-based opti- 

misation may be fast and efficient [130] , but as stated in 

[107] , direct optimisation using a global surrogate allows to 
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Table 3 

Examples from the literature for potential of optimization time reduction while maintaining accuracy of the optimum. 

Optimization strategy Multi Optimizer Time Comparison to simulation-based 

objective reduction optimum 

Direct surrogate-based 

[114] x NSGA-II -97% (10y to 3w) Energy demand: < 2.5%, Overheating: 

< 25%, max. error on global validation set 

[96] x NSGA-II -55% (27h to 12h) < 10% max. error on global validation set 

[107] IPOPT/NOMAD + 4% (49h to 52h) 0.7% deviation from true optimum 

[117] x NSGA-II n/a (7.4h to n/a) 1.59% deviation from true optimum 

Iterative surrogate-based 

[125] x NSGA-II -52.2% (14h to 7h) 3.17% difference in hypervolume of Pareto Front 

[72] x NSGA-II -82% (71h to 13h) 75%-80% samples of original Pareto Front found 

[128] x NSGA-II -60% (23h to 9h) optima are close to true Pareto Front 

but have low diversity (spread metric �

increases from 0.41 to 1.01) 

easily change the optimisation objective or optimizer set- 

tings without rerunning simulations. 
• Recently, researchers have been trying to find more general 

surrogates applicable to many different problems. One may 

envision that if a surrogate is highly generalizable, it could 

fully replace building simulation tools for the most common 

types of building projects. 

The maximum scope of a single surrogate model has been 

broached by multiple publications. Most authors used surro- 

gate models only for a specific building and therefore, Geyer 

and Schlueter [25] focussed on automating the surrogate 

derivation process. Others have fitted a single surrogate to 

estimate the performance of multiple buildings of a specific 

type [92] or in one climate region [86,87] . In future, one 

could capture weather data in a few descriptive variables 

and use them as inputs to a general surrogate as introduced 

in [90] . 

Another option is given by Singaravel et al. [94] . In their 

grey-box approach they used domain knowledge to split one 

surrogate into multiple physical entities representing energy 

fluxes through walls, floors, etc. Further research is required 

to support their promising initial findings. 
• Lastly, most surrogate model types lack interpretability of 

their mathematical structure and are not suitable to an- 

swer analytical questions. One way around is to increase 

the number of surrogate model outputs. For example in the 

aforementioned grey-box approach multiple physical mean- 

ingful metrics are estimated. Another example was given in 

[78] where time resolved energy use instead of annual per- 

formance metrics were reported. 

5.2. Practical aspects 

• In the reviewed publications, it seems feasible to ex- 

plain more than 95% of the variance in simulation results 

( R 2 > 0.95) for energy, heating and cooling demand estimates 

with one surrogate model for one or more buildings in one 

or more climate zones. The accuracy was found to be lower 

for other kinds of output (e.g. Max CO 2 [30] , or Overheating 

[131] ). 
• Both model selection and hyper-parameter optimisation are 

important to achieve high accuracy as shown in different 

comparisons of surrogate modelling techniques for building 

design [15,30,72,132–134] . For example, [30] advocates the 

use of ANN for extensive analysis, GP for non-experts to get 

high accuracy, and MLR for quick, automated surrogate mod- 

elling. 

In general, accuracy may be improved by using non-linear, 

parameter-free models instead of parametric ones. However, 

we observed that even with models that are linear in pa- 

rameter , especially polynomials, an accuracy of R 2 > 0.95 is 

achievable in some cases [25,26,91] . 

As important as model selection is hyperparameter opti- 

mization as standard model settings usually yield insuffi- 

cient accuracy [15] . A simple grid search may already yield 

a large increase in accuracy [106] . It is promising that recent 

publications relied on validated, sophisticated hyperparam- 

eter optimisation methods using state-of-the-art toolboxes 

(see Section 3 ). 
• A frequently reported problem is the limited number of in- 

puts a surrogate models can handle without exploding com- 

putational cost ( curse of dimensionality ). 

It is popular to integrate sensitivity analysis into the sur- 

rogate derivation process to determine the most important 

parameters. A surrogate model using only those inputs has 

proven to be accurate and to provide sufficiently optimised 

design options [106,107] . 
• While good model selection does not necessarily increase 

accuracy, it may increase sampling efficiency. [15] and 

[30] both found GP models to be sample efficient while RBF 

and MARS models require a lot of samples to reach high ac- 

curacy. 
• The best choice of sampling algorithm is uncertain. Most 

studies within that review used latin hypercube sampling 

(see Table 2 ). 

No study exists which compares all static sampling schemes 

at once. In [135] Sobol’s sampling was used for Monte Carlo 

simulation and provided more precise and robust output 

distributions than latin-hypercube and random sampling. 

Furthermore, a comparison of static and adaptive sampling 

in the field of building surrogate models is yet to be done. 

In other research domains adaptive sampling strategies have 

successfully shown to require less simulation runs until the 

surrogate reaches a certain accuracy [136] . 

6. Conclusion 

This review provides a thorough discussion of publications that 

use surrogate models for sustainable building design. 

The publications are sorted according to application area into 

conceptual design, sensitivity and uncertainty analysis, and build- 

ing design optimisation. In particular, the use of surrogate mod- 

els as a tool to give insight and understanding into high dimen- 

sional building design spaces was found to be popular in current 

research. Furthermore, multiple publications have shown that em- 

25



184 P. Westermann and R. Evins / Energy & Buildings 198 (2019) 170–186 

bedding surrogate models into optimisation procedures accelerates 

the process significantly. 

Apart from the analysis of research trends, this review serves as 

a practical guide. A detailed introduction to the process of deriving 

a surrogate model is given. The publications reviewed are catego- 

rized in both a large table and multiple figures providing a conve- 

nient technical overview of the field. Finally, practical aspects of all 

publications are summarized in a separate section with regard to 

model accuracy, model type, input selection and sampling strategy. 

We expect future research to focus on lowering the computa- 

tional cost for deriving a surrogate model and to increase the in- 

terpretability of models. The former could be achieved by imple- 

menting advanced sampling strategies, or by extending the scope 

of a single surrogate model from one to multiple buildings such 

that the derivation process does not have to be repeated for ev- 

ery analysis. Low interpretability can be avoided by compartmen- 

talising surrogate models into multiple physically meaningful sub- 

models. 

Surrogate modelling has already been shown to lower the bur- 

den for architects and engineers to assess sustainable building de- 

signs using advanced performance analysis. We envisage, that it 

will play a key role in achieving sustainability in the future build- 

ing stock. 
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Surrogate modelling for design
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Chapter 3

Example of a surrogate model in use.

The literature review has shown that instantaneous feedback at the early design stage

is a very promising application of a surrogate model. A platform for this is being de-

veloped by the Energy in Cities group, as presented in the following paper. The tool

is meant to guide building designers towards net-zero energy buildings.

The trained surrogate models are hosted on an interactive web platform. They incor-

porate key findings from the literature review, where the following aspects to improve

the state-of-the-art are considered:
• The surrogate model uses a large set of input parameters (32) which lets users

model a large set of design problems, including the ability to model various

heating, cooling and ventilation systems, daylighting controls, the impact of

running a server in an office building and other key factors.

• A large number of outputs are modelled to assess net energy demand, including

a break down of the different end-uses and photovoltaic generation potential.

• An analysis of the impact of the training set size on the performance of the

surrogate model is performed.

• An updated set of normalized error metrics that allow comparing the approxi-

mation accuracy of various outputs is given.
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Abstract

The design of high-performance buildings requires
rapid iteration over many highly-integrated choices.
These must be made early the design process, as
certain performance targets like net-zero energy con-
sumption may not be achievable at later stage. Ex-
isting high-resolution simulation approaches are not
easily able to deliver fast, integrated design iterations.

In this paper we introduce the Net-Zero Navigator, an
open-source platform for conceptual building perfor-
mance design based on surrogate modelling. It lever-
ages state-of-the-art machine learning techniques to
provide surrogate models which emulate high-fidelity
building performance simulation results, providing
accurate design performance estimates instantly. Re-
sults are given to quantify the performance of the sur-
rogate modelling approach, which achieved R2 values
of over 96%.

The platform builds on a suite of existing software
tools (EnergyPlus, TensorFlow, KERAS API) as well
as the codebase of the Building and Energy Simu-
lation, Optimization and Surrogate-modelling (BE-
SOS) platform. Overall, the Net-Zero Navigator plat-
form provides a fast, interactive way to undertake
concept-stage building design.

Introduction

Performance-based building design

In performance-based building design, energy metrics
are used to quantify how much a design fulfils sin-
gle or multiple design objectives (Kalay, 1999). This
paradigm spread rapidly in recent years and as a re-
sult there are a proliferation of building energy sim-
ulation software options to address this need (Attia,
2010).
Energy performance analysis tools are used through-
out the design process, from conceptual to detailed
design (Östman, 2005). The Net-Zero Navigator is
currently targeted to support guidance in the early
design stages, where the design is most flexible and
decisions have the highest impact on final perfor-
mance. At this stage, absolute accuracy can be
sacrificed in favour of flexibility, breadth and speed
of design space exploration. this fits well with the
surrogate-modelling based approach.

Conceptual design analysis tools

Existing energy simulation software tools apply build-
ing physics equations with varying level of detail.
More detailed tools require careful building model
implementation and potentially have long simulation
run times. This mismatches the need for fast feed-
back during the highly dynamic process of the early
design stage, where multiple, strongly differing design
concepts are to be explored (Petersen, 2011).
For that reason a subfield of tools is developing which
aims at low computational cost, limited number of
user input requirements, and a high degree of inter-
activity. The underlying performance estimates are
either based on simplified physics models or collected
from a database of pre-run parametric simulations.
Recently, the use of statistical simulation surrogate
models, also called emulators or meta-models, gained
increasing attention (Westermann and Evins, 2019).
Examples include tools from Nielsen (2005) who de-
veloped a dynamic, single-thermal-zone, lumped pa-
rameter model to estimate energy demand and indoor
comfort, and from Gratia and De Herde (2002) who
developed OPTI, a tool which provides annual ther-
mal needs and thermal comfort estimates by accessing
a database of pre-run simulations.
In comparison to the previous methods, Ritter et al.
(2015) used a statistical emulator of a detailed, dy-
namic simulation tool to provide performance esti-
mates in their DSEAM tool. Although the model is a
rather simplistic second order linear regression model
fitted to simulation output data it has multiple ad-
vantages over the approaches mentioned above.
First, no simplification of building physics is done,
and only a small error of the statistical model is in-
troduced. Given recent advances in machine learning
even very complex physical phenomena can be em-
ulated (Kasim et al., 2020). Second, no parametric
data must be stored and the tool uses a continuous
function providing the user with performance esti-
mates for a continuous set of a large set of design
inputs. The latter in particular allows design space
exploration and ”recognizes that different (building)
forms can successfully achieve similar functions” and
performances (Kalay, 1999).
When we analyse design spaces spanned by large
number of parameters, advanced visualization tech-
niques are required. Ritter et al. use parallel-
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coordinate plots (PCP) which were also found popu-
lar in industry with multiple trials to develop inter-
active tools to building designers 1.

Contributions of this paper

The Net-Zero Navigator will be the first tool to al-
low building designers who are not machine learning
experts to leverage advancements in surrogate mod-
elling to drastically improve their ability to find high
performance building designs.
The platform features a holistic set of building
archetype surrogate models, which can be accessed
using intuitive visualizations hosted on a web-
platform. Beyond that, an advanced user interface
allows users to access the underlying codebase and
Jupyter Notebooks, such that the process of surro-
gate modelling and visualiziation of building design
spaces can be customized if needed.
Computational optimization of buildings has been an
increasing focus of research in recent years, as detailed
in Evins (2013). The Net-Zero-Navigator (NZN) plat-
form builds upon this work to deliver a practical, us-
able tool for design space exploration, which was often
the underlying intent of many optimization studies.
The NZN platform goes beyond existing Canadian
energy compliance tools (CANQuest, HOT2000 etc.)
by providing rigorous simulation, multi-objective op-
timization, and visual exploration of design implica-
tions. It goes beyond previous simplified compliance
guidance (e.g. screeningtool.ca) by providing much
greater breadth and detail in results exploration. It
goes beyond HTAP and BTAP (developed by Can-
met) in providing surrogate modelling coupled with
a user-friendly interface.
The Net-Zero Navigator is the first platform to pro-
vide visual exploration and optimization of buildings
in an accessible online environment. It spearheads
the application of modern computational techniques
(cloud computing, machine learning, interactive visu-
alization) to this domain.

The platform

The platform is composed of a core and an advanced
interfaces. The software architecture diagram is
presented in Figure 1.
The main features and the way they work together is
detailed below. EnergyPlus simulations capture the
whole building-level interactions between different
elements and systems. Results are used to generate
surrogate models (fitted statistical representations
of optimization data) for effective deployment as an
online platform. Optimization algorithms can then
be applied to find synergies across many objectives.
A prototype advanced interface allows optimization
and exploration using user-uploaded models, calibra-
tion of models to measured building data prior to

1Building Pathfinder (http://www.buildingpathfinder.
com/), BTAP (https://canmet-energy.github.io/
parallel-coordinates/), Canmet-Energy (2020)

Figure 1: Software architecture of the Net-Zero Nav-
igator platform.

exploration, and user data analytics. The platform
combines the best available technologies in each area
to provide a user-friendly, open-source interface for
optimization and visualization.
The core methodologies employed are detailed build-
ing energy simulation, multi-objective optimization,
surrogate modelling and web-based interactive visual
data exploration, brought together through an API-
based modular software implementation, as shown
in the software architecture diagram in Figure 1.
Icons indicate user interface modules, cluster-based
computation modules, and visualization modules.
The interfaces as well as the process to fit surrogate
models are described in more detail in the following
sections.

User Centered Design

A core objective of the NZN project is the practical
integration of surrogate modelling methods into
the work processes of industry user groups and
stakeholders, creating a platform to leverage the
domain-knowledge of building designers and planners
using more robust parametric modelling tool sets.
This involves developing a refined interface for defin-
ing simulation parameters, interrogating sub-model
analyses, and visualizing surrogate output. Feedback
and testing by users will be central to the iterative
refinement of the methods and development of an
interface for practical application of these surrogate
modelling modules.
Prototype interface and visualizations will be de-
veloped in JavaScript in order to interface easily
with the computational modules developed in for
the underlying surrogate modelling. The interface
design will be refined through an iterative process
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involving user-group testing. The overall methodol-
ogy and module structures will be documented and
reported using user interface design and open source
best practices. This will include development and
implementation of training modules, workshops and
information sessions that will aim to expand the
user base and foster a collaborative environment for
continued development of the tools and methods.
A summary of the intended user definitions, func-
tionality and outputs are shown in Figure 2.

Figure 2: Summary of Intended User Definitions,
Functionality and Outputs

Due to the open and adaptive development structure
of NZN, the overall scope of the NZN project encom-
passes a broad range of potential user groups and
use cases. To address the gaps in conventional build-
ing simulation practice, and to leverage the surrogate
modelling framework developed for BESOS, the de-

sign focus of the NZN platform divided between two
main interface modes: core and advanced.

Core Interface

The core interface provides interactive visualization
for design exploration. The surrogate models result-
ing from model-fitting are provided via a cloud-based
service to allow real-time optimization via an online
interactive visualization interface. This core tool will
allow designers to refine parameters and observe the
impacts in real time, quickly gaining an understand-
ing of the best paths to high performance for a given
building type and context.
The core interface is intended to serve segments of
the user group interested in quickly exploring the
building design space for a predefined set of build-
ing archetypes (based on the representation in typical
Canadian building stock), providing feedback on per-
formance under selected metrics. Inputs are intuitive
and adaptive, requiring minimal time from the user
to generate meaningful results. Among the driving
design principles for the core interface are interactiv-
ity, adaptability and intuitiveness: providing a com-
prehensive (but curated) range of functionality, while
enabling the user to hide unnecessary information and
controls, interact directly with the inputs and results,
and dynamically hone in on their primary objectives.

Context variables

A variety of contextual inputs for these archetypes
can be modified by the user to customize the build-
ing to suit their needs. Areas of control influenc-
ing building performance include building program
(occupancy, space types, operational schedules, etc.),
building geometry (floor area, height, aspect ratios,
etc.), and weather (location, current or future climate
conditions, etc.). Additional inputs for life cycle anal-
ysis will also be available including initial impacts
(capital costs, embodied carbon, etc.), operational
costs (fuel prices, emissions intensities, etc.), and fi-
nancial assumptions (escalation rates, debt leverag-
ing, interest rates, etc.). The full set of contextual
inputs will be refined through exhaustive sensitivity
analysis and user testing.

Measures and Parameters

The user can then choose a subset of measures for
consideration – to evaluate their impact on selected
metrics and outputs – adding dimensions to the prob-
lem space. The combination of the baseline build-
ing definition and measures defines the overall design
space, which is constructed on the underlying sur-
rogate models that make up the engine of NZN. In-
teractive modules will be incorporated that enable a
variety of functionality, including assessment of spe-
cific design configurations, filtering and adjustment of
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Figure 3: Process of surrogate modelling for Net-Zero Navigator

measures, or optimization based on selected metrics
(such as operational energy, emissions or cost).

Outputs and Visualization

Outputs may include pre-set energy reports, data
files, LCC assessment summaries, or peak sizing
information for design support. Users will have the
option to export EnergyPlus IDFs for specific design
configurations for more explicit analysis. Results will
be dynamically updated and presented to the user
through interactive widgets. Visualization options
include parallel coordinates plots, star diagrams,
and conventional graphs. These components of
interface design will be refined through an iterative
process that will involve prototyping, user testing
and stakeholder engagement.
The tool is designed to account for any combina-
tion of user inputs and default assumptions. The
surrogate models used for the core interface are
developed to provide a robust foundation for rapid,
exhaustive design space exploration, and accuracy
has been shown to be sufficient for this purpose;
however, more detailed customization is possible in
the advanced interface, which can be used to improve
precision.

Advanced Interface

An advanced interface is proposed for energy mod-
elling professionals as well as researchers. It provides
a means to directly generate and interrogate underly-
ing EnergyPlus and surrogate models, providing ac-
cess to the full functionality of BESOS.
An advanced interface is proposed for energy mod-
elling professionals as well as researchers. It provides
the following functionalities:

• import/export EnergyPlus models,

• modify and sample EnergyPlus models,

• fit a surrogate model,

• optimize the design of a building according to
various criteria,

• analyse the results using the same advanced vi-
sualization tools as for the core interface,

• customize its own visualization tool.

The advanced interface also allows custom metrics

to be implemented, letting policy-makers explore the
impact of measures across the design space.
All the features are accessible through Jupyter
Notebooks and Python code. Moreover Net-Zero
Navigator advanced interface benefits from the same
functionalities as BESOS, also developed by our
team, allowing an easy share of the work and an
access to Compute Canada supercomputer to fasten
the calculations.

Surrogate modelling procedure

The surrogate modelling procedure underlying the
Net-Zero Navigator platform is shown in Figure 3.
It consists of

• defining the design problem, i.e. the free design
parameters and the design objectives,

• running simulation samples,

• fitting the surrogate model and exporting it as a
TensorflowJS object, such that the model can be
embedded into the NZN browser application.

The core objective of the process is to derive a
surrogate model with a large application scope.
This allows one surrogate to cover many design
problems. The problem definition stage is a crucial
in that regard. We approach it by collecting a
holistic set of design parameters and performance
metrics in an iterative process. We integrate form
(window-to-wall ratio, building storeys, overhangs,
orientation), materials (U-Values, Solar-Heat-Gain-
coefficient, thickness), loads (people, plug, server,
lighting), controls (set point schedules, area covered
by daylighting sensors) and HVAC parameters (air
rate, pumping rate, plant performance, DHW, heat
recovery eff.).
The design parameters span a large combinatorial
space. We explore it by collecting building perfor-
mance simulation samples from within that space,
where we aim to maximise the information gain per
simulation run. Therefore, we use Latin-Hypercube
sampling (LHS). The platform offers all tools for
surrogate derivation, including a Python EnergyPlus
API (based on EPPy), and access to computational
hardware from Compute Canada. The latter enables
us to run thousands of simulations within a reason-
able amount of time, and to leverage GPU resources
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to train deep neural network surrogate models.
To train the surrogate model, we use the machine
learning toolbox Keras, which uses TensorFlow as
a backend. TensorFlow is a toolbox specifically
designed to train neural networks. In the NZN core
interface, we are mostly concerned with predicting
aggregated annual performance metrics, not time
series results. This allows us to limit the complexity
of the networks to relatively shallow, multi-output
feed-forward neural nets (≤ 3 hidden layers, ≤ 512
neurons per layer), which have proven to emulate
aggregated simulation outcomes well (Westermann
and Evins, 2019).
Once the model is trained and its accuracy validated
using simulation runs not included in the training
data, we export the neural network architecture and
trained weights as a JavaScript file to be embedded
into the NZN browser-based application, which
uses TensorFlow.js to perform all surrogate model
evaluations directly in the user’s web-browser.
In the next section we go through all the steps above
for an example case which is present in the platform,
and investigate the accuracy of the surrogate model.
NZN also allows the user to go through these steps
for bespoke problems using the advanced interface.

Example case

In this section, we explain how we derive a surrogate
model for one of the 16 DoE archetype buildings and
explain how the user can interact with it. We briefly
describe the base building model (a medium-sized of-
fice (Canmet-Energy, 2020)), provide accuracy esti-
mates of the surrogate model for each individual per-
formance objective, and present the parallel coordi-
nate plot as example of a visualization tools.

Building details, parameters and objectives

The baseline building definition presented in this
research leveraged the work of National Resources
Canada (NRCan), who have developed a platform
called BTAP to generate NECB versions of the
Commercial Prototype Building Models originally
created by Canmet-Energy (2020). For the purposes
of this illustrative case study, the Medium Office
archetype was selected.
Baseline assumptions for building program, space
loads, basic controls, geometry and enclosure perfor-
mance were directly derived from the NECB 2015
requirements. An alternative approach was taken to
represent the mechanical systems, with the intention
of capturing a wide variety of configurations and
parameters through direct manipulation of air-side
system and plant equipment performance in the
EnergyPlus Energy Management System. This
allows high-level exploration of a vast HVAC system
design space through variation of a subset of core
parameters, set up independently of any specific
proposed design, while maintaining a consistent basis

Parameter List Problem 1, Thermal Loads

1.-2. Wall, Window U-Value

3. Window SHGC

4.-5. Infiltration Rate, Ventilation Rate

5. Horizontal Shading Depth

6. Thermal Mass

7. Daylighting Sensors

8. People

9.-11. Plug, Lighting, Server-Roam Loads

12.-15. Humidity, Temp. Setpoint (min, max)

16.-19. WWR (North, East, South, West)

20. Orientation

21. Number of Storeys

22.-23. Heat Recovery (Sensible, Latent)

23.-25. Plant Performance (Heating-Fuel,
Heating-Elec., Cooling)

26.-27. Fan-Power (Air Rate, Conditioning Share)

28.-29. Heating Plant Fuel Mix (Share of Total,
Biofuel Share)

30.-31. Pumping (Rate, Hydronic Share)

32. Domestic Hot Water (Share)

Table 1: List of design parameters for Problem 1,
Medium office)

Output List Problem 1

1. Heating Supply, Gas 7. Interior Lights

2. Heating Supply, Electricity 8. Pumps Power

3. Heating Supply, Other 9. Fan Power

4. Cooling Supply, Electricity 10. PV Generation

5. Water Heating, Gas 11. Heating Demand

6. Interior Equipment 12. Cooling Demand

Table 2: List of surrogate model outputs for Problem
1, Medium office)

for generating building demands.

Sampling

We generate 10,000 simulation samples using the
widely applied latin-hypercube sampling, which strat-
ifies the design parameter space into equally large hy-
percubes and randomly collects samples from within
each hypercube. We run the 10,000 samples on an
HPC cluster (250 jobs with 1 CPU and 2Gb RAM
running for 2 hours each).
We fit a 2-layered feed-forward neural network on
the retrieved simulation results using the Adam op-
timizer minimizing the mean-squared-error (MSE),
where we specified the learning rate schedule param-
eters with β1 = 0.9, β2 = 0.999. Other training hy-
perparameters were determined in a grid search (l2-
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Figure 4: Number of samples vs. surrogate model
accuracy.

regularization coefficient α, number of neurons per
layer nneurons). To control for the variation intro-
duced by random weight normalization, we repeat
each run of the grid search three times. For more
details on feed-forward neural network training see
(Bishop, 2006).

In this section, we only present the surrogate mod-
elling performance for one of the 16 considered build-
ings. To efficiently run simulations for all other
archetype buildings, we investigated the number
of samples required to reach a satisfying surrogate
model performance. In Figure 4 the accuracy as a
function of the number of samples is shown. On the
y-axis we plot the R2 score, averaged over all outputs,
and on the x-axis we plot the number of simulation
samples, where 80% is used for training and 20% for
testing and hence, corresponds to the total number
of samples required to train and validate a surrogate
model.The plot highlights that the increase in accu-
racy levels off after NLHS = 3000 samples. However,
it keeps increasing slightly for higher numbers of sam-
ples. We suggest that more than 100 samples per pa-
rameter are required, which compares well to existing
literature (Westermann and Evins, 2019).

Surrogate model fitting

The final surrogate model is fitted using 8,000 sim-
ulation samples (plus 2,000 more for testing). The
optimal 2-layered network architecture has 256 neu-
rons per layer, where the weights are l2-regularized

with α = 10−1. It achieves a mean R
2

= 0.986 on the
test data averaged over all outputs when predicting
annual aggregated performance metrics.
The surrogate model accuracy for each output is
shown in Figure 5, where we compare simulation out-
comes with surrogate model predictions. The red
lines indicate the 0% and ±10% error borders.
The overall accuracy varies between R2 = 0.962 when
predicting the heating demand covered by natural
gas, and achieves the highest accuracy when predict-

ing the energy demand for water heating R2 = 0.999.
Alongside the explained variance, R2, we also com-
pute the mean absolute error for each of the models
providing a slightly better physical insight.
Whereas the thermal demand can be accurately es-
timated, the supply causes a certain degree of inac-
curacy of the model. All thermal supply outputs do
not surpass an accuracy of R2 > 0.98. As a core
objective of net-zero buildings is the reduction of en-
ergy demand, we specifically highlight the accuracy
of the surrogate for low-demand buildings. Therefore,
we quantify the absolute percentage error (APE) and
mean absolute percentage error (MAPE) for the 50%
of the samples with the lowest demand for each out-
put. This is visualized in the top left corner of each
subplot. For completeness this metric is also com-
puted for PV generation. In future, further refine-
ment of the surrogate model is required to optimize
the prediction of thermal sources.

Instant feedback for visualization

The major advantage of the surrogate model for the
early design stage, is the instantaneous generation
of simulation estimates. Here the model evaluates
100,000 inputs in 3.2s.
This allows for fast and interactive visualization. A
popular example is the use of a parallel coordinates
plot (e.g. see Figure 6). It features sliders to specify
a favoured building design where the column on the
right of the plot, here the heating demand, lets the
user see the impact of design choices on some perfor-
mance metric.
Other visualization techniques will be explored in
Net-Zero Navigator platform, but are not discussed
in this paper.

Outlook and Conclusions

In this paper we introduce the NetZero Navigator
platform for early-stage design of low-energy build-
ings. We provide details on the software architecture,
the application realm, and the underlying machine
learning models.
In a case study on one of the buildings hosted on the
core interface of the platform, we show how the un-
derlying machine learning models are derived, report
their accuracy to emulate simulation models and ex-
emplify the design space visualization of that build-
ing using a parallel coordinates plot. For this case
we show that surrogate models fitted using relatively
few samples (8,000 for a 32 parameter problem) can
achieve respectable accuracy (R2 ≥ 96%), which is
suitable for early-stage decision-making.
The platform will continue to be refined in alignment
with user groups’ needs. This includes better visual-
ization of the building design spaces, higher accuracy
of surrogate models, and refined input sets for the sur-
rogate models. Many different archetype buildings
and climates will be available in the core interface,
and many parameter configuration and visualization
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Figure 5: Surrogate model accuracy on test data for one of 16 buildings (Medium office) part of the NetZero
Navigator platform.

Figure 6: Parallel coordinate plot with 10 of the design parameters and heating demand as output.
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options will be available in the advanced interface.
Overall, this paper gives an introduction to the ex-
citing developments that are available by combining
machine-learning based surrogate models with online
visualisation tools.
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Epilogue

This study serves as an example of a typical software product based on surrogate

models. Similar ideas have been showcased before in other studies using surrogate

models [13][24] or using simplified physics models [8]. We derived a much larger sur-

rogate model that can be applied to more building design problems. Apart from that,

the study serves as an example of the surrogate derivation process, and provides us

with the following insights.

The performance of the multi-output, feed-forward neural network was high, re-

aching an error of < 10% and R2 > 0.96, which aligns with other studies in the

field and validates the approach for following research [21]. By plotting the error

distribution, this study unveiled that the predictive performance is not robust and

can produce large outliers of > 20%. When being provided to users, i.e. building

designers and architects, uncertainty in the surrogate model estimates must be taken

into account and will be addressed in the following study (Chapter 4).

The careful selection of a large number of inputs and outputs let us derive a surrogate

model that can be used for many design questions but significant limitations in the

types of design problems that are represented by the inputs remain. At this point the

surrogate model is constrained to model performance for only one geometry (only the

window size and orientation of the building can be varied). Furthermore, the given

performance estimates are derived assuming one climate (Victoria, British Colum-

bia, Canada). If a different geometry or location needs to be modelled, a new set of

thousands of simulation runs is required (see surrogate model derivation process in

Chapter 2). Augmenting the surrogate model architecture to accommodate multiple

climates will be tackled below (Chapter 5).
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Chapter 4

Uncertainty-aware surrogate models

In the following paper we address research question 1.1 and develop a surrogate model

that produces uncertainty estimates alongside the actual building design performance

estimate. The goal is to derive a surrogate model that can independently identify de-

sign parameter combinations that produce large prediction errors.

In the following paper, we use Bayesian neural networks and stochastic-variational

Gaussian Process models as surrogate models for the same BPS model that we consi-

dered in the previous chapter. A core element of this work is to quantify the quality

of the uncertainty estimates, represented here by posterior variance estimates given

by the two models. A high quality uncertainty estimate guarantees that accurate

confidence intervals can be provided to the end user. In addition, we propose un-

certainty estimates as a means to hybridize simulation and surrogate modelling (see

Section 1.3.1), as explained in the paper.
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rate models.

In this paper, we train two types of Bayesian models, dropout neural networks

and stochastic variational Gaussian Process models, to emulate a complex

high dimensional building energy performance simulation problem. The sur-

rogate model processes 35 building design parameters (inputs) to estimate

12 different performance metrics (outputs). We benchmark both approaches,

prove their accuracy to be competitive, and show that errors can be reduced

by up to 30% when the 10% of samples with the highest uncertainty are

transferred to the high-fidelity model.

Keywords: Surrogate modelling, metamodel, building performance

simulation, uncertainty, Bayesian deep learning, Gaussian Process,

Bayesian neural network

Highlights

• Training of uncertainty-aware engineering surrogate models.

• Comparing deep Bayesian neural networks and Gaussian process mo-

dels.

• Uncertainty estimates can identify and mitigate errors in surrogate mo-

dels.

1. Introduction

A wealth of concepts exist to explore the design of new and existing buil-

dings to improve the building sector’s large climate footprint [1]. Scaling
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them is challenging, as usually each building is designed individually corre-

sponding to the cultural context, climatic conditions, surrounding buildings

and design preferences. This impedes the distribution of centrally derived

design paradigms to the level of individual building projects.

Architects and engineers play a vital role to bridge the gap between high-level

ideas and the individual building projects. Often they use building perfor-

mance simulation (BPS) to assess the energy and environmental performance

of various design options and balance them against design preferences. The

computational expense and associated waiting time, however, prohibits an

exhaustive design space exploration and optimization. This has led resear-

chers to train machine learning models on simulation input and output data

to emulate building simulation models [2].

The computational speed of so-called surrogate models has been the basis

for a range of new innovations in the field of building simulation, for example

complex, interactive early design tools (e.g. ELSA [3], Building Pathfinder

[4], [5]), faster optimization algorithms [6], and detailed design sensitivity

and uncertainty analysis [7][8]. A recent survey of building designers con-

firms that a cohort which received realtime feedback from a surrogate model

arrived at higher performing building designs [9].

The growing application of surrogate models draws attention towards the

robustness of their performance. Studies have shown satisfactory average

accuracy on test data [10] which can be slightly influenced by the type and

the complexity of inputs [11] and the selection of outputs [5].

Nonetheless, average errors computed on test data can be deceiving (see Fi-

gure 1). Test data usually consists of design samples distributed uniformly
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in the design space and may not reflect the portion of the space the building

designer is interested in. Large errors on specific building designs may occur

(heteroscedasticity of the errors), affecting important design choices and po-

tentially lowering the energy performance of the final building.

Bayesian methods offer a framework to quantify the uncertainty stemming

from the inadequacy of an approximate model (epistemic uncertainty) and

recent developments in Bayesian deep learning (BDL) managed to integrate

them into large machine learning models [12][13]. As a result BDL models

can express for which inputs their estimates are uncertain. In our case, a

Bayesian surrogate model produces a building performance estimate as a

probability distribution, where the entropy or variance of that distribution

allow us to quantify the uncertainty. The architect or building designer is

therefore provided with a level of confidence in the performance results and

thus, can define uncertainty thresholds above which the high-fidelity model,

here the BPS tool, is queried to guarantee high confidence results (see Figure

2).

In this study, we explore two different Bayesian models, Bayesian neu-

ral networks [14] and stochastic variational Gaussian process models [15], to

quantify epistemic uncertainty in surrogate models (see Section 2). We ben-

chmark the overall accuracy against non-Bayesian surrogate models, validate

the quality of the uncertainty estimate, and quantify how a hybridization of

fast but approximate, and slow but accurate models reduces the error of a

surrogate model while computational costs increase only slightly (see Section

5 ff.).
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Figure 1: Distribution of errors of a surrogate model. The plot shows the

error of a surrogate model which emulates the simulation of the heating demand

of an office building (see case study in Section 4). While the average absolute

error AE and absolute percentage error APE are low, large errors can occur. This

study aims at identifying the large errors using estimates of the surrogate model’s

uncertainty.
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Figure 2: Uncertainty estimates to link high-fidelity model and a surro-

gate model. The surrogate model provides both a performance estimate ŷsurrogate

and an uncertainty estimate σ̂surrogate. If the uncertainty is large, a high-fidelity

model (e.g. a building energy simulation) is querried to produce accurate estimates

ysim of an engineering design (e.g. a building). Compare to [16]

2. Background

2.1. Motivation for surrogate modelling

The fundamental motivation to emulate a physics-based high-fidelity mo-

del is computational efficiency; simulation outputs can be estimated many

orders of magnitude faster, effectively in real-time. This allows a holistic,

intuitive design space exploration and analysis, which would be infeasible

with a slow simulation model. Various applications are found in the building

domain as well as other domains [17][18]:

• General design space exploration: The relationship between design

parameters and performance is interactively explored to improve the

user’s understanding of the design problem [19][9]. This can happen

on the single building level or on the urban level [20]. Often a parallel-

coordinates plot is used to visualize the multi-dimensional problem

space [5].

• Design optimization: The surrogate model is trained and queried to
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accelerate iterative optimization algorithms [21][22][23]. Adaptively

training the surrogate model on new simulation samples collected at

each optimization iteration can further increase optimization perfor-

mance [6].

• Sensitivity analysis: The surrogate model is used to run the extensive

sampling (thousands of simulation runs) required for global sensitivity

analysis methods [7].

• Design uncertainty analysis: Several types of uncertainties exist during

the building design process - caused by undetermined design parame-

ters, uncertain contextual parameters (e.g. surrounding buildings, car-

bon factors, etc.), and vague design constraints [24]. This uncertainty

is often quantified using Monte Carlo sampling methods, where sam-

ples from uncertain parameter distributions are drawn and simulated

to quantify how that parameter uncertainty propagates to building per-

formance uncertainty. With a surrogate model, these uncertainties can

rapidly be calculated and updated throughout the design process [8].

• Simulation model calibration: An accurate calibration of a simula-

tion model is required to assess retrofit design choices for an existing

building. The calibration, i.e. the process of determining uncertain

building parameters, often relies either on iterative optimiziation algo-

rithms [25], or on Bayesian calibration of these uncertain parameters

[26]. In both cases simulations are iteratively run to closely match si-

mulation outputs with measured sensor data by adjusting the unknown

parameters. One can use surrogate models to reduce the computational
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limitations of these approaches. Note that simulation model calibration

can be done both for a specific building [27] or for multiple buildings

[28]. The latter commonly requires an archetype model whose para-

meters are repeatedly calibrated using measurements of the considered

buildings [29].

2.2. Surrogate model derivation

In surrogate modelling, we fit a machine learning model to a simulation

dataset D = {xn, yn}Nn=1 = (X, Y ), where the inputs X correspond to the

simulation parameters and Y to real-valued outputs of the simulation run

[18].1 In the case of building energy surrogate models, the simulation para-

meters are the building design parameters (e.g. insulation value of the walls)

and the outputs are the simulated building performance metrics like total

energy consumption or greenhouse gas emissions [2]. Studies also exist with

sequential outputs, like hourly energy demand [20].

For deriving the surrogate model the modeller first needs to carefully spe-

cify the design problem, i.e. to chose the free design parameters and the

performance objectives as well as all other important contextual parameters

(surrounding buildings, etc.). Then simulations are run to create the simula-

tion dataset D. The idea is to gain maximum information about the design

space (the collection of all possible parameter combinations) per simulation

run. Tailored sampling schemes exist, called design-of-experiment methods

[30], e.g. Latin-Hypercube-sampling that uniformly distributes samples in

1Also categorical outputs can be considered but practical examples are lacking in buil-

ding simulation literature.
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the multidimensional input space. The number of samples must be specified

(e.g. 10-1000 samples per parameter dimension [2]) and is adjusted if model

accuracy on test samples is too low.

Metrics like the coefficient of determination (R2), the mean absolute percen-

tage error (MAPE), or the root-mean-squared-error (RMSE) can be used.

Based on [10] and [5], accuracies of R2 > 0.99 are feasible when estimating

annually aggregated performance metrics, e.g. heating demand, but they can

be significantly lower when more complex performance metrics are estima-

ted.

As mentioned above, surrogate model accuracy is commonly reported as one

metric, implying homoscedastic errors. This may not always hold, i.e. the

errors may depend on the choice of inputs (heteroscedasticity). By using

Bayesian deep learning [12], we aim to train surrogates that are aware of

where in the design space, i.e. for which kind of building designs x ∈ X, the

model is uncertain and may produce large errors.

2.3. Uncertainty in surrogate models

The true simulation function y = f(x) is not explicitly available. We

use the surrogate model to find an estimate f̂ to approximate that function.

The central root of uncertainty in surrogate modelling is how plausible the

determined f̂ is (model uncertainty or epistemic uncertainty) [12]. This un-

certainty is particularly caused by the training set D = (X, Y ) which contains

only a finite set of points within the space of possible simulation parameter

combinations X (the design space) and associated building performance Y .

Theoretically, epistemic uncertainty can be reduced to zero given more and

more data [12].

9

50



We consider the problem of surrogate modelling as free of aleatoric uncer-

tainty, which represents the noise inherent in observations.2 Therefore, we

only deal with epistemic uncertainty. We propose that quantifying this can

be a powerful aid in surrogate modelling as it acknowledges that we have to

train our model with a limited number of simulation samples representing a

fraction of the design space, which makes the emulation inaccurate. Bayesian

modelling now allows us to reason under that uncertainty, while still bene-

fiting from the advantages of surrogate modelling, i.e. the computational

efficiency for large scale design space exploration.

3. Bayesian modelling for surrogates

Bayesian probability theory offers us grounded tools to quantify model

uncertainty [32].

To understand the core idea of Bayesian modelling, we consider a parametric

model y = f(x,Θ), where x is the input, f is a space of possible models

(see Figure 3) and Θ is the set of model parameters (for example the weights

in a neural network). Instead of finding a single Θ, in Bayesian modelling

we search for a collection of Θ, that likely has produced the output Y given

X. In our case we search for a collection of surrogate models with different

weights.

The Bayesian theorem, as shown in Eq. 1, is applied to find a collection which

2In the case of sensor data, this can correspond to sensor noise. Here, we consider

simulation runs to be deterministic, i.e. the impact of numerical noise to be small. In

the case of numerical building simulation, here EnergyPlus [31], this corresponds to the

numerical noise of solving the thermodynamic-based differential equations.
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likely has produce Y given X. Based on our prior knowledge on the distri-

bution of the model weights p(Θ) and combined with the likelihood function

p(Y |X,Θ) =
∏N

n=1 p(yn|xn,Θ), which quantifies the probability that a speci-

fic model parameter set generated the observations (X, Y ), the posterior of

the model parameters can be computed.

p(Θ|Y,X) =
p(Y |X,Θ)p(Θ)

p(Y |X)
(1)

where p(Y |X) is called the marginal likelihood. It represents the probability

of the observed data given the model f with all possible model parameters.

It is a scalar that normalizes the posterior. Given the posterior, we can now

infer about future data in form of a predictive distribution:

p(y∗|x∗, X, Y ) =

∫
p(y∗|x∗,Θ)p(Θ|X, Y )dΘ (2)

The mean and variance or entropy can be derived, where the latter two pro-

vide information on the uncertainty in the estimated values. In the building

surrogate modelling setting, we predict an expected building performance,

e.g. annual heating demand, and an associated uncertainty given building

design parameters, e.g. the thickness of the wall (see Figure 3).

3.1. Variational inference

The true posterior of the weights p(Θ|Y,X) however, is commonly intrac-

table. This is particularly the case in the big data regime when more complex

models are required [15]. In the small data regime (below a few thousand

samples) posterior inference with a standard Gaussian Process Bayesian mo-

del is feasible and was successfully applied for building surrogate models

[33][27]. However, with increasing complexity , for example more inputs and

outputs (e.g. [11]), standard GPs have major shortcomings:
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52



12

Figure 3: Bayesian neural network heating demand estimate and associated epis-

temic uncertainty. In particular, out-of-sample the uncertainty of the surrogate

model is large. Out-of-sample is that part of the design space, where no (or few)

simulations to train the surrogate model on a were collected.

53



• The model complexity is limited as it only consists of one layer, i.e. the

outputs of the GP are not used as inputs to another GP. This prohibits

modeling hierarchical structures and abstract information [13].

• Computational cost increase with the cubically ( O(n3)) with the num-

ber of samples n. This prohibits increasing the size of the surrogate

model training set to improve the model accuracy (for example to train

a complex, tailored kernel with many hyperparameters [32]).

Instead, recent advances in variational inference (VI) allow us to approx-

imate the true posterior of Θ in big data problems [34]. We pick an approxi-

mate variational distribution over the (latent) model parameters qν(Θ) with

its own variational parameters ν. Now we search for ν that minimizes the

divergence to the true posterior which is quantified by the so-called Kullback-

Leibler (KL) divergence. Thereby the marginalization, i.e. the integration

required to calculate the true posterior, is turned into an optimization pro-

blem which is often easier to solve. The approximative distribution of q can

be used to form predictions about unseen samples.

Scalable variational inference methods have been developed both to do

approximative inference with Bayesian neural networks (BNN) [12] and with

sparse variational Gaussian process (SVGP) models [15]. The two approaches

are introduced in the following section.

3.2. Deep Bayesian Neural Networks

The concept of a Bayesian neural network (BNN) is an extension of stan-

dard network architectures (e.g. feed-forward neural network, convolutional
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Figure 4: Considered variational-inference approaches to turn existing

surrogate modelling architectures into scalable Bayesian models [15][14].
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neural network, or recurrent neural network) to follow the Bayesian model-

ling paradigm [35]. In a BNN we sample the neural network weights from a

prior distribution rather than having a single fixed value as in normal neural

networks, for example from a Gaussian Θ ∼ N(0, I) [36]. Instead of optimi-

sing the network weights directly we average over all possible weights, called

marginalisation. Given the stochastic output of the BNN fΘ(x), we receive

a model likelihood p(y|fΘ(x)). Based on the dataset D, Bayesian inference

is used to compute the posterior over the weights p(Θ|X, Y ). This posterior

captures the set of all plausible model parameters. This distribution allows

predictions on unseen data.

As mentioned above the exact posterior is intractable, and different ap-

proximations exist [14][37]. In these approximate inference techniques, the

posterior p(Θ|X, Y ) is fitted with a simple distribution q(Θ). Here we con-

sider the Dropout variational inference approach as it has shown great per-

formance when benchmarked against other methods [14][16].

3.2.1. Dropout variational inference

Dropout variational inference is a variational inference approach, i.e. it

allows to find a qν(Θ) that minimises the Kullback-Leibler divergence to

the true model posterior, that neither requires to change the architecture

of common network architectures nor to change the optimisation algorithm

for training the network [36]. The inference of the posterior is done by

training a model which uses stochastic dropout on every neuron layer [38]

(see Figure 4). This stochastic dropout is also used to remove neurons when

performing predictions. By repeating the predictions (stochastic forward

passes), we create a distribution of outputs, which was shown to minimize
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the KL divergence [36].

This KL divergence objective is formally given in the following, where we

approximate p(Θ|X, Y ) with q(Θ) [36][12]:

 L(Θ, p) =
1

N

N∑

i=1

log p(yi|f Θ̂i(xi)) +
1− p
2N
||θ||2 (3)

with N data points, dropout probability p, weight samples Θ̂i ∼ qθ(Θ), and

θ the set of the sample distribution’s parameters to be optimised (weight

matrices in the dropout case). Note that for each data point in the training

set dropout is applied, which provides us with N samples of Θi.

When performing dropout variational inference the T stochastic forward pas-

ses provide us with the epistemic uncertainty given by the variance V ar(y):

V ar(y) ≈ 1

T

T∑

t=1

f Θ̂t(x)Tf Θ̂t(xt)− E(y)TE(y) (4)

with predictions in this epistemic model done by approximating the pre-

dictive mean: E(y) ≈ 1
T

∑T
t=1 f

Θ̂t(x). Note that in this formulation we

assumed no noise inherent in the data and therefore, V ar(y) is zero when we

have no parameter uncertainty.

3.2.2. Model architecture and implementation

We implemented a dropout neural network using the Keras Tensorflow

API [39][40] based on the work from Gal and Gahramani [14]. Our net-

work is a feed-forward neural network with 2 hidden layers of 512 neurons

which are activated with a leaky rectified linear (ReLU) function. Trai-

ning was done within 1200 epochs using a batch size of 128 samples. A

dropout rate of 5% was set. All mentioned parameters (nlayers ∈ [1, 2, 3],
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nneurons = [256, 512, 1024], dropout rate ∈ [5%, 10%, 20%]) were analysed in

a 5-fold cross-validation. The model with the highest accuracy on the test

set was picked. Furthermore, we analysed the impact of the dropout rate

on the uncertainty quality (see Section 4.3), but no significant change in the

performance was observed, which agrees with the observation from [14], that

the uncertainties of models with different dropout rate converge with the

training progress.

3.3. Gaussian Processes in the Big Data regime

Gaussian Processes models are attractive for non-parametric Bayesian

modelling [32]. They use a Gaussian Process prior for a stochastic, latent

function f to describe the relationship between X and Y (see Figure 4). The

function values f(x) are assumed to be sampled from that Gaussian with zero

mean and covariance matrix K, i.e. f ∼ N (0, K). The choice of covariance

function impacts various aspects of the GP model and also determines which

model parameters Θ to be tuned. These model parameters are optimized

when training the GP model.

However, given the above mentioned limitations of standard Gaussian Pro-

cess models (see Section 3.1), sparse GP approximations have been developed

to handle large datasets by lowering the computational complexity toO(nm2)

[41][42].3 They rely on the use of inducing variables (or pseudo-inputs), i.e. a

reduced set of latent variables with size m << n to represent the actual data

3This blog post provides a summary on the history on

sparse Gaussian Process models: https://www.prowler.io/blog/

sparse-gps-approximate-the-posterior-not-the-model.
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set D with n samples. The m inducing points are GP realisations u = f(z) at

the inducing locations Z which are in the same space as the observed inputs

X (but not necessarily part of X). When training the SVGP, the locations

of the inducing points Z and the covariance parameters Θ are optimally cho-

sen to minimize the KL divergence. Important is that the locations Z are

parameters to shape the variational approximate distribution q(f), rather

than being part of the model parameters Θ, i.e. the covariance function with

parameters Θ are calculated for the inducing locations Z.

In comparison to sparse GPs [41], stochastic variational GPs [15] al-

low mini-batch training which further reduces computational complexity to

O(nbatchm
2). Since [15] and others, deep Gaussian Process models have been

developed, too, but are not considered in this study as our case study data

set is still of limited size and complexity [13][43]. However, our SVGP model

may be regarded as a one-layered deep GP [44].

3.3.1. Model architecture and implementation

Here we train a one-layered stochastic variational Gaussian Process model

on batches with 100 samples with a Matern32 kernel covariance function

using the GPy implementation based on [15][45]. Again we ran a 5-fold

cross validation to pick the covariance function as also a simpler squared-

exponential kernel was analysed. Furthermore, although the observed dataset

is deterministic, we considered a fixed noise level in the model (≈ 0.001% of

the mean absolute value of the outputs) as it produced much more accurate

models. This implies that a deep Gaussian process may be a better choice

than o one-layered SVGP.
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4. Case Study: Surrogates for the design of NetZero Energy buil-

ding

4.1. Objective

We use a case study on a popular topic in the building domain, the design

of buildings with net-zero energy demand, to train and assess the two Bay-

esian model types introduce above. It shall serve as an example showcasing

the use of Bayesian modelling for building surrogate modelling, but should

not be considered as a benchmarking study to find the best approach. For

that purpose the reader is referred to other studies, e.g. [16] or [43].

4.2. Case study building

We emulate simulation outcomes of one archetype building contained in

the NetZero navigator project [5]. The NetZero navigator projects hosts buil-

ding simulation surrogate models on a web-platform, which enable to predict

building energy consumption of archetype buildings given a large set of buil-

ding design parameters in real time. So far the platform relied on common

deterministic neural network surrogates, whose building performance estima-

tion accuracy was validated on separate building designs not contained in the

training data. All the simulation runs for training and testing were collected

with the well-known building performance assessment program EnergyPlus

[46]. To date, no design-specific uncertainty estimate is produced to tell the

user when the surrogate model estimate is not trustworthy.

For this case study, we look at a medium office archetype building, where

35 design parameters are free to choose and the building energy performance
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is quantified by 12 separate performance metrics. The office architecture is

based on work from the US DOE Canmet-Energy which derived commercial

prototype building models. The development of the parameter set, the choice

of performance metrics, and software to generate the (parametric) simula-

tion data set, however, was developed individually for that project, where

the parameter ranges are directly based on requirements in the Canadian

building sector [47]. The mechanical systems are parametrized to capture

a wide variety of configurations allowing direct manipulation of the air-side

system (incl. heat recovery ventilation, various pump efficiencies) and plant

equipment performance of various systems (heat pump, electric resistance

heater, biogas furnace, natural gas furnace, air conditioning system). This

allows us to explore a large HVAC system design space on a high-level (incl.

multi-system setups). All details on the building may be found in [5].

4.2.1. Data set and transformations

We sample the large design space using 10’000 simulation runs, where

each individual parameter combination was picked using the space-filling

Latin-Hypercube-sampling (LHS) [30]. Similarly, we run additional 3000

simulations and use it as a separate test set. Each individual building simu-

lation run took approximately 2 minutes and 10 seconds using 1 CPU and 4

GB RAM, but varied depending on the parameter choices.

Prior to training, we standardized the uniformly distributed inputs with dif-

ferent ranges to be normally distributed with zero mean. Furthermore, we

transformed the 12 output variables to also be close to a normal distribution.

Therefore, adaptive Box-Cox transformations was applied [48]. It adaptively

finds transformation parameters to transform various kinds of distributions
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(here of 12 different outputs) to normal distributions. This, in particular, in-

creased the accuracy of the multi-output neural network compared to other

transformations.

4.3. Evaluation criteria

We evaluate the models with regard to multiple objectives: (i) the model

accuracy, (ii) uncertainty accuracy , (iii) the effectiveness of uncertainty-

estimate-based issue-raising.

4.3.1. R2 score, MAPE and RMSPE score to quantify overall surrogate accu-

racy

Our error metrics cover common metrics in the field, i.e. the R2 [10] and

the Mean Absolute Percentage Error (MAPE) [49]. Furthermore, we added

the APE90 error, i.e. the 90st-percentile of the absolute errors sorted by

ascending magnitude, to quantify the robustness of the surrogate model [50].

R2(Y, Ŷ ) = 1−
∑n

i=1(yi − ŷi)2

∑n
i=1(yi − Ȳ )2

(5)

MAPE(Y, Ŷ ) =
1

n

n∑

i=1

|yi − ŷi|
yi

(6)

where Ŷ corresponds to the matrix of predicted values, Y is the matrix

of simulated building performance values. When the error term, Y − Ŷ ap-

proaches zero, R2 approaches one, and MAPE goes to zero.
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4.3.2. Accuracy of Uncertainty estimate

In a well-calibrated Bayesian model the uncertainty estimates capture the

true data distribution, for example a 95% posterior confidence interval also

contains the true simulation outcome in 95% of the times [51]. Quantifying

the level of calibration is a well-known concept in classification [52] but has

also been used for regression problems recently [53][51].

Formally, we say that the uncertainty estimates of the surrogate model are

well calibrated if

∑N
n=1{yt ≤ F−1

t (p)}
N

→ p for all p ∈ [0, 1] (7)

where Ft is the cumulated density function targeting yt and F−1
t = inf{y :

p ≤ Ft(yt)} is the quantile function. Here we consider each prediction

as a standard, symmetric Gaussian distribution N (µ(X), σ(X)) and the

confidence intervals can be computed using the inverse cumulated density

function. 4 In practice, we count the fraction of observations falling in the

discrete confidence levels derived from the quantile function (see Figure 6,

left).

We show the level of calibration in the calibration plot, where perfectly

calibrated uncertainty estimates are aligned with the diagonal. To quantitati-

vely compare different calibration curves, one can also compute the absolute

difference between the confidence curve and the diagonal, called the cali-

bration error or the area under the curve (AUC) [53]. The problem of the

calibration error is that, it can be zero even for homoscedastic uncertainty

4This is not necessarily true an recalibration would be required [51].
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estimates (constant for any input). Therefore, we also quantify the sharp-

ness of the uncertainty estimates by calculating the overall variance in the

uncertainty [51] (see Section 5).

4.3.3. Discard-ranking to quantify the effectiveness of uncertainty estimates

for surrogate model application

While having accurate uncertainty estimates is the one thing, in building

surrogate modelling we are mostly concerned in warning model users, when

the model is uncertain and recommend to rather run a simulation instead

(see Figure 2). Therefore, we derive a ranking of the samples in the test set

based on the magnitude in their uncertainty. This provides two conclusi-

ons. First, if it strongly overlaps with the actual surrogate model error the

uncertainty estimates are an effective heteroscedastic warning mechanism.

Second, we can use the ranking to calculate how much the average error can

be reduced when referring a certain percentage of most uncertain samples

(here 10% or 20%) to the high-fidelity simulation program than processing

it with a surrogate model.

Both aspects are addressed when plotting the mean error computed on dis-

crete percentiles of the test data, where the test data is sorted by the mag-

nitude of the uncertainty. We can compare that curve to the mean error

computed using test data sorted by the magnitude of the computed error

(oracle ranking). A large distance between the two curves can tell us that

the surrogates uncertainty estimates are not helpful to predict when it is

inaccurate. Furthermore, by looking at the slope of the curve, we can see

by how much the mean error can be reduced if we discard all samples with
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uncertainties above a certain threshold.

5. Results

In this section, we show the results of using surrogate models to include

epistemic uncertainty estimates. We considered to different Bayesian ma-

chine learning models to provide uncertainty estimates, i.e. a deep Bayesian

dropout neural network and a stochastic variational Gaussian Process model

(SVGP) approach. We scrutinize the performance of both approaches by

comparing their predictive accuracy, by comparing the quality of the uncer-

tainty estimates, and by quantifying how effectively the uncertainty estimates

allow us to identify possible surrogate prediction errors.

• introduce that we use uncertainty estimates to communicate between

high-fidelity and surrogate model.

• introduce structure of this section

5.1. Accuracy and Uncertainty quality

5.1.1. Accuracy

We benchmark the accuracy of the two model types, Dropout Neural

Networks and SVGP models. The performance was quantified using three

performance metrics as introduced above (see Section 4.3). Each model was

trained five times to generate robust results (see Sections 3.2.2 and 3.3.1).

The results are shown in Figure 5 and Table 1 in the Appendix.

Both considered models reach a high accuracy of R2 > 0.97, where in par-

ticular the neural network explains the largest amount of the variance in
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the testing data (R2 > 0.99). Mean percentage errors of MAPE < 13.2%

for the GP model and MAPE < 9.82% were found. Where the errors are

the largest when the surrogate is used for estimating the supply of different

heating systems (using different fuel types) to cover the heating demand, or

the energy demand to run the air-side system. Much lower mean percentage

errors are found for the other building performance outputs produced by the

surrogate like the PV Generation or energy demand for interior lights and

equipment.

To check the robustness of surrogate model estimates, we are specifically

interested in the highest errors it produces. Therefore, we computed the

90-percentile of the absolute percentage errors observed on the test data,

APE90. High errors are found reaching up to 22.3% (30.5%) for the BNN

model (GP model).

5.1.2. Uncertainty calibration

When uncertainty estimates are perfectly calibrated, the derived confi-

dence interval, e.g. 90% confidence interval, contains the true outcome in

the right number of cases, e.g. 90% of the times. This is illustrated in Fi-

gure 6, where we counted for how many times the true simulation outcome

was contained in the estimated confidence interval. With a perfectly calibra-

ted Bayesian model, estimated confidence and fraction of the samples within

that interval should perfectly align (dashed line). A line below the dashed

line would indicate an overly confident model (i.e. confidence bands are too

narrow), above the dashed line means that the model is too careful having

too large confidence bands.

In this case we find that the BNN model is almost perfectly calibrated, while
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the GP model is overly confident. The low level of calibration of the GP

model can also be seen on the right, where we display the distribution of all

uncertainty estimates on the test data to display the sharpness of the uncer-

tainty estimates (see Section 4.3). The average magnitude of uncertainty in

the GP model is very small, and its distribution is narrow indicating that the

uncertainty estimates tend to be homoscedastic. In case of the BNN they

are larger and depict a significant level of variance. This tells us that the

uncertainty estimates vary for various inputs, such that we can conclude that

the BNN is well calibrated.

5.1.3. Using uncertainty estimates to increase robustness

In this section we study how effective the epistemic uncertainty estimates

can be used to predict inaccuracies of the surrogate model.

The concept is simple. We sort the uncertainty estimates on the test data

by scale to identify samples where surrogate model estimates are inaccu-

rate. Samples with high uncertainty will be simulated using the high fidelity

simulation program instead of the surrogate model (see Figure 2). As a

consequence the user of the surrogate model, here a building designer, is fa-

cing lower inaccuracies. This must be traded-off against increased runtime,

as the expensive high-fidelity simulation program is queried. This trade-off

is best handled by defining the uncertainty threshold above which the si-

mulation program is querried. Here, we define the threshold as the 90- or

80-percentile of all uncertainties observed. When using the 90-percentile, we

approximately only transfer 10% of all samples to the simulation program,

while this is only approximate as it depends on the building design choice of
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Figure 6: Visualization of the quality of uncertainty estimates of the

BNN and the SVGP. The quality is quantified by how well-calibrated and

sharp the uncertainty estimates are. In both regards, the BNN outperforms the

SVGP in this study.
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the architect.

In Figure 7, the decrease in the error is illustrated for the heat supply of

different fuel sources. As seen in section 5.1.1, the surrogate model produces

the largest errors when estimating the different sources of heat supply, and

thus, we focus on increasing the surrogate robustness particularly for them.

Discarding the 10% samples with the highest uncertainty, we can decrease

the APE90 error in estimate the annual heating supply with a gas furnace

from 24.9% to 18.9%.5 This is equivalent to a reduction of ≈ 25%.

The estimation error on the other surrogate model outputs were reduced by

4% to 18% (MAPE90), and the APE90 by 5% to 25% (see Figure 7). In

particular, the significant reduction of the APE90 error, provides the user

with higher robustness. Compare BNN and SVGP.

6. Discussion

Surrogate models have shown to help architects and building designers to

rapidly assess the energy performance of their designs [9]. However, by being

only approximative, concerns about the robustness of the surrogate model

accuracy arise. A Bayesian approach for surrogate modelling, allows to not

only provide a performance estimate but also inform about the confidence of

the approximating surrogate model and potentially, to identify parts of the

design space where the surrogate model may provide inaccurate results.

This first analysis of the use of Bayesian surrogate models revealed essential

properties on the robustness of surrogate models, and how Bayesian mo-

5The 18.9% error was computed on the 90% remaining samples in the test set.
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Figure 7: Measured error reduction by sending uncertain samples to

high-fidelity model. The data shows the error if either 100%, 90% or 80%

of the building design samples are processed by the surrogate model. If 10% or

20% are processed by the high-fidelity simulation model, errors produced by the

surrogate can be avoided and the overall error decreases (here quantified by the

90-percentile absolute percentage error).
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delling can be an aid for effective reasoning on the energy performance of

buildings under epistemic uncertainty of surrogates. The goal was to aug-

ment surrogates such that we can maintain the benefits of surrogate models

while minimizing the risk associated to the uncertainty of surrogate models.

6.1. Lacking robustness of surrogate models

Surrogate model accuracy is often reported with error metrics like the

R2 or MAPE score. They are important but can be deceiving. A high

coefficient of explained variance (R2) or low mean absolute errors MAPE,

may disguise that the surrogate may actually produce quite large errors in

certain fractions of the design space. For example, we found that the 90-

percentile absolute percentage error can be as high as 22.3% although an

R2 = 0.99 suggests very high performance (see Table 1). This motivates,

that indeed measures to identify surrogate inaccuracies could greatly lessen

the risk associated to surrogate modelling.

6.2. Bayesian learning to express surrogate confidence

Results on the level of calibration of the dropout neural network validated

that it can be used to effectively express confidence on its predictions, e.g.

one could express that in Figure 3 the heating demand when the wall is 1m

thick is between 220MWh/year and 230MWh/year with a 90% confidence.

On the other hand, while being almost as accurate as the neural network

model, we found that the stochastic variational Guassian Process model pro-

duces miscalibrated uncertainty estimates. Please note, that this finding

cannot be generalized. First, methods exist to calibrate estimates [51], and

deep Gaussian process models were found to produce larger variance in the
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uncertainty estimates [43]. Nonetheless, is shows that the quality of Bayesian

uncertainty estimates must be validated.

6.3. Accuracy of the Bayesian model compared to deterministic surrogate

model

We can compare the results of this study to a common neural network

trained on the same dataset, whose accuracy metrics were reported in [5].

The R2 are higher throughout the study but, MAPE errors increase slightly

for most of the outputs (e.g. Heating supply, Gas; Heating supply, Elec.;

Heating supply, Other.; Fans), after filtering the uncertain samples however,

the Bayesian model is more accurate.

6.4. Bayesian learning to identify erroneous surrogate estimates

We leveraged the uncertainty estimates to express warnings when the

surrogate model is highly uncertain. By defining a threshold, here the 90-

percentile or 80-percentile of the uncertainty estimates on the test data, we

could reduce the APE90 error by up to 40%.

This is a significant first step towards the hybridization of fast, low-fidelity

and slow, high-fidelity models. Still, practical issues have to be solved. For

example, the question arises how to implement the high-fidelity model runs.

They could be carried out in the background while the surrogate model user

would be working with the vague estimates as a start. In our case the results

would be updated after 2 minutes and 10 seconds, which corresponds to the

approximate runtime of one simulation.

Another issue is that the computational cost of evaluating a Bayesian model

increases compared to a deterministic surrogate model. This is particularly
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Figure 8: Convergence of BNN estimates with increasing number of

Monte Carlo dropout samples. The plot shows BNN heating demand esti-

mates and uncertainty estimates with increasing number of MC samples (see case

study in Section 4). Both approximately converge after conducting 30 random

dropout runs, which takes around 0.8 seconds (without parallelization).

the case for BNNs, whose uncertainty estimates are generated with Monte

Carlo dropout. The BNN estimates converge with increasing numbers of

BNN evaluations, which is shown in Figure 8. The plot implies that un-

certainty estimates for a single sample take at approximately 0.8 seconds to

guarantee convergence. This may be too slow for interactive engineering de-

sign tasks but can be easily fixed parallelizing the MC dropout sampling.

These and other questions have to be addressed when integrating Bayesian

surrogates into software products for building designers.
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7. Conclusion and Outlook

In this study we contributed with the use of Bayesian (deep) learning

models to mitigate risks associated to the use of surrogate models. By quan-

tifying the model (epistemic) uncertainty, the Bayesian paradigm acknow-

ledges that surrogate models will always remain approximative no matter

how large the training set is, and offer a tool to effectively reason under that

incurred uncertainty.

In a case study, we could show that dropout neural networks provided well-

calibrated uncertainty estimates, which could be used to identify building

designs for which the surrogate produced large errors. The latter enables to

refer those designs back to the high-fidelity building simulation tool to assure

accurate estimates for the architect or building designer. When that filtering

process is applied, lower errors compared to a deterministic surrogate model

could be reached.

Although all findings are bound to a case study on a building simulation

surrogate, results motivate to apply Bayesian learning to other field where

surrogate models are common.

In future, we foresee that Bayesian models will allow us to further hybri-

dize data-driven surrogate models and high-fidelity simulation models [17].

For that purpose enriching the Bayesian surrogate models with physical

know-how could be a key element. Furthermore, Bayesian learning forms

a foundation for adaptively sampling simulation runs, for which the surro-

gate model is particularly uncertain. This progress, called active learning,

will be explored in an upcoming study.
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Code and Data availability

The entire source code of this work, the EnergyPlus description file (.idf )

of the building template, and instructions on how to download the data used

in this study is available in a GitLab repository.6
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43

R2 MAPE APE90

BNNReLU SVGPM32 BNNReLU SVGPM32 BNNReLU SVGPM32

Pumps [MWh] 0.990± 0.001 0.983± 0.001 7.180± 0.180 8.530± 0.260 14.830± 0.510 17.950± 0.610

Heating supply, Other [MWh] 0.990± 0.003 0.977± 0.001 9.820± 0.350 12.490± 0.430 22.300± 0.750 29.300± 1.480

Fans [MWh] 0.991± 0.004 0.988± 0.001 8.630± 0.380 8.530± 0.250 18.120± 0.770 18.280± 0.540

Heating supply, Elec. [MWh] 0.992± 0.001 0.986± 0.000 7.150± 0.290 8.670± 0.360 15.130± 0.290 18.260± 0.900

Heating supply, Gas [MWh] 0.992± 0.002 0.973± 0.001 9.400± 0.380 13.230± 0.220 21.440± 0.620 30.480± 0.520

Cooling supply, Elec. [MWh] 0.992± 0.002 0.998± 0.000 3.550± 0.200 2.820± 0.100 7.490± 0.560 5.820± 0.200

Heating demand [MWh] 0.995± 0.001 0.996± 0.000 3.960± 0.330 3.710± 0.080 8.040± 0.710 7.800± 0.250

Cooling demand [MWh] 0.997± 0.000 0.997± 0.000 2.440± 0.050 2.270± 0.060 4.980± 0.090 4.700± 0.110

Interior lights [MWh] 0.998± 0.000 0.999± 0.000 2.410± 0.100 1.590± 0.080 5.050± 0.160 3.150± 0.270

Interior equipment [MWh] 0.998± 0.000 0.998± 0.000 2.790± 0.100 1.410± 0.120 5.650± 0.200 2.600± 0.250

Water heating, Gas [MWh] 0.999± 0.000 1.000± 0.000 1.220± 0.130 0.250± 0.070 2.590± 0.260 0.430± 0.090

PV Generation [MWh] 0.999± 0.000 0.999± 0.001 3.030± 0.090 1.290± 0.090 6.040± 0.100 2.200± 0.150

Table 1: Numeric results on the accuracy of the Bayesian models.
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Epilogue

The study shows that Bayesian neural networks (BNN) can be used off-the-shelf to

produce accurate uncertainty estimates. When using surrogates to provide instanta-

neous feedback to architects as proposed in Chapter 3, we can significantly improve

the robustness of the tool by:

• Giving accurate confidence intervals to the user.

• Querying the high-fidelity simulation model once the interval becomes too large.

Further work is required to develop a sound software implementation that hand-

les the hybridization of the surrogate model and the BPS model. Considering that

a simulation run in the study takes 2.2 minutes, a smooth integration is difficult.

Sequential updating of surrogate estimates with simulation outcomes might be an

option.

Another aspect that the study did not cover is active learning. As the surrogate be-

comes aware of flaws, we could efficiently collect training samples in high-uncertainty-

regions of the design space. This approach of active learning, or adaptive sampling

(see Section 2), was conducted in the following study by using the LOLA-Voronoi

algorithm, which can be used without uncertainty estimates.

4.1 Active learning



Adaptive Sampling For Building Simulation Surrogate Model Derivation

Using The LOLA-Voronoi Algorithm
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Abstract

Statistical surrogate models, or meta-models, are
used to emulate building simulation models. Their
key advantage is the reduction of computational cost.
This in particular matters if building design ana-
lysis demands to explore a large number of different
building designs options as in optimization or uncer-
tainty analysis problems.
To derive a surrogate model, a data set consisting of
simulation in- and output data is generated. This set
is then used to train the surrogate. This process of
collecting simulation data may be time intensive and
a building designer has to wait until surrogate model
is available.
In this study we construct a global surrogate model
using adaptive sampling to speed up the data col-
lection. In comparison to static sampling, it balances
both exploration of the design space while exploiting
the iteratively growing information of simulation out-
comes. The advantage of adaptive sampling is not
only that it can cut simulation time, but also that it
rapidly provides a preliminary low-accurate surrogate
to the building designer which is sequentially im-
proved while he/she is working with the low accuracy
model already.

Introduction

With a 40% share in global carbon emission and
36% share in global final energy consumption, the
building sector is a key element for policy makers to
address climate change and foster energy efficiency
(IEA, 2017). Many policies aim to improve the design
of new and existing buildings, or their systems.
Architects and engineers are key to put those po-
licies, often encoded in compulsory annual energy
consumption targets, into practice. Therefore, they
may either use their own experience on sustainable
building design, third party design recommenda-
tions or run physical building performance simulation
(BPS) tools. In theory, BPS should be the best
option. It not only enables to asses the finalized
building design but rather to explore a large variety of
design options. On the other hand, setting up a BPS

model and exploring the design space by multiple
simulations can be labour intensive and even more
computationally costly. This may cause building de-
signers to rather avoid instead of integrating BPS into
their design processes (Petersen, 2011).
Surrogate models are a promising option to remove
the barrier of computational cost in BPS (Ostergard
et al., 2018). They are used to approximate ori-
ginal BPS models with a statistical machine learning
model that is trained on BPS in- and output data
(simulation samples). A surrogate is computatio-
nally significantly cheaper to evaluate (e.g. 106 de-
signs in 1 sec. Ostergard et al., 2018) and enables to
return design performance estimates almost instan-
taneously. Nonetheless, the cost of collecting simu-
lation samples remain and some authors consider the
surrogate model approach to only ”shift simulation
time” to prior to the design process. Indeed, re-
ducing the sampling time (hours) in the surrogate
derivation process is crucial and outweighs surrogate
model training (minutes) and evaluation (seconds).
Using an optimum sampling plan, also called design
of experiment, the information gain per simulation
run can be maximised. Two different paradigms for
selecting simulation samples exist. In static sampling
all samples are chosen in one shot. In this case the
individual design inputs (sample) are picked to fill
the space of possible design options homogeneously.
In adaptive sampling as shown in Figure 1 samples
are picked sequentially to adapt the sampling plan
depending on simulation outcomes. This enables to
balance space exploration with exploitation of simu-
lation outcomes. For example, exploitative sampling
may be used to identify complex, non-linear regions
in the simulation outcomes. It has been observed,
that adaptive sampling may outperform static sam-
pling schemes by lowering the number of samples
required to achieve a certain level of accuracy of a
surrogate model to approximate a high-fidelity simu-
lation model (Garud et al., 2017).
In this study, we implemented the LOLA-Voronoi
adaptive sampling algorithm. We identified three key
advantages:

• maximise information gain per sample
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Figure 1: Adaptive sampling with the LOLA-Voronoi algorithm.

• allow online surrogate derivation

• no initial choice of no. of samples required

The advantage of the LOLA-Voronoi algorithm over
other adaptive sampling schemes, is that can be used
in combination with any of the popular surrogate mo-
delling techniques in the building simulation domain
and is not bound to Gaussian Process models like
other adaptive sampling schemes. We applied the
algorithm to fit a surrogate model to a simulation
model of a small 5-zone office building. We quantify
sampling efficiency to reach a certain level of accuracy
and benchmark the results against Latin Hypercube
sampling (LHS), the most popular static sampling
scheme (Burhenne et al., 2011).

Surrogate Models

The use of Surrogate Models for building
design

Surrogate models, or metamodels, have been success-
fully applied to different types of building perfor-
mance analysis. Either they are leveraged to study
large number of samples as for example in sensitivity
analysis (Rivalin et al., 2018), uncertainty analysis
(Hester et al., 2017), and optimization (Wortmann,
2018), or used to provide rapid performance asses-
sment to building designers during the early design
stage where many different designs are considered
(Geyer and Schlueter, 2014). In particular for optimi-
zation purposes surrogates have lead to time savings
of up to 80% compared to BPS based optimization
(Prada et al., 2018).
Surrogates may be either trained to be globally
(whole design space) or locally (parts of the design
space) accurate. While the former serves as a full re-
placement of a simulation model, local surrogates are
often derived in optimization schemes where only spe-
cific parts of the design space are out of interest. The
latter cannot be reused in subsequent analyses. In
this study we focus on sampling for global surrogates
given their general range of applications.

Sampling for building simulation sur-
rogate models

In the following we introduce one static and one
adaptive sampling algorithm. Static latin-hypercube
sampling is one of the most popular sampling

method in surrogate modelling research (Ostergard
et al., 2018). We use it as a benchmark for the
adaptive LOLA-Voronoi sampler. LOLA-Voronoi has
proven to outperform LHS on test functions before
(Crombecq et al., 2011) and is widely applicable as
it is not tied to a specific surrogate model type or
certain number of variables.

Latin-hypercube sampling

Latin-hypercube sampling (LHS) is a stratified
sampling scheme. In stratified sampling, the design
space is divided into multiple subintervals from
which samples are drawn. This reduces the risk
of clustering or gaps in the sample set as found in
random sampling schemes Garud et al. (2017).
LHS divides each dimension of the design space into
K equal bins resulting in KN hypercubes, where N is
the number of samples. K sample points x are listed
in a sampling matrix L = [x(1), x(2), ..., x(K)]T where
the columns represent the different design parameters
and the rows the sample points. In LHS the samples
are chosen in that way that in each column there are
no two samples that fall in the same bin. Hence the
number of bins equals the number of samples drawn.
In Figure 2 the initial seed of samples (red dots)
where determined using an LHS design with K = 15
samples. Hence, both the window-to-wall ratio
and the solar-heat-gain coefficient are binned into
15 equal bins. Each bin is represented by one sample.

LOLA-Voronoi sampling

The LOLA-Voronoi adaptive sampling strategy was
developed in (Crombecq et al., 2011). Like other
adaptive or sequential design strategies it is designed
to balance the exploration and exploitation objective
for exploring a design space.
Exploration aims at filling under-sampled parts of
the design space. This is very similar to the idea of
most common static sampling schemes like LHS. Ex-
ploitation focusses on finding interesting or complex
parts of the design space. In surrogate model de-
rivation, exploitative sampling capitalizes simulation
outcomes to identify complex (e.g. high gradient) re-
gions in the model outputs. If adaptive sampling is
integrated into an optimization scheme, exploitation
rather aims to pick samples which are interesting with
regard to the optimization objective.
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Different metrics are used for balancing the exploi-
tative and explorative value of sample candidates and
a list is provided by Garud et al. (2017). Sample
candidates are either picked around existing samples
with a high sampling score, determined randomly
throughout the design space, or they are actively
picked using an optimization approach.
In the LOLA-Voronoi algorithm, existing samples are
assigned with a hybrid sampling score H.

H = V + E (1)

where E, the local-linear approximation (LOLA)
score, quantifies if the region around a specific sample
is non-linear and V if it is under-sampled in compa-
rison to the other samples. Once H for each of the
existing samples is calculated, the sample with the
highest score serves as a reference to pick additional
simulation samples around it. This is done by taking
its Voronoi cell, i.e. the region consisting of all points
closer to that sample than to any other, and randomly
pick a sample inside that Voronoi-cell.
The LOLA score of each sample is computed by
fitting a local-linear hyperplane through the simu-
lation outcomes of its neighbours. The length of
the normal of that hyperplane serves as non-linearity
estimate. Determining the neighbouring samples
among all existing ones is crucial to receive accurate
non-linearity estimates. A detailed explanation can
be found in (Crombecq et al., 2011).
The Voronoi cell size of a certain sample, V , is large
if the neighbouring samples are far away where the
distance among points is quantified using the Euler
distance. Consequently, the larger V , the lower the
density of points. Computing the actual cell size is
not straight-forward and usually done by Delauny
triangulation. In the LOLA-Voronoi algorithm is is
estimated to lower computation cost. Therefore, a
random set of points is generated within the overall
design space. Subsequently, the number of points
closest to each individual of the existing points are
counted. Samples with the lowest number of assigned
points have the lowest density and hence, are under-
sampled.
Once the sample with the highest hybrid score H is
found. One of the points assigned to that sample
during Voronoi cell estimation, is picked as new si-
mulation sample. Here, we limit the number of new
samples to one per LOLA-Voronoi iteration but this
can be modified.
The LOLA-Voronoi sample selection process is il-
lustrated in Fig. 2 which shows the three samples
with the highest exploration (a), exploitation (b) and
hybrid score (c). The red dots show initial simu-
lation samples. The blue lines are generated from
a Gaussian Process surrogate model trained on this
initial set of simulation data. The surrogate was then
evaluated at the intersection of the blue lines. To
simplify the visualization, this surrogate model was

Table 1: Considered parameters, their Morris coeffi-
cient and their value range.

Parameter µ∗ Range(min, max)

Solar heat gain 8.4 ∗ 108 (0.1,0.9)[ ]
coeff.

Equipment gains 3.5 ∗ 108 (10,15)[ W
m2 ]

Window-to-wall 4.6 ∗ 108 (0.1,0.9)[ ]
ratio

Lighting gains 3.3 ∗ 108 (10,15)[ W
m2 ]

U-value window 1.8 ∗ 108 (0.1, 5) [ W
m2K

]

Infiltration 1.0 ∗ 108 (10−4, 2 ∗ 10−3) [m
3

m2 ]
Conductivity wall 2.9 ∗ 107 (0.02,0.2) [ W

mK
]

Thickness wall 2.1 ∗ 107 (0.1,0.5)[m]

fitted to annual energy demand simulations given two
inputs only (window-to-wall ratio and solar heat gain
coefficient).
Here, the three samples with the highest corre-
sponding score are encircled with a green line. If
only the exploration score is considered, the samples
are chosen as reference samples with the closest neig-
hbouring samples being far away. If only the ex-
ploitation is considered, those samples with a high
gradient in the surrounding region are picked. By
summing up both scores a balance between the two
objectives can be found (c).

Experiment

We applied LOLA-Voronoi sampling to derive a
surrogate of a whole building simulation model
of a small office building with five thermal zones
(Small Office, new construction 90.1-2004; see Deru
et al., 2011). The output of the surrogate is total
annual energy demand of the building and the inputs
are chosen by looking at previous literature where
similar surrogates were constructed (Ostergard et al.,
2018) and by conducting Morris screening to filter
the candidate inputs (features) by their sensitivity
(Tian, 2013). The remaining eight most sensitive
parameters are shown in Table 1. Morris screening
was conducted with five value levels using the SALib
library (Herman and Usher, 2017).
Note that, parameter distributions affect the samples
collected using static sampling (here LHS). Here all
distributions were chosen to be normal with the min
and max value serving as 95-percentile.The distri-
butions implicitly consider which design choices are
the most likely to happen or are the most common.
While static sampling uses parameters distributions,
adaptive sampling with the LOLA-Voronoi algorithm
is independent to parameter probabilities.

To take the influence of problem size into account, we
conducted two experiments with four and eight design
parameters. In case of four design parameters only
the four most sensitive ones were considered. Here
we sequentially trained a neural network model. Ho-
wever, LOLA-Voronoi sampling can be used together
with any type of surrogate model. The architecture
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Figure 2: Exploitation, exploration and hybrid score based selection of regions for further samples.

Figure 3: Results. Neural network surrogate model
accuracy per number of simulated samples in problem
with 4 (top) or 8 design parameters (bottom) were
trained.

of the neural network model and its hyperparameters
(number of hidden layers, number of samples) were
optimized in a grid search and cross-validated.
We quantify the performance of LOLA-Voronoi for
building simulation surrogates by plotting the sur-
rogate model accuracy achieved for a given number
of samples. The model accuracy is quantified by the
coefficient of determination R2 and is computed on
a separate test set of 100 randomly selected samples
in either of the two experiments. We benchmarked
the results against Latin-Hypercube sampling (LHS),
which is a popular static sampling approach for sur-
rogate model derivation (Forrester et al., 2008).

Results and Discussion

The results of the two surrogate model fitting
experiments are shown in Figure 3. In the top plot
the result of fitting a surrogate with four design
parameters (inputs) and in the bottom plot of a
surrogate with eight design parameters are shown.

In either case we collected enough samples to reach
an accuracy of larger than R2 ≈ 0.95. Note that all
reported accuracy scores were achieved with cross-
validated (5-fold) and optimized neural network
models. Due to randomness in sampling and model
fitting we repeated the process twenty times. The
orange dashed line shows the mean results achieved
with adaptive sampling and the blue line shows the
results for LHS. The band shows the maximum and
minimum values found. The lowest x-axis entry
corresponds to the initial seed of samples for adaptive
sampling.
First, we can see that LOLA-Voronoi is more sam-
pling efficient than LHS sampling in case of four
design parameters. Not only the mean accuracy
is higher but also the band of observed accuracies
is smaller. In case of eight design parameters the
performance of both schemes is rather similar.

The results can be discussed with regard to accuracy
and implications on the applicability of adaptive sam-
pling during early building design are given in the
following.

Accuracy: On first sight the results of the pre-
sented experiments indicate that static and adaptive
sampling using the LOLA-Voronoi algorithm provide
similarly accurate surrogate models with slight be-
nefits of using adaptive sampling if the number of
parameters is small. With increasing number of pa-
rameters this benefit appears to vanish.
Based on the given results, if one aims for a model
with high accuracy using as little simulation samples
as possible, adaptive sampling may be a better choice
than static sampling. Definitely, further experiments
with more number of samples are required to confirm
these findings.

Applicability: The given results in Figure 3
outline the advantage of LOLA-Voronoi to adapt
sample selections depending on the already existing
set of samples to increase surrogate model accuracy.
This enables to provide a preliminary surrogate after
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an initial set of simulations was conducted and then,
constantly updating that surrogate while it may be in
use already. Looking at Figure 3 (bottom), a building
designer can use a surrogate trained on 20 samples
which may have an accuracy of roughly R2 ≈ 0.90
(lower end of the band). While he uses the model for
first building performance analysis, further samples
can be acquired and after some time his surrogate re-
aches an accuracy of more than R2 ≈ 0.95. In static
sampling all samples are selected in one-shot. To add
further samples, one could only rerun the static sam-
pling scheme to increase the sample density within
the design space. No information on the design space
complexity would be integrated in this case.

Conclusions and Future Work

This study contributes with an experiment on
adaptive sampling for global surrogate model deri-
vation in the building performance domain. A first
comparison of static and adaptive sampling is given.
The results show that none of the two sampling
schemes clearly outperforms the other. However, the
tendency is found that adaptive sampling is more
sampling efficient if a high surrogate model accuracy
is required. Apart from that, we saw the potential
that adaptive sampling helps for fast preliminary sur-
rogate derivation whose accuracy is improved while it
is already applied by building designers for building
performance analysis.
This study is a first step to study the potential use of
adaptive sampling for building simulation surrogate
models. The scope of the experiments should be ex-
tended in future. For example, further adaptive and
static sampling algorithms could be considered and
the number of design parameters increase to more
than eight variables. Furthermore, LOLA-Voronoi
currently only accomodates continuous variables and
has to be modified such that it can also be used with
discrete variables.
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Epilogue

1 This conference paper is the first in the domain of building performance surrogate

models to investigate whether the accuracy of surrogate models can be improved

with more efficient, active training sampling selection, often called active learning or

adaptive sampling. We explored the use of the LOLA-Voronoi algorithm to balance

exploration of design space and exploitation of uncertainty estimates.

In the results we could not show that active learning performs much better than

commonly used Design-of-Experiment methods, where all samples are selected prior

to model fitting. Many other methods to conduct active learning exist. We did not

use the Bayesian neural network uncertainty estimates derived in Section 4 because

the active learning study was conducted at an earlier point of this PhD studies. The

high quality of the BNN uncertainty estimates motivates their use for active learning

and will be studied in future.

1Note that in Equation (1), E includes a factor to balance exploration and exploitation.
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Chapter 5

Generalization of Surrogate models

Machine learning surrogate models generalize within the domain determined by the

input parameters (features) and output parameters (targets) as well as contextual

constants that define the basis model. The challenge to overcome is to find a model

structure that can process a large variety of input parameters, such that the surro-

gate model can be applied to many different design problems without the need to

re-sample simulation runs and retrain the model.

In the most general case, a surrogate model would process the exact same inputs

as its simulation counterpart. In building performance simulation these inputs are

described by a weather file that gives the outdoor conditions for the simulation pe-

riod and a building description file. The latter usually contains many parameters that

are of less interest to end users and can be ignored. On the other hand, it contains

relevant open-ended information which would produce surrogate inputs of variable

length, for example the building geometry is defined by variable amounts of rooms,

where each room is described separately. [7] developed component-based surrogate

models to handle different construction elements individually. They show that their

surrogate model components can be combined to approximate the performance of
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buildings with variable geometry.

In the following paper, we contribute towards the goal that a surrogate model can

process the same inputs as the BPS software. We develop a surrogate model that

can estimate building design performance given any weather file. In comparison to

the building description file, the weather file is usually of the same size (8760 hourly

values of around 20 weather variables). The challenge is to process that large amount

of information. We use deep convolutional networks to extract relevant features from

the weather input file to predict the annual heating, hourly heating, and annual

cooling demand for a building that has thirteen design parameters.
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H I G H L I G H T S    

• Using deep temporal convolutional networks for building simulation surrogate models.  

• Deep network processes annual hourly weather time series data ( 150,000 inputs).  

• Accurate emulation of simulation outcomes for all locations in Canada.  

• 3% error in estimating annual heating demand for unseen locations and building designs.  

• Reasonable accuracy ( =R 0.922 ) in estimating hourly demands given weather data.  
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A B S T R A C T   

Surrogate models can emulate physics-based building energy simulation with a machine learning model trained 
on simulation input and output data. The trained model is extremely fast to run, allowing us to estimate si-
mulation outcomes for thousands of different building designs in seconds. Recent studies have shown the diverse 
benefits for sustainable building design. Surrogates were applied to provide rapid feedback at the early design 
stage, to accelerate sensitivity analysis, uncertainty analysis and design optimization, or to improve building 
model calibration. 

However, the current process of surrogate modelling offers much room for improvement. In particular, a 
surrogate model is bound to the specific building design problem it has been trained for. This includes a specific 
site, requiring time-intensive retraining if the building performance at another location is to be analysed. 

In this paper, we develop a single surrogate model that spans arbitrarily many locations. For that purpose, we 
are among the first to use a deep temporal convolutional neural network to process annual multivariate weather 
data with hourly resolution ( 150,000 inputs). The network learns features relevant to estimate heating or 
cooling demand. We combine these location-specific weather features with building design parameters to serve 
as input to a single surrogate model (feed-forward neural network). In a case study with 569 weather files from 
locations in Canada, we show that the surrogate model deviates by less than 3% when predicting annual heating 
demand for new building designs at locations outside of the training data set.   

1. Introduction 

The building sector is responsible for 28% of global energy-related 
carbon emissions, which are at an all-time high of 9.6 GtCO2 [1]. 

The International Energy Agency explains the rise in emissions by 
the rapidly increasing demand for building energy services which 
cannot be compensated by the growing availability of carbon-free 
power. 

Growth in emissions is exacerbated by the ever-growing building 

stock (2.5% in 2017) while energy use intensity reductions are low 
(0.6% decrease in 2017) [1]. 

Transforming the building sector is challenging. Each project varies 
in climate, surroundings, purpose and occupant preferences. Design 
recommendations for one project may not be suitable for another, 
leading policymakers to implement purely performance-based building 
energy codes [1]. Such codes only regulate the whole-building energy 
performance, no matter which architecture, materials and building 
systems are chosen. An example is the BC Energy Step Code in British 
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Columbia, Canada [2]. It defines upper limits for air-leakage, thermal 
energy demand and mechanical energy demand, but the design choices 
to meet these limits are unrestricted. As part of the policy, energy ad-
visors are certified to ratify if a proposed design meets the code using 
building simulation software. 

Existing whole building simulation software, like EnergyPlus [3] or 
IES-VE [4], is reasonably accurate in simulating the performance of 
almost any building design and system [5]. However, according to 
practitioners and researchers the tools lack scalability for the custo-
mized analysis of many building designs [6]. Setting up the simulation 
model for a specific project can be labour intensive, and the simulation 
runtime can be high if a broad set of design variations is analysed. The 
latter is indispensable for an extensive design space analysis including 
interactive conceptual design, design parameter sensitivity analysis, 
uncertainty analysis or design optimization. 

The lack of scalability of current building simulation tools, and the 
growing demand for performance analysis supported by building en-
ergy codes, urge innovation of the existing simulation paradigm. Using 
simplified physics-based, lumped parameter approaches instead [7] is 
regarded an alternative but may lack accuracy and flexibility to depict 
the specifics of a design. In this paper instead, we consider to augment 
existing slow, white-box physics-based building simulation tools with 
fast, black-box machine learning-based surrogate models [8,9]. The idea 
of surrogate models is to emulate building simulation software by 
training a machine learning model on simulation input and output data. 
Given the very low computational cost to evaluate the surrogate model, 
it can provide building performance estimates much faster than phy-
sics-based simulation. Although the surrogate is a black-box data-driven 
model, we retain the link to the underlying physics as the training data 
is generated using a theory-grounded simulation model. 

There is a growing body of work on surrogate modelling for sus-
tainable building design [9]. It has been applied to provide fast 

feedback in design processes [10], to do performance uncertainty 
analysis [12,11,13], sensitivity analysis [14,15], and building design 
optimisation [16–18]. Another promising field is sampling-based 
building model calibration as a step before retrofit options analysis for 
existing buildings [19]. The technical aspects of deriving surrogate 
models are reviewed in [20,21]. 

A common drawback of the listed applications is that the surrogate 
models are bound to the specific building design problems covered by 
the training data. For example, [13] derived a surrogate model for 
commercial buildings in Nantes with 49 uncertain parameters. If the 
building site or the design parameters change, for example on a sub-
sequent project, the surrogate model has to be retrained which involves 
running many simulations. Following [22], the current generation of 
surrogate models “shift computational effort for simulation from within a 
design process to a prior time” and therewith allow interactive, and 
sample-intensive detailed design. Nonetheless, the actual reduction in 
the number of simulation runs may be low. By increasing the number of 
design problems covered by a single surrogate model, this drawback 
can be tackled. 

In this paper, we derive one single building simulation surrogate 
model which can generalize over many locations. This requires finding 
features that effectively describe the weather of each location. We use a 
deep temporal convolutional network to learn such features directly 
from raw annual hourly weather files which are fed as input to the 
model alongside other building design parameters. We test the ap-
proach using a large database of typical meteorological year (TMY) 
weather files for 569 locations in Canada [23]. Canada as one of the 
largest countries in the world is a suitable test case covering multiple 
different climates (4 ASHRAE-90.1 climate zones). 

Nomenclature  

temperature [°C] 
h XWTH vector of extracted weather feature 
bc kernel bias [–] 
c kernel index [–] 
Cl total number of kernels in layer l [–] 
El output of layer l [–] 
Kl kernel size in layer l [–] 
l neural network layer index 
MAPE mean absolute percentage error [%] 
n number of samples [–] 
nMBE normalized mean bias error [%] 
R2 coefficient of determination [–] 
RMSPE root mean squared percentage error [%] 
S stride (step size) of convolutional kernel [–] 
T number of time steps [–] 
Wl tensor of all weights in layer l [–] 

X vector of inputs to surrogate model 
XP vector of building design parameters 
XWTH matrix of weather input data, values from.epw files 
.epw EnergyPlus weather data file 
.idf EnergyPlus input data file 
CDD cooling-degree days 
CNN convolutional neural network 
DoE design-of-experiment 
FFNN feed-forward neural network 
HDD heating-degree days 
HVAC heating, ventilation and air conditioning system 
LSTM long-short term memory neural network 
ReLU rectified linear unit neuron activation function 
ResNet residual neural network 
RNN recurrent neural network 
TCN temporal convolutional neural network 
TMY typical meteorological year   

Fig. 1. Comparison of 2D convolutions for image recognition and 1D convolutions for weather time series analysis. A temporal convolutional neural network 
applies a kernel, i.e. a multi dimensional array of trainable weights, to multivariate time series data where the kernel is shifted in one dimension along time. 
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1.1. Convolutional neural networks for building simulation surrogates 

The choice for deep convolutional networks to interpret weather 
files is inspired by findings in the domains of image recognition (see  
Fig. 1). Ref. [24] points out that deep networks composed of multiple 
layers of twodimensional convolutional kernels are powerful to extract 
minute, discriminative features from raw image data. These kernels are 
matrices of weights applied to pixels in close proximity (red box in  
Fig. 1). They allow to collect information carried in the local coherence 
of pixels (local connectivity [25]), rather than carried by the values of 
each pixel individually. Multiple kernels form a network layer, and 
multiple layers (including other layer types than convolutional layers) 
form a network. Each individual kernel’s weights differ and extract 
different information from the image (features). 

Recently, networks of convolutional kernels were also found helpful 
for sequential data modelling tasks [26] as for example classifying 
sensor time series data [27], and temporal convolutional neural networks 
have developed to an active field of research. In this paper, we apply a 
convolutional neural network to extract features from large, hourly, 
multivariate weather time series data commonly used to simulate 
building energy performance. The extracted features serve as input to 
surrogate models and allow them, to generalize over various climates. 

1.1.1. Invariant convolutional kernels and building physics 
A key feature of convolutional kernels is their invariance, i.e. the 

same kernel weights are used at every position of the input [25]. In the 
case of 1D convolutions applied to time series data (see Fig. 1), this 
provides a time-invariant kernel shifted along time. 

Time-invariant kernels appear promising when modelling weather 
dependent building behaviour. The building, i.e. a time-invariant 
physical structure, is excited by the dynamic weather. The kernel size 
(number of time steps) is crucial to match the dynamics of the building 
structure. A thermally massive building requires a larger time window 
than a thermally lightweight building structure.1 The use of kernels, 
serving as rolling time windows, sets convolutional neural networks 
apart from more frequently used surrogate models in the building si-
mulation domain like artificial neural networks or Gaussian Process 
models. The idea of kernels allows CNNs to learn significant features 
from very large inputs (here 150,000 values), which is prohibitively 
large for GP models and is troublesome to train deep dense neural 
networks on. Also recent studies have shown that convolutional net-
works outperformed other neural network architectures for time series 
analysis, like long short term memory networks [26]. 

1.2. Structure of the paper 

We present our approach for location-independent surrogate as 
follows. In Section 2, we revise surrogate modelling for sustainable 
building design. This involves (i) an introduction into the training 
process; (ii) an overview of the application realm of surrogate models in 
building performance design; and (iii) we review methods to extract 
features from time series data. In Section 3, we provide details on the 
applied convolutional neural network implementation and on the case 
study we use to validate its performance. In Section 4, the results of the 
case study are given. In Section 5 and 6, we discuss the results and 
derive conclusions for the field of building simulation. 

2. Background 

2.1. Building surrogate model derivation 

The surrogate derivation process splits into (a) Problem definition, 
(b) Sampling and (c) Model fitting [8,28].  

(a) The task of designing a building with high energy performance is 
defined by the free design parameters (e.g. window-to-wall ratio, 
number of floors, building width/length), their range of possible 
values, fixed design parameters (e.g. local climate, neighbouring 
buildings, etc.), and an objective, represented by a performance 
metric. There are usually between 5 and 50 continuous or discrete 
free parameters [9] which span a highly multidimensional span of 
possible designs. The machine learning surrogate model is trained 
to only provide performance estimate for that design space. Hence, 
a careful parameter selection is crucial.  

(b) Samples across the design space (training data) are chosen using 
design-of-experiment (DoE) methods. Their goal is to maximise 
information gain per simulation sample to limit the number of runs 
as much as possible [29].  

(c) After sampling, a tabular data set is compiled. The columns include 
the design parameters and the performance metrics, and each row 
represents one simulation run. The machine learning surrogate 
model is trained on that dataset having the variable design para-
meters as inputs and the performance metrics as outputs. Different 
machine learning models like feed-forward neural networks, sup-
port vector regression models, and Gaussian Process models, are in 
use and were reviewed in [20,21]. 

A generic problem definition with a large sampled design space lets 
us derive surrogate models applicable to a multitude of design projects. 
In this paper, we advance the research domain by incorporating loca-
tion, represented by annual hourly weather data, as a dimension of the 
covered design space. As the weather data is multivariate with hourly 
resolution the number of additional surrogate inputs is large 
( 150, 000). This leads to challenges for both sampling such a large 
space and training a surrogate model with that many inputs. As a result, 
it allows us to reuse a surrogate for different locations with no re-
training. 

2.2. Application realm of surrogate models for building design 

The low computational cost allows us to use surrogate models to 
conduct fast energy performance-based building design exploration, for 
example it can instantaneously generate interactive parallel coordinate 
plots.2 The utility of surrogates hinges on their accuracy to emulate the 
physics-based building performance simulation. The accuracy suffers 
greatly if the design problem at hand differs from the data set it was 
trained on. In that case expensive retraining and refitting are necessary. 

Based on this, we suggest realms of design problems for which ei-
ther simulation software, design problem-specific surrogate models, or 
reusable, generalized surrogate models are suitable. In Fig. 2 we use the 
stage of the building design process (y-axis) and the frequency of 
building designs (architecture, materials, building systems; x-axis) as 
proxies for the specificity of a design problem and thus as drivers to 
decide whether to apply simulation software or surrogate models to 
assess the performance of a building design. 

Building performance simulation (including computational fluid 
dynamics and HVAC simulation [30]) is indispensable for highly 
complex, innovation-driven building design projects. Always, they can 
be complemented by problem-specific surrogate models to save time in 

1 In the case of our network, we picked a relatively small window size of 8 
(8 h). However, by adding convolutional layers to the network a cascade of 
multiple windows is generated, providing a larger path view. 

2 Tools to derive a parallel coordinate plot using a building surrogate model 
are available on https://besos.uvic.ca/. 
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design space exploration [9]. 
On the other hand, building projects often have a lower degree of 

customization with reoccurring architectural and building system 
choices. Examples could include fairly standard residential buildings  
[11], office buildings [31,32], or prefab houses. In that case, surrogate 
models may be reused for multiple building design processes. Taking 
that one step further, this allows modelling the energy performance of 
entire districts or cities, where similar building designs reoccur. In that 
case a significant reduction of simulation time can be achieved [33]. 

Apart from the design process stage and frequency of design, other 
factors like particulars of building usage are crucial to consider when 
choosing general surrogate models. In this study, we will show that the 
specific location of a design project does not prevent reusing a surrogate 
model. This drastically reduces the demand for retraining and even 
allows to analyse country-wide shifts in building design (see Fig. 12). 

Note that apart from building design exploration, building model 
calibration could become a promising application for general surro-
gates. Surrogate models enable us to generate energy usage data for a 
large number of different design parameter combinations. This data is 
compared to measured data to find the best matching set of parameters 
of an existing building [34]. A general surrogate model can enable large 
scale automated calibration of individual buildings [34] and districts  
[19]. 

2.3. Literature on the generalization of building surrogate models. 

By generalizing surrogate models to more building design problems, 
we can reuse the models on various building projects without running 
any slow, physics-based simulations. Essential is the number and type 
of inputs the surrogate model is capable to process. In the most general 
case, a surrogate model can interpret the same inputs as the building 
simulation program it emulates. These inputs usually include details of 
building design objects (geometry, materials, window sizes, etc.) and a 
weather file (see Fig. 4). 

Taking the raw simulation input data is problematic as the format of 
the building design input file is open-ended, i.e. it changes from 
building to building. For example, a building with fewer rooms also has 
a smaller input file. Surrogate models always require the same number 
of inputs. The authors of [31] tackle that by deriving component-based 
surrogate models to predict thermal fluxes in building components like 
walls, ceilings or roofs. They show that their model reached acceptable 
accuracy on building geometries different from the training cases. An-
other example of compartmentalized surrogates is given in [35], where 

a surrogate specifically for the conversion of energy demand to energy 
supply for various building systems (heat pump, resistance heater, etc.) 
is given. The more common way to generalize surrogates over a variety 
of building designs is to calculate features representing the building 
geometry. Popular choices are the surface averaged insulation value, 
aspect ratio, the window-to-wall ratio and the number of floors  
[36,33,9]. 

While the format of the building design input file may change, the 
format of the weather input data, usually annual multivariate hourly 
data, is the same for all locations. This matches the requirement of 
machine learning models to use one input format, and potentially al-
lows us to use the weather data as input. However, currently engineered 
features are commonly calculated to discriminate different weather 
input data, for example heating-degree days (or cooling-degree days)  
[37], which approximates the number of days in a year for which a 
certain amount of heating (cooling) is required. Sometimes statistical 
features are calculated like the mean and standard deviation of outside 
air temperature, humidity, solar radiation, and wind speed. In ref. [36], 
418 different locations in Brazil were considered to estimate comfort in 
naturally ventilated buildings. They achieved high accuracy on a test 
set ( >R 0.972 ) which, however, included the same locations as the 
training data. This approach is simple to apply and allowed them to 
drastically reduce the dimensionality of the weather inputs from 8760 
hourly values for up to 25 variables to a few parameter values. 

Other authors have trained multiple surrogate models to span dif-
ferent locations. Ref. [38] used four linear regression models with 
weather data from four locations across the USA. Ref. [39–41] each had 
similar approaches in which several linear or quadratic polynomial 
regression models were fitted for locations in different climate zones. In 
the latter study, 30 models were trained consisting of one surrogate 
model for each of the five window types for each of the five locations. 
As soon as the number of locations and categorical parameters in-
creases, this approach becomes infeasible. 

2.4. Extracting features from weather data 

Feature extraction is the process of finding data representations 
which explain the variation among the observations in a dataset, and is 
a core motivation for deep learning [42]. In the case of weather data, 
any hourly value of the multivariate time series data (8760∗25 values) 
can contribute to a feature. In this study, we focus on using automated 
feature learning and compare the determined features against human- 
based engineered features, which is common in the field of building 

Fig. 2. Application realm for surrogate models in building performance design. At the early design stage and for a high number of reoccurring building designs, 
surrogate models are becoming a promising option to augment traditional building performance simulation. 
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surrogate modelling. 
Whereas feature learning can be unsupervised, discriminating the 

input of the observations without taking any target variable into ac-
count, we follow a supervised approach where we search for features 
that best explain the variation in the target variable, here the heating 
demand of buildings for various locations (see Fig. 3). 

2.4.1. Feature engineering 
Engineering features using domain expertise is a common way to 

capture differences in time series, in particular as input to statistical 
models estimating building energy demand based on weather data [37]. 
Weather features are derived in either the time or frequency domain. 
Compared to other machine learning domains, like image recognition, 
in surrogate modelling the causalities in the dataset are usually well 
understood, and manual selection of features can be done based on the 
physics equations encoded in the simulation software. In our case for 
example, it is well understood that outside-air-temperature explains the 
thermal behaviour of a building to a large portion. 

In practice, functions are implemented to extract the engineered 
features. This can be heating and cooling degree days or the mean, 
standard deviation, maximum and minimum value of each of the 
variables in the weather time series [36,41]. 

2.4.2. Feature learning 
In feature learning, the machine learning model learns dis-

criminative features from large amounts of raw data [24]. The moti-
vation is to automate the process of feature engineering and apart from 
that, it potentially increases the feature quality as no data is discarded 
prior to fitting the model. 

As mentioned above, applying feature learning directly to raw 
building simulation input data is problematic. Building design data is 
open-ended in format and weather data is very large and complex. 
Regarding the weather data, a reason may be that some machine 
learning algorithms, like feed-forward neural networks, are not time- 
aware and not readily applicable to time series problems. 

Outside of building surrogate modelling the growing amounts of 
time series data, like human activity data, financial recordings, in-
dustrial observations, or smart meter data, have catalysed the devel-
opment of time series analysis methods. In this work, we focus on deep 
learning approaches. Specifically, we use end-to-end time series models, 
where the model is directly applied to unprocessed raw data [27]. 
Temporal convolutional neural networks (TCN) recently have attracted 
attention due to their high performance on sequence modelling pro-
blems [26].3 Similar to deep convolutional neural networks (CNN) on 
image data, they use kernels sliding over time series data samples. 
While in image processing kernels are shifted in two dimensions, TCNs 
use 1D kernels only being shifted along the time dimension (see Fig. 1). 
More details can be found in Section 3 and in [25]. 

3. Methodology 

In Fig. 4, the methodological concept of this study is shown. We 
train a single building energy surrogate model that is applicable over 
multiple different locations, represented by different annual hourly 
weather data. The training data consists of EnergyPlus simulation 
outcomes, i.e. the building simulation software we aim to emulate, 
which takes a building description file (.idf) and a weather file (.epw) as 
inputs. 

Our location-independent surrogate model can estimate building 
performance based on both variations in building design parameters 
and variations in climate (compare Fig. 12). While a change of a design 
feature only typically affects few entries in the building description file, 
a change of location demands an entirely different weather file as si-
mulation input, i.e. all entries of the hourly weather data vary. We learn 
relevant features h X( )WTH of the high-dimensional weather file XWTH
which serve as input to a surrogate model to estimate building per-
formance for various climates (e.g. climates in Canada). 

No feature extraction of the design parameters is conducted, as the 
number of considered parameters in a simulation-based building design 
exploration is typically low (up to 50 [9]) and can be handled well by a 
neural network. The varied values of the parameters XP are therefore 
used directly. They are concatenated with the extracted weather fea-
tures h X( )WTH , and together form the inputs X to the surrogate model. 
While for feature learning we use a deep convolutional neural network 
architecture, called ResNet, the surrogate model itself is a shallow feed- 
forward neural net with only one hidden layer. 

The codes were developed on the BESOS platform4 and machine 
learning models were implemented using Tensorflow via the Keras API  
[43,44]. 

In the following, we first introduce our deep learning based feature 
extraction approach to find h X( )WTH , and the feature engineering ap-
proaches we use to benchmark the performance of the deep learning 
approach. After that we present the case study to empirically show the 
performance of our approach. 

3.1. Feature learning on weather time series data 

We use a deep temporal convolutional neural network (TCN) to find 
h X( )WTH . Two benchmarking studies on machine learning approaches 
applied to time series modelling showed their outstanding performance  
[26,27]. Ref. [26] showed that TCNs outperformed recurrent neural 
networks (RNN), including Long-Short Term Memory (LSTM) networks 
on a variety of tasks. Ref. [27] found that a ResNet, a residual con-
volutional neural network [45], outperformed 8 other architectures 
(incl. fully connected networks, and fully convolutional neural net-
works) on a variety of univariate and multivariate time series classifi-
cation tasks. 

In both cases, generic convolutional network architectures were 
applied which can readily be applied to a variety of problems. We use 
the ResNet architecture [45] to predict a performance target from raw 

Fig. 3. Feature extraction from weather time series data using feature engineering or feature Learning.  

3 Note that in comparison to [26], we drop the time causality constraint of the 
target yt only being dependent on past inputs x0 …xt . 4 https://besos.uvic.ca/. 
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annual hourly weather data (see Fig. 5), where the target variable 
(heating demand, cooling demand, etc.) is easily interchangeable. 

3.1.1. Residual Neural Network (ResNet) 
The ResNet architecture is a deep convolutional neural network 

architecture composed of multiple one-dimensional convolutional 
layers and is shown in Fig. 5. In total it consists of eleven layers. The 
first nine layers are a sequence of three similar layer-blocks consisting 
of three one-dimensional convolutions, a batch normalization and a 
rectified linear unit (ReLU) activation. All those blocks are inter-
connected by a residual shortcut, connecting the outputs of the last 
layer of the previous block with the next block (see black arrows) [46]. 
This prevents a vanishing gradient found when training a deep network 
architectures using a gradient-based optimizer. Finally, the output of 
the last convolutional block is averaged along with the time dimension 
in a global average pooling layer, and compressed to 13 neurons using a 
fully-connected layer. The number matches the number of building 
design parameters, fed-in as additional inputs in a subsequent layer.5 

All convolutions have a stride S of one (step size of the kernel being 

shifted along the time dimension). Zero padding is applied prior to each 
convolution on the edges of each the time series, which adds ×C K /2l l1
zeros to the beginning and end of the sequence data. This guarantees 
that the size of the time series is preserved across each convolution.6 

The kernel size K shrinks from 8 to 5 and 3 for the first, second and 
third convolution of each of the three blocks. The number of kernel 
channels Cl, or the number of rows in each layer output, increases from 
17 input channels (i.e. weather variables), to 64 channels in each 
convolution of the first block, and 128 channels in the two latter blocks. 

In Fig. 6 the first convolution following the input layer is shown. 

= += = = =E f W E B( )l l l l( 1) ( 1) ( 0) ( 1) (1) 

where ×El C Tl is the output of layer l with =T 8760 being the total 
length of the considered time series, W is the tensor of all kernel 
weights, and B is the vector of all biases. 

We apply zero padding, adding ×C K /2l l1 zero entries to the be-
ginning and end of the input time series matrix XWTH , where the 

Fig. 4. Our approach for location-independent surrogate models. While conventional surrogate models typically learn from variations in building design 
parameters only ( Xp), we use a deep convolutional residual neural network (ResNet) allowing to process high-dimensional weather files ( XWTH) as surrogate model 
inputs. The evaluation speed of ResNet allows us to estimate building performance for thousands of designs at different locations within seconds. 

Fig. 5. Architecture of the residual neural network. It encodes high dimensional weather data into low dimensional features which serve as input to a surrogate 
model [27,45]. 

5 This number was assessed by looking at the activation of the 13 neurons. 
Even with 13 neurons only, some of them did not exhibit any activity, see Fig. 9. 

6 Preserving the length of the time series is not necessary to predict annual 
performance metrics, however, it allows us to use the same architecture for 
estimating hourly performance metrics …y y{ , }1 8760 for each hour of the weather 
inputs, see Section 4.3.2. 
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number of input channels is =C 170 . The kernel size (or size of time 
window, red box) of the first convolution is =K 81 and =C 641 different 
kernels are applied where the blue and green boxes each represent a 
single kernel shifted along time. Each kernel is shifted a stride of =S 1, 
where the stride S is the same for all layers and kernels. The output of a 
single neuron is given by 

= +
=

e f b x wc t c
i

C

i t i c,
0

1

, ,

l 1

(2) 

with f being the non-linear activation function (here ReLU), bc being the 
bias of kernel c Cl with being the total number of kernels in layer 

×l w, i c
K

,
1l being the vector of weights applied to the input 

×xi t
K

,
1 l, where = …t T{0, , } is the time index. 

3.2. Feature engineering approaches for benchmarking 

We benchmark the feature learning approach against common fea-
tures which have been used in building performance surrogate model-
ling to capture weather impact [36,33]. All approaches are listed in  
Table 1 and explained in the following. 

We assess the quality of the different features h X( )WTH by feeding 
them to a surrogate model (Fig. 5, right) with the same network ar-
chitecture independent of the feature extraction approach. Only the 
number of features, i.e. inputs to the surrogate, vary. We assume that 
the more accurate the surrogate model is, the more information is 
captured by the feature, where the accuracy is quantified by different 
error metrics. 

3.2.1. No weather features 
The first feature set serves as a reference case. Although the surro-

gate is trained on samples from all locations, this set of features does 
not include any weather information. This allows to point out how 
much of the variance in the heating demand for various locations is 
caused by the weather data. We expect the trained surrogate model 

predicts an ”average Canadian heating demand” given a building de-
sign. 

3.2.2. HDD only features 
The second feature set serves as a benchmark for a commonly used 

engineered feature, the heating degree days (HDD)[37]. HDD are cal-
culated for every location using the following equation: 

= >
=

iHDD , : ,
i

n

ref i base i
1 (3) 

where ref corresponds to a reference temperature at which the building 
is expected to need no heating, i are the daily means of minimum and 
maximum outdoor dry-bulb temperature, and n is the number of days in 
the period, usually a year. HDD values are provided as input along with 
the 13 building design input. 

3.2.3. Engineered features 
This feature set contains a range of manually picked features. 

Alongside the heating degree days, it includes longitude, latitude, and 
elevation as well as the mean and standard deviation over the year of 
dry-bulb temperature, relative humidity, and global horizontal solar 
radiation which are calculated using the weather files. Again, the whole 
set of features is provided as input to the surrogate model along the 13 
building design inputs. 

3.3. Surrogate model architecture 

The surrogate model architecture is the same no matter which 
feature set is used. For each set of features, it is trained separately and 
its accuracy recorded. The architecture is a shallow feed-forward neural 
network with one fully connected layer of 256 neurons, which we 
regularize using L2-regularization. We use a rectified linear unit (ReLU) 
activation. This surrogate architecture is based upon previous pub-
lications in the field of building energy surrogate modelling with 

Fig. 6. Details on the parameters of a 1D temporal convolution. A kernel, i.e. a tensor of weights (red window), is applied to sequential data similar to Fig. 1. The 
kernel weights are invariant when shifted along time. The number of kernels, or channels, corresponds to the number of rows in the outputs of the convolutional 
layer. 

Table 1 
Feature extraction approaches for finding h X( )WTH . All features share the same feed-forward neural network (FFNN) architecture with 
different number of inputs (weather features combined with building design features), one hidden layer with 256 neurons, and one output.     

Name Weather features h X( )WTH
Network architecture  

No weather Data None FFNN(13, 256, 1) 
HDD only heating degree days FFNN(14, 256, 1) 
Engineered heating degree days, longitude, latitude, elevation, FFNN(23, 256, 1)  

mean & stand. dev. of: dry-bulb temperature,   
relative humidity, solar radiation (hor.)  

Learned (ResNet) all annual hourly weather data encoded to 13 ResNet + FFNN(26, 256, 1)  
learned features  
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similar complexity in the design parameters [20] and was refined 
considering different numbers of hidden layers (1–3) with various 
numbers of neurons (26-29). Both parameters had low impact on the 
final performance, whereas the l2-regularization coefficient had a far 
larger impact. We picked it in a grid search and 3-fold cross-validation 
for each of the feature extraction approaches, where the learning rate 
was fixed. 

3.3.1. Error metrics 
We base the selection of error metrics on previous work in the field 

encompassing the coefficient of determination R2 [20], the normalized 
Mean Bias Error (nMBE), the Root Mean Squared Error (RMSE) and the 
Mean Absolute Percentage Error (MAPE) [47]. While R2, nMBE and 
MAPE are relative metrics, the RMSE is an absolute metric. Given the 
large variance in heating demand among the considered design and 
locations, relative metrics are favoured and we use the Root Mean 
Squared Percentage Error (RMSPE) instead. All metrics are defined as 
follows, 
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where y corresponds to the vector of predicted values with length n y,
corresponds to the vector of true values, and ȳ corresponds to the mean 
of y values. When the error term, y yi i , approaches zero, R2 ap-
proaches one, and nMBE, MAPE and RMSPE go to zero. 

The four terms provide a diversified insight into the error char-
acteristics. For example, when the points show a small variance, R2 

might indicate a good model performance whereas model bias (sys-
tematic over- or underprediction) is large. MAPE and RMSPE differ by 
their denominator. Due to the quadratic term in RMSPE, few but large 
sample errors impact the aggregated errors much more than in case of 
MAPE [48]. 

3.4. Case study 

We apply the methodology in a case study, where the building 
performance simulation outcomes of design variations of an office 
building at 569 locations in Canada are emulated. 

3.4.1. Building template 
The considered building is a small, H-shaped office building with a 

footprint area of 1300 m2, designed to host 75 people (Fig. 7). A set of 
influential parameters and their respective sampling ranges is chosen 
and complemented after a comparison with commonly employed 
parameters [9]. We limit the number of variable building design 
parameters to only 13 parameters and do not include any changes of the 
geometry (besides window sizes), as we are focussing on the general-
ization of surrogate models for various locations. However, our method 
of generalizing a surrogate over different weather data sets can easily 
be applied to surrogates with more than 13 parameters, including those 
that generalize geometry which is addressed in[49]. 

3.4.2. Building performance outputs 
We apply and benchmark the feature learning against the feature 

engineering approaches. Therefore, we calculate the accuracy of the 
surrogate model, trained separately using all the different sets of fea-
tures, to estimate annual heating demand. In EnergyPlus, this is re-
presented using an Ideal Air Loads HVAC system object, which quan-
tifies how much energy must be added to each thermal zone of the 
building in order to meet comfort constraints. Here, we assume zero 
latent heating loads and 30% latent cooling loads. 

Furthermore, as ResNet is designed to be problem agnostic, we also 
analyse its performance to predict cooling demand (i.e. ideal cooling 
loads) and hourly heating demand. 

3.4.3. Weather Data 
The weather data used for the simulation consists of 569 .epw files 

(EnergyPlus weather files) which are shown in Fig. 8 [23]. The data is 
based on several years of observations providing a Typical Meteor-
ological Year (TMY) [50] and consists of 8760 entries, one for every 
hour in a year, recording 29 weather parameters. The geographic dis-
tribution of the files is not uniform but similar to the population density 
of Canada. The files also include metadata such as province, latitude, 
longitude, and altitude of the weather station location. 

Twelve of the 29 parameters in a weather file had significant 
amounts of missing values and were discarded. The remaining 17 
parameters are shown in Table 8. If they had few missing values (<0.1% 
of all entries) we filled them using the closest non-missing value (up to 
six time steps). 7 

Fig. 7. Building template and the varied design parameters. The black contours show the 15 thermal zones varying between 16m2 and 180m2. The perimiter 
zones all have a room depth of 5m. 

7 Please note, EnergyPlus does not use extraterrestrial horizontal radiation, 
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3.4.4. Sampling 
We pick simulation samples using Latin Hypercube sampling (LHS)  

[51]. It is a space-filling approach, where the design space is partitioned 
into N strata from which one sample each is drawn (N being the number 
of samples). Here, we sample the building design parameters from 
uniform distributions with minimum and maximum values shown in  
Fig. 7. We apply LHS to collect both the training/validation data set 
( =n 10, 000) and the test set ( =n 10, 000). This ensures that both sets 
cover the entire design space. Learning curves were used to find a 
suitable number of simulation samples. 

We picked 20 cities for testing the surrogate model accuracy 
( =n 500 each), referred to as unseen locations in Fig. 8, and the rest of 
the weather data is used for training. Running all =n 20, 000 simula-
tions took 15 h on 13 2.1 GHz CPUs (approximately 30 s per sample 
with one CPU). 

4. Results 

In this section we quantify the accuracy of our approach for loca-
tion-independent surrogate models using the case study introduced in 
Section 3.4. The accuracy of the surrogate model having both learned 
features (using ResNet), and manually selected weather features as in-
puts is compared. As part of that comparison we try to interpret the 
physical meaning of the learned features using a correlation heat map 
and feature map visualiziations. Finally, we conducted experiments to 
show that the proposed location-independent surrogate model archi-
tecture is problem agnostic, i.e. that it can be used to emulate ambig-
uous building performance simulation outcomes. Here we present re-
sults of the surrogate model estimating annual cooling demand and 
sequential hourly heating demand (8760 values). The latter qualifies 
surrogates for advanced design tasks, as for example heating, ventila-
tion and air conditioning system design [52]. 

4.1. Benchmarking the feature learning approach 

In the following, we benchmark the accuracy of a surrogate model 
having four different sets of inputs, i.e. one set of learned features and 
three sets of manually selected features (see Fig. 5). This is performed 

on the task to emulate annual building heating demand simulations of 
buildings with various designs at 569 training climates and 20 testing 
climates. 

We compare the performance of no weather, HDD, Engineered, and 
Learned features in Table 2 using the performance metrics introduced 
above. All results are based on a 3-fold cross-validation and the best 
model is tested on 500 building designs at 20 unseen locations (cli-
mates). 

The surrogate model which does not receive any weather features 
performs by far the worst. We use it to quantify how much of the 
variation in the target heating demand is caused by variation in 
weather data. 

We find that the other approaches all provide mean absolute per-
centage errors of less than 10% on the test data. All of them slightly 
underestimate heating demand in the test data (nMBE<0). The learned 
features (ResNet) allow us to find the most accurate estimates. They 
almost cut the RMSE error by 50% compared to the second best ap-
proach (Engineered), which again has almost half the RMSE of a heating- 
degree-day-only based surrogate model. The MAPE could also be sig-
nificantly improved (>20%). When comparing MAPE and RMSPE, we 
notice that the learned features, in particular, lower the RMSPE (3.81%) 
such that it almost aligns with the MAPE (2.94%). Aligned RMSPE and 
MAPE indicate that no big outliers in the errors are found (see Section  
3.3). 

We further look at the geographical variation of the error. 
Therefore, we break down the error terms for each location in the test 
set (see Table 3). Each row corresponds to the R2 score calculated when 
estimating the heating demand for 500 building designs at each test 
location. Using the learned features the surrogate model has the highest 
accuracy for 15/20 cities. However, for most cities the differences in the 
performance are rather small. We find that ResNet in particular helps to 
improve the accuracy at locations where the other extraction ap-
proaches lead to very low accuracy scores, i.e. Victoria, Halifax, Tor-
onto, and Vancouver. This indicates that overall feature learning pro-
duces lower error variation throughout Canada, which implies higher 
generalizability of a single surrogate model with feature learning. 

4.2. Physical insight into the learned features 

Having shown the competitive performance of learned weather 
features as inputs to surrogate models, we now try to better understand 
their physical meaning. 

In this study, we have access both the learned features and our 

Fig. 8. Geographical origins of weather files and considered climate variables used for feature learning. The places used for testing the surrogate model are 
annotated. 

(footnote continued) 
global horizontal radiation, global horizontal illuminance, direct normal illu-
minance and diffuse horizontal illuminance as input. Still, they are kept as input 
to ResNet. 
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engineered features. Comparing both, allows us to which extend the 
learned features overlap with our selection of features. Furthermore, 
another popular approach for understanding the behaviour of neural 
networks is to visualize the outputs of the hidden layers, called feature 
maps [53]. This is shown in Fig. 10. 

4.2.1. Comparison to the engineered features 
We compare engineered and learned features by feeding all 569 

TMY data to the ResNet model and storing the associated values of the 
13 neurons in the last dense hidden layer of ResNet which serve as input 
to the surrogate model (see Fig. 5). Then, we compare those values to 
all engineered features in a correlation map (see Fig. 9, left). This shows 
the correlation coefficients R of all learned features and all engineered 
features for the 569 weather files. By looking at the coefficients, we find 
that some learned features correlate well with the engineered features, 
in particular with the heating degree days (e.g. Feature 5). The second 
highest correlation is found for Feature 1 which is negatively correlated 
to the standard-deviation of the outdoor-air-temperature. Feature 12 
exhibits a strong correlation with solar radiation and Feature 7 again 
with standard-deviation of temperature. 

Interestingly, none of the learned features 0, 2 and 6 correlate with 
any of the engineered features. This indicates alongside the lower ac-
curacy in predicting heating demand, that our set of engineered fea-
tures misses some relevant weather impacts on the heating demand. 

Features 3, 9, 10, and 11 do not show any activity at all. This shows 
that the number of encoded features (13) is high enough for the given 
task and could even be reduced. Minimizing the number of learned 

features was not considered in this study, but could be done in future 
work. 

4.2.2. Feature map analysis 
Another way to show the neural network behaviour is to look at the 

output of the convolutional kernels for different samples (compare to  
[24]). This is shown in Fig. 10. We show the final ReLU-activation of 
each of the three blocks of ResNet, as well as the normalized inputs and 
the geographic location of each weather file sample. Note that the 
building design is irrelevant as the building design parameters are in-
serted into the network after ResNet. 

First, we look at the three columns showing plots of the neuron 
activity for the three ResNet blocks. Each row along the y-axis re-
presents one kernel of a convolutional layer and the x-axis represents 
the time step at which the kernel window was applied. Looking at the 
second row from the top, the neuron activity for a weather file from a 
location in the far north in Canada with extremely low temperatures is 
shown. We find the three feature maps are very dark, meaning a lot of 
neurons are activated. We find that the activity fluctuates throughout 
the year with much higher neuron activity in the winter months than in 
summer months. This is different for the weather file sample at the top, 
where the neuron activity for a weather file from the West coast of 
Canada is shown. This part of Canada is known for mild climates. 
Generally, the neural activity is low and no seasonal behaviour in the 
neurons is found. Row 3 and 4 show locations from continental Canada 
and the East coast. They represent locations with average heating de-
mand in Canada and the neuron activity is somewhat in between the 

Table 2 
Surrogate model accuracy with different features as input.            

Training Performance Testing Performance   

(unseen designs and locations)  

Feature set R2 nMBE MAPE RMSPE R2 nMBE MAPE RMSPE 
No Weather Data 0.3223 0.84% 43.37% 81.01% <0 −13.83% 52.26% 74.95% 
HDD Only 0.9931 0.07% 2.25% 3.78% 0.9852 −3.82% 8.33% 13.62% 
Engineered 0.9966 −0.10% 3.22% 8.77% 0.9951 −0.96% 3.76% 7.10% 
Learned 0.9977 −0.03% 1.93% 2.60% 0.9971 −0.43% 2.94% 3.81% 

Table 3 
R2-score for all locations in the test data. On the left, the results of benchmarking the surrogate model trained on different sets of features are shown. This was done 
using the annual heating demand as the target variable. On the right, the performance of feature learning using ResNet on other building performance variables, i.e. 
annual cooling demand and hourly heating demand, is presented to highlight that ResNet is problem agnostic. Cities marked with an asterisk have a distance of more 
than 100 km to the closest weather file location in the training data.         

Features: No Weather HDD Engineered ResNet 

Target variable: Heating Heating Heating Heating Cooling Hourly heating  

Locations (HDD):  see Section 4.1 see Section 4.3 
Winnipeg (5860) .3197 .9143 .9923 .9953 .9932 .9416 
Ottawa (4715) .8876 .8826 .9898 .9928 .9923 .9316 
Longueuil (4640) .8398 .9115 .9912 .9938 .9934 .9245 
Toronto (4170) .2328 .9093 .9628 .9920 .9898 .9073 
Taloyoak∗ (11500) −6.1027 .9701 .9873 .9838 .8782 .8816 
Lesage (5035) .9016 .9477 .9926 .9839 .9959 .9206 
Montreal (4950) .9020 .9440 .9915 .9902 .9931 .9305 
Norman Wells∗ (8150) −2.6003 .9299 .9917 .9856 .9722 .9127 
Edmonton (5660) .8245 .9774 .9926 .9943 .9881 .9253 
Victoria (2700) −40.2160 .4630 .8659 .9111 .9905 .7355 
Hamilton (3850) -.7811 .9152 .9824 .9940 .9945 .9048 
Halifax (3620) −3.2721 .9735 .9616 .9906 .9927 .8809 
London (4140) .0346 .9223 .9806 .9936 .9896 .9134 
Laval (4750) .8337 .9642 .9909 .9948 .9939 .9255 
Calgary (5210) .8707 .9330 .9875 .9933 .9679 .9260 
Saskatoon (5860) .4315 .9580 .9936 .9848 .9879 .9304 
Churchill∗ (9150) −2.9467 .9822 .9903 .9928 .9574 .9107 
Kuujuaq∗ (8570) −2.2392 .9744 .9918 .9938 .9343 .9060 
Vancouver (3060) −10.0011 .9246 .9724 .9872 .9918 .7852 
Fort Simpson∗ (7560) −1.8688 .9336 .9922 .9939 .9836 .9348 
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first two locations. 
Now we compare the neural activity for the different blocks. We 

find that in the first block the activity is rather blurry with less dis-
tinctive activity for the different seasons. Also, the 64 channels seem to 
be diverse in their behaviour while in block 2 and 3 many channels 
seem to correlate. In the latter blocks, two types of channels can be 
found. While most channels spike during winter months, some rather 
spike during summer months. No channels are found with constant 
behaviour throughout the year. 

Another interesting aspect of the feature maps is the temporal re-
solution of the neural activity. Not only, seasonal fluctuations in ac-
tivity are found but also some neurons spike only for certain hours of 
the year. This is specifically found in the last block, where individual 
neurons spike throughout the year. This motivated us to train the given 
ResNet architecture also to predict the heating demand with an hourly 
resolution, which we introduce in the following section. 

4.3. Feature learning results for other performance objectives 

In the following two experiments, we show that the presented ap-
proach can be used in the same way as before to also estimate cooling 
demand and hourly heating demand. This is a first step to show that our 
method based on ResNet is problem-agnostic, and simulations of other 
performance metrics like overheating hours, air quality, etc. for mul-
tiple locations can be emulated in future. 

4.3.1. Cooling demand 
To train the model on estimating annual cooling demand, the entire 

model architecture (ResNet and surrogate model) remains the same and 
we only exchange the target variable. After training, we reach a similar 
prediction accuracy on the test (training) data of R2 = 0.991 and 
nMBE= 0.241% (R2 = 0.995, nMBE= 0.041%) as we did for estimating 
heating demand. As in some Canadian climates the cooling demand 
approaches zero, our normalized accuracy metrics (MAPE and RMSPE) 
become very large due to division by very small values and were 
omitted in this section. 

We also report the R2 score for each location in the test data (see  
Table 3). The accuracy scores are computed based on 500 different 
building designs simulated for each location. The cooling demand ac-
curacy scores behave similarly to the heating demand scores. Low 
scores are found for places with low cooling demand in the North of 
Canada (HDDs>8000, e.g. Taloyoak, Kuujuaq, Churchill). In case of 
heating demand, the surrogate model accuracy is lower for Victoria and 
Vancouver where heating demand is relatively low (HDDs 3000). This 
shows that the surrogate model struggles to capture diminishing effects 
of changes in building design on heating demand (cooling demand) in 
hot climates (cold climates). 

4.3.2. Hourly heating demand 
In this section, we scrutinize the ResNet-based surrogate modelling 

performance in estimating heating demand with higher temporal re-
solution. Hourly heating demand estimates can be very helpful for 
many applications. For example, it allows fast, optimized heating 
system layout on building and district level [52], or to analyse demand 
response potential [54]. 

While other approaches for heating demand estimation are specifi-
cally designed for aggregated annual or monthly energy demand pre-
diction, the invariant kernel size with 8760 neurons in each channel 
allows us to estimate 8760 hourly heating demand values as outputs, 
i.e. we produce an output sequence given an input sequence. CNNs have 
recently been shown to reach high accuracy on sequence-to-sequence 
modelling tasks and outperformed recurrent neural networks on tasks 
where the format and length of the sequential input data (here the 
weather file) do not change [55]. 

Shifting from one output to a sequence of 8760 outputs, we slightly 
adjust our model’s architecture. We remove the pooling layer and re-
place the one-dimensional concatenation layer with a concatenation of 
the layer with 128x8760 encoded weather features and the 13 building 
design parameters (at each time step). Additionally, we replace the 
feed-forward surrogate model architecture, with a convolutional neural 
network. Instead of two fully-connected layers, we use two CNN blocks 
similar to the ones of ResNet. This provides a final network of 12 layers. 
Note, that this neural network architecture and its parameters were not 
optimized but should rather serve as a first proof of how suitable the 
proposed approach is for sequence-to-sequence modelling of building 
time series. 

Training was performed in 500 epochs. We observe an overall R2

(nMBE) score on the testing data of 0.923 (nMBE= 7.6%) and the ac-
curacy score at each of the testing locations varies between 0.7355 in 
Victoria and 0.9416 in Winnipeg (see Table 3, right). In particular, at 
few locations with rather mild heating demands (Victoria, Vancouver), 
hourly surrogate estimates were found to differ significantly from the 
simulation outcomes. More model refinement or a more balanced cli-
mate data set with an equal share of mild and cold climate weather files 
could solve that. 

As an example, we show the surrogate model estimates for one lo-
cation for one year and one week in Fig. 11. The surrogate model is 
capable to predict the seasonalities in the demand and also correctly 
identifies most of the peaks as shown in the second plot. However, we 
find that in summer, when heating demand converges to zero, the 
surrogate fails to correctly predict small sudden increases in heating 
demand. Given the low absolute heating demand during summer, 
normalized error metrics (MAPE, RMSPE) become very large and 
therefore, we omitted when reporting surrogate accuracies in this sec-
tion. 

Fig. 9. Comparison of learned and engineered features. The heatmap on the left displays the correlation coefficient between the learned and the engineered 
features. Features with the highest correlation (positive or negative) are displayed in scatter plots the right. 
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Fig. 10. Inside the convolutional neural network. The outputs of the last layer in each block of ResNet when applied to weather data from locations with mild and 
extreme climates. Each row in each of the rectangular heat maps is the output for one kernel applied to each time step of the time series. 
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5. Discussion 

In the previous section, we derived location-independent surrogates 
which emulate simulated energy performance of buildings with various 
designs at 569 locations in Canada. In the following few paragraphs, we 
discuss the accuracy of the derived surrogate models with different 
features as inputs and different performance metrics as outputs, we 
further elaborate on a key aspect of surrogate modelling, the achieved 
reduction in computational cost by using a surrogate model over run-
ning building simulations. Last, we consider how the approach can 
serve as a basis for a much wider application of surrogate models to 
assess building energy performance. 

5.1. Accuracy 

We reported surrogate accuracy scores for surrogates to estimate (i) 
annual heating demand (with engineered and learned features), (ii) 

annual cooling demand and (iii) hourly heating demand. 
First we could show that a surrogate provided with learned features 

performs better than the same surrogate provided with a set of manu-
ally, engineered features (see Table 3). This lets us conclude that au-
tomated, feature learning cannot only compete with manual feature 
selection but also outperform it. Hence, less manual feature selection 
and higher surrogate accuracy go hand in hand. 

We reached a mean absolute percentage error of 2.94% when esti-
mating heating demand for new designs and climates. This corresponds 
to an R2 score of 0.997 on the test data consisting of unseen building 
designs at unseen locations. That score is in line with other publications 
where the building location was not varied [20,9] and outperforms a 
study [36] where different climates but another performance metric, 
overheating hours, was considered ( =R 0.9712 ). As a conclusion, our 
method of weather feature learning allows us to use surrogate models at 
various locations without compromising surrogate model accuracy. 

To better generalize the findings, we also used the feature learning 

Fig. 11. Comparison of simulation and surrogate model estimates the TMY of Winnipeg. (i) shows all 8760 hourly estimates and true values in a sequential 
format, (ii) shows one week of data, and (iii) compares 8760 surrogate estimates and simulation outcomes in a scatter plot, where a perfect fit would put all points on 
the red line. 

Fig. 12. Surrogate model heating demand estimates for Canada. The runtime to evaluate the performance of one specific building design sample at the 569 
locations of the case study takes approximately 2 s. 
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approach to predict a different simulation output, i.e. cooling demand 
( =R 0.9872 ), and changed the temporal resolution (from annual to 
hourly, =R 0.9232 ). The former implies that the approach scales to 
various aggregated annual performance metrics. Estimating hourly 
performance inevitably lead lower performance but it still exceeds the 
reported number in the only other study where hourly thermal demand 
for different climates was estimated ( =R 0.852 ) [33]. In their case 
manual feature selection was done. 

5.2. Computational cost for evaluation and training 

Computational cost of surrogate modelling must be split into the 
cost of evaluating an already trained surrogate model, and the training 
time itself. The former is far more important, as it is directly linked to 
the time a building designer has to wait for performance estimates for 
her proposed design. The latter can even be regarded negligible, as a 
highly generalized surrogate model is trained once and afterwards only 
used to produce performance estimates. Nonetheless, training time is 
provided for completeness. 

5.2.1. Evaluation 
In our modelling approach, evaluating the large ResNet to extract 

weather features takes much longer than evaluating the surrogate 
model itself. Extracting the features of the 569 weather files in the case 
study and evaluating one building design per location (see Fig. 12) 
takes around 2.0 s with the TESLA K80 GPU (4992 cores @ 1253 MHz, 
480 GB/s, 24 GB VRAM)8 and around 11.5 s using CPU only (6 2.1 GHz 
CPUs, 24 GB RAM), whereas evaluating the surrogate at one location 
(i.e. only one ResNet evaluation) for 569 different building designs takes 
only around 70 ms with GPU and 80 ms using CPU. 

The latter shows that the cost of weather feature extraction are in-
significant in most building design analyses as usually designs at one 
specific location are evaluated. The resulting speed allows us to inter-
actively design a building with close to instantaneous performance 
feedback. Comparing the runtime to building simulation software (here 
EnergyPlus, around 50 min for 569 runs with 6 2.1 GHz CPUs) we 
achieve time savings of 4.3 104. 

5.2.2. Training 
Automatically learning features with a temporal convolutional 

neural network comes at high computational cost. The presented TCN 
architecture has more than 500, 000 parameters allowing to process 
150,000 inputs from 17 time series variables. Training that network 
required 8 h on a server with a TESLA K80 GPU. 

Without feature learning but by using engineered features instead, 
the heating demand surrogate model is trained in about 4 min while the 
accuracy only suffers a little (R2 similar, MAPE from 2.95% to 3.74%, 
RMSPE from 4.51% to 10.23%). Looking at the worst performing climate, 
the errors do increase significantly (Victoria, e.g. 14.20% to RMSPE 
35.12%). Also, the time to pick and extract engineered features was not 
considered, where this fully avoided in case of automated feature 
learning. 

5.3. Scalability of the approach 

Surrogate models are being used to accelerate and enable large scale 
building design space exploration. They already have shown their great 
use to help building designers and architects on building level [10,11] 
and city level [33]. However, in most of the studies the surrogates were 
trained for a specific building project. Offering generalized, already 
trained models off-the-shelve, will make surrogates more accessible to 
architects and designers without extensive machine learning domain 
knowledge. 

Our approach covers one option to improve the level of general-
ization of surrogates. Using a CNN, we increased the surrogates’ geo-
graphical scope from a single location to multiple ones. When we 
consider the following list of next steps, the use of our method for the 
building domain can be significant:  

• More surrogate inputs: 
In this study, we derived a surrogate model architecture that can 
handle a combined set of diverse inputs, i.e. large, multivariate time 
series data and static building design parameters. Both types of in-
puts can be augmented: We limited the number of design parameters 
to thirteen which for example do not allow to adjust the building’s 
geometry. However, in other research it was already shown that 
neural network surrogate models can handle much larger number of 
parameters well, which should also apply to our architecture. 
Furthermore, the set of time series processed by the CNN could 
potentially integrate other dynamic factors impacting building en-
ergy demand like occupancy profiles or internal gain profiles. 
Apart from that, neural networks have proven to be modular. In this 
study, we use a deep CNN to extract weather features and con-
catenate them with building design featuers. Similarly, other au-
thors compartementalized neural networks into functional units  
[31]. We foresee that our work can be combined with similar work 
where surrogate models generalized over various geometries  
[33,49] or mechanical system setups [35].  

• More climates: 
In this study, we considered a large variety of climates found in 
Canada, the second biggest country in the world. We see no ob-
stacles that our approach will allow to develop a surrogate model 
that spans entire continents or even the entire globe.  

• Larger variety of performance metrics: 
A key value of feature learning is that we can automate the feature 
extraction step. We showcased that we can automatically learn 
features to estimate various building performance metrics (heating 
demand, cooling demand) with different temporal resolution (an-
nual and hourly). This automation in feature extraction may help to 
scale location-independent surrogates to a holistic set of building 
performance outputs without any additional manual work. In future 
work, we will quantify the performance a location-independent 
surrogate with other targets like occupant comfort or natural ven-
tilation performance [36]. 

6. Conclusion 

In this paper we contribute with a method that increases the geo-
graphical scope of a single building energy surrogate model to arbitrary 
many locations. We are among the firsts in the domain to use a deep 
convolutional neural network to extract features from multivariate, 
hourly weather data, which capture the impact of location-specific 
climate on building energy performance. 

In a case study with 569 weather files from Canada, we could show 
that the feature learning approach outperformed a manual selection of 
weather features (variables) to estimate annual heating demand. A 
mean percentage error to the physics-based simulation software of less 
than 3% on a test data set was reached. The set of manually selected 
features covers common ones found in literature including heating 
degree days, mean temperature, standard deviation of temperature, 
average humidity and other variables. We collected the values of the 
features produced by the convolutional network for various climates 
and found some of them correlating to the engineered features which 
indicates that the network learned physically meaningful features. On 
the other hand, other learned features showed weak correlation to 
manually selected ones, implying that they captured information going 
beyond the manually selected ones. 

Finally, our experiments suggest that our location-independent 
surrogate models are problem-agnostic. We could confirm the high 8 Note, that cheaper and faster GPUs are widely available. 
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accuracy when estimating not only annual heating demand but also 
annual cooling demand, and sequential hourly heating demand esti-
mates. 

We see a large potential of surrogate models which generalize over 
multiple climates, building systems and geometries to play an elemental 
role in building design processes in future. The generalization will allow 
building designers and architects without extensive machine-learning 
knowledge to use them off-the-shelve for fast performance feedback on 
their design ideas. 

7. Code and Data availability 

The entire source code of this work, the EnergyPlus description file 
(.idf) of the building template, and instructions on how to download the 
required weather files are provided in a GitLab repository.9 
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Epilogue

Climate-independent surrogate models are a significant step towards more general

surrogate models that can be applied to a multitude of design studies. It is very re-

levant for applications like the NetZero Navigator (see Section 3), where a surrogate

model is provided to building designers to analyse their own design problems quickly.

By using the climate-independent surrogate they can provide the weather file from

their own location and immediately receive performance estimates.

A current drawback of the surrogate is that it cannot model other dynamic impacts

like occupant behaviour or the impact of the built environment. This includes that

shading effects or wind flow blocking from neighbouring buildings. Unpublished work

has shown that image generation algorithms allow to generate fast daylighting and

fluid-dynamics maps for urban environments.1

A promising outlook of the research is that temporal convolutional networks allow a

surrogate model to learn various dynamic impacts on the target variable. We foresee

that analogously to weather data other time series like occupancy profiles or appliance

load profiles can be incorporated into surrogate model approximations.

1http://cities.ait.ac.at/site/index.php/2019/10/31/cil-opening-design-space-exploration/

http://cities.ait.ac.at/site/index.php/2019/10/31/cil-opening-design-space-exploration/
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Chapter 6

Surrogate-based model calibration

Surrogate model-based calibration of building energy models is a way to efficiently

connect the observed world with physics-based building energy models. The calibra-

ted energy models allow us to model the effect of various retrofit options for existing

buildings. Surrogate models are promising in that context as they may increase the

speed of calibration processes, which enables to assess retrofit potentials for entire

building stocks.

However, model calibration faces challenges when applied to large number of buil-

dings. This involves that a suitable base model, which is calibrated with measured

data, needs to be found. Often, researchers derive archetype models whose charac-

teristics are retrieved from building stock databases [25]. However, these databases

may lack important information, like the buildings’ heating system, and vary from

one region to another. Instead, unsupervised learning techniques are receiving gro-

wing attention to automatically extract discrete building characteristics [17][22].

In the following study, we developed an unsupervised method to extract the buil-

ding type and heating system type using smart meter data only.
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shape.
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A B S T R A C T

A high-quality building energy retrofit analysis requires knowledge of building characteristics like the type of
installed heating system. This means auditing the building in person or conducting a detailed survey, which is
not readily scalable for many buildings.

This paper presents a data-driven methodology to identify building characteristics from raw smart meter data
sets to allow large scale, high-quality building retrofit analysis. We use the concept of energy signatures, a scatter
plot with outside air temperature on the x-axis and electricity consumption on the y-axis, which condenses each
building’s electricity use into one highly informative graph. Using a Support-Vector Regression model we extract
the shape of each signature and cluster them subsequently. Dynamic time warping is used to align the signature
shapes of all buildings. In two case studies, consisting of smart meter data sets from 408 and 480 buildings
respectively, we show that our clusters correlated well to the heating system type and the building type by
comparing to building-level metadata or demographic data.

1. Introduction

Retrofitting the existing building stock is a key challenge to enable a
global clean energy transition as buildings account for 25% of global
carbon emissions [1]. The International Energy Agency (IEA) recently
pointed out that the transformation process of the building sector is

slow and lags behind the carbon-reduction targets as defined in the
Paris Agreement [2].

One important reason may be the need for customized building-
level performance analysis to assess the cost-effectiveness of carbon
reduction or energy conservation measures.

Traditional retrofit decision making is to a large extent based on
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expert knowledge and involves time-intensive steps including on-site
building audits to collect building characteristics and possibly, custom
building retrofit performance analysis to quantify the potential of each
retrofit measure (e.g. [3]). This is hardly scalable to entire building
stocks and hence there is a rapidly growing field of research attempting
to automate the process of retrofit analysis [4]. This involves two
fundamental tasks directly related to traditional retrofit design.

(a) Automation of the collection or estimation of building character-
istics from available data sources.

(b) Automation of the retrofit performance analysis to identify viable
retrofit measures for a specific building.

Many methods have been developed to automate the retrofit per-
formance analysis (b) and they are further improving with the rise of
machine learning methods [5,6]. However, many of them share the
drawback that they “require complex characteristic data about each
building such as geometric dimensions, building materials, the age and type
of mechanical systems, and other metadata to execute the process” [7].
Clearly, automating the collection of building characteristics (a) is a
bottleneck for large scale building retrofit analysis.

This study proposes a novel, automated method to find building
characteristics using only raw smart meter and high-level outside air
temperature data. We plot the energy signatures for each building in a
building stock, group them based on shape and infer the building type
and heating system. Energy signatures have widely been used for whole
building parameter estimation (e.g. [8]). However, we employ them as
a way to capture each building’s thermal characteristics in an auto-
mated manner, which forms the basis of this paper.

The paper is structured as follows. In Section 2, we give an overview
of existing methods for automated building characterization and in-
troduce the concept of energy signatures. In Section 3, we present our
method to cluster buildings based on their energy signature shape in-
cluding the data preprocessing steps, the energy signature shape ex-
traction, and the clustering approach. Next, we introduce two smart
meter datasets for residential buildings in Austin (Texas) [9] and
Vancouver Island (British Columbia) which we use as test cases for our
method. The first case study comprises buildings with varying type and
different heating systems installed, while the second case study includes
only electrically heated single/duplex buildings (heat pumps, resistance
heaters). The results of the two case studies are given in Section 4.
Based on these, we discuss our new method and highlight its potential
application for detailed building retrofit analysis, for building bench-
marking and as a data source for policy design (Sections 5, 6).

2. Background

2.1. Automated building characterization using smart meter data

To be scalable, a method for automated building characterization
requires widely available data sources. With the recent increase in the
distribution of sensors in buildings, large amounts of raw data are ac-
cumulating, and have already been leveraged to extract information on
buildings [7]. Alongside digital thermostats collecting temperature
data, advanced electricity metering infrastructure, often called smart
meters, is forecasted to be installed in one billion buildings by the end
of 2020 [10].

Smart meter data is an attractive raw data source as the data ac-
quisition is highly standardized [11]. That advantage puts smart meters
apart from other sources like customized building-specific sensor net-
works where the number, location and types of sensors may vary [12].
Any data mining method relying only on smart meter data only is
scalable to all the buildings where smart meters are installed, a large
and growing cohort.

In Fig. 1, we summarize existing methods to extract characteristics
of buildings from smart meter data, and split them into two groups.
Either the temporal patterns of the electricity use are analysed (time-of-
use), or the electricity use at certain weather conditions is examined.
Given the importance of outdoor air temperature to the thermal per-
formance of buildings, we call this approach temperature-at-use.

2.1.1. Time-of-use methods
Time-of-energy-use patterns in buildings have been used for ex-

tracting socio-economic characteristics [13]. Different daily load pro-
files indicate the building’s primary use type, for example residential,
educational and government buildings [14], or laboritories and dor-
mitories [15]. Furthermore, in residential buildings factors like em-
ployment status, number of bedrooms, age of occupants, household
composition, social class, water heating type and cooking type also
have significant influence on time-of-use behaviour [16,17]. Based on
those findings, customers can be classified into certain groups of socio-
economic characteristics given their time-of-use profile [18].

Another related field is smart meter based load disaggregation,
however, it requires higher frequency data (e.g. 5 min) compared to the
data available in this study (hourly) [19].

2.1.2. Temperature-at-use methods
Temporal patterns are of limited use to analyse thermal buildings

characteristics. Instead, knowing the weather conditions causing a
certain building energy consumption is more relevant, and is often le-
veraged for data-driven performance analysis of existing buildings.
Many approaches are thoroughly reviewed in [20] and may be split into
quantitative and qualitative methods.

In quantitative methods, the temperature and energy use data are
used to calibrate some parameters of a physics-based or semi-physics-
based building energy model [21]. In the most complex case, a dynamic
model is calibrated with a varying number of parameters [22]. Both
model selection and data quality are important to obtain stable para-
meter estimates, and this may include a lot of manual work [23]. The
accuracy of the calibration process improves the more information on
the building is available, as shown in a case study in [24]. Other cali-
bration studies also rely on extensive knowledge on one specific
building [3]. This highlights the motivation of this paper: to augment
the set of automatically retrievable building characteristics to enable
large-scale building performance analysis.

In comparison to dynamic models, steady-state models tend to be
more stable and require lower data quality. One common approach is to
average smart meter recordings to daily or monthly values [25] to
eliminate transient and higher-order terms from the building energy
equations [26]. It is usually applied to estimate whole building para-
meters, for example the building’s base-load, the heat loss rate and the
change-point temperature [27], or the cooling rate [28]. The approach
relies on piecewise linear regression models often using a univariate
model with the outside air temperature as the independent variable and
the energy consumption as dependent variable [29]. One can visualize
this approach using a simple scatter plot with temperature on the x-axis
and energy consumption on the y-axis (s. Fig. 2). This plot is often re-
ferred to as the energy signature of a building. In the case of a univariate
model, multiple linear segments are fitted to the cloud of points.
Variables other than outside air temperatures like solar gains, thermal
mass [30] and occupancy [31] can be incorporated. As an example,
steady-state approaches have been used to assess the success of retrofits
within a measurement and veri?cation (M&V) scheme. Measurements
after the retrofit are compared to the regression model predictions,
which were fitted to data collected before the retrofit[32,31]. Although
the approach already is highly simplified, some knowledge on each
building is still required. For example, the heat loss estimate is affected
by the heating system efficiency, and a lack of knowledge of either the
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envelope or the heating system may lead to wrong conclusions [33].
While the previous literature addresses quantitative whole building

analysis for the most part, it has been observed that energy signatures
are shaped by qualitative characteristics of a building like the type of
HVAC system installed. For example, when fitting a piecewise linear
regression model to the energy signature, [29] stated that having five
regression segments is most suitable for “buildings with electric heat
pumps or both electric chillers and electric resistance heating”. Similarly,
[34] outlines that the curvature of energy signatures provides in-
formation on whether multiple heating systems are installed, or [35,36]
reported how the signature shape of a heat pump differs from other
heating systems. Similarly, HVAC engineers have been comparing
measured signatures to ones generated with a simulation model
[37,38]. The difference between the signatures gave details on where
the simulation model is wrong, or if the installed HVAC system is de-
fective. While these authors only considered individual buildings, [25]
showed how energy signatures could potentially separate thousands of
electrically heated from non-electrically heated buildings, although
validation data was missing for their study.

2.2. Reading the energy signature for building characterization

Reviewing the initial studies, we envision the energy signature as a
highly informative tool to retrieve qualitative building characteristics.
In this study, we develop a method to analyse prevailing energy sig-
nature shapes in a building stock to infer building type and heating
system type for hundreds of buildings. In our model-free, non-linear
approach we capture the shape of an energy signature in a building
stock and use the shape as the input to a cluster analysis. This step
extracts the typical signatures found in a building stock and allows us to
group buildings. Available meta data on the buildings is compared to
the clusters, and we can show that the method groups buildings of the
same type (apartment or single/duplex building) and with similar
HVAC systems. This study relies on an unsupervised clustering ap-
proach, but in future could form the basis for a supervised learning
approach to predict building characteristics based on energy signatures.

3. Methodology

An overview of the methodology is given in Fig. 3. After data pre-
paration and preprocessing we apply two machine learning steps.

First, we normalize the electricity use data of each building using
the z-score to enable the comparison of energy signatures collected
from buildings with varying magnitude in their electricity consump-
tion. Then we fit a univariate, non-linear regression model to estimate
electricity use based on outside-air-temperature (OAT) and evaluate it
at 0.5 °C increments. The regression model fitting and subsequent
evaluation serve as a means of feature extraction and dimensionality
reduction to capture the shape of an energy signature in a one-column
vector.

Finally, the shape vectors of all buildings are grouped into C clusters
to represent dominant signature shapes among the building stock.

3.1. Data

We apply the method on data sets of two building stocks. One data
set was collected in Austin, TX, USA, and is cooling dominated, while
the other data set is from Vancouver Island, BC, Canada, and is heating
dominated. Further details on each data set are given in the associated
section.

Apart from the electricity use data, outside air temperature re-
cordings were obtained from a near-by meteorological data sources and
are part of the data set (case study I) or retrieved from [39] (case study
II). No other heat gains are considered, in particular, solar gains are
ignored which may lower the accuracy of the electricity consumption
regression model. As we are mostly concerned with a qualitative view
of the univariate energy signature, we ignore this for now.

Both data sets include residential buildings only, but we expect the
method to be applicable to buildings with different primary space
usage.

3.2. Preprocessing

We first preprocess the data by resampling hourly recordings to
daily mean values. This averages out dynamic effects and daily

Fig. 1. Examples of smart meter building analyses grouped into two categories.

Fig. 2. Three energy signature samples from a building stock with hundreds of buildings [9]. The observed daily mean electricity consumption and outside air
temperature are compared.
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occupant related variation in the electricity consumption, and is com-
monly done for steady-state, OAT-based building energy models [20].1

We exclude buildings with less than one year of recordings and delete
individual days if zero electricity consumption was observed.

The latter may help to identify non-occupied periods in a building,
but an absence detection algorithm was not applied (e.g. [40]).

3.2.1. Outlier filtering
The identification of outliers in an energy signature is a bivariate

problem where both OAT and energy consumption are taking into ac-
count. Multiple different multivariate outlier detection methods exist.
As the energy signature may be multi-modal and non-linear (e.g. Fig.
4), popular methods like Mahalanobis distance [41] or minimum cov-
ariance determination [42], which assume the data to originate from a
multivariate Gaussian distribution, are not suitable.

Instead, we quantify the local outlier factor of each daily recording
[43]. This involves the calculation of the density of neighbours around
one sample point. It is called a local method as it compares the density
only among the nearest neighbours. Samples with a density lower than
a certain threshold are classified as outliers.

The method was applied using the ScikitLearn toolbox [44]. It in-
volves the selection of neighbourhood-selection algorithms (here brute
force), the distance metrics (here Euclidean distance), the size of the
neighbourhood and the number of outliers to be deleted. The size of a
neighbourhood was chosen to be 5 observations (i.e. 5 days) after
conducting an exhaustive grid search between 3 and 25 days. The
bottom 1% of the observations, sorted by density, are deleted for each
building.

The process is compared to Mahalanobis based outlier detection in
Fig. 4. The covariance-based method uses a multivariate Gaussian dis-
tribution (2-D, ellipse) and classifies the points most distant from the
center as outliers. This cuts off high and low values of this bi-modal
energy signature (Fig. 4, left), and samples with abnormally high
electricity consumption between 10 °C and 25 °C are not tagged as
outliers. When using local outlier factors, these two effects are avoided.

3.2.2. Standardization
Buildings vary in size and number of occupants, so standardization

is required to compare their energy signatures. Often, intensity metrics
are used where building energy consumption is normalized by floor
area. However, here the floor area is unknown, and also this can lead to
skewed results as it does not control for varying numbers of occupants
or incorrectly reported floor area (e.g. if conditioned space deviates
from the overall floor area).

Instead, we use a purely statistical z-score standardization [45].

=z
e µ

r n
r n n

n
,

,

(1)

This transforms each building’s electricity consumption data to have
zero mean and a standard deviation of 1, where er n, is the r-th of R daily
energy recordings of building …n N{1, , } with N being the total
number of all buildings. µn is the mean daily energy consumption, and

n the standard deviation. The same method was applied in [14,46]
where standardization was required to cluster typical load profiles of
buildings.

3.3. Non-linear model fitting

To enable clustering of signatures based on their shape, suitable
features representing the shape of each signature are found.

We approach this by fitting a univariate regression model f T( )n OAT

Fig. 3. Overview of the methodology.

Fig. 4. Outlier removal for example Building 2 from Fig. 2. Left: 5% outlier removal using the Mahalanobis distance. Right: 5% outlier removal using the local outlier
factor score.

Fig. 5. Support-vector regression model of electricity consumption evaluated at
0.5 °C increments for Building 2 of Fig. 2.

1 In some of the buildings considered, autocorrelation in the regression model
residuals could still be observed, possibly because we ignore solar irradiation
and day of the week information. For now, this was not investigated further as
we aim to understand the information encoded in the shape of a univariate
energy signature.
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to the Energy Signature (ES) of each building n and evaluate that model
at 0.5°C increments (see Fig. 5). The model evaluations are stored in an
Ix1 vector En , where I is the number of 0.5°C increments and depends
on the maximum and minimum outside air temperature recording
(T T,OAT max OAT min, , ). Next, we convert two-dimensional time series data
(outside-air-temperate, electricity consumption) with varying number
of recordings (possibly missing data in each building) into one vector
with the same number of entries for each building. We term this vector
En the profile of the energy signature.

= …E f T f T[ ( ), , ( )]n n OAT min n OAT max, , (2)

We use algorithmic modelling to find the non-linear univariate fit.
Thus, we circumvent picking the number and location of breakpoints as
required in the change-point regression approach [32].

We fit a support-vector regression (SVR) model with a polynomial
kernel which takes around 2 s for each building on a common personal
computer. We optimize the regularizer in a grid search for each
building using 5-fold cross-validation.2

3.4. Clustering

The goal of clustering is to find C typical signature profiles among a
large set of different profiles.

In the following section we introduce two similarity scores, the
Euclidean distance and dynamic time warping paired with the
Euclidean distance, and two clustering algorithms, k-means and hier-
archical clustering, which were used in this study. Finally, we explain
the Silhouette score which serves as metric to assess the quality of the
chosen approaches.

3.4.1. Similarity of two energy signatures
We quantify the similarity of two signature profiles by comparing

the electricity consumption at a certain temperature. In the simplest
case we compute the squared Euclidean distance between two profiles
of building n and p.

=
=

D E E( )
i

I

n i p i
1

, ,
2

(3)

However, this may be problematic. In Fig. 6), the general heating
and cooling behaviour is the same in both buildings in both plots. They
only differ in the balance point, which is the temperature at which ei-
ther the heating or cooling system is switched on. However, the Eu-
clidean distance for this case would be large. In the simplest case
(electric heating or cooling only) a simple shift of the two curves would
solve the problem (Fig. 6, left). However, if both buildings depict
electric heating and cooling behaviour, a bi-directional shift will be
required. A highly efficient building will have a lower heating balance
point (the temperature where heating is switched on), and higher
cooling balance point (the temperature where cooling is switched on,
compared to a less insulated building. To account for this difference in
balance points, the alignment of the two profiles needs a bidirectional
warping of one signature to the other.

We approach this problem by warping the profiles in a non-linear
fashion using the dynamic time warping (DTW) algorithm. The goal of
DTW is to find the minimum distance of two sequences. Therefore,
pairwise distance of all possible combinations of points in the sequence
is computed. Those distances are stored in a IxI matrix. The shortest
path, i.e. the path leading to the minimum summed distance, through
that matrix is found using dynamic programming. The process is shown
in Fig. 7 where the black lines indicate which profile vector entries are

compared to each other. The length of the black lines tell us by how
much the profiles are warped towards each other to achieve minimum
distance. The process allows us to preserve the shape of the energy
signature profiles (i.e. the entries of the profile vector remain), and at
the same time it allows us to find energy signatures with similar shape
even if they are offset.

All DTW-minimized pairwise distances between all N buildings are
stored in a NxN matrix. This matrix is provided as input to the k-means
and hierarchical clustering algorithms introduced below.

By finding the alignment of both profiles with minimum distance,
two signatures with similar profile shapes are expected to be sorted to
the same cluster. The particulars of the DTW algorithm leads to some
effects to be considered when applied to energy signature comparison:

• Consumption at one temperature may be matched to the energy
consumption at multiple temperatures of the other signature (see
Fig. 7 top left).

• DTW is direction dependent (sequences sorted either by increasing
or decreasing temperature values). This is due to its origin in time
series analysis where it must be ensured that matching backwards in
time is not feasible.

• The lowest temperatures and highest temperatures of two profiles
are always aligned. Consequently, at the edges of the profiles the
two profiles to not get shifted at all.

The above issues, do introduce some error when aligning the energy
signature profiles. Especially, the alignment of the profile edges is
problematic and leads to overestimating the distance among profiles
(see 7 at 0 °C). As a consequence, we not only using apply dynamic time
warping, but also compare it to common euclidean distance based
clustering to show that the benefits of DTW outweigh drawbacks. In
future, better alignment strategies can be developed.

3.5. Clustering algorithms

We use k-means and hierarchical agglomerative clustering to group
similar energy signatures. We combine both methods with DTW and
quantify the quality of the determined clusters using the Silhouette
score, which is explained in a later section.

3.5.1. K-means
In k-means clustering the number of clusters C is predefined [47]. C

centroids are randomly initiated and each profile is assigned to the
nearest centroid (measured by the squared Euclidean distance). All
profiles belonging to one centroid form a cluster. Afterwards, the cen-
troid is computed as the mean of all profiles in the cluster, and cluster
assignment is redone. The process is repeated until cluster assignment
converges.

K-means is specifically designed for Euclidean-distance minimiza-
tion and modification of the similarity metrics used here may prevent
the algorithm from converging. For clustering based on the DTW-dis-
tance metric we use a slight variation, differentiable soft-DTW metric as
k-means demands differentiability for optimisation. SDTW considers all
possible pairwise-alignments weighted by their probability under the
Gibbs distribution while DTW considers only the best one [48].

For k-means we used the SKlearn implementation [44] and for k-
means using the SDTW similarity metric we used the TSLearn toolbox
[49].

3.5.2. Hierarchical agglomerative clustering
Hierarchical agglomerative clustering is a bottom-up approach,

where each sample is initialized as one cluster and clusters are merged
pairwise as the process continues. In each iteration, two clusters are
merged following a certain criterion [50]. We use the ward criterion
which minimizes the total within-cluster variance quantified using the
preferred similarity metric (see Section 3.4).

2 Model parameters: SVR C cachesize coef degree epsilon( : 0.5, : 200, 0: 0.0, : 3, :
gamma np logspace kernel rbf max ter shrinking True0.1, : . ( 5, 2, 10), : , : 1, : ,i

tol: 0.001).
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In comparison to k-means clustering, hierarchical clustering does
not require the similarity metric to be differentiable. Hence we can use
the DTW metric without the need to compute the differentiable SDTW
score (see above).

3.6. Validation of clusters

We assess the quality of the resulting clusters using two metrics. For
both metrics, we compute the sample Silhouette score s n( ) for each
building n [51].

=
<
=
>

s n
a n b n if a n b n

if a n b n
b n a n if a n b n

( )
1 ( )/ ( ) ( ) ( )

0 ( ) ( )
( )/ ( ) 1 ( ) ( )

where a(n) is the average similarity of one energy signature to the
others within the same clusters and b(n) is the average similarity to all
the signatures of the closest cluster. To quantify the overall perfor-
mance of the clustering algorithm and similarity metric, we take the
average of all samples …n N{1, , }

=S
N

s n1 ( )mean (4)

The second metric aims to identify small clusters, which is required
if the characteristics of buildings in a stock are imbalanced. A small
cluster with a high average sample Silhouette score may be outweighed
by a small decrease in Silhouette scores of all other energy signatures.
To take this into account, we not only look at the overall average
sample Silhouette score but also at the average cluster Silhouette score
Sc of each cluster …c C{1, , }.

=S
N

s n1 ( )c
c

c (5)

4. Results

In the following section we apply our method to two case studies.
First, we look at a building stock in a climate with significant heating
and cooling demand which is composed of multiple building types with
varying heating systems. In the second case study, we investigate how
energy signatures of only electrically heated single/duplex buildings
can be clustered into different groups.

4.1. Case study I: heating and cooling climate

We analyse 3 years (2014–2017) of smart meter and outside air
temperature recordings of residential customers in Austin, TX, from the
Pecan Street data set [9]. In the period considered, temperatures range
from −8 °C to 43 °C with a mean of 20 °C leading to significant heating
and cooling demand.

The data encompasses 409 buildings including single-family houses
(296), townhouses (17), and apartments (96). Apart from the smart
meter data, 191 building owners took part in a survey providing in-
formation on the building system installed. Based on this survey, all
buildings feature air-conditioning systems with 1–3 stages. Heating
systems include gas furnaces (155), electric furnaces (16) and heat
pumps (20).

As we can see the data set is imbalanced, with the bulk of the smart
meter recordings coming from single-family houses, and most of the
surveys conducted on buildings with gas furnaces. Therefore, we
compare k-means clustering, which is known to produce clusters of

Fig. 6. Alignment of two energy signature profiles to quantify the similarity of their shape.

Fig. 7. Pairwise alignment of energy signatures using dynamic time warping. Note that the black lines indicate which points are aligned to each other. They do not
indicate the distance score between those two points which is purely based on the vertical distance between two aligned points.
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uniform size, with hierarchical clustering.

4.1.1. Fitting the univariate regression model
We fit 409 univariate SVR models with mean daily OAT as the input

and electricity demand (z-standardized) as the output. In each training
run, we pick the regularization hyperparameter in a grid search and
use 5-fold cross validation. We test the accuracy of each model on a
separate building-specific test set consisting of the electricity demand of
randomly selected days.

The performance of each model on the separate test set is shown in
Fig. 8. The average R2 score is 0.61. Low R2 values indicate that the
majority of the variance in the electricity consumption cannot be ex-
plained by the outside temperature. We show below that this holds in
particular for individual apartments which are less exposed to outside
climate than free standing buildings.

After model-fitting, we evaluate all models in 0.5 °C increments
between 1 and 32.5 °C. The limits correspond to the 1- and 99-per-
centiles of the temperature recordings.

4.1.2. Choosing the similarity metric and clustering algorithm
We conduct hierarchical agglomerative and k-means clustering with

and without DTW (see Section 3.4). The performance of these four
clustering approaches is shown in Fig. 9. The mean Silhouette score is
shown for varying number of clusters. While hierarchical agglomerative
clustering is deterministic and terminates with the same clusters after
each run, k-means clustering depends on the random initialization of

the cluster centroids before cluster fitting. Therefore, ten k-means re-
petitions were run and the best result was stored.

K-means clustering outperforms hierarchical clustering for low
numbers of clusters. For both clustering algorithms we find that the use
of DTW leads to an increase in the Silhouette scores and supports our
idea to align energy signatures (Fig. 6). In this case study, DTW per-
formed particularly well with k-means clustering. However, in the
second case study both clustering algorithms produced higher Silhou-
ette scores when DTW was used (see Fig. 14).

4.1.3. Selection of the number of clusters
Both the k-means algorithm and hierarchical clustering require us to

choose the number of clusters to search for. Our choice is based on the
average Silhouette scores (Eq. (4)) we compute after each run. The
higher the score the more unambiguously each energy signature is as-
signed to one cluster. [51] suggests average Silhouette scores of larger
than 0.5 are strong evidence for an underlying structure in the data, and
average scores below 0.25 indicate that no structure is found.

Fig. 9 shows that k-means with DTW provides an average Silhouette
scores larger than 0.5 for 4 clusters or less. As the goal of this analysis is
to find as many different energy signature types possible, we proceed
with four clusters. Another interesting aspect is to look at the average
Silhouette scores of each individual cluster. Some clusters perform
better than others. In the case of =n 4clusters we find the scores to vary
between =S 0.41C1 and =S 0.68C2 (see Table 2) indicating that espe-
cially cluster 3 is very distinct.

4.1.4. The four energy signature clusters
The four clusters are displayed in Fig. 10. The grouping provides a

rapid overview of the building stock. The bulk (62%) of all buildings
have profiles similar to cluster 3, 18% similar to cluster 2, and 12% and
7% are similar to cluster 1 and 4. On the left of Fig. 10, we display the
sample Silhouette score for each building. It is skewed with less than
20% of the energy signatures with a score smaller than 0.25 (see Sec-
tion 4.1.3). Those signatures do not align well with any cluster, but
rather lie in between two or more clusters. This highlights the ad-
vantage of a sample-specific quality score which allows us to identify
buildings whose cluster assignment is uncertain. They are filtered out as
described below.

Description of shapes. The different cluster shapes depict varying
sensitivity towards changes in OAT at low and high temperatures.

Fig. 8. Accuracy of univariate regression models of 409 buildings.

Fig. 9. Average sample Silhouette score for different clustering options. In case of k-means clustering, the performance band for ten different centroid initialization is
shown. Agglomerative hierarchical clustering does not depend on the initialization and hence each run terminates with the same results.
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In cluster 1 the sensitivity is small in comparison to the other
clusters. The cluster centroid varies only between −1 and 1.5 whereas
in the other clusters it reaches much higher values at extreme tem-
peratures3 This observation is also quantified by the mean R-squared
score =R 0.19mean,1

2 , which indicates that on average only 19% of the
variance in the consumption data of buildings in cluster 1 is explained
by an SVR model with OAT as the exogenous variable. In all other
clusters, a larger fraction of variance is explained
( = =R R0.49, 0.73mean mean,2

2
,3

2 and =R 0.61mean,4
2 ).

In comparison to clusters 2 and 4, cluster 3 shows a small tem-
perature correlation at low temperatures leading to an inverted L-shape.
The shape of profiles in cluster 2 is more symmetric with similar elec-
tricity demand at low and high OAT. Cluster 4 involves signatures with
very high heating demand outweighing the maximum cooling demand
significantly. (See Table 1).

Another way to differentiate the clusters is their mean cluster
Silhouette score (see Table 2). Based on that score, Cluster 3 has the
highest quality (0.68), while the other clusters reach lower scores be-
tween 0.4 and 0.5 (see Section 3.4).

Interpretation. We compare the clusters to available metadata (Figs.
11, 12)) to validate that the clusters indicate certain building

Fig. 10. The four determined energy signature clusters (right) and the distribution of sample Silhouette scores (left).

Table 1
Overview of the building stock data of the two case studies.

Location # of buildings Building types Heating system Cooling system

Case study I Austin, Texas 409∗ Single/duplex, apart- Gas furnace, electric (Mini-) split,
[9] (3-y, hourly) ment, townhouse furnace, heat pump heat pump
Case study II Vancouver Island, 480 Single/duplex Electric (type Electric (type
(undisclosed) British Columbia (2-y, hourly) unknown) unknown)

∗ Metadata on heating/cooling systems of 191 buildings is available.

Table 2
Summary of average cluster Silhouette scores for different numbers of clusters.
The results for the clustering algorithm providing the highest mean Silhouette
score are shown.

nClusters C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

2 0.65 0.55
3 0.71 0.51 0.51
4 0.49 0.41 0.68 0.43
5 0.52 0.33 0.40 0.36 0.47
6 0.56 0.20 0.39 0.34 0.52 0.22
10 0.22 0.45 0.64 0.39 0.35 0.27 0.13 0.14 0.42 0.18

Fig. 11. Comparison of cluster to associated building properties (heating
system type, building type, building age and footprint) sorted by the sample
Silhouette score (graph inspired by [14]).

3 Note that the z-standardization transforms the data to have zero mean and a
standard-deviation of 1.
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characteristics. The metadata were partly collected when installing the
metering equipment (building type, available on all buildings), and in a
separate survey which provides information on the installed heating
system (191 buildings). As mentioned above, we filtered out buildings
with Silhouette scores lower than 0.25. This lead to a higher correlation
of the clusters with certain building characteristics. For example, after
filtering cluster 1 consists of more than 90% apartment buildings (Fig.
12, right bar) instead of 70% without filtering.

When comparing the metadata to the clusters, we find that building
characteristics agree with the physical interpretation of the energy
signature shapes.

• Cluster 1 has a very flat shape indicating low temperature sensi-
tivity. Looking at the metadata, it is dominated by apartment
buildings (90%, Fig. 12, right). This may be because apartments
have fewer external walls and hence less temperature-dependent
loads. Besides that, heat supply may be metered separately from the
electricity meter. For buildings in cluster 1, only a few surveys
covering the heating system (Fig. 12, left)) are found. This prohibits
a final conclusion on the prevailing heating system.

• Clusters 2 and 4 are U-shaped having a strong temperature depen-
dence. Consequently, the clusters primarily consist of buildings with
an electric heating systems installed. After filtering, cluster 4 is
composed of buildings with heat pumps only and in cluster 2 more
than 80% of the buildings generate heat either with an electric
furnace or heat pump.
However, prior to filtering a significant fraction of the buildings in
cluster 2 ( 40%) are equipped with gas furnaces. The explanation
may be that most of the buildings in the dataset have a ducted
central heating system [9]. Logically, the buildings may have sig-
nificant electric demand from fans to circulate the air through the

building. Furthermore, some auxiliary heating or cooling systems
not included in the survey may be present. The latter observation
shows that buildings with heterogeneous heat sources may be mis-
classified by our method. Nonetheless, using the sample Silhouette
score those uncertain cases will be identified and filtered out.

• Lastly, the L-shaped cluster 3 captures buildings with low electricity
consumption for heating and high electricity consumption for
cooling. The low heating demand shows that at low temperatures
heating demand is covered by non-electric energy sources; the high
cooling rate underlines that those buildings have high heat gains in
summer adding a significant cooling load relative to the base load of
the buildings. The comparison to the metadata is in line with the
physical interpretation of the shape. More than 95% have non-
electric gas furnaces installed and more than 90% of the buildings
are free standing buildings (single/duplex) with possibly higher heat
gains than non-free standing buildings. Unless there are high solar
gains, apartments or townhouses are better insulated by sur-
rounding structures.

Another interesting aspect is that, although we found two clusters
dominated by electric heating systems (clusters 2 and 4), they do not
separate buildings with a heat pump from those with an electric fur-
nace. When looking at Table 3, the ratio of electric cooling and heating
efficiency is much higher for resistance heaters than for more efficient
heat pumps. We would expect that the energy signature profiles of
buildings with resistance heaters would have much higher heating
compared to cooling demand (i.e. shaped like a hockey stick, similar to
cluster 4), than buildings with a heat pump, where the profile should be
rather ”U”-shaped with rather similar levels of heating and cooling
demand (similar to cluster 2). This could not be confirmed in this case
study in particular due to a lack of metadata (only 16 buildings with

Fig. 12. Comparison of clusters to heating system type and building type. The left bar shows all buildings where metadata is available (number provided at the
bottom of the bar), and the right bar after filtering out buildings with low sample Silhouette score.

Fig. 13. Silhouette scores of the buildings in the second case study.

Table 3
Ratio of COPcooling and COPheating can serve as a proxy for how much heating
demand surpasses cooling demand per change in OAT. This can have direct
implications for the shape of the signature. For example, in a system with an
electric resistance heater and conventional AC unit, one would expect a non-
symmetric shape of the ES with heating demand increasing 4.1–5.9 times faster
than cooling demand. Note: The COP value ranges were calculated based on
SEER and HSPF ranges found in [52]).

Ratio
COPcooling
COPheating

COP, heating AC Central AC
(Split)

Heat pump
(cooling)

COPcooling 4.1–5.9 4.1–7.6 4.1–8.9
Fuel based furnace n/a
Elec. resistance

heater
1 4.1–5.9 4.1–7.6 4.1–8.9

Heat pump (heating) 2.4–4.0 1.0–3.1 1.0–2.4 1.0–3.7
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electric furnaces were present in the survey).
We conclude that the first case study has shown, that clustering

energy signatures allows us to distinguish electrically heated from non-
electrically heated buildings, and to group buildings of similar building
type (cluster 1, 3). Although easy to achieve, the former finding is es-
sential to design decarbonization strategies for a building stock. Given
the scarcity in the data on electrically heated buildings in this case
study and motivated by the physical differences between resistance
heaters from heat pumps (Table 3), the following section investigates
how clustering may be used to group buildings with different electric
heating systems.

4.2. Case Study II: Heating dominated climate, electrically heated single-
family buildings only

Case study II aims to better understand the performance of energy
signature clustering in identifying the type of electric heating system
installed. Therefore, we use the algorithm on data from only electrically
heated single family or duplex buildings (480 buildings, 2 years). The
data consists of daily undisclosed smart meter recordings from
Vancouver Island, British Columbia, whose climate is heating domi-
nated. Here no building-level metadata on the heating systems is
available, but highlevel demographic data on heating system coverage
in the single/duplex building sector of British Columbia was compared
to the clusters[53].

This case study repeated the same methodological steps, which are
summarized in Fig. 14.

The SVR-fit to the data leads to slightly higher performance
( =R 0.67mean

2 ) than in case study 1 ( =R 0.61mean
2 ) which can probably be

traced back to the lack of apartment buildings in this case study. While
before we found a jump in the histogram around R 02 , here the his-
togram has a continuous decay towards low R2 scores.

Clustering energy signatures from electrically heated buildings is a
harder problem than separating electrically heated from non-elec-
trically heated buildings and consequently the average Silhouette score
is lower (see Figs. 13, 14 (ii)). Three is the maximum achievable

number of clusters with an average Silhouette score >S 0.5mean . After-
wards, Smean drops to a level of 0.4 for up to 6 clusters. Here, the dis-
tribution of Silhouette scores is less skewed as in the first case study
with approximately 25% of all buildings having a score of less than
0.25. Similar to before, filtering is applied to eliminate these cases.

Cluster shapes Grouping the energy signatures into three clusters
enables us to separate buildings with a strong linearly increasing
heating demand (cluster 1) from those buildings whose demand levels-
off or even decreases at low temperatures (cluster 2). Furthermore, one
cluster which groups buildings not well represented by the other two
clusters is found (cluster 3).

Cluster 1 is by far the largest of the three clusters (436 of 480
buildings). The two tails of the cluster, i.e. for OAT <3 °C and OAT
>15 °C, show that a large band of varying energy signature profiles is
included in that cluster. At cold temperatures the slope of the profiles
ranges from strongly negative to positive, and at warm temperatures
from zero to positive. To better group buildings from this large cluster,
we increase the number of clusters until the next slight drop of Smean can
be observed (6 clusters, see 14 (iiii)).

Having 6 clusters leads to a mean Silhouette score of =S 0.4mean ,
which is lower than the recommended 0.5 (see Fig. 14(ii)), and on first
glance, leads to some clusters of rather similar shape (Fig. 14(iiii)).
However, each cluster features some physically meaningful differences
compared to the other clusters. In cluster 1, all buildings exhibit some
kind of cooling behaviour. Cluster 2, 4 are rather similar with no
cooling and a linear increase in heating demand. However, in cluster 4
we see the tendency of heating demand increasing at a higher rate at
low temperatures. Cluster 3 differs strongly from the other three clus-
ters, as the heating demand levels-off below 5 °C . Although cluster 5
features a similar shape, the overall temperature caused variance is a lot
smaller. Cluster 6 groups buildings with very low temperature depen-
dence.

Interpretation. We find that the two tails of the energy signatures
allow to separate the buildings from each other. The tails level-off
(convex shape), increase with a uniform slope, or increase at higher
orders.

Fig. 14. Summary case study II. (i) shows the R2 score of the univariate SVR regression models. (ii) shows the Smean decay for increasing number of clusters. Three
clusters lead to a high mean >S 0.5mean and are depicted in (iii). After that the score remains at a level of S 0.4mean with a drop after more than 6 clusters. The
determined six clusters are shown in (iiii).
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We interpret the clusters in the following:

• With positive slopes at warm temperatures, the shape of cluster 1
(all: 47/ filtered: 20 buildings) may resemble the power consump-
tion of buildings with an electric cooling system installed. The
constant slope at low temperatures implies the use of a resistance
heater as the efficiency, i.e. slope, is not temperature dependent.

• Cluster 2 (236/213 buildings) may capture buildings without
cooling system and a linearly increasing heating demand which
again supports the use of a resistance heater.

• Cluster 3 (87/46 buildings) and cluster 5 (22/19 buildings) have a
strongly convex signature profile. This shows that some other non-
electrical heating source must be available in the building leading to
a stabilizing or even decrease of electricity consumption at low OAT.

• Cluster 4 (77/54 buildings) is very similar to cluster 2. However, it
includes some buildings with cooling behaviour and the slope of the
heating demand is continuously increasing at low OAT. This in-
dicates a decrease in heating efficiency at lower temperatures. This
resembles the demand profile of an air-source heat pump whose
efficiency decreases at cold temperatures [36].

• Lastly, cluster 6 shows no clear trend in the shape and the included
signatures vary strongly. It appears to group those buildings which
do not fit any other cluster well. Due the low number of buildings
(11) and variation in the energy signature shapes, it is not further
discussed.

Finally, we compare the fraction of buildings in each cluster to
demographic data for British Columbia (Table 4). The share of buildings
in the clusters matches the demographic data well. Furthermore, fil-
tering improves these results. Having a sample size of 369 buildings for
a total population size of 429.200 electrically heated buildings in BC,
we reach a confidence interval of 5.1% [54]. This comparison relies on
the assumption that the set of buildings is representative of the re-
sidential building stock in BC, and on the physical interpretations
above.

5. Discussion and outlook

This paper provides a method to gain rapid insight into qualitative
characteristics (heating system type and building type) of a building
stock. Energy signature profiles were extracted for each building and
subsequently clustered to find dominant energy signature profiles.

Using two case studies we show that the method allows separating
electrically heated from non-electrically heated buildings, identifying
groups consisting of one building type (case study I), and differentiating
buildings with different electric heating systems (heat pump, resistance
heater, electric with auxiliary heater; case study II). The latter could not
be validated with metadata available for each building, but we found
strong agreement between our clusters and high level demographic
data.

5.1. Outlook

The method successfully grouped buildings by certain building
characteristics, and in particular we could show that aligning signature

profiles with dynamic time warping is a promising way to find similar
energy signatures in building stocks. In future research the following
five issues could be addressed to improve the method and its robust-
ness.

1. More metadata on system types (heating, cooling, ventilation) of
buildings would be highly valuable. It would allows us to reconfirm
our findings and could also show how energy signatures capture
certain ventilation systems, which was not considered in this paper.
Apart from that, additional data would enable supervised models to
learn and predict characteristics based on energy signatures.

2. As we show, DTW is highly valuable to quantify the pairwise simi-
larity of energy signatures. In both case studies it produced higher
Silhouette scores than common Euclidean distance based clustering.
However, as shown in the second case study, the shape of the energy
signature at its tails, i.e. at extreme temperatures is specifically
valuable to differentiate buildings. Hence, a similarity metric which
better quantifies differences in energy signature tails could improve
the building characterization.

3. In this study, we used k-means clustering and hierarchical clus-
tering. As we found in the first case study the occurrences of HVAC
systems in building stocks may be highly imbalanced requiring al-
gorithms to find clusters of different size. First experiments with
density based clustering did not show any improvements but further
research on the most suitable clustering algorithms may improve the
cluster quality.

4. Cluster quality was quantified by the average Silhouette coefficient.
It measures how dense and distinct each cluster is, and proved that
significant clusters were found. However, between 20% (case study
I) and 25% (case study II) of the buildings had low sample Silhouette
scores (<0.25). This indicates that they lie in between clusters and
implies that the range of energy signature profiles in a stock is
continuous rather than discrete, with certain energy signature
shapes reoccurring more often than others. The Silhouette coeffi-
cient is helpful, to identify those buildings with little resemblance to
larger groups of buildings. More research could help determine if
the characteristics of those buildings can be inferred anyway as for
example by using information from neighbouring clusters.

5. Case study I showed that some clusters were composed of buildings
with different heating systems (e.g. cluster 2). This makes sence,
since the energy signature is a composition of all loads inside a
building with varying temperature dependency (including fan loads,
hot water consumption, auxiliary plug heaters, other loads). This
composition of the load was not analysed further. When high fre-
quency smart meter data is available, a combination of our approach
with load disaggregation could be analysed in future [19].

5.2. Application realm

This work was motivated by the need for automated building
characterization to enable large scale, automated retrofit analysis. This
may include its use for building model calibration, for building
benchmarking (see Fig. 15) and for gaining rapid insight into building
stocks for sustainable policy design. Lastly, researchers may leverage
energy signature clustering to identify similar types of buildings to test

Table 4
Comparison of determined clusters to demographic data from British Columbia [53].

Share of buildings [%] (# buildings)
Clusters with matching shape Clustering Demographic data [53]

all filtered

Heat pumps (air-source) Cluster 4 16.4 (77) 12.1 (54) 10.4 (44’900)
Resistance heaters Clusters 1, 2 60.4 (283) 63.5 (233) 64.4 (276’600)
Electric heater with auxiliary system Clusters 3, 5 23.2 (109) 24.4 (65) 25.2 (107’700)

Sum 100 100 100
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new building analytics and control methods.

5.2.1. Model calibration
A comprehensive set of building characteristics allows us to use

more suitable building models for parameter calibration processes
[3,12]. Based on our results the clusters in case study II for example help
us to understand that the calibration model must be designed such that
it incorporates a non-electrical auxiliary heating system for extremely
low temperatures. If not considered, the calibrated parameter values,
for example the heating system efficiency, could be misleading. An
example for that problem is given in [24], who found that either heat
supply parameters (ventilation) or envelope parameters have to be
known for accurate building performance estimates.

5.2.2. Building benchmarking
By clustering buildings into groups one can ensure that the perfor-

mance of a building is benchmarked against buildings of similar type
and heating system. We showcase that application in Fig. 15. In the
plot, we derived the heating and cooling rate for each building of
Clusters 2, 3 and 4 of case study I using a 5-point piecewise linear re-
gression model [29]. We computed the average heating and cooling
rate (red dot). When a building with similar performance would be
benchmarked against the whole set of buildings it would have mediocre
performance. This is also the case if benchmarked against buildings in
cluster 2. However, if compared against buildings in cluster 3 it would
have a relatively high heating rate (i.e. low efficiency) and if compared
against buildings in cluster 4 the rate would be relatively low (i.e. high
efficiency). This brief example shows that the addition of the cluster
information could potentially enable to benchmark buildings in a more
physically meaningful manner.

5.2.3. Demographic overview
The method provides a rapid overview of prevailing energy sig-

natures in a stock, which can be used to infer the demographic dis-
tribution of heating system type or building type. For example, in case
study I we immediately see the strong dominance of non-electrically
heated buildings. Together with socio-economic insights from time-of-
use analysis (see Fig. 1), customized policies could be developed based
on smart meter data alone.

6. Conclusions

Knowledge on different building characteristics is required for the
design of building energy retrofits [7]. In this study, we developed a
novel, smart meter-based method to automatically retrieve thermal
building characteristics, i.e. the heating system type and building type.
It augments the set of methods to extract qualitative building char-
acteristics using smart meter data only, which are essential to enable
large scale, accurate building retrofit analysis. For example, it can im-
prove building calibration, where the calibrated parameters are more
accurate when the number of unknowns of a building is reduced [24].

While many previous studies extracted temporal patterns from
smart meter data to obtain socio-economic characteristics (e.g. primary
building use [14]), we developed a method for finding physical
building characteristics. We used the concept of energy signatures
which is an informative plot of the daily mean electricity usage and the
daily mean outside air temperature. In our approach we extracted the
shape of each buildings energy signature within a stock and subse-
quently, clustered them. That allows to sort buildings by heating system
type and building type. This was validated in two case studies with the
following quantitative results:

• In case study I, four clusters of different energy signature shapes
were found. Comparing them to metadata showed that, each cluster
is composed of more than 75% of buildings having the same heating
system (heat pump, gas furnace). Furthermore, two of the clusters
consist of more than 90% of the buildings with the same building
type (apartments, single/duplex buildings). No cluster which
strongly correlates to electric resistance heaters was found.

• In case study II, we focussed on the problem to differentiate build-
ings with electric heating systems only (heat pump, resistance
heaters). The determined clusters allowed to split buildings
equipped with heat pumps, from those with electric resistance
heater, or non-electric auxiliary systems installed. Although no
building-level validation data was available, we could show that the
number of buildings in the clusters matches demographic data
available with a maximum deviation of 1.7% in the share of build-
ings equipped with a certain heating system.

• Lastly, the approach allows to quantify the confidence of a building
to be assigned to a certain cluster. We could show that the majority
of all buildings has a sample silhouette score of larger than 0.25
(82% in case study I, 75% in case study II), a score lower than

Fig. 15. Example of the use of energy signature shape clustering for building benchmarking. The thermal performance of one example building (red dot) is compared
to the performance of buildings in clusters 2, 3 and 4 (left to right). The thermal performance is quantified by the temperature change point (x-axis) and the heating
and cooling rate (y-axis).
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indicates a low confidence in the cluster assignment.

For further research, we suggest to integrate the method into a
large-scale building stock retrofit analysis. This allows to quantify, how
much an automated building characterization can help to increase the
accuracy of approaches like building calibration and building bench-
marking.

Apart from that, we foresee this study as a start for more research
leveraging energy signatures to retrieve building characteristics. More
smart meter data sets with more metadata is required. This could po-
tentially also guide to a supervised learning approach.

6.1. Code and data availability

The source code and analysis process for this work is available as a
Python module and Jupyter notebooks. They are posted on GitLab and
are hosted on the building analytics platform BESOS.4,5 The data set
from the first case study is available on [9]. The data from the second
case study is unfortunately proprietary.
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Epilogue

This paper was the first in the literature to use energy signatures to segment buil-

dings within a stock. Further, the information carried in the characteristic shape

of a building’s energy signature allowed us to infer building characteristics with an

unsupervised learning algorithm. Here we used it to infer the heating system type

and building type. This includes differentiation among heating systems with the same

power supply, like heat pumps and electric furnace heaters.

The next step of this research would be to integrate the heating system information

with other information like primary-use-type, building type and occupant behaviour

[16][17]. Furthermore, it would be helpful to leverage other data sources like satellite

data to receive better knowledge on the geometry of each building. Only afterwards

the actual model calibration process can be done.

Instead, we shortcut that process and apply surrogate modelling to a synthe-

tic data set. This ensures that a suitable base model is known. For this idea-

listic case, we benchmark surrogate based calibration with other popular bottom-

up, i.e. physics-based, calibration approaches (including the balance point method,

and resistance-capacitance model calibration) and with novel top-down deep lear-

ning methods. While other studies have benchmarked calibration performance by

the predictive accuracy of the models, we are mostly concerned in retrieving accurate

building design parameter estimates.

6.1 Benchmarking surrogate calibration
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Data-driven models are increasingly used to extract building energy perfor-

mance characteristics from building sensor measurements. Building energy

model calibration approaches are most frequently used. This may no longer

be suitable when data becomes available from entire building stocks, as in

calibration each building is considered individually. While it is possible to

augment current approaches, e.g. with archetype energy model development,

we argue that the ever-increasing amount of building time series data may en-

able a shift from building-by-building model calibration to supervised deep

learning models, which excel at extracting temporal features from highly
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paradigms, i.e. building-by-building calibration and deep-learning-based build-

ing characteristics prediction. Seven different approaches are considered,

including three lumped parameter model calibration methods, two build-

ing energy performance simulation model calibration methods and two deep

learning methods. We test the methods on an open-source synthetic build-

ing data set consisting of 16,000 simulated buildings. It allows to describe

practical efficacy and sources of inaccuracy for each of the seven approaches,

providing novel and substantial insight including an analysis of the impact

of climate, thermal mass, occupant behaviour and air-infiltration on the per-

formance of each method.

Keywords: building characterization, data-driven retrofit, time series

analysis, calibration, deep learning, surrogate model

1. Introduction

The building sector is on the brink of fundamental change. Digitization is

transforming our understanding of a building from a passive, voiceless space

into a constantly communicating, active service provider for healthy and

sustainable living [1]. At the core of this transformation is sensor data, which

provides a continuous stream of information on indoor comfort conditions and

energy performance.

This time series sensor data also is a viable source of information for

building diagnostics and analysis [2][3]. In particular, we can extract thermal

characteristics which enables more effective energy retrofits [4], the deriva-

tion of accurate building stock models to predict future energy behaviour

of neighborhoods, districts or cities [5], and also can be used for commer-
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cial use like customer targeting (e.g. demand response targeting) [6].1 The

bandwidth of thermal characteristics we can extract is large and includes

both categorical information, like the installed heating system type [8][9],

and quantitative information like the whole building heat loss coefficient or

the heating system efficiency [10].

In this paper we focus on the latter, which gives a estimate of the effi-

ciency of a building. Traditional research in the field of building science, has

retrieved these quantitative building properties using calibration of physics-

based whole-building models, whose parameters are calibrated using the mea-

surement data (bottom-up approach). The methods mostly differ in the com-

plexity of the underlying model [11] ranging from the 1 or 2 parameters-based

balance-point (or energy signature) model [12], to Resistance-Capacitor (RC)

network models of various orders of complexity [13], and to complex building

energy simulation (BES) model calibration approaches [10].

Outside the building domain many other disciplines have undergone a

“big-data” paradigm shift. Although large amounts of sensor data are accu-

mulating, many findings of various domains are yet to be transferred to the

building sector. This is the key motivation for this paper and resulted in the

following contributions.

1Please note, that not only thermal characteristics of a building can be extracted.

For example, it has been shown that we can infer about the socio-economic situation of

occupants [7]. This leads to privacy concerns and very few building sensor data sets are

publicly available.
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First, we compare traditional building calibration approaches with rapidly

advancing, deep machine learning models [14] that have recently shown par-

ticularly high performance on time series modelling tasks [15]. Instead of a

model with a predefined structure, like physics-based models, machine learn-

ing models are found algorithmically to optimally perform on a specified task

(top-down approach) [16]. Here, we apply them to predict quantitative build-

ing characteristics, which is a supervised regression problem.

Industry adoption of characterization methods may be hindered by a lack

of model transferability [17] caused by lacking robustness and reliability in

the performance for practical use cases. We suggest to assess the methods us-

ing metrics that represent practical application cases such as building stock

modelling and retrofit analysis. This is considered in this work where we

quantify the robustness of the method to four confounding building factors

(those mentioned above).

The rapid development of machine learning has largely been supported

by the ecosystem of the research field. It includes public data sets, open

code repositories and transparent benchmarking. In the domain of building

characterization and building calibration many studies exist where individual

methods are applied on specific buildings, whose data may even be undis-

closed. This problem has been acknowledged, and large efforts are being

undertaken both to share data and to benchmark thermal characterization

approaches. For example, a repository hosting meter data of thousands of

buildings was initiated [18] and companies have offered their meter data for
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research purposes [19][20]; or in [21] multiple characterization methods were

compared.

We contribute to these efforts and introduce an open-source, extensible simulation-

based synthetic building sensor data set. In comparison to the public real

world data sets, a synthetic data set provides us with full information on

the building and ground truth data (labels) on any thermal characteristic

the method developer is interested in is easily accessible. The data set can

be continuously upgraded to be suitable for certain research objectives. In

this paper for example, we use it to understand how climate, construction

materials, air-infiltration and stochastic occupant behaviour affect the per-

formance of seven different thermal characterization approaches.

All of the data and code used for this work is available in a GitLab

repository.2 As such, this work serves as a catalyst for future studies by

providing: (1) a preliminary comparison of several popular methods in the

literature and state-of-the-art machine learning approaches, (2) a reusable

benchmarking ecosystem and (3) robust performance metrics that measure

the practical efficacy of the methods.

1.1. Structure of the paper

In the following we first provide background knowledge on the data sources

serving as input to building characterization methods and on the bottom-up

and top-down building characterization approaches. Subsequently, we intro-

duce the data set we generated and highlight its use to understand the impact

2https://gitlab.com/energyincities/bp-benchmarker
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of four confounding factors on the model accuracy (climate, construction ma-

terials, air-infiltration and stochastic occupant behaviour). Then, we provide

details on all seven characterization methods applied and benchmarked in

this paper and discuss the results.

2. Background

2.1. Data sources

Here we infer thermal building properties using time series data produced

by sensor measurements. While data on buildings have been collected for

decades already, the number of sensors, their sampling rate and standard-

ization of data acquisition is ground breaking. Worldwide, more than one

billion smart metering devices will be installed by the end of 2020 [22], and

large construction markets have or will have (e.g. Canada [23]) nationwide

coverage. Types of measurement data include on site measurements such as

indoor temperature data and heating power, as well as off-site measurement

data from weather files such as temperature and solar radiation.

Different sensing devices exist and are usually packaged in smart thermostat

systems or smart meters. Smart thermostats, for instance, may record the

indoor temperature as well as other variables like the heating system usage

[19]; smart meters most commonly only report hourly or subhourly energy

consumption [6].

2.1.1. Whole-Building heat loss coefficient

The automated smart metering devices do not capture any explicit ther-

mal characteristic information (e.g. U-values) of the buildings to validate our
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methods or to train supervised machine learning models. Labeling the build-

ings usually requires extensive manual efforts (e.g. measuring the U-value of

a building). That scarcity in building meter data sets is a pressing problem in

the field [17] and automating labelling of buildings is being explored [24][25].

When using a synthetic data set, full information of the thermal properties

of the buildings are given or derivable. Here, we compute the whole-building

HLC (see Appendix 8) which quantifies the rate at which heat is lost through

the building envelope via convective, conductive and radiative forces, as well

as infiltration. This knowledge is instrumental for estimating the benefits of

building retrofits [4] or assessing the quality of a building post-construction

[26].

2.2. Modelling paradigms

The problem of data-driven thermal property estimation has been ap-

proached from several angles. Two distinct paradigms emerge [10]: (1) bot-

tom up, where the unknown characteristics, represented by parameters of an

engineering model, are found by parameter calibration; and (2) top down

models, where the a purely data-driven model is trained on labelled data to

predict characteristics of future buildings.

This section provides a high level overview of these approaches, including the

major differences between the two and relevant barriers to application. More

background on the specific methods implemented in this work can be found

in Section 3.2.
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Figure 1: General overview of the bottom up and top down paradigms for thermal property

estimation in buildings. The models in this image represent the those that are tested in

this paper: (1) Energy Signatures, (2) RC-Networks, (3) Surrogate-Based Building Energy

Simulation and (4) Supervised Deep Neural Networks.
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2.2.1. Bottom up approach

Bottom-up engineering model calibration is the dominant approach in

the thermal building property estimation literature [10] [21] [27]. It relies

on an underlying physical model that uses physical laws to predict dynamic

building behaviour (often indoor temperature time series). Parameters, rep-

resenting the unknown thermal properties, are incrementally updated in an

optimization loop that reduces the error between the real time series and

the simulated time series (Figure 1). It is commonly used in the context of

building control [28] [29] [30], but also can be used specifically to find build-

ing characteristics [31] [32] [33] [34] [35]. When used for control, the major

goal is to achieve accurate building behaviour predictions. Hence, the pre-

dictive accuracy of the model after being calibrated is the key error metric.

When used for property estimation it is crucial that the discovered building

parameters match ground truth values. This is pursued in this study.

A variety of techniques for model calibration exist, they differ by complex-

ity of the underlying physical model and technique to calibrate the parame-

ters. For the purpose of this paper, energy signature calibration, RC network

calibration and BES-based surrogate calibration (either using black-box op-

timization algorithms or using Markov-Chain Monte Carlo sampling) were

considered and are described further in section 3.2. Each of these approaches

have different data input requirements and implementation workflows, while

the requirements for supervised learning are again unique. Figure 1 and

Section 2.2.3 highlight these differences.
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2.2.2. Top down approach

Top down approaches can be formulated as an unsupervised (ex. cluster-

ing) or supervised (ex. classification or regression) machine learning predic-

tion problem. For numerical HLC quantification regression, i.e. supervised

learning, is the natural choice. Unlike the physics-based calibration tech-

niques described above, black-box methods require no prior knowledge of

system dynamics, but create a model-agnostic mapping from time series in-

puts to the building quantity of interest by training on labelled data (Figure

1). Deep learning is a highly popular subfield of machine learning that creates

such mappings through multiple layers of increasingly abstract representation

throughout training [14].

Compared with calibration, applications of supervised learning to thermal

property estimation are fairly limited. This is particularly true for deep

learning, for which only a few studies exist [36] [37] [38]. Neural networks fell

out of favour in this domain likely because the required ground-truth labels

are rarely available. Recent work, however, showed that deep learning can

be successfully applied for HLC estimation [39]. Its inclusion in this study

therefore provides a novel prospective into the state-of-the-art for thermal

property estimation. Further, the discussion section provides suggestions for

overcoming label scarcity.

2.2.3. Data requirements and workflows

1. Energy signatures

• No pre-training required.

• Calibration error between measured and simulated time series.
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2. RC networks

• Require the selection of an underlying physical RC network model,

which may be different for every building.

• Calibration reduces error between measured and simulated time

series.

3. Surrogate-based building energy simulation (BES)

• Require a building energy simulation (BES) model that contains

a very detailed description of a building [40].

• BES has long simulation run times. To overcome this, machine

learning models (i.e. a surrogate models3) are trained on a low

number of simulation samples (with calibration parameter values

as inputs, simulation outcomes as output) to emulate the BES

model [44].

• Calibration reduces error between measured and simulated time

series.

4. Supervised deep neural networks

• Require a large, representative training dataset with high-fidelity

labels.

3In general, surrogate models are used in two kinds of paradigms. Either they are

used to increase speed of an optimization algorithm minimizing the distance of simulation

outputs and measured data [41], or they are used to increase the speed of sampling a

probability density function (posterior) of the searched parameter value [42][43][31]. Both

approaches are applied in this paper.
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• Predicts based on characteristics and patterns of representation

learned from the training data.

3. Methodology

In the following we introduce the synthetic data set, comprising sub-

hourly metered energy data of 16,000 buildings, and seven methods to esti-

mate the HLC.4

The synthetic data set is designed to assess the methods robustness towards

confounding factors including stochastic occupant behaviour, air-infiltration,

thermal mass of the buildings, and climate. We provide three error metrics

to assess the overall performance of each method and their robustness when

confronted with the four impact factors.

3.1. Synthetic dataset

We generated the meter data of 16,000 buildings by running parametric

simulations using BESOS [45] and EnergyPlus [40].

Synthetic data was used for two fundamental reasons. First, labelled building

meter data sets are rare [46]. Second, building simulation grants the control

required for large-scale parametric studies that manipulate specific building

characteristics relevant to understand the relative performance of character-

ization approaches. To perform robust, comparative modelling studies the

use of simulation data is thus warranted - in fact, arguably unavoidable. Still,

4More information on the methods can be found in the code repo https://gitlab.

com/energyincities/bp-benchmarker
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the observed relative performance of the models on simulation data cannot

necessarily be guaranteed on real data.

3.1.1. Data creation pipeline

The buildings data creation pipeline in this work is similar to that in [39].

The Building and Energy Simulation, Optimization and Surrogate-modelling

(BESOS) platform [45] enables to run quasi-random latin-hypercube-sampling

of building design parameters, as listed in Table 1 [47]. These parameter com-

binations are fed as input to the building simulation software EnergyPlus,

version 9.2.0 [40]. Outputs from EnergyPlus include various information on

the building performance such as time series values of all relevant thermal

variables. A set of time series, and computed HLC values, were stored to

form the final, labelled data set (see section 3.1.4).

3.1.2. Baseline building model

To generate the building data set, two baseline building models were first

defined: one wooden building and one concrete building. Table 1 specifies

the material composition of the buildings. Both buildings have a constant

geometry, a simple 5mx5mx3m = 75 m3 box with one zone, four 4mx1.5m =

6m2 windows and no unconditioned spaces (Figure 2). Additional modelling

assumptions are listed below.

• The floors were designed as adiabatic. Ground heat loss effects are

difficult to simulate and therefore, neglected for now [48].

• No mechanical systems were modelled, but EnergyPlus ideal air loads

were used instead.
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Surface Material Layers Thickness Ranges (m)

Wall

Stucco [0.015, 0.030]

Plywood or Concrete [0.006, 0.03] or [0.2, 0.3]

Insulation [0.035, 0.3048]

Gypsum [0.00633, 0.0159]

Window

Glass [0.001, 0.01]

Air Gap [0.006, 0.02]

Glass [0.001, 0.01]

Floor Plywood or Concrete 0.0127 or 0.1016

Roof

Roof Membrane [0.0012, 0.0095]

Insulation [0.1, 0.3]

Metal Decking [0.0007, 0.0015]

Table 1: Material composition of the buildings and the thickness ranges used for parametric

generation of buildings meter data for our synthetic data set.

• Constant setpoint schedules were employed across all cases.

• Infiltration is modelled according to the DOE standard.5 Complex

airflow networks and ventilation were ignored.

3.1.3. Building design parameters

Figure 2 showcases the manipulated characteristics. For each of the

wooden and concrete building baselines, the material thicknesses were var-

ied to create 1000 buildings with distinct HLC values. To do so, thickness

5https://bigladdersoftware.com/epx/docs/9-2/input-output-reference/

group-airflow.html#zoneinfiltrationdesignflowrate
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Figure 2: Manipulated building design parameters. In total 16,000 buildings were created.

The building properties on the left were used to quantify the robustness of the methods

to diver stock-level characteristics. The properties on the right were used to measure the

sensitivity of the methods to changing HLC values.

ranges for each of the materials was defined according to engineering stan-

dards and randomly sampled for each new building. Each of these sets of

buildings was then simulated with annual weather data from two different

climates (Victoria, CA and Chicago, USA), with and without air-infiltration

(flow per exterior surface area of 0 and 0.00085 m3/sm2), with and without

equipment and occupancy loads6, for a total of 1000 ∗ 2 ∗ 2 ∗ 2 ∗ 2 = 16, 000

simulated buildings. Considering the 2 material types, 2 infiltration rates, 2

climates and 2 load cases 24 = 16 experimental conditions are considered.

3.1.4. Simulation outputs: temporal measurements and HLC

EnergyPlus outputs a myriad of time series variables that describe the

detailed temporal behaviour of a building over the course of a simulation.

Some of these variables can be measured with sensors in a real building,

including external temperature (Text), internal temperature (Tin), heating

6The stochastic equipment and occupancy loads were generated with the richardsonpy

library from https://github.com/RWTH-EBC/richardsonpy. A distinct stochastic sched-

ule was generated for each building that included loads.
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Figure 3: The investigated research paradigms and method implementations.

system power (Q̇hsys) and solar gains (Q̇sol). For this study, 5 minute time

steps were output by EnergyPlus and used for all modelling approaches but

the energy signature method, which aggregate values daily (see Section 3.2.1).

Similarly, all models use one week’s worth of data in January, aside from the

energy signature method, which uses one years worth of data.

The selected time series variables, granularities and measurement periods

were chosen according to previous studies [48] [13].

As described in Section 2.1.1 and Appendix 8, the whole-building HLC

[W/◦K] depends both on the heat loss from infiltration and the heat lost

through the building envelope. These were calculated analytically from the

outputs of EnergyPlus. The full calculation can be found in the Appendix.
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3.2. Seven thermal building characterization approaches

Within the two paradigms, i.e. calibration of bottom-up models and top-

down prediction, several approaches and implementations exist. Figure 3

summarizes the paradigms and corresponding implementations considered

in this paper. They are not exhaustive, but provide a baseline for continued

analysis and benchmarking. We propose that future researchers developing

new methods use our implementations for comparison. In this section, a

technical description of the computational approaches will be provided.

3.2.1. Energy Signature (ES) Calibration

The underlying physical model for ES calibration, which is a standard

approach in building energy modelling [49] [12] [50] [33] [51] [52], is a basic

reformulation (equation 1) of the whole-building energy balance (equation

9). The energy demand of a building is plotted against outdoor tempera-

ture. Typically, each point on the plot represents the mean heating load

and outdoor temperature for a single day. Above a particular value for the

outdoor temperature, known as the balance point, no energy is required to

heat the building. The slope of the line of best fit below the balance point

represents the HLC.

Q̇h,d(T ext) = HLCwb(T in − T ext) + Q̇baseline (1)
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3.2.2. Resistance-capacitor (RC) network calibration

In this popular approach, a building is modelled using an RC network

and an associated set of stochastic differential equations [53].7 The RC model

can be defined at differing orders of complexity, from simple networks with

a single lumped capacitance to complex, multi-order systems [13].

Selecting the appropriate RC model for a given building is a non-trivial

task [46] [27] [48].8 In this paper, only the results for two, low-order RC

network implementations are presented (see Appendix 10) because the pa-

rameter estimates worsened for higher model orders. This result will be

discussed further in Section 4.

3.2.3. Surrogate-based BES calibration using optimization

Instead of lumped parameter models, more detailed physics-based models

are sometimes favoured. For that purpose building energy simulation (BES)

models [40] can be manually or automatically calibrated [10]. This calibra-

tion process relies on iteratively adjusting calibration parameters to match

simulation time series outputs and measured data. This can be computation-

ally expensive and machine learning based surrogate models are used instead

[42][31][54]. A surrogate model approximates the BES model, by learning

7More detail is provided by Bacher and Madsen at [13] and [53], but, briefly, statistical

maximum likelihood estimation is applied to estimate the unknown parameters in the

model. Specifically, a Kalman filter is used to estimate the likelihood function, and an

optimization algorithm is used to find the set of parameters that maximize the likelihood

function.
8Building archetypes with pre-defined RC models might help to alleviate this problem.

This is explored further in the discussion.
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from a few simulation runs to estimate the effect of changes in parameter

values (surrogate model inputs) to changes in simulation outcomes (surro-

gate model outputs) [55].

BES models produce non-linear, multi-modal outputs with possible discon-

tinuities [56]. Therefore, black-box optimization approaches such as genetic

algorithms (GAs) are often applied to determine suitable parameter choices

[41]. Here, we use the NSGA-II optimization algorithm (population size =

200, offspring size = 100, iterations = 3000), minimizing the summed dis-

tance of simulated daily heating demand and measured daily heating demand

[57]. The approach is similar to [41], but uses higher frequency data (hourly

instead of monthly).

3.2.4. Surrogate-based BES calibration using Bayesian calibration

The BES model time series outputs y = G(x,Θ) may be seen as a function

of the known parameters of a building x, and the unknown characteristics Θ,

i.e. the vector of calibration parameters [58]. When comparing simulation

outcomes to measurement data z, Θ may be adjusted such that the error

between y and z becomes small.9

Following Bayes’ theorem, a posterior for the unknown parameters Θ, i.e. a

probability density function approximation of the calibration parameters, can

be inferred using the (i) sensor measurements z, (ii) simulated model outputs

9Following [58], the relationship of y and z can be modelled with z(x) = y(x,Θ) +

δ(x) + ε(x), where z represents the measurements, y represents the BES outcomes, ε(x)

represents errors in measurements (aleatoric uncertainty) and δ(x) corresponds to the error

induced by the model bias (epistemic uncertainty). Often the model bias δ is not explicitly

modelled for building calibration [31][59].

Draft ready for submission to Journal of Energy and Buildings 19

147



y, (iii) and a prior probability p(Θ) for the calibration parameters. The prior

integrates existing knowledge of the modeller (e.g. range of common wall

thickness values).10

p(Θ|z) ∝ p(z|Θ)p(Θ) (2)

As we only know an proportional result of the actual probability density,

we use Markov-Chain Monte Carlo (MCMC) sampling, here the Metropolis-

Hastings (MH) algorithm, to approximate the posterior p(Θ|z). The al-

gorithm generates a sequence of guesses for Θ, where the MH algorithm

determines which guesses to keep and which to discard. The pool of ac-

cepted guesses approximates the true posterior p(Θ|z), often visualized as a

histogram. In this study we derive only one histogram for one calibration

parameter, the HLC.

That MCMC sampling process usually requires thousands of simulation

runs which motivates the use of surrogate models. Most commonly a Gaus-

sian Process surrogate model is used with a explicit formulation of the like-

lihood p(z|Θ) [31]. When using non-GP surrogate models, other approaches

exist to compute a likelihood function exist. We use the approach suggested

by [61], where the likelihood is given by p(z|Θ) = exp(−
∑ |z−y|2

2σ2 ) which can

be used with any surrogate model type.11 Further, we specified a uniform

10It should be carefully chosen as it has significant effects on the outcome of the posterior

estimate [60].
11This assumes identically distributed errors in the BES approximations with zero mean

and constant variance σ2, see [61].
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distribution for each parameter bound by the maximum and minimum heat

loss coefficient observed in the data.

3.2.5. Gated recurrent neural networks

Recurrent Neural Networks (RNNs) account for temporal input structure

and are a common choice of neural network architecture when working with

time series data. Vanilla RNNs suffer from something known as the vanishing

gradient problem which prevents them from learning long-term temporal

dependencies in data. Several work arounds for this problem are available,

including Gated Recurrent Units (GRUs) [62] and Long-Short-Term-Memory

Units (LSTMs) [63]. GRU has been shown to outperform LSTM in terms of

runtime and accuracy [64] so it was chosen for this paper.

3.2.6. Residual neural networks

Much of the success of deep learning can attributed to the Convolution

Neural Networks (CNNs). Intuitively, these networks operate by detecting

local correlations in input data and later merging semantically similar fea-

tures to produce a final output. 1-Dimensional CNNs have shown to be

useful for a variety of time series applications, include speech-to-text, music

generation and time-series classification [14] [15]. Residual Neural Networks

(ResNets), introduced by He et al., are a CNN variant that allow for the

training of very deep neural networks by introducing ”skip-layers” which

propagate lower representations forward through the network. They have

exhibited state-of-the-art performance on various tasks, including time series

prediction [65] [15].
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3.3. Performance assessment

In this section, we provide metrics to assess the performance of each of

the seven approaches to extract building characteristic from a heterogeneous

stock of buildings. The experimental design of the data set allows for quan-

tification of the impact of thermal mass (wood vs. concrete), infiltration,

occupant behaviour, and climate on each of the methods (see Figure 2. As a

result, it lets us infer about robustness of each method with details on causes

of low performance.

The metrics we use to quantify the performance of each method are intro-

duced in the following:

Figure 4: The quantitative metrics used in this paper are designed to measure the ro-

bustness and the sensitivity of the methods to changing building properties. Scenario 1 is

concerned with the robustness of a method to heterogeneous buildings across the build-

ing stock. Scenario 2 considers measures the sensitivity of a method to differing material

values (ie. HLC).
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3.3.1. Performance metrics

The goal of each approach is to estimate the numerical HLC value for

each of the 16,000 buildings. These estimates might be used for application

cases such as non-intrusive, data-driven retrofit analysis and heterogeneous

building stock modelling. For practical application cases it is not sufficient

to measure only the goodness-of-fit of the model; the robustness and the

sensitivity must also be quantified. The former quantifies model performance

across heterogeneous building properties, while the latter measures sensitivity

to differing HLC values for homogeneous buildings. These are formalized in

the following.

The relationship between the measured and predicted HLC values pro-

vides descriptive statistics for these performance metrics. In general, a com-

putational model is perfect if the predicted and actual values align on the

diagonal when plotted against each other. In this case, the line-of-best-fit

between these values will have a coefficient-of-determination (R2-score) of 1

and a slope of 1. The mean absolute error (MAE) between the predicted and

actual values for buildings will be 0. Note that even a model with a perfect

R2-score and slope can have an MAE of any magnitude if the line-of-best-fit

is shifted up or down.

R2(HLC, ĤLC) = 1−
∑n

i=1(HLCi − ĤLCi)
2

∑n
i=1(HLCi −HLC)2

(3)

MAE(HLC, ĤLC) =
1

n

n∑

i=1

|HLCi − ĤLCi| (4)

where ĤLCi is the predicted value for building i, HLCi is the actual value

for building i and HLC is the mean HLC.
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To perform robustness and sensitivity analysis, separate linear regressions

were performed on the modelling results for each of the 16 cases in Figure

2.12 To understand why, consider the following two scenarios.

1. In the most common scenario we analyse a stock of buildings with

heterogeneous characteristics (Figure 4: Scenario 1). A method can

be considered robust and unbiased if it does not systematically over

or under predict HLC for certain characteristics. We assess this sys-

tematic bias using the impact of each of the four experimental impact

factors (construction material/thermal mass, infiltration levels, occu-

pant behaviour, weather conditions). This impact can be quantified

by computing and comparing the error distributions of buildings with

similar characteristics within that heterogeneous building stock. For

example, if a set of buildings with matching HLC values exist both in

Chicago and in Victoria, a robust method must produce the same error

distribution in both cases.

2. In some cases, heterogeneity in the building stock is small, i.e. similar13

buildings are under assessment (Figure 4: Scenario 2). This may occur

for a specific neighbourhood or district. In this scenario we can ease

the requirements; a method must primarily be able to rank the HLC

values of buildings correctly. This can be measured with the slope

of the line-of-best-fit between the predict and actual values within a

12To avoid overfitting, machine learning methods require a separate data set for training

and validation. The regression results presented in this work are on a pre-defined validation

set that was not used for training.
13Here, similarity specifically refers to the building characteristics defined in Figure 2.
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Figure 5: The summary statistics acquired by comparing the predicted and actual thermal

property values for all the computational methods and building property case studies. The

three columns in each subplot represent the R2 (goodness-of-fit), the slope (sensitivity)

and the MAE, respectively. Each of these three columns contains 16 data points; one for

each experimental case. The values for R2 and slope fall between 0 and 1.4, while the

MAEs fall between 0 and 70. The dashed blue line represents R2 and slope for a perfect

model, while the dashed orange line represents the MAE for a perfect model. The wider

the spread of the MAEs, the less robust the model.

particular case.

4. Results

In this section we assess the performance of the seven methods by quanti-

fying the performance metrics on a building characterization task introduced

above. They are summarized graphically in Figure 5 and numerically Fig-

ures 6, 7 and 9. The metrics provide us with a comparative overview on the

performance of each of the seven approaches. We find a much larger spread

in the performance of the studied gray-box methods in comparison to the

surrogate-based BES model calibration and top-down deep neural network
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Figure 6: Numerical results for goodness-of-fit, as measured by the R2 − score. A score

of 1 indicates the best fit.

models. This is discussed in the following where the R2 performance of the

models within each experimental condition is discussed first.

4.1. Goodness-of-fit

In this work, the goodness-of-fit is measured by the R2 − score which

was computed separately for all of the 16 experiments. The threshold for

goodness-of-fit under which a method is no longer reliable is in reality some-

what arbitrary. In Figure 6 it can be seen that all of the methods aside from

RC order 2 achieve a score over 0.8 for every experimental condition which

indicates a strong goodness-of-fit within each case.

Surprisingly, the 2nd order RC model performs worse than the 1st order

model. This can be explained by the calibration approach minimizing the

error between the predicted and actual time series. Higher order models,

Draft ready for submission to Journal of Energy and Buildings 26

154



which are calibrated with more time series, have more parameters making

them more variable but also easier to overfit to the input data. This explains

the high variability in errors in the HLC estimates on our test data.

Figure 6 shows that the CNN consistently performs the best in terms of

R2-score. RC order 2 performs the worst by far; for many cases its R2-score

is close to 0. Still, in some cases (for example the wooden building with

infiltration in Victoria) the method performs well. This shows that a single

case study might yield the method to be reliable, even if this is not the case

in general. Literature tends to run case studies that validate methods on

only a single building without varying properties or climatic conditions; the

result here provides strong evidence that this is not sufficient.

Evaluating the rows of the heatmap, it can be seen that the other methods

have the lowest R2-score for the cases with stochastic schedules. It follows

that, of the experimental conditions that were tested in this study, the addi-

tion of stochastic loads has the largest effect on the method’s goodness-of-fit.

4.2. Accuracy and robustness

We test if a method produces accurate and robust ĤLC for a hetero-

geneous stock of buildings by checking how much the error is impacted by

extraneous building properties. The distribution of the errors of ĤLC must

be similar for all experimental conditions for a method to be considered ro-

bust (recall Section 3.3).

Figure 7 provides a numerical summary of the MAEs and the boxplots

in Figure 8 provide a visual summary of the distributions. The first thing

to notice is the differences in magnitude of the errors between the methods.

The Energy Signature and RC Models have much higher errors in general
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Figure 7: Numerical results for the MAE. This provides a metric for accuracy and begins

to indicate the method robustness. And MAE of 0 indicates perfect accuracy. The larger

the difference between MAEs for a method, the less robust the method.

than the surrogate-based BES calibration and deep learning approaches. The

worst performing model in terms of absolute error is RC order 2, followed by

the Energy Signature method and then RC order 1. For the surrogate-based

BES calibration approaches and for the RNN, the errors are generally under

7, while the CNN has errors that are always below 3.

4.3. Shifted error distributions

A statistically significant difference (p<0.05) in the error distributions for

all of the evaluated methods was found. While this is noteworthy, it is not the

only consideration, as the distributions may have a statistically significant

difference that is meaningless in practice.

In the remainder of this section we will highlight for each method whether the
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Figure 8: Boxplots are a standard approach for summarizing data distributions. In this

figure, the error distributions for each of the 16 experimental cases are plotted. The differ-

ence between these distributions indicates a method’s robustness to changing properties.

Note that for the BES calibration approaches, a few outliers were found. For readability,

these were not included.

shift in the error distributions is practically relevant. Analyzing the results

in this way will also highlight which of the evaluated confounding factors

have the most significant effect on the modelling results. It will be shown

that the confounding factors do not affect the methods in the same way. For

example, the largest difference in error distribution for the Energy Signature

method is caused by adding infiltration, while this is not the case for RC

order 1.

For clarity, only the most important features of the data are discussed. The
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reader is encouraged to analyze the results further.

• Energy Signature: For this method, there is a clear distinction be-

tween the cases with and without infiltration. All else held equal, the

buildings with infiltration result in a much higher MAE than the build-

ings without infiltration. This indicates that this method is not able

to model infiltration properly and thus is systematically biased. To

model HLC for a heterogeneous building stock a method must be able

to account for infiltration. Thus, the Energy Signature method is not

suitable for this application.

• RC order 1: From Figure 8, it is clear that there is a fairly large

difference in the error distributions between the cases for this method.

Unlike the Energy Signature approach, this method tends to find lower

errors for the buildings with infiltration and the capacitance of the

envelope (i.e. concrete vs wood) has an affect on the predicted HLC.

The RC order 1 method also yields larger errors for the buildings with

schedules than for buildings without schedules, and the spread in the

errors tends to be wider. The largest MAE found was 24 (Victoria,

concrete, schedules) and the lowest was 1.4 (Chicago, wood). Over all,

this model is not robust to the extraneous factors tested in this work.

• RC order 2: Of the examined methods, RC order 2 exhibited the

least robust. This is likely due to over-parameterization (discussed

previously).

• Optimization Calibration: This method is most susceptible to the

presence of stochastic schedules. In general, the errors for the cases
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with schedules are larger and more variant. The largest MAE is 1.4

and the lowest is 0.34. In a practical scenario this is likely insignificant,

but it is up to the user to decide.

• Bayesian Calibration: The results for Bayesian Calibration are very

similar to those for Optimization Calibration.

• RNN: Unlike the other methods, the RNN exhibits lower MAEs for

buildings with schedules than for building without schedules. Overall,

it tends to perform most poorly in the infiltration cases without sched-

ules. Compared with the surrogate-based BES calibration approaches,

the RNN method finds a larger differences the error distributions, but

these differences are still much smaller than for the gray-box calibra-

tion approaches. Again, it is up to the practitioner to decide whether

the differences in the error distributions is significant in practice.

• CNN: The CNN has the lowest errors across all cases. The MAE is

less than or equal to 1 in every case and there are less outliers with

high errors. The greatest differences in error distributions are caused

by infiltration and stochastic schedules, but these differences are likely

insignificant in practice.

4.3.1. Sensitivity to material properties

The slope of the line-of-best-fit indicates the sensitivity of the method

to differing material parameters (see Figure 1). Of the tested methods, the

surrogated-based BES calibration approaches achieve slopes that are closest

to 1, with Bayesian calibration slightly outperforming optimization calibra-

tion. Again, RC order 2 performs worst by far, but even so this method
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Figure 9: Numerical results for method sensitivity to differing material values. A value of

1 indicates perfect sensitivity.

achieved a slope of 1 ± 0.1 for 6/16 cases. RC order 1 tends to find slopes

above 1, while the Energy Signature approach finds slopes that are less than

1, so the former is the most sensitive to changes in HLC, while the latter is

the least sensitive. For the Energy Signature approach, the concrete build-

ings in Victoria have slopes closest to 1. Of the deep learning approaches,

the CNN outperforms the RNN.

4.4. Summary

Based on the analysis above, all of the models except for RC order 2 ex-

hibit a strong goodness-of-fit and reasonable sensitivity to differing material

properties. Even so, none of the gray-box calibration approaches are robust

to heterogeneous building properties. This is a first indicator that supervised

deep learning approaches may become a key element in data-driven retrofits,
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stock modelling and demand-response management, but the presented study

is constrained by the experimental set-up and the results cannot be gener-

alized without appropriate consideration. The limitations of this work and

the implications on the results will now be discussed.

4.5. Assumptions and limitations

The provided comparison of methods is valid under strong modelling

assumptions.

• The building design parameters, that are not calibrated, are assumed

to be perfectly known. That means that the BES calibration model

is the same one that was used for generation of the synthetic dataset.

Similarly, the training and test data for the deep learning model was

generated by the same BES model.

• RC-model design was kept at its minimum. Potentially, a better suited

model structure exist. This however, acknowledges that automated

RC-model design is currently lacking in literature.

• The CNNs were trained across all climates, materials, infiltration cases

and cases and are thus less over-specified than the surrogate methods,

which were trained individually for each experimental case. Further,

the surrogate calibration only used heating rate as input, while all of the

other methods used four time series variables. Regardless, the major

conclusions of this study remain the same.

Based on these assumptions the given results are biased in favour of learn-

ing based methods. Future work is required to generalize these methods, e.g.
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the expected accuracy-loss due to model misspecification in case of BES cali-

bration needs to be studied and quantified. Nonetheless, the results highlight

the sensitivity of well-established methods towards building material choice,

air infiltration, stochastic occupant behaviour, and climate, and motivates

further research into deep learning based approaches.

5. Discussion

The goal of this paper was to transfer machine learning research to foster

data-driven building characterization. We contributed with a holistic test

of novel machine learning methods to predict building characteristics using

sensor data as input and compared them to traditional model calibration

approaches. Therefore, we generated a synthetic data set which offers an ex-

perimental environment to test the methods’ robustness towards four factors

that possibly confound characterization accuracy.

The results show the risk of using data-driven methods for building character-

ization as commonly occurring factors, like stochastic occupant behaviour,

significantly impact the performance of traditional methods. Novel deep

learning methods reach higher overall performance and robustness, but re-

main far from application due to practical constraints like the lack of sufficient

labelled training data.

In the following we discuss the experimental results. Further, we discuss

the advantages and disadvantages of using synthetic data set to benchmark

building characterization methods, which we complement with pointing out

the key differences to real world data. Lastly, we propose promising directions

for future research, where we set the focus on young machine learning based
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paradigms like bottom-up surrogate-based BES calibration and top-down

deep learning.

5.1. Comparison of methods

5.1.1. Overall accuracy and ranking accuracy

We compared all methods focusing on their robustness towards changes

in extraneous impact factors. The robustness is measured by the change in

error in the heat-loss coefficient estimate and by the change in accuracy of

sorting the buildings by their HLC (ranking). For a method to be suitable

for data-driven retrofit and building stock characterization it must perform

well in both cases.

For ranking similar buildings with regard to their HLC, it was shown

that the energy signature method and the second order RC model perform

the worst, while the CNNs and the optimization-based BES calibration per-

formed the best.

With regard to overall robustness in the model performance, CNNs are the

most robust towards differing building properties, followed by the RNN and

the surrogate calibration approaches. None of ES, first order RC model or

second order RC model were robust to changing building properties. Given

the stated assumption in section 5.2, we can conclude that ES, first order RC

model or second order RC model cannot characterize building HLC across

differing building properties with statistical certainty, rendering them unsuit-

able for HLC characterization in practice. This is a significant result of this

study and should be confirmed with real world data. OBC, BC, RNN and

CNN have strong predictive capabilities and are robust towards changes in
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building properties, but they have practical barriers to usage.

5.1.2. Barriers to application

The given experiment provided comparative results on various building

characterization methods. This disregards that their requirements and work-

flows differ strongly as introduced in Section 2.2.3.

As shown, the studied lumped parameters calibration approaches, i.e. the

energy signature approach and the RC-modelling approach, do not require

any model training. In comparison to BES calibration no surrogate model

derivation is required, in comparison to the top-down approaches no sensor

data from multiple buildings including building labels are required. Instead

gray-box models can be calibrated for any building which has the right sensor

data available.

All calibration approaches, i.e. both lumped parameter models and BES

calibration, are highly dependent on the model to be calibrated. That build-

ing energy model can either be designed for each building individually, or

archetype models can be derived if a large number of buildings is to be

calibrated. In fact, segmenting a building stock into groups of similar build-

ings (archetype classification) and deriving a suitable building energy model

(architecture characterization) are decisive steps in common calibration pro-

cesses [42][43][66]. In the given case study, we used the same building energy

model for calibration as we used for training. Hence, we fully omit the es-

sential step of developing and characterizing an archetype suitable for the

considered building stock, thus, biasing the results in favour of surrogate cal-

ibration.
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That step of model derivation is avoided when using a supervised deep

learning model. It learns features from building stock sensor data, that in-

dicate a certain building characteristic. This process, however, is currently

rarely possible as labelled building data sets are often not available for spe-

cific cities or districts. That label scarcity is a common problem in machine

learning research and we encourage to leverage existing research from that

domain.

Another limitation of supervised learning methods is that they do not nec-

essarily generalize. For example, when a model is trained on data from res-

idential buildings in Victoria, it may not characterize buildings in Chicago

accurately. The best way to handle this issue is to continue to collect and

publicize high-fidelity building data such that models are trained on more

heterogeneous data sets.

Current literature often highlights that calibration approaches are attrac-

tive as they provide us with a modifiable physics-based model that can right

away model the impact of retrofits on the overall building performance. This

is not the case for top-down deep learning approaches. However, we propose

that this argument should not prevent the field from exploring the use of deep

machine learning models, as it might provide more accurate characterization

results.

5.1.3. Methods to alleviate label-scarcity of building time series data sets

Supervised learning using labelled datasets has enabled great achieve-

ments in machine learning. For example, accuracy rates of 95% for classifying
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Figure 10: Caption

images contained in the Imagenet dataset are now possible . However, Ima-

geNet consists of more than 14 million labelled images [67], which are often

not available in supervision-starved areas like medical data or building time

series data sets. Researchers have been tackling that problem by developing

methods which receive similarly high accuracy with less and less data.

• Transfer learning: From other labels to labels of real data: Use

existing building time series data sets with labels different to the one

seeked to pretrain the model.

• Self-supervised learning: From unlabelled real data to labelled

real data Another option is to pretrain neural networks on large unla-

beled datasets and then fine-tune them on a smaller labeled dataset [68].

These methods are commonly called self-supervised learning methods,

which aim at converting an unsupervised learning problem into a super-

vised one by creating automatically-derivable labels. So far the concept

of self-supervised learning has barely been applied to time series prob-

lems, but it seems promising for the building domain.
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• Pretraining with labelled synthetic data sets. This aims at pre-

training a model using a dataset as provided in this study and subse-

quently refine it on a smaller real-world data set.

5.2. Synthetic data and real-world data

We used a synthetic data set to conduct controlled experiments on the

robustness of building calibration methods. It allows to estimate the per-

formance loss (increase in error) due to the four considered impact factors,

but the actual errors will be higher in the case of real buildings. This has

multiple reasons including that

• the heterogeneity of the synthetic building stock is small. We only con-

sidered one geometry with only one zone; we did not take surrounding

buildings into account; only two climates were used and micro-climates

were ignored; and the floors were assumed to be adiabatic.

• the quality of sensor measurements (outside air temperature, inside air

temperature, heating system power and solar gains time series data in

daily or 5-min intervals) is ideal. Here, we used the outputs from the

BES tool as measurement data. No additional noise was added. In

the real case, noisy data, missing recordings and dysfunctional sensors

will necessarily lower the performance of all of the methods. Moreover,

often climate data is often not available for a specific site but rather

taken from a near-by weather station. This error is not considered.

A great example on the quality of real world data is given by a recent

Kaggle competition [69]. One of the reasons for winning the competi-

tion was large effort (including manual work) put into data cleaning.
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Nonetheless, when comparing the synthetic and real world data it should

be kept in mind that labelled building data sets, whose metadata contain

labels on building characteristics like the HLC, are currently non-existent.

By pointing out the two major differences of our synthetic data set and

real world data, we aim at sparking future work. Many of the listed points,

e.g. imposing noise on the synthetic data, can be addressed in future research

and possibly let the characteristics of synthetic and real world data converge.

Furthermore, we suggest to augmenting the scope of the synthetic data

set, such that the impact of more factors on characterization accuracy can

be studied. They are listed in the following.

5.2.1. Future work: augmenting the synthetic data - based experiment

• Values other than HLC: Other building properties besides the heat

loss coefficient are often wanted by building energy modellers. They

may be continuous or discrete, e.g. the primary heating system of a

building [8]. Here, we limited the study to the HLC, as the energy

signature method allows to estimate it. The lumped parameter models

are constrained in the type of characteristic to provide. BES calibration

and supervised learning models are more versatile. In future work we

would like to offer more labelled characteristics as part of the synthetic

data set.

• Other confounding factors: We looked at the impact of climate,

construction materials, air-infiltration, and stochastic occupant be-

haviour. We will extend that list, for example with the option to assess
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the impact of versatile building geometries, of micro-climates, of the

surroundings of a building, of ventilation strategies (incl. opening of

windows) and others.

6. Conclusion

In this paper we benchmarked multiple methods to estimate quantitative

building characteristics, here the heat loss coefficient, on a novel, extensible

synthetic building meter data set.

The data set was used to conduct experiments assessing the impact of

climate, building construction material, air-infiltration, and stochastic occu-

pant behaviour on the performance of the methods. We could show both the

lack of robustness of calibration-based methods towards these impact factors,

and the practical shortcomings of more robust deep learning approaches. The

latter is particularly caused by the lack of labelled building meter data sets.

We propose the experimental setup, i.e., a controlled environment of a

synthetic, simulated data set, to further study the promising field of deep

learning for automated building characterization. It is highly automated,

less prone to errors due to mistakes of modellers, and can integrate large

amounts of data for thousands of buildings for characteristics estimation of

a specific building.
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A. Hakansson, M. Höjer, R. J. Howlett, L. C. Jain (Eds.), Sustain-

ability in Energy and Buildings, Smart Innovation, Systems and Tech-

Draft ready for submission to Journal of Energy and Buildings 47

175



nologies, Springer, Berlin, Heidelberg, 2013, pp. 35–44. doi:10.1007/

978-3-642-36645-1_4.

[34] N. Pathak, J. Foulds, N. Roy, N. Banerjee, R. Robucci, A Bayesian

Data Analytics Approach to Buildings’ Thermal Parameter Estimation,

in: Proceedings of the Tenth ACM International Conference on Future

Energy Systems, e-Energy ’19, Association for Computing Machinery,

Phoenix, AZ, USA, 2019, pp. 89–99. doi:10.1145/3307772.3328316.

URL https://doi.org/10.1145/3307772.3328316

[35] V. Gori, P. Biddulph, C. A. Elwell, A Bayesian Dynamic Method to

Estimate the Thermophysical Properties of Building Elements in All

Seasons, Orientations and with Reduced Error, Energies 11 (4) (2018)

802. doi:10.3390/en11040802.

URL https://www.mdpi.com/1996-1073/11/4/802

[36] M. Lundin, S. Andersson, R. Östin, Development and valida-

tion of a method aimed at estimating building performance

parameters, Energy and Buildings 36 (9) (2004) 905–914.

doi:10.1016/j.enbuild.2004.02.005.

URL http://www.sciencedirect.com/science/article/pii/

S0378778804001008

[37] S. S. Sablani, A. Kacimov, J. Perret, A. S. Mujumdar, A. Campo, Non-

iterative estimation of heat transfer coefficients using artificial neural

network models, International Journal of Heat and Mass Transfer 48 (3)

(2005) 665–679. doi:10.1016/j.ijheatmasstransfer.2004.09.005.

Draft ready for submission to Journal of Energy and Buildings 48

176



URL http://www.sciencedirect.com/science/article/pii/

S0017931004004065

[38] R. Singh, R. S. Bhoopal, S. Kumar, Prediction of effective thermal

conductivity of moist porous materials using artificial neural network

approach, Building and Environment 46 (12) (2011) 2603–2608.

doi:10.1016/j.buildenv.2011.06.019.

URL http://www.sciencedirect.com/science/article/pii/

S0360132311001934

[39] G. M. Baasch, R. Evins, Targeting Buildings for Energy Retrofit Using

Recurrent Neural Networks with Multivariate Time Series, 2019.

[40] D. Crawley, L. Lawrie, F. Winkelmann, W. Buhl, Y. Huang, C. Peder-

sen, R. Strand, R. Liesen, D. Fisher, M. Witte, J. Glazer, EnergyPlus:

Creating a New-Generation Building Energy Simulation Program, En-

ergy and Buildings 33 (2001) 319–331. doi:10.1016/S0378-7788(00)

00114-6.

[41] S. Nagpal, C. Mueller, A. Aijazi, C. Reinhart, A methodology for auto-

calibrating urban building energy models using surrogate modeling

techniques | Request PDF, Journal of Building Performance Simulation

(Apr. 2018). doi:10.1080/19401493.2018.1457722.

URL https://www.researchgate.net/publication/324257575_

A_methodology_for_auto-calibrating_urban_building_energy_

models_using_surrogate_modeling_techniques

[42] J. Sokol, C. Cerezo Davila, C. F. Reinhart, Validation of a

Draft ready for submission to Journal of Energy and Buildings 49

177



Bayesian-based method for defining residential archetypes in ur-

ban building energy models, Energy and Buildings 134 (2017) 11–24.

doi:10.1016/j.enbuild.2016.10.050.

URL http://www.sciencedirect.com/science/article/pii/

S037877881631372X

[43] M. H. Kristensen, R. E. Hedegaard, S. Petersen, Hierarchical calibration

of archetypes for urban building energy modeling, Energy and Buildings

175 (2018) 219–234. doi:10.1016/j.enbuild.2018.07.030.

URL http://www.sciencedirect.com/science/article/pii/

S0378778818312532

[44] M. Gilli, E. Schumann, Calibrating Option Pricing Models with Heuris-

tics, in: A. Brabazon, M. O’Neill, D. Maringer (Eds.), Natural Com-

puting in Computational Finance: Volume 4, Studies in Computa-

tional Intelligence, Springer, Berlin, Heidelberg, 2012, pp. 9–37. doi:

10.1007/978-3-642-23336-4_2.

URL https://doi.org/10.1007/978-3-642-23336-4_2

[45] G. Faure, T. Christiaanse, R. Evins, G. M. Baasch, BESOS: a Col-

laborative Building and Energy Simulation Platform, in: Proceed-

ings of the 6th ACM International Conference on Systems for Energy-

Efficient Buildings, Cities, and Transportation, BuildSys ’19, Associa-

tion for Computing Machinery, New York, NY, USA, 2019, pp. 350–351.

doi:10.1145/3360322.3360995.

URL http://doi.org/10.1145/3360322.3360995

[46] A.-H. Deconinck, S. Roels, Is stochastic grey-box modelling suited

Draft ready for submission to Journal of Energy and Buildings 50

178



for physical properties estimation of building components from on-site

measurements?, Journal of Building Physics 40 (5) (2017) 444–471.

doi:10.1177/1744259116688384.

URL https://doi.org/10.1177/1744259116688384

[47] S. S. Garud, I. A. Karimi, M. Kraft, Design of computer experiments:

A review, Computers & Chemical Engineering 106 (2017) 71–95.

[48] G. Reynders, J. Diriken, D. Saelens, Quality of grey-box mod-

els and identified parameters as function of the accuracy of input

and observation signals, Energy and Buildings 82 (2014) 263–274.

doi:10.1016/j.enbuild.2014.07.025.

URL http://www.sciencedirect.com/science/article/pii/

S0378778814005623

[49] S. Hammarsten, A critical appraisal of energy-signature models, Applied

Energy 26 (2) (1987) 97–110. doi:10.1016/0306-2619(87)90012-2.

URL http://www.sciencedirect.com/science/article/pii/

0306261987900122

[50] P. Gianniou, C. Reinhart, D. Hsu, A. Heller, C. Rode, Estimation of

temperature setpoints and heat transfer coefficients among residential

buildings in Denmark based on smart meter data, Building and Envi-

ronment 139 (2018) 125–133. doi:10.1016/j.buildenv.2018.05.016.

URL http://www.sciencedirect.com/science/article/pii/

S0360132318302762

[51] S. Danov, J. Carbonell, J. Cipriano, J. Mart́ı-Herrero, Approaches to

Draft ready for submission to Journal of Energy and Buildings 51

179



evaluate building energy performance from daily consumption data

considering dynamic and solar gain effects, Energy and Buildings 57

(2013) 110–118. doi:10.1016/j.enbuild.2012.10.050.

URL http://www.sciencedirect.com/science/article/pii/

S0378778812005841

[52] M. Brøgger, P. Bacher, K. B. Wittchen, A hybrid modelling method

for improving estimates of the average energy-saving potential

of a building stock, Energy and Buildings 199 (2019) 287–296.

doi:10.1016/j.enbuild.2019.06.054.

URL http://www.sciencedirect.com/science/article/pii/

S0378778819300398

[53] H. Madsen, J. Holst, Estimation of continuous-time models for the

heat dynamics of a building, Energy and Buildings 22 (1) (1995) 67–79.

doi:10.1016/0378-7788(94)00904-X.

URL http://www.sciencedirect.com/science/article/pii/

037877889400904X

[54] M. Manfren, N. Aste, R. Moshksar, Calibration and uncertainty anal-

ysis for computer models–a meta-model based approach for integrated

building energy simulation, Applied energy 103 (2013) 627–641.

[55] P. Westermann, R. Evins, Surrogate modelling for sustainable building

design–a review, Energy and Buildings 198 (2019) 170–186.

[56] M. Wetter, E. Polak, A convergent optimization method using pattern

search algorithms with adaptive precision simulation, Building Services

Draft ready for submission to Journal of Energy and Buildings 52

180



Engineering Research and Technology 25 (4) (2004) 327–338, publisher:

SAGE Publications Ltd STM. doi:10.1191/0143624404bt097oa.

URL https://doi.org/10.1191/0143624404bt097oa

[57] K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast elitist non-

dominated sorting genetic algorithm for multi-objective optimization:

Nsga-ii, in: International conference on parallel problem solving from

nature, Springer, 2000, pp. 849–858.

[58] M. C. Kennedy, A. O’Hagan, Bayesian calibration of com-

puter models, Journal of the Royal Statistical Society: Se-

ries B (Statistical Methodology) 63 (3) (2001) 425–464, eprint:

https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/1467-9868.00294.

doi:10.1111/1467-9868.00294.

URL https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/

1467-9868.00294

[59] M. Farah, P. Birrell, S. Conti, D. D. Angelis, Bayesian Em-

ulation and Calibration of a Dynamic Epidemic Model for

A/H1N1 Influenza, Journal of the American Statistical Associa-

tion 109 (508) (2014) 1398–1411, publisher: Taylor & Francis

eprint: https://doi.org/10.1080/01621459.2014.934453. doi:10.1080/

01621459.2014.934453.

URL https://doi.org/10.1080/01621459.2014.934453

[60] A. M. Rysanek, J. A. Fonseca, A. Schlueter, Bayesian calibration of a

building energy model by stochastic optimisation of root-mean square

error, Working Paper, ETH Zurich, accepted: 2019-06-26T13:44:18Z

Draft ready for submission to Journal of Energy and Buildings 53

181



(Jun. 2019). doi:10.3929/ethz-b-000349836.

URL https://www.research-collection.ethz.ch/handle/20.500.

11850/349836

[61] P. R. Miles, R. C. Smith, Parameter estimation using the python package

pymcmcstat (2019).

[62] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Gated Feedback Recurrent

Neural Networks, arXiv:1502.02367 [cs, stat]ArXiv: 1502.02367 (Feb.

2015).

URL http://arxiv.org/abs/1502.02367

[63] S. Hochreiter, J. Schmidhuber, Long Short-Term Memory, Neural Com-

put. 9 (8) (1997) 1735–1780. doi:10.1162/neco.1997.9.8.1735.

URL http://dx.doi.org/10.1162/neco.1997.9.8.1735

[64] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical Evalua-

tion of Gated Recurrent Neural Networks on Sequence Modeling,

arXiv:1412.3555 [cs]ArXiv: 1412.3555 (Dec. 2014).

URL http://arxiv.org/abs/1412.3555

[65] K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image

Recognition, arXiv:1512.03385 [cs]ArXiv: 1512.03385 (Dec. 2015).

URL http://arxiv.org/abs/1512.03385

[66] F. Johari, G. Peronato, P. Sadeghian, X. Zhao, J. Widén, Urban building

energy modeling: State of the art and future prospects, Renewable and

Sustainable Energy Reviews 128 (2020) 109902.

Draft ready for submission to Journal of Energy and Buildings 54

182



[67] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A

large-scale hierarchical image database, in: 2009 IEEE conference on

computer vision and pattern recognition, Ieee, 2009, pp. 248–255.

[68] C. Doersch, A. Gupta, A. A. Efros, Unsupervised visual representation

learning by context prediction, in: Proceedings of the IEEE interna-

tional conference on computer vision, 2015, pp. 1422–1430.

[69] C. Miller, P. Arjunan, A. Kathirgamanathan, C. Fu, J. Roth, J. Y. Park,

C. Balbach, K. Gowri, Z. Nagy, A. Fontanini, et al., The ashrae great

energy predictor iii competition: Overview and results, arXiv preprint

arXiv:2007.06933 (2020).

8. Appendix A

C
dTin
dt

(t) = Q̇int(t) + Q̇hsys(t) + Q̇sol(t) + Q̇env(t) + Q̇inf (t) (5)

Equations 6 and 7 express Q̇env and Q̇inf in terms of the difference be-

tween external and internal temperature.

Q̇env(t) =
1

R
(Text(t)− Tin(t)) (6)

where R is the thermal resistance of the building envelope [K/W], Text is the

external temperature and Tin is the internal temperature.

Q̇inf (t) = ṁ ∗ cp,air(Text(t)− Tin(t)) (7)
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where ṁ is the air mass flow rate [UNITS] and cp,air is the air specific heat

capacity [UNITS]. Equation 5 can thus be rewritten as:

C
dTin
dt

(t) = Q̇int(t) + Q̇hsys(t) + Q̇sol(t) +HLCwb(Text − Tin) (8)

HLCwb = HLCinf +HLCenv (9)

where HLCinf = ṁ ∗ cp,air and HLCenv = 1
R

. HLCwb is the whole-building

heat loss coefficient. By rearranging the thermal energy balance in this way

we can see that it depends on both the infiltration rate and the thermal

resistivity of the building envelope.

9. Appendix B

HLCinf is the product of the air mass flow rate, ṁ, and the air specific

heat capacity, cp,air. The air mass flow rate was calculated directly by En-

ergyPlus and recorded as a time series output.14 The mean yearly value of

this output variable was multiplied by the specific heat capacity for air to

calculate HLCinf .

Note that for all the cases in which infiltration was 0, HLCinf was also 0.

The calculation for HLCenv is considerably more complicated. It can be cal-

culated using an analogy to RC circuit model, where the thermal resistances

of the building envelope are analogous to resistors in a circuit. The building

14The EnergyPlus output variable is called: Zone Infiltration Current Density Volume

Flow Rate
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envelope can be represented by three resistors in series: (1) the interior sur-

face resistance, Rint, (2) the resistance of the material layers, Rmat, and (3)

the exterior surface resistance, Rext:

HLCenv = (Rint +Rmat +Rext)
−1 (10)

Rint, Rmat and Rext represent the respective resistances of all the building

surfaces in parallel. For instance, Rint represents the parallel resistances

for each individual indoor surface. These values can therefore be found by

taking the sum of the reciprocals of the resistances of each surface, as seen

in equation 11. The resistances of each surface are reported by EnergyPlus,

but the models outputs do not account for area. Therefore, the reciprocals

of the resistances are multiplied by their associated surface areas as follows:

1

Ri

=
∑

s∈S
As ∗

1

Ri:s

(11)

where i ∈ {int, mat, ext}, S is the set of all surfaces, Ri:s is the resistance of

the surface and As is the area of the surface.

The values for Ri:s are calculate differently for the three resistance types.

Rmat:s is output directly by EnergyPlus. The calculation for Rint and Rext

requires the evaluation of time-resolved heat transfer coefficients (HTCs),

measured in W/m2 ◦K.HTCs are proportionality constants that dictate the

given amount of heat exchange by convective and radiative forces at a build-

ing surface. Each HTC can be viewed as the inverse of a resistance. Each

HTC at a given surface acts in parallel, so htotal = h1 + h2 + ...+ hn. In En-

ergyPlus, the equations for heat exchange due to convection and radiation
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depend directly on HTCs so

Ry:s = 1/mean(hy:s:conv + hy:s:rad) (12)

where y ∈ {int, ext}, hy:s:conv is the surface convective HTC and hy:s:rad is

the surface radiative HTC.

The remaining calculation considerations for each of the three R values

are summarized below:

1. Rint:s: The internal surface radiation HTCs calculated by EnergyPlus

are modelled by the software internally and are not easily accessible to

the user (see the EnergyPlus documentation15 for more information).

Therefore, for the purpose of this study, only convection is included

in the calculation for Rint:s. The exclusion of the radiative HTCs may

result in a slightly larger absolute errors in HLC estimation, but it

should not affect the comparisons between methods or the parametric

analysis within the methods.

2. Rmat:s: The material R value is the sum of the resistance of the material

layers that compose the surface. It is calculated directly by EnergyPlus

and is reported as the surface U-value, or 1/Rmat:s, in [W/m2K].

3. Rext:s: As described by the EnergyPlus documentation,16 at the ex-

ternal surfaces convection and radiation to the ground, air and sky are

modelled by EnergyPlus and the associated HTCs are directly available

15https://bigladdersoftware.com/epx/docs/9-2/engineering-reference/

inside-heat-balance.html
16https://bigladdersoftware.com/epx/docs/9-2/engineering-reference/

outside-surface-heat-balance.html#outside-surface-heat-balance
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to the user as time-resolved output variables. These output variables

are used to find Rext:s.

10. Appendix C

Figure 11: RC Network models, as presented by Bacher and Madsen [13]. The left model

is a 1st order representation of the building envelope with a single lumped capacitance,

while the right model has two lumped capacitances.

1st Order Model:

dTi =

(
1

CiRia

(Ta − Ti) +
1

Ci
(Awφs) +

1

Ci
(φh)

)
dt+ σ1dw1 (13)

2nd Order Model:

dTi =

(
1

CiRie

(Te − Ti) +
1

Ci
(Awφs) +

1

Ci
(φh)

)
dt+ σ1dw1 (14)

dTe =

(
1

CeRie

(Ti − Te) +
1

CeRea

(Ta− Te)
)
dt+ σedwe (15)
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Epilogue

The given paper contributes with a collection seven different approaches to extract

quantitative building properties. Furthermore, we applied them to a synthetic dataset

where we have full knowledge on the buildings for which we try to find a calibrated

model.

The two surrogate-based calibration methods showed high performance in compari-

son to the other five approaches. However, these findings currently do not generalize

to real world data and future work is required. In particular, we had full knowledge

on a suitable parametric BPS model to train our surrogate model on. In reality this

model has to be found prior to calibration (see Chapter 6) [25][15] which introduces

large uncertainty.
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Chapter 7

Thesis conclusion

This thesis was inspired by the vision of fast, interactive machine learning based

surrogate models to support architects and engineers in finding sustainable building

designs. The core idea of surrogate models is to be trained on physics-based simu-

lation results and subsequently approximate building energy performance estimates

almost instantaneously. This creates an interactive environment for end users to ex-

plore the energy performance of a large space of design alternatives.

The goal was to lay the technical foundations for a large scale application of sur-

rogate models in our domain. As such we relied on rapidly accumulating knowledge

in the machine learning world and transferred the most promising elements to our

domain. This involved the use of Bayesian deep learning models and deep temporal

convolutional neural networks as surrogate models.

As a result, we provide tools which allow us to train uncertainty-aware surrogate

models, which can be applied over a large range of climates. They can be embedded

into web-platforms to be widely accessible. Furthermore, by using calibration techni-

ques they can link simulation models with the physical world. This allows the use
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of surrogate model for the design of new buildings and for the retrofit of the already

built environment.

Our collection of work may be considered as a starting point for future work. We

propose two major research paths, i.e. to empirically study the interaction between

surrogate models and building designers, and to further increase the scope of surrogate

models such that they can be used for more design problems without retraining:

Surrogate models in practice: Our studies were motivated by the first success

with interactive early design tools [1][24][13][20]. Similarly, our group, the

Energy in Cities group at the University of Victoria, is soon hosting surrogate

models on a web-platform. In dedicated survey, we will be able to collect empi-

rical data on the interactive design sessions, which may help to assess the use

of our tools, i.e. uncertainty-aware surrogate models and location-independent

surrogate models, and beyond that point us towards further technical needs.

Generalizing surrogates: Combined with our work, it is possible to derive surro-

gate models for simulations of buildings with varying geometry [7] and located

at varying locations. Other unpublished work showed that also the impact of

the built environment (e.g. wind channelling effects, or shading effects) can be

modelled with fast machine learning models. A key element of future research

will be to integrate all these approaches into one model. Also, we foresee that in

future surrogate models will be able to generalize over various occupancy load

profiles (by using the same approach we used for climate-independent surroga-

tes) and detailed mechanical systems. First studies have been initiated. A high

degree of generalization may also enable a higher automation of surrogate-based

calibration.
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Real world data-based calibration: To date, we have only applied surrogate-

based calibration on a synthetic data set. Other authors already managed

to use them for a larger set of buildings [25], however, they only assessed the

predictive performance of the models instead of the accuracy of the building

parameter estimates. This is essential for retrofit assessment and proposes to

widen our benchmarking study to real world data sets.
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Appendix

While surrogate modelling is the core topic of this PhD thesis, my studies involved

a diverse set of research on applying machine learning methods to analyse retrofit

performance and to improve building operation using predictive models. A lot of

that work involved the supervision of Bachelor’s and Master’s students leading to a

set of conference publications which are given below.

Building performance prediction

Paper 1

The first paper tackles the use of rule-based algorithms to provide building occupants

indoor condition predictions including explanations. It can serve as a basis for an

application for virtual assistant device to interact with building occupants.



Insight Into Predictive models: On The Joint Use

Of Clustering And Classification By Association (CBA) On Building Time Series

Paul Westermann, Joel Grieco, Johanna Braun, Eamon Murphy, Ralph Evins1

1Energy Systems and Sustainable Cities group,
Department of Civil Engineering, University of Victoria, Canada

Abstract

Data-driven, black box machine learning models have
received a lot of attention in the field of building
control. They have been used successfully to predict
building behaviour given information like weather fo-
recasts and real time sensor information. In these
models, the occupant behaviour is considered to act
exogenously on the building.
We consider the users as active elements of the
building operation control loop. To make educated
control decisions they have to be informed about how
the building will behave. Therefore, we propose a pre-
diction model which explains to occupants the day-
ahead building behaviour using a clustering and clas-
sification by association model. We benchmark this
approach to a neural network regression model and
only observed a small loss of accuracy.
Knowing the upcoming building behaviour, occu-
pants can adjust their behaviour (e.g. putting on
clothes) or the building systems settings (e.g. set
points) accordingly. The proposed method is a pro-
mising way to decode complex regression models into
readable rules, which in future may be useful in con-
junction with for example voice-based virtual assis-
tants.

Introduction

Buildings are a major energy consumer accounting
for 36% of final energy and 55% of final electricity
consumption worldwide (IEA, 2017). 80 to 90%
of that energy is attributed to building operation
(Ramesh et al., 2010). Therefore, optimizing building
operation through effective energy management is
a strong element of current research on sustainable
buildings (Shaikh et al., 2014).
Building occupants have a major impact and
partially explain why high performing building
technologies (e.g. efficient HVAC systems) do not
guarantee low energy use (Andersen et al., 2009).
In a simulation-based study on office buildings, a
difference in energy use of up to 50% is found if
the worker is proactive in energy savings or not
(Lin and Hong, 2013). Behavioural differences are

found in their adaptive actions (e.g. opening/closing
of windows, adjusting set-points) or non-adaptive
actions (operation of office equipment, movement
through space, etc.) (Hong et al., 2017). This
shows that engaging occupants in the energy efficient
control of the building will be crucial to achieving
energy use targets.
Researchers have developed tools which incorporate
occupancy data as input into supervisory building
control algorithms. Supervisory control logic is
implemented at a higher level than the individual
controllers of the building systems. Two approaches
are prevailing in research: rule-based, and model-
predictive control. While rule-based control uses
rules defined by HVAC specialists, MPC conducts an
operational optimisation over a specified prediction
horizon. In both approaches temperature set-points
for the whole building are adjusted, or HVAC systems
activated taking occupant actions (adapative or non-
adaptive) into account. The occupant behaviour is
either hard-coded in schedules or detected based
on data (Lu et al., 2010). Detection of occupancy
patterns (e.g. sleeping, or absent) is a key element of
smart thermostat technologies which already exist.1

A characteristic of rule-based and model-predictive
control is that they monitor human behaviour
instead of involving occupants as sensing and active
element in the control loop (direct human-in-the-
loop control, HIL). Recent publications envision an
interplay of occupants and automated controls where
comfort conditions are traded-off with minimizing
energy use (D’Oca et al., 2018). This negotiation
of comfort conditions demands not only machines
to learn occupancy patterns, but also occupants to
understand the computer controlling the building.
This study contributes by providing a forecasting
method which features a human-readable set of in-
formation to explain the expected building behaviour
given the computer-based controls already existing
in the building. We use a combination of clustering
and associate rule mining. Cluster analysis enables
to find typical 24-hour temperature profiles and

1See for example: https://nest.com/thermostats/

nest-learning-thermostat/overview/
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Figure 1: Overview of the proposed approach.

associate rule mining allows to assign a set of rules
connecting each of the profiles to weather conditions
and occupancy. Based on those rules we select a 24-h
profile for the upcoming day with the classification
by association (CBA) algorithm. As a result, the
occupant has access to numerical building behaviour
predictions which are explained by human-readable
association rules in the form of ”the predicted profile
is x because y” .
The combination of clustering and association rule
mining has been leveraged on building time series
data before. Mirebrahim et al. (2017) and Xiao and
Fan (2014) used it to receive insight on the control
of heating, ventilation and air conditioning (HVAC)
systems. Both cases exemplify the strength of the
approach for analytical purposes, however it has
never been used for forecasting of building time
series.
We showcase the use of the method in a study where
we derive 24-h indoor temperature forecasts for the
upcoming day. Indoor temperature was chosen as it
inherently captures the trade-off between occupant
comfort and energy demand.
The use of a set of temperature profiles and of catego-
rical features (e.g. binned outdoor air temperature)
instead of continuous ones for rule-based prediction
limits model complexity. We benchmarked our
approach against a 24h prediction of a deep multiple
output feed-forward neural network.

In this paper we familiarize the reader with the ap-
plied method and provide details on the clustering
algorithm used (Gaussian Mixture Modelling), asso-
ciate rule mining and the classification by association
algorithm. Then, the performance and limits of the
approach are shown in a case study on indoor tempe-
rature prediction in an office building.

Methodology

The proposed approach combines clustering (Fig. 1,
a) and rule-mining (Fig. 1, b) to give insightful time
series predictions which provide numerical forecasts
as well as explanatory rules causing that forecast
(Fig. 1, c). The method can be applied to any time
series data which is formatted as daily sets of 24
hourly values. In the case study below we focussed

on indoor temperature forecasting only, hence the
model outputs (ŶT ) are labelled T .

The methodology consists of two steps to train the
model:

1. Derive N typical daily profiles using a Gaussian
Mixture Model (GMM). The number of profiles
has to be chosen by the modeller and is treated
as a hyperparameter to be optimized in a grid
search (see Table 2).
Clustering converts hourly output values YT,train

to daily ones YC,train which contain the derived
cluster numbers for each day of the training data.

2. The prediction model, a CBA model, uses as-
sociation rules for the cluster number YC,train

given features Xtrain. In our case study, the n
number of features include daily mean weather
forecast data, date-time information (incl. ho-
lidays), occupancy data and the cluster of the pre-
vious day.
To derive the CBA model, we first generate asso-
ciation rules between Xtrain and YC,train using
the Apriori algorithm (Agrawal et al., 1994).
Then the number of rules is reduced to a small set
which only includes those rules with the highest
confidence. The high confidence rules form the
CBA model.

After this model training process is terminated, the
CBA model can be used to predict hourly indoor
temperatures for the upcoming day given a new set
of unseen features X (Fig. 1, c). It uses the profiles
(cluster centroids) and rules determined on the
training data. Note that, in the following prediction
performance is quantified solely by comparing
predicted hourly values, ŶT,test, to observed hourly
values, YT,test. We fully neglect whether clusters are
predicted correctly.

In the sections below we provide more details on the
two steps to derive the prediction model.

Clustering (Gaussian Mixture Model)

The GMM is suitable for clustering problems. It
has been applied to time series data before (Eirola
and Lendasse, 2013) and specifically on building re-
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lated time series data (Melzi et al., 2017) (Mirebrahim
et al., 2017). It is a classification algorithm which
describes a cluster by its mean and covariance. Both
are composed of a mixture of Gaussian distributions.
This allows it to identify inhomogeneous, multimodal
clusters as required for time series profile clustering
of temperature data. In comparison to the k-means
or hierarchical clustering, GMM is a soft clustering
algorithm, i.e. individual samples influence the cen-
troids of all clusters and not only the one they belong
to (a comparison of both approaches is found in Park
et al., 2019). Soft clustering may be suitable for the
given problem as indoor temperatures are inherently
continuous and cannot be sorted into discrete, sepa-
rable bands. Comparing and picking the best per-
forming clustering algorithm is not within the scope
of this study but would be valuable future work.
The output of the GMM is a probability density
function Pk(x) for each of the clusters k ∈ K given a
set of features X. The density functions consist of a
linear combination of multiple Gaussian distributions
N(x;µkr,Σ) (Hastie et al., 2009).

Pk(X) =
∑

r

πkrN(X;µkr,Σ) (1)

Here all clusters share the same covariance matrix
Σ. The optimum value of all parameters, i.e. the
mean of each Gaussian distribution, the mixing pro-
portion πk,r for each of the R Gaussian distributions
and covariance matrix Σ are chosen by maximising
the log-likelihood

K∑

k

∑

gi=k

log

[
Rk∑

r=1

πkrN(xi;µkr,Σ)
∏

k

]
(2)

of all clusters k ∈ K simultaneously, where
∏

k repre-
sents the clusters prior probability. The cluster with
the highest probability given a set of parameters x is
the one proposed by the GMM. Fitting the GMM is
done using the expectation-maximisation (EM) algo-
rithm (Dempster et al., 1977).

Before the GMM is fitted to the data, the number
of clusters is picked manually. The common way is
to use information criteria like BIC or AIC which
enable to qualitatively compare accuracy of models
with different number of clusters. In our case, we op-
timized the number of clusters to maximize predictive
accuracy of the whole approach in Figure 1.

Model derivation

Association rule mining

Like GMM, association rule mining (ARM) is an
unsupervised learning technique that identifies in-
teresting relationships between features and targets
(Jirı and Kliegr, 2012). It was initially applied to
market basket analysis for the identification of simple
rules to understand consumer behaviour.
First, the discretized features X and targets YC are
stored in a transactional database. The transactional

database is scanned for association rules using one
of the existing ARM algorithms (here: Apriori algo-
rithm, Agrawal et al., 1994). The quality of a rule
is quantified by calculating support and confidence of
each rule described in the following equations.

supp(A) = |t ∈ T ;A ⊆ t| / |T | (3)

conf(A⇒ B) = supp(A ∪B)/supp(A) (4)

Let A be a feature set, A⇒ B an association rule and
T a set of transactions of a given database. Support
captures how likely it is that A and B occur jointly
(P (A,B)) while the confidence provides a value for
how likely the occurrence of B is if A is given. A mi-
nimum value for support is used to place a limit on
the number of rules.
For classification purposes, the rule mining algo-
rithm is adjusted to restrict the consequent B to
only contain the target variable YC . Ma and Liu
(1998) formulated the framework for creating associ-
ation rules in this manner, naming them class associ-
ation rules (CARs). A predictive classification model
is created by a subset of CARs which are picked using
Classification by Association (CBA).

Classification by Association (CBA)

CBA is a supervised machine learning algorithm
which stands out due to its simplicity. It takes CARs
as inputs, sorts them and outputs a subset of useful
rules that can classify sets of features. As outlined by
Ma and Liu (1998), to derive the CBA model, CARs
are sorted by the confidence, then support, and then
the order the rules are generated in. Each entry of
the training data is covered by at least one rule.
The CARs derivation, sorting and deleting of rules
is conducted based on training data and therefore
may be regarded as model training. Afterwards, the
remaining rules can be applied to unlabelled data
picking the first rule within the list of sorted rules
that is satisfied by a given set of new features.
The rules picked by CBA are a useful output in them-
selves, because they provide a human readable list of
the most predictive features for target selection. Ma
and Liu (1998) describe this as the discovery of un-
derstandable rules. The CBA framework can provide
more understandable and more predictive rules than
association rule mining alone. In addition to the pre-
diction of targets on unseen data the outputted rule
set can assist in achieving the human readable functi-
onality desired in many applications.
In this study we used the pyFIM and PyARC li-
braries for ARM and CBA implementation (Borgelt,
2012)(Jirı and Kliegr, 2012).

Case Study

The methodology is applied to predict indoor tem-
peratures in a small room (≈ 10m2, one worker, one
window) of an office building in British Columbia.
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Table 1: Overview on the dataset split into target and features.
Type Sensor name properties

Target YT Indoor air temperature [◦C] hourly mean (15 min. data)
Features X: outdoor air temperature forecast* [◦C] daily mean on-site measured data

wind chill* [◦C] daily mean, on-site measured data
heat index* [◦C] daily mean, on-site measured data

relative humidity* [%] daily mean, on-site measured data
occupancy [%] daily mean, on-site measured data

lagged profile number [] profile number from previous day (predicted by GMM)
date - time [] day of the week, month, season

*discretized by equal frequency binning.

The indoor climate of the room is controlled by a
trickle vent and slab heating or cooling. The trickle
vent preheats or cools fresh air using a coil. Both
systems are connected to a central heat pump.

Data and Feature selection

In the proposed approach the selection of input fea-
tures is crucial as they form the rules shown to occu-
pants to understand temperature predictions. For
now, we limit the set to only a small selection of fea-
tures, constrained by data availability and quality.
The considered data set spans three years (2014-
2017). It consists of measured values on the building
systems and the internal and external climate condi-
tions. The data is not public but information on the
building are publicly available.2 The data from mul-
tiple sensors was cleaned and aligned to a frequency
of one hour (YT ) or one day (X).3 All continuous
features are discretized into bins with equal numbers
of samples. Besides the listed features, we also had
access to temperature set point (occupant input) data
of the room which was constant over the whole period
and therefore ignored.
Among the features in Table 1, we selected a subset
based on an exhaustive grid search (see next section).
In future applications, more occupant inputs

2https://www.reliablecontrols.com/corporate/

facility/
3Instances of sensor outages were found at various points

in the data set. Days with one or more missing indoor tempe-
rature values are ignored leading to a loss of 12.9% of samples.
In future, measurement gaps could be filled with rolling mean
values.

(adaptive actions, see Section 1), building system
data and sensor data of adjacent rooms might be im-
portant to ensure useful explanations for forecasts.

Model derivation

The model was trained on two years of data (Nov.
2014 to Nov. 2016) and tested on the following year.
As the CBA algorithm ranks rules based on support
and confidence values derived on the training data, it
is crucial that the training data consists of the same
number of samples from each season. Otherwise, the
support (Eq. 3) for rules of an underrepresented
season will be relatively low in comparison to rules
of other seasons. Similarly, the confidence of rules
(Eq. 4) would be skewed.
In Figure 2, the resulting seven temperature pro-
files generated with Gaussian Mixture modelling are
shown. All results in this section were derived using
the optimized number of clusters, bin size and set of
features (see Table 2). The profiles may be sorted
from hot to cold and by differences in shape. Two
profiles are rather flat with low average temperature.
The other five profiles fluctuate strongly between day
and night and the temperature is warmer on average.
Next we apply associate rule mining and extract the
classification by association rules (CARs). We re-
ceive distinct explanations for each cluster (see Fig.
3). The rules in Fig. 3 show the three rules with the
highest support value for each cluster. Some clusters
have less than three rules in which case all of the as-
sociated rules are shown.
The most days (highest support) in the training data

Figure 2: Temperature profiles for each of the
seven clusters.

Figure 3: Top 3 rules for classification of each cluster (sorted
by support).
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are members of Cluster 6 and 7. Cluster 6 repre-
sents occupied days during winter (quarter 1) and
shoulder season (spring) with medium outside air
temperature and wind chill, and Cluster 7 is the ty-
pical profile for occupied days in summer (quarter 3,
Season = Summer). Cluster 4 and 2 show the pro-
files for unoccupied days. During unoccupied days
in winter the temperature typically drops to below
20◦C. Cluster 3 has a very distinct shape. It captures
the reheating process after unoccupied days in winter
which typically occurs on Mondays. Cluster 5 des-
cribes overheating inside the room. The rules show
that this happens on days when wind chill is high me-
aning high ambient temperature and low wind speeds.
The strong impact of wind speed is due to the fact
that the room features trickle vents which rely on na-
tural ventilation for cooling. Lastly, Cluster 1 has
very low support values. This is surprising as it lies
between the two most common clusters. The reason
may be that the control routine of the heating and
cooling system leads to indoor profiles very close to
Cluster 7 OR Cluster 6 and nothing in between.
Finally, we apply the derived model to unseen data
and compare the results to the observed indoor tem-
perature profiles. Model derivation and testing was
conducted iteratively in an exhaustive grid search
with the number of clusters, the number of bins for
variable discretization and the selection of features
as hyperparameters. To speed up the process the fe-
atures were grouped into four sets (Table 1). The
optimal parameter settings are shown in Table 2. Es-
pecially, the use of clusters of the previous day in-
creased the accuracy significantly. They were derived
using the mixture model trained on the training data.

Table 2: Results of grid search.
Hyper- Range Final choice
parameter

No. of [1,15] 7
clusters
Bin size [2,10] 5
Feature [Date time],[Lagged [Date time],[Lagged
subsets Clusters],[Weather], Clusters], [Weather],

[Workday], [Occup- [Occupancy]
ancy]

Model validation

Testing the method on unseen data gives a Mean
Absolute Error (MAE) of 0.558◦C and 62.5% of
the variation in the indoor temperature is explained
(R2 = 0.625). Figure 4 shows the characteristics of
cluster based prediction with a cap at high tempe-
ratures and floor at low temperatures. Furthermore,
due to the discrete classification of profiles the pre-
dictions exhibit a gap between 19.7◦C and 20.3◦C.
To better understand the performance and the causes
of inaccuracies, we decomposed the inaccuracies and
benchmarked our algorithm to two different applica-
tions of neural networks.
In a first step, the loss of variance caused by using

18 20 22 24 26
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Figure 4: Observations vs. predictions on test data.

daily temperature profile clusters instead of pre-
dicting each hourly temperature value individually
is shown in Figure 5. Using seven clusters, which
was determined to be optimal by the grid search,
a maximum R2 of 0.79 is theoretically achievable if
all clusters are predicted correctly. Hence, there is a
21% loss in theoretically explainable variance by the
process of converting continuous hourly target values
to seven discrete daily clusters.
Another simplification of the prediction process is the
use of association rules instead of a complex statistical
regression model. To quantify the loss of accuracy
induced by rule based prediction, we conducted the
cluster prediction with a parameterized black-box
classifier. Here, we use a feed-forward neural network
classifier whose parameters were again optimized in a
grid search. It outperformed the CBA algorithm only
by a little (R2 = 0.665).
After having decomposed the loss of accuracy, we
benchmarked the algorithm against a state-of-the-art
deep neural network regressor which predicts 24 tem-
perature values individually for each day. The re-
gressor is fed with the same set of inputs as before
while having 24 temperature outputs. The network
is composed of three layers with 200 neurons each
and was pruned by increasing the regulation term
α (Hastie et al., 2009) step-by-step until optimum
performance was achieved.4 The accuracy is much
higher (R2=0.815) than the proposed cluster- and
rule-based approach but with loss of explainability.
Also it shows that given the current set of features
the neural network fails to explain 19.5% of the va-
riance. Probably, more features on occupants and
other unknowns may be helpful to further increase
accuracy.

4The process of pruning refers to gradually increasing
the regularization term until variance and bias of the neural
network are balanced.
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Figure 5: Maximum achievable R2 score for a given
number of clusters.

Model application

The functionality of the proposed algorithm is shown
in Fig. 6. One week of indoor temperature pre-
dictions for each season is shown. The weeks were
selected randomly among the weeks without missing
data. The rules which caused the CBA algorithm
to predict one of the seven profiles for the upcoming
day are shown below each of the predicted 24h tem-
perature profiles (split by black lines). For example,
on 8th April 2017 the model predicts Cluster 2 be-
cause the previous day was Cluster 6, the heat index
is medium, and the building was unoccupied.
Generally, we find that the cluster- and rule-based
prediction is capable of capturing the indoor tempe-
rature behaviour well. Weekends are identified and
depending on weather conditions different profiles are
picked during the week (see winter week). However,
we also see that Cluster 6 in winter and Cluster 7 in
summer are classified on most days. Rarely, a signi-
ficant misclassification of a day can be observed as for
example found on 22nd October 2017.
The dominance of two clusters is explainable due to
the impact of the heating and cooling system, and due
to the fact that the temperature set point was never
changed by the worker in the training and testing
data. As a consequence, our classifier mainly distin-
guishes between the seasons and between days where
the HVAC system is switched on and those when it
is switched off.
Misclassification may be caused by ambiguous infor-
mation provided by the features. On 22nd October
2017, the classifier predicts the building to be heated
but instead the heating system was switched off as
it is Sunday. On that day the occupancy sensor
recorded some activity in the room. This triggers

the CBA algorithm to predict the wrong cluster, be-
cause in this specific case occupancy-based rules have
higher confidence than rules which consider that it is
a Sunday and the room should be unheated. A si-
milar misclassification is observed on the 19th March
which was also a Sunday.

Discussion

The case study showed that the proposed method is
convenient to apply. Once a pipeline of clustering
and rule-mining is established, it generates forecasts
alongside of comprehensible sets of rules. In Fig. 6
a maximum of four variables per rule were generated
which seems suitable for rapid forecast analysis.
The data available for the case study lacks infor-
mation on occupant action. The rules like it will
be hot (Cluster 5) because wind chill is high and the
building is occupied (see Fig. 3), do not recommend
any occupant action.5 In further applications, the
data should be complemented with behavioural fe-
atures. For example, if an occupant knows that it
will be hot because wind chill is high, the building is
occupied and windows are closed, he or she will open
the window to increase comfort.

Model parameters and model performance
considerations

The number of clusters is the only model parameter
of the GMM which was optimized. Its covariance
matrix, another parameter of the GMM, was set to
be full, i.e. each cluster has a different, full covariance
matrix. A brief study showed that this is better than
all other choices of covariance matrix type (all clusters
sharing the same matrix or the matrices may only
have diagonal elements).
The rule mining process has four modelling para-
meters, i.e. minimum support, minimum confidence,
the bin size of the variable discretization and the
involved features. We included the latter two into
the hyper-parameter optimization process. Minimum
confidence was removed (set to zero) and minimum
support set to five days. This ensures that any de-
rived rule is found at least five times in the data.
The accuracy of the model is significantly lower than
24h predictions of a deep neural network as shown
in Table 3. However, one could argue that a loss
of 0.19◦C in MAE may be acceptable if the method
helps occupants to improve energy efficiency of the
building by adjusting their behaviour. This trade-off
in loss of accuracy and improved occupant behaviour
has yet to be studied in a field test.
The prediction accuracy of the model can be im-
proved by deriving better rules to predict more

5High wind chill index refers to high ambient temperatures
and low wind speeds.

Table 3: Model validation and benchmarking for 24h predictions.
Error Type GMM + CBA GMM + ANNC ANNReg

MAE [◦C] 0.558 0.548 0.37
R2 0.625 0.665 0.815
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Figure 6: Predictions and associated rules for one week of each season in the test data.

clusters accurately (see Figure 5). For example, by
using ten clusters the maximum achievable R2 score
would increase from R2

7 = 0.79 to R2
10 = 0.88. With

the current set of features and the resulting rules, we
determined seven clusters to optimal. Our rule set
is not explanatory enough to accurately predict more
clusters. If more or better features are found, more
clusters could be accurately predicted.
The benchmarking analysis showed that our method
with the current way of feature engineering does not
fully leverage the information hidden in the data. A
neural network achieved much higher accuracy given
the same set of information. More work on feature
engineering could be done, but also it may be con-
cluded that an increase of explainability leads to a
loss in accuracy.

Conclusions and Future Work

This study introduced and benchmarked a novel ap-
proach to provide hourly forecasts on building be-
haviour for the upcoming day. It combines the
analytical power of unsupervised machine learning
(clustering, associate-rule mining) with the prediction
ability of supervised machine learning methods given
by the CBA algorithm. As a result each forecast
is complemented with rule-based explanations why
a certain forecast was given. This would enable occu-
pants to adapt and adjust their actions. In future, we
imagine the method could help to involve occupants
in the building control loop which may lead to an in-
crease in building energy efficiency.
After having benchmarked the accuracy of the
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method against black-box models, the next step is to
conduct a second case study where rules are provided
to actual occupants of a building. This could be done
by implementing the forecasting method on an intel-
ligent personal assistant device to communicate the
explanations and recommendations associated with
temperature or energy consumption forecasts. This
will clarify if influencing occupant actions can in-
crease overall building efficiency.
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Paper 2

The second paper, was written in collaboration with SES Consulting Inc.1 One of their

clients was facing large peak pricing costs due to their cooling devices. A predictive

model was implemented to identify days with high cooling loads and the potential

cost abatement was analysed.

1http://sesconsulting.com/



Machine Learning Recommendations for Control
of Complex Building Systems Using Weather Forecasts
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Abstract: We present a machine learning model used to provide recommendations on chiller operation based on the prediction
of cooling demand using a weather forecast. A long short term memory (LSTM) formulation was used, and achieved favou-
rable results compared to a standard approach. The model captured the data to a reasonable extent (R2 = 0.70), but was
unable to predict very high loads at unexpected times. The model is intended to be used as an aid to a human operator, not
as a replacement, and it is likely that many of these unexpected events could be overridden by the operator. Overall, the
predictive model reduced the number of occasions in which a chiller was operating unnecessarily by 80.5%, or 469 hours.
This demonstrates the power of data-driven predictive control to assist in the efficient operation of complex building systems,
saving money, energy and operator time.

Keywords: Energy management system, human-in-the-loop control, Machine Learning

Iඇඍඋඈൽඎർඍංඈඇ
Non-residential, commercial and institutional buildings
consume large amounts of energy. In Canada, they account
for more than 10% of the end-use energy consumption
(NRCan, 2017). Furthermore, in 2009 their energy inten-
sity exceeded the ones of average Canadian households by
almost 40% (NRCan, 2012).
Due to the sheer size of the buildings a share of 20% of
energy in the total operating costs depicts a large amount
of absolute energy payments. Hence, a strong driver to
implement building retrofit measures exists. Regarding
the complexity of heating and cooling systems of those
large buildings, it is common that a specialised energy
manager supervises the operation of all systems. Based on
many factors like weather, occupant behaviour and other
disturbances he decides which systems are switched on and
how the temperature set-points are selected.

Recent advances in software development as well as
increasing amounts of available data are promoting the
development of methods to support or even automate this
human-based energy management of complex building
systems. One approach which received a lot of attention
in building control is model predictive control (MPC) as
shown by Oldewurtel et al. (2012). MPC uses a physical
model to determine optimal system inputs for the upco-
ming hours or days. At each hour, the system inputs are
optimised following certain objectives (e.g. lowering cost
or energy consumption) subject to human comfort con-
straints. The approach takes inputs like weather conditions,
electricity prices and occupancy patterns into account.
However, wide application is yet to come, especially,

because deriving a physical model of the building is work
intensive. It requires to transfer all architectural and
building system information of into a model. Furthermore,
the modeller has to make assumptions about typical buil-
ding operation patterns which may lead to modelling errors.

Hand in hand with the wide spread rise of machine le-
arning (ML), building scientists have explored ways to
exploit sensor data in buildings to train models capable
of predicting future building behaviour and its energy
consumption. Accurate forecasts can be used in a similar
fashion as proposed by MPC, i.e. to optimise heating
and cooling system inputs. Wei et al. (2018) explain the
fundamentals and give a broad review on existing data
driven models. A good example on the application of
the most common ML model, artificial neural network
(ANN), is given by Jetcheva et al. (2014), who generated an
ensemble of multiple ANN models. Massana et al. (2015)
address which kind of data is required to forecast building
energy demand accurately. Especially, they highlight the
importance of occupancy data.

Both physical model-based and ML-based optimisation
of the building energy consumption struggle with the
stochastics laying in building energy consumption due
to multiple factors like weather forecast, or occupant
behaviour uncertainty. One pathway in MPC research
is the application of stochastic MPC Oldewurtel et al.
(2010), where uncertainties and constraint violations are
considered probabilistically to allow acceptable levels of
risk in optimal control. In data driven research, methods
which provide probabilistic forecasts, e.g. Gaussian
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Processes, attract a lot of attention (Gray and Schmidt,
2016). Another option is the use of human domain
knowledge as it is suggested for example in the field
of crowd sourcing where human intelligence is used in
cases when machine intelligence is less effective (Kamar
et al., 2012). In case of buildings, one could exploit the
knowledge of an on-site energy manager to remove some
uncertainty the ML model fails to take into account. As
an example, an energy manager of an office building may
know of extraordinary events like meetings or conferences
and thus, would know that heating demand will be hig-
her than predicted by a data-driven model. Incidents like
this are not straight forward to incorporate into aMLmodel.

We complement the existing literature with an application
of ML based human-in-the-loop control. We use ML to ge-
nerate point forecasts of the energy demand of a building
and give recommendations to an energy manager on-site to
switch individual systems on and off. The goal is to reduce
the number of hours, when more systems run than required,
which causes overall efficiency losses. We aim for a solu-
tion that avoids complex feature acquisition and extraction
but only uses weather forecasts provided by an API as well
as time information. Therefore, our approach offers a plug-
and-play solution being highly generalizable as the model
features do not need to be customized to changing available
sensor data on different buildings.

Cൺඌൾ ඌඍඎൽඒ ൻඎංඅൽංඇ
This study uses ML to optimise the operation of a complex
cooling system of a large building in British Columbia, Ca-
nada. The system is equipped with three chillers to guaran-
tee comfort within the building. Currently, the control of the
cooling system is determined by an energymanager who de-
cides on the use of the three different chillers. The chillers
are all of different types with different efficiencies as shown
in Table 1 and Figure 2. A simple operation routine for the
three chillers is chosen by the building operator:1

0t ≤ D < 1100t Base operation: only chiller A
1100t ≤ D < 3000t Co-operation: chiller A & B
3000t ≤ D All chillers (1)

As chiller C is supposed to act as a back-up chiller, which is
switched on only in rare events like maintenance, outages
of other chillers or heat waves, its operation is excluded
in the following study. The given routine represents the
most efficient operation strategy if the co-operation of both
chillers runs optimally (see Figure 2). At the threshold of
1100t the co-operation becomes more efficient than the
use of chiller A only. The optimisation of the simultaneous

1The unit used is refrigeration ton t (also: RT ). It originates from
refrigeration with natural ice. 1t corresponds to the refrigeration supplied
by melting one short ton of water over 24 hours(Avallone et al., 2006).

Name System Properties
Ch. A Centrifugal chiller with most efficient,

variable speed drive (VSD) good for changing
and condenser relief loads

Ch. B Centrifugal chiller with less efficient
with condenser relief worse for changing

loads
Ch. C Back-up chiller least efficient,

(absorption chiller) back-up or during
heat waves

Table 1: Overview of chiller systems of case study building.

Figure 1: System architecture as introduced in Evins
(2017).

operation of both chillers is not part of this study, but we
focus on the prediction of whether the co-operation of both
chillers is necessary.
Based on the considered data set (8760 hours), we observe
that the actual operation did not always follow the presen-
ted routine which may have lead to significantly higher
operating costs and energy use. It is found that both chillers
run during 1998 hours however only during 1484 both
chillers were actually needed, i.e. in 583 hours two chillers
were running although only one chiller was required.
Furthermore, ”cold” start of the second chiller occurred,
leading to demand peaks which generates significant
demand charges for the building operator (up to CAD$ 14k
were reported).

The scope of the problem is therefore using demand fore-
casts to give recommendations to the energy manager to re-
duce
1. the number of hours of unnecessary co-operation,
2. peak demands.
The latter can be avoided by slow-starting the second chiller
prior to the peak demand event (if the high peak demand is
forecasted by the model) or by shifting the additional star-
ting load to low demand hours (load shifting).

Human-in-the-loop control
Instead of developing a fully independent and automated
control algorithm, this study proposes the use of ML based
recommendations to support the building energy manager.
Based on the recommendation, he decides to either switch
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a chiller on or off. Once the system is switched on,
it is controlled autonomously. As the energy manager
fundamentally takes part in that control scheme we classify
it as a human-in-the-loop approach.

The architecture of the intended control loop is shown
in Figure 1. The ML model training and predictions are
conducted on an external server connected to the internet.
The server is also used to collect energy demand data and
information on which chillers are running. The data is
gathered via a mini computer running Volttron software,
which is designed to access the BACnet of the building and
retrieve data.2 The transmission of the data happens over a
cell modem.
Based on the information of which chiller is running the
ML model recommends each hour of the day if chiller
A or chiller B needs to be switched on or off. In case
the building energy manager takes action, he accesses the
energy management system (EMS) to control the individual
chiller units. For practicability reasons this could also be
done using wearables like a smart watch.

Having a human in a control loop, who is adjusting super-
visory control parameters, is well understood (Stankovic,
2014). In those applications, the control loop is running
autonomously with a human only intervening when it is
necessary. An example for human-in-the-loop control in
the building context may be found in Mirebrahim et al.
(2017).

It has to be noted, that the provided solution is appropriate
for large commercial and institutional buildings like hospi-
tals, malls, offices and others. Due to the complexity of the
heating and cooling system as well as the large uncertainty
introduced by human activity, an interplay of machine in-
telligence and an energy manager seems promising in this
case. In comparison, in buildings with low uncertainty in
demand(e.g. data centres) pure machine learning methods
have proven great success in lowering the energy demand.
The company DeepMind reported a reduction of 40% in
cooling demand using ML control.3

Energy demand forecasting
Methodologies in energy demand forecasting have a broad
application including the optimisation of power systems or
regarding buildings, either early building design optimisa-
tion or system control optimisation as found in this paper.
In this study we derived three models and compare them.
In addition to two neural network models, a feed-forward
neural network and a long short term memory (LSTM)
model, we also included a common linear regression model.

2https://volttron.org/
3https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-

cooling-bill-40/

The models were programmed using Keras (Chollet et al.,
2015) and Tensorflow (Abadi et al., 2015).
All models map weather data as well as time information
(inputs) to cooling demand (outputs).4 We received hourly
chiller use data for 1 year (Dec. 2015 to Nov. 2016). For
the same period weather data is available online via an
API (www.vancouver.weatherstats.com) or was computed
(sun position). Due to availability, we used weather mea-
surements instead of forecast data. Thus, some uncertainty
given by the inputs is ignored in this study and needs to be
addressed in future. The heat map in Figure 3 shows the
correlation of all used weather inputs to cooling demand.
The non-recursive structure of our models enables to
choose the prediction horizon. For each input of hourly
weather data the corresponding hourly cooling demand is
given as an output of the model. Furthermore, no sensor
data on the building state (e.g. temperature, internal gains,
etc.) or on chiller A and B is used for predictions.

Traditional feed-forward neural networks are one of the
most common ML algorithms. Each network consists of
multiple layers with multiple cells (neurons). In compari-
son to LSTM networks they do not feature the capability
to change an internal state depending on previous model
outputs. Nonetheless, they have shown to be suitable for
building energy demand predictions. Wei et al. (2018) give
more explanations and a review on existing studies.

LSTM neural networks (Hochreiter and Schmidhuber,
1997) are part of the group of recurrent neural networks
(RNN). RNN received a lot of attention in the time-series
forecasting domain because they can store previous model
outcomes. RNN are usually trained using back-propagation
algorithm in real-time recurrent learning. Those algorithms
are prone to vanishing or exploding gradients. The LSTM
algorithm overcomes this problem and thus, it is popular in
the ML world. A LSTM network consists of multiple cells
whose outputs are looped back to the cell. Current model
outputs can be stored in the cell via an internal state. This
internal state is overwritten, erased or read at each model
evaluation step.
LSTM cells can be stacked in a multi-layer architecture.
Here, the final model architecture was determined by using
a simple grid search. We explored different number of cells
per layer (10 or 50), different number of layers (1,2) and dif-
ferent sizes of training batches (50 hours to 320 hours). The
latter is specifically interesting as it determines on which
size of individual batches the LSTM model is trained. The
impact of the batch size had the most significant impact on
the training performance. The final model consists of two
layers with 50 cells each and was trained during 200 epochs
on batches of 200 hours each.

4For the specific building we also provide information if and to which
extent chiller C is used to control for special events like maintenance.
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Figure 3: Heat map of correlation between weather inputs
and cooling demand.

To generate outcomes with the model, the whole set of pre-
vious inputs has to be considered as the model predictions
depend on the internal state of the LSTM, which depends
on previous model outputs.

Results
The models were trained on a sequential block of data
(70% of the data) and tested on the last block of the data
set(30%). Last block testing is necessary for time-series
data to receive an accurate estimation of the model per-
formance (Bergmeir and Benitez, 2012). The training set
consists of data from December to August and the test set
from August to the end of November. The period of the
test set covers late summer, autumn and the beginning
of winter as such a large variety of cooling operation is
included. Figure 4 shows that in the beginning of the test
set consistently a high demand for cooling whereas later
only occasional peaks occur.

LR ANN LSTM
R2

train 0.55 0.72 0.72
R2

test 0.43 0.64 0.70

Table 2: Performance of applied models. The one of the
LSTM surpassed the ones of the LR and ANN model. It is
the most accurate one with the lowest degree of overfitting.
The mean absolute error of the LSTM predictions on the test
set is 24.2%.

The LSTM model surpassed the performance of all other
models (see Table 2). The linear regression model had
the worst performance which confirms that there are
non-linearities in the relationship of cooling demand and
weather data. The feed-forward network structure enables
to capture any non-linearity and performed significantly
better than a linear model. The best-performing (based on
test data performance) neural network of the candidates in
our grid search results in some overfitting as performance
on the test data is significantly worse than on the training
data. Similar overfitting behaviour was observed in the
linear regression model. The LSTM model only showed
weak overfitting. It seems that a network with memory for
previous outputs is specifically well suited to our problem
as no building state data (e.g. temperature) is given as an
input to the model.

The performance of the LSTM model on the test data is
shown in Figure 4. We find that in the beginning the model
follows the real values well. However, at the end of the data
two demand spikes occur which the model does not capture
well. Looking into the data, it was observed that weather
data does not indicate those peaks, i.e. temperature and so-
lar gains do not show any abnormally high values. The mo-
del failure in those cases shows that eventually further input
data on internal heat gains of the building would be required
unless the building manager can compensate these inaccu-
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racies. Overall, a mean absolute error of 24.2% was found
for the LSTM model on the test data. If the demand peaks
are not taken into account this value would be significantly
better.
Another perspective on the model behaviour is given in Fi-
gure 5 where the real data is on the X-axis and predictions
on the Y-axis. All perfect predictions lay on the 45◦ line.
We see the strong correlation of predictions to the real data.
However, two distinct areas are determined where the mo-
del struggles to give accurate predictions (see red dashed
ellipses). The vertical ellipse shows the case when cool-
ing demand was low and the chillers were close to idling
operation, but the model predicts significant cooling. The
horizontal ellipse indicates the opposite, i.e. the model pre-
dicts idling chiller operation but in reality, significant cool-
ing was supplied. Again, this behaviour may be caused by a
lack of information on occupant behaviour in the building.
Either internal gains are higher than expected (horizontal
ellipse) or lower than expected (vertical ellipse). Further-
more, a change in user comfort (i.e. changing temperature
set points in multiple rooms) may cause modelling errors.

Recommendations for chiller operation
The predictions were processed to recommend if either chil-
ler A or both chillers need to be switched on. Here, we pro-
grammed this process corresponding to the control routine
defined above: any prediction of a cooling demand above
1100t means that the model recommends co-operation of
both chillers. The resulting recommendations are shown in
Figure 6 and emphasize that a ML approach to the problem
is very suitable.
The three columns in the Figure represent which operation
would be optimal according to the defined control routine
(left), which operation was observed in the data (center) and
which operation our prediction model suggests. We used
boolean operators to filter the following cases:

1. The control routine suggests chiller A (base operation)
is running AND only chiller A is observed/recommen-
ded to run (light blue).

2. The control routine suggests chiller A (base operation)
is running AND both chillers are observed/recommen-
ded to run (green).

3. The control routine suggests both chillers (co-
operation) are running AND both chillers are observe-
d/recommended to run (white).

4. The control routine suggests both chillers (co-
operation) are running AND only chiller A is
observed/recommended to run (red).

The second case represents the erroneous switching on of
two chillers during low demand hours. It was observed
that in 92.9% only one chiller was running when the actual
cooling demand was lower than 1100t (light blue area) and
our prediction model recommended in 98.4% of the low
demand hours to only use one chiller. In 7.1% of the cases
it was found in the observed data that both chillers were
running. The prediction model suggested only in 1.6% of
the low demand hours to use two chillers (compare green
area of center and right bar). With the prediction model
400 hours of unnecessary running of two chillers could
have been avoided.
The third and fourth case addresses the prediction of the
cooling operation during high demand hours (white and
red area). In case the demand was between 1100t and
1200t (maximum capacity of chiller A), it was observed
that only chiller A was running. For simplicity, we omit
those samples (27) from this analysis, as the efficiency
losses are small compared to the other cases. Therefore,
these samples are not shown in Figure 6 and the white area
of the left and the center bar are equally large. However,
in the right bar a large red area is shown. This area shows
that the prediction model recommends for 48.7% of the
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Figure 4: Sequential display of predicted and observed cooling demand of the test data set.
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Figure 5: Predicted and observed cooling demand for test data set. The predictions which match the observed cooling demand
lie on the 45◦ line. Ellipses indicate two distinct cases when the model fails to predict demand accurately. The horizontal
ellipse highlights the area where the model predicts an idling chiller, but significant cooling is provided; the vertical ellipse
corresponds to the opposite case.
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Figure 6: Performance of ML-based recommendations. Observed controls and recommendations are both compared to the
optimum operation given by the previously defined control routine (see Eq. 1).
The unnecessary co-operation of two chillers (green section) is reduced if one follows the recommendations of the LSTM
model. The red section shows that the LSTM recommendations sometimes fails to predict that two chillers are required. This
emphasizes that even by using ML predictions, still unexpected cold starts of the second chiller may occur.
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high demand hours that only one chiller is necessary.
This possibly leads to cold starts of the second chiller
and electricity demand spikes. In 51.3% of the time, the
model predicts high demand well and prepares the energy
manager for the upcoming need for the second chiller. This
enables to slowly ramp up Chiller B or shift the incurred
starting load to low demand hours. Nonetheless, without
the prediction model no recommendation for the future are
given and hence, the correct prediction in 51.3% of the
time represents a benefit for the building.

Cඈඇർඅඎඌංඈඇඌ ൺඇൽ Fඎඍඎඋൾ ඐඈඋ
The ultimate goal in building control research is optimal
automated control of buildings. Although there are pro-
mising paradigms in development there is still significant
work to be done.
We offer a simple approach to improve HVAC control by
exploiting a combination of building operator’s domain
knowledge and the power of current ML algorithms. In
this human-in-the-loop control scheme, a LSTM model
is trained to predict energy demand of the building based
only on weather forecast data. The demand predictions
are used to give control recommendations to the building
operator who can override recommendations if he receives
additional information, which are not considered by the ML
model as for example extraordinary occupant behaviour
like conferences or meetings.
In this study, we applied that scheme to optimise chiller
control. The cooling demand of a large commercial buil-
ding was predicted with a LSTMmodel trained on one year
of data. The model gives recommendations whether one
or two chillers should be switched on. We compared the
recommendations of the model to the observed decisions
taken by the building operator: It was found that the model
would have reduced the unnecessary use of the second
chiller by 469 hours within one year (80.5% reduction).
Furthermore, it correctly predicted the need for the second
chiller in 51.3% (760 hours) of the cases it was required.
However, the model failed to predict the need for the
second chiller in 48.7% of the cases. We investigated those
errors and found that cooling was abnormal considering
the associated weather inputs. This points out that further
information on special happenings in the building are
required which a building operator has. In those cases he
should override model recommendations.
We aimed for a solution which can be generalized to a large
variety of buildings. On the one side, the suggested method
only uses weather forecast data and thus, no elaborate
studying and selection of available sensor as model inputs
has to be conducted. On the other, our approach requires
good knowledge of the individual building system set-up.
Furthermore, only buildings which are supervised by an
energy manager are suitable to fully benefit.

The next step in research is to deploy hardware in the buil-
ding (see Evins, 2017) to provide actual recommendations
to the building operator. Recommendations of the model
and control decisions of the operator need to be recorded.
This will give understanding how well the collaboration of
model and human works. It will be interesting to see if the
accuracy of the model, which only relies on weather fore-
casts as inputs, is sufficient such that recommendations are
accepted and in periods when the ML model is inaccurate,
if the energy manager overrides the recommendations.
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214

Building stock retrofit Analysis

Paper 3

In this paper, we using data from the Victoria building stock which included pre- and

post-retrofit building performance estimates for a large set of buildings. We applied

multiple linear regression to determine the most cost-effective retrofit options to abate

carbon emissions.
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Abstract: This work applies multiple linear regression to a building energy retrofit database of the City of Victoria in order 

to determine the energy reductions associated with different retrofit measures. The results of the regression are then used to 

construct marginal abatement cost curves for retrofit options. A comparison between continuous and binary variables is 

performed to examine their effect on accuracy. It was found that the accuracy is comparable (R2 for binary: 0.81, R2 for 

continuous: 0.76). The regression results estimated that building envelope retrofits could reduce energy use by 40%, and 

heating system retrofits can reduce energy use by up to 30%. Switching to electric heat pumps could reduce emissions by an 

estimated 80%. 
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INTRODUCTION 

Retrofitting residential buildings has great potential to 

reduce carbon emissions through both improvements to the 

building envelope and by upgrading the heating systems. In 

British Columbia, the low carbon content of grid electricity 

makes converting to electrically-driven heating systems an 

excellent way to decarbonise the building stock. 

Retrofitting can also reduce energy bills for occupants. 

However, retrofitting measures incur significant up-front 

costs, which must be balanced against the possible benefits. 

There are numerous ways to analyze the cost effectiveness 

of retrofit actions as well as how much each particular 

retrofit action reduces energy use. Physical modeling 

software can estimate the energy use of a building given 

many parameters and environmental conditions. However 

it is time consuming and impractical to model every 

building in a municipal building stock, and the required 

data is often not available.  

One way around this is to collect data by surveying building 

characteristics as was done by Dall’O’ et al. (2012). 

Another option is to use aggregate data from a national 

level and assume that this is representative of the local 

building stock as in Constantinos (2007), which may not be 

accurate. 

Another option is to create building archetypes that are 

representative of the buildings in the stock, so that detailed 

simulation can be performed on a smaller number of 

archetypes rather than on all the buildings in the stock, 

while still being representative. Linear regression is 

sometimes combined with archetypal analysis as in Chidiac 

(2011), however this study only covered office buildings. 

Martinez et al. (2018) use multivariate linear regression to 

assess the energy use reduction of retrofits that include and 

exclude building envelope upgrades. They found that 

upgrading building envelopes increase the energy savings. 

However the dataset is somewhat limited in size, in 

addition to no consideration to specific components of the 

retrofits (eg. Insulation, windows, etc.). 

Walter and Sohn Walter (2016) use a multivariate linear 

regression model to predict energy use intensity with 

variables representing building parameters such as climate 

zone, heating system type, etc. The model quantifies the 

contributions of each characteristic to the overall energy 

use, then the energy saving from modifying or retrofitting 

that particular characteristic is inferred. The analysis is 

limited however in that it uses only pre retrofit data and 

isn’t validated using pre and post retrofit energy use data. 

This work aims to use multiple linear regression (MLR) to 

derive the statistical impact of each retrofit measure on the 

total percentage energy reduction. This has also been 

extended to carbon emissions and energy bills by making 

assumptions about the breakdown of energy use. Our 

method is similar to that used in Walter (2016) , however 

the key differences are that we performed the regression on 

the percentage energy reduction between the pre and post 

retrofit energy use as opposed to just on the pre retrofit 

energy use. The accuracy of the regression is discussed as 

well as potential ways to improve it.  

The results of this analysis were then used to construct 

marginal abatement cost (MAC) curves, which quantify the 

cost and benefit of each possible retrofit measure. MAC 

curves provide a simple way of expressing this relationship. 

They are simplified representations of the underlying 

problem in that they rely on the assumption of linearity, i.e. 
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that separate measures can be recombined in any manner, 

and that the total impact will be the linear sum of their 

individual impacts. 

The study is based on a dataset of several thousand building 

retrofit evaluations in the City of Victoria compiled by 

National Resources Canada (NRCan). This gives the 

retrofit actions that were recommended and performed 

across 50 categories alongside the pre- and post-retrofit 

energy use as estimated using software called HOT2000.  

METHODOLOGY 

There are several steps to the analysis. First the available 

NRCan data on the energy use reduction of building 

retrofits has been cleaned and processed. The cost data 

associated with each measure has also been collated. Next 

a multiple linear regression process has been used to 

approximate the contribution of each individual measure to 

the total reduction. These coefficients are used to generate 

MAC curves, which are analysed and then scaled to the 

whole building stock. Please note that due to space 

constraints, we are limited in the amount of data that can be 

shown. This includes many building parameters such as pre 

and post retrofit heating system efficiency and retrofit 

measure costing. 

Database analysis 

The database is created from pre and post retrofit energy 

audits where parameters are recorded such as wall, 

foundation and ceiling insulation, number of energy star 

windows, and information about the heating system type 

(various types of gas or oil furnace, ASHP, electric base 

boards, etc.) and fuel type (oil, natural gas, electricity, 

wood). These parameters were used to create HOT2000 

models of the buildings and the pre and post retrofit energy 

use was estimated. It is the difference between these values, 

i.e. the change in energy use, which is used for our 

calculations. 

Ideally it would be better to obtain energy use from direct 

measurements or from simulation using a more advanced 

tool such as EnergyPlus. However, pre and post retrofit 

measurements are rarely available, nor are the many 

parameters needed for more detailed simulation. This paper 

describes a methodology that can be used on other building 

energy databases that could perhaps have direct energy use 

measurements, or are for different cities.  

Before the dataset could be used, it was organized and 

cleaned. Building entries that did not perform post retrofit 

energy audits were removed since they provided no way of 

assessing improvements due to retrofits. Building entries 

were grouped based on different parameters, and erroneous 

values were removed.  

Multiple linear regression analysis 

Multiple linear regression models are an extension of the 

standard linear regression approach that can be used to 

quantify the impact of multiple inputs on one output. They 

are a class of statistical model that generate aggregated 

statistical insights from many individual observations. In 

this study it is used to analyse retrofit measures on city level 

using data on building level.  

Multiple linear regression generates very useful results: 

unlike other methods, the fitted coefficients relate directly 

to the variables of interest, in our case the different retrofit 

measures. The weakness of the method is that it assumes 

all relationships between the inputs and the output to be 

linear and independent, i.e. that there are no non-linear 

relationships and no interactions between variables so that 

the total impact will be the linear sum of the individual 

impacts. Since this is also an assumption of the MAC 

curves that the outputs will be used to construct, this is not 

particularly detrimental. 

In this study, we use linear regression methods to quantify 

the impact of different building retrofit measures (e.g. wall 

insulation improvement, replacement of heating system, 

etc.) on the reduction in the annual energy consumption, 

carbon emissions and energy costs of a building. The model 

is fitted using 7000 data entries relating to retrofitted 

buildings within the City of Victoria. The impact of each 

retrofit measure is captured by the regression coefficients 

𝑝𝑖  of the fitted model as shown by the mathematical 

formulation of the regression model: 

𝛥𝐸 = 𝑝𝑎𝑖𝑟𝑋𝑎𝑖𝑟 + 𝑝𝑤𝑖𝑛𝑑𝑜𝑤𝑋𝑤𝑖𝑛𝑑𝑜𝑤

+ 𝑝𝐴𝑆𝐻𝑃𝑋𝐴𝑆𝐻𝑃+. .. 

   = ∑ 𝑝𝑖𝑋𝑖  , 

 

(1) 

   where 𝑋𝑖  ∈  [0,1], 𝑝𝑖 ∈  ℝ, i = measure index. 

The output variable ΔE represents the percentage reduction 

in energy consumption per unit floor area. Each coefficient 

𝑝𝑖  is multiplied by a binary variable 𝑋𝑖  which indicates 

whether the respective retrofitting measure i was performed 

(𝑋𝑖=1) or not (𝑋𝑖=0). The method provides the values of 𝑝𝑖 , 

which here can be interpreted as the percentage by which 

the energy consumption is lowered if each of the different 

retrofit options is implemented independently. The larger 

𝑝𝑖 , the larger the impact of retrofitting measure i. The 

output variable 𝛥𝐸 is the difference between the pre- and 

post-retrofit annual energy use as estimated in the 

HOT2000 simulation on building level divided by the 

building area, in units of GJ/m2/a. 

As an example, we consider a simple case where there are 

three possible measures: windows can be retrofitted, an air 
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source heat pump can be installed, and wall insulation can 

be improved. Fitting the model to lots of different 

observations on buildings having conducted these measures 

will give the coefficients pwindow, pASHP and pwall, and the 

linear regression model estimates the reduction in energy 

consumption ∆E to be: 

∆𝐸 = 𝑝𝑤𝑖𝑛𝑑𝑜𝑤𝑋𝑤𝑖𝑛𝑑𝑜𝑤 + 𝑝𝐴𝑆𝐻𝑃𝑋𝐴𝑆𝐻𝑃

+ 𝑝𝑤𝑎𝑙𝑙𝑋𝑤𝑎𝑙𝑙  

(2) 

For a specific building in which the windows and walls are 

upgraded but no heat pump is added, the percentage 

reduction in energy consumption is predicted to be: 

∆𝐸 = 𝑝𝑤𝑖𝑛𝑑𝑜𝑤 ∗ 1 + 𝑝𝐴𝑆𝐻𝑃 ∗ 0 + 𝑝𝑤𝑎𝑙𝑙 ∗ 1 (3) 

i.e. the sum of the coefficients for the measures that were 

implemented. The full model is an extension of this to 

include all 17 measures, and hence has 17 coefficients. 

Model fitting 

The coefficients of the model are determined using 

ordinary least squares (OLS) methods. The model fitting 

and all related computations were programmed using the 

Python SKLearn Toolbox. To guarantee a statistically 

robust and accurate model, multiple steps were undertaken: 

 The physics of the building heat balance show that 

the actual reduction due to building envelope and 

heating system retrofits are interlinked. For 

example, improving the insulation of a building 

with a low efficiency heating system is much more 

influential than of a building with a highly 

efficient heating system. To remove this link, the 

model was fitted to the percentage reduction in 

energy, emission or energy cost of a building. This 

modification eliminates the need to generate 

multiple models for each heating system type. 

 The data set was scanned for outliers and 18 data 

points were removed.  

 The coefficients resulting from the OLS fit were 

tested for statistical significance using the p-value 

score. All variables that are not statistically 

significant (i.e. whose p-value is larger than 

0.005) are rejected from the model. The associated 

samples in which the associated measure is 

present are also removed, to reduce the variation 

in the remaining data. 

 To verify the accuracy, the model was fitted to 

90% of the data and its performance validated on 

the other 10% of the data. The samples for the 

validation set were chosen randomly. 

MAC CURVES 

Marginal abatement cost curves are used to compare the 

cost effectiveness of all retrofit measures in reducing 

carbon emissions. MAC curves integrate the previous 

findings on the impact of different retrofits on building 

energy consumption and the respective costs. The major 

advantage of MAC curves is the way they incorporate cost 

and emissions goals into one graph and display the most 

economical pathway of actions to reach a specific target.  

First the energy consumption reductions must be converted 

in to carbon emissions reductions by multiplying the 

reduction by the carbon factor associated with that of the 

heating system and fuel type. The carbon factors for each 

fuel type was obtained from the BC Ministry of 

Environment (2016). Efficiencies of the heating systems 

were also accounted for.  

MAC curves represent each retrofit measure according to 

the following metrics:  

− Annual kgCO2 savings (per m2 floor area), horizontal 

axis: This number uses the coefficients of the multiple 

linear regression model as shown in the previous section. 

The percentage reduction value of each measure is 

multiplied by the total average pre-retrofit emissions in 

kgCO2/m2.  

− Annual cost per kgCO2 savings ($ per m2 floor area), 

vertical axis: The value above is divided by the cost of the 

measure. We compute the equivalent annual cost (EAC) to 

compare assets with different lifetimes, as determined for 

different building retrofit measures. EAC also considers the 

cost of capital by integrating current interest rates and 

inflation rates in Canada; a value of 1.16% was used Bank 

of Canada (2017).  

MAC curves also have an advantage when paired with 

linear regression that they make the same assumptions 

regarding linearity and independence. This means that the 

assumptions of one method do not limit the ability or 

accuracy of the other method. 

Energy consumption reductions are also converted into 

energy bill reductions by obtaining fuel cost data for 

Victoria, and then multiplying these factors by the energy 

reductions according to the fuel types (BC Hydro (2016), 

NRCAN (2015), FortisBC (2017)). All three metrics are 

examined in the results section. 

 

Table 1: Variables used in the multiple linear regression. 

RSI insulation have units of m2*K/W 
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Variable Description 

thermostat Addition of a thermostat 

e2e Upgrade of an electric heating system to a newer 

electric heating system. 

E2G  Change from electric to gas fired heating system  

E2O  Change from electric to oil fired heating system  

G2E  Change from gas fired to electric heating system  

G2G  Renewal of gas fired heating system  

G2O  Change from gas to oil fired heating system  

O2E  Change from oil fired to electric heating system  

O2G  Change from oil to gas fired heating system  

O2O  Renewal of oil fired heating system  

GSHP  Change from any system to a ground source heat 
pump  

e2ASHP  Change from electric furnace to air source heat 

pump  

G2ASHP Change from gas furnace to air source heat pump  

O2ASHP  Change from oil furnace to air source heat pump  

Upgrade  Renewal of air source heat pump  

Air Increasing air tightness of building, e.g. by fitting 

draft excluders  

Window Replacing windows  

CRSI 0-4 Improving the ceiling insulation by an RSI value 

between 0 and 4  

CRSI 4+ Improving the ceiling insulation by an RSI value of 

more than 4  
FRSI 0-1 Improving the foundation insulation by an RSI value 

between 0 and 1  
FRSI 1-2 Improving the foundation insulation by an RSI value 

of more than 1  
WRSI 0-0.75 Improving the wall insulation by an RSI value 

between 0 and 0.75  
WRSI 0.75+ Improving the wall insulation by an RSI value of 

more than 0.75  

RESULTS AND DISCUSSION 

In this section we first present the results of the model 

fitting, followed by an analysis of model accuracy, and 

finally the MAC curves derived from the model results. 

Multiple linear regression results 

The coefficients pi of the multiple linear regression analysis 

give the average percentage reduction in energy use 

associated with each retrofit measure. The measure indexes 

i are given in Table 1. The results are shown in Figure 1; 

the numbers in brackets beside each retrofit option give the 

number of associated entries present in the data. The error 

bars display the standard error associated with each 

regression coefficient pi. This is equivalent to the standard 

deviation of the model error, and therefore if the error is 

assumed to be normally distributed, then 68% of values will 

have an error less than or equal to the standard error.  

Energy consumption 

Energy consumption is lowered most effectively by 

installing more efficient heating systems, ideally an air 

source heat pump. The model suggests that a change from 

an electric furnace to an ASHP lowers the total energy 

consumption by 24%, a change from a gas furnace to an 

ASHP by 29% and a change from an oil boiler leads to a 

reduction of 37%. Installing new furnaces (especially gas 

or electric furnaces) leads to significant reductions in 

energy demand of between 10% and 17%. The reduction 

potential of ground source heat pumps is estimated to be 

30%, but unfortunately since the dataset only features a 

very low number of samples (12), this value may not be 

accurate, and a detailed analysis of their impact is not 

possible. 

Improving the building envelope also helps to lower energy 

consumption. Installing a highly effective wall insulation 

(RSI-value > 0.75 m2K/W) cuts energy consumption by 

16%; major improvements in the floor insulation lower the 

energy consumption by around 10%. Improving the ceiling 

insulation, replacing the windows or increasing air 

tightness have a smaller impact. However, it should be 

highlighted that the building envelope retrofits can be 

combined, and accumulate such that they may have a 

similar impact to a heating system upgrade. If all possibly 

combinable building envelope improvements (Air 

tightness, window replacement, ceiling RSI-Value > 4 

m2K/W, wall RSI-value > 0.75 m2K/W and foundation RSI-

Value > 1 m2K/W.) are conducted a total energy 

consumption reduction of 41% is predicted. 

The model results in negative coefficients (i.e. energy use 

is predicted to increase) for two of the retrofit measures: a 

change from electricity-driven heating to a gas powered 

system, and adding a thermostat. The former is explained 

by the reduced efficiency from 100% (electric) to rather 

less for gas, and also possibly the reduced cost of heating 

leading to increased use. The small increase in energy 

consumption due to installation of a thermostat may be 

caused by the use of the thermostat to increase comfort 

rather than to decrease energy use. 

Some retrofit measure options do not occur in the dataset: 

no samples feature electric furnace upgrades, electric to oil 

conversions or gas to oil conversions (unsurprisingly since 

running costs for an oil boiler are higher than gas). As a 

consequence, they have coefficients of zero, and we omit 

them in this study. 

Reduction in carbon emissions 

The model suggests that electrifying the heating system is 

the strongest driver to reduce carbon emission. It is found 

that replacing gas and oil furnaces by air source heat pumps 

helps to cut emission by almost 80% and even replacing 

them by standard electric heating systems lowers emissions 

by more than 60%. Other heating system upgrades like 

changing from oil to gas or from electric heaters to a heat 

pump still have significant reductions of 31% and 20% 

respectively. The reduction in emissions by building 

envelope improvements are similar to those for the 

reduction in energy demand. It is important to note however 
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that the carbon factor if British Columbia’s electricity grid 

is very low due to abundant hydro power, and these 

findings may not be the same for grids with a higher carbon 

factor. 

Reduction in energy costs 

The fundamental driver of energy costs are current fuel 

prices in Victoria as well as the effectiveness of the 

envelope and the efficiency of the heating system. Natural 

gas currently has the lowest cost and heating oil the highest 

cost per kWh; heat pumps have the highest efficiency of all 

heating systems. Based on this, the analysis of the results 

in the plot below are straight-forward. Changes from any 

system to a natural gas-fired system are estimated to reduce 

energy bills by at least 40% (electricity to gas) to 50% (oil 

to gas). The model suggests that installing a heat pump 

lowers bills by 24% (electric furnace to ASHP) to 38% (oil 

to ASHP). Two buildings which removed a gas system and 

installed an electric furnace instead suffered an increased 

energy bill of 61%. The reduction in bills by building 

envelope improvements are similar to the ones found for 

the reductions in energy demand.  

Retrofit sequence effects 

The order in which retrofits are applied to buildings can 

have an effect of the cost effectiveness of retrofits. The 

most obvious case is increasing envelope insulation and 

changing heating system type. If a building has poor 

insulation, it is going to require more heat through the year 

which will increase fuel and maintenance costs. If the 

heating system were to be upgraded, then the cost 

effectiveness will be high, since the use is high. If 

insulation were added first, it would decrease demand, and 

reduce the fuel costs, and lowering the cost effectiveness of 

a heating system upgrade. 

The effect is more complex when emissions are considered. 

Switching from a fossil fuel heating system to an electric 

based one could be much more cost effective in terms of 

emissions than upgrading insulation or windows once 

electrifying the heating system has taken place. This is 

mainly due to the carbon factor of electricity being very 

low, so the reduction in emissions due to envelope upgrades 

after heating system electrification is almost negligible. 

Energy reductions obtained through envelope upgrades are 

still desirable however. 

Model accuracy and prediction performance 

The quality of the fitted model may be assessed by its 

ability to predict the energy reduction of the 10% of 

buildings that were not included in the fitting process (see 

Methodology section). The mean absolute error (MAE) and 

the standard deviation (SD) are given in Table 2. These 

indicate how much the model prediction of the annual 

reduction (in energy, emission or cost) deviates from the 

actual annual reduction. For example, for predicting the 

energy reduction we obtained a mean absolute error of 

6.3% +/- 5.0%. Hence, in 68% of the cases (assuming 

normally distributed errors) the absolute prediction error is 

between 1.3% and 11.4%.  

The prediction performance of the model was significantly 

improved over the course of this study, predominantly by 

converting the values to be estimated to percentage 

changes, adding further variables (e2ASHP, g2ASHP, 

o2ASHP) and eliminating outliers from the data. 

The MAE and SD remain reasonably similar between the 

fitting data (90% of samples) and the testing data (10% of 

samples). This implies that the model is not ‘over-fitted’ to 

reproduce the fitting data as well as possible but then failing 

to accurately predict new testing data. The similarity 

implies that this is the limit of how well a linear model of 

this nature can represent the data available. Improving on 

this would either require more data (a greater number of 

samples), or better data (giving more details on the nature 

of the buildings or the actions performed). The latter is 

likely to give the best improvements, since the standard 

error values are reasonable. 

 

Table 2: Model fitting results showing mean absolute 

error (MAE) and standard deviation (SD) for fitting and 

validation data for energy, emissions and cost models. 

 Energy 

reduction 

Emissions 

reduction 

Cost reduction 

Fitting 

Data 

Val. 

Data 

Fitting 

Data 

Val. 

Data 

Fitting 

Data 

Val. 

Data 

MAE  

[% reduction] 
6.13 6.34 6.61 6.45 6.34 6.13 

SD of error 

[% reduction] 
4.98 5.01 6.33 5.42 6.02 5.51 

 

Linear vs continuous variables 

The regression analysis was performed using binary 

variables as opposed to continuous variables for several 

reasons. Firstly the retrofit measures that were recorded 

were a mix between continuous and binary with the 

majority being binary. For example, heating system 

upgrade was binary whereas insulation R value was 

continuous. The continuous values were separated into 

levels (e.g. wall R value increased by 0 to 2 m2K/W, or 2 to 

4 m2K/W or by more than 4 m2K/W); a binary variable was 

assigned to each level and the appropriate binary activated 

depending on the R value change that each entry 

performed. 
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Figure 1: Results of the multiple linear regression for energy consumption, cost of fuel and carbon emissions. Each column 

shows the percentage reduction due to that variable. Variable descriptions are given in Table 1. 
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Secondly having the different levels of binaries for 

continuous retrofit measures also made it easier to 

determine if there were diminishing returns associated with 

different levels of that variable, whereas it could be more  

difficult to determine that with continuous variables due to 

the pi coefficient needing to be constant over the whole 

range. Effectively the use of binaries is capturing high-level 

non-linearities in the system at the expense of low-level 

precision. 

Thirdly the binary values may more accurately represent 

retrofit measures as they would be performed in reality. 

Wall R-value would not typically increase by 1.37 for 

example, but rather would be increased in discrete intervals 

determined by the way the construction materials are sold 

and installed. The discrete levels could represent separate 

consecutive applications of spray foam or layers of 

fiberglass batting. This could have practical advantages in 

applying this method and its results to creating municipal 

policy for retrofit incentives as it is simpler to communicate 

the requirements to residents or contractors. Interpreting 

the discrete variables is as simple as reading the number 

from the plot, whereas with a continuous variable it is 

necessary to account for the units of the factors before 

multiplying them by the result.  

A comparison between using continuous variables to 

represent the continuous data and binary variables, as 

opposed to entirely discrete variables was performed on the 

retrofit data, to determine its effect on accuracy. 

Continuous variables were used for insulation R values for 

foundations, walls and ceilings, as well as furnace 

efficiency, while the rest of the variables were left as 

binaries since the data only indicated if they were 

performed or not.  

 
Figure 2: Regression coefficients of continuous variables. 

Figure 2 gives the regression coefficients obtained for 

continuous variables. This gives a good example of the 

issue of units discussed above. The change in heating 

system efficiency appears to be small compared to the other 

variables, but this is due to the units being in percentage 

(usually between 70% and 100%) and the other variables 

having different units. This can be misleading to someone 

not familiar with linear regression. 

A comparison of the binary and continuous fitting results 

showed that there was little change in the accuracy of the 

MLR, with the R2 value decreasing slightly when 

continuous variables were used (0.81 for binary, 0.77 for 

continuous). One potential reason for the similar accuracy 

is that although we used binary variables, we had 

previously discretized continuous data into brackets that 

were each represented with a binary variable.  If a single 

binary was used to represent an entire continuous range of 

data then this would likely give much poorer accuracy. 

MAC curves 

The results of the multiple linear regression have been 

combined with cost data and scaled by the city building 

stock to produce MAC curves, which we present in the 

following two sections.  

Envelope and heating curves 

First, we give separate results for building envelope 

retrofits and for HVAC retrofits. These are presented 

separately because the HVAC options are dependent on 

both the initial heating system type and on the preferences 

of the building owner (e.g. in prioritizing cost reductions 

over emissions savings).  

Figure 3 shows that nearly all the retrofits that can be 

performed on the building envelope have negative annual 

cost over their lifetimes, meaning that they will pay back in 

energy bill savings over this period. Figure 4 shows the 

MAC curve for heating systems. It shows that switching oil 

furnaces to electric or ASHP are the most cost effective 

carbon reduction options. The negative cost indicates that 

owners would save money by switching from oil to any 

other heating system. Likewise, switching from gas to 

electricity provides large carbon reductions, however due 

to the low price of gas there is a positive cost over the 

lifetime. 

Whole building stock results 

The MAC curves were then used to assess the cost 

effectiveness of different heating system retrofits applied to 

the City of Victoria residential building stock. This was 

done by estimating the proportions of residential buildings 

that had gas, oil and electric heating systems according to 

utility connection data, BC. Ministry of Environment 

(2012).  
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The retrofit measures were then applied in these 

proportions to the total residential stock area. It is assumed 

that all building envelope items that have a negative cost 

will be implemented. Regarding the heating system retrofit, 

two different approaches are studied:  

1: Green approach: Based on the results above the most 

emissions can be avoided if gas and oil furnaces are 

replaced by energy efficient air source heat pumps 

(expected emissions reductions of 78% and 79%). This 

scenario represents the CO₂  emissions that can be avoided 

if all carbon-intensive furnaces in Victoria are replaced by 

air source heat pumps. 

2: Cost-effective approach: In this scenario those heating 

system retrofits are considered which offer the lowest 

abatement cost per kg CO₂  while providing significant 

CO₂  reductions. All gas furnaces and electric furnaces are 

replaced by air source heat pumps, while oil furnaces are 

changed to low cost gas fired heating systems. Note, that 

the only difference between the green and cost-effective 

approach is the change of oil furnaces to ASHPs instead of 

a change to gas furnaces.  

The results for these scenarios are given in Figure 5. Total 

carbon emissions, equivalent annual costs and the initial 

investments are shown. Equivalent costs include the 

annualized initial investment using the current Canadian 

interest and inflation rates over 20 years, as well as savings 

from the lowering of energy bills. 

The initial investment in heating system upgrades is 

expected to be 72M$ for the cost-effective approach (gas 

furnaces and air source heat pumps) and 90M$ for the 

green approach. The building envelope upgrades have an 

initial investment cost of 166M$. However, it has to be 

noted that the building envelope cost can be reduced if 

fewer measures (e.g. only wall insulation and air tightness 

upgrades, no ceiling or foundation insulation upgrades) are 

conducted. This is not possible for heating system upgrades 

as a full system must be purchased. This gives total initial 

costs of between 238 and 256M$. The estimated total 

annual emissions savings when the building envelope 

upgrades are combined with the green option for heating 

system upgrade is around 49,000 t CO2. The equivalent 

annual costs are all negative which indicates a long-term 

cost saving by performing the retrofit scenarios through 

reduced energy bills.  

The CO2 abatement cost calculated in this study was 

compared to other MAC curves from nearby studies. The 

abatement costs range from $-14 to $-250 CAD$/tCO2 

compared to our value of $-210 (Municipality of North 

Cowichan (2013), Canadian Association of Petroleum 

Producers (2015), City of Toronto (2017), McKinsey & 

Company (2007)). The negative values indicate that money 

is saved. It is worth noting that those studies are performed 

for different spatial scales and specific retrofit measures 

performed were not well defined.  

LIMITATIONS AND FUTURE WORK. 

A limitation of this work is the assumption of linearity in 

retrofit measures and their effects. Namely that the effect 

of two retrofit measures together do not necessarily equal 

the sum of effects if they were implemented individually. 

We recognize that assuming linearity is not entirely 

accurate representation of reality. However in the absence 

of detailed building dimensions for creating physical 

models, the only other option is to do more complex 

machine learning and non-linear modeling methods, which 

become more and more “black box” with complexity. We 

want to use a simple method that is as “white box” as 

possible so that it can be understood and adopted by 

municipalities as a tool for meeting their emissions targets. 

Another limitation is that the database that was used 

calculates primary energy use based on the output of a 

HOT2000 simulation of a model with the recorded building 

parameters. A database that uses has directly measured 

energy use values pre and post retrofit would be ideal.  

Future work could include moving to a non-linear model or 

machine learning algorithm to analyze the effects of retrofit 

measures, to get around the assumption of linearity that is 

made for this analysis. It would be interesting to then 

compare the results. 

CONCLUSION 

In this paper a novel methodology for estimating stock-

level energy use reductions for building retrofits is applied 

to a dataset for residential buildings in the City of Victoria. 

The method uses multiple linear regression to estimate the 

amount of energy that each retrofit measure can save when 

applied to a building. The results of the MLR analysis are 

used to construct marginal abatement cost curves indicating 

the most cost effective and carbon saving measures. The 

MAC curves were then scaled by the residential building 

stock of Victoria to get an idea of the citywide potential for 

carbon reductions and the associated costs.  

MLR is a relatively simple yet powerful tool that can be 

applied to datasets created from actual measurements from 

energy audits or simple simulations based on building 

surveys. The model was formulated using binary variables, 

with discrete intervals used to represent continuous data 

such as insulation R values. This resulted in a relatively 

quick set up and gives results that are simple to understand 

and use without post processing. A comparison was 

performed using the same dataset but with continuous 

variables where possible, and the results showed that there  
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Figure 3: MAC curve for building envelope retrofits. 

 

Figure 4: MAC curve for heating system retrofits. The different types overlap since only one can be performed at a time, so 

it is not a true MAC curve, but the comparison between options is still useful. 

 

Figure 5: Equivalent annual cost, initial investment and carbon emissions savings of retrofit scenarios 1 and 2. 
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was little change in accuracy, and even a slight decrease for 

the analysis using continuous variables. The results of the 

MLR analysis are then used to create MAC curves, one for 

building envelope retrofits, and another for heating system 

upgrades. These are then scaled by the number of 

residential buildings in the City of Victoria to get an 

estimate of the magnitude of energy and emissions savings 

that could be achieved if these measures were applied. If all 

combinable building envelope retrofits are performed, 

energy use could be reduced by as much as 40%. Switching 

heating system types from oil and/or gas to electric, 

preferably with an ASHP, can give significant reductions 

in emissions. If all gas and oil heating systems were 

changed to ASHP then emissions could potentially be 

reduced by up to 80%. Part of this is due to the efficiency 

of ASHPs, but it is also due to the low carbon intensity of 

grid electricity in BC. Even if oil and gas were converted 

to electric resistance heating, reductions of up to 60% are 

estimated.   

This paper has demonstrated that multiple linear regression 

using binary variables is a powerful tool. It is relatively 

simple to use and produces results which are easy to 

interpret. It can be combined with MAC curves since both 

methods have the same assumptions. These methods can be 

very useful for practical applications such as municipal 

policy and planning.  
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