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Abstract

The objective of this thesis is to assess the optimal power production and flight

trajectories of crosswind, ground-generation or pumping-mode airborne wind energy

systems (AWES), subject to realistic onshore and offshore, mesoscale-modeled wind

data as well as LiDAR wind resource assessment. The investigation ranges from small

scale AWES with an aircraft wing area of 10 m2 to utility scale systems of 150 m2.

In depth knowledge of the wind resource is the basis for the development and

deployment of any wind energy generator. Design and investment choices are made

based on this information, which determine instantaneous power, annual energy pro-

duction and cost of electricity. In the case of AWES, many preliminary and current

analyses of AWES rely on oversimplified analytical or coarsely resolved wind models,

which can not represent the complex wind regime within the lower-troposphere. Fur-

thermore, commonly used, simplified steady state models do not accurately predict

AWES power production, which is intrinsically linked to the aircraft’s flight dynamics,

as the AWES never reaches a steady state over the course of a power cycle. Therefore,

leading to false assumption and unrealistic predictions.

In this work, we try to expand our knowledge of the wind resource at altitudes be-

yond the commonly investigated lowest hundreds of meters. The so derived horizontal

wind velocity profiles are then implemented in to an optimal control framework to

compute power-optimal, dynamically feasible flight trajectories that satisfy operation

constraints and structural system limitations. The so derived trajectories describe

an ideal, or at least a local optimum, and not necessarily realistic solution. It is un-

likely that such power generation can be reached in practice, given that disturbances,

model assumptions, misalignment with the wind direction, control limitations and

estimation errors, will reduce actual performance.

We first analyze wind light detection and ranging (LiDAR) measurements at a po-

tential onshore AWES deployment site in northern Germany. To complement these

measurements we generate and analyze onshore and offshore, mesoscale weather re-

search and forecasting (WRF) simulations. Using observation nudging, we assimilate

onshore LiDAR measurements into the WRF model, to improve wind resource as-

sessment. We implement representative onshore and offshore wind velocity profiles

into the awebox optimization framework, a Python toolbox for modelling and opti-

mal control of AWES, to derive power-optimal trajectories and estimate AWES power

curves. Based on a simplified scaling law, we explore the design space and set mass
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targets for small to utility-scale, ground-generation, crosswind AWESs.
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Chapter 1

Introduction

A worldwide increasing energy demand caused by a growing population and industri-

alization, together with the greenhouse gas emissions associated with fossil fuels, and

their detrimental consequences, motivate the development of new, renewable energy

converters. Wind energy is among the most promising sustainable energy sources

worldwide. Conventional wind turbines (WT) have penetrated the market, as their

potential to generate power soared and their energy cost dropped. This type of wind

energy converter is predicted to contribute an even greater share to our electricity

demand in the future, considering that meeting the Paris climate goals [109] is only

achievable by increasing the total installed capacity more than three-fold by 2030 [78].

This transition not only requires new and innovative energy storage and grid integra-

tion technologies, but also the development of improved wind energy technologies.

Over the past years, floating offshore wind turbines in Scotland [9] and Portugal

[47] have demonstrated the technology, which has the potential to unlock vast new

markets worldwide. Repowering, the replacement of existing WTs with new turbines,

allows for the continued operation of existing wind farms with higher yield and use of

fully depreciated transmission assets. The continuation of the current trend towards

higher towers and longer rotor blades, to increase rated power and capacity factor,

is expected to continue. The rated power of currently commercially available WTs is

about 10 MW [148], which is projected to increase to about 15 or 20 MW by 2030.

Flying, airborne wind energy devices are predicted to enter the market in the later

half of the coming decade and are assumed to generate power from lower wind speeds,

due to the proclaimed lower cut-in wind speed, at drastically lower levelized cost of

electricity (LCOE) [77].
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1.1 Airborne Wind Energy

Airborne Wind Energy Systems (AWES) present themselves as the next iteration of

wind energy converters with a higher energy potential and drastically reduced capi-

tal expenditure (CapEx). This idea can be traced back to Miles L. Loyd [87], who

proposed the idea of using tethered kites in crosswind flight to harvest energy from

the wind in the 1980s . These tethered aircraft aspire to tap into the presumably

abundant wind resource at high altitudes, unreachable to conventional, tower-based

turbines. The last decade brought the necessary improvements of sensor, computa-

tion, material and autonomous control technologies that enabled and accelerated the

development of AWES by a academia and industry. Loyd introduced the two basic

crosswind concepts, lift-mode, also known as ground-generation or pumping-mode,

and drag-mode or on-board-generation. The drag mode concept generates electricity

on-board by power-generating propellers which is then transported to the ground via

a conductive tether. The lift-mode concept generates power by pulling a tether from

a drum on the ground which is connected to generator. Once the maximum tether

length is reached, the aircraft reduces its angle of attach and returns to its initial

position, the tether is reeled in, and the cycle repeats.

This work focuses on the two-phase, ground-generation concept, as it is currently

the main concept pursued by industry after Makani Technologies LLC [90], the biggest

company and proponent of the on-board-generation concept closed in February 2020.

The development of ground-generation AWES is, among others, pursed by TU Delft

spin-offs companies, such as AMPYX BV [3], Kitepower [79], but also Swiss company

TwingTec [143] and the AWESCO doctoral training network [11].

Low CapEx, lightweight design and small land use, which both concepts have in

common, allows for temporary or permanent small, off-grid deployment, thereby en-

abling wind energy generation at previously infeasible locations. Large, utility-scale

systems promise abundant, cost-effective wind energy production. However, most of

these assumptions are based on simplified wind, and steady state mechanical models.

Therefore, a deeper understanding of the wind regime well beyond the commonly

investigated lower hundred meters, as well as detailed dynamic system models are

necessary to make informed design, sizing and siting decisions. While several com-

panies demonstrated short-term autonomous flights, reliable long-term operation has

still to been proven, as the industry struggles with technical difficulties.

The goal of AWES is to produce cheap, renewable electricity and to enable wind
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energy production at locations inaccessible or economically infeasible to conventional

WT. This is often associated with harvest energy from stronger and more stable, high

altitude winds by the means of a tethered aircraft connected to a ground station. This

technology is currently going through a consolidation phase. However, many different

concepts were initially developed and investigated by various research institutes and

companies. Figure 1.1 attempts to categorize the diverse range of concepts according

to [25]. These include turbines attached to tethered, lighter-than-air aerostats, ro-

tating Magnus effect systems, soft kites or rigid wings with on-board propellers that

function as generators. Over the last couple of years two main concepts prevailed: the

ground-generation, lift-mode or pumping-mode, and the on-board, drag-mode or fly-

generation. Both benefit from higher apparent wind speeds due to crosswind flight,

which drastically increases the apparent wind speed and therefore the overall traction

force and power potential.

AWES

On-board
generation

Stationary

Crosswind

Ground-
generation

Moving ground
station

Fixed ground
station

Figure 1.1: Classification of AWES concepts according to [25]

Compared to conventional, three-bladed WTs, crosswind AWESs replace the tower

and the inner rotor blade segment with a tether and the outer part with an auto-

matically controlled aircraft. This is motivated by the fact that the outer 30% of

the rotor blades generate more than half of the total power [33] while the structural

components of the inner blade are mostly responsible for carrying the mechanical

loads. This is visualized in figure 1.2, with the on-board generation concept in the

center and the ground-generation concept on the right. As a result, expected AWES

CapEx is far lower than that of conventional WTs. A high power-to-mass ratio would

allow large-scale systems to provide energy at comparably low cost and circumvent

some of the criticism regarding the lack of recycling solutions that conventional WTs

are exposed to. A small ground station with its limited land use enables the ex-
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ploration of untapped, remote regions beyond what is economically and technically

feasible with conventional WTs, due to the associated tower and foundation cost as

well as transportation and maintenance challenges. Furthermore, operating at higher

altitudes or landing during calm winds reduces the visual impact of AWES and could

increase social acceptance.

Figure 1.2: Crosswind AWES replacing the tips of a wind turbine (left) with a
crosswind flying wind. Center shows the on-board-generation concept and right the
ground-generation concept.

However, this technology is not without problems and criticism, mainly proving

of reliable, long-term, autonomous flight, which is needed to not only gain social

acceptance, but also regulatory approval. To achieve commercialization, AWES need

to operate within airspace regulations and define land use safety guidelines, which

also determines the number of devices per unit area, and therefore the overall energy

production of AWES wind farms. A major barrier to entry is the competition with

modern, high yield conventional WTs, which have already proven their reliability

and safety. Another unproven facet of AWES deployment is their noise production.

Furthermore, a report by the European Commission [147] mentions the necessity to

further investigate the wind resources and realistic AWES power potential.

1.2 Mid-altitude wind

The power output of any wind energy generator is dependent on the prevailing wind

conditions. In contrast to conventional WTs, AWESs can dynamically adapt their

operating altitude and trajectory to optimize power output and increase annual en-

ergy production (AEP), by flying at the ideal height with the best wind conditions,

while reducing wake effects [49]. Therefore, comprehensive knowledge of the lower-
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tropospheric wind regime is necessary in order to determine optimal AWES perfor-

mance. However, due a lack of widely available mid-altitude wind data, here defined

as heights between 100 m and 1500 m, many researchers and companies erroneously

revert to a simple logarithmic or exponential wind speed profile or coarsely resolved

reanalysis data sets [50, 5]. AWES operate within the highly-variable boundary layer,

which is why these estimates might approximate long-term average conditions, but

can not capture variations at the minute (typically 10-minute) or diurnal scale. Fur-

thermore, these simple models can not accurately represent the differences in atmo-

spheric stability or between onshore and offshore.

We worked with Fraunhofer IWES to evaluate long-range onshore LiDAR mea-

surements up to 1000 m above ground (chapter 2). From this analysis we gained a

better understanding of 10-minute average, mid-altitude wind conditions, but also

learned about the limitations of LiDAR technology.

Through a collaboration with the Energy Meteorology research group at the Uni-

versity of Oldenburg and Fraunhofer IWES, we generated and analyzed mesoscale

weather research and forecasting (WRF) simulations, both on- and offshore. These

simulation results were then implemented into an optimal control model to generate

realistic ground-generation AWES power curves, estimate AEP and cf (see chapter

4) and investigate the AWES scaling potential (see chapter 5). Using observation

nudging, we implemented the onshore LiDAR measurements into the WRF model,

to increase the accuracy of the model and improve wind predictions (chapter 3). An-

other application of this fusion is filling gaps in LiDAR wind measurement, which are

particularly prominent in higher altitudes.

1.2.1 Wind LiDAR measurements

Recent advancements in wind light detection and ranging (LiDAR) technology enable

the measurement of wind speeds up to several thousand meters away from the point

of deployment at a relatively high temporal and spatial resolution. This technology

allows the analysis of transient wind conditions as well as their long-term statistical

evaluation, which chapter 2 describes in more detail. LiDAR are mainly used with

a horizontal orientation for wake tracking and wind turbine control, as well as the

characterization of the wind resource in the lower hundreds of meters. Using LiDAR

to measure wind conditions above 200 - 300 m is not common, as these altitudes are

currently not of economic interest, and data availability decreases with height.
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LiDAR devices measure the spectral shift between an emitted light pulse and

the returning light scattered back off aerosols transported with the wind [118]. The

aerosol load of the air therefore limits the data availability of this measurement tech-

nique. As the primary aerosol source is the Earth’s surface, the aerosol load decreases

with altitude and drops to levels too low for LiDAR devices to receive sufficient back-

scatter [100], making it particularly difficult to measure at higher altitudes.

Chapter 2 analyzes wind data collected between 1st of September 2015 and 29th

of February 2016 at the ‘Pritzwalk Sommersberg’ airport in north-eastern Germany,

which was chosen as a representative onshore location due to its favorable wind con-

ditions, reflected by the wind park about 3.5 kilometers west of the location (see

figure 1.4). Data availability of this data set decreased from more than 80 % close

to the surface to about 25 % at about 1000 m, due to particle load, cloud cover and

precipitation. Particle transportation aloft is highly dependent on atmospheric sta-

bility. A distinction between a statically stable, neutral and unstable stratification is

made based on temperature (and to a lesser extent water content) profiles. Unstable

stratification is characterized by strong vertical mixing and high turbulence intensity

(TI) due to the additional production of turbulent kinetic energy by buoyancy. In

a stable stratification vertical displacement of air parcels requires work to be done

against the stratification which results in less vertical movement.

We identified statistically different wind conditions based on surface heat flux

data, used as a proxy for atmospheric stability, from mesoscale WRF results. Using

k-mean clustering, two additional populations within times of negative surface heat

flux (SHF), associated with stable stratification, and positive SHF, associated with

unstable stratification, were identified. The superposition of these states leads to

a multi-modal wind speed probability distribution, which is not accurately approxi-

mated with a two-parameter Weibull fit, a commonly used approximation of the wind

speed probability distribution for conventional WT. This multi-modality is particu-

larly dominant between 200 and 500 m. A large error reduction between measured

data and fitted probability distribution was achieved by superimposing two Weibull

distributions of times associated with positive and negative SHF.

As of now, no high altitude measurement device can reliably gather long-term, high

resolution, high frequency data in the second or sub-second time scale. Therefore,

the assessment of turbulence information at such heights is challenging. However,

previous studies have shown a correlation between LiDAR-measured TILiDAR and ul-

trasonic anemometer turbulence measurements for lower altitudes. We estimate TI
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Figure 1.3: Topographic map in northern
Germany close to Pritzwalk with the mea-
surement site marked by a black X.

Figure 1.4: Photograph of the Galion 4000
LiDAR on the ‘Pritzwalk Sommersberg’
airfield with wind turbines, about 3.5 km
away, in the background.

and its diurnal variation based on standard deviation and mean LiDAR measured

horizontal wind speed, which at 100 m shows comparable results to the Normal Tur-

bulence Model (NTM) turbulence classes defined by the IEC standard 61400 [27].

Our data show that TI decreases up to an altitude of about 400 m to 600 m, above

which it remains almost constant.

Chapter 2 contains more details on the LiDAR measurement technique and on-

shore measurement campaign. Data processing and filtering, as well as the impact of

backscatter, precipitation and cloud cover is explained. Finally, the measured wind

data are analyzed in detail, and optimal AWES operating altitudes and power output

per wing area are estimated based on a simplified, steady state model [128].

1.2.2 Mesoscale weather and wind model

Wind LiDAR measurements and mesoscale models both have their advantages and

disadvantages when assessing the wind resource, particularly at heights up to 1000
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m. Chapter 3 describes the setup of several weather research and forecasting (WRF)

simulations and analyzes the wind resource to complement the wind LiDAR measure-

ment data set with surface heat flux and temperature information, as well as wind

data when no measurements are available. The three nested domains of the WRF

simulation, as well as the LiDAR measurement location are shown in figure 1.5. We

investigate the effect of implementing LiDAR measurement into the WRF model via

observation nudging, using OBSGRID [149], which nudges the simulation towards

the measurement data via a non-physical forcing term. We compare a simulation of

the area around the LiDAR measurement site at Pritzwalk with observation nudging

(labeled: OBS) to a reference study at the same location (labeled: NoOBS).

(a) (b)

Figure 1.5: Topography map of the three WRF model domains (a) and a magnifica-
tion of the innermost domain (b) with the LiDAR measurement site highlighted by
a white X.

Observation nudging only has marginal impact on simulated surface layer wind

speeds as ground effects dominate the WRF model. Wind speeds between 300 and 500

m above ground were most affected by observation nudging, with the effect decreasing

above these heights. Modeled wind speeds at these heights are statistically closer to

measurements, making this an adequate approach for AWES resource assessment, as

measurement availability decreases. Similar to chapter 2 we found that variations in

stratification, primarily those associated with the diurnal cycle, lead to a multi-modal

wind speed probability distribution, which is better represented by the weighted sum

of two Weibull fits than by a single Weibull fit. Wind speed profiles categorized by

Obukhov length, which is commonly used as a proxy for atmospheric stability, diverge
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with height. This indicates an inhomogeneous atmospheric stability with height, and

suggests that surface-based stability categorization is insufficient for higher altitudes.

Optimal AWES operating altitudes and power output per wing area, estimated

based on a simplified, steady state model [128], for both OBS and NoOBS wind speed

data sets show the highest potential at an altitude between 200 and 600 m. Above

these heights losses associated with elevation angle , so called cosine losses [33], are

no longer offset by wind speed increase with altitude.

More details can be found in chapter 3, which describes the WRF model setup,

the observation nudging process and its impact on the simulation in more detail.

Furthermore, our co-author Martin Dörenkämper conducted an offshore WRF simu-

lation for the area around the FINO3 research platform. Both, the one year onshore

NoOBS data set and the one year offshore data set are used to assess the performance

of AWES described in chapter 4 and 5.

1.3 AWES power optimization and sizing

Unlike conventional wind turbines, which have converged to a single concept with

three blades, nacelle and generator supported by a conical tower, several different

AWES designs are under investigation by numerous companies, universities and re-

search institutes [25]. Since this technology is still in an early stage, no unanimously

accepted, standardized power curve definition, which allows for the comparison be-

tween different AWES concepts and to conventional wind turbines, exists. The power

of an AWES highly depends on the wind speed magnitude and wind velocity profile

shape (wind speed and direction variation with height), which determines the power

output as well as the optimal operating altitude and trajectory. Simple wind speed

profile approximations, using logarithmic or exponential wind speed profiles, which

are often erroneously applied beyond earths surface layer [113], are still the standard

in most AWES studies. We implement the previously described wind data (see chap-

ter 3) into the awebox optimization framework [85], a Python toolbox for modelling

and optimal control of single and multiple-kite systems for Airborne Wind Energy,

to derive power-optimal trajectories subject to realistic, representative onshore and

offshore wind conditions.

Furthermore, we apply a simplified scaling law to explore the design space and

set mass targets for small (P rated = 145 kW) to utility-scale (P rated = 3430 kW)

ground-generation, crosswind AWESs. The implemented aircraft model is based on
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the published Ampyx AP2 reference design [3] (see figure 1.6) wing area is scaled

while keeping the aspect ratio constant (AR = b
s
, b wing span, c chord).

Figure 1.6: Schematic of the tethered AWES aircraft with body frame coordinate
system (x, y, z). Aerodynamic lift L and drag D and side force S, as well as roll p,
pitch q and yaw r moment resulting from the apparent wind speed vapp. Adapted
from [96] and [3].

1.3.1 AWES model

Generating dynamically feasible and power-optimal, periodic AWES flight trajectories

for a given wind velocity profile is a nontrivial task, given the nonlinear and unstable

system dynamics and the presence of nonlinear flight envelope constraints. Optimal

control methods are a natural candidate to tackle this problem, given their inherent

ability to deal with nonlinear, constrained multiple-input-multiple-output systems.

The pumping cycle of ground-generation AWES is formulated as a periodic optimal

control problem which maximizes the cycle-average AWES power output P .
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The aircraft is represented by a 6 degree of freedom rigid-wing model with pre-

computed linear or quadratic approximations of the aerodynamic coefficients, which

are controlled via aileron, elevator and rudder deflection rates. We compare the

performance of the Ampyx AP2 reference aerodynamic model [3] to a set of high lift

aerodynamic coefficients. Aircraft mass mscaled and inertia Jscaled are scaled relative

to the Ampyx AP2 reference model (mref , Jref) [94] according to simplified geometric

scaling laws relative to wing span b:

mscaled = mref

(
b

bref

)κ
; Jscaled = Jref

(
b

bref

)κ+2

(1.1)

We vary the mass scaling exponent κ between 2.7, 3.0 and 3.3 to cover positive,

negative scaling effects, as well as pure geometric scaling. These values are comparable

to the ones in Makani’s openly published technical reports [40]. Scaling the AP2

reference aircraft to the same mass and wing area as Makani’s “M600 SN6”, the

mass exponent would be equivalent to κ = 2.72. The heavier, actually built air

frame corresponds to a mass scaling exponent of κ = 3.23. However, it needs to

be acknowledged that Makani’s on-board-generation concept is inherently heavier

than the ground-generation concept, because of propellers, generators and supporting

structures attached to the aircraft.

The AWES model includes ground station dynamics as constraints on the tether

force, speed, and acceleration. Besides ground station, material and tether con-

straints, flight envelope constraints, such as limitation on acceleration, roll and pitch

angle, as well as a minimal operating height, are imposed. The tether is modeled as

a single solid rod, which can not be subjected to compressive forces, an assumption

that is commonly made, assuming that the tether tension prevents tether bending.

However, in real deployment strong winds and centrifugal forces on the tether can

lead to significant catenary profiles and this will change the direction of the tether

tension force at the aircraft. Tether drag is approximated by dividing the tether into

multiple elements and calculating the apparent wind speed at each element individu-

ally. The resulting drag force is then distributed equally between the ground station

and aircraft.
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1.3.2 Implementation of wind data

For the purpose of this study, onshore and offshore wind data are implemented into

the awebox optimization framework. Optimizing power production and AWES tra-

jectory for the each of the 1 year 10-minute wind velocity profiles at both locations is

impractical and computationally very expensive. Therefore, wind data are clustered

using a k-means clustering algorithm [117], to obtain a set of representative wind

velocity profiles for each location. The algorithm assigns each wind velocity profile

up to 1000 m, comprised of approximately 30 heights and 2 directions, to one of k

clusters defined by their respective cluster mean also referred to as centroid. These

centroids are calculated such that they minimize the sum of the Euclidean distances,

also referred to as “inertia” or “within-cluster sum-of-squares”, to every data point

within each cluster (compare section 4.4).

Figure 1.7 shows the magnitude of these centroids, or average wind speed profiles,

colored according to average wind speed up to 500 m, is shown. The associated,

color-coded annual centroid frequency is depicted below. A statistical analysis of the

clustered data reveals distinct annual, diurnal and atmospheric stability patterns.

Chapter 4 determines that few representative wind velocity profiles (e.g. a low,

medium and high wind speed profile) from a small number of clusters (k=10, 20)

are sufficient to estimate AWES power curves and AEP. We chose profiles with a

p-value of 5,50, 95, based on average wind speed up to 500 m within every cluster.

Wind velocity components are rotated such that the main wind direction u points

in positive x direction and the deviation v from it points in positive y direction,

assuming omnidirectional AWES operation. We interpolate the u and v components

using Lagrange polynomials to obtain a twice continuously differentiable function,

which is necessary formulate an trajectory optimal control problem that can be solved

with a gradient-based solver.

1.3.3 AWES power curve estimation

Due to the novelty of the technology, no unanimously accepted AWES power curve

definition exists. No standard reference wind speed, equivalent to wind speed at hub

height for conventional WT, or standard wind speed probability distribution has been

agreed upon. Determining these parameters is more complex than for conventional

wind turbines, as AWES change their flight trajectory and operating heights based on

prevailing wind conditions. In chapter 4 and 5 we derive optimal AWES power curves
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Figure 1.7: k-means clustered onshore (left) and offshore (right) annual cluster-
average wind speed profiles (centroids) for k = 10 (top). Comprising WRF-simulated
wind velocity profiles depicted in grey. Centroids are sorted, labeled and colored in
ascending order of average wind speed up to 500 m. Corresponding cluster frequency
f for each cluster C is shown below.

from cycle-average power from clustered annual wind conditions. We determine that

a reference height of 100 ≤ z ≤ 400 m is a good proxy for wind speed at operating

heights and therefore propose it as abscissa of the power curve. Using this reference,

onshore and offshore power curves are almost identical.

Figure 1.8 compares representative power curves for AWESs with a wing area

of Awing = 50 m2, mass scaled with an exponent of κ = 2.7 and high lift (circle)

and AP2 reference (square) aerodynamic coefficients. The aerodynamic coefficients

of the high lift wings are modified as if leading-edge-slats and trailing-edge-flaps

were deployed. Results are based on three representative wind velocity profiles (p5,

p50, p95 based on wind speed up to 500m) for each of the k=10 cluster using the

dynamic 6DOF awebox model with a fixed tether diameter, and therefore fixed rated

power. Deviation from the average power curves, which can mostly be seen for onshore

winds (blue), are likely caused by local optima due to the shapes of the implemented

wind velocity profiles. We estimate AWES annual energy production (AEP) and

capacity factor (cf) using these power curves and wind speed probability distribution
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at reference height. This enables the assessment of potential deployment sites and

enables the comparison to other sources of energy, particularly conventional wind

turbines. Similar to conventional WT, offshore AEP and cf are generally higher than

onshore, due to beneficial wind conditions.
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Figure 1.8: Representative AWES power curves of both sets of aerodynamic coef-
ficients (high lift: circle; AP2 reference: square), and onshore (blue) and offshore
(orange) location. The mass of the Awing = 50 m2 aircraft is scaled with a mass
exponent of κ = 2.7. Cycle-average power P is derived from p5, p50, p95 wind ve-
locity profiles within each of the k=10 WRF-simulated clusters. A reference height
of 100 ≤ zref ≤ 400 m is used as a proxy for wind speed at operating height.

1.3.4 AWES scaling

Small-scale AWES may serve as a technology demonstrator or entry into the off-

grid market. However, AWES need to not only autonomously generate electricity at

competitive cost, but also scale up to utility-scale systems, in order to meaningfully

increase the share of renewable energy and contribute to decarbonization targets. To

do so, they need to compete with established renewable, as well as conventional fossil

energy sources. Therefore, chapter 5 investigates the design space for wing areas

between Awing = 10 m2 and 150 m2 and assesses the AWES mass budget subject

to representative onshore and offshore wind conditions. Depending on aerodynamic

efficiency, these systems have a rated power between P rated = 145 kW and 3430 kW.

Figure 1.9 visualizes the mass budget as average lift Lwing to total weight W total

ratio during the production phase. Crosswind AWES ascend during each loop of the

production (reel-out) phase. During these critical times the aircraft needs to produce

enough aerodynamic lift, which decreases as the aircraft slows down during the ascent,
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to overcome gravity and maintain tether tension. As a result, tether speed and thus

current, mechanical power decreases, and too heavy systems fail. Based on our data,

we estimate the minimum lift to weight ratio to be about 5.

Figure 1.9: Average lift Lwing to total weight W total during production (reel-out) phase
for all aircraft sizes Awing = 10− 150 m2 and sets of aerodynamic coefficients, as well
as mass scaling exponents κ = 2.7, 3, 3.3 for wind data at the offshore location.
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1.4 Research questions

Since the conception of Airborne Wind Energy in the 1980 many research institutes

and companies are working on the development of this promising technology. While

several small scale prototypes with a rated power of several 100 kW exist, no commer-

cial product is currently available. From our initial analysis of the AWES concept and

the state of technology, as well as some generalized claims about the wind resource,

we derived the following research questions with respect to the ground-generation

concept:

• What are typical 10-minute average, onshore and offshore wind conditions up

to 1000 m?

• Can current measurement technology accurately measure at such heights?

• Are mesoscale models a sufficient tool to describe wind conditions at these

heights and can they be used for preliminary resource assessment?

• Can long-range LiDAR measurements be used to improve mesoscale-modeled

wind resource predictions?

• What are crosswind, ground-generation AWES energy predictions subject to

measured and modeled wind conditions?

• What are optimal, predicted annual energy production (AEP) and capacity

factor (cf) based on modeled wind conditions?

• What are optimal crosswind, ground-generation AWES operating heights and

traction power subject to modeled wind conditions?

• What reference wind speeds describe AWES power curves, taking into account

their variable operating heights and trajectories?

• How does size, mass and aerodynamic efficiency affect optimal crosswind, ground-

generation AWES performance, subject to modeled wind conditions?

• What is the mass budget of crosswind, ground-generation AWES subject to

aircraft size and aerodynamic efficiency?

• Can AWES penetrate the on-grid market or will they be a niche in the off-grid

market?
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1.5 Research contributions

This thesis analyses LiDAR-measured wind conditions and WRF-modeled weather

data to derive more realistic, representative wind velocity profiles and expand the

knowledge of the wind resource up to 1000 m. This study contributes to the realistic

assessment of AWES potential, by evaluating their optimal trajectories and mechani-

cal power, subject to realistic 10-minute mean onshore and offshore wind conditions.

Some of the main contributions are:

• This work analyzes representative onshore and offshore wind conditions relevant

to AWES. To better understand and predict the potential of AWES, which aim

to operate within the lower troposphere up to 1000 m above ground, we in-

vestigate the wind resource using LiDAR measurements (see chapter 2) and

mesoscale model data (see chapter 3). The derived data set is an improvement

on the commonly used, simplified analytical wind speed approximations, and

provides higher temporal and vertical resolution than reanalysis data. It there-

fore allows for better AWES yield predictions, and a more realistic description

of the operating envelope. The thesis further analyzes the impact of decreasing

LiDAR data availability aloft (section 2.4.2), changes in the multi-modal wind

speed probability distribution (section 2.5.1) with height and tries to determine

vertical and temporal variation of turbulence intensity based on long-range Li-

DAR measurements (section 2.5.4).

• This thesis evaluates the impact LiDAR measurement implementation into the

WRF model via observation nudging (section 3.4.1). As LiDAR data avail-

ability inherently decreases with altitude and measurements are expensive and

time consuming, mesoscale models are a viable alternative for preliminary wind

resource assessment. However, model data deviate from measurements, due

to, model assumptions, temporal and spatial discretization, etc. We show that

observation nudging increases model accuracy at the implementation location,

particularly at altitudes relevant to AWES. Observation nudging only has a

marginal impact on simulated surface layer wind speeds, as ground effects dom-

inate the WRF model at these heights (section 3.5.1).

• This work compares grouping and describing the diverse wind regime up to 1000

m by atmospheric stability (sections 2.5.1, 3.5.6, 4.3.2) and k-means clustering

(sections 4.4, 4.3). Obukhov length ranges are used as a proxy for atmospheric
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stability. Diverging Wind speeds towards higher altitudes indicate inhomoge-

neous atmospheric stability and suggests that surface-based stability categoriza-

tion is insufficient for higher altitudes. Grouping wind velocity profiles using

k-means clustering has proven to be an effective way to categorize wind data

into clusters with similar profile shape and wind speed, and can therefore be

used to categorize wind data in lieu of heat flux or temperature measurements.

The resulting clusters correlate with wind speed, atmospheric stability, diurnal

and seasonal wind speed variation (section 4.4.2).

• This thesis derives power-optimal trajectories for single-wing, ground-generation

AWES by solving a periodic optimal control problem, which maximizes the

cycle-average power output (chapter 4 and 5). These optimizations are subject

to representative onshore and offshore wind conditions derived from WRF. We

estimate average cycle power, power curves, AEP and cf from cycle-average

power and realistic wind speed probabilities (sections 4.6 and 5.5). Our results

therefore represent an improved method to determine optimal AWES power

and energy potential. The model predicts instantaneous power, tether force,

tether speed, and other parameters that allow a deeper investigation of AWES

dynamics.

• These power-optimal trajectories also reveal realistic AWES operating heights,

depending on the wind velocity profile (sections 4.6.2 and 5.5.2). Contrary to

popular belief, higher does not always mean better and average optimal AWES

operating heights are commonly well below 500 m, particularly offshore, where

wind shear is generally lower.

• This work explores the design space of crosswind ground-generation AWES

by analyzing the impact of two nonlinear aerodynamic coefficients, three mass

scaling laws, and six different aircraft wing areas between 10 and 150 m2 on

optimal operating conditions and power (chapter 5). The tether diameter is

adjusted accordingly to ensure a constant rated wind speed of vrated = 10 ms−1

for all sizes and aerodynamic coefficients, while the tether diameter is keept

constant.

• Based on these results, we describe the impact of these parameters on operating

conditions, wing load, power curve, AEP and cf (section 5.5). We estimate

tether-associated power losses and a minimum aircraft lift to weight ratio. One
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of the limitation of crosswind AWES operations seems to be the upward climb

within each loop. Aerodynamic lift decreases during this phase, as the aircraft

decelerates, due to gravity. To maintain tether tension, the tether decelerates

and power production decreases. Too heavy systems can not overcome gravity

and fail.

1.6 Outline

This thesis is organized in four main chapters based on published or submitted ar-

ticles, which are listed below. Chapter 2 analyzes the onshore wind regime over flat

terrain at altitudes relevant to AWES, using 6 months, long-range LiDAR measure-

ments. LiDAR data availability decreases with height. Chapter 3 introduces the

mesoscale WRF model and evaluates the simulation results, which complement the

data with annual information, as well as additional weather information such as heat

flux. Additionally, the impact of assimilating LiDAR measurements via observation

nudging is quantified. In chapter 4 annual, onshore and offshore, WRF-modeled wind

data are clustered and implemented into a period optimal control framework to derive

power-optimal AWES trajectories. From this, we derive AWES power curve, AEP

and cf estimates, as well as typical operating conditions. Based on the same wind

data set and optimization framework, we explore the AWES design space in chapter

5.

• Chapter 2 - LiDAR-based characterization of mid-altitude wind conditions for

airborne wind energy systems

• Chapter 3 - Improving mesoscale wind speed forecasts using LiDAR-based ob-

servation nudging for airborne wind energy systems

• Chapter 4 - Offshore and Onshore Power curve characterization for ground-

generation wind energy systems

• Chapter 5 - Design space exploration of ground-generation airborne wind energy

systems

• Chapter 6 - Cross comparison between quasi steady-state and dynamic opti-

mization model

• Chapter 7 - Assumptions, conclusions and future work
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Chapter 2

LiDAR-based characterization of

mid-altitude wind conditions for

Airborne Wind Energy Systems

Markus Sommerfeld, Curran Crawford, Adam Monahan, and Ilona Bastigkeit.

LiDAR-based characterization of mid-altitude wind conditions for airborne wind en-

ergy systems. Wind Energy, 2019; 22: 1101– 1120. https://doi.org/10.1002/we.

2343.

Based on a six months onshore LiDAR measurement campaign in northern Germany,

this chapter contextualizes limitations of this technology, such as decreasing data

availability aloft, and investigates the wind resource within the lower troposphere.

We investigate wind speed probability, diurnal variation and turbulence estimates up

to about 1000 m. These wind data are then used to estimate AWES operating heights

and optimal power per unit lifting area, using a simplified analytical model.

The following chapter introduces the mesoscale weather research and forecasting

(WRF) model and uses it to generate an annual wind and weather data set. We fur-

thermore investigate whether assimilating LiDAR measurements, using observation

nudging, can improve the accuracy of the WRF model, and therefore improve wind

resource assessment for AWES at higher altitudes.

https://doi.org/10.1002/we.2343
https://doi.org/10.1002/we.2343
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2.1 Abstract

Engineers and Researchers working on the development of Airborne Wind Energy

Systems still rely on oversimplified wind speed approximations and coarsely sampled

reanalysis data due to a lack of high resolution wind data at altitudes above 200

m. Ten-minute average wind speed LiDAR measurements up to an altitude of 1100

m and data from near by weather stations were investigated with regards to wind

energy generation and impact on LiDAR measurements. Data were gathered by a

long-range pulsed Doppler-LiDAR device installed on flat terrain. Due to the low

overall Carrier-to-Noise Ratio, a custom filtering technique was applied.

Our analyses show that diurnal variation and atmospheric stability significantly

affect wind conditions aloft which cause a wide range of wind speeds and a multi-

modal probability distribution that can not be represented by a simple Weibull distri-

bution fit. A better representation of the actual wind conditions can be achieved by

fitting Weibull distributions separately to stable and unstable conditions. Splitting

and clustering the data by simulated surface heat flux reveals sub-state stratification

responsible for the multi-modality. We classify different wind conditions based on

these sub-states which result in different wind energy potential. We assess optimal

traction power and optimal operating altitudes statistically as well as for specific days

based on a simplified AWES model. Using measured wind speed standard deviation

we estimate average turbulence intensity and show its variation with altitude and

time. Selected short-term data sets illustrate temporal changes in wind conditions

and atmospheric stratification with a high temporal and vertical resolution.

2.2 Introduction

The objective of this study is to characterize prevailing wind conditions for load

estimation and system optimization of Airborne Wind Energy Systems (AWES) at

mid-altitudes, here defined as heights above 100 m and below 1500 m. AWES are

a novel renewable energy source that harvest stronger lower-tropospheric winds at

altitudes which are unreachable by current wind turbines, at potentially much reduced

capital cost [89, 48]. Some proponents advocate the development of high-altitude

devices which are supposed to operate at thousands of meters (altitudes at which no

current measurement devices can practically measure with sufficiently high sampling

frequency). For practical and economical reasons we focus on resource assessment
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within the lower part of the atmosphere, an altitude range spanned by the highly-

variable boundary layer (with depths as little as tens of meters at night and a few

kilometers during the day). Unlike conventional wind energy which has converged to

a single design with three blades and a conical tower, several different AWES designs

are under investigation by many companies and research institutes [25]. Various

concepts from ring shaped aerostats, to rigid wings to soft kites with different sizes,

rated power and altitude ranges compete for entry into the marketplace. Since this

technology is still in an early stage, none are currently commercially available. If the

trend towards taller towers and longer turbine blades continues, conventional wind

turbines will also operate at mid-altitudes in the future and experience significantly

different wind conditions than close to the surface. Developers and operators therefore

require accurate information to estimate the power production and mechanical loads.

We investigate the wind resource up to 1100 m over generally flat terrain at

Pritzwalk in northern Germany (see map in figure 2.1). The measurement campaign

lasted six months between September 2015 and February 2016 with the objective of

estimating the wind energy potential at altitudes higher than usually observed for this

application. In contrast to the low level winds in the first few hundred meters of the

atmosphere, mid-altitude winds from a few hundred meters to about 1000 m have not

often been investigated. Recent advancements in wind Light Detection And Ranging

(LiDAR) technology enabled high temporal and vertical resolution measurements in

higher altitudes. This enables a detailed analysis of specific wind conditions as well

as statistical evaluation necessary for the development of AWES. Furthermore, these

data are able to extend and supplement established knowledge of wind speed profiles

and wind speed probability distributions under different atmospheric stability condi-

tions as well as diurnal variations at higher altitude than tower measurements allow.

The common way to gather wind and weather data at these altitudes are sparsely

deployed weather balloons (radiosondes), which measure data while quickly ascending

through the Atmospheric Boundary Layer (ABL) [57]. This measurement technique

does not offer continuous data acquisition and has an inherently low temporal and

vertical resolution. The low temporal resolution of radiosondes leads to considerable

undersampling and a loss of higher frequency information. Nonetheless, this mea-

surement technique offers an estimate of the global wind resource in higher altitudes

[5]. Engineers and researchers had to rely on coarsely resolved reanalysis data sets

or oversimplified approximations such as the logarithmic wind profile to assess the

potential of AWES [51, 112, 50] While reanalysis data provides good global and long
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term information, it can not capture local and short term variations. Remote sensing

devices such as long-range pulsed LiDAR enable the measurement of wind speeds

up to several thousand meters away from the point of deployment. These devices

measure the spectral shift between the emitted light pulse and the returning light

backscattered of aerosols transported with the wind [118]. The aerosol load of the air

therefore limits the data availability of this measurement technique. the aerosol load

decreases with altitude and drops to levels so low that LiDAR devices are not able to

measure winds at these altitudes, as the primary aerosol source is the Earth’s surface

[100].

Surface heat flux (SHF) or temperature information is required to characterize

different stability condition within the atmospheric boundary layer, both of which

were not directly measured. Mesoscale numerical weather prediction models such

as the Weather Research and Forecasting (WRF) model provide detailed data sets

at higher resolution compared to reanalysis data. We make use of the sign of the

WRF simulated SHF for statistical analyses and assume the sign of the SHF to be

better simulated than sign and magnitude [140, 150]. However, temporal difference

of times associated with positive and negative SHF between model and measurement

will lead to occasional mismatch of transition times[38] as well as random errors. We

believe that these errors are statistically insignificant for the overall evaluation, but

are aware of the resulting inaccuracy. A detailed discussion of the WRF simulations

will be presented in a later publication.

We estimate power production per unit lifting area based on a simplified traction

power model by Schmehl et al. [128]. This quasi steady-state model includes losses

due to misalignment of wind direction and AWES position, but neglects gravity,

tether drag and detailed flight maneuvering. We can therefore assess the upper limit

on traction power and optimal operating altitude for the whole measurement period,

different stratification conditions as well as specific wind speed profiles. Chapter 6

builds upon this model and includes a simplified tether drag approximation, which

lead to a significant reduction in power (up to 70%) and operating height, depending

on tether length, tether diameter and wing area.

Section 2 defines the necessary conventions. Section 3 describes the wind LiDAR

measurement campaign, the filtering technique and the impact of data availability.

Section 4 consists of a detailed statistical analysis of wind speed, direction, turbulence

intensity as well average diurnal variation and exemplary wind conditions. Section 5

estimates the traction power and optimal operating altitude. Finally, the results are
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summarized and an outlook for future work is given in section 6.

2.3 Definitions

Most of the available LiDAR data we consider is within the ABL, the actively tur-

bulent region of the troposphere which is directly influenced by surface forcing such

as heat transfer, evaporation and friction [139]. Its height varies from as low as a

few tens to thousands of meters above ground, depending on location and time. The

lowest part of the ABL, the Atmospheric Surface Layer (ASL) accounts for roughly

10% of the ABL and is greatly affected by the surface and diurnal changes. The

region of the troposphere above the ABL is referred to as the free atmosphere, which

is almost unaffected by diurnal variation due very weak direct interaction with the

surface [139]. Processes within the ABL depend on stratification which is, among

other processes, influenced by surface absorption of solar irradiation, energy fluxes

and horizontal advection. A distinction between a statically stable, neutral and unsta-

ble stratification is made based on temperature (and to a lesser extent water content)

profiles. Unstable stratification is characterized by strong vertical mixing and high

turbulence intensity (TI) due to the additional production of turbulent kinetic energy

by buoyancy. In a stable stratification vertical displacement of air parcels requires

work to be done against the stratification.

This article investigates 10-minute-average horizontal wind speeds U directions.

Wind direction is defined according to meteorological convention. North is defined

as 0◦ and a positive directional change refers to a clockwise rotation, so 90◦ refers

to East, 180◦ South and 270◦ West. We normally expect a clockwise rotation with

height for ‘ideal’ boundary layer winds in the northern hemisphere [116], caused by the

adjustment of ABL velocity fields to geostrophic conditions. This directional change

is referred to as the ‘Ekman spiral’ [139]. However, horizontal temperature gradient

‘thermal winds’ can significantly influence the shape of the wind shear profile.

The wind profile over homogeneous, flat terrain is often estimated by a logarithmic

wind profile with a correction to account for stratification [114, 42]:

U =
u∗
κ

[
ln

(
z

z0

)
−Ψm(z, z0,L)

]
(2.1)

This approximation, which does not apply to mid and high-altitude winds above

the ASL, describes the horizontal wind speed U at altitude z as a function of friction
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velocity u∗, aerodynamic roughness length z0 and Kármán constant κ. The stability

function Ψm accounts for the atmospheric stability conditions (stable, unstable, neu-

tral) which is a function of the Obukhov length L, altitude z and surface roughness

z0 [139].

2.4 Measurement Campaign

The data was collected between 1st of September 2015 and 29th of February 2016 at

the ‘Pritzwalk Sommersberg’ airport (Coordinates: Lat: 53◦ 10’ 47.00”N, Lon: 12◦

11’ 20.98”E) in North East Germany (marked by a black X in figure 2.1) using a

single beam pulsed wind LiDAR from SgurrEnergy. The area around the airport is

mostly flat agricultural land with a village to the south, a small forest in the southeast

and a wind park about 3.5 kilometers to the west.

Figure 2.1: Topographic map in northern Germany close to Pritzwalk with the mea-
surement site marked by a black X.

After an extended power outage between December 7 and December 11, data

quality in terms of Carrier-to-Noise Ratio (CNR) decreased. The reason for this
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could not be identified. A custom filtering technique was applied to increase data

availability. It is possible that incorrect settings, a return to default settings or issues

with the laser were responsible for the reduced data quality.

2.4.1 Wind LiDAR

Doppler-LiDAR devices measure the frequency shift of the backscattered laser beam

caused by the movement of aerosols carried by the wind. This shift is proportional

to the Line of Sight (LOS) particle velocity. Multiple measurements can therefore

be used to calculate the wind velocity from which the horizontal wind speed can be

inferred. The here used Galion 4000 from SgurrEnergy is able to measure wind speed

and direction up to 4000 m away from the device and offers various scan methods

such as ‘Arc-Scan’ and Doppler-Beam-Swinging (DBS) [132]. DBS scans usually take

4-5 measurements at constant elevation angle and varying azimuth angle. Assuming

a horizontally homogeneous wind field, LOS measurements at constant height can be

fitted to a sine-function from which the wind speed and direction within the scanned

volume are calculated. With the LiDAR device located at an air field on flat terrain,

it is a reasonable approximation that the environmental conditions are similar within

the LiDAR’s sampling area. As the elevation angle is kept constant, in our case 62◦

(28◦ to horizon), during DBS scans the averaging area increases with altitude. At an

altitude of 1100 m the radius of the disc defined by the four azimuth positions with

90◦ increments is about 585 m. Reorientation of the laser beam towards the next

azimuth position led to measurement intervals between 3 to 5 s. From these LOS

measurements we determined the 10 minute average wind speeds at 40 range gates

between 66 m and 1099 m above ground in 26.5m increments. The focal length of

the laser beam was set to 800 m.

The Galion4000 LiDAR was verified against a WindCubeV2 (according to IEC

61400-12-1, 2015 [75]) at the Fraunhofer Institute for Wind Energy Systems (IWES)

Bremerhaven during a validation period of one week before deployment. Wind speeds

up to an altitude of 260 m were compared and a linear regression between the mea-

surements showed a 99% accordance between both devices. Since data quality was

sufficiently high, we refrained from a simultaneous deployment of the WindCubeV2.
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2.4.2 Data processing

Wind LiDAR data quality is impacted by various effects, some of which will be

examined in this chapter. Generally, data quality highly depends on the backscatter

from aerosols in the air. Aerosol content in higher altitudes is dictated by mixing and

settling as most of the particles originate from the surface. This leads to an overall

decrease of backscatter with altitude. Cloud cover increases the backscatter within

the lower part of the cloud while it prevents laser beams from penetrating to higher

altitudes. Data quality, according to which LiDAR measurements are further filtered,

is generally described by the CNR:

CNRdB = 10 log10

(
C

N

)
(2.2)

CNR is defined by the ratio between the power contained in the signal C to the

power contained in the noise N over the full detector bandwidth. Multiple quality

criteria were applied to the raw data. First, a sufficient number of LOS wind speed

scans must be gathered to calculate ten minute average wind speed. Based on these

individual measurements average 10-min mean CNR values are calculated for further

filtering [81]. Several studies showed that the selection of a CNR threshold impacts

the mean wind speed estimation[17, 66].

During the measurement campaign the average CNR remained almost constant

up to the focal length of 800 m. The CNR trend does not show the distinct peak at

the set focal length, which is reported in other publications [116]. A long focal length

seems to prevent the steep decrease of CNR above the set focal length [118]. The

overall CNR decreased by approximately 5 dB over 1000 m.

While the manufacturer proposed a fixed CNR threshold of -20dB [119]; other

publications suggest the use of a threshold of -22dB [115]. Figure 2.2 illustrates the

data availability as a function of altitude and CNR threshold.

Applying a -20dB CNR filter leads to an availability of about 23% at 1000 m,

which is relatively high compared to other publications [116]. However, applying this

filter leads to a low data availability of only 77.5% at 66 m. To counteract the low

availability at low altitudes, we apply a CNR threshold of CNRdB > −25dB combined

with additional filters to reduce the noise and correct for obvious mismeasurements.

The following thresholds were applied to all measurements:

• CNRdB > −25 dB
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Figure 2.2: Wind LiDAR availability as a function of 10-min mean CNR filters (blue
markers) and altitude. The red line indicates availability after applying the self-
defined filter.

• U > 0 ms−1

• U < 45 ms−1

• U < 2.5 · U(z = 150 m)

• min scan count > 40 %

The ‘scan count’ criterion defines the minimum amount of backscatter measure-

ments that are necessary to calculate the 10 minute average wind speed. As a result

the overall data availability of 10-minute averages increased while availability with

altitude decreases from about 81% at 100 m and to about 24% at 1000 m.

Investigation of the 10 minute average radial wind speed ULOS and the Carrier-to-

Noise Ratio at all altitudes shows a data cluster between −10 ms−1 < ULOS < 20 ms−1

with CNR values above -30dB (see figure 2.3). The reason for the shift of the data

center towards positive LOS velocities could not be definitely determined. It could

indicate an inhomogeneous wind field. However, the analyzed horizontal wind speed

is unaffected by this shift [26]. Three constant threshold-filters are denoted by the

red lines for reference. Data points below the -22dB threshold show a significant,

unrealistic wind velocity spread of up to ±60 ms−1. 31.1% of the unfiltered measure-

ments are below the −20 dB threshold. The right figure shows the data distribution
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after applying the self-defined filtering criteria. There seems to be no indication that

data within the high data-density region, but below the CNR threshold is invalid [15].

Based on this assumption, the applied filtering technique can be considered conserva-

tive as it cuts off CNR values below −25 dB, which are within the LOS wind velocity

range of approximately ±15 ms−1. As a result of the application of the self-defined

filters, the overall data availability increased by approximately 15% in comparison to

the fixed -20dB threshold filter while unrealistic values were filtered out.

Figure 2.3: Comparison of unfiltered (left) and filtered (right) LiDAR CNR over
LOS wind speed for the whole measurement campaign. Red lines indicate commonly
applied constant CNR thresholds.

Weather impact on data quality and availability

Weather phenomena such as rain, fog and cloud coverage impact the overall LiDAR

data availability, due to the proportionality of backscatter and aerosol content in the

air. Weather stations close the LiDAR location gathered precipitation (Perleberg:

about 30 km from the LiDAR) and cloud coverage data (Neuruppin: about 58 km

from the LiDAR). Figure 2.4 shows the daily average cloud cover and cumulative

daily rain fall close to the measurement location throughout the entire campaign.

Extensive cloud coverage or fog increases the availability close to the LiDAR due

to the high amount of backscattering particles or water droplets. This is the reason for

a higher backscatter intensity within clouds than during clear sky conditions [116, 28].

However, this also reduces the distance which laser beams penetrate into the cloud or

fog, often leading to data loss aloft. Determining a direct correlation between cloud

cover and data availability is difficult and would require additional measurements

such as aerosol concentration gathered by a ceilometer, cloud cover does not give

information on cloud height. However, the overall high cloud coverage throughout

the entire campaign is one of the reasons for low data availability aloft.
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Figure 2.4: Accumulated precipitation (weather station Perleberg about 30 km from
LiDAR) and daily average cloud cover (weather station Neuruppin about 58 km
from LiDAR), data source provided by Deutscher Wetterdienst (DWD) - Germany’s
National Meteorological Service [18]

Figure 2.5 shows an example where cloud coverage prevents high altitude measure-

ments. Here measured CNR is compared to hourly cloud coverage and precipitation

for 4 days in September 2015 to correlate weather data with LiDAR data quality. The

high CNR between September 11 and September 13 correlates well with the presence

of clouds above which no data could be gathered (yellow: high CNR, blue:low CNR,

white: no data). The lack of high altitude data on Sept, 14 could be caused by rain

as the weather station in Perleberg shows a high precipitation of up to 6 mm m−2.

However, no definite correlation between altitude dependent CNR and cloud coverage

can be proven without additional cloud height measurements.

Another factor to consider when investigating the LiDAR data availability aloft is

that the density of aerosols not only decreases with altitude, but drops to a level that

is too low to detect with current LiDAR or ceilometer technology [46]. The altitude

at which this drop occurs is referred to as mixing layer height, which is defined as the

height up to which thermally induced vertical dispersion of air pollutants takes place

[130]. Therefore, the height of the mixing layer is highly dependent on stratification

and time as it will lose aerosol particles due to settling. The backscatter intensity can

give an estimate of the mixing layer aerosol load and height [44, 45]. In the example

below, it is likely that the height of the cloud layer (yellow area) between September
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Figure 2.5: Contour of LiDAR CNR over altitude from September 11 to September
15, 2015. The black line shows the WRF-calculated ABLH. Black dots denote hourly
average cloud coverage at the Neuruppin weather station (about 58 km away from
LiDAR). Red dots denote hourly average precipitation at weather station Perleberg
(about 30 km from LiDAR).

12 and 13 also gives a good estimate of the ABLH [115]. The WRF model mostly

supports this assumption as it calculates an ABLH (black line in figure 2.5) below

200 m between 18:00 UTC on September 12 and 10:00 UTC on September 13.

Impact of diurnal variation and surface heat flux on data quality

Atmospheric aerosols mostly derive from the surface and therefore depend on vertical

mixing to be transported aloft. This vertical mixing within the ABL is dictated

by the diurnal cycle of the vertical surface heat flux. An investigation of altitude

dependent, hourly average diurnal variation of LiDAR availability (see figure 2.6)

shows substantial decrease with altitude and distinct diurnal variation. After sunrise

enhanced vertical mixing and surface winds lead to an upward transport of particles,

increasing the availability aloft and decreasing it near the surface. The reduction in

low level availability seems to occur shortly after sunrise, while the increase at higher

altitudes occurs slightly later. This delay results from the time required for buoyancy

induced upward transport of particles to lead to their accumulation aloft. Altitude

dependent layers of almost constant availability develop. Such layers above ≈ 500 m

remain at an almost constant height throughout the day, but shift upwards during

daytime. Availability peaks are seemingly simultaneous between 16:00 and 17:00
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UTC at these altitudes. In contrast, average availability remains almost constant at

about 250 m. As a result, any analysis of the total measurement data set will be

slightly biased by diurnal variation in LiDAR data availability.
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Figure 2.6: Hourly average diurnal variation of LiDAR availability over altitude after
filtering and WRF calculated positive (dashed line) and negative (solid line) surface
heat flux sign.

To circumvent this issue, the data set can either be segmented by time of day

or atmospheric stratification. Positive SHF is associated with unstable stratification

where buoyancy-induced vertical mixing leads to relatively lower wind shear aloft.

Negative SHF and stable stratification inhibit mixing and lead to higher wind shear

[139]. Positive heat flux is most often associated with daytime and negative heat flux

is usually associated with nighttime. However, the impact of SHF is reduced by high

wind speeds. Data is partitioned by WRF [134] calculated SHF sign, since the LiDAR

device itself was not equipped to gather such information. The WRF model consisted

of three nested domains driven by ERA-Interim [31] reanalysis data using the Mellor

Yamada Nakanishi Niino (MYNN) 2.5 planetary boundary layer scheme [107]. The

inner domain had a grid spacing of 3 x 3 km and a temporal output resolution of

10 minutes. A detailed description will be given in a future publication. Figure 2.6

also shows the diurnal variation of hourly average WRF modeled SHF sign frequency

of occurrence. Overall, negative surface heat flux is almost twice as likely to occur

during the entire measurement campaign than positive heat flux (70 % vs. 30%).

Comparing availability associated with different stratification reveals that times



33

of positive SHF show an almost 5 % higher than average LiDAR availability, while

availability during negative SHF is about 2.5 % lower than average at altitudes be-

low 300 m. Between 600 and 900 m the availability of both positive and negative

heat flux matches the average availability. Above 900 m time periods experiencing

negative SHF show a slightly increased availability and times of positive SHF have

a lower availability than average. Time-delayed vertical buoyant aerosol transporta-

tion, which affects lower altitudes quicker than higher altitudes, probably leads to the

inversion at high altitudes.

2.5 Wind measurement analysis

We present a statistical analysis of the entire wind LiDAR data set as well as some

detailed findings for a few selected days in September 2015. It is important to keep

the reduced data availability in mind when comparing the statistics for different

altitudes. Diurnal variability causes altitude dependent conditional sampling of wind

speeds which leads to differences between measured and real wind conditions as data

can only be gathered when the meteorological conditions allow it. Furthermore, the

measurement campaign only lasted 6 months covering autumn and winter (Sept -

Feb). Annual wind statistics will differ as winds are generally stronger during this

season [17].

2.5.1 Average wind conditions and Weibull distribution fit

Figure 2.7 visualizes the wind speed probability distribution (left column) and quan-

tifies the difference between it (right column) and the standard Weibull distribution

fit (center column - see equation: 2.3) to determine whether the Weibull fit is an

adequate tool to describe mid-altitude winds. The Weibull fit is defined by:

fWeibull(u) =
k

A

( u
A

)k−1

e−( u
A)

k

(2.3)

where A is the Weibull scale parameter in ms−1 and k is the unitless Weibull shape

parameter [142]. All data was binned into 0.5 ms−1 intervals. By conditioning the

total data set (bottom row) by the SHF sign (positive SHF: top row; negative SHF:

center row), two distinct populations become apparent. This segmentation is solely

based on the mathematical sign of the WRF modeled SHF.
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Figure 2.7: Comparison of Wind speed frequency based on LiDAR measurements
(left column), corresponding Weibull fit (center column) and the difference between
both (∆f = fLiDAR(U) − fWeibull(U)) in percentage points (pp) (right column) over
altitude binned into 0.5 ms−1 intervals. Top row corresponds to times of positive
SHF, center row to times of negative SHF and bottom row shows total data set. The
Weibull fit in the bottom row is the weighted sum of positive and negative Weibull
fits, weighted by the respective overall occurrence.

The total wind speed probability distribution (g) has bimodal characteristics above

approximately 200 m. This bimodality is isolated by conditioning the data on SHF

sign, resulting in two distinct distributions of wind speeds at times of positive (a)

and negative heat flux (d). Times of positive SHF are associated with higher thermal

mixing and an unstably stratified boundary layer, resulting in a high frequency of

lower, almost constant wind speeds up to high altitudes [8]. For our data set, positive

SHF is associated with lower geostrophic winds as the wind speeds aloft tend to be

lower compared to times of negative SHF. Furthermore, the probability distribution

still shows the existence of a second state with higher wind speeds. Possible reasons

for the existence of this second state are misclassification of observed wind profiles

by simulated SHF, transient evolution of the profiles, or strong large-scale pressure

gradient forces which can reduce the influence of stratification on wind profiles. As a

result, the Weibull distribution, with almost no broadening above 200 m and a lower

median wind speed throughout all measured heights, underestimates the frequency

of both sub-states. Based on measurements, the likelihood of wind speeds between
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5-7 ms−1 is higher than the Weibull fit suggests.

Times of negative SHF are associated with a stably stratified boundary layer

and buoyant consumption of turbulent kinetic energy which results in higher wind

shear and higher wind speeds. Measurements during negative SHF (d) show an

increased probability of high wind speeds and a strong wind shear in the lower part

of the atmosphere, distinctly different from wind conditions under positive SHF. The

distribution broadens aloft leading to an almost even distribution at high altitudes,

with very low chance of low wind speeds which are most probable during positive

SHF. Looking at the difference between measured distribution and the Weibull fit,

both high and low wind speeds aloft as well as the very narrow band of wind speeds

below are not well represented.

Table 2.1: Frequency of atmospheric stratification based on the sign of WRF calcu-
lated SHF and k-means clustering using all 40 LiDAR range gates

Postive heatflux Negative heat flux

Unstable shear-driven Weakly stable Very stable
Heat flux 29.07 % 70.93 %

k-means cluster 20.32 % 8.75 % 36.30 % 34.64 %

The bottom row summarizes the total wind speed probability distribution and

weighted sum of the two Weibull fits for times of positive and negative SHF. The

weighting factor is the likelihood of positive and negative heat flux summarized in

table 2.1 (first row). This bi-modal distribution still can not represent the high

frequency of very low and high wind speeds, but presents an improvement on fitting

the complete data set with a single Weibull function.

The total Weibull scale A and shape parameter k shown in figure 2.8 follow ex-

pected trends for the winter season over flat land. The shape parameter peaks below

100-250m and the scale parameter follows a logarithmic trend [16, 64] The SHF clas-

sified data sets show distinctly different trends, with negative SHF being associated

with high values of A and a peak in k between 200-300 m, which is consistent with

Monahan et al. [102]. Positive heat flux on the other hand leads to a relatively slow

increase of A as well as lower k values that decline almost linearly with altitude. The

Hellinger distance H between the probability distribution of the measured data set

and the corresponding Weibull fit quantifies the goodness of fit. The weighted sum

(green) of both positive (red) and negative SHF (blue) Weibull fits represents the

multi-modal nature of the wind speed measurements up to 500 m better than the
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Figure 2.8: Weibull scale A and shape parameter k over altitude calculated based
on the entire 6 month measurement campaign. Results based on the whole data set
is shown in black, positive SHF in red and negative SHF in blue. The respective
Hellinger distance H between the measured probability distribution and the Weibull
fit is shown on the right. Additionally, the Hellinger distance between the total
probability distribution and the frequency of occurrence (see table 2.1) of the weighted
sum of both SHF Weibull fits is shown in green.

simple Weibull fit (black), indicated by a lower H. High H for times of positive and

negative SHF is likely caused by the existence of additional states, suggested by figure

2.7.

To further distinguish the sub-states we use k-means clustering on both SHF-

partitioned data sets, to identify two additional clusters within each SHF-sign con-

dition. These results are highly affected by data availability as time steps with any

missing data where discarded. Therefore, only measurements where all 40 range

gate measurements were available were used to calculate the probability distribution

and cluster centroids (white square) shown in figure 2.9. Clustering the data based

on lower range gates lead to lower overall wind speeds, indicating an availability bias

towards higher winds speeds caused by increased vertical mixing and horizontal trans-

portation of aerosols. However, clustered based on lower altitudes maintained similar

probability distributions showing the same sub-states. The respective frequency of

each sub-state is summarized in table 2.1. The first cluster of positive SHF (a) which

occurs around 20.3% of the time displays very low wind speed and shear which is
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typical for an unstable boundary layer with weak large-scale pressure gradients. The

second cluster of positive SHF (b) appears to be a shear-driven and has a frequency

of only about 8.7%. The first cluster of negative SHF (c) represents weakly stable

boundary layer with relatively high wind speeds and strong wind shear up to high

altitudes. The second cluster of negative SHF (d)shows relatively low wind speeds

and well-developed near-surface jets. Characteristic shear profiles of different sta-

bility conditions are consistent with Monahan et al.[103] and extend to even higher

altitudes. Both stable states (bottom) have an almost equal frequency at 36.3 % and

34.6 %. The non-converging wind speeds aloft are associated with different large-scale

conditions driving these phenomena.
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Figure 2.9: K-means clustered probability distribution (each altitude adds up to
100%) and centroids (white squares) of wind speeds pre-allocated by WRF calcu-
lated SHF. Table 2.1 summarizes the frequency of occurrence of each cluster. Top
left: unstable stratification, top right: shear-driven, bottom left: weakly stable strat-
ification, bottom right: very stable stratification.

These results show that AWES and very large conventional wind turbines oper-

ating at mid-altitudes will have to function across a wide range of wind conditions.

AWES need to be able to withstand more probable extreme loads caused by high

wind speeds, while still being able to navigate through calm periods. Furthermore,

as wind conditions vary so significantly, optimal operating altitude and power highly
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depend on atmospheric stratification as will be shown in section 2.6. This highlights

the need for long term, high resolution measurements to determine the ideal operating

altitude as well as estimating the energy yield at a given location.

2.5.2 Inverse cumulative wind speed probability distribution

The inverse cumulative density function in figure 2.10 highlights the probability a

certain wind speed is exceeded at a given altitude, thereby describing the design space

and energy potential of AWES. As above, the data set is split by times of positive

(left) and negative (right) SHF calculated in WRF. Times of unstable stratification

show an almost constant distribution above 200 - 300 m. Stably stratified boundary

layers show a steep increase of high wind speed (U > 12 ms−1) probability up to about

500 m above which this value stays almost constant. A low chance of continuously

increasing wind speed exists during times of very stable stratification leading to a

wider spread of wind speeds aloft.
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Figure 2.10: Inverse cumulative LiDAR wind speed probability distribution of the
whole measurement campaign over altitude split by SHF calculated in WRF. The
Left side represents times of positive SHF (unstable stratification), the right side
represents times of negative SHF (stable stratification).
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2.5.3 Wind roses

Figure 2.11 depicts the wind roses at four different altitudes for the whole six months

measurement campaign. The dominant wind direction is West, rotating from South-

west to Northwest with increasing altitude. An average rotation of about +30◦ be-

tween 100 m and 1000 m as well as an increase in wind speed and a reduction in

variability can be observed [139], following the expected trends in the northern hemi-

sphere [8].
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E

U =  0 −  5 m s− 1

U =  5 − 10 m s− 1

U = 10 − 15 m s− 1

U = 15 − 20 m s− 1

U = 20 − inf m s− 1

E

E

N

W

S

10%

20%

offshore

E

N

W

S

10%

20%

Figure 2.11: Wind direction and speed of the whole six months LiDAR measurement
campaign between about 100 and 700 m represented as wind roses.

2.5.4 Turbulence intensity

Mid-altitude wind energy systems will benefit from relatively steady wind conditions

with reduced turbulence fluctuation at higher altitudes. This reduction in variability

reduces the energy intermittency and thereby improves the grid feed-in qualities of

AWES. Variability in the wind velocity is quantified by the longitudinal, lateral and

upward turbulence intensity TI. We focus on the longitudinal fluctuations along the
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direction of the 10-min mean wind velocity. IEC standard 61400 [27] defines TI as

the ratio between the 90% quantile standard deviation of the wind speed at a given

height σU and the 10-min mean wind speed U :

TI =
σU

U
. (2.4)

Cup and sonic anemometers deliver high resolution measurements and can resolve

high frequency fluctuations at the scale of multiple Hz. While average wind speeds

measured by LiDAR and other anemometers are generally in accordance with each

other, TI values can differ due to different temporal and spatial resolution of the

measurement technique [124]. The single beam DBS setup of the LiDAR which

produced the data we consider requires the laser to adjust its orientation every three

to five seconds. This relatively long sampling period results in a limited resolution and

different standard deviation compared to other measurement techniques. Previous

studies [125] have shown a correlation between LiDAR TILidar and sonic turbulence

measurements for lower altitudes. As of now, no high altitude measurement device

can reliably gather high frequency data. Even though the LiDAR turbulence intensity

could not be independently validated, our results follow expected trends and can

function as a long term estimate of turbulence intensity in higher altitudes.

Figure 2.12 shows TILidar as a function of mean horizontal wind speed for 4 dif-

ferent altitudes (measurements in light blue in the background) and the data density

in red. The error bars along the median (blue line) indicate the 25th and 75th per-

centile. Figure 2.12 (a) includes the turbulence intensity TINTM defined by the Normal

Turbulence Model (NTM) in IEC standard 61400 [27].

TINTM =
Iref (0.75U + b)

U
b = 5.6 ms−1 (2.5)

Turbulence classes are defined by the 90% quantile of the turbulence standard

deviation at hub height and approximated by IA
ref = 0.16, IB

ref = 0.14 or IC
ref = 0.12.

Measurements at a height of 100 m generally have good accordance with the C tur-

bulence class, associated with the flat agricultural land surrounding the measurement

location. The increase in TILidar for high wind speeds is likely caused by the small

sample size and the wide scatter of these assessments. The fairly high amount of high

TILidar outliers could be caused by the reduced data quality after the power outage.

The overall trend of average TILidar with altitude is shown in figure 2.13. The

data is split by WRF modeled SHF, with positive SHF indicated in red, negative
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Figure 2.12: Comparison of LiDAR-based turbulence intensity (TILidar) over hori-
zontal wind speed U between 100 and 700 m during the six month measurement
campaign. The black line visualizes the 90% quantile for comparison with the NTM
turbulence classes defined by IEC standards 61400 [27]. The median is represented
by the blue line with error bars corresponding to P25 and P75. Data density is shown
in red.

SHF in blue and the entire data is summarized in black. As expected, stable strati-

fication (associated with negative SHF) experience weaker turbulence than unstable

stratification [8]. These trends remain almost constant above 500 m up to maximum

measurement height. AWES will therefore have to withstand low, but still existing

turbulence induced fatigue loads. The error bars, which have been omitted for the

entire data set to maintain readability, along the median indicate the 25th and 75th

percentile. The asymmetrical error bars during times of positive SHF indicate a ten-

dency towards higher TILidar at all altitudes. Times of negative SHF show a low,

almost symmetric TILidar distribution. The 90% quantile (black solid line) follows a

similar trend, but increases slightly at very high altitudes possibly due to the limited

availability aloft.

2.5.5 Diurnal variability

The characterization of wind speed and turbulence diurnal variability is essential

for AWES flight path optimization and sizing. We expect the diurnal cycle to be

relatively weak due to the high cloud cover [69] during the measurement period at



42

Figure 2.13: Turbulence intensity trend over altitude estimated based on six months
LiDAR measurements. The error bars visualize the median, P25 and P75 values for
times of positive SHF (red) and negative SHF (blue). Error bars for the entire data
set are not shown to maintain readability. The dashed lines show the 90% quantile
as used by the IEC 61400 standards [27].

Pritzwalk (compare figure 2.4). turbulence Figure 2.14 and 2.15 show the hourly

average wind speed U and estimated turbulence intensity TILiDAR variability as a

function of altitude and time of day [8]. An almost constant average wind speed at

90 m suggests that this is approximately the reversal height which is defined as the

height of minimal variability of the long-term wind speed [66]. Wind speeds below

this altitude show lower wind speeds during night and higher wind speeds during day.

Above the reversal height the wind speed increases during night due to a reduction

in vertical turbulent momentum convergence because of the formation of near-surface

stable stratification and is slowed down during day due to enhanced momentum trans-

port because of buoyant generation of turbulence kinetic energy. Average wind speeds

slowly increase at altitudes between 400 and 800 m over the course of the night which

peaks in the early morning, just before the convective boundary layer erodes this

structure. Average wind speeds at these altitudes slow down in the late morning as

the turbulent boundary layer reaches these altitudes. This is visualized by the increase

in turbulence intensity after sunrise. Around noon average TILiDAR reaches it’s max-

imum at all altitudes, which coincides with an unstable stratification and results in

low wind shear. Even though TILiDAR increases almost simultaneously at all altitudes,
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wind speed changes are time delayed, probably caused by inertia of the air. These

averaged values can not represent high frequency fluctuations of constantly changing

wind speed profiles, but visualize typical diurnal changes. They further demonstrate

that AWES benefit from adjusting their operating altitude to stay within a certain

wind speed range or minimize tether drag and weight by flying with an as short as

possible tether, at an altitude as high necessary and as low as possible.
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Figure 2.14: Six months average diurnal
variation of hourly mean wind speed U
over altitude
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Figure 2.15: Six months average diurnal
variation of hourly mean turbulence inten-
sity TILiDAR

2.5.6 Representative wind conditions

Average wind conditions shown in previous subsections combine many different events.

To improve physical insight and to illustrate the relationship between surface heat

flux and wind profile shape, an atypical and a more typical 24-hour period (see Fig-

ure 2.16 and 2.17) are analyzed in detail. The figures show the 10-minute mean

horizontal wind speed contour in the top sub-figure and the wind speed profile and

direction in the bottom sub-figure for two days in September 2015 from noon to noon.

WRF calculated SHF is plotted against the secondary axes on the right in the top

sub-figure. The white space represents missing or filtered data. Wind directions are

defined according to section 2.3 by a positive clockwise rotation with 0◦ coming from

North. The black X in each profile marks the altitude of highest wind speed and ©
the optimal operating altitude of an specific AWES, described in section 2.6, which

often do not coincide due to the misalignment losses associated with a higher eleva-

tion angle [128]. Figure 2.16 shows one of the days which were previously investigated

with regards to CNR (see figure 2.5).

On September 12th the advection of warm air lead to the formation of low level

clouds within the investigated area of northeastern Germany. The atmosphere could
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Figure 2.16: Visualization of measured 10-minute mean wind speed, wind direction
between September 11th-12th 2015. The top figure shows the wind speed and WRF
calculated SHF (dashed line). The bottom figure shows each hours 10-minute mean
wind speed profile colored according to wind direction. The X marks the altitude of
highest wind speed and © the optimal operating altitude according to section 2.6.
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Figure 2.17: Visualization of measured 10-minute mean wind speed and wind direction
between September 21st-22nd 2015. The top figure shows the wind speed and WRF
calculated SHF (dashed line). The bottom figure shows each hours 10-minute mean
wind speed profile colored according to wind direction. The X marks the altitude of
highest wind speed and © the optimal operating altitude according to section 2.6.
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be characterized as unstable, due to the temperature difference of about 45 K between

the surface and 500 hPa which lead to thunderstorms and rain during the afternoon

and evening which mostly ceased by September 12th. The wind speed profile in figure

2.16 shows fairly strong mixing during the afternoon and night of September 11th.

In the morning of September 12th data availability is limited, due to low altitude

clouds (see figure 2.5). After 9 am the availability increases again, accompanied by

a reduction of cloud cover [105, 129, 18]. The altitude of highest observed wind

speed stays fairly constant throughout the entire day and mostly remains within the

lowest 500 m of the atmosphere. Optimal operating altitudes (see section 2.6) mostly

coincides with highest wind speed. Misalignment losses will be fairly small due to

the low elevation angle. In contrast to the average wind direction (West; see figure

2.11), the prevalent wind direction for this day is East Southeast, with relatively little

change of direction with altitude.

By September 21st, the low pressure system which was responsible for the change-

able weather of previous days, mostly disappeared [105, 129, 18]. The following high

pressure zone and the accompanying rainfall on its border region over northeastern

Germany quickly decayed. Cumulus cloud-banks formed during the noon hours over

northern Germany. In contrast to September 12th, the data in figure 2.17 shows a

rather average day with a typical diurnal cycle and the development of a low level

jet during the night. The daytime of September 21st 2015 shows an unstable strati-

fication defined by strong mixing and high turbulence resulting in an almost uniform

wind speed profile. The altitude of highest wind speed is in the higher parts of the

boundary layer above 600 m. Even though overall wind speeds are fairly low, optimal

operating altitudes are above 600 which leads to significant misalignment losses. After

18:00 UTC the computed optimal altitude drops below 300 m due to low wind shear

above. After sunset around 19:00 UTC, we observe the decoupling of the flows below

and aloft caused by the development of a stable stratification, due to the reduction of

vertical mixing [66]. The development of a low level jet is indicated by wind speeds

of about 15 ms−1 between 200 and 400 m above ground, while wind speeds below

and above are significantly slower. The optimal operating altitude coincides with the

altitude of the low level jet. Furthermore, we observe a change in wind direction from

Southwest to Southeast that approximately coincides with the formation of the low

level jet which is consistent with a stronger down-gradient flow near the surface. Sun-

rise at 7:00 UTC warms the surface and leads to the development of a mixing layer

which over time increases in height [139]. The westwards wind direction throughout
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this day is more in line with the typical wind direction at Pritzwalk.

Relying on wind statistics or average diurnal variation is not sufficient when plan-

ning flight paths and operating AWES as a given day can differ significantly. Dynam-

ically optimizing AWES trajectory and operating altitudes maximizes power produc-

tion and mitigates dynamic loads. The disconnect between optimal operating altitude

and altitude of highest wind speed, which will be even more pronounced when losses

such as tether drag and weight are taken into account, is clearly visible.

2.6 Power estimation

This section presents an analysis of the theoretical mechanical power and optimal

altitude of an AWES based on measured wind speeds. The scope of this investigation

is limited to the estimation of traction power using a ground-generator (pumping-

mode) AWES. The model of a ground-generator system is adapted from Schmehl et

al. [128], based on Loyd’s approximation [87]. The estimated optimal power per unit

lifting area of the wing popt is described by:

popt =
ρair

2
U3
√
c2

L + c2
D

[
1 +

(
cL

cD

)2
]
fopt (cos θ cosφ− fopt)

2 (2.6)

Losses associated with misalignment of the wind direction and the aircraft po-

sition (azimuth angle φ, elevation angle θ) are included in the model. Additional

losses caused by gravity and tether drag are neglected, which leads to significantly

overestimated power production and operating height. Depending on wing area,

tether length and tether diameter the AWES performance will be significantly lower

due to increase in effective drag, which is further investigated in chapter 6. The

tether speed vt is nondimensionalized in the form of the reeling factor (f = vt
U

). We

consider quasi-steady state with the wing moving directly cross-wind with a zero

azimuth angle (φ = 0) relative to the wind direction. As a result, lift L, drag D

are geometrically related to the radial (va,r = (cos θ cosφ − f)vw) and tangential

(va,t = (cos θ cosφ− f)vw
L
D

) apparent velocity components. We assume optimal reel-

ing speed (fopt = 1
3

cos θ cosφ). The elevation angle is derived from altitude z and

tether length ltether (θ = arcsin( z
ltether

)). Lift cL=1.7 and drag coefficient cD=0.06 are

kept constant and assumed representative of the aircraft. Tethered AWES will have

significantly higher drag due to the tether drag (compare figure 6.1 in chapter 6 Air

density ρair is calculated by a linear approximation of the standard atmosphere [24]
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(ρair(z) = 1.225 kgm−3 − 0.00011 kgm−4z).

Figure 2.18 shows a heatmap of the total probability distribution of optimal wind

power and optimal flight altitude assuming a constant tether length of ltether = 1500 m.

The use of such a long tether would be considerably penalized with a more realistic

model which includes tether drag. The here shown power per unit area results are

very high, because tether drag and weight are not included. If they were included,

estimated power would be significantly reduced by lower effective cL/cD and a longer

tether would be penalized (compare chapter 6). As it is implemented here, tether

length only decreases elevation angle and therefore increases power production with-

out increasing tether losses associated with weight and drag. The color scheme is

cubic to account for the non-linear relationship between wind speed and power. The

continuous white line shows the probability distribution of optimal altitude over the

whole popt range and is associated with the top abscissa. The dashed white line

shows the probability distribution of optimal power over the whole altitude range

and is associated with the right hand ordinate axis. Optimal traction power for the

given system has the highest frequency below popt < 1000 kWm−2 due to high chance

of low wind speeds and low wind shear (see table 2.1). Even at higher altitudes

the most probable traction power is below this value as wind speeds are still fairly

low, but increase enough that higher losses due to misalignment (θ in equation 2.6)

are offset. Altitudes between 200 and 700 m show higher, but less frequent optimal

power production due to higher wind shears and low level jets. Whether AWES will

be able to harvest these winds or will be designed to avoid them because of increased

mechanical loads remains to be seen. The most likely operating altitudes, based on

measured wind conditions, are between 150 and 400 m, peaking at 300 m. However,

the possibility for AWES to operate at altitudes above 700 m enables them to increase

overall capacity. Including tether drag in the quasi steady-state model yields even

lower operating heights well below 200 m (compare figures 6.4 and 6.6) for shorter

tether lengths, depending on AWES size. Similar results were found using a dynamic

optimization model (see figure 5.5). Operating heights in both models greatly in-

crease beyond rated power, when the system de-powers by flying to the top of the

wind window to stay within tether force constraint.

Splitting the data by heat flux reveals the impact of stratification on optimal

flight altitude and power. Figure 2.19 shows the probability distribution of optimal

operating altitude for times of positive SHF (a) and times of negative SFH (b) as
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Figure 2.18: Probability of optimal traction power over optimal operating altitude.
The continuous white line shows the frequency of optimal operating altitude for the
entire power range (top abscissa axis) and the dashed white line shows frequency of
optimal traction power for the whole altitude range (right ordinate axis).

defined in sub-section 2.5.1. The bars represent the k-means clustered sub-states (see

figure 2.9). The black lines show the total probability for times of positive or negative

SHF. Overall, flying above 500 m is rarely necessary to optimize power production.

Only times of shear driven and weakly stable stratification benefit from operating

above 500 m due to the stronger wind shear up to altitudes above 600 m. During

times of unstable stratification optimal operating altitude is between 300 and 400 m

due to lower wind speeds and low wind shears above this altitude. Times of very

stable stratification often experience low level jets which lead to a peak in wind speed

between 200 and 400 m. Traction power between these sub-states varies significantly

due to vastly different wind speeds, even though operating altitudes are comparable.

Figure 2.20 shows the optimal power popt (associated with the top abscissa axis)

per unit wing area for a given tether length (ltether = 500 − 2500 m). The lack of a

fixed tether diameter, and therefore rated power constraint, as well as the neglected

tether drag lead to unrealistically high power estimates. In comparison to figures 6.4

and 6.5, which show similar engineering model results that include tether drag, the

present operating heights and power are considerably optimistic. Note that results in

chapter 6 are based on clustered WRF model wind data (see chapter 3 and section

4.4), use a different set of aerodynamic coefficients and are not normalized by the

wing area.
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Figure 2.19: Probability distribution of SHF clustered optimal operating altitude for
times of positive SHF (a) and negative SHF (b) (black lines) as well as the 2 respective
sub-states (see table 2.1).

As tether drag and weight are neglected, this tether length increase only indicates

the associated with a changing elevation angle. Each subfigure uses a different range

due to the disparity of popt in each sub-state. Wind speed profiles (blue line) are

associated with the bottom abscissa axis and represent the average SHF-clustered

wind speed. Subfigures are arranged as in figure 2.9 with the top row representing

times of positive SHF and the bottom row are times of negative SHF. The dashed

line connects the tether-length-dependent optimal operating altitude zopt. Times of

unstable stratification (a) and very stable stratification (d) have an almost constant

average wind speed profile above a certain altitude which is why optimal power pro-

duction peaks at these heights. Furthermore, an increase in tether length leads to

diminishing returns as the misalignment losses are proportional to cos θ. However,

since for a given tether and kite, the effective drag penalty due to the tether scales

linearly with tether length, the effective drag coefficient (cD,total = cD,wing + cD,tether)

would increase, leading to a steep reduction in power and offsetting the benefits of

a longer tether (see chapter 6). Times of shear-driven stratification (b) and weakly

stable stratification (c) benefit from longer tethers and higher operating altitudes.

The higher overall wind speeds during these times lead to far higher traction power.

However, actual operating altitude will likely be lower as the model neglects tether

weight and drag which are proportional to tether length.
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Figure 2.20: Optimal power [128] per wing area popt (black) and optimal operational
altitude (dashed line) estimated based on mean k-means-clustered SHF-sampled wind
speed profiles (see table 2.1 - blue line) for varying tether length (ltether = 500−2500 m,
note that L in legend was changed to ltether to be consistent with rest of thesis) - a:
unstable stratification; b: shear-driven; c: weakly stable stratification; d: very stable
stratification.

Figure 2.21 shows the diurnal cycle of hourly averaged traction power per unit

lifting area for constant L = 1500, cL=1.7 and drag coefficient cD=0.06 to estimate

diurnal AWES power variation. The dashed line illustrates the optimal operating

altitude which remains between 500 and 700 m through out most of the day. These

altitudes are above the previously described, SHF-sampled values (see figure 2.20) and

mostly above the corresponding height during the representative days (see figure 2.16

and 2.17). This difference is due to the fact that stratification is not only dependent

on time of day, but also affected by large-scale weather and climate phenomena.

Traction power is highest during the night as average wind speeds and wind shears

are higher. Average traction power decreases by almost 50 % around noon as these

times are more likely to be associated with unstable stratification, low wind shear and

speed. While hourly average wind data might give a good long term estimate, it can

not represent the vastly different wind conditions that AWES will need to adapt to

in order to optimize power production. This effect will be amplified when considering

additional tether losses. Therefore, high resolution wind data is needed to optimize

power production and control the flight path during operation.
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Figure 2.21: Diurnal variation of hourly mean traction power popt and optimal oper-
ating altitude (dashed line) assuming constant tether length of ltether = 1500 m and
constant aerodynamic coefficients (cL=1.7 and cD=0.06)

2.7 Conclusion and outlook

We have presented an evaluation of high resolution mid-altitude wind speed measure-

ments from a six-months measurement campaign in Pritzwalk, northern Germany.

The onshore measurement location surrounded by flat, open, agricultural land was

chosen due to its presumed suitability for the deployment of airborne wind energy

systems. Based on the pulsed wind LiDAR data gathered up to an altitude of 1100

m, we have produced a statistical characterization of the prevailing wind conditions

as well as an estimate of ideal power production and optimal operating altitude for

the chosen location and time period. The results characterize important meteorolog-

ical effects such as the influence of stratification on vertical wind speed profiles, wind

direction, and turbulence intensity (including mean diurnal cycles) which need to

be considered for any mid-altitude wind energy device that aims to operate at com-

parable altitudes over flat terrain. We resolved multi-modal wind speed statistics.

The high vertical resolution enables the determination of optimal operating altitudes

depending on AWES design.

We defined filters based on horizontal wind speed and CNR thresholds to increase

the data availability while filtering out low-quality data. As a result , data availability

at the lowest altitude (66 m) was about 85% and dropped steadily to about 25% at

1000 m. Cloud cover or fog affects data availability as most of the laser is absorbed
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or reflected leading to a high CNR within the cloud and very low backscatter above.

Since CNR is related to aerosol content, it can be used as an indicator of mixing layer

height. Determining a direct correlation between cloud cover and data availability

is difficult and would require additional measurements such as aerosol concentration

gathered by a ceilometer , since cloud cover does not give information on cloud height.

Wind statistics are affected by diurnal variability which leads to an increase of data

availability around and after noon. By making use of a mesoscale reference simulation,

we could show conditional sampling of our measurements which can be explained

by increased thermal-mixing causing an increase in vertical aerosol transportation.

Statistically different wind conditions were identified based on surface heat flux data

from the mesoscale model. Given the substantial effect of stratification on wind

profiles, measuring the surface heat flux or temperature at two near-surface altitudes

along with winds would improve the classification of the wind conditions and reduce

the error introduced by the difference between measurement and simulation. Using k-

means clustering additional populations within stable and unstable stratification were

identified. The superposition of these sub-states leads to a multi-modal wind speed

probability distribution. This multi-modality is not accurately approximated with a

two-parameter Weibull fit. A large reduction in error between measured data and

fitted probability distribution between 100 and 500 m was achieved by superimposing

two Weibull distributions of times associated with positive and negative surface heat

flux. The cumulative probability distribution of both states helps to estimate the

altitude dependent energy potential of AWES.

Average diurnal variation impacts wind speed and turbulence intensity. Vertical

mixing and turbulence intensity increases during daytime, due to positive surface heat

flux. Therefore, average wind speeds are lower and wind shear is lower during day

than during night.

Through the investigation of wind shear profiles during specifically-chosen 24 hour

windows, we infer various atmospheric stability and forcing conditions. We showed

that strong thermal mixing which occurs after sunrise of a typical diurnal cycle, leads

to the time delayed onset of wind speed reduction with altitude. As a result, wind

speed remains almost constant with altitude during periods of unstable stratification,

reducing the necessary altitude of optimal energy production. Significant wind shear

as well as the development of low level jets at an altitude between about 300 - 800 m

during stable conditions were observed. However, many days do not show these more

typical diurnal variations and are affected by other large scale weather phenomena.
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Using an idealized traction power model which neglects gravity and tether drag,

we determined the optimal operating altitude as well as an upper bound of traction

power. Results including tether drag can be found in chapter 6. Ideal altitudes for

times of unstable and very stable stratification are between 300 and 500 m. During

times of weakly stable stratification AWES will benefit from flying between 500 and

800 m. Even though the average optimal altitude is around 350 m, AWES need to

dynamically adapt their altitude to optimize power production. To do so they will

need high temporal and vertical resolution measurements. A more detailed model,

including tether drag and weight, will yield lower optimal operating altitudes and

power output as those losses are proportional to tether length. Additionally, an

investigation of the entire flight maneuver is necessary to estimate energy yield.

The 90% quantile of turbulence intensity estimated based on standard deviation

and mean LiDAR measured wind speed at 100 m shows comparable results to NTM

turbulence classes defined by the IEC standard 61400. Up to an altitude of about 400

to 600 m the turbulence intensity decreases, above which it remains almost constant.

Since no independent, long-term, high-altitude wind turbulence measurements are

available, these measurements give a good first estimation of average wind speed

fluctuations which helps to assess fatigue loads and lifetime of AWES. The benefits

of operating at higher altitudes and the associated reduction of turbulence intensity,

need to be investigated and weigh against additional losses.

As expected for a northern hemisphere location, our measurements show an av-

erage clockwise wind rotation of about 30◦. This directional change needs to be con-

sidered when optimizing the flight path of AWES and estimating the instantaneous

power production.

In a subsequent analysis, we will compare these measurements to simulations

from mesoscale Weather Research and Forecasting Model used to produce the surface

heat flux time series used in this study. In particular, we will investigate the effect

of implementing measurements via observation nudging. Comparing these results

to the here discussed LiDAR measurements will deepen the understanding of mid-

altitude winds and weather conditions. These simulations can supplement the annual

statistics and give information about times that were not measured or where filtered

out.

Finally, to further our understanding of mid-altitude winds and estimate the dy-

namic loads they cause, we will analyze results from LES using the Parallelized Large-

eddy Simulation Model (PALM) developed by the Leibniz Universität Hanover, Ger-
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many. These simulations were driven by large scale forcing generated from WRF.

The resulting data set covers a wide spectrum of wind speeds and can be used to

preliminary optimize the flight path as well as estimate mechanical loads and power

of AWES.
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Chapter 3

Improving mesoscale wind speed

forecasts using LiDAR-based

observation nudging for airborne

wind energy systems

Markus Sommerfeld, Martin Dörenkämper, Gerald Steinfeld, and Curran Crawford.

Improving mesoscale wind speed forecasts using lidar-based observation nudging for

airborne wind energy systems. Wind Energy Science, 2019; 4: https://doi.org/

10.5194/wes-4-563-2019.

The previous exploration of the wind regime at higher altitudes, using LiDAR technol-

ogy, revealed that measurements beyond the lower hundreds of meters is challenging,

as remote sensing data availability decreases and in situ measurments are sparse.

This chapter introduces the mesoscale weather research and forecasting (WRF)

model and uses it to generate an annual wind and weather data set. Additionally, we

investigate whether assimilating LiDAR measurements, using observation nudging,

can improve the accuracy of the WRF model, and therefore improve wind resource

assessment for AWES at higher altitudes. Similar to the previous chapter, we de-

termine optimal AWES operating altitude and power production using a simplified,

analytical model.

The next chapter uses the here derived annual data set, together with another

offshore WRF data set, to describe the crosswind, ground-generation AWES power

https://doi.org/10.5194/wes-4-563-2019
https://doi.org/10.5194/wes-4-563-2019
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curve for two system sizes with an approximate rated power of 650 and 2600 kW. To

reduce computational cost, annual wind data is grouped into a number of clusters,

using a k-means algorithm, from which representative profiles are implemented into a

dynamic, periodic optimal control model. We estimate average power, annual energy

production, capacity factor and operating heights, based on these optimal results.

3.1 Abstract

Airborne wind energy system (AWES) aim to operate at altitudes above conventional

wind turbines where reliable high-resolution wind data is scarce. Wind light detection

and ranging (LiDAR) measurements and mesoscale models both have their advan-

tages and disadvantages when assessing the wind resource at such heights. This study

investigates whether assimilating measurements into the mesoscale weather research

and forecasting model (WRF) using observation nudging generates a more accurate,

complete data set. The impact of continuous observation nudging at multiple alti-

tudes on simulated wind conditions is compared to an unnudged reference run and

to the LiDAR measurements themselves. We compare the impact on wind speed

and direction for individual days, average diurnal variability and long-term statistics.

Finally, wind speed data is used to estimate optimal traction power and operating

altitudes of AWES. Observation nudging improves the WRF accuracy at the measure-

ment location. Close to the surface the impact of nudging is limited as effects of the

air-surface interaction dominate, but becomes more prominent at mid-altitudes and

decreases towards high-altitudes. The wind speed probability distribution shows a

multi-modality caused by changing atmospheric stability conditions. Therefore, wind

speed profiles are categorized into various stability conditions. Based on a simplified

AWES model the most probable optimal altitude is between 200 and 600 m. This

wide range of heights emphasizes the benefit of such systems to dynamically adjust

their operating altitude.

3.2 Introduction

The prospects of higher energy potential and more consistent strong winds and less

turbulence in comparison to near surface winds sparked the interest in mid-altitude,

here defined as heights above 100 m and below 1500 m, wind energy systems. Air-

borne wind energy systems are a novel class of renewable energy technology that
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harvest stronger winds at altitudes which are unreachable by current wind turbines,

at potentially much reduced capital cost [89, 48]. For practical and economical rea-

sons we focus on resource assessment within the lower part of the atmosphere, an

altitude range spanned by the highly-variable boundary layer. Unlike conventional

wind energy which has converged to a single concept with three blades and a conical

tower, several different AWES designs are under investigation by numerous companies

and research institutes worldwide [25]. Various concepts from ring shaped aerostats,

to rigid wings and soft kites with different sizes, rated power and altitude ranges

compete for entry into the market. Since this technology is still in an early stage,

none are currently commercially available.

Developers and operators of large conventional wind turbines, AWES and drones

require accurate wind data to estimate power output and mechanical loads. They

currently rely on oversimplified approximations such as the logarithmic wind profile

[113] or coarsely resolved reanalysis data sets [5, 14] as the applicability of conven-

tional spectral wind models [21] have not been verified for these altitudes. First

investigations [50] resorting to the Mann model [97, 74] have been conducted.

Recent advancements in wind LiDAR technology enable measurements at higher

altitudes. This measurement technique however suffers from reduced data availability

with increasing altitude caused by a decrease in aerosol density which is needed for

the backscattering of the LiDAR signal [116]. No mid-altitude measurement device

can reliably gather long-term, high-frequency data. Temporal and spatial resolution

of LiDAR devices is insufficient to precisely measure high-frequency fluctuations,

but estimated turbulence intensity correlates with sonic turbulence measurements for

lower altitudes [123]. Balloon mounted sonic anemometer are in early development

[22]. The expensive and time consuming nature of measurements motivates the usage

of numerical weather prediction models such as the mesoscale weather research and

forecasting model as an adequate tool to assess synoptic characteristics of the atmo-

spheric boundary layer (ABL) [2]. These models typically have a spatial resolution

that ranges from one kilometer to tens of kilometers and a temporal resolution in the

order of minutes. Sub-gridscale high-frequency variations of resolved quantities are

parameterized. Mesoscale models can be used to produced long-term reference data

sets up to higher altitudes such as the New European Wind Atlas [151].

This work is a continuation of a previous investigation of mid-altitude wind LiDAR

measurements [137]. The measurements used in these studies were gathered as part

of the OnKites II project [58] at the Fraunhofer institute for wind energy systems
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(IWES) with the goal of evaluating the potential of AWES. This paper makes use

of various statistical tools to describe the relationship between the mesoscale WRF

model and LiDAR measurements to determine the impact of wind speed observation

nudging [104].

Section 3.3 describes the measurement campaign. Section 3.4 introduces the

mesoscale model and observation nudging methodology used in this article. Sec-

tion 3.5 quantifies the impact of observation nudging and summarizes the statistical

differences between WRF and LiDAR. Results are applied to estimate optimal oper-

ating altitude and power output based on a simplified AWES model in section 3.5.7.

Section 3.6 concludes the article with an outlook and motivation for future work.

3.3 Measurement Campaign

The LiDAR data used in this study [13] were collected between September 1st, 2015

and February 29th, 2016 at the ‘Pritzwalk Sommersberg’ airport (Coordinates: Lat:

53◦ 10’ 47.00”N, Lon: 12◦ 11’ 20.98”E) in Northern Germany (see white X in figure

3.1). The area surrounding the airport mostly consists of flat agricultural land with

the town of Pritzwalk to the South. A Galion4000 single beam pulsed wind LiDAR

from SgurrEnergy was used [62]. Wind speed data were collected using the Doppler

beam swinging (DBS) method (opening angle of 62◦) which averaged multiple line of

sight measurements at constant elevation angle and four azimuth angles to calculate

the 10 min mean wind speed at 40 range gates up to an altitude of about 1100 m.

Reference measurement found the mean LiDAR error to be around 1% with a standard

deviation of 5% [61]. The resulting wind speed is inherently spatially and temporally

averaged. At an altitude of 1100 m the radius of the averaging disc defined by the

four azimuth positions with 90◦ increments is about 585 m. For the reconstruction

of 10 min mean wind speed it is thus assumed that the wind vector does not change

over this area, a valid assumption for these heights over flat terrain.

LiDAR data availability highly depends on the applied carrier-to-noise ratio (CNR)

filter and the aerosol content of the air as the wind speed is calculated based on the

backscatter of the emitted laser beam. Most aerosols originate from the surface and

are transported aloft. Particle density decreases with height and drops to almost zero

within the free atmosphere above the ABL [100]. Data quality quantified by the CNR

dropped on average by approximately 5 dB over the course of 1000 m. A fixed CNR

threshold of CNRdB > -25 dB combined with additional self-defined filters [137] were
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applied and insufficient data was discarded. As a result, data availability dropped

from about 81% at 100 m and about 24% at 1000 m. Low data availability caused

by weather effects (e.g. strong precipitation) further emphasizes the importance of

simulations for mid-altitude wind resource assessment as no measurement technique

with sufficient spatial and temporal resolution is available at this point.

3.4 Mesoscale Modeling Framework

To complement the 6 months LiDAR data set two WRF 3.6.1 simulations using the

advanced research weather research and forecasting (ARW) model [134] were carried

out. The ‘baseline run’ , which is hereinafter referred to as NoOBS, is a 12 month

study of the area around the measurement location (see figure 3.1) from the 1st of

September 2015 used to derive annual statistics. LiDAR measurements [137] were

incorporated into the six months test model between September 2015 and February

2016 using OBSGRID [149], which is hereinafter referred to as OBS.

(a) (b)

Figure 3.1: Topography map of all three WRF model domains (a) and a magnification
of the innermost domain (b) with the LiDAR measurement site highlighted by a white
X.

This methodology uses the difference between model and measurements to calcu-

late a non-physical forcing term which is added to the governing conservation equa-

tions of the simulation to gradually nudge the model towards the observation (see
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equation 3.1) [138, 32]. Each simulation is composed of three nested domains with

27-, 9- and 3-km grid spacing and horizontal grid dimensions of about 120 × 120

elements at 60 heights along the terrain following vertical hybrid pressure coordinate

η. Differences between the simulation runs (see section 3.4.1) are compared within

the innermost domain of the simulation. Output data was stored in 10 min intervals.

Figure 3.1 shows the topography map of the simulation. Initial and boundary condi-

tions of both simulations are based on the ERA-Interim [31] reanalysis data set by

the European centre for medium-range weather forecasts which consists of 6 hourly

atmospheric fields with a spatial resolution of roughly 80 km horizontally and 60 η

levels. Turbulent Kinetic Energy (TKE) closure within the ABL was achieved by us-

ing the Mellor Yamada Nakanishi Niino (MYNN) 2.5 scheme which predicts sub-grid

TKE as a prognostic variable [106, 83]. The Noah-MP land-surface model, MYNN

surface layer scheme were used. The rrtm longwave radiation and Dudhia shortwave

radiation scheme were used (see: table 1 in the appendix). In addition to observation

nudging (see subsection 3.4.1) analysis nudging was performed on every domain of

each simulation. Analysis nudging nudges each grid point towards a time-interpolated

value from gridded analyses of synoptic observations [138] whereas observation nudg-

ing directly drives the simulation towards the additional observations. Within the

planetary boundary layer (PBL) of the inner domain analysis nudging was switched

off (see nudging settings in table 1 in the appendix). All simulations were run on the

EDDY 1 High-Performance Computing clusters at the University of Oldenburg.

3.4.1 Observation Nudging

Observation nudging also referred to as ‘dynamic analysis’ is a form of four-dimensional

data assimilation (FDDA) where each grid point within the radius of influence and

time window is nudged towards observations using a weighted average of differences

between model qm (interpolated at the observation location) and observations qo

[39, 121]. In this study horizontal wind speed U and direction Φ were nudged towards

measurements with a time interval of six hours between an altitude of 66 m and 1100

m, in order to not overly constrain the simulation. Nudging could not be performed

at times and altitudes where LiDAR data was not available. The non-physical forcing

term is implemented in form of prognostic equations [32]:

1EDDY: HPC cluster at the Carl von Ossietzky Universität Oldenburg, see: https://www.

uni-oldenburg.de/fk5/wr/hochleistungsrechnen/hpc-facilities/eddy/

https://www.uni-oldenburg.de/fk5/wr/hochleistungsrechnen/hpc-facilities/eddy/
https://www.uni-oldenburg.de/fk5/wr/hochleistungsrechnen/hpc-facilities/eddy/
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∂qµ

∂t
(x, y, z, t) = Fq(x, y, z, t) + µGq

∑N
i=1W

2
q (i, x, y, z, t) [qo(i)− qm(xi, yi, zi, t)]∑N

i=1Wq(i, x, y, z, t)
(3.1)

q refers to the quantity that is nudged, µ is the dry hydrostatic pressure, Fq(x, y, z, t)

is the physical tendency term of q, Gq is the nudging strength of q, N is the total

number of assimilated observations, i is the index of the current observation, Wq

is the weighting function based temporal and spatial separation between grid cell

and observation [39]. Four weighting functions Gq, Wt(x, y, z, t), Wz(x, y, z, t) and

Wxy(x, y, z, t) describe the temporal and spatial nudging strength. Values used in

this study can be found in the appendix (table 1). The inverse of Gq (here about

1/6 10−4s ≈ 46 min) can be interpreted as a nudging time scale as it dictates how

quickly the model approaches the observation.

Wxy and Wz define the spatial nudging weight while the temporal weighting func-

tion Wt defines the duration and weighting strength in time. Wt ramps from 0 to 1

and back to 0 [121]. The nudging time window and the time between implemented

observations was chosen to be 6 hours so that the implemented observations don’t

overlap each other. This ensures all time steps are nudged while not excessively

limiting the model.

Vertical influence was set very small so that observations only affect their own η

level [39]. The horizontal weighting factor Wxy (see equation: 3.2 is calculated based

on the radius of influence R and the distance between the observation and the grid

location D. We used the ‘Cressman scheme’ as the horizontal nudging weighting

function with a radius of influence of R = 180 km, thereby affecting the whole inner

domain.

wxy =

{
R2−D2

R2+D2 0 ≤ D ≤ R

0 else
(3.2)

3.5 Results

It is important to keep the differences in temporal and spatial resolution between

LiDAR measurements and WRF simulation in mind. Furthermore, data availability

highly influences the ability to nudge the simulation (see section 3.3) and compare

wind speed statistics.
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To quantify the local effect of observation nudging, we investigate the cell closest

to the LiDAR measurement location and compare measured and modeled horizontal

wind speeds U and direction. Additionally we investigate several sections at different

locations and altitudes within the inner domain to quantify the spatial and temporal

impact of single location observation nudging on the entire domain. Vector values of

each WRF cell are calculated on the faces of each cell, linearly interpolated to the

cell center and rotated from the grid projection to earth coordinate system.

3.5.1 Impact of nudging on wind statistics

Figure 3.2 shows the scatter plots of measured and simulated horizontal wind speed

at various altitudes for times at which LiDAR data is available. The continuous line

represents the linear regression of the data (regression coefficient is displayed in the

legend) while the dotted line shows an ideal correlation. The color of the scatter points

corresponds to the frequency of occurrence. Multiple wind speed clusters caused by

stratification can be identified. While there is a trend towards higher wind speeds

with increasing altitude, low wind speeds (U < 6 ms−1) still occur at high-altitudes.
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Figure 3.2: Linear Regression of LiDAR-measured wind speeds against NoOBS-
modeled (WRF ‘baseline run’ without observation nudging) wind speeds (left side)
and OBS-modeled (‘test run’ with obsgrid observation nudging) wind speeds (right
side), at ∼100 m (a-b), ∼300 m (c-d), ∼500 m (e-f)
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Both simulations overpredict horizontal wind speeds at low-altitudes which is a

known problem of WRF and could be attributed to the model not resolving sub-grid

scale roughness elements properly (e.g. modeling strongly simplified parameteriza-

tion of forests and/or cities) or flaws in the planetary boundary layer model which

lead to overly geostrophic winds over land [99]. Observation nudging improves the

overall correlation with measurements at the measurement location as surface influ-

ence decays. Both models approach similar values at higher altitudes which could be

caused by the lack of observations and therefore observation nudging due to reduced

data availability or is indicative of WRF generally being better at modeling more

geostrophic winds.

The statistical analysis of the absolute difference between the WRF simulated

quantities at the measurement location and the LiDAR observations (∆U = UWRF−
ULiDAR; ∆Φ = ΦWRF − ΦLiDAR wrapped on an interval between [−π, π]) is shown in

figure 3.3 in form of a box plot. The circle corresponds to the median, the colored

box indicate the 25th and 75th percentile and the whiskers to both sides mark ±2.7

times standard deviation σ. Outliers beyond ±2.7σ are hidden to maintain clarity

and readability. The continuous line in the left sub-figure represents the root mean

square error between the measured ULiDAR and simulated wind speed UWRF.

The simulation with observation nudging generally outperforms the unnudged

simulation and is in better agreement with the measurements particularly at altitudes

of interest to high-altitude wind energy systems. It furthermore reduces the spread

of the bias, illustrated by the smaller whiskers and boxes. The root mean square

error (RMSE) ∆U shows similar results for both simulations below 100 m and above

700 m. The largest improvement or smallest error can be found between 300 m and

600 m. This could be explained by a better performance of the mesoscale model at

these altitudes due to a reduced impact of the air surface interaction which is strongly

parameterized.
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Figure 3.3: Statistical analysis of the bias between simulated and measured wind
speed ∆U and direction bias ∆Φ. The circle corresponds to the median, the colored
box indicates the 25th and 75th percentile and the whiskers mark ±2.7σ. The solid
lines in the left figure show the RMSE between the modeled and measured wind
speed.

The NoOBS shows an almost constant wind direction bias at all altitudes. Ob-

servation nudging substantially reduces the directional bias ∆Φ up to high-altitudes

as can be seen in the right box plot in figure 3.3. Similar to the wind speed bias,

wind direction bias at 1100 m is almost the same for both simulations. The nega-

tive wind direction bias represents an anti-clockwise deviation. Other studies [23, 60]

have found similar wind direction biases. A possible reason for this systematic error

is that WRF does not adequately resolve surface roughness resulting in lower surface

friction leading to overly geostrophic winds [98]. The almost constant median wind

direction bias indicates that WRF is able to capture the clockwise rotation of the

‘Ekman Spiral’ in the Northern hemisphere.

3.5.2 Representative nudging results

We compare 10 min mean horizontal wind speed for 24 hours on the 21st of September

2015 in figure 3.4 to visualize the impact of observation nudging on the mesoscale

model output. White space in the LiDAR measurements (see (a) in figure 3.4) are data

points that have been filtered out due to insufficient data quality. The dashed line is
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the WRF modeled surface heat flux (SHF) used to estimate atmospheric stability (see

sub-section 3.5.5). The color of the profiles indicate the wind direction and LiDAR

measured profiles are shown in grey for comparison. The black dot in each profile

marks the altitude of highest wind speed while the black circle indicates the optimal

altitude for the operation of a specific airborne wind energy system with a 1500 m long

tether based on a simplified power approximation (see section 3.5.7). However, the

single point representation is only a rough measure of operational altitude since AWES

generally sweep a range of altitudes. Since this model only includes misalignment

losses due to elevation angle and neglects tether drag, power and operating altitudes

are overestimated as a longer tether does not result in penalized power production.

This leads to unrealistically high operating heights of over 1000 m. Results in chapter

4, 5 and 6, which include tether drag, yield optimal operating altitudes between 100

and 500 m depending on wind speed profile, system size and tether diameter. These

results also show that AWES only increase operating heights beyond these heights in

order to de-power above rated wind speed.

Even though observation nudging leads to statistical improvements in wind speed

and wind direction prediction over the entire period (compare sub-section 3.5.1 and

3.5.4), individual days can still show a decline in model accuracy. The low level jet

(LLJ) as well as the high wind speeds at higher altitudes, which the NoOBS model

captures fairly well, are significantly weaker in the OBS model. Implementing addi-

tional measurements at a higher frequency might yield results closer to measurements,

but adding too many unphysical forcing terms might overly restrict the simulation.

The planetary boundary layer height (PBLH) (black line), which in the MYNN

scheme is calculated from the profile of virtual potential temperature and from the

profile of the TKE [20, 106], is directly affected by wind speed observation nudging.

During the investigated day, observation nudging leads to a lower daytime PBLH.
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(a)

(b)

(c)

Figure 3.4: Visualization of modeled and measured 10 min mean wind speed, wind
direction for 21st September 2015. (a) shows the measured LiDAR data set, (b) the
observation nudged OBS data set and (c) results from the unnudged reference NoOBS
model. The respective top figure shows the wind speed and WRF calculated SHF
(dashed line). The bottom figure shows the hourly 10-min mean wind speed profile
colored according to wind direction. X marks the altitude of highest wind speed and
© the optimal AWES operating altitude calculated as described in section 3.5.7
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3.5.3 Spatial influence

Single location observation nudging influences the area within the radius of influence

(Rxy = 180 km, see table 1 in the appendix) which here includes the entire inner

domain (150 km × 150 km). Figure 3.5 shows the mean absolute difference of hor-

izontal wind speed (∆U = |UOBS| − |UNoOBS|) between the OBS and NoOBS model

along lines of constant longitude and latitude for the entire simulation period. The

grid cell where observations were assimilated is indicated by the vertical line and

highlighted by the square marker. The four colors indicate different altitudes. As the

outer domains remain unnudged, the boundary conditions of the inner domain remain

the same which leads to the rapid decline in absolute difference towards the outside

of the domain. The difference in wind speed does not go to exact zero, because re-

sults are interpolated to the center of each grid cell. Near surface results close to the

measurement location, which is highlighted by the black vertical line, experience the

largest change in wind speed (red line, z = 12 m). The asymmetry could be caused by

the downstream transportation of nudging effects (dominant wind direction: West).
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Figure 3.5: Mean absolute wind speed difference ∆U along lines of constant longitude
(a) and latitude (b) within the inner, nudged WRF domain. Approximate distance
of d3 ≈ 180 km (dotted lines), d2 ≈ 75 km (dashed lines), d1 ≈ 0 km (solid line) from
the center (Lat: 53◦ 10’ 47.00”N, Lon: 12◦ 11’ 20.98”E) where the OBS model was
nudged. Vertical line highlights the grid cell closest to observation.

3.5.4 Diurnal Variability

Average diurnal variation indicates typical wind speed variations for a given location

and period. It further reinforces the benefit of dynamically adapting operating alti-

tudes of AWES. The hourly average LiDAR wind speed depends on data availability

described in section 3.3. LiDAR availability below 100 m on average decreases by
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about 10 percentage points during the noon hours, while it remains fairly constant at

altitudes between 100 m and 300 m. Above this altitude, data availability increases

in the afternoon by up to about 15 percentage points [137].

Figure 3.6 shows the LiDAR measured and mesoscale modeled diurnal wind speed

variation at the measurement location filtered by LiDAR availability (left), i.e. times

where no LiDAR data were available were disregarded. A clear diurnal wind speed

variation resulting from the cycle of stable and unstable stratification can be identi-

fied. On average OBS shows lower hourly wind speeds than NoOBS and is closer to

measurements. The diurnal variation of the unfiltered 12 months NoOBS, 6 months

OBS and the 6 months NoOBS data sets (figure 3.6, right) deviate significantly from

the measurements. Observation nudging leads to overall lower wind speeds and wind

shear throughout the day in the unfiltered data set. Due to the large difference in

average measured and unfiltered modeled diurnal wind speeds, it seems that LiDAR

measurements alone can not appropriately represent average wind conditions aloft

due to availability bias which also has been observed at other locations [65]. There-

fore, we believe that the nudged data set yields more representative results than the

unnudged model or the measurements alone.
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Figure 3.6: Hourly average diurnal variation of measured and modeled horizontal
wind speed U filtered by LiDAR availability (left) and unfiltered (right).
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3.5.5 Wind speed probability distribution

The common way to approximate the probability distribution of the horizontal wind

speed f(U) is the Weibull distribution fit (eq. 3.3) which describes the statistical

distribution as a function of the scale parameter A and the shape parameter k [142].

fWeibull(U) =
k

A

(
U

A

)k−1

e−(U
A)

k

(3.3)

Previous investigation of the LiDAR measurements showed a multi-modality in

the wind speed frequency of occurrence caused by different atmospheric stability

[137]. The left column in figure 3.7 visualizes the entire measured and simulated

wind speed probability distribution. Its corresponding Weibull fit is shown in the

center column and the difference between both can be found on the right hand side.

Each row summarizes the various data sets first 6 months LiDAR, then 6 months

OBS, 6 months NoOBS followed by 12 months NoOBS.
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Figure 3.7: Frequency of occurrence (left), Weibull fit (center) and difference between
both (right) of 6 months LiDAR measurements (top row), 6 months OBS model
(second row), 6 months NoOBS model (third row) and 12 months NoOBS (bottom
row). The entire, (not filtered by LiDAR data availability) was used for the WRF
data set.

All 6 months data sets show a high occurrence of low and high wind speeds which

indicates a multi-modal probability distribution. This effect is most pronounced in
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the LiDAR data set. The comparison of wind speed probability with the Weibull fit

(right column) further emphasizes the multi-modality as a simple Weibull fit is not

able to capture the higher probability at low and high wind speeds. These distinct flow

situations further drift apart with increasing surface-distance. As a result the Weibull

distribution overestimates the occurrence of wind speeds in between the two peaks

(blue area in right column). Both OBS and NoOBS slightly overestimate low altitude

wind speed (see figure 3.3) compared to LiDAR measurements. Both models and

the LiDAR measurements show a broadening of the probability distribution towards

higher altitudes. High wind speeds become more likely while low wind speeds still

occur. Therefore, AWES need to be able to operate in a wide range of wind speeds

or be controlled in a way that they avoid extreme conditions. The 12 months NoOBS

simulation shows lower wind speeds than the 6 months simulations as the included

summer months generally have lower wind speeds due to the lower synoptic pressure

gradients. The Weibull fit of this simulation tends to overestimate higher wind speeds

and underestimate low wind speeds at all altitudes.

Using the sign of the WRF-calculated SHF as a simple proxy to differentiate stable

and unstable wind conditions similar to [137]. The wind speed distribution follow the

expected trends of low wind shear during unstable stratification and higher wind

shear and wind speeds during stable stratification [8]. Observation nudging reduces

the occurrence of high wind speeds at high-altitudes in comparison to NoOBS and

leads to an increase in the probability of wind speeds around 5 ms−1 during times

of positive SHF. The Weibull distribution fit of these sub-states is generally better at

representing the modeled wind conditions.

Figure 3.8 shows the scale parameter A, shape parameter k and Hellinger dis-

tance H [144] between the wind speed probability distribution and the corresponding

Weibull distribution fit for LiDAR (1st row), 6 months OBS (2nd row), 6 months

NoOBS (3rd row) and 12 months NoOBS (4th row).

The different trends under positive and and negative SHF of both Weibull param-

eters visualize the existence of entirely different flow regimes. The Hellinger distance

between the Weibull fit and probability distribution (negative SHF: blue and positive

SHF: red), the total data and a simple fit (black) as well as between the total data

and the weighted sum of both Weibull fits (green) is shown in the right graph. All

WRF models show an overall smaller H than a similar analysis of the LiDAR data

set [137]. The sharp bend in both A and k of the LiDAR data above 750 m is likely

caused by insufficient data availability. NoOBS results show a sharp increase of A up
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to 250 m and a slight reduction above while OBS shows a trend close to the surface,

A values remain almost constant above 500 m. No data set shows a convergence of

A at higher altitudes indicating that these wind conditions are driven by different

conditions in the free atmosphere. 12 months NoOBS simulations show lower scale

parameter values as they include generally slower winds during summer. While A

trends are quite different for LiDAR and WRF, k trends are more similar. They peak

between 150 and 250 m and are especially high during stable stratification [102]. OBS

trends of k are generally closer to measurement results than NoOBS.

Even though the Hellinger distance of individual Weibull fits for times of positive

or negative SHF is generally higher than the Weibull fit of the entire data set, the

weighted sum of both individual fits yields the best result at all altitudes. The 12

months Weibull fit using the entire data set performs comparable to weighted sum

up to an altitude of about 250 m.
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3.5.6 Effect of stability on average wind shear

Atmospheric stability highly influences the shape of wind speed profiles which is im-

portant for determining optimal operating conditions for AWES (see section 3.5.7).

Obukhov length L [110, 131] is commonly used to categorize the stability of the

boundary layer. Here the application is extended to mid-altitudes. L is defined by

the simulated friction velocity u∗, virtual potential temperature θv, potential tem-

perature θ, kinematic virtual sensible surface heat flux QS, kinematic virtual latent

heat flux QL, the von Kármán constant k and gravitational acceleration g. Table 3.1

summarizes the frequency of occurrence of each stability class.

L =

(
−u3
∗θv

kg

)(
1

QS

+
0.61

QLθ

)
(3.4)

Table 3.1: Stability classes according to Obukhov length calculated based on WRF
data [54]

Stability classes L [m] OBS 6 mon NoOBS 6 mon NoOBS 12 mon

Unstable (u) −200 ≤ L ≤ −100 5.69 % 3.93 % 7.27%

Near unstable (nu) −500 ≤ L ≤ −200 8.21 % 6.35 % 7.09 %

Neutral (n) |L| ≥ 500 28.71 % 29.76 % 20.71 %

Near stable (ns) 200 ≤ L ≤ 500 18.26 % 19.30 % 12.56 %

Stable (s) 50 ≤ L ≤ 200 18.63 % 18.6 % 17.24 %

Very stable (vs) 10 ≤ L ≤ 50 6.15 % 6.75 % 10.04%

Other −100 ≤ L ≤ 10 14.76 % 15.31 % 25.09 %

In comparison with the unnudged simulation, OBS shows an increase in unstable

and near unstable situations. Stable and near stable stratification seems almost un-

affected by OBS nudging, while neutral and very stable stratification occur slightly

less often. This might improve the overall predicting capabilities of WRF as the

MYNN 2.5 boundary layer scheme overestimates the probability of very stable con-

ditions with an error of up to 9 % [82]. Neutral conditions, still commonly used in

many wind energy siting applications, only occur about 30 % of the time during the

measurement period and only about 20 % of the time during the one year reference

NoOBS simulation.

Figures 3.9 shows the probability distribution of the different stability categories

for each with the mean highlighted by white squares. All categorize show distinct
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trends and distributions that are consistent between data sets, which contribute to

the multi-modality of the overall wind speed probability distribution. The difference

in high-altitude wind speeds between stratifications indicate the influence of differ-

ent geostrophic wind conditions. The categorization by L is based on surface data

and seems to be valid within the lower part of the atmosphere where the spread of

the corresponding probability distribution is relatively small in comparison to high

altitudes. This is particularly true for stable and neutral stratification where wind

speeds above approximately 200 m spread widely. Unstable conditions are probably

more consistent because of increased mixing from the surface up to high altitudes.

The divergence of wind speeds towards higher altitudes indicate inhomogeneous atmo-

spheric stability and suggests that surface-based stability categorization is insufficient

for higher altitudes. Wind speed extrapolation based on low altitude measurements

can lead to a misestimation of mid-altitude wind conditions, especially during neutral

and stable conditions close to surface. [80]
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Figure 3.9: Wind speed U frequency of occurrence and mean (white square) catego-
rized by atmospheric stability according to Obukhov length L (see Table: 3.1) for 6
months OBS (top), 6 months NoOBS (center) and 12 months NoOBS (bottom).

Altitudes below 200 m are least affected by observation nudging as OBS remains

almost unchanged from NoOBS (see section 3.5.1). Stable profiles show a peak at

around 300 m which is indicative of a characteristic low level jet. Comparing OBS and

NoOBS 6 months, observation nudging seems to reduce the spread at higher altitudes
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within each category except very stable. The impact of observation nudging on wind

profiles during unstable stratification is relatively low while wind speed profiles under

neutral and stable stratification are more affected.

3.5.7 Optimal operating altitude and power production

We estimate optimal operating altitude and traction power of a ground-generator

AWES using a simple ground-generator (pumping-mode) AWES point-mass model

adapted from [128]. We focus on 6 months OBS as we previously proved increased

accuracy and use 12 months NoOBS to estimate annual values. The estimated optimal

power per unit lifting area of the wing popt is described by:

popt =
ρair

2
U3
√
c2

L + c2
D

[
1 +

(
cL
cD

)2
]
fopt (cos θ cosφ− fopt)

2

=
2

27
ρairU

3
√
c2

L + c2
D

[
1 +

(
cL

cD

)2
]

cos θ3

(3.5)

Air density ρair is calculated by a linear approximation of the standard atmosphere

[55] ρair(z) = 1.225− 0.00011 z [kgm−3]. Losses associated with mispositioning of the

aircraft relative to the wind direction, expressed by azimuth angle φ and elevation

angle θ relative to the ground station, are included in the model. Additional losses

caused by gravity, tether sagging and tether drag are neglected. As a result, lift L

and drag D force and therefore lift cL =1.7 and drag coefficient cD =0.06, which are

assumed to be constant, are geometrically related to the apparent wind velocity. The

total system drag would be considerably higher if tether drag was included, which

would lead to a reduction in performance. This would reduce the aerodynamic com-

ponent (
√
c2

L + c2
D

[
1 +

(
cL
cD

)2
]
) in equation 3.5 by approximately 30 - 70% depending

on wing area, tether length and tether diameter (see chapter 6). Therefore, this sim-

plified model significantly overestimates AWES power. Furthermore, the absence of a

tether force constraint or the definition of rated power leads to extremely high power

estimates for very rare high wind speeds. Similar to the previous chapter, tether

drag is neglected which leads to an over estimation of power and operating altitude.

Assuming an optimal tether speed and a quasi-steady state with the wing moving

directly cross-wind with a zero azimuth angle φ = 0 relative to the wind direction we

can estimate the optimal traction power. Optimal elevation angle θopt and operating

altitude zopt are geometrically related to the assumed to be constant tether length
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ltether sin θopt = zopt
ltether

.

Figure 3.10 summarizes the frequency of optimal operating altitude and optimal

power assuming a constant tether length of 1500 m. Such a long tether length would

be severely penalized if tether drag was included. Chapter 6 shows that optimal

tether lengths rarely exceed 500 - 750 m. The white solid line shows the cumulative

frequency of optimal operating altitude. Both simulations for this particular location

and time period show similar trends with the most probable optimal altitude between

approximately 200 and 400 m. Times of very high traction power are fairly rare and

likely associated with low level jets. Lower power at higher altitudes is caused by the

misalignment losses.

Figure 3.10: Frequency of optimal traction power over optimal operating altitude
based on 6 months OBS (top) and 12 months NoOBS (bottom) assuming a constant
tether length of 1500 m. The continuous white line shows the frequency of optimal
operating altitude for the whole power range (top abscissa axis).

Figure 3.11 estimates the optimal traction power and operating altitude as a func-

tion of tether length based on the mean wind speed profile of atmospheric stability

condition (figure: 3.9). The tether length of each estimation is assumed to be con-

stant and used to calculate the optimal elevation angle. The axis limits of different
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atmospheric conditions had to be adjusted as the calculated power varied in order

of magnitudes. All estimates show diminishing benefits of a longer tether. These in-

cremental gains would probably be negated by additional drag and weight associated

losses. Winds during times of very stable and unstable stratification lead to a clear

optimal altitude independent of tether length between 200 and 400 m while weakly

stable and shear-driven wind speed profiles lead to higher optimal operating altitudes

and a broader range of optimal altitudes as a function of tether length.
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Figure 3.11: Optimal traction power per wing area popt (dashed lines) and optimal
operational altitude (solid line) estimated based on mean wind speed profiles cate-
gorized by Obukhov length L for 6 months OBS, 6 months NoOBS and 12 months
NoOBS simulation with varying tether length ltether = 500 - 2500 m.

3.6 Conclusion

Six months of LiDAR measurements up to 1100 m were assimilated in to a mesoscale

model using observation nudging. An unnudged reference model (NoOBS), the nudged

model (OBS) outputs and LiDAR measurements were compared in terms of wind

speed and direction statistics, wind profile shape at the measurement site as well as

spatial differences were quantified. Observation nudging only has marginal impact

on simulated surface layer wind speeds as ground effects dominate the WRF model.

Wind speeds between 300 and 500 m were most affected by observation nudging.

Modeled wind speeds at these altitudes are statistically closest to measurements,
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making this an adequate approach for resource assessment of mid-altitudes as mea-

surement availability decreases. The impact of nudging weakens above these altitudes.

Whether this is caused by lower measurement data availability or a generally better

performance of the mesoscale model above the surface layer could not be determined.

Observation nudging reduced the seemingly systematic wind direction bias between

simulation and measurements at all altitudes. Due to the lack of high-resolution

measurements at high-altitudes, unnudged mesoscale model data present the best we

have got in terms of preliminary resource assessment.

Filtering the mesoscale model data according to LiDAR data availability yields

similar diurnal variation with OBS being closer to measurements. Comparing the

diurnal variation of the unfiltered model wind speeds to measurements shows a sig-

nificant deviation which is likely caused by insufficient LiDAR data availability at

higher altitudes. The bias between real and LiDAR measured wind speed, which

depends on the applied CNR threshold and data availability, can result in a misrep-

resentation of the actual wind conditions especially at higher altitudes. Mesoscale

models, particularly with observation nudging, can be used to account for this er-

ror. LiDAR measurements seem to be biased towards high wind speeds as measured

winds are generally higher than the unfiltered mesoscale model data. The impact

of observation nudging on the wind profiles in case of an unstably stratified bound-

ary layer is relatively low while wind speed profiles under stable stratification are

significantly affected. At the measurement location OBS is overall closer to mea-

surements especially between 200 and 600 m. Variations of stratification, primarily

those associated with the diurnal cycle, lead to a multi-modal wind speed probability

distribution which is better represented by the weighted sum of two Weibull fits than

by a single Weibull fit. Obukhov length categorized wind speed profiles, especially

during neutral and stable conditions close to surface, show a divergence with height.

This indicates inhomogeneous atmospheric stability and suggests that surface-based

stability categorization is insufficient for higher altitudes.

Optimal AWES operating altitudes and power output per wing area were esti-

mated based on a simplified model for six months of OBS and twelve months of

NoOBS. The model neglects kite and tether weight as well as tether drag. Accounting

for these losses, which are proportional to tether length, will reduce the performance

of the AWES. Results for both wind speed data sets show the highest potential at

an altitude between 200 and 600 m above which the losses associated with the eleva-

tion angle are too high. A comparison of different tether lengths under average wind
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speeds associated with different atmospheric stability conditions show diminishing

returns in terms of power output for tether lengths longer than 1500 m. While higher

altitudes can be potentially be reached, optimal operating altitude remains almost

unchanged. The highest energy potential and operating altitude is associated neu-

tral and stable stratification. Unstable conditions result in significantly lower energy

potential due to lower, almost altitude independent average wind speeds.

Future studies include using the enhanced mesoscale model output to drive large-

eddy simulations, to provide a better insight into mid-altitude turbulence. The re-

sulting data set will lead to the development of a mid-altitude engineering wind model

which can be used for design, load estimation, control and optimization of Airborne

Wind Energy Systems. Mesoscale model data will be implemented into an AWES op-

timization framework to quantify the impact of various wind speed profiles on power

production, optimal trajectory and system size. Furthermore, the possibility of merg-

ing the mesoscale output with LiDAR measurements to fill gaps in the measurement

data set to reduce the wind speed bias introduced by LiDAR availability is being

investigated.
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Chapter 4

Offshore and Onshore Power curve

characterization for

ground-generation AWES

Markus Sommerfeld, Martin Dörenkämper, Jochem DeSchutter, and Curran Craw-

ford. Offshore and onshore ground-generation airborne wind energy power curve char-

acterization. Submitted to Wind Energy Science, 2020. https://doi.org/10.5194/

wes-2020-120.

Chapter 3 introduced the WRF model, described the onshore wind regime up to

about 1000 m height, and quantified the impact of LiDAR measurement assimilation

via observation nudging on the WRF model.

This chapter implements the previously characterized annual, onshore, WRF-

modeled wind data, as well as additional offshore data, into a dynamic, periodic

optimal control model. To reduce computational cost, representative profiles are

chosen from k-means clustered wind data. We analyze the impact of number of

clusters, estimate average power curves, annual energy production, capacity factor

and operating heights for two AWESs with an approximate rated power of 650 and

2600 kW at a rated wind speed of about Urated(100m < zref < 400m) ≈ 15 ms−1, and

a wing area of 20 and 50 m2. These results are based on the awebox modelling and

optimal control framework using AP2 reference aerodynamic coefficients and overly

favorable mass scaling.

The following chapter continues the investigation of optimal AWES performance

https://doi.org/10.5194/wes-2020-120
https://doi.org/10.5194/wes-2020-120
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by exploring the AWES design space subject to the previously computed, realistic

wind velocity profiles. We investigate the impact of two sets of nonlinear aerodynamic

coefficients, three hypothetical mass scaling approximations for aircraft wing areas

between 10 and 150 m2, which corresponds to an average, rated power of about 145

kW to 3430 kW.

4.1 Abstract

Airborne wind energy systems (AWESs) aim to operate at altitudes well above con-

ventional wind turbines (WTs) and harvest energy from stronger winds aloft. While

multiple AWES concepts compete for entry into the market, this study focuses on

ground-generation AWES. Various companies and researchers proposed power curve

characterizations for AWES, but no consensus for an industry-wide standard has been

reached. An universal description of a ground-generation AWES power curve is diffi-

cult to define because of complex tether and drag losses as well as alternating flight

paths over changing wind conditions with altitude, as compared to conventional WT

with winds at fixed hub height and rotor area normalization. Therefore, this study

determines AWES power and annual energy prediction (AEP) based on the awebox

optimal control model for two AWES sizes, driven by representative 10-minute on-

shore and offshore mesoscale WRF wind data. The wind resource is analyzed with

respect to atmospheric stability as well as annual and diurnal variation. The wind

data is categorized using k-means clustering, to reduce the computational cost. The

impact of changing wind conditions on AWES trajectory and power cycle is investi-

gated. Optimal operating heights are below 400 m onshore and below 200 m offshore.

Efforts are made to derive AWES power coefficients similar to conventional WT to

enable a simple power and AEP estimation for a given site and system. This AWES

power coefficient decreases up to rated power due to the increasing tether length with

wind speed and the accompanying tether losses. A comparison between different

AEP estimation methods shows that a low number of clusters with three representa-

tive wind profiles within the clusters yields the highest AEP, as other wind models

average out high wind speeds which are responsible for a high percentage of the overall

AEP.
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4.2 Introduction

Airborne wind energy systems (AWESs) aspire to harvest stronger and less turbulent

winds at mid-altitude, here defined as heights above 100 m and below 1500 m, which

are unreachable with conventional wind turbines (WTs). The prospects of higher

energy yield combined with reduced capital cost motivate the development of this

novel class of renewable energy technology [89, 48]. Unlike conventional wind turbines,

which have converged to a single concept with three blades, nacelle and generator

supported by a conical tower, several different AWES designs are under investigation

by numerous companies and research institutes [25]. These kite-inspired systems

consist of three main components: a flying wing or kite, a ground station and a tether

to connect them. Various concepts compete for entry into the market. This study

focuses on the two-phase, ground-generation concept, also referred to as pumping-

mode which is the main route that industry is investigating. During the reel-out

phase the wing pulls a non-conductive tether from a drum which is connected to a

generator, thereby producing electricity. During the reel-in phase the wing reduces

its aerodynamic forces by adjusting the angle of attack to reduce the power needed

to pull the tether back in. Other concepts such as fly-gen, aerostat or rotary lift are

not within the scope of this study [25]. Since this technology is still in an early stage,

validation of results is difficult.

A standardized power curve definition would enable comparison between different

AWES concepts and to conventional wind turbines. Together with the site-specific

wind resource, power curves help wind park planners and AWES device manufacturers

to estimate the annual energy production (AEP) and determine financial viability. As

such this work supports the development and implementation of this novel technology

[92].

The power of an AWES highly depends on the wind speed magnitude and profile

shape (wind speed and direction variation with height) which determines the power

output as well as optimal operating altitude and trajectory. Simple wind profile ap-

proximations using logarithmic or exponential wind speed profiles, which are often

erroneously applied beyond earths surface layer [113], might approximate long-term

average conditions, but can not capture the broad variation of profile shapes [43].

They are therefore an inappropriate approximation to estimate instantaneous, diur-

nal and seasonal variation in electrical power output. However, they are the standard

in most AWES power estimation studies (e.g. [84, 86, 30, 10]). AWES need to dy-
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namically adapt their flight trajectory to changing winds in order to optimize power

production. Wind conditions are determined by environmental, location-dependent

conditions (e.g. surface roughness) and weather phenomena on a multitude of tem-

poral and spatial scales, subject to diurnal and seasonal patterns. They can be

estimated from mesoscale numerical weather prediction models such as the weather

research and forecasting model (WRF), which is well known for conventional WT

siting applications [122, 35]. These numerical simulations should be corrected for

systematic errors using measurements such as light detection and ranging (LiDAR)

during site assessment and deployment. Results in this study are exclusively based

on WRF mesoscale simulations, since measuring wind conditions at mid-altitudes is

difficult due to reduced data availability [137] and measurements are hard to find,

proprietary or confidential. We compare AWES performance for an onshore location

in northern Germany near the city of Pritzwalk [136] and an offshore location at

the FINO3 research platform in the North Sea. WT and AWES performance using

logarithmic wind profiles are compared as reference.

Section 4.3 describes the onshore and offshore wind resource based on the WRF

model. Sub-sections give a brief overview of the WRF model and compare wind

statistics. Section 4.4 introduces the k-means clustering algorithm and summarizes

results of clustered wind velocity profiles (profiles of both longitudinal and lateral wind

component). These include cluster averaged profiles and correlation with seasonal,

diurnal and atmospheric stability. Section 4.5.1 introduces the awebox optimization

framework. It summarizes aircraft, tether and ground station models as well as

implemented constraints and initialization used to derive the results shown in section

4.6. This includes flight paths and time series of various performance parameters, a

statistical analysis of tether length and operating altitude. Furthermore, we compare

power curve characterization, capacity factor and AEP estimation. Based on these

results, an AWES power coefficient is defined to approximate AWES efficiency and

power based on system size and wind speed. Finally, Section 4.7 concludes with an

outlook and motivation for future work.

4.3 Wind data

This study compares the AWES performance at two representative locations in Eu-

rope (see fig 4.1). “Onshore” wind data at the Pritzwalk Sommersberg airport (lat:

53◦10′47.00′′N, lon: 12◦11′20.98′′E) in northern Germany and comprises 12 months of
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WRF simulation between September 2015 and September 2016. The area surround-

ing the airport mostly consists of flat agricultural land with the town of Pritzwalk to

the south and is therefore a fitting location for wind energy generation (See [137] and

[136] for details). The FINO3 research platform in the North Sea (lat: 55◦11, 7′N, lon:

7◦9, 5′ E) was chosen as a representative “offshore” location due to the proximity to

several offshore wind farms and the amount of comprehensive reference measurements

[116]. The offshore simulation covers the time frame between September 2013 and

September 2014.

FINO3

Pritzwalk

50°N

55°N

5°E 10°E 15°E

Figure 4.1: Topography map of northern Germany with the representative onshore
(Pritzwalk) and offshore (FINO3) locations highlighted by black dots.

4.3.1 Mesoscale model

The mesoscale simulations in this study were carried out using the weather research

and forecasting (WRF) model from [133]. The onshore simulation was performed

with version 3.6.1 before the 2018 release of WRF version 4.0.2 1 in which the offshore

1WRF model releases: https://github.com/wrf-model/WRF/releases

https://github.com/wrf-model/WRF/releases
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simulations were computed. The setup of the model has been adapted and constantly

optimized for wind energy applications by the authors in the framework of various

projects and applications in recent years [36, 37, 35, 68, 136].

The focus of this study is not on the detailed comparison between mesoscale

models, but on AWES performance subject to representative onshore and offshore

wind conditions determined based on clustered wind profiles (described on section

4.4). To that end, both WRF models provide adequate wind data for our purposes.

data Both simulations consist of three nested domains centered around either the

FINO3 met mast (see Figure 4.1) or the Pritzwalk Sommersberg airport. Atmo-

spheric boundary conditions are defined by ERA-Interim [31] for the onshore location

and by ERA5 [70] reanalysis data for the offshore location, while sea surface param-

eters for the offshore location are based on OSTIA [34]. These data sets have proven

to provide good results for wind energy relevant heights and sites [111, 68]. Both

simulations use the MYNN 2.5 level scheme for the planetary boundary layer (PBL)

physics [108]. While the onshore simulation was performed in one 12 month simula-

tions (01.09.2015 - 31.08.2016), the offshore simulation period consisted of 410 days

(30.08.2013 - 14.10.2014) that were split into 41 simulations of 10 days each with an

additional 24 h of spin-up time per run. The data from the mesoscale models’ sigma

levels (terrain-following) were transformed to the geometric heights using the post-

processing methodology described in [35]. Table 4.1 summarizes the key parameters

of the model settings used in this study. All simulations were run on the EDDY 2

High-Performance Computing clusters at the University of Oldenburg.

Table 4.1: Key setup parameters of the onshore and offshore mesoscale model simu-
lations

Model Parameter Settings

Onshore Offshore
WRF model version 3.5.1 4.0.2
time period 01.09.2015 - 31.08.2016 30.08.2013 - 14.10.2014
Reanalysis ERA-Interim ERA5 & OSTIA
Horizontal grid size (D01, D02, D03) 120x120, 121x121, 121x121 150x150, 151x151 , 151x151
Resolution (D01, D02, D03) 27 km, 9 km, 3 km 18 km, 6 km, 2 km
Vertical levels 60 sigma levels (about 25 below 2 km) 60 sigma levels (about 25 below 2 km)
Nesting 1-way 1-way
Initialisation strategy single run 240 h runs plus 24 h spinup time
Nudging Analysis nudging (FDDA) Analysis nudging (FDDA)
PBL scheme MYNN level 2.5 scheme MYNN level 2.5 scheme
Micro physics Ferrier scheme WRF Single–moment 5–class scheme
Long wave & shortwave radiation RRTM & Dudhia RRTMG scheme

2EDDY: HPC cluster at the Carl von Ossietzky Universität Oldenburg, see: https://www.

uni-oldenburg.de/fk5/wr/hochleistungsrechnen/hpc-facilities/eddy/

https://www.uni-oldenburg.de/fk5/wr/hochleistungsrechnen/hpc-facilities/eddy/
https://www.uni-oldenburg.de/fk5/wr/hochleistungsrechnen/hpc-facilities/eddy/
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4.3.2 Wind regime

Figure 4.2 depicts the wind roses of the annual wind conditions at 100 (top) and 500

m (bottom) height onshore (left) and offshore (right). The dominant wind direction

at both locations is Southwest, rotating from Southwest to West with increasing

altitude.
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Figure 4.2: Annual onshore and offshore wind direction and speed statistics for 100
and 500 m presented as wind roses. On average wind direction onshore rotates about
14◦ while offshore winds rotate about 5◦ between 100 and 500 m. Onshore shows a
higher wind shear due to higher surface roughness and relatively high wind speeds
offshore.

Directional variability decreases and wind speed increases with height, following

the expected trends in the northern hemisphere [8, 139]. Average onshore wind di-

rection rotates about 14◦ between 100 and 500 m, whereas average offshore wind

direction only changes approximately 5◦. Offshore conditions veer about 10◦ degree

above 500 m, resulting in the same westerly wind direction at high altitudes. Due to

prevailing unstable conditions offshore, a strong mixing with height is found resulting

in less veer across the heights investigated in this study The relative wind speed in-

crease of the offshore location is lower compared to the onshore location due to lower

surface roughness and the already high wind speeds at lower heights.
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Figure 4.3 shows the annual horizontal wind speed probability distribution for

both locations. These statistics give an insight into the overall wind conditions,

but the actual profile shapes, which are important for AWES power and trajectory

optimization, are lost in this evaluation. The chosen nonlinear color range allows for

the representation of the entire relative probability range. Onshore (left) wind speeds

have a fairly narrow range below 300 m, due to dominant surface effects. Above this

height the distribution broadens, but a high probability of low wind speeds remains

up to high altitudes. This leads to the development of bimodal characteristics caused

by different atmospheric stratification. Low wind speeds are commonly associated

with unstable and high wind speeds with neutral or stable atmospheric conditions

(see sub-section 4.4.2).
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Figure 4.3: Comparison of WRF-simulated annual wind speed probability distribution
between onshore (left) and offshore (right) up to 1000 m. A nonlinear color scheme
was chosen to represent the high probability of low altitude onshore winds while still
differentiating the lower, wide spread frequencies at higher altitudes.

Such multimodal distributions at higher altitudes are better described by the sum

of two or more probability distributions, as standard Weibull or Rayleigh distributions

can not capture this phenomenon [137]. Offshore (right) wind speeds on the other

hand have a wider distribution at all heights as they are less inhibited by surface

effects. Similar to onshore, the offshore frequency distribution also shows a high

probability of lower wind speeds (between 5-10 ms−1) at all heights. As mentioned

above, the relative wind speed increase with height is less pronounced offshore than
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onshore. Higher wind speeds at lower altitudes benefits conventional WT and weakens

the argument for offshore AWES as one of their benefits would be to harness energy

from the stronger winds at higher altitudes. However, offshore AWES will also benefit

from higher offshore winds and move offshore for other reasons such as safety or land

use regulations. If AWES can reliably operate autonomously they might still provide

a cheaper source of electricity than conventional WT, due to their reduced material

cost. Another benefit of offshore AWES in comparison to conventional WT is the

smaller and cheaper support structure.

Atmospheric stability of the boundary layer, which highly affects the wind speed

profile shape, is commonly categorized using the Obukhov length L [110, 131]. Here

the application is extended to mid-altitudes. L is defined by the simulated friction ve-

locity u∗, virtual potential temperature θv, potential temperature θ, kinematic virtual

sensible surface heat flux QS, kinematic virtual latent heat flux QL, the von Kármán

constant k and gravitational acceleration g:

L =

(
−u3
∗θv

kg

)
+

(
1

QS

0.61

QLθ

)
. (4.1)

Table 4.2 summarizes the Obukhov length bin widths [54] and the frequency of

occurrence of each stability class onshore and offshore. Various stability classifications

using Obukhov length are defined for different wind energy sites. We chose the same

classification as in [136] for consistency. Neutral stratification occurs approximately

20% of the year at both locations. The lower heat capacity of the land surface leads

to a faster heat transfer and a quicker surface cool-off which favors the development

of stable stratification (≈17% onshore vs ≈6% offshore). The offshore location has

a higher probability of unstable conditions which is likely caused by a warmer ocean

surface compared to the air above [6].

Both unstable and stable conditions can lead to non-logarithmic and non-monotonic

wind speed profiles. Unstable conditions are often accompanied by almost uniform

wind speed profiles due to increased mixing, whereas low level jets (LLJs) can develop

during the nocturnal stable onshore boundary layer [12]. Both locations have a high

chance of unassigned “other” conditions which are mostly associated with low wind

speeds (see figure: 4.8).
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Table 4.2: Stability classes based on Obukhov lengths [54] and associated annual
onshore and offshore probability, based on WRF results.

Stability class L [m] onshore offshore

Unstable (U) -200 ≤ L ≤ -100 7.27% 13.66%
Nearly unstable (NU) -500 ≤ L ≤ -200 7.09% 16.34%
Neutral (N) |L| ≥ 500 20.71% 22.82%
Nearly stable (NS) 200 ≤ L ≤ 500 12.56% 5.15%
Stable (S) 50 ≤ L ≤ 200 17.24% 6.20%
Very stable (VS) 10 ≤ L ≤ 50 10.04% 2.96%
Other -100 ≤ L ≤ 10 25.09% 32.87%

4.4 Clustering of wind conditions

Wind energy in general and AWES in particular are mainly affected by wind velocity

and its evolution in time and variation with height. Many temporal and spatial av-

erages, correlations and approximations are used to describe the constantly varying

wind conditions and their affect on the device. Instead, here representative wind

velocity profiles are chosen to avoid excessive averaging and compare AWES perfor-

mance as realistically as possible. The onshore (Pritzwalk) and offshore (FINO3) data

are classified to determine representative profiles. Classifying the wind regime using

atmospheric stability is an accepted methodology to describe the near-surface atmo-

sphere. A common proxy for atmospheric stability is the Obukhov length [110, 131],

a metric that exclusively uses surface data (see section 4.3.2 and equation 4.1). Pre-

vious studies [136] showed that Obukhov-length-classified wind speed profiles diverge

with height, especially during neutral and stable conditions. This indicates vertically

heterogeneous atmospheric stability and suggests that surface-based stability cate-

gorization is insufficient for higher altitudes. Clustering the wind speed or velocity

profiles purely based on data similarity on the other hand results in more cohesive

profile groups (see figure 1 and 2 in the appendix) [126]. In contrast to classifying the

wind regime by atmospheric stability, which requires temperature and heat flux data,

mathematical clustering only uses wind velocity or speed data at multiple heights.

Therefore, clustering can also be applied to wind-only measurements such as LiDAR.

The k-means clustering algorithm [117] used in this study was chosen for its ease

of use and scalability, due to the high dimensionality of the data set. Many other

algorithms produce similar results, but a comparison between clustering algorithms

is beyond the scope of this research.
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Before clustering the two horizontal wind velocity components u and v, whose

vertical variation define the wind velocity profile, are rotated such that the main wind

component (average wind direction up to 500 m) umain points in positive x direction

and the deviation udeviation is perpendicular to it, pointing in positive y direction.

This removes the directional dependency of the wind velocity profiles, allows for

more homogeneous clusters and simplifies the comparison of awebox results. It is

analogous to assuming omnidirectional operation while the flying wing still needs to

adjust to wind condition which are changing with height. The algorithm assigns each

wind velocity profile up to 1000 m, comprised of approximately 30 heights and 2

directions, to one of k clusters defined by their respective cluster mean also referred

to as centroid. These centroids are calculated such that they minimize the sum of

the Euclidean distances, i.e. the cost function of the algorithm, also referred to as

“inertia” or “within-cluster sum-of-squares”, to every data point within each cluster.

As such, the centroids are usually not actual data points, but rather the average of

that cluster. The resulting cluster labels are random results of initialization and are

therefore insignificant. Later evaluation uses clusters sorted by average wind speed

up to 500 m.

The variable k refers to the fixed, predefined number of clusters. The choice

of k significantly affects the accuracy of the resulting power and AEP predictions

(see section 4.6.4) as well as the computational cost associated with clustering (pre-

processing) and AWES trajectory optimization (processing). The elbow method and

silhouette score indicate preferable choices of k. The elbow method (see fig: 4.4 - top

left) compares the inertia trends as a function of k.

k is often chosen at a point where the inertia reduction becomes marginally small

with increasing number of clusters, often represented by a sharp bend or elbow in

the inertia trend. Absolute values of inertia are somewhat meaningless as it is not

a normalized metric and therefore scales with size of the considered data set. A

majority of the difference between on-and offshore is likely due to different number of

vertical grid cells which the algorithm interprets as dimensions (see table 4.1). The

silhouette coefficients on the other hand are normalized between -1 (worst) and 1

(best) and indicate the membership of a data point to its cluster in comparison to

other clusters. A negative value suggests that a data point is assigned to the wrong

cluster. The silhouette score is the average of all silhouette coefficients for a fixed

number of clusters k. Its trend is shown in the bottom left of figure 4.4 . The top

right depicts the onshore and the bottom right the offshore silhouette coefficients
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Figure 4.4: Top left: k-means clustering inertia over number of cluster k for one
year of rotated onshore (blue) and offshore (orange) wind velocity profiles up to 1000
m. Bottom left: Silhouette score (average of the silhouette coefficients on the right)
over number number of cluster k for both locations. Right: Silhouette coefficients
(top onshore, bottom offshore) which express the distance to neighbouring clusters,
for a representative k=10. Negative values indicate that the sample is closer to
neighbouring clusters than to the one they are assigned to. The red dashed line
represents the silhouette score.

for a representative k of 10. Note that the clusters are unsorted as a result of the

random initialization process. Therefore, their labels (1 to 10) are omitted. Silhouette

coefficients and the resulting silhouette score illustrate that the offshore clusters are

more coherent than the onshore clusters. Onshore clusters also have more negative

silhouette coefficients which could indicate too many or too few clusters. Another

possible explanation could be that the continuous nature of wind which results in

a high cluster proximity as well as the high variability of profile shapes onshore led

to a worse score. The following sub-section shows that non-monotonic wind velocity

profiles (e.g. profiles with low level jets (LLJs), which are more common onshore,

intersect with other clusters and therefore reduce the overall silhouette score.
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4.4.1 Analysis of clustered profiles

Figure 4.5 (top) shows the average wind speed profiles of the clustered wind velocity

profiles, also referred to as centroids. The comprising wind speed profiles are depicted

in grey. The cluster assigned profiles span a fairly narrow range of wind speeds except

for a few outliers (see figure: 1, 2 in the appendix), indicating coherent clusters.

Clusters are sorted by average centroid speed up to 500 m, represented by their

colors and labels (C = 1− 10).
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Figure 4.5: Onshore (left) and offshore (right) average annual wind speed profiles (or
centroids) resulting from the k-means clustering process for k = 10 over height (top).
Comprising WRF simulated wind velocity profiles depicted in grey. Centroids are
sorted, labeled and colored in ascending order of average wind speed up to 500 m.
The corresponding cluster frequency f for each cluster C is shown below.

As expected offshore (right) low altitude wind speeds are higher and wind shear

is lower than onshore (left). Overall, offshore centroids are wider spread and distinct

in comparison to the onshore profiles which explains the higher silhouette score (see

figure 4.4). The associated annual centroid frequency of occurrence for k=10 is shown

below in figure 4.5. Wind speeds of the first and sixth offshore centroid decrease at

higher altitude. This could be caused by directional differences which are not depicted
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in a 2D wind speed plot, different large-scale weather phenomenon, or indicate the

usage of too many clusters as both clusters have a very low probability. The first three

onshore and offshore clusters exhibit very low wind shear with almost constant wind

speed above 200 m. Onshore cluster 5, which seems to comprise of non-monotonic

profiles as its centroid has a distinct LLJ nose at about 200 m, occurs about 5% of

the time. Onshore centroids 7 and 8 also show a slight wind speed inversion at higher

altitudes.

Evidently, the wind speed magnitude plays a determining role in clustering as

the resulting centroids are nearly stacked in terms of speed, especially offshore. This

can lead to profiles whose shape significantly differs from the one of the centroid to

be assigned to a cluster due to similar average wind speed. A clearer wind profile

shape distinction could have been achieved by normalizing the data before clustering

it [101]. Normalization was deferred to simplify and clarify the clustering procedure

as the focus of this manuscript is on the derivation and comparison of AWES power

curves. With this application in mind, it is important to note that low speed profiles

with an almost constant speed up to high altitudes add up to about 20-30 % of

annual probability. This fact is often averaged out when long term average wind

speed profiles are considered. AWES therefore need to be able to either operate

under such low speed conditions or be able to safely land and take-off.

4.4.2 Analysis of clustered statistics

Figures 4.6 to 4.8 summarize the correlation between representative clusters (k=10)

and monthly, diurnal and atmospheric stability for the onshore (top row) and offshore

(bottom row) location. This reveals patterns within the data set and gives insight

into the wind prevailing regime. Clusters are sorted in ascending order of centroid

average wind speed up to 500 m and colored accordingly. The corresponding centroids

are shown in figure 4.5.

Both locations follow a distinct annual pattern (see figure 4.6) during which pro-

files associated with high wind speeds increase during the winter months and profiles

with low wind speeds are predominantly found in summer. The two onshore and off-

shore clusters associated with the highest wind speed are almost exclusively present

during November to February.

Offshore data shows almost no diurnal variability (see figure 4.7) with only a

slight increase of clusters associated with lower wind speeds during daytime. Onshore
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Figure 4.6: Monthly frequency of k-means clustered onshore (top) and (offshore) wind
velocity profiles for a representative k=10. Clusters are sorted and colored by average
wind speed up to 500 m. Centroids associated with each cluster can be found in figure
4.5.

clusters on the other hand are more dependent on the diurnal cycle with a higher

likelihood of low speed clusters after sunrise. The frequency of onshore cluster 5,

which comprises a LLJ nose (see figure 4.5), drops to almost zero during daytime

and increases during nighttime, substantiating the assumption that this cluster is

associated with nocturnal LLJs.
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Figure 4.7: Diurnal frequency of k-means clustered onshore (top) and (offshore) wind
velocity profiles for a representative k=10. Clusters are sorted and colored by average
wind speed up to 500 m. Centroids associated with each cluster can be found in figure
4.5.

The clustered wind velocity profiles and their associated speed and shape correlate

with atmospheric stability as expected (see figure 4.8). Low wind speed clusters

(categorized as “other” according to atmospheric stability summarized in table 4.2)

have a low impact on wind power assessment, but highly influence AEP because they

make up about 20% to 30% of the annual wind resource. Unstable (U) and near
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unstable (NU) conditions are associated slightly higher wind speeds than “other” at

both locations. The highest wind speeds develop during neutral (N) and near stable

(NS) conditions. However, it should be acknowledged that strong winds driven by

large pressure gradients tend to drive the stratification towards neutral. LLJ profiles

associated with onshore cluster 5 are most likely to develop during stable (S) and

very stable (VS) conditions.
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Figure 4.8: Atmospheric stability (U: unstable, NU: nearly unstable, N: neutral, NS:
nearly stable, S: stable, VS: very stable) distribution of k-means clustered onshore
(top) and (offshore) wind velocity profiles for a representative k=10. The associated
stablility classes are based on Obukhov length (see table 4.2). Clusters are sorted and
colored by average wind speed up to 500 m. Centroids associated with each cluster
can be found in figure 4.5.

In conclusion, k-means clustering is able to capture and reveal temporal varia-

tions in the wind regime as well as location specific wind profile shapes up to high

altitudes. Wind speed magnitude seems to determine the resulting clusters more

than profile shape. However, less common non-monotonic profiles with LLJs were

identified. Normalizing the profiles before clustering should give more insight into

the different vertical profile shapes. The corresponding cluster frequency follows the

expected temporal trend and atmospheric stability association.

4.5 AWES trajectory optimization

Generating dynamically feasible and power-optimal AWES flight trajectories for given

wind profiles is a nontrivial task given the nonlinear and unstable system dynamics

and the presence of nonlinear flight envelope constraints. Optimal control methods

are a natural candidate to tackle this problem, given their inherent ability to deal with

nonlinear, constrained multiple-input-multiple-output systems. In periodic optimal
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control, an optimization problem is solved to compute periodic system state and

control trajectories that optimize a system performance index (here average AWES

power output P ) while satisfying the system dynamic equations. The initial and final

state of the trajectory are freely chosen by the optimizer but must be equal to ensure

periodic operation. We here apply this methodology to generate realistic single-wing,

ground-generation AWES power curves and AEP estimation based on simulated wind

velocity profiles using the awebox. Take-off and landing are not considered in this

paper. Instead, only the production cycle, including reel-out as well as reel-in period,

is optimized.

4.5.1 Optimization model overview

We consider a 6 degree of freedom (DOF) rigid-wing aircraft model. It uses pre-

computed quadratic approximations of the aerodynamic coefficients which are con-

trolled via aileron, elevator and rudder deflection rates [94]. The tether is controlled

by the tether jerk
...
l tether from which tether acceleration l̈tether, speed l̇tether = vtether

and length (ltether) are derived. The tether is modeled as a single solid rod which

can not be subjected to compressive forces [29]. The rod is divided into naero = 10

elements and tether drag is calculated individually for each element relative to ap-

parent wind speed [19], with a tether drag coefficient of ctether
D = 1. Wind profiles are

implemented as 2D wind components rotated such that the main wind direction is

in positive x direction and the deviation from it in y direction. This is equivalent to

assuming omnidirectional AWES operation with the wing still needing to adjust to

changing wind conditions with height. Furthermore, we include a simplified atmo-

spheric model based on international standard atmosphere to account for air density

variation.

4.5.2 Aircraft model

The aircraft aerodynamic coefficients are those available for the Ampyx AP2 [94, 3]

for comparison with other publications and since no other AWES data were available3.

Figure 4.9 (left) visualizes the implemented aircraft lift cL and drag coefficient cD .

Lift is assumed to behave linearly in between the angle of attack constraints, vi-

sualized by black, vertical, dashed lines. Changes in the drag coefficient on the other

3other aerodynamic coefficients can be found under: https://github.com/awebox/awebox/

blob/develop/awebox/opts/kite_data/ampyx_data.py

https://github.com/awebox/awebox/blob/develop/awebox/opts/kite_data/ampyx_data.py
https://github.com/awebox/awebox/blob/develop/awebox/opts/kite_data/ampyx_data.py
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Figure 4.9: Left: dimensionless Ampyx AP2 [94, 3], lift cL and drag coefficients cD

over angle of attack α used in this study. Vertical dashed black lines visualize the
angle of attack constraints. Right: c3

L/c
2
D according to Loyd [87] over angle of attack

α .Vertical dashed black lines visualize the angle of attack constraints.

hand are implemented by a quadratic approximation. This study compares two air-

craft sizes, one with a wing area of A = 20 m2 and another one with A = 50 m2.

Aircraft geometry such as aspect ratio is kept constant (AR = 10). The aircraft

mass and inertia were scaled relative to wing span b (see equation 4.2), based on the

Galileo’s square–cube law. However, we chose a rather optimistic κ of 2 (pure geomet-

ric scaling would assume κ = 3), assuming design and material improvements with

scale. Assuming such a low mass scaling exponent is unrealistic and will be changed

to 2.7 in the published paper. The wing loading of approximately 12.25 kgm−2 is

consistent with the AP2 reference data. This results in an overestimation of output

power and lower cut-in speed in comparison to a heavier aircraft. The focus of this

paper is on the derivation and investigation of the AWES power curve and not on

realistic system design which will be subject of a future paper on scaling study of

AWES.

According to Loyd [87] the ratio c3
L/c

2
D determines the maximum power of any

crosswind AWES. Figure 4.9 (right) only gives a rough estimate of optimal reel-

out phase angle of attack α, as tether drag is not included here. Including tether

drag greatly reduces total system c3
L/c

2
D,total and shifts the optimal angle of attack of

the wing towards higher values. Figures 6.1 and 6.2 show AP2 and HL aerodynamic

coefficients for various tether diameters, including a simplified tether drag model. The

resulting optimal power and operating altitude, estimated based on a quasi steady-
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state engineering model, are found in chapter 6.

mscaled = mref

(
b

bref

)κ
; Jscaled = Jref

(
b

bref

)κ+2

(4.2)

Table 4.3: Aircraft design parameters for the two different sizes (Awing = 20, 50 m2)
analyzed in this study and for the original AP2 aircraft. A mass scaling exponent pf
κ = 2 is too low and will be changed in the published paper. Values in square brackets
represent flight envelope bounds, which are implemented as inequality constraints of
the optimization.

Parameter AP2 design 1 design 2

Aircraft

wing area [m2] 3 20 50
wing chord [m] 0.55 1.42 2.24
wing span [m] 5.5 14.1 22.4
wing AR [-] 10 10 10
kite mass [kg] 36.8 245 613
β [◦] [-15 : 15]

Tether

max. length [m] 2000 2000
speed [ms−1] [-15 : 10]
max. acceleration [ms−2] [-15 : 10]
diameter [mm] 13 23
max. stress [Pa] 3.6 109 3.6 109

max. force [kN] 150 500
min operating altitude [m] 60 75

4.5.3 Ground station model

The ground station constraints play a decisive role in the overall power of ground-

generation AWES. The optimal reel-out speed is vout ≈ 1
3
vwind [87] and thereby limited

by the prevailing wind conditions which hardly exceed 20 ms−1. The reel-out to

reel-in ratio is limited to 2
3
, e.g vout

vin
= 10 ms−1

15 ms−1 , to comply with ground station design

limitations. A maximum tether acceleration of l̈ = 20 ms−2 is imposed to comply with

generator torque limits. Tether diameter and maximum tether force are calculated

from a pre-optimization, due to the complexity of the system which makes an a

priori estimation difficult. This calculation optimizes the AWES trajectory and tether

diameter to maximize average cycle power subject to the same tether speed and

acceleration constraint. A simple logarithmic wind speed profile was used as wind

inflow (reference speed of Usizing(z = 10 m) = 8 ms−1). Constraints on the tether force
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enforce it to be positive whilst not exceeding the maximum tether stress, to which

a safety factor of 3 is applied. This results in a tripling of the cross-sectional tether

area. These ground station and tether constraints do not represent an optimized

AWES, but rather a representative system.

4.5.4 Constraints

The tether constraints such as tether length, speed and force are summarized in table

4.3 (see sub-section 4.5.3). Flight envelope constraints include limits on acceleration,

roll and pitch angle (to avoid collision with the tether) or angle of attack, in between

which the lift is assumed to be linear. Furthermore, a minimal operating height of

zmin = 50 +
Awing

2
m is imposed for safety reasons.

4.5.5 Wind boundary condition

AWES trajectories depend on prevailing wind conditions as they greatly benefit from

dynamically adapting their operational altitude, tether speed and path to maximize

power production and minimize losses. The above described AWES were subjected to

several different wind conditions to compare the impact on their trajectory, estimate

the power curve and AEP. Logarithmic wind speed profiles (equation 4.3) with a

roughness length of zonshore
0 = 0.1 and zoffshore

0 = 0.001 are used as reference because

they are the standard of wind energy industry. The reference wind speed Uref at

reference height zref = 10 m was varied from 3 to 19 ms−1 in steps of ∆Uref = 2 ms−1

to cover more than the common wind speed range. Results are compared to clustered,

WRF simulated, onshore and offshore wind conditions in terms of power curve and

AEP. We assume the same wind speed probability distribution for WRF wind profiles

as well as the logarithmic reference wind speed profiles. Three WRF-calculated wind

profiles with a p-value of 5,50, 95, based on average wind speed up to 500 m within

every cluster, were chosen to assess the AWES power curve. A representative k=20

is a reasonable choice according to the elbow method and silhouette score described

in section 4.4. To estimate AEP, cluster centroids across the range of k = 5 − 100

were implemented. Wind conditions for the AEP estimation are based on the cluster

centroids for k = 5 − 100 due to the high computational cost of running multiple

profiles per cluster. These results are compared to the AEP calculated from power of

k=20 p5, p50 and p95 wind profiles.
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Ulog = Uref

(
log10(z/z0)

log10(zref/z0)

)
(4.3)

4.5.6 Problem formulation and solution

AWES trajectory optimization is a highly nonlinear and non-convex problem which

likely has multiple local optima. Therefore, the particular results generated by a nu-

merical optimization solver can only guaranty local optimally, and usually depend on

the chosen initialization. This can result in unwanted or unrealistic AWES trajecto-

ries, which implies that the quality of all solutions needs to be evaluated a posteriori.

A periodic optimal control problem is formulated to maximize the average cycle

power P of a single AWES subject to equality and in-equality constraints described

above [29, 84]. The trajectory optimization problem is discretized into 100 intervals

using direct collocation.An initial guess is generated using a homotopy technique simi-

lar to [63] with an estimated circular trajectory based on a fixed number of loops (here

nloop = 5) at a 30◦ elevation angle and an estimated aircraft speed. Previous analyses

showed that the awebox-estimated power output is insensitive to the number of loops

and therefore flight time, at least for less than 10 loops. The homotopy technique

initially fully relaxes the dynamic constraints using fictitious forces and moments

to reduce model nonlinearity and coupling, improving the convergence of Newton-

type optimization techniques. The constraints are then gradually re-introduced until

the relaxed problem matches the original problem. The resulting nonlinear program

(NLP) is formulated in the symbolic modeling framework CasADi for Python [4] and

solved using the linear solver MA57 [73] in IPOPT [152].

4.6 Results

In this section we compare representative onshore (Pritzwalk) and offshore (FINO3)

trajectories and time series trends. Building on that onshore and offshore operating

height statistics and tether length trends are examined. AWES power curves are de-

termined based on average cycle power and wind speeds at different reference heights.

From these power curve trends we determine an AWES power coefficient cAWES
p sim-

ilar to conventional WT to allow for a quick estimate of AWES power based on wing

area, path length and wind speed. Lastly, the annual energy production (AEP) and

capacity factor (cf) estimates of different number of clusters are compared to Rayleigh
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distributed log-profiles as they are defined by IEC standards.

4.6.1 Flight trajectory and time series results

This sub-section offers insight into typical optimized AWES flight trajectories. Fig-

ures 4.10 and 3 (appendix) compare the trajectories of representative (chosen because

of different wind speeds and profile shape) onshore and offshore profiles for an aircraft

with a wing area of Awing = 20 m2. Results for an aircraft with a wing area of 50 m2

can be found in the appendix (see figures 3).
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Figure 4.10: Representative wind speed profiles (left top), and hodograph (top view)
of wind velocity up to 1000 m (left bottom). The deviation of the colored lines
is caused by the approximation of discrete data points with Lagrange polynomials.
Trajectories (center) in side and top view. Temporal variations of tether force Ftether

(right 1st from top), tether speed vtether (right 2nd from top), angle of attack α (right
3rd from top ) and instantaneous power Pcurrent (right, bottom) optimized based on
clustered onshore wind speed profiles for a ground-generation AWES with a wing area
of Awing = 20 m2.

The top left sub-figure in figure 4.10 and 3 show the wind speed profiles U over

altitude z with the operating height highlighted in color. The colored segments also

depict the Lagrange polynomials that interpolate the WRF simulation data for op-

timization purposes. Note that wind speed profiles (magnitude) are depicted here
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instead of wind velocity profiles (rotated horizontal u and v wind component) for

readability purposes. The bottom left figure shows a top view of the wind velocity

profile (rotated horizontal u and v wind component) in grey up to 1000 m displayed

above as well as the wind velocity components as experienced by the AWES in color.

As expected based on theory [139] and from the wind rose in section 4.3.2, the onshore

profiles veer more than offshore profiles. The two center plots show the optimized

trajectory in side view (center top, x-y plane) and top view (center bottom, x-y

plane).

When maximum tether force is reached the system starts to de-power while main-

taining the same high tension (right, 1st from top in figures 4.10 and 3). Such tra-

jectories often extend perpendicular to the main wind direction (y-direction). This

often results in odd and unrealistic or unexpected trajectories, even though these local

minima are within the system constraints (roll rate etc.). De-powering by increasing

the elevation angle is also possible and likely to happen, but harder to determine as

it is not easily identifiable whether the elevation angle increased due to better wind

conditions or to de-power the wing. Reducing the angle of attack (right, 3rd from

top) while maintaining constant maximum tether force (right, 1st from top) can be

observed in the highest onshore wind speed trajectory (green). During the produc-

tion loops, the angle of attack constraint of the red and orange trajectories are active.

The AWES angle of attack at the onshore location is generally higher than offshore

(compare the third sub-figure on the right in figure 4.10 and 3). This can likely be

attributed to the fact that onshore tether lengths are generally longer than offshore,

where beneficial wind conditions allow the AWES to operate at lower altitudes (see

figure 4.11). As a result, the optimal c3
L/c

2
D shifts towards higher angle of attack.

The algorithm seems to always maximize tether force and vary tether speed (right

2nd from top) close to optimal reel-out speed (vout ≈ 1
3
vwind [87]) to maximize average

cycle power. At high wind speed the tether speed constraint is active during the reel-

in phase, presumably to keep this phase as short as possible. In these cases the

trajectory starts to differ from its predefined shape with distinct loops to de-power,

visible in the power development during the production phase (green). Trajectories

for such high speed wind conditions without a tether force constraint, where the tether

diameter is adjusted to the wind conditions, would be closer to the looping paths seen

for lower wind speeds (blue, orange, red). The time history of instantaneous power

Pcurrent (right bottom) clearly distinguishes the production and consumption phase of

pumping-mode (ground-generation) AWES. However, all optimized trajectories have
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a close to zero power usage during reel-in as they reduce the angle of attack to near

zero lift conditions. One commonality between all time series is that they all almost

have the same flight time independent of location, wind speed or aircraft size. The

flight time is almost solely determined by the initial number of loops, here five, used

in the initialization procedure. Based on previous analyses, mechanical AWES power

output seems to be insensitive to number of loops and flight time. The optimized

trajectories result in almost zero tether force and therefore energy consumption during

the reel-in phase. This might be different for real deployment, where higher number

of loops could be more beneficial, because the reel-in time relative to reel-out time

could be shorter.

4.6.2 Tether length and altitude

This sub-section compares tether lengths and operating altitudes for onshore and

offshore wind conditions for a wing size of Awing = 20 m2. Results for the Awing =

50 m2 design can be found in the appendix in figure 4. The data is based on the

p5, p50, p95-th wind profiles of k=20 onshore and offshore clusters (see sub-section

4.5.5).

Figure 4.11 (left) illustrates the minimum (blue) and maximum (orange) tether

length ltether over reference wind speed, here U(zref = 200 m), for both onshore (top)

and offshore (bottom). Similar results derived from the quasi steady-state engineering

model (equation 6.2), including losses associated with elevation angle and tether drag,

can be found in chapter 6. Figures 6.6 and 6.7 show similar optimal operating altitudes

between 100 and 400m. The right side of the figure shows the frequency distribution

of operating altitude zoperating, calculated based on the trajectories described above

in sub-section 4.6.1. Neither of the optimizations reaches the maximum tether length

of lmax
tether = 2000 m. Comparing both locations two very different trends emerge.

Onshore tethers are generally longer as operating altitudes tend to be higher due

to higher wind shear and typically higher winds offshore. Where a tether length

of approximately 600 m suffices for the entire offshore wind regime, onshore tethers

need to be at least 1000 m long, except for a few outliers which would benefit from

an even longer tether. The gradual increase of tether length with wind speed offshore

is probably due to lower wind shear and more homogeneous wind regime (see sub-

section 4.3.2). Onshore tethers on the other hand already exceed a length of 400 m

from U(zref = 200 m) > 5 ms−1.
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Figure 4.11: Tether length range (left) over reference wind speed U(zref = 200 m)
and frequency distribution of operating altitude (right) based on k=20 onshore (top)
and offshore (bottom) clusters for a ground-generation aircraft with a wing area of
Awing = 20 m2.

Operating altitudes over the entire wind regime, both off- and onshore, are al-

most never higher than 500 m above ground, confirming findings in [137, 136]. Low

altitude offshore winds seem to be so favorable that AWES operate approximately

75% annually below 250 m. This also has implications for tower-based, conventional

wind turbines as these results suggest that the benefit of going towards higher alti-

tudes might not outweigh the costs. This is seen in large WTs, such as the IEA 15

MW reference turbine [56], with hub height smaller than one rotor diameter. Multi-

wing AWES could benefit from higher operating altitudes due to their higher lift to

tether drag and weight ratio. However, more detailed analysis are required. The

Awing = 50 m2 aircraft both on- and offshore seems to benefit from higher operating

altitudes and longer tethers (see figure 4) which could be due to the higher lift to

tether drag ratio. However, optimal operating altitudes exceed heights above 600 m

at either location only 5% of the time. A future analysis of even larger systems will

investigate whether this trend continues.
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4.6.3 Power curve

This sub-section compares AWES power curve representations based on various wind

profile inputs over different reference heights. Clustered WRF profiles are compared

to logarithmic wind speed profiles, as defined in the IEC standards [76]. Due to

many conceptually different AWES designs and the novelty of the technology, there

is no unanimously accepted AWES power curve definition. Therefore, no standard

reference wind speed, equivalent to wind speed at hub height for conventional WT,

has been agreed upon. Similarly, no standard wind speed probability distribution

such as the Rayleigh or Weibull distribution for conventional wind has been defined.

Determining these parameters is more complex than for conventional wind turbines

as AWES power is highly dependents on the wind speed variation with height and

the resulting flight trajectories.

The power curves shown in figures 4.12 (Awing = 20 m2) and 5 (Awing = 50 m2)

compare the cycle-average, onshore (left,blue) and offshore (right, orange) power

based on 60 different wind velocity profiles within k=20 clusters for wing areas of

20 and 50 m2, respectively. Figures 6.6 and 6.8 show comparable power curves and

AEP estimates for multiple AWES sizes using a simple engineering model, includ-

ing tether drag and elevation angle losses. Rated power of the systems shown here

are higher and achieved at a higher wind speed than in chapter 6, due to different

tether diameter and tether force constraint. For comparability purposes, results in

this chapter will be recalculated for the published journal paper, with the same rated

wind speed as in chapter 5 and higher mass scaling exponent κ. The dashed lines are

curves based on a fixed reference height of z = 100 m. The dash-dotted lines use the

average wind speed between z = 100 m and z = 400 m and the the dotted lines use

the average wind speed over the respective AWES operating altitude. AWES power

curves for logarithmic wind speed profiles with z0 = 0.1 (onshore, left) and z0 = 0.001

(offshore, right) [21] as well as results using a simple WT power estimation (red) with

a fixed cWT
p = 0.45 (see equation: 4.4) are depicted as reference. Air density ρair is

calculated as a function of altitude z from a linear approximation of the standard

atmosphere [24] (ρair(z) = 1.225 kgm−3 − 0.00011 kgm−4 z). The Hub height zWT is

assumed to be 100 m for both onshore and offshore WT. The swept area of the turbine

AWT is chosen such that its rated power, at rated wind speed of vrated = 12ms−1, is

equivalent to the AWES using:
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PWT = cWT
p

1

2
ρairAWTU

3(zWT = 100 m) (4.4)
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Figure 4.12: AWES power curves onshore (top left, blue) and offshore (top right, or-
ange) for Awing = 20 m2 over various reference wind speed height definitions (dashed
lines: fixed height z = 100 m; dash-dotted lines: fixed height range z = 100− 400 m;
dotted lines: average wind speed along operating trajectory) based on 3 profiles for
each of the k=20 clusters. Compared to WT (black) with same rated power at a hub
height of zWT = 100 m and AWES (red) for logarithmic wind speed profiles (z0 = 0.1
onshore and z0 = 0.001 offshore). Annual wind speed probability distribution (cen-
ter) based on WRF simulation and Rayleigh distribution (red) with Uave = 10 ms−1

(onshore) and 12 ms−1 (offshore) for reference. Energy production distribution (bot-
tom) shows the distribution of annual produced energy over wind speed which is the
product of power and wind speed probability distribution. Integrating this product
results in the AEP.

Cut-in and cut-out wind speeds were not used for either the AWES or WT to not

limit specific designs. Therefore, energy production (bottom) is limited by the wind

speed probability distribution (center). Wind statistics for the logarithmic wind speed

profiles are based on the IEC standard Rayleigh distribution [76] with a reference

wind speed of Uonshore
ave = 10 ms−1 and Uoffshore

ave = 12 ms−1. The presented AWES and

WT start producing significant power around U ≈ 5 ms−1 and reach rated power
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between U 12 and 15 ms−1 at their respective reference heights. Whereas the onshore

power curve with a fixed reference height of 100 m aligns with the power curve of

a conventional wind turbine, other power curves are seemingly below that. This is

probably because of high wind shear profiles which lead to faster winds aloft and

higher operating altitudes with lower wind speeds at 100 m. The lower reference

wind speeds, i.e. wind speeds at lower altitudes, result in a power curve shift towards

lower wind speeds (to the left). Offshore winds however experience less shear (see sub-

section : 4.3.2), which is why offshore AWES power curves for any reference height

overlap with each other. Therefore, a reference height of 200 m is likely a better choice

as it results in smoother power curve. The difference between onshore and offshore

power curves must be caused by different wind profile shapes as both systems are

otherwise exactly the same. This highlights that for AWES power predictions is not

just influenced by design, but also by flight trajectory in a given boundary layer.

The AWES power curves align well with a cWT
p = 0.3 (see figure 6 in the appendix).

A better AWES design with higher c3
L/c

2
D should increase the equivalent WT power

coefficient. This however is subject to further investigation and will be included in a

future study.

The annual energy production distribution is derived from the integral multipli-

cation of the mean power curve (top) and the wind speed probability distribution

at reference height (center). Its total accumulates to the annual energy production

(AEP) further described in sub-section 4.6.4. AWES energy production distribution

shifts towards higher wind speeds due to higher operating heights and their higher

wind speeds. Similarly, the maximum onshore wind speed at 100 m is lower than

offshore, while wind speeds at other reference heights are similar to offshore.

Table 4.4 compiles the AEP of both system sizes and both locations. The ta-

ble also includes the estimated WT AEP for reference. Overall energy estimates

for one system size and location are fairly consistent with each other. These results

will be recalculated with the same AWES design in the published journal paper for

comparability purposes. The different tether force constraint and therefore tether

diameter, as well as the unrealistically low mass scaling exponent result high rated

power and an overestimation of AEP. AEP estimates using the engineering model

(chapter 6), including tether drag, are about 50% lower than here. This can be at-

tributed to the significantly higher rated power of prated ≈ 600kW here in comparison

to prated ≈ 400kW in chapters 5 and 6 (compare figure 6.8). However, this difference

in rated wind speed vastly reduces capacity factor cf which drops from over 0.6 (engi-



108

neering model, chapter 6) to about 0.4 here. However, energy estimates of the larger

wing (Awing = 50 m2) onshore shows more variability due to the wider range of wind

conditions and operating heights. This indicates that this effect scales with system

size increase which will be investigated further in a future study. The reduction of

capacity factor (cf) with wing area is likely a result of AWES weight. The smaller

AWES with a wing area of Awing = 20 m2 outperforms the WT with the same rated

power onshore, whereas the larger wing does not, which illustrates that onshore wind

conditions favor higher operating altitude due to higher wind shear. Furthermore,

the relative reduction in AWES energy with size could be related to additional losses

associated with heavier aircraft, as the it struggles to overcome gravity during the

production phase. Offshore, the WTs outperform the AWESs for both sizes as the

lower wind shear favors lower operating altitudes. The offshore AEP is about 25 %

larger than onshore for both AWES sizes, while WT performance increases about 50%

offshore in comparison to onshore due to better wind resource. This main difference

between WT and AWES can be explained by the high cWT
p = 0.45 while the wind

turbine equivalent of AWES power is closer to cWT
p = 0.3.

We assume that the best reference wind speed would be the wind speed along

the actual AWES trajectory. Since this is hard to estimate before site selection, a

better reference wind speed would be calculated from the average between 100 and

600 m since this is the height at which most onshore and offshore AWES operate (see

figure 4.11). Choosing one fixed reference height might be an inadequate choice as

larger AWES sweep a larger altitude range. The published manuscript will include

an AWES performance comparison using the harvesting factor defined by Diehl et at.

[33].
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Table 4.4: Annual energy predictions (AEP) and capacity factor (cf) results for
Awing = 20, 50 m2 subject to 3 wind velocity profiles within each of the k=20 onshore
and offshore clusters. AEP calculated from power curve and wind speed probability
distributions at various reference heights (see figure 4.12 and 5). AEP results for log-
arithmic wind speed profiles with Rayleigh wind speed probability distribution and
WTs (size in rotor diameter dWT) with same rated power as AWESs and wind speed
probability distribution at zWT = 100m for reference.

Prated [kW] size location wind profile zref [m] AEP [kWh] cf [-]

650

Awing = 20m2

onshore

WRF 100 2329 0.42
Awing = 20 m2 WRF 100 - 400 2404 0.43
Awing = 20 m2 WRF 60 - 629 2324 0.42
Awing = 20 m2 log 100 2216 0.40
dWT = 42.6 m WRF 100 2292 0.41

650

Awing = 20 m2

offshore

WRF 100 2853 0.51
Awing = 20 m2 WRF 100 - 400 2852 0.51
Awing = 20 m2 WRF 59 - 551 2910 0.52
Awing = 20 m2 log 100 2781 0.50
dWT = 42.6 m WRF 100 3404 0.61

2600

Awing = 50 m2

onshore

WRF 100 7863 0.34
Awing = 50 m2 WRF 100 - 400 8069 0.35
Awing = 50 m2 WRF 75 - 702 7529 0.32
Awing = 50 m2 log 100 7252 0.31
dWT = 83.4 m WRF 100 8961 0.39

2600

Awing = 50 m2

offshore

WRF 100 9381 0.41
Awing = 50 m2 WRF 100 - 400 9349 0.41
Awing = 50 m2 WRF 75 - 1265 9540 0.41
Awing = 50 m2 log 100 9542 0.41
dWT = 83.4 m WRF 100 13518 0.59
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4.6.4 AEP

This sub-section contrasts annual energy predictions (AEPs) and capacity factor (cf)

based on the various power estimates and wind statistics. Figure 4.13 compares

results for an increasing number of clusters (k= 2,5,10, 20, 30, 40, 50, 100) to results

using p5, p50, p95 wind velocity profiles for k=20 to assess the necessary number of

clusters and therefore optimization runs needed to approximate the simulated AWES

AEP. The top sub-figure shows results for an AWES wing of Awing = 20 m2 and

bottom for Awing = 50 m2. Onshore results are depicted in blue and offshore data

in orange. Power results of the k cluster sweep are solely based on each cluster’s

centroid which is equivalent to the average wind velocity profiles of all data points

within the respective cluster. Here we assume that the power calculated from each

centroid is constant within and representative of the entire cluster. Therefore, AEP is

the sum of the product of average power P i and cluster probability fi over all clusters

k multiplied by the number of hours in a year.

AEP =
∑

k
i=1

(
P ifi

)
8760

h

year
(4.5)

Conventional WT energy (dashed line) is estimated from a simple static power

approximations (described in sub-section 4.6.3, equation 4.4) using cluster centroid

wind speed at 100 m and the same cluster frequency as the AWES.

Both onshore and offshore AEP vary with number of clusters, however above

k=10 the variation is negligible and the possible improvement in energy prediction

does not justified the increased computational cost. Similarly, WT AEP does not

vary significantly for more than 10 clusters. However, AEP and cf are consistently

higher than those of AWES. Compared to these results, AEP calculations based on

an estimated power curve from three representative wind profiles per cluster k=20 (

see sub-section 4.6.3 ; color refers to location, onshore: blue, offshore: orange) yield a

higher energy estimate. Estimates using just the centroid have lower AEP because of

averaging effects within each cluster. High wind speed profiles, which are responsible

for a considerable percentage of the cluster energy due to the nonlinear power to

wind speed relationship, are averaged out. We therefore believe that a power curve

estimation together with wind speed probability distribution for a lower number of

total clusters and multiple profiles within a cluster yield better AEP estimates than

just using the cluster centroids.

Reference AWES AEP and cf are depicted as dotted lines These data are based on
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power curves for logarithmic wind speed profiles (with z0 = 0.1 onshore and z0 = 0.001

offshore) and Rayleigh wind speed probability distributions (Uonshore
ave = 10 ms−1 and

Uoffshore
ave = 12 ms−1) [76] . Offshore AEP estimates based on logarithmic wind profiles

are closer to power curve estimates based on WRF data than similar onshore results.

This implies that offshore wind conditions (wind profile shape and probability) are

better represented by logarithmic wind speed profiles than onshore conditions.
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Figure 4.13: AEP (left ordinate) and cf (right ordinate) over number of clusters
k for AWES with a wing area of Awing = 20 m2 (top) and Awing = 50 m2 (bottom)
onshore (blue) and offshore (orange) location. Only the cluster centroid wind velocity
profiles and the cluster probability were used for both AWES (solid lines) and WT
(dashed lines) The WT power is estimated from a static power curve (zWT = 100 m,
see equation 4.4). AWES results are derived from trajectory optimization using the
awebox (see section 4.5). AWES data for p5, p50, p95 wind profiles within k=20
clusters ( ; applies to both locations and sizes) are calculated from the mean power
curve and wind speed probability (see table 4.4, sub-section 4.6.3). AWES results
based on logarithmic wind speed profiles (dotted lines) are added for reference.
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4.7 Conclusions and outlook

We characterized ground-generation AWES power, annual energy production and ca-

pacity factor based on representative, mesoscale onshore wind data at Pritzwalk in

northern Germany and offshore wind data at the FINO3 research platform in the

North Sea. The analysis is deduced from path optimization using awebox toolbox,

with the objective to maximize average cycle power. Representative wind velocity

profiles based on k-means clustering were chosen to reduce computational cost. As

long-term high resolution high altitude measurements with sufficient data availability

are scarce, wind data are based on mesoscale WRF simulations. These simulations

span an entire year with a temporal resolution of 10 minutes, thereby including sea-

sonal, synoptic and diurnal variations at a higher resolution than re-analysis data

sets. The annual wind roses for heights of 100 m and 500 m confirm the expected

wind speed acceleration and clockwise rotation at both locations, with generally lower

offshore wind shear and veer than onshore. Annual wind speed statistics reveal that

while average wind speeds increase with height, low wind speeds still occur at a fairly

high probability up to 1000 m.

To further dissect wind conditions essential to the design and operation of AWES,

representative wind velocity profiles were chosen based on k-means clustered data.

This algorithm groups similar profiles together into a fixed, predetermined number

of k clusters represented by the mean of each cluster. For a representative k of 10

a more extensive analysis and comparison between onshore and offshore wind condi-

tions revealed that average wind speed, rather than profile shape, plays a decisive role

in the assignment of profiles to a certain cluster. However, the algorithm was able

to identify and define a cluster for onshore LLJs as well as various non-logarithmic

wind profiles at both locations. Further analysis revealed seasonal and diurnal wind

speed and atmospheric stability dependent cluster correlation, which generally agrees

with literature predictions. We therefore believe that k-means wind velocity cluster-

ing yields coherent data that provides good insight into the wind regime, especially

for higher altitudes. The derived groups represent the annual variation better than

traditional logarithmic or exponential wind speed profiles.

The 5th, 50th and 95th percentile wind velocity profiles within each cluster for

k=20 as well as logarithmic reference wind speed profiles were implemented into

the airborne wind energy trajectory optimization toolbox awebox to estimate aver-

age cycle power of ground-generation AWES. Two scaled Ampyx AP2 aircraft sizes
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(Awing = 20, 50 m2) are compared in terms of trajectory, operating altitude, instan-

taneous tether force and length as well as power. AWESs at both location rarely

operate above 400 m, with offshore systems mostly flying below 200 m, due to fast

wind speeds at low heights and low wind shear. These results weaken the claim of

increased power harvest above 500 m for AWES, but also obviate airspace restriction

challenges for AWES. A wing with the given size, aerodynamic and mass proper-

ties achieves a similar power curve as a similarly rated wind turbine with a power

coefficient of approximately 0.3. As expected, offshore AWES generally outperform

onshore AWES in terms of AEP and capacity factor. Furthermore, social acceptance

of such systems will likely be higher offshore.

From this analysis we derived an AWES power coefficient cAWES
p based on average

AWES power curves, path lengths and wing spans. The decrease in cAWES
p with

wind speed can be attributed to the increase in tether length and the accompanying

weight and drag losses. Scaling these power coefficients by the inverse wing chord

(cAWES
p /cwing) lead to a collapse of both location and both size trends to a single

quadratic, decreasing progression.

We compared AEP and cf estimates for each system based on different power and

wind speed probability description and conclude that the highest, and probably most

realistic AEP prediction, is based on an average power curve which is derived from

multiple wind profiles within a cluster (p5, p50, p95) for a small number of clusters

(k=10). The wind speed probability distribution is ideally derived from the wind

speed along the flight path. As this is difficult to predetermined before operation, we

recommend to use average wind speeds between 100 and 400 m. Offshore this choice

seems to be less significant as winds are less sheared and are more monotonic than

onshore. Therefore, AEP estimates based on logarithmic wind profiles and Rayleigh

distribution give similar results as the clustered profiles.

In summary, k-means clustering provides adequate categorization and provides

realistic, representative wind velocity profiles for AWES trajectory optimization. This

increases the power prediction accuracy in comparison to logarithmic wind speed

profiles. Furthermore, clustering reduces the computational cost of AEP estimates as

only a few number of clusters suffice. Best AEP results and power curve description

can be achieved by using multiple representative profiles within each cluster instead

of using the cluster centroid. A nonlinear AWES power coefficient to approximate

AWES power up to rated power gives reasonable results. We expect further work, field

tests and other research studies with different AWES sizes, aerodynamic coefficients
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and flight paths to confirm our findings.

Based on these results, we will describe the design space and weight budget of

ground-generation AWES in a future sizing study using the here described clustered

wind data. To that end, we will compare the performance of a high lift airfoil to the

here used AP2 aerodynamic reference model and determine the maximum weight for

different aircraft sizes. Furthermore, we will investigate the impact of a nonlinear

lift coefficient. These results should inform researchers and industry on the scaling

potential of AWES. An interesting research question is the seasonality of AWES

performance in comparison to WT.
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Chapter 5

Design space exploration of

ground-generation AWES

Markus Sommerfeld, Martin Dörenkämper, Jochem DeSchutter, and Curran Craw-

ford. Ground-generation airborne wind energy design space exploration. Submitted to

Wind Energy Science Discussions, 2020. thttps://doi.org/10.5194/wes-2020-123.

The previous chapter examined the optimal performance of two AWESs with a wing

area of 20 and 50 m2 and an approximate rated power of about 650 and 2600 kW,

subject to realistic, WRF-modeled wind conditions.

This chapter continues the exploration of the AWES design space by utilizing the

same nonlinear optimal control AWES model, as well as k-means clustered, WRF-

modeled wind data as the previous chapter. We study the impact of aerodynamic

efficiency and aircraft mass scaling for aircraft wing areas between 10 and 150 m2,

to investigate the AWES mass budget and performance. The resulting cycle-average

power ranges from about 145 kW to 3430 kW. Based on these results, we estimate

onshore and offshore crosswind, ground-generation AWES power curves, operating

heights, as well as AEP and cf.

5.1 Abstract

While some Airborne Wind Energy System (AWES) companies aim at small-scale,

temporary or remote off-grid markets, others aim to integrate utility-scale, multi-

megawatt AWES into the electricity grid. This study investigates the scaling effects

thttps://doi.org/10.5194/wes-2020-123
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of single-wing, ground-generation AWESs from small to large-scale systems, subject to

realistic 10-minute, onshore and offshore wind conditions derived from the numerical

mesoscale weather research and forecasting (WRF) model. To reduce computational

cost, wind velocity profiles are grouped into k=10 clusters using k-means cluster-

ing. Three representative profiles from each cluster are implemented into a nonlinear

AWES optimal control model, to determine power-optimal trajectories, system dy-

namics, as well as instantaneous and cycle-average power. We compare the perfor-

mance of three different aircraft masses and two sets of nonlinear aerodynamic coeffi-

cients for each aircraft size, with wing areas ranging from 10 m2 to 150 m2. We predict

size and weight-dependent, optimal AWES power curves, annual energy production

(AEP) and capacity factor (cf).Tether impacts, such as power losses associated with

tether drag and the tether contribution to total system mass are quantified. Further-

more, we estimate a minimum average cycle-average lift to weight ratio, above which

ground-generation AWES can operate, to explore the viable AWES mass budget.

5.2 Introduction

Airborne wind energy systems (AWESs) harvest wind energy from the stronger and

less turbulent winds at mid-altitude, here defined as heights above 100 m and below

1500 m. These beneficial conditions promise more reliable and stable wind power

generation compared to the conventional wind turbines (WTs) at lower altitudes.

The light, tower-less design allows for mobile deployment and reduces the capital cost

of AWESs [89]. These kite inspired systems consist of an autonomous aircraft which

is connected to a ground station via tether. While various designs are investigated,

two major crosswind concepts are currently considered by industry: the ground-

generation also referred to as pumping-mode, and on-board-generation also referred

to as drag-mode. This study focuses on the two-phase, ground-generation concept, as

it is currently the main concept pursued by industry after Makani Technologies LLC

[90], the biggest company and proponent of the on-board-generation concept closed

in February 2020. On-board-generation AWES carry additional weight with the on-

board generator and propeller mass, as well as the heavier, conductive tether. Part

of the reason for the closure could have been that the company did not see a viable

road to commercialization. Thus a motivation to have a closer look at ground-gen

scaling. One of the biggest companies working on this concept is Ampyx Power [3].

Ground-generation AWES generate power during the reel-out phase while the wing
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generates large lift forces and pulls the tether from a drum. During the following

reel-in phase a fraction of the energy is consumed to return the aircraft back to its

initial position and restart the cycle [88]. As a result, the power generated by such

systems is inherently oscillating which could be offset using multiple devices in a wind

farm setup or buffering the energy before feeding it into the grid [91].

Over last years two main AWES applications emerged. The first makes use of

the mobile nature of the technology which allows the deployment in inaccessible or

remote places such as temporary mines or remote off-grid communities as these lo-

cations often rely on expensive diesel generators. Second is the grid-scale integration

of AWES, which requires upscaling the systems to compete with fossil and renewable

energy sources in the energy market. One example is Ampyx Power [3] which aims to

re-power decommissioned offshore wind farms or deploy floating platforms, expecting

higher energy yield due to better wind conditions, which in combination with design

choices leads to lower levelized cost of electricity. Additionally, setting up AWES

offshore allows for safer operation and is likely to be socially more accepted [41]. We

therefore investigate the scalability and design space of small to large-scale AWES,

both offshore and onshore. Depending on the aircraft’s wing surface area, aerody-

namic coefficients and the tether diameter, rated power ranges from P rated = 145 kW

to 199 kW for Awing = 10 m2 and P rated = 2010 kW to 3430 kW for Awing = 150 m2.

We compare the optimal system performance subject to various wing mass for repre-

sentative onshore and offshore wind conditions.

In comparison to the commonly used logarithmic wind speed profile, this WRF-

derived set of wind data includes the wind direction rotation with height and the

complex range of profile shapes emerging from atmospheric stability. This includes

almost constant wind velocity profiles associated with unstable stratification, high

shear wind velocity profiles resulting from stable conditions, as well as non-monotonic

wind velocity profiles including low level jets (LLJs). The power output of an AWES

not only depends on the wing size, but also the prevalent wind velocity profile shape

and magnitude which result in distinct trajectories and operating altitudes. There-

fore, a representative wind data set up to mid-altitudes, here defined as heights above

100 m and below 1500 m, is necessary to determine realistic AWES performance. This

study relies on mesoscale numerical weather prediction models such as the Weather

Research and Forecasting (WRF) model, which is well known for conventional WT

siting applications [122, 35], as measuring wind conditions at mid-altitudes is diffi-

cult due to reduced data availability aloft [137]. To reduce the computational cost,
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10-minute average wind speed profiles were clustered using the k-means clustering

method described in [135]. We compare AWES performance for an onshore loca-

tion in northern Germany near Pritzwalk [136] and an offshore location at the FINO3

research platform in the North Sea. These wind clustered wind conditions were imple-

mented into the awebox [85] optimization framework which computes periodic flight

trajectories that maximize average mechanical power output.

In comparison to our previous studies, which derived onshore and offshore AWES

power curves, this paper explores the AWES design space from small to to utility-

scale. We aim at setting up-scaling design and mass targets, instead of a detailed

system design. While other studies rely on simplified logarithmic wind speed profiles

or reanalysis data sets, we optimize AWES trajectory subject to realistic 10 minute

mesoscale wind data rather than the commonly used logarithmic wind profile, which

allows better optimal performance prediction. This supports decision-making regard-

ing location-specific design, power estimation and scaling limitations.

Section 5.3 summarizes the onshore and offshore wind resource as well as the clus-

tering results. For a detailed description of the WRF model and clustering algorithm

see [135]. Section 5.4 briefly introduces the AWES model and optimization method as

well as the implemented constraints and initialization. Section 5.5 compares the re-

sults for six AWES sizes with three different mass scaling assumptions and two sets of

non-linear aerodynamic coefficients. We present, inter alia, trajectories, power curves

and annual energy production estimates for for a representative onshore and offshore

location. Finally, Section 5.6 concludes the article with an outlook and motivation

for future work to continue to advance AWES towards commercial reality.

5.3 Wind data

This study considers representative 10 min onshore (northern Germany,

lat: 53◦10′47.00′′N, lon: 12◦11′20.98′′E) and offshore wind data (FINO3 research

platform, lat: 55◦11, 7′N, lon: 7◦9, 5′ E) derived from 12 months of WRF simulations

each. Both locations are highlighted by a black dot in figure 5.1.

Both horizontal velocity components of the resulting mesoscale wind data set are

clustered using a k-means clustering algorithm [117]. According to previous investi-

gations [135], a small number of clusters with few representative profiles per cluster

yield good power and AEP estimates at reasonable computational cost. Therefore,

the wind velocity profiles were grouped into k=10 clusters from which the 5th, 50th
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Figure 5.1: Topography map of northern Germany with the representative onshore
(Pritzwalk) and offshore (FINO3) locations highlighted with a black dot.

and 95th percentile (sorted by wind speed at 200 m) were implemented into the

optimization algorithm as design points to cover the entire annual wind regime.

The resulting average wind velocity profiles for each of the ten clusters, also known

as centroids, are shown in the top row of figure 5.2. For presentation purposes, only

each centroid’s wind speed magnitude, colored according to average wind speed up

to 500 m, is shown. The complete set of clustered profiles profiles are shown in grey.

The cluster average wind profile shapes show wind shears typically associated with

unstable and stable conditions. They follow expected location-specific trends with

lower wind shear and higher wind speeds offshore (right) in comparison to onshore

(left). The associated, color-coded annual centroid frequency is shown in the center.

The bottom subfigures summarize the wind speed probability distribution at a ref-

erence height of 100 ≤ z ≤ 400 m. We chose this reference height as a proxy for

wind speed at operating altitude, because an a priori estimation is impossible, and

onshore and offshore power curves are almost identical using the average wind speed



120

between these heights as reference. For a detailed description of the WRF model and

setup, the clustering process as well as the correlation between clusters and stability

conditions see [135].
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Figure 5.2: Onshore (left) and offshore (right) annual cluster average wind speed
profiles (centroids) resulting from the k-means clustering process for k = 10 (top).
Underlying WRF simulated wind speed profiles depicted in grey. The centroids are
sorted, labeled and colored in according to average wind speed up to 500 m. The
corresponding cluster frequency f for each cluster C is shown in the center. The
bottom figures show the wind speed probability distribution between reference heights
of 100 ≤ z ≤ 400 m.

5.4 AWES trajectory optimization model

The investigation of the scaling potential of AWESs not only requires understanding

of wind conditions at higher altitudes, but also of AWES power production, which
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is intrinsically linked to the aircraft’s flight dynamics, as the AWES never reaches a

steady state over the course of a power cycle. Hence power output estimation based

on steady-state simplifications are generally not suited for describing the effects of

realistic wind profiles or varying system parameters on the power output over the

entire operational window. However, steady-state engineering models yield a rough

estimate of optimal performance, but do not resolve the highly varying dynamics

and power production during each operating cycle. We make use of optimal con-

trol methods to compute power-optimal, dynamically feasible flight trajectories that

satisfy operation constraints such as flight envelope and structural system limits. A

comparison with the quasi steady-state engineering model can be found in chapter

6 to validate the findings of the highly non-linear optimization problem, which can

only guarantee local optimality.

5.4.1 Model overview

We compute ground-generation AWES power cycles by solving a periodic optimal con-

trol problem which maximizes the cycle-average AWES power output P . In periodic

optimal control, the system state at the initial and final time of the trajectory must

be equal, but are chosen freely by the optimizer. This methodology, implemented in

the open-source software framework awebox [85], is used to generate power-optimal

trajectories for single-wing ground-generation AWES sizes with various wing area,

mass and aerodynamic performance. Table 5.1 summarizes the imposed constraints

for each system design.

The AWES model considers a 6 degree of freedom rigid-wing aircraft model with

pre-computed quadratic lift, drag and pitch moment coefficients, which is controlled

via aileron, elevator and rudder deflection rates. For this scaling study, the Ampyx

AP2 reference model [3, 94] serves as a base from which the aircraft size and mass as

well as aerodynamic coefficients were scaled (see sections 5.4.3 and 5.4.4).

While the ground station dynamics are not explicitly modeled, constraints on

tether speed, acceleration and jerk are implemented to ensure a realistic operating

envelope. For this study a reel-out to reel-in ratio of 2
3

(vout
vin

= 10 ms−1

15 ms−1 ) was chosen.

Maximum tether acceleration l̈max = 10 ms−2 and tether jerk
...
l max = 100 ms−3 were

limited to simulate generator torque constraints.

For a more detailed description of the model and the optimization algorithm see

[135, 84, 29, 19, 71, 67].
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5.4.2 Wind profile implementation

The 2D horizontal wind velocity profiles were clustered into k=10 clusters. Three

representative profiles from each cluster as well as each cluster’s centroid, rotated

such that the main wind direction u points in positive x direction and the deviation

v from it points in positive y direction, were implemented. This assumes omnidirec-

tional AWES operation, which simplifies the comparison of results. We interpolate

the u and v components using Lagrange polynomials to obtain a twice continuously

differentiable function representation of the wind velocity profiles, which is necessary

formulate an optimal control problem that can be solved with the gradient-based

nonlinear programming (NLP) solver IPOPT [152].

5.4.3 System scaling

Aircraft mass m and inertia J are scaled relative to the Ampyx AP2 reference model

[94, 3] according to simplified geometric scaling laws relative to wing span b (see

equation 5.1). The mass scaling exponent κ ranges from 2.7 to 3.3. An exponent

of 3 represents pure geometric scaling, while κ = 2.7 implies positive scaling effects

and weight savings with size, while κ = 3.3 assumes negative scaling. Based on the

wing area, maximum tether force and diameter are scaled while tether speed and

acceleration constraints are kept constant.

Makani’s openly published technical reports describe their M600 SN6 as well as

their MX2 Oktoberkite design, which redesigned the M600 air frame to overcome

some of its shortcomings and produce PMX2 = 600 kW at a wind speed of UMX2−ref =

11 ms−1 at operating height [40]. Note that Makani’s on-board-generation concept

is inherently heavier than the ground-generation concept considered here, because of

propellers, generators and supporting structures. The intended M600 design specified

a mass of 919 kg, which would be equivalent to scaling the AP2 reference aircraft

with a mass scaling exponent of κ = 2.72. The as-built M600 had a wing area of

Awing = 32.9 m2 and a mass mM600 = 1730.8 kg. If we scale the AP2 reference

aircraft to the same wing area and mass, the corresponding mass scaling exponent is

κ = 3.23. The air frame of the improved MX2 design aimed at mMX2 = 1852 kg for

a wing area of AMX2 = 54 m2, equivalent to κ = 2.72 relative to the AP2 reference.

Similarly, WT mass scales with an exponent slightly below 3 based on rotor diameter

[53].



123

mscaled = mref

(
b

bref

)κ
; Jscaled = Jref

(
b

bref

)κ+2

(5.1)

5.4.4 Aerodynamic scaling

Figure 5.3 shows the aerodynamic performance of the wing model, which includes

lift cL (top left), drag cD (top center) and pitch moment cm coefficients (top right)

as a function of angle of attack α, lift over drag (bottom left) and glide ratio as a

function of angle of attack (bottom center). The bottom right figure shows the
c3L
c2D

ratio, defined by Loyd [87], which determines the theoretical maximum power of any

crosswind AWES. A more realistic approximation including the tether drag can be

found in figures 6.1 and 6.2. Modifications to the AP2 aerodynamic reference model

were implemented to assess the impact of improved aerodynamic performance. This

is achieved by shifting the cL, cD and cm according to their theoretical behaviour if

high lift devices, such as flaps and slats, were attached. Makani’s reports mention

two shortcomings of their M600 design were the overestimation of cmax
L and underes-

timation of cD, further justifying this comparison and prompting a more conservative

estimation of practical aerodynamic coefficients. Lift and drag at zero angle of attack

are increased, stall is delayed, and pitch moment decreased. These changes are based

on XFLR5 [1] calculations which estimate the relative change in aerodynamic coeffi-

cients if a leading-edge-slat and trailing-edge-flap are deployed at around 10◦. These

relative changes are then applied to the AP2 reference aerodynamic coefficients for

better comparability. As a result, the pitch moment cm is only shifted While both

wings have comparable optimal glide ratios, the Loyd’s optimal power ratio is almost

twice as high for the high lift wing. This however depends on tether length and tether

diameter as seen in figures 6.1 and 6.2.

Stall effects were implemented for both the AP2 reference model (blue) as well as

the high lift (HL - orange) model by formulating a quadratic lift coefficient function

(see figure 5.3). As a result, the lift coefficients deviate slightly in the linear lift region

at lower angle of attack.
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Figure 5.3: Aerodynamic lift cL, drag cD, pitch moment cm coefficients as a function
of angle of attack for reference AP2 (blue) and high-lift (HL) (orange). Aerodynamic
efficiency metrics: lift over drag, lift to drag ratio and c3

L/c
2
D according to Loyd

[87]. HL is derived by modifying the AP2 reference model, in accordance with the
theoretical, as if high-lift devices, e.g. flaps and slats were attached. A comparison
including tether drag can be found in figures 6.1 and 6.2

5.4.5 Tether model

The tether is modeled as a single solid rod which can not support compressive forces.

This is a good assumption when tether tension is high during the power production

phase of the power cycle. Total tether drag is proportional to tether diameter dtether

and tether length ltether. Both scale with tether tension, assuming a constant tensile

strength, and therefore aircraft size and wind speed (see subsection 5.5.6). The tether

drag is approximated by dividing the tether into multiple elements (here ntether = 15)

and calculating the apparent wind speed at each element individually, assuming a

constant tether drag coefficient of ctether
D = 1. Each elements tether drag is then

equally divided between the two endpoints and finally transferred to either the air-

craft or ground station. However, previous studies have shown that this leads to an

underestimation of total tether drag at the aircraft [84]. Similarly, the total tether

weight Wtether, calculated with a constant material density of ρtether = 970 kgm−3, is

distributed evenly between the aircraft and ground station. The tether length and

therefore tether mass varies significantly during operation and scales with wing area,
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see figure 5.5 in sub-section 5.5.2.

Tether force constraints are chosen such that the system’s rated power is achieved

for a logarithmic wind speed profile with Usizing(z = 200 m) ≈ 10ms−1 (Usizing(100 ≤
z ≤ 400 m) ≈ 10 ms−1), similar to wind at hub height for conventional wind tur-

bines. The tether diameter is calculated assuming a maximum allowable tether stress

σtether = 3.6 · 109 Pa and a safety factor SFtether = 3.

5.4.6 Constraints

As previously mentioned, the AWES model solves an optimal control problem to

maximize average cycle-power. These constraints include system dynamics, material

properties, aircraft and ground station hardware constraints as well as flight envelope

limitations. These limitations contain a minimum operating height zmin
operation as well

as a maximum tether length to maintain safe operation. Additionally, an apparent

flight speed constraint of vapp ≤ 80 ms−1 for all aircraft sizes was imposed to reduce

the mechanical wing load. The maximum tether stress and force, from which the

tether diameter is calculated, together with the periodicity constraint are some of

the most important path constraints. Ground station hardware limitations such as

torque and acceleration dynamics are not explicitly modeled, but implemented as

tether speed, acceleration constraints. A fixed angle of attack α and side slip angle β

range ensures operation within realistic bounds. However, neither angular constraint

is active during flight, because the optimizer tries to achieve an angle of attack close

to the maximum of cL, cD and cm (see figure 5.3). Due to weight and drag effects,

actual angle of attack is closer to α ≈ 10◦ during reel-out for the majority of wind

speeds.

Table 5.1 summarizes constraints and system sizes.

5.4.7 Initialization

The AWES dynamics are highly non-linear and therefore result in a non-convex op-

timal control problem which possibly has multiple local optima. Therefore, the par-

ticular results generated by a numerical optimization solver can only guarantee local

optimality, and usually depend on the chosen initialization The optimization is ini-

tialized with a circular trajectory based on a fixed number of nloop = 5 loops at a 30◦

elevation angle and an estimated aircraft speed of vinit = 10 ms−1. Previous analyses

showed that the convergence of large AWES highly depends on initial tether length.



126

Table 5.1: List of AWES aircraft and tether design parameters for wing areas between
10 and 150 m2 and flight envelop constraints. AP2 data for reference.

Parameter AP2 size 1 size 2 size 3 size 4 size 5 size 6

Aircraft

Awing [m2] 3 10 20 50 80 100 150
cwing [m] 0.55 1.00 1.41 2.24 2.83 3.16 3.87
bwing [m] 5.5 10 14.1 22.4 28.3 31.6 38.7
AR [-] 10 10
mkite(κ = 2.7) [kg] 36.8 185 471 1,624 3,062 4,139 7,155
mkite(κ = 3.0) [kg] 36.8 221 626 2,473 5,005 6,995 12,850
mkite(κ = 3.3) [kg] 36.8 265 830 3,767 8,180 11,821 23,079
α [◦] [-10 : 30]
β [◦] [-15 : 15]

Tether

lmax
tether [m] 2000

l̇tether [ms−1] [-15 : 10]

l̈tether [ms−2] [-15 : 10]...
l

max
tether [ms−3] 20

σtether
max [Pa] 3.6 109

ρtether [kgm−3] 970
dtether(AP2) [mm] 5.5 7.8 12.3 15.5 20 21.7
dtether(HL) [mm] 7.2 10.2 16.1 20.6 23 28.3
Fmax

tether(AP2) [kN] 34 60 136 241 377 456
Fmax

tether(HL) [kN] 46 94 241 416 499 738

flight envelope
zmin

operating [m] 55 60 75 90 100 125
vmax

flight [ms−1] 80

Larger systems become less sensitive to tether drag and hence can drag along a longer

tether, because lift to tether drag ratio scales linearly with wing span. Therefore, ini-

tial tether length is increased linearly with aircraft wing area (see table 5.2).

In order to solve the highly nonlinear optimization problem, an appropriate initial

guess is generated using a homotopy method similar to those detailed in [63, 95].

This technique gradually relaxes the problem from simple tracking of circular loops

to the original nonlinear path optimization problem where the previous result serves

as an initial guess for the following problem. The resulting problem is formulated in

the symbolic modeling framework CasADi for Python [4] and solved using the NLP

solver IPOPT [152] in combination with the linear solver MA57 [73] .

Table 5.2: List of AWES optimization initialization values

Parameter design 1 design 2 design 3 design 4 design 5 design 6

Initialization
Nloops 5
ε [◦] 30
linit
tether [m] 500 535 643 750 821 1000
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5.5 Results

We compare 6 AWES sizes with three different mass properties and two sets of nonlin-

ear aerodynamic coefficients each to investigate the AWES design space and upscaling

potential. Furthermore, we contrast AWES performance at representative onshore

(Pritzwalk in northern Germany) and offshore locations (FINO3 research platform

in the North Sea) based on one year of WRF simulated and k-means clustered wind

data. To that end, we show representative optimized trajectories (subsection 5.5.1)

and compare typical operating altitudes and tether lengths (subsection 5.5.2). We

estimate reaction forces and bending moments based on the assumption of an ellipti-

cal lift distribution (subsection 5.5.3). Subsection 5.5.4 analyses AWES power curves

for each design and determines an AWES power coefficient based on swept area and

wing chord. From this we derive the annual energy production (AEP) in subsection

5.5.5 for each location and system configuration. We examine the predicted power

losses (subsection 5.5.7) due to tether drag. Finally, we establish an upper limit of

the weight to lift ratio and compare tether drag forces in subsection 5.5.6.

5.5.1 Flight trajectory and time series results

Due to the high level of model and problem non-linearity, the solution of the op-

timization algorithm can only guarantee local optimality. However, the generated

trajectories, shown in figures 5.4 and 7 (center) for a representative AWES with a

wing area of Awing = 50 m2 and κ = 3 and seem reasonable, are within the set

constraints, and are consistent with other studies [29, 135]. It is striking that higher

wind speed trajectories above rated power often deviate from the expected trajectory,

which occur at lower wind speeds. The system tries to de-power by moving out of the

wind window, either upwards or perpendicular to the main wind direction, to stay

with in the tether force, tether speed and flight speed constraints, while still max-

imizing average power. Subsection 5.5.2 further analyzes the trend towards longer

tethers and higher operating altitude with increasing wind speed, which can be seen

here as distance from the origin.

The top left sub-figure in figure 5.4 shows the wind speed profiles U over altitude

z (top) with the operating region highlighted in color. Any deviation from the WRF

data in grey is caused by the interpolation with Lagrange polynomials during the

implementation process described in subsection 5.4.2. The hodograph in the bottom

left sub-figure shows a top view of the rotated wind velocity components u and v
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up to a height of 1000 m which follow the expected clockwise rotation with altitude

[139].

The four sub-figures on the right display the lift force FL, tether speed vtether, the

apparent, constrained wind speed vapp and the instantaneous power pcurrent time series

for the corresponding trajectories. Both the production (reel-out) and recovery phase

(reel-in) are clearly distinguishable by the transition to negative tether speed and

power. Total cycle time seems independent of wind speed and solely determined by

the number of loops and tether length used to initialize the optimization. However,

previous investigations showed that AWES power output seems to be insensitive to

both number of loops (here nloop = 5 for all setups) and flight time.

Looking at the periodic nature of the lift force gives an insight into the load

cycles AWES need to withstand during long-term operation. During the production

phase the aerodynamic loads oscillate about a constant base load with a periodicity

of approximately 8 to 15 seconds depending on aircraft size and wind speed which

is comparable to the rotational speed of a conventional wind turbine. Additionally,

aerodynamic loads drop to almost zero during the recovery phase as the aircraft

returns to it’s initial position and the tether is reeled in. Subsection 5.5.3 further

investigates the resulting wing peak loads.

During the production phase tether speed repeatedly drops to zero for an extended

period of time, especially at lower wind speeds. This is caused by insufficient lift dur-

ing the ascent of the aircraft as the system can not produce enough aerodynamic force

to pull the tether and overcome gravity. Simultaneously as a consequence power drops

to zero and ramps up again, following the flight cycle. To alleviate this inherent in-

termittency, buffering the energy or coupling multiple, phase-shifted AWES in a wind

farm setup would be beneficial [91]. The reel-out speed only remains positive during

the entire production phase at higher wind speeds or for aircraft with higher aero-

dynamic lift. During the recovery phase tether speed quickly reaches it’s minimum

of vtether = 15 ms−1 to keep this phase as short as possible and reduce power loss.

The angle of attack remains moderate to stay close to optimal c3
L/c

2
D. The angle of

attack is slightly higher than the theoretical optimum found when including tether

drag (compare figures 6.1 and 6.2) to support the system weight. Note that optimal

α changes with tether length; a longer tether shifts maximum c3
L/c

2
D towards a higher

angle of attack.
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Figure 5.4: Optimal trajectory and time series for a ground-generation AWES with
a wing area of Awing = 50 m2, mass scaling exponent κ = 3 and AP2 reference
aerodynamic coefficients. The left subfigures display representative offshore wind
speed profiles (top), and hodograph of wind velocity up to 1000 m (bottom). The
deviation of the colored lines is caused by the implementation of discrete WRF-
simulated data points using Lagrange polynomials. Trajectories (center) in side and
top view. The right subfigures show aerodynamic lift L, tether speed vtether, angle
of attack α and instantaneous power Pcurrent time series, optimized subject to the
corresponding wind velocity profiles.

5.5.2 Tether length and operating altitude

One of the major value propositions of AWESs is that they can tap into wind resources

beyond the reach of conventional wind turbines. However, the choice of optimal

operating height highly dependents on the wind speed profile and system design. Two

opposing effects influence the optimal operating height. On the one hand, an increase

in altitude is generally associated with an increase in wind speed and therefore power.

On the other hand, higher altitudes require a longer tether which result in higher drag

losses and also increase the elevation angle which increase “cosine” losses caused by

misalignment with the wind direction [33].

Figure 5.5 shows a trend towards longer average tether lengths ltether (top) and

higher average operating altitudes zoperating (center) with increasing system size for

a representative scaling exponent of κ = 3 (see equation 5.1) and wind speed. We

chose Uref to be the average wind speed between 100 m ≤ z ≤ 400 m as we previously
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Figure 5.5: Average tether length ltether (top), average operating altitude zoperating

(center) and average elevation angle ε (bottom) over reference wind speed, averaged
between U ref(100 ≤ z ≤ 400 m). Results for wing areas between Awing = 10− 150 m2

scaled with a mass scaling exponent of κ = 3, AP2 reference aerodynamic coefficients
for both onshore (left) and offshore (right) location.

found that this range is a good proxy for conditions at operating height [135]. Lighter

aircraft and higher lift wings results in slightly higher operating altitudes, a longer

tether and higher elevation angle (compare figure 8 in the appendix). Similar results

can be found in chapter 6 which uses a quasi steady-state engineering model including

a tether drag approximation and elevation angle losses. Figures 6.6 and 6.7 show

similar tether lengths and operating altitudes. Both the engineering model and the

optimization model show an increase in elevation angle and tether length beyond

rated wind speed to de-power the system.

Outliers, e.g. for high wind speed profiles (compare figure 5.2), are likely local

optima of the highly nonlinear trajectory optimization problem described in section

5.4.

As wind speed increases beyond rated power (Uref ≈ 10 ms−1, see figures 5.7 and

9), the aircraft moves out of the wind window to de-power. This is seen as rising
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average elevation angles ε (bottom) above Uref = 10 ms−1. Results for both offshore

(right) and onshore (left) follow the same trends, but operating heights below rated

wind speed are lower offshore because of lower wind shear and higher wind speeds.

It is important to keep in mind that even though the operating height exceeds

500 m for wind speeds of more than Uref ≈ 15 ms−1 such wind speeds occur only

about 10 % of the time (see figure 5.2). Between 5 and 15 ms−1, the most likely wind

speed range, operating heights both onshore and offshore are between 200 to 300 m.

For smaller system sizes these heights are even lower. While this is slightly above

the hub-height of current conventional wind turbines, it rebuts the argument of har-

vesting wind energy beyond this altitude. These findings are consistent with current

offshore WT trends, whose rotor diameter increased significantly while hub height

only increased marginally over the last years. However, it is likely that offshore hub

heights will increase as technology improves, making the argument for the deployment

of AWES particularity challenging as both operate at comparable heights and WT

are the more proven and established technology. However, this might be different for

multiple kite systems which could benefit from longer tethers, due to reduced tether

motion [29].

5.5.3 Reaction forces and moments

We analyze wing loads since detailed design of the aircraft and wing box is beyond

the scope of this paper. Weight is neglected as it is an order of magnitude smaller

than the aerodynamic lift force. We assume an elliptic lift distribution (equation: 5.2

[141]) which results in a normalized line load of l̃, normalized shear force ṼLift and

normalized bending moment M̃Lift. Loads are normalized by their maximum value at

the wing root (l0, V0, M0) to obtain generalized trends independent of wing size.

l = l0

√
1− (ỹ)2 (5.2)

Figure 5.6 visualizes the maximum cycle-average loads at the wing root, which

can be used to scale the normalized load distributions along the wing, for both sets

of aerodynamic coefficients, all three mass scaling exponents κ and aircraft wing area

Awing. Aerodynamic line loads l0 (top) scale favorably with wing area as they only

scale with wing span, while total shear force V0, equivalent to total lift force, scales

linearly with wing area. In contrast, bending moment M0 scales with area and wing

length.
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Higher aerodynamic lift coefficients (HL: circle) result in higher aerodynamic loads

in comparison to the AP2 reference model (AP2: square). Heavier aircraft with higher

mass scaling exponent κ (subsection 5.4.3) also result in higher aerodynamic loads

as they require more lift to ascent which results higher average aerodynamic forces.

Data for an aircraft with an area of Awing = 150 m2 and κ = 3.3 are missing as the

optimization could not find a feasible solution.
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Figure 5.6: Maximum cycle-averaged aerodynamic wing line load l0 (top), shear force
V0 (center) and bending moment M0 (bottom) at the wing root over wing area Awing.
Summarizes data for both sets of aerodynamic coefficients (HL: circle, AP2: square)
and all three mass scaling exponents κ = 2.7, 3, 3.3.

5.5.4 Power curve

This section investigates a representative cycle-average AWES power curve for all

sizes and estimates an AWES power coefficient cAWES
p as a function of swept area. For

visualization purposes, only data for the offshore location, a mass scaling exponent of

κ = 2.7 and HL aerodynamic coefficients are shown here. Other results follow similar

trends. Some can be found in the appendix in figure 9 to 11.

Plotting the cycle-average power P , derived from 3 representative profiles from

each of the 10 wind velocity clusters, over reference wind speed produces typical wind

power curves as seen in figure 5.7 (top). As of now, no standard reference wind speed

Uref , equivalent to wind speed at hub height for conventional WT, has been agreed
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upon for AWES. Furthermore, using this altitude range results in comparable power

curve trends onshore and offshore.

0 5 10 15 20 25 30 35
0

1000

2000

3000

P
[k

W
]

Awing10 Awing20 Awing50 Awing80 Awing100 Awing150
0.00

0.02

0.04

c
A

W
E

S
p

0 5 10 15 20 25 30 35
Uref (100 ≤ z ≤ 400 m ) [m s− 1]

0.00

0.01

0.02

0.03

0.04

c
A

W
E

S
p

/c
w

in
g

[m
−

1
]

Figure 5.7: Power curve (top) over reference wind speed 100 ≤ z ≤ 400 m for AWESs
with Awing = 10−150 m2, mass scaled with κ = 2.7 and HL aerodynamic coefficients.
Data is derived from p5, p50, p95 wind velocity profiles within each of the k=10
offshore clusters. Missing data points are the result of infeasible combination of
optimization constraints and boundary conditions.

Table 5.3 summarizes the rated power P rated for AWES between 10 and 150 m2

scaled with a mass scaling exponent of κ = 2.7. The table also displays the equivalent

WT rotor diameter Dequiv
WT , for an assumed power coefficient of cWT

p = 0.4 and a rated

wind speed of 10 ms−1, as reference. The system size and therefore material cost

benefits of AWES become obvious when comparing AWES wing span bwing to WT

rotor diameter Dequiv
WT . AWES wing span is about 30 (HL) to 40 % (AP2) of the

equivalent rotor diameter.

Table 5.3: Rated AWES power for wing areas between 10 and 150 m2 scaled with
a mass scaling exponent of κ = 2.7. Equivalent wind turbine rotor diameter for an
assumed power coefficient of cWT

p = 0.4 and a rated wind speed of 10 ms−1.

Awing[m2] 10 20 50 80 100 150
bwing[m] 10 14.1 22.4 28.3 31.6 38.7
aerodynamic coeff. AP2 HL AP2 HL AP2 HL AP2 HL AP2 HL AP2 HL

P rated [kW] 145 200 265 420 575 1030 1045 1800 1600 2225 2000 3400

Dequiv
WT [m] 27 32 37 47 55 73 74 97 91 108 102 132

Missing data in figure 5.7 originate from an infeasible combination of constraints

and boundary conditions, mostly related to a heavy aircraft and insufficient wind

speeds. This results in a minimal cut-in wind speed for each system. However, instead

of a gradual increasing from zero, the optimizer finds a feasible solution above cut-

in wind speed with power closer to rated power (see Awing = 80, 100 m2 in figure
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10 or Awing = 150 m2 in figure 5.7). ther studies and the cross comparison to the

engineering model in chapter 6 do not show the delay in cut-in wind speed [120,

145, 127]. This is likely attributed to the fact that the commonly used quasi steady-

state model [87, 128] neglects system mass and does not resolve the full trajectory

(particularly the ascent within each loop of the reel-out phase) and the associated

changes in aerodynamic force. Higher system mass does not seem to affect rated

power, which is determined by tether tension and tether speed constraints (i.e. no

direct generator constraint) only cut-in wind speed. No cut-out wind speed limitations

were implemented. Therefore, wind power is only limited by each location’s maximum

wind speed, which is significantly higher offshore (compare figure 5.2). All system

sizes reach rated power at about Uref = 10 ms−1, because the tether diameter of each

AWES configuration was sized for this reference wind speed (see subsection 5.4.5).

We defined the same tether diameter for both onshore and offshore location. However,

offshore AWES design could benefit from a larger tether diameter as wind speeds are

generally higher (see figure 5.2). This would result in higher rated power and a higher

AEP (see subsection 5.5.5). Higher lift coefficients result in higher rated power and

a steeper power increase up to rated power. Power variations are caused by local

optima mostly occurring above rated wind speed as the system de-powers to stay

within tether force and flight speed constraints (see subsection 5.4.6). The published

manuscript will include an AWES performance comparison using the harvesting factor

defined by Diehl et at. [33].

5.5.5 AEP

We estimate the annual energy production (AEP) and capacity factor (cf) (equation

5.3) from the previously described power curve P (subsection 5.5.4) and annual wind

speed probability distribution f , derived from the histogram of annual wind speeds

seen in the bottom subfigure of figure 5.2.

Rated power Prated is defined from optimization results, as the a priori estimation

of nonlinear, trajectory dependent losses is difficult.

AEP =
k∑
i=1

(
P ifi

)
8760

h

year
cf =

P ifi

Prated

(5.3)

Figure 5.8 compares the impact of aerodynamic efficiency by contrasting the pre-

viously described power curve (top) for AWESs with a wing area of Awing = 50 m2
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and a mass scaling exponent of κ = 2.7. Data for high lift aerodynamic coefficients

are highlighted by a circle while AP2 reference data is marked by a square. Wind

conditions are the p5, p50, p95 percentile onshore (blue) and offshore (orange) wind

velocity profiles for each of the k=10 clusters. The center sub-figure summarizes the

wind speed probability distribution between 100 ≤ z ≤ 400 m which stands in as

a proxy for wind at operating altitude (see section 5.3). As expected, higher wind

speeds are more likely to occur offshore (FINO3) than onshore (Pritzwalk). However,

very high wind speeds above Uref > 18−20 ms−1, beyond the cut-off speed of realistic

wind energy converters, have a very low chance occurrence at both locations. The

resulting annual average energy production distribution E (bottom) reveal a clear

difference between the offshore and onshore energy potential. Better wind conditions

offshore lead result in higher AEP and cf. Higher aerodynamic efficiency increases

rated power and power up to rated wind speed. Therefore, AEP almost doubles for

HL in comparison to the AP2 reference, highlighting the importance of exploring high

lift configurations.

Figure 5.9 compares the AEP and cf estimates for all system sizes scaled with a

mass scaling exponent of κ = 2.7. AEP increases almost linearly with wing area (top),

because power, which is the product of tether force and tether speed, scales with wing

area. Tether force scales linearly with wing area and maximum tether speed is kept

constant throughout all optimization runs. As expected HL aerodynamic coefficients

(circle) outperform the AP2 reference (square). Offshore (orange) AEP and cf is

generally higher than onshore (blue) because higher wind speeds are more likely.

Overall cf (bottom) remains almost unchanged for wing sizes up to Awing = 100 m

and sharply declines for Awing = 150 m, due to the high number of infeasible solutions

at lower wind speeds, equivalent to not being able to fly due to weight (see figure

5.7). The relatively high cf values are caused by the relativity low rated wind speed

of Urated = 10 ms−1. This leads to a design trade-off between generator size relative

to wing area and tether diameter, similar to conventional WT.

Onshore AEP and cf seems to outperform offshore for wing areas larger than

100 m2. This is likely caused by outliers, or wind velocity profile specific local minima,

in the power curve (compare to power curve figure 11 in appendix) before rated wind

speed (vrated = 10 ms−1), where the system seemingly overperforms.

Figure 5.10 compares AEP for a mass scaling exponents of κ = 2.7 to scaling with

κ = 3 and κ = 3.3, both onshore and offshore. Heavy configurations with no feasible

trajectory at any wind speed result in missing data. While smaller systems seem
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Figure 5.8: Representative AWES power curves (top) for both sets of HL (circle) and
AP2 (square) reference aerodynamic coefficients for both onshore (blue) and offshore
(orange) location. The masses of the Awing = 50 m2 wing area aircraft are scaled
according to equation 5.1 with a mass exponent of κ = 2.7. Cycle-average power P
is derived from p5, p50, p95 wind velocity profiles within each of the k=10 WRF-
simulated clusters. A reference height of 100 ≤ zref ≤ 400 m is used as a proxy
for wind speed at operating altitude to calculate the annual wind speed probability
distribution (center). The integral over the annual energy production distribution
(bottom) which is the product of power and wind speed probability distribution,
yields the AEP (legend).

almost unaffected by aircraft weight, mass scaling effects lead to significant reduc-

tion in AEP for larger AWES. This is particularly true for wings with aerodynamic

reference coefficients (AP2, square) and onshore wind conditions. Combining results

from both figure 5.9, which already shows diminishing returns in AEP and cf with

increasing wing area for the lightest, idealized aircraft mass scaling, and figure 5.10,

which predicts that AEP will only decline for heavier mass scaling, conveys that up-

scaling AWES is only beneficial with significant weight reduction. These results hint

at the existence of an upper limit of AWES weight relative to AWES size or lift (see

subsection 5.5.6), which is plausible since mass scales with aircraft volume and lift

scales with aircraft area. Therefore and for compensating power fluctuation caused

by the cyclic nature of ground-generation AWES, it is likely better to deploy multiple
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Figure 5.9: Representative AWES AEP (top) and cf (bottom) over aircraft wing
area Awing scaled according to equation 5.1 with a mass exponent of κ = 2.7. Figure
summarizes data for both sets of HL (circle) and AP2 (square) reference aerodynamic
coefficients as well as both onshore (blue) and offshore (orange) location. Results
are based on the cycle-average power P derived from p5, p50, p95 wind velocity
profiles within each of the k=10 WRF-simulated clusters and wind speed probability
distribution between 100 ≤ zref ≤ 400 m, used as a proxy for wind speed at operating
height.

smaller scale devices rather than a single large-scale system. Determining the ideal,

site-specific AWES size needs to be determined by realistic mass scaling and the local

wind resource.

5.5.6 Weight and drag impact

The most effective AWES concept benefit from increased apparent wind speed during

crosswind flight [87], such as the ground-generation concept investigated in this study.

Such crosswind trajectories, whether circular or figure-of-eight, always include an

ascent during each loop where the aircraft needs to overcome gravity to gain altitude.

This leads to a deceleration and therefore reduction of aerodynamic lift. AWESs with

excess mass fail to overcome weight and drag and can no longer climb.

With an increased wing area, the entire aircraft, particularly the load carrying

structures such as the wing box, need to increase in size and weight in order to
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Figure 5.10: AEP ratio for mass scaling exponent κ = 3 (dashed lines) and κ = 3.3
(dotted lines) relative to AEP of κ = 2.7 over aircraft wing area Awing. Figure
summarizes data for both onshore (blue) and offshore (orange) location as well as
both sets aerodynamic coefficients HL (circle) and AP2 (square). Results are based
on the cycle-average power P derived from p5, p50, p95 wind velocity profiles within
each of the k=10 WRF-simulated clusters. Missing data points indicate that no
feasible solution for any wind velocity profile was found.

withstand increased aerodynamic loads produced. Aircraft mass scales with volume

(maircraft ∼ b3; wing span b), assuming pure geometric scaling without design improve-

ments, while lift force and therefore power only scales with the wing area (Flift ∼ b2).

Similarly, conventional WT power and AEP scales with the rotor diameter square,

while theoretic WT mass scales with the cube of the rotor diameter [59]. However,

comparing both wind energy converters under these assumptions, AWES perform

worse as their flight path degrades with increasing system size and mass. This can

be attributed to the fact that AWES need to produce enough lift to carry their own

weight to operate, while WT are supported by a tower.

These facts limit AWES size. The prevailing wind resource does not improve

enough within the lower parts of the atmosphere to produce sufficient aerodynamic

lift to overcome the increased system drag and weight, associated with larger systems.

Wind speed only increases marginally with height, especially offshore or at times of

unstable of neutral stratification (compare figure 5.2). Furthermore, higher operating

altitudes also lead to increased “cosine losses”, unless offset by a longer tether which

in turn results in more drag and weight. Better aerodynamics or lighter, more durable

aircraft and tether materials can only push this boundary, but not overcome it.

A comparison of tether weight Wtether during the production phase (reel-out) to
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total system weight (Wtotal = Waircraft + Wtether) in figure 5.11 (top) shows that the

tether makes up 10 to 30 % of the entire system weight during these times. Note

that the tether cross sectional area is sized with a safety factor of 3. Tether cross

sectional area mostly scales with aerodynamic force and therefore wing area, while

the aircraft weight scales with a mass scaling exponent κ = 2.7, 3.0, 3.3 which results

in decreasing trend lines. This value is higher for high lift airfoils (circle) as the tether

diameter is larger to withstand the higher aerodynamic forces. For lighter aircraft,

scaled with κ = 2.7 (dash-dotted), the portion of tether weight is higher, because the

tether diameter remains constant while the aircraft mass is lighter.

The bottom sub-figure reveals that tether drag makes up about 15 to 40 % of the

entire system drag during the production phase. Tether diameter dtether and therefore

face area (Aface
tether = dtetherltether) scales beneficially with wing area, leading to the

downward trend. For this evaluation half the simulated tether drag is attributed to

the aircraft and the other half to the ground station. More detailed models could

explore the impact of tether dynamics and tether drag in more detail.
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Figure 5.11: Percentage of cycle-average tether weight W tether to total weight W total

(top) and tether drag Dtether to total drag Dtotal (bottom) during production phase
(reel-out) for all aircraft sizes Awing = 10 − 150 m2, sets of aerodynamic coefficients
AP2, HL and mass scaling exponents κ = 2.7, 3, 3.3 for wind data at the offshore
location.

It is critical for crosswind AWES to ascend during each loop of the production

or reel-out phase. The aircraft needs to produce enough aerodynamic lift, which
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decreases as the aircraft slows down during ascent (compare 5.4), to overcome gravity

and maintain tether tension. The top sub-figure in figure 5.12 contrasts the AWES

equivalent of the aeronautic load factor, here defined as the ratio of average lift force

Lwing to total AWES weight W total, including aircraft and tether mass (cross sectional

safety factor of 3), during the reel-out phase for all aircraft sizes Awing = 10−150 m2,

mass scaling exponents κ = 2.7, 3.0, 3.3 and aerodynamic coefficients HL, AP2. The

average load factor decreases from about 10 - 20 to 10 - 5, depending on aerodynamic

performance and mass scaling, which is approximately the maneuvering load factor

of an acrobatic airplane nacrobatic = 6.0 [52]. For utility airplanes this value is about

nutility = 4.4. The beneficial effect of better aerodynamics and mass scaling are clearly

visible in a higher lift to weight ratio. High system mass with insufficient lift on the

other hand leads to infeasible solutions and missing data.

The bottom sub-figure of figure 5.12 shows a slight increase of average lift Lwing

to total average drag Dtotal (including tether drag) ratio with increasing wing area.

Overall however, this ratio remains almost constant around 14 - 15. The decrease

for Awing = 100, 150 m2, κ = 3 and AP2 aerodynamics is likely caused by local

optimization minima and few feasible wind speed profiles. For this investigation half

the tether drag is assigned to aircraft and the other half to ground station.

No feasible solution of too heavy aircraft lead to missing data points. For example,

no feasible solution could be found for a large-scale aircraft with an area of Awing =

150 m2, scaled with the lightest mass scaling exponent of κ = 2.7, and AP2 reference

aerodynamic coefficients at low wind speeds Uref < 5 ms−1. This can be seen in

figure 5.13 which shows the average lift Lwing to total weight W total, including tether

and aircraft, ratio for all aircraft sizes with AP2 reference aerodynamic scaled with

κ = 2.7 over reference wind speed . Lift to weight ratio increases up to Uref ≈
5 ms−1, above which it remains almost constant. This can likely be attributed to the

applied apparent flight speed constraint of Umax
app = 80 ms−1 which seems to already be

achieved at this reference wind speed. These data suggest that the minimum viable

load factor is about 5 (equivalent to a maximum viable weight to lift ratio of 20 %)

for the given flight speed constraint.

The bottom subfigure of figure 5.13 shows the lift Lwing to total drag Dtotal, in-

cluding tether drag, ratio over reference wind speed for all aircraft sizes scaled with

κ = 2.7 and AP2 reference aerodynamic coefficients. Data for all aircraft sizes show a

similar trend with the lift to drag ratio halving from about 20 to 10. The lift to drag

ratio is higher than the drag estimated with equation 6.3 in chapter 6. This is likely
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Figure 5.12: Load factor or lift Lwing to W total ratio (top) and cycle-average total lift
Lwing to drag Dtotal, including tether drag, (bottom) during production phase (reel-
out) for all aircraft sizes Awing = 10− 150 m2, sets of aerodynamic coefficients AP2,
HL and mass scaling exponents κ = 2.7, 3, 3.3 for wind data at the offshore location.
Large-scale results for Awing = 100, 150 m2 might be misleading because only high
wind speeds result in feasible solutions (compare figures 5.13).

a result of the simple tether drag model used in the optimization model which was

found to underestimate tether drag [84]. However, both models need to be validated

against measurements. This decrease is primarily caused by longer tether lengths

at higher wind speeds (compare figure 5.5), which results in more drag and weight.

Heavier system weight also leads to an angle of attack α increase as the aircraft needs

to produce more lift.
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Figure 5.13: Ratio of cycle-average lift Lwing to total weight W total (top), including
tether weight, and cycle-average lift Lwing to total drag Dtotal, including tether drag,
(bottom) during production phase (reel-out) for all aircraft sizes Awing = 10−150 m2

for AP2 reference aerodynamic coefficients and a mass scaling exponent of κ = 2.7
over reference wind speed at the offshore location.

5.5.7 Power losses

Increased aircraft wing area not only leads to increased power potential, but is also

accompanied by increased tether losses due to weight and drag. Tether mass scales

with aircraft wing area, because higher aerodynamic force requires a larger tether

diameter, assuming constant tensile tether strength. Tether length increases with

AWES size and wind speed (see subsection 5.5.2) which further increases tether drag

and weight.

Figure 5.14 compares the average power loss associated with tether drag P
drag

tether,

relative to average cycle power P for all aircraft wing sizes Awing = 10 − 150 m2,

mass scaling exponents κ = 2.7, 3.0, 3.3 and both sets of aerodynamic coefficients

(HL, AP2). The relative tether drag loss decreases with wing area, because tether

diameter scales beneficially with the square root of the tether force which scales

linearly with wing area (Ftether ∼ Atether ∼ dtether).This scaling trend is encouraging,

but counteracted and dominated by increasing tether and aircraft mass with wing

area, highlighted in earlier sections. As expected, the high lift airfoil HL (dotted

lines) experiences less relative drag loss than the AP2 reference airfoil (dashed lines),
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due to higher average cycle power.
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Figure 5.14: Ratio of cycle-average power losses due to tether drag P
drag

tether to avearge
produced power P over aircraft size Awing for both sets of aerodynamic coefficients
AP2, HL, all mass scaling exponent of κ = 2.7, 3.0, 3.3 and wind data at the offshore
location.

5.6 Summary and conclusion

This study presents AWES scaling trends and explores the AWES design space sub-

ject to representative onshore (Pritzwalk in northern Germany) and offshore (FINO3

research platform in the North Sea) wind conditions. We evaluate the impact of wing

area and mass scaling as well as nonlinear aerodynamic properties on optimal trajec-

tories, reaction forces and moments, power generation and AEP, based on the awebox

power and trajectory optimization model. Our analyses estimate a maximum average

weight to average lift ratio (equivalent to a load factor of about 5) to allow viable

AWES operation of about 20 %. Our results imply the existence of an upper limit of

AWES weight relative to AWES size or lift, which is plausible since mass scales with

aircraft volume and lift scales with aircraft area. In comparison, conventional WT

power scales with the square and mass with the cube of the rotor diameter. Under

the same assumptions AWES performance scales worse because the aircraft needs to

carry its own increasing weight, instead of being supported by a tower. Therefore,

the optimal AWES size is always defined by the maximum weight which the aircraft

can support, subject to local wind conditions.

In this work we described and analyzed ground-generation AWES scaling effects
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subject to realistic wind velocity profiles for a set of representative AWES. We com-

pare the impact of several design parameters based on the Ampyx AP2 reference

model. We analyze AWES performance for two sets of nonlinear aerodynamic coeffi-

cients, the AP2 reference and a wing with high lift airfoil. To assess AWES scaling

potential, several wing areas between Awing = 10 − 150 m, with mass properties

scaled according to a geometric scaling law with three different mass scaling expo-

nents κ = 2.7, 3.0, 3.3, were implemented into the awebox power and trajectory

optimization toolbox. A representative set of k-means clustered onshore and offshore

wind velocity profiles, derived from the mesoscale WRF model, were used to define

wind inflow conditions.

We discussed the impact of mass and system size on typical trajectories and time

series data which confirms that instantaneous power can drop to zero during the reel-

out phase. This is caused by insufficient lift as the aircraft tries to overcome gravity

and maintain tether tension. The minimum wind speed to sustain positive power

production during the reel-out phase as well as tether length and average operating

altitude increase with system size and weight. However, operating heights beyond 500

m are rare and mostly occur as the system de-powers above rated wind speed to stay

within tether force and flight speed constraints. As these constraints become active,

the resulting trajectory deforms and diverge from the expected paths seen for lower

wind speeds. This is especially true for high lift airfoils as they reach these limits

faster. Since detailed design and stress analysis is beyond the scope of this paper,

we limit ourselves to the estimation of maximum mechanical wing loads, assuming a

elliptical lift distribution. Shear force scales linearly with wing area, while bending

moment increases nonlinearly with wing area and wing span.

Analyzing the AWES power curve we determine that rated power scales linearly

with wing area, assuming that tether speed constraint are kept constant and the tether

diameter is adjusted appropriately. We chose to size the tether diameter so that rated

power is achieved at about Uref = 10ms−1, independent of size, mass and location.

A larger tether diameter would increase rated power and shift rated speed towards

higher wind speeds, which might be beneficial for faster offshore wind conditions, but

would impact tether drag and weight. Improving aerodynamic efficiency increases

power production. For the sets of aerodynamic coefficients used in this study, average

power increased by approximately 30% to 80 %, depending on wing area. We estimate

AEP and cf based on the power curve analysis and wind speed probability distribution

at reference height between 100 ≤ zref ≤ 400 m. Offshore AEP is generally higher
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than onshore, while the power curves are almost identical even though clustered

profiles differ, due to higher wind speeds. Increased aircraft mass leads to significant

reduction in AEP, as lower wind speeds become infeasible to fly in until finally no

feasible solutions, even at higher wind speeds, can be found. This is particularly true

for the onshore location and AP2 reference aerodynamics, as these conditions do can

not produce sufficient lift force to overcome system weight. Wind farm setups might

therefore benefit from the deployment of multiple smaller AWES rather than few

large-scale AWES. This could also reduce the overall power loss when synchronizing

the flight trajectories of AWESs within a farm. Determining the ideal, site-specific

AWES size needs to be determined subject to realistic mass scaling, the available area

and the local wind resource.

Furthermore, we describe the tether contribution to total weight and drag relative

to aircraft wing size as well as tether-associated power losses. Our results show that

even though relative tether power losses decrease with wing size, they still use up

a significant portion (20 - 60 %) of the average mechanical AWES power. Realisti-

cally these numbers could be even higher as previous studies found that the model

underestimates tether drag [84].

Lastly, we try to determine the maximum AWES weight to lift ratio. Our data

shows that total AWES weight, including tether and aircraft, should not exceed 20

% of the produced aerodynamic lift to operate. The limitation of crosswind AWES

operations seems to be the upward climb within each loop. During this ascent the

aircraft decelerates by approximately 20%- 25%, which reduces aerodynamic lift by

about 35% - 45%, which could be offset by the deployment of additional high-lift

devices. As a result the system can not produce enough lift to overcome gravity and

maintain tether tension, leading to a reduction in tether speed and produced power

up until a complete drop to zero for lower wind speeds.

5.7 Future work

Defining the AWES design space subject to realistic wind conditions and operating

constraints is crucial for scaling this technology for large-scale deployment of grid-

integration. We therefore propose to build upon this study and further investigate the

design space using design optimization. A possible approach is to utilize the already

existing AWES power and trajectory optimization toolbox awebox and implement

it into a design optimization framework that varies parameters such as aspect ratio,
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wing area and wing box dimensions. Adding a cost model would allow to optimize for

levelized cost of electricity. Analyzing the dynamic aircraft wing loads caused by the

cyclic nature of crosswind AWES and turbulence could improve AWES durability and

further explore AWES design by considering fatigue loads to explore wing concepts

to minimize κ. Ultimately, AWES must compete with conventional wind. Scaling

and moving offshore are logical goals for both technologies. The relative merits of

large-scale AWES must be further explored to set design and development targets,

particularly since this study highlighted that offshore AWES are not particularly

beneficial relative to conventional wind, given the generally lower shear offshore.
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Chapter 6

Cross comparison between quasi

steady-state and dynamic

optimization model

This chapter presents an approximation of the theoretical power and optimal altitude

of ground-generation AWES based on a quasi steady-state model (QSS) and clustered

onshore and offshore wind speed profiles. The derived estimates are compared against

dynamic optimization results derived from the dynamic awebox model in chapters 4

and 5. They furthermore put the simplified power estimates in chapter 2 and 3, which

do not include tether drag, into perspective. The omission of tether drag in chapter 2

and 3 results in a glide ratio of cL/cD = 28 which is very high and not representative

of realistic AWES. Including tether drag leads to an effective glide ratio between 8

and 15, depending on tether diameter, tether length, wing area and lift coefficient

(see figures 6.1 and 6.2). Including tether drag in turn yields more realistic height

and power estimates. However, this model does not include gravity or inertia effects

of the aircraft or tether. It also does not resolve the AWES trajectory. Considering

these effects would further reduce power and operating altitude.

6.1 Quasi steady-state engineering model with

tether drag

We estimate optimal power production, tether length and operating heights using a

quasi-steady state model (see equation 6.2) adapted by Schmehl et al. [128] to include
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misalignment losses, based on Loyd’s crosswind approximation [87]. Wing and tether

mass are neglected in this simplified model. The tether speed vt is nondimensionalized

as the reeling factor (f = vt
U

) with an optimal value of fopt = 1
3

cos θ cosφ. We consider

quasi-steady state with the wing moving directly cross-wind with a zero azimuth angle

φ = 0 relative to the wind direction. Tether drag is included in the total AWES drag

coefficient cD,total according to a simplified estimation 6.3 [72, 7, 146, 128].

cR =
√
c2

L + c2
D,total (6.1)

Popt =
ρair(z)

2
U(z)3cR

(
cR

cD,total

)2

fopt (cos θ cosφ− fopt)
2 (6.2)

Equation 6.2 estimates optimal power Popt as a function of wind speed U at alti-

tude z and the resultant aerodynamic force coefficient cR (see equation 6.1), which is

calculated from the aerodynamic lift cL and total drag coefficient cD,total. Maximizing

c3
R/c

2
D,total in turn maximizes Popt. A linear approximation of the standard atmosphere

yields air density ρair(z) at altitude z [24] (ρair(z) = 1.225 kgm−3− 0.00011 kgm−4z).

Elevation angle θ = arcsin( z
ltether

) is derived from altitude z and tether length ltether.

6.2 Aerodynamic tether drag

The total drag coefficient cD,total determines the air resistance of the entire AWES in

crosswind motion. It highly depends on the tether diameter dtether and length ltether,

as well as the wing area Awing. The aerodynamic drag coefficient of the wing cD,wing is

defined by the wing shape. We consider a cylindrical tether with constant diameter

and an aerodynamic tether drag coefficient cD,tether of 1.0. The tether drag coefficient

could even be higher for braided tethers. For the sake of simplicity, tether slope is

not considered in the drag calculation, which leads to an over estimation of tether

drag. A more accurate tether model would further include the wind speed variation

with height. Assuming a uniform wind, the line integral along the tether results in a

total effective drag coefficient of [72, 7, 146]:

cD,total = cD,wing +
1

4

dtetherltether

Awing

cD,tether (6.3)

Figures6.1 and 6.2 depict the effect of tether drag on the AP2 and high lift (HL)

aircraft, which were introduced in sub section 5.4.4, with an illustrative tether length
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of ltether = 500m. Each set (highlighted by a different maker) corresponds to a wing

area between Awing = 10−150m2 and tether diameter (see section 5.4.5). Tether drag

is independent of angle of attack and is therefore added to the zero-lift drag coefficient

c0. Larger AWES are less impacted by additional tether drag and their effective

glide ratio cL/cD,total (bottom center sub-figure) decreases less, because of beneficial

scaling with wing area. Similarly, smaller AWES experience a higher decrease of the

aerodynamic coefficient term c3
R/c

2
D,total in equation 6.2 (bottom right sub-figure) than

larger systems, assuming a constant tether length.
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Figure 6.1: Ampyx AP2 reference wing (AP2) aerodynamic lift cL and drag cD,total

coefficients, including tether drag according to equation 6.3, for a 500 m long tether
ltether with varying tether diameter dtether and wing area Awing (see chapter 5, table
5.1). Pitch moment cm coefficients as a function of angle of attack. Aerodynamic
efficiency metrics: lift over drag, lift to drag ratio and c3

R/c
2
D,total according to Loyd

[87].
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Figure 6.2: high lift wing (HL) aerodynamic lift cL and drag cD,total coefficients,
including tether drag according to equation 6.3, for a 500 m long tether ltether with
varying tether diameter dtether and wing area Awing (see chapter 5, table 5.1). Pitch
moment cm coefficients as a function of angle of attack. Aerodynamic efficiency
metrics: lift over drag, lift to drag ratio and c3

R/c
2
D,total according to Loyd [87].

In comparison to the aerodynamic coefficients without tether drag shown in figure

5.3, the optimal glide ratio is about 25− 50% lower and c3
R/c

2
D,total is about 30− 70%

lower, depending on wing area. However, this effect is significantly smaller for large

systems with a short tether length and much higher for small systems with a very

long tether. Figure 6.3 shows the tether drag to total drag ratio for both sets of aero-

dynamic coefficients and representative tether lengths of ltether = 250, 500, 1000 m.

Tether diameter is chosen according to wing area defined in tables 6.1 and 5.1 (com-

pare section 5.4.5). Figure 5.11, which shows the tether drag to total drag ratio

calculated by the dynamic optimization awebox model, follows a similar trend. Re-

sults determined by the dynamic optimization are lower than the ones shown here,

which could be attributed to the fact that the awebox underestimates total tether drag

at the aircraft, because the model divides the tether drag of each segment equally

between the segment’s two endpoints, which underestimates the effective moment on

the aircraft [84]. However, it needs to be acknowledged that the tether length in the

dynamic optimization model varies considerably between 250 and 1000 m (see figure

5.5). It can be concluded that tether drag contributes a considerable amount to the

total drag of AWES and should be considered.
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Figure 6.3: Tether drag cD,tether to total AWES drag cD,total based on simplified tether
drag estimate (equation 6.3) for all aircraft sizes Awing = 10 − 150 m2, sets of aero-
dynamic coefficients AP2, HL

Table 6.1: Design parameter (as in tables 5.1 and 5.3) defined in section 5.4 used in
the QSS power estimate (equation 6.2) and tether drag estimate 6.3

Aerodynamic Parameter Awing [m2]
coefficients 10 20 50 80 100 150

AP2
dtether [mm] 5.5 7.8 12.3 15.5 20 21.7
Prated [kW] 145 265 575 1045 1600 2000

HL
dtether [mm] 7.2 10.2 16.1 20.6 23 28.3
Prated [kW] 200 420 1030 1800 2225 3400

6.3 Operating altitude and maximum power

This section compares the maximum power, based on the previously described quasi-

steady state model and the analytic tether drag approximation, subject to clustered

wind speed profiles described in section 5.3. The performance of Awing = 20 and

Awing = 50 m2 AWES with AP2 and HL aerodynamic coefficients (compare figures

6.4 and 6.5) subject to ten onshore and offshore cluster centroids (compare section

4.4.1) are investigated here. Tether length is varied between 250 and 1000 m and

angle of attack α is fixed to always maximize c3
R/c

2
D.total. No maximum tether force
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constraint is applied, but tether diameter is sized according to section 5.4.5 and tables

6.1 and 5.1 to determine effective cR and cD,total including the tether. As a result,

the figures display theoretical power higher beyond rated power (compare table 6.1),

which is highlighted by a red, vertical line. We therefore assume that the AWES will

change its operating altitude or reduce its angle of attack to maintain rated power

(intersection of black lines and red line). Additional results can be found in figures

13 and 14 in the appendix.

In contrast to similar analyses in sections 2.6 (figure 2.20) and 3.5.7 (figure 3.11),

the inclusion of tether drag significantly penalizes tether length. This results in

drastically shorter optimal tether lengths, lower operating heights and lower power

output. At the offshore location, the shortest tether of only 250 m seems to be the

most beneficial at all wind speeds, due to low wind shear and higher wind speeds.
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Figure 6.4: Optimal power (black lines) and optimal operational altitude of an
Awing = 20m2 AWES with AP2 reference aerodynamic coefficients, estimated based
on equation 6.2 including tether drag (equation 6.3 for 10 k-means-clustered on-
shore wind speed centroids (blue line, compare section5.3) for varying tether length
(ltether = 250 − 1000 m). Rated power and tether diameter are defined according to
section 5.4.5 and table 6.1.
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Figure 6.5: Optimal power (black lines) and optimal operational altitude of anAwing =
50m2 AWES with HL aerodynamic coefficients, estimated based on equation 6.2 in-
cluding tether drag (equation 6.3 for 10 k-means-clustered offshore wind speed cen-
troids (blue line, compare section5.3) for varying tether length (ltether = 250−1000 m).
Rated power and tether diameter are defined according to section 5.4.5 and table 6.1.

6.4 Power curve

This section defines AWES power curves using the quasi-steady state model (equation

6.2) including tether drag (equation 6.3). Aircraft size, tether diameter, minimal

operating altitude and force constraints are adopted from section 5.4.1. Angle of

attack α is fixed to maximize c3
R/c

2
D,total. Optimal tether length is chosen to maximize

power production for a given wind speed profile. Multiple wind velocity profiles,

chosen based on wind speed within each of the k=10 clusters (here p5, p25, p50, p75

and p95), were used to derive these power curves. Once maximum tether force and

rated power are reached, operating altitude and tether length are adjusted to stay

within this constrained. This is achieved by searching the predicted power closest

to rated power, which leads to a slight variation in predicted power at high wind

speeds. Varying angle of attack and a more sophisticated optimization would offset

this fluctuation.

Figure 6.6 shows model data for AWES with a wing area between 10 and 150 m2,

AP2 reference aerodynamic coefficients and power constraints according to section

5.4.1. Similarly, figure 6.7 shows results for the offshore location and AWES with
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HL aerodynamic coefficients. The QSS modeled power curves achieve rated power

at around Urated(100 < zref < 400) ≈ 7ms−1, in comparison to awebox results at

Urated(100 < zref < 400) ≈ 10ms−1, even though tether drag is higher. This is likely

caused by the fact that the engineering model predicts optimal power production,

whereas the dynamic optimization model actually resolves the flight trajectory and

the varying instantaneous power within each production cycle. For example, the

ascent within each loop of the production phase leads to a reduction in apparent wind

speed and aerodynamic forces and therefore power, is not resolved in the engineering

model. Since the engineering model neglects mass, cut-in is not delayed as was found

in figure 5.7 in section 5.5.4, which suggests that both gravity and tether drag are

significant and need to be considered when assessing AWES performance. Tether

lengths and operating height show similar values and trends, with height and length

increasing to de-power the system at wind speeds beyond rated wind speed, as seen

in figure 5.5.
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Figure 6.6: AP2 onshore; quasi-steady state model-estimated power curve PLoyd (top),
tether length ltether (second from top), operating height zLoyd (third from top) and
harvesting factor ζ (bottom) over reference wind speed 100 ≤ z ≤ 400 m for AWESs
with Awing = 10− 150 m2 and AP2 reference aerodynamic coefficients. Data is based
on p5, p25, p50, p75, p95 wind speed profiles within each of the k=10 onshore clusters
and derived from a simple search for optimal power closest to rated power defined in
table 6.1.
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The bottom sub-figure in figures 6.6 and 6.7 presents the harvesting factor ζ [33],

the AWES equivalent to cp for conventional wind turbines:

ζ =
P

Parea

=
Popt

1
2
ρairAwingU(z)3

≤ 4

27
cR

(
cR

cD

)2

(6.4)

Here the optimal power Popt from equation 6.2 is set in relation to the total wind

power of a cross sectional area of the same size as a given wing Awing. U(z) is the wind

speed and ρair(z) the air density at operating altitude, defined according to section

6.1 [24].

The harvesting factor remains constant up to rated power, because α is set to

maximize c3
R/c

2
D,total and tether length remains constant. Beyond rated power ζ de-

creases to stay within the power constraint. The harvesting factor analysis will be

added to the published papers in chapter 4 and 5 and compared to this engineering

model after submission of this thesis.
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Figure 6.7: HL offshore; quasi-steady state model-estimated power curve PLoyd (top),
tether length ltether (second from top), operating height zLoyd (third from top) and
harvesting factor ζ (bottom) over reference wind speed 100 ≤ z ≤ 400 m for AWESs
with Awing = 10 − 150 m2 and HL aerodynamic coefficients. Data is based on p5,
p25, p50, p75, p95 wind speed profiles within each of the k=10 onshore clusters and
derived from a simple search for optimal power closest to rated power defined in table
6.1.
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6.5 AEP estimate

This section estimates annual energy production (AEP) and capacity factor (cf)

(equation 6.5) to compare results found in section 5.5.5. Power PLoyd is obtained

from the previously described power curves (subsection 6.4) and annual wind speed

probability distribution f is derived from the histogram of annual wind speeds be-

tween 100 and 400 m for each cluster (see bottom sub-figure of figure 5.2). Rated

power Prated is defined in chapter 5 and summarized in table 6.1.

AEP =
k∑
i=1

(PLoyd,ifi) 8760
h

year
; cf =

AEP

Prated8760 h
year

(6.5)

Figures 6.8 and 15 compare the previously described power curves (top) for AWESs

with a wing area of Awing = 20, 50 m2. Data for high lift aerodynamic coefficients HL

are highlighted by a circle while AP2 reference data is marked by a square. The wind

speed probability distributions between 100 ≤ z ≤ 400 m for both locations (onshore:

blue; offshore: orange) are shown in the center sub-figure. The resulting annual

energy distributions ELoyd (bottom) reveal a clear difference between the offshore

and onshore energy potential and highlight the impact of aerodynamic efficiency.

AEP and cf predictions are similar to results of the dynamic optimization model in

figure 5.8 (section 5.5.5). However, due to neglected mass, rated power is achieved

at about ULoyd
rated ≈ 8 ms−1 for a tether that was sized with a rated wind speed of

Uawebox
rated ≈ 10ms−1. As a result, the engineering model predicts about 10% higher

AEP and cf.
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Figure 6.8: QSS model-based AWES power curves (top) for an AWES wing area of
Awing = 50 m2, both sets of HL (circle) and AP2 (square) reference aerodynamic
coefficients and both onshore (blue) and offshore (orange) location. Optimal power
P Loyd is derived from p5, p25, p50, p75, p95 wind speed profiles within each of the
k=10 WRF-simulated clusters. A reference height of 100 ≤ zref ≤ 400 m is used
as a proxy for wind speed at operating altitude to calculate the annual wind speed
probability distribution (center). The integral over the annual energy production
distribution (bottom) which is the product of power and wind speed probability
distribution, yields the AEP (legend).

Figure 6.9 visualizes the predicted AEP over wing area for both sets of aerody-

namic coefficients and both locations. The stead-state model yields approximately

10 − 20% higher AEP and about 0.1 higher cf, in comparison to results found by

the dynamic optimization model in figure 5.8 in section 5.5.5. Both figures show an

almost linear increase of AEP with wing area, as expected. The engineering model

does not include AWES weight, but predicts a slightly higher drag than the awebox

model. These effects partially compensate each other and, together with the lack

of resolved system dynamics, which lead to significant variation in power along the

AWES trajectory, lead to a higher energy prediction.
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Figure 6.9: QSS model-based AWES AEP (top) and cf (bottom) over aircraft wing
area Awing. Figure summarizes data for both sets of HL (circle) and AP2 (square)
reference aerodynamic coefficients as well as both onshore (blue) and offshore (orange)
location. Results are based on the cycle-average power P Loyd (equation 6.2) derived
from p5, p25, p50, p75, p95 wind speed profiles within each of the k=10 WRF-
simulated clusters and wind speed probability distribution between 100 ≤ zref ≤
400 m, used as a proxy for wind speed at operating height.

6.6 Conclusion

This chapter compares optimal power, operating heights, AEP and cf of a quasi

steady-state (QSS) model including tether drag and misalignment losses to results

of the dynamic awebox optimization model. The same AWES sizes with wing areas

Awing between 10 and 150 m2 and tether diameter sized, using the dynamic model,

for a rated wind speed of 10 ms−1 were modeled (see section 5.4.3). The simplified

tether model predicts a higher total system drag (figure 6.3) than the dynamic model

(figure 5.11). This can be attributed to an over simplified tether model, which does

not include tether slope and neglects tether slope, but also supports previous research,

which found that the awebox model underestimates tether drag [84].

Both produce consistent, more realistic AWES performance in comparison to sim-

ple estimates without tether drag (see sections 2.6 and 3.5.7). Tether length is penal-
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ized and as a result optimal tether length and operating height decreases significantly.

In the offshore case, shown in figure 6.5, the optimal operating heights are well be-

low 200 m with the shortest tether length of 250 m. The predicted power curves

of the QSS model (figure 6.6) achieve rated power at about 8 ms−1, whereas the

dynamic model reaches rated power at 10 ms−1 (figure 5.7), even though the QSS

model predicts higher effective system drag. A likely explanation is that system mass,

which is not considered in the simplified QSS model, plays a significant role in AWES

performance and both tether drag and mass effects offset each other. Because the

engineering model neglects system mass and does not resolve the dynamic changes

along the trajectory, it can not reproduce the delay in cut-in wind speed related to the

system struggling to overcome gravity as it ascents within each loop of the reel-out

phase (compare section 5.5.4). AEP and cf are about 10 % higher than the dynamic

model due to lower rated wind speed.

Including tether drag in the quasi steady-state model reduces predicted perfor-

mance significantly and yields more realistic results than when tether drag is ignored.

For this reason the QSS model is an adequate choice for a first AWES performance

estimate. However, this model still over predicts AWES performance, as it does not

include system mass and does not resolve changing AWES performance along the tra-

jectory. Therefore, the usage of a higher fidelity model is justified for a more detailed

analysis and avoidance of errors from unmodelled effects.
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Chapter 7

Assumptions, conclusions and

future work

Section 7.1 contextualizes the previously described results by considering the under-

lying assumptions. Section 7.2 summarizes the thesis and draws final conclusions.

Finally, future research is proposed in section 7.3.

7.1 Modeling assumptions and contextualisation

The question, whether AWES can increase the share of renewable energy and con-

tribute to global decarbonization targets, motivated this research. To achieve this

goal, AWES need to scale-up from small-scale demonstrator to fully autonomous,

multi-megawatt, utility-scale devices, that are able to interconnect in wind farms.

The methodology to determine optimal AWES performance and scalability fol-

lows a ground up approach. We start by describing the wind resource, followed by

AWES modeling and formulation of the power optimization problem, and finally an

exploration of the AWES design space. LiDAR measurements are location and time-

specific, subject to varying data availability, as well as spatial and temporal averaging

(section 2.3). Results and conclusions obtained from WRF simulations (section 3.4),

as well as the awebox optimization are highly model-dependent (section 4.5). Flight

trajectories and power production are the solution of a nonlinear optimal control prob-

lem, with interpolated, clustered and modeled wind velocity profiles. The number of

clusters and implemented profiles from within each cluster is arbitrary, but delivered

adapted results at comparably low computational cost. These profiles, while assumed
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to be representative of onshore and offshore conditions, are ultimately only examples

of two specific locations and years. They therefore describe an ideal, or at least a local

optimum, subject to imposed constraints and model assumptions, and not necessar-

ily a fully realistic solution. It is unlikely that such power generation performance

can be achieved in practice, given that disturbances such as gusts and turbulence,

incomplete information of current wind conditions and misalignment with the wind

direction, control limitations and estimation errors, will reduce actual performance.

Real AWES might be heavier or aerodynamically less efficient than in this model.

Furthermore, the mesoscale model used in this work has been shown to overpredict

onshore wind speeds, due to not properly resolved sub-grid scale roughness elements

and overly geostrophic winds [99], as a result of flaws in the planetary boundary layer

model. This thesis therefore, characterizes the upper limit of AWES power produc-

tion. Additional energy consumption during take-off and landing as well as supplying

on-board and on-ground measurement devices and actuators have not been taken into

account. Mechanical load limitations will impose cut-out constraints during times of

very high wind speeds, further decreasing annual energy production and capacity

factor.

As with all renewable energy sources, AWES power generation is highly resource

dependent, justifying and necessitating the analysis of wind conditions above com-

monly investigated altitudes. An analysis of long-range, pulsed wind LiDAR data

gathered up to an altitude of 1000 m at an onshore site in northern Germany, re-

vealed decreasing data availability with height as one of the main difficulties of AWES

wind resource assessment (chapter 2). Data availability dropped to about 25 % at

1000 m, because of reduced aerosol content, cloud cover and precipitation. Diurnal

surface heat flux variation impacts data availability aloft, which biases the statistical

characterization of measured wind conditions. To overcome some of these limitations

and circumvent time-consuming and expensive, long-term LiDAR measurement cam-

paigns, we used WRF mesoscale simulations to complement the measurements and

expand the investigation to an offshore location (chapter 3 and 4). These models

resolve the simulation domain at a higher resolution than reanalysis data used in

other studies [126, 93], and are able to capture synoptic changes, but can not resolve

high frequency fluctuations on second, or sub-second scale. However, it needs to be

acknowledged that WRF does not resolve changes below about 5 minutes, which is

the approximated advection timescale for the inner domain with a horizontal grid

resolution of 3 by 3 km and a wind speed of 10 ms−1. The vertical resolution of 60
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hybrid pressure heights decreases with altitude from about 20 m close to the surface

to more than 70 m above a height of 700 m. To improve the wind resource predic-

tion, LiDAR measurement were implemented into the WRF model using observation

nudging. This methodology nudges the simulation via a non-physical forcing term

towards observations, which were implemented every 6 hours to not overly restrict the

simulation. As a result, the nudged results were statistically closer to measurements,

while accuracy of a few individual days decreased. Both the unnudged and nudged

simulation overpredict horizontal wind speeds at low-altitudes, but observation nudg-

ing improves the overall correlation with measurements at higher altitudes, as surface

influence decays.

Power prediction and trajectory optimization (chapter 4 and 5) in this work are

based solely on modeled wind data, because of insufficient data availability at relevant

altitudes and measurements being hard to find, proprietary or confidential . To reduce

the computational cost both onshore and offshore wind velocity profiles were grouped

into to individual sets of clusters, using a k-means clustering algorithm. The k-

means clustering algorithm was chosen for its ease of use and scalability, due to the

high dimensionality of the data set. The number of clusters and implemented wind

velocity profiles per clusters is somewhat arbitrary, but produces adequate AWES

power curve approximations at manageable computational cost. Many other grouping

methods from simple wind speed ranges to complex atmospheric stability analyses of

normalized profiles can generate similar data sets. Clustered wind velocity profiles

have a relatively low silhouette score, a metric that measures separation distance

between resulting clusters, indicating that profiles might be assigned to the wrong

cluster. These results are plausible, given the continuous nature of wind and the

occurrence of non-monotonic profiles. This could be avoided by normalizing the wind

velocity profiles before clustering and then re-scaling them.

The representative wind velocity profiles were interpolated using Lagrange poly-

nomials to implement them in into the optimization framework. The resulting, twice

continuously differentiable function is necessary to solve the optimal control problem

with a gradient-based solver. While Lagrange polynomials pass through every data

point of the profile, interpolation with a high number of data points can lead to oscil-

lation, which could make the polynomial a poor predictor in between points. To avoid

this effect, the number of data points outside of the typical operating heights was re-

duced. As a result, the implemented wind velocity profiles did not show oscillatory

behavior at altitudes of interest.
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The optimization framework is subject to several simplifications, such as quadratic

approximation of aerodynamic coefficients, the exclusion of ground-station dynamics

or the assumption of a straight, non-twisting tether. Assumed model parameters

derived from one particular reference aircraft (Ampyx AP2 [94, 3]), simplified mass

and aerodynamic scaling laws, together with estimated optimization constraints and

initialization, introduce additional uncertainty and potential errors. Power optimal

results are subject to nonlinear and unstable system dynamics, as well as nonlinear

constraints. They can therefore only guaranty local optimality. While cycle-average

power of some individual wind velocity profiles deviates from the expected power

prediction, average power curves follow the expected trend. This further emphasizes

that, while the results might quantitatively over predict real AWES performance,

qualitative trends give a reasonably good approximation of ideal AWES performance.

Optimization results often have active constraints. As a result, small disturbances

can easily exceed the system limits and can lead to catastrophic failure in real life.

Therefore, AWES operators will likely chose more robust, trajectories, which produce

less power, instead of the highly optimized paths described in this work.

7.2 Conclusions

Airborne wind energy systems aspire to be the next evolution of wind power gen-

erators with higher, more stable capacity at reduced cost. The technology aims to

unlock the wind energy potential at previously commercially or technologically infea-

sible locations, by making use of it’s mobile design and ability to tap into the wind

resource beyond the reach of conventional wind turbines.

As of now, only small-scale prototypes have been tested and no commercial prod-

uct has entered the market, leaving many of these claims to be proven in reality.

Some barriers to entry are regulatory or subject to social acceptance, some can be

overcome through technological advancement, while other physical limitations pre-

vail. This thesis investigates the wind regime and optimal operating conditions at a

uniquely high temporal resolution, and explores the idealized design space of ground-

generation AWES. Onshore LiDAR measurements, as well as onshore and offshore

mesoscale-simulated, wind conditions are described and analyzed with the focus on

altitudes of interest to the deployment of AWES. A representative set of wind veloc-

ity profiles is implemented into an optimal control framework to maximize, profile-

dependent, average power and determine the scaling potential of ground-generation
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AWES. Based on these results, the following conclusions can be drawn:

• The investigated LiDAR data reveal inherent technological obstacles when it

comes to measuring wind conditions above 200 - 300 m. Data availability de-

creases severely, due to reduced aerosol content aloft. Most particles originate

from earth’s surface and are transported aloft by vertical air movement and

density differentials. Additionally, weather, precipitation, cloud cover and fog

shield off LiDAR laser beams, preventing measurements above and further re-

ducing data availability. These effects are likely more prevalent onshore, as

more particles (water and salt) are transported aloft offshore, due to the pre-

dominance of unstable stratification (compare table 4.2 and [6]) . The diurnal

cycle, surface heat flux variation and consequent vertical mixing biases LiDAR

data availability depending on time of day, season, location and height. There-

fore, conventional wind resource assessment, project planning and return on

investment estimation might be more difficult for AWES. Until measurement

technology advances further, the combination of measurement and mesoscale

simulation are a good alternative to produce a complete data set.

• The influence of gusts, wake and turbulent wind speed fluctuations were not con-

sidered for AWES performance optimization. However, they play a determining

role in the operation of real, autonomous AWES, especially their control and

fatigue lifetime. Since no independent, long-term, mid-altitude wind turbulence

measurements are currently available, LiDAR measurements and atmospheric

large eddy simulations are a valuable first approximation of average turbulence

intensity. Average LiDAR-estimated TI decreases with altitude up to approx-

imately 500 m, above which it stays almost constant. However, this might be

biases by data availability. TI is subject to diurnal and synoptic variations. Our

measurements show a stark decrease of TI during night-time, but moderate TI

up to 1000 m around noon, weakening the generic claim of more stable, less

turbulent wind conditions aloft.

• Measuring surface heat flux or temperature profiles is beneficial to the descrip-

tion of the wind regime, because the shape and magnitude of the wind speed

profile and turbulence intensity depend on it. Surface heat flux and atmo-

spheric stability highly impact LiDAR data availability and the ability to mea-

sure these wind speed profiles. This additional information also benefits AWES
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performance estimation and their autonomous control algorithm. In lieu of such

measurements, WRF simulation results can help estimate stability conditions

(see chapter 2). However, diverging Obukhov-length-categorized wind speed

profiles (see section 3.5.6) indicate that terrestrial measurements might be in-

sufficient to categorize higher altitudes. This complicates the precise description

of wind and weather conditions above the surface layer.

• Measurements and simulated wind data, particularly onshore, show a multi-

modal wind speed probability distribution up to 1000 m, due to diurnal and

synoptic variation within the atmospheric boundary layer. Unstable conditions

lead to the reduction of wind shear and can result in an almost constant, low

wind speed profile onshore. Stable conditions on the other hand experience

higher wind shear and often lead to higher wind speeds aloft. These finding

weaken the generic claim of steadily increasing wind speeds, which the simpli-

fied, erroneously-applied logarithmic wind speed profiles lead to believe. Ap-

proximating the multi-modal probability by the superposition of two Weibull

distributions reduced the error between measured data and fitted probability

distribution, particularly between 100 and 500 m.

• Observation nudging statistically improves accuracy at the implementation loca-

tion in comparison to an unnudged reference model. No statement can be made

whether it improves the simulation at other grid points within the simulation

domain, due to the lack of distributed reference measurements. Observation

nudging only has marginal impact on simulated surface layer wind speeds as

ground effects dominate the WRF model. Wind speeds between 300 and 500

m were most affected by observation nudging. Modeled wind speeds at these

altitudes are statistically closest to measurements, making this an adequate

approach for preliminary resource assessment of mid-altitudes, as LiDAR data

availability decreases with altitude.

• Grouping wind velocity profiles using a purely mathematical k-means clustering

process has proven to be an effective way to categorize wind data into clusters

with similar profile shape and speed. Statistical analyses of the derived clusters

unveil correlations with wind speed, atmospheric stability, as well as diurnal

and seasonal variation. This approach can therefore be used to categorize wind

data in lieu of heat flux and temperature measurements. Clustering might even
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outperform traditional categorization by Obukhov length at higher altitudes, in

case of inhomogeneous atmospheric stability.

• Power-optimal AWES trajectories, derived from the airborne wind energy tra-

jectory optimization toolbox awebox, subject to representative onshore and off-

shore clustered wind profiles, reveal the impact of realistic wind velocity profiles

on optimal operating heights and cycle-average power. Implementing multiple,

low and high wind speed profiles from each cluster results in a better represen-

tation of the AWES power curve, due to the non-linear relation between wind

speed and power. Only implementing the cluster centroid (average profile of

each cluster) leads to an underestimation of average power within this cluster.

In contrast to the common, generalized assumption of higher operating altitudes

are always beneficial, our data shows ideal operating heights to be well below

500 m (mostly around 200 m). This is likely caused by wind shear being too low

to warrant higher operating altitudes, particularly offshore or during times of

unstable atmospheric stability onshore. Average operating altitudes and eleva-

tion angle increase beyond rated wind speed, to de-power the system and stay

within operating constraints (see section 5.5.2). Therefore, AWES will likely

compete with conventional wind turbines rather than complement each other,

as they harvest wind energy at similar heights and have comparable power curve

profiles. AWES’s reduced capital expenditures, less material and waste, due to

significantly smaller system size in comparison to WT (see table 5.3), might

give the technology an advantage. AWES can and should play to their core

strength of mobile deployment at locations that are inaccessible to WT. AWES

might be the preferable choice at sites with high wind shear. This however,

is at odds with the current AWES trend towards low-shear, offshore locations.

Nonetheless, this trend is understandable with regards to safety reasons and

from a social acceptance perspective.

• The definition of a crosswind, ground-generation AWES power curve is no sim-

ple task, due to the multitude of design parameters, as well as changing wind

conditions and trajectories. Where conventional WT simply use wind speeds

at hub-height as reference, whether this is representative for the entire swept

rotor area of ever-growing rotor blades is up for debate, AWES dynamically

adapt their operating heights and therefore fly through entirely different wind

conditions. The power curves derived from cycle-average, power-optimized tra-
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jectories, show similarity to that of conventional wind turbines with similar

cut-in speed and constant power above rated wind speed. The choice of refer-

ence height affects the representation of rated wind speeds. Cut-in wind speeds

seem to be independent of reference height, likely due to relatively constant

wind speed profile shapes associated with these, low wind speeds. Cut-in wind

speeds are determined by the overall system weight and lift. Wind speeds be-

tween 100 - 400 m are a good proxy for winds at operating height, which are

the preferable reference. Using a single, low reference height e.g. 100 m re-

sults in a more fluctuating power curve, especially onshore with more diverse

wind speed profile shapes. However, power curves derived from the simplified

logarithmic wind profile with a constant reference height of 100 m are compa-

rable to the average power curves derived from the clustered WRF wind data

(reference height of 100 - 400m). This is likely the results of the optimiza-

tion algorithm finding similar results, independent of wind speed profile shape.

More robust, Non-optimized trajectories would likely result in different average

AWES power. The IEC standard Rayleigh probability distribution [75], which

in combination with the power curve determines the annual energy production

and capacity factor, differs significantly the WRF-derived, multi-modal wind

speed probability distribution (see sections 2.5.1 and 3.5.5). Approximating the

wind speed probability by Rayleigh distribution underestimates AEP, partic-

ularly onshore. Offshore however, the combination of logarithmic wind speed

profiles and Rayleigh distribution are a decent first approximation of optimal

AWES power curve and AEP. Nonetheless, we recommend to use WRF simu-

lated wind data, to determine the power generated by more robust trajectories,

or for a more detailed analysis of AWES trajectories, subject to more realistic

wind conditions.

• The power generated by AWES highly depends on system design parameters

such as wing area, aerodynamic efficiency, mass, tether properties and the abil-

ity of the generator to cope with quickly changing, periodic torque. Ground-

generation AWES rated power and rated wind speed are determined by the

maximum tether force, hence tether diameter, and tether speed. The AWES

power coefficient derived from average AWES power, path lengths and wing

spans decreases with wind speed up to rated power. This can be attributed to

increased tether length and the accompanying weight and drag losses. Rated
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power and AEP of the investigated designs scales linearly with wing area, while

capacity factor remains almost constantly high between 60 and 70 %, due to

slightly lower rated wind speed of approximately 10 ms−1. The overall system

mass, as well as the aerodynamic efficiency determine cut-in wind speed. Lower

lift to weight ratio reduces AEP and cf, by increasing cut-in wind speed. Our

data suggests a minimum average lift to weight of 5 to guarantee operation. The

upward climb during each loop of the production phase seems to be the critical

moment, because the aircraft decelerates and aerodynamic lift decreases.

• Adverse scaling effects limit AWES size. Aircraft mass scales approximately

with volume (maircraft ∼ b3), while aerodynamic forces only scale with area

(Flift ∼ b2). This limits AWES scaling, as AWES need to carry their own

weight, in contrast to conventional WT, which are supported by a tower. The

weight limit can only be increased by higher aerodynamic efficiency or faster

wind speeds. As this work shows, wind speed within the lower 1000 m of the

atmosphere is highly affected by stratification and often not high enough to jus-

tify higher operating altitudes. Increasing flight height during times of low wind

shear actually reduces lift as the aircraft moves out of the wind window. There-

fore, deploying multiple, smaller AWES devices might be more beneficial than

few large-scale systems. Such a wind farm could also offset the highly varying

AWES power profile (compare sections 4.6.1 and 5.5.1), by flying multiple inter-

connected, staggered (time-shifted) AWES. Determining the ideal, site-specific

AWES size needs to be determined according to the local wind resource and

realistic mass scaling.

• A comparison between a quasi steady-state engineering model with tether drag

and the dynamic optimization model produces consistent AWES performance

estimates (chapter 6). Tether length is penalized and as a result optimal tether

length, operating heights and estimated power output are significantly lower

than the engineering model without tether drag predicted (used in chapters

2 and 3). However, the quasi steady-state model neglects AWES mass and

does not resolve the dynamic changes along the trajectory and can therefore

not reproduce the delay in cut-in wind speed seen in the dynamic optimization

model. As a result, the quasi steady-state model predicts lower rated wind

speeds and higher AEP than the dynamic model. This suggests that the overall

system mass as well as effective system drag are important to AWES modeling
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and optimization and justify the usage of higher fidelity models. Currently,

several international researchers are developing and using AWES models with

various levels of fidelity to predict the performance of individual AWES [126],

perform sizing studies [10] or investigate large-scale grid-implementation [96].

7.3 Future work

Understanding the wind resource is crucial for the development, design and deploy-

ment of any wind energy converter. With both airborne wind energy systems and

conventional wind turbines moving beyond the commonly investigated surface layer

of earth’s atmosphere, new high-frequency, long-term, mid to high altitude measure-

ment methodologies need to be developed, such measurements will improve design

and fatigue lifespan of any wind energy converter. This could be achieved by improv-

ing remote sensing or by developing new, flying in situ measurement devices such as

drones or blimps. Such measurements can also shed light on atmospheric stability

and turbulence variation with altitude and time, thus improving weather and wind

prediction models. In lieu of such measurements, large eddy simulations should be

considered to estimate temporal and vertical turbulence intensity variation.

The here described, optimal power estimates need to be validated against more

robust, less aggressive flight trajectories, subject to realistic wind conditions. These

estimates are likely a more realistic predictor of AWES power. This could be done by

either enforcing a fixed trajectory or by adjusting the performance index of the op-

timization cost function. Power production of both on-board and ground-generation

AWES, subject to realistic wind conditions should be compared to make educated in-

vestment decisions. Optimizing the AWES design subject to realistic wind conditions

is crucial for determining the potential of AWES, and requires further investigation.

This can be done by integrating the existing AWES power and trajectory optimization

toolbox awebox into a design optimization framework to determine ideal design pa-

rameters, such as aspect ratio, wing area and wing box dimensions subject to realistic

material properties. It is worth investigating the optimal design subject to different

design objectives, such as minimal LCOE, or maximum rated power, or optimal wind

farm power production. The AWES fatigue lifespan and dynamic aircraft wing and

tether loads, subject to path-dependent cyclic loads, as well as turbulent fluctuations,

need to be investigated. AWES loads could be generated from large eddy simulation

results and a predetermined AWES trajectory or using such a turbulent wind field
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could be integrated into the optimization model. A detailed analysis of the tether

dynamics is warranted, as oscillating tether forces not only impact fatigue life of the

tether and aircraft, but can also perturb the aircraft from its path, which could lead

to system failure. A better tether model, which also includes tether sag, would allow

the better estimation of tether drag and weight.
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Appendix

A Improving mesoscale wind speed forecasts using

LiDAR-based observation nudging for airborne

wind energy systems

Table 1: Namelist parameters for WRF 3.6.1 observation nudging

WRF input parameter value

grid fdda 1,1,1,

gfdda inname ”wrffdda d<domain>”,

gfdda end h 99999, 99999, 99999,

gfdda interval m 360, 360, 360,

fgdt 0, 0, 0,

if no pbl nudging uv 0, 0, 1,

if no pbl nudging t 0, 0, 1,

if no pbl nudging q 0, 0, 1,

if zfac uv 0, 0, 0,

k zfac uv 0, 0, 30,

if zfac t 0, 0, 0,

k zfac t 0, 0, 30,

if zfac q 0, 0, 0,

k zfac q 0, 0, 30,

guv 0.0003, 0.0003, 0.0003,

gt 0.0003, 0.0003, 0.0003,

gq 0.0003, 0.0003, 0.0003,
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WRF input parameter value

if ramping 1,

dtramp min 60.0,

io form gfdda 2,

obs nudge opt 0,0,1

Cressman Scheme 1

time step 60

obs rinxy 240,240,180

obs rinsig 0.1

obs twindo 3, 3,3

auxinput11 interval s 360, 360, 360

obs dtramp 40

obs nudge wind 1,1,1

obs coef wind 6.E-4,6.E-4,6.E-4

iobs onf 2,2,2

auxinput11 interval s 360, 360, 360

auxinput11 end h 6, 6, 6

if no pbl nudging uv 0, 0, 1

if zfac uv (max dom) 0,0,30

sf sfclay physics 5, 5, 5

sf surface physics 4, 4, 4

bl pbl physics (max dom) 5, 5, 5

bl mynn tkeadvect .true.,.true.,.true.

ra lw physics 1 ,1,1

ra sw physics 1 ,1,1

mp physics 5, 5, 5
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B Offshore and Onshore Power curve characteri-

zation for ground-generation AWES
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Figure 1: Clustered onshore wind velocity profiles (here shown as wind speed profiles).
The average profile or centroid is shown in blue while all the assigned profiles are
shown in grey.
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Figure 2: Clustered offshore wind velocity profiles (here shown as wind speed profiles).
The average profile or centroid is shown in blue while all the assigned profiles are
shown in grey.
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Figure 3: Representative wind speed profiles (left, top), and hodograph (top view)
of wind velocity up to 1000 m (left, bottom). The deviation of the colored lines
is caused by the approximation of discrete data points with Lagrange polynomials.
Trajectories (center) in side and top view. Temporal variations of tether force Ftether

(right, 1st from top), tether speed vtether (right, 2nd from top), angle of attack α
(right, 3rd from top ) and instantaneous power Pcurrent (right, bottom) optimized
based on clustered offshore wind speed profiles for a ground-generation aircraft with
a wing area of Awing = 20 m2.
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and offshore (bottom) clusters for a ground-generation aircraft with a wing area of
Awing = 50 m2.
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on WRF simulation and Rayleigh distribution (red) with Uave = 10 ms−1 (onshore)
and 12 ms−1 (offshore) for reference. Energy production distribution (bottom) shows
the distribution of annual produced energy over wind speed which is the product of
power and wind speed probability distribution. Integrating this product results in
the AEP.
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Figure 6: AWES power curves onshore (top left, blue) and offshore (top right, or-
ange) for Awing = 50 m2 over various reference wind speed height definitions (dashed
lines: fixed height z = 100m; dash-dotted lines: fixed height range z = 100− 400 m;
dotted lines: average wind speed along operating trajectory) based on 3 profiles for
each of the k=20 clusters. Compared to WT (black) with cWT

p = 0.3 and same rated
power at a hub height of zWT = 100 m and AWES (red) for logarithmic wind speed
profiles (z0 = 0.1 onshore and z0 = 0.001 offshore). Annual wind speed probabil-
ity distribution (center) based on WRF simulation and Rayleigh distribution (red)
with Uave = 10 ms−1 (onshore) and 12 ms−1 (offshore) for reference. Energy pro-
duction distribution (bottom) shows the distribution of annual produced energy over
wind speed which is the product of power and wind speed probability distribution.
Integrating this product results in the AEP.
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Figure 7: Optimal trajectory and time series for a ground-generation AWES with
a wing area of Awing = 50 m2, mass scaling exponent κ = 3 and HL aerodynamic
coefficients. The left subfigures display representative onshore wind speed profiles
(top), and hodograph of wind velocity up to 1000 m (bottom). The deviation of
the colored lines is caused by the implementation of discrete WRF-simulated data
points using Lagrange polynomials. Trajectories (center) in side and top view. The
right subfigures show aerodynamic lift L, tether speed vtether, angle of attack α and
instantaneous power Pcurrent time series, optimized subject to the corresponding wind
velocity profiles.
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Figure 8: Average tether length ltether (top), average operating altitude zoperating (cen-
ter) and average elevation angle ε (bottom) over reference wind speed U ref(100 ≤ z ≤
400 m). Results for wing areas between Awing = 10 − 150 m2 scaled with a mass
scaling exponent of κ = 3, HL aerodynamic coefficients for both onshore (left) and
offshore (right) location.
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Figure 9: Power curve (top), path length (second from top), AWES power coeffi-
cient cAWES

p (third from top) and AWES power coefficient divided by chord length
cAWES

p /cwing (bottom) over reference wind speed 100 ≤ z ≤ 400 m scaled with κ = 3.0
for AWESs with Awing = 10 − 150 m2 and AP2 reference aerodynamic coefficients.
Data is derived from p5, p50, p95 wind velocity profiles within each of the k=10
onshore clusters. Missing data points are the result of infeasible combination of op-
timization constraints and boundary conditions.
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Figure 10: Power curve (top), path length (second from top), AWES power coeffi-
cient cAWES

p (third from top) and AWES power coefficient divided by chord length
cAWES

p /cwing (bottom) over reference wind speed 100 ≤ z ≤ 400 m for AWESs with
Awing = 10 − 150 m2 scaled with κ = 3.3 and HL aerodynamic coefficients. Data
is derived from p5, p50, p95 wind velocity profiles within each of the k=10 offshore
clusters. Missing data points are the result of infeasible combination of optimization
constraints and boundary conditions.
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Figure 11: Power curve (top), path length (second from top), AWES power coeffi-
cient cAWES

p (third from top) and AWES power coefficient divided by chord length
cAWES

p /cwing (bottom) over reference wind speed 100 ≤ z ≤ 400 m for AWESs with
Awing = 10 − 150 m2 scaled with κ = 2.7 and HL aerodynamic coefficients. Data
is derived from p5, p50, p95 wind velocity profiles within each of the k=10 offshore
clusters. Missing data points are the result of infeasible combination of optimization
constraints and boundary conditions.
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Figure 12: Representative AWES power curves (top) for both sets of HL (circle) and
AP2 (square) reference aerodynamic coefficients for both onshore (blue) and offshore
(orange) location. The masses of the Awing = 80 m2 wing area aircraft are scaled
according to equation 5.1 with a mass exponent of κ = 3.0. Cycle-average power P
is derived from p5, p50, p95 wind velocity profiles within each of the k=10 WRF-
simulated clusters. A reference height of 100 ≤ zref ≤ 400 m is used as a proxy
for wind speed at operating altitude to calculate the annual wind speed probability
distribution (center). The integral over the annual energy production distribution
(bottom) which is the product of power and wind speed probability distribution,
yields the AEP (legend).
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D Cross comparison between quasi steady-state

and dynamic optimization model
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Figure 13: Optimal power (black lines) and optimal operational altitude of an
Awing = 20m2 AWES with AP2 reference aerodynamic coefficients, estimated based
on equation 6.2 including tether drag (equation 6.3 for 10 k-means-clustered off-
shore wind speed centroids (blue line, compare section5.3) for varying tether length
(ltether = 250 − 1000 m). Rated power and tether diameter are defined according to
section 5.4.5 and table 6.1.
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Figure 14: Optimal power (black lines) and optimal operational altitude of an Awing =
50m2 AWES with HL aerodynamic coefficients, estimated based on equation 6.2 in-
cluding tether drag (equation 6.3 for 10 k-means-clustered onshore wind speed cen-
troids (blue line, compare section5.3) for varying tether length (ltether = 250−1000 m).
Rated power and tether diameter are defined according to section 5.4.5 and table 6.1.
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Figure 15: Quasi steady-state model-based AWES power curves (top) for an AWES
wing area of Awing = 50 m2, both sets of HL (circle) and AP2 (square) reference aero-
dynamic coefficients and both onshore (blue) and offshore (orange) location. Optimal
power P Loyd is derived from p5, p25, p50, p75, p95 wind speed profiles within each
of the k=10 WRF-simulated clusters. A reference height of 100 ≤ zref ≤ 400 m is
used as a proxy for wind speed at operating altitude to calculate the annual wind
speed probability distribution (center). The integral over the annual energy produc-
tion distribution (bottom) which is the product of power and wind speed probability
distribution, yields the AEP (legend).
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