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ABSTRACT

Empirical models based on linear and nonlinear potential theory that determine

the forces on Wave Energy Converters (WECs) are essential as they can be used for

structural, mechanical and control system design as well as performance prediction.

In contrast to empirical modelling, Computational Fluid Dynamics (CFD) solves

the mass and momentum balance equations for fluid domains. CFD and linear po-

tential theory models represent two extreme in terms of capturing the full range of

hydrodynamic effects. These are classified as white box models and the structure of

these models is completely derived from first principles understanding of the system.

In contrast black box models like a Artificial Neural Networks and Auto-Regressive

with, Exogenous Input (ARX), map input and output behaviour of a system with-

out any specific physics based structure. Grey box models do not strictly follow a

first principles approach but are based on some observations of relationships between

the hydrodynamic effects (e.g. buoyancy force) and system state (e.g. free surface

height). The objective of this thesis is to propose a data driven grey box modelling
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approach, which is computationally efficient compared to high fidelity white box mod-

els and still sufficiently accurate for the purpose of determining hydrodynamic forces

on heaving WECs.

In this thesis, a unique data driven approach that combines features from exist-

ing works in modelling of WEC and application of nonlinear hysteretic systems is

developed. To that end a CFD based Numerical Wave Tank that could provide the

data needed to populate the new modelling framework is used. A hull which hydro-

dynamically represents a Self Reacting Point Absorbers (SRPAs) with heave plate is

subjected to pan-chromatic wave fields and is forced to oscillate concomitantly. The

results provide evidence that a SRPA with heave plate exhibits nonlinear relation-

ships with motion parameters including relative position, velocity and acceleration.

These parameters show causal relationships with the hydrodynamic force. A simu-

lation methodology to establish confidence in the components of a model framework

is developed and the hydrodynamic forces on SRPAs with heave plate and bulbous

tank have been analyzed and compared. Two sets of numerical simulation were con-

ducted. Firstly, the WECs were restricted to all degrees of freedom and subjected to

monochromatic waves and later the WECs were oscillated at various frequency in a

quiescent numerical tank. These results were validated against existing experimental

data.

Earlier attempts by other authors to develop a data-driven model were limited to

simple hulls and did not include rate dependent nonlinearities that develop for heave

plates. These studies laid the foundation to current work. The model framework

developed in this thesis accounts for the nonlinear relationship between force and

parameters like velocity and acceleration along with hysteretic relationship between

force and velocity. This modelling framework has a nonlinear static, a hysteresis

(Bouc-Wen model) and a dynamic (ARX model) block. In this work the Bouc-Wen

model is employed to model the hysteresis effect. Five different models developed

from this modelling framework are analyzed; two are state dependent models, while

the other three required training to identify dynamic order of model equations. These

latter models (Hammerstein, rate dependent Hammerstein and rate dependent KGP

models) have been trained and validated for various cases of fixed and oscillating HP

cylinder. The results demonstrate significant improvement (max 39%) in prediction

accuracy of hydrodynamic forces on a WEC with heave plate, for the model in which

a rate dependent hysteresis block is coupled with Hammerstein or KGP models.
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why Pitaji is at school when he should be at the park. Hopes and prayers that just

like the meaning of your name life will come full circle one day.

Gratitude and prayers to Pitŕ and Matŕ (Ancestors) and Brahman for providing
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Chapter 1

Introduction

Wave Energy Converters (WECs) are mechanical devices that harvest energy from

the surface of ocean by virtue of interaction between waves and the device itself. Wave

energy converters have yet to converge on a standard design and operating principle,

and the different types are classified based external shape, operating principle, direc-

tion of motion etc. Point absorbers are devices that have small dimensions compared

to the wavelengths of incident waves and are activated by hydrodynamic forces dis-

tributed over the WEC hull. To complete energy conversion, forces created by the

interaction of the wave and the hull must be transferred to a Power Take Off (PTO).

When the PTO is located between two floating bodies, it is called a self-reacting sys-

tem and this category of WECs is called the Self Reacting Point Absorber (SRPA).

SPRAs exploit the dynamic and hydrodynamic properties of moving bodies to absorb

and convert ocean wave energy into useful forms. In this thesis a new technique is de-

veloped to predict the hydrodynamic forces on WECs, in typical operating conditions

through numerical modelling.

Numerical modelling for wave energy conversion can be classified under two cat-

egories based on the underlying assumptions namely, linear and nonlinear. Linear

models are based on the assumption of small waves, inviscid and incompressible fluid

and small body movements. In linear modelling, principle of superposition is also

applied. These simplifications lead to errors which successively add up and evidently

render the model inaccurate. A mathematical model is required which could reduce

the errors associated with superposition of forces from different experiments and be

able to capture the important nonlinearities. The above requirements suggest that

data driven meta-models (black box), or a combination of data and physics based

modelling (grey box) could be a good alternative. When these models are used the
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complexity of the physical system of fluid-body interaction is captured using limited

experiments and the data thus generated can be used to train the model to operate

in various realizations of input conditions. The numerical technique developed in this

thesis for hydrodynamic analysis of WECs is a combination of data and physics based

model.

1.1 Background

Heave plates as shown in Figure 1.1 and Figure 1.2, have become a critical component

of many ocean structures and SRPAs design. Therefore interest in the evaluation of

hydrodynamic behaviour of SRPAs with heave plates has increased (Cong and Teng,

2019). The primary purpose of a heave plate in offshore platforms is to mitigate the

heaving motion (Lake et al., 1999; Li et al., 2013). In point absorber wave energy con-

verters, heave plates are employed at depth below free-surface as relatively stationary

bodies against which the Power Take Off (PTO) can stroke (Beatty et al., 2013). It

is the fluid inertia that reduces the response of heave plate to the reaction force of

PTO. In the vicinity of the plate, due to large diameter to thickness ratio of the plate

and directional asymmetry, the flow field is also asymmetrical, rotational (vortical),

and transient under the action of irregular waves (Brown et al., 2017). It is due to

these fluid phenomenona that the models of SRPA hydrodynamics based on poten-

tial theory fail to accurately predict the hydrodynamic forces on these WECs (Beatty

et al., 2015).

Mathematical models are crucial, for example, for power production assessment,

simulation of device motions and model-based control strategies. Models based on

potential theory variegate in their degree of nonlinearity, yet all suffer from limitation

of fundamental assumptions of inviscid fluid, irrotational flow, small waves, small

body motion and superposition. Fully nonlinear CFD models are able to describe the

full range of hydrodynamic effects, but are computationally very expensive to assess

a physically down-scaled tank test situation, let alone a simulation of a full scale

commercial operation (perhaps including multiple SRPAs in a farm arrangement).

For example, perform a simulation of WEC motion under realistic ocean conditions

in 3D space it would require a dedicated $500, 000−1M CPU cluster and that cluster

would be obsolete in 5 − 10 years. However, by developing a system identification

modelling technique the simulation and testing time can be reduced drastically and

the model prediction can be performed on a home computer. This methedology
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Figure 1.1: Schematics of the two WEC model configurations analysed in Chapter 2
— WEC A (left) features a bulbous tank and WEC B (right) features a large heave
plate. Both WECs have identical float shapes, drafts, PTOs, and instrumentation
systems. (From (Beatty et al., 2015))

Figure 1.2: The spar with heave plate uses the rotation of a spring loaded spindle to
produce power. The labeled components are A) the extension springs, B) the spring
load cell, C) the heave plate tether load cell, D) the spring spindle, E) The tether
load cell, and F) the rotary dashpot. (From Brown et al. (2017))
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will provide a foundation for development of machine learning algorithms for online

application of PTO controls during operation of WEC.

In a problem which involves flow of fluids, conservation of mass and momentum

across discritized domains provides accurate accounting of energy dissipation. Dis-

cretization of fluid domain into finite volumes to solve fluid flow problems is known

as Finite Volume Method (FVM) based CFD, and is one of many popular numerical

modelling techniques. The accuracy of finite volume based CFD models are nega-

tively impacted by weaknesses in the techniques for meshing the interfaces of the

water, air and SRPA hulls. Most WECs involve relative motion between compo-

nents. The challenges and expertise associated in maintaining the required quality of

mesh for successful application either results in excessive computational overhead or

inaccurate solutions.

Other physics based numerical approaches like nonlinear potential theory models

or Smooth Particle Hydrodynamics (SPH) with characteristics between the CFD and

potential theory extremes are limited to simple geometries which do not represent

the diversity of WEC designs. Another limitation of SPH is the requirement of fixed

number of water particles and enclosed simulation domains, implying necessity of

large numerical tanks hence excessive computational resource.

Several modeling techniques including data driven techniques have been developed

in the past and can be classified based on accuracy and computational speed. The

models whose structure is completely derived on first-principles understanding of the

system, even if some parameters are estimated from data are known as white box

models. For example several parameters in turbulence modelling are tuned to case

specific data still Direct numerical simulation (DNS), Large eddy simulation (LES),

Detached Eddy Simulation (DES), Reynolds Averaged Navier-Stokes (RANS) along

with other formulations based on Navier-Stokes can be categorized as white box

models. Black-box models map input and output behaviour of a system without any

specific physics based insights being used to chapter the connections between those

inputs and outputs. Both the model structure and parameters are determined from

experimental modelling. Black box models might even open up the range of inputs

considered since they don’t use physical principles to dictate what the relevant input-

output relationships are. While white-box models can supply useful insights into the

various factors that influence the behavior of a system, black-box models can be more

straightforward to produce and sometimes provide a more accurate model.

Grey box models do not follow a first-principles approach, but are based on some
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physical understanding. The shades of grey are determined by the extent of first prin-

ciples understanding and dependency of data required (Nelles, 2001). The grey box

models for hydrodynamic applications can be based on potential theory formulation

or nonlinear CFD. The models that solve the linear decomposition of hydrodynamic

problem into combination of radiation and diffraction phenomenon (Cummins, 1962;

Falnes, 2007) and potential flow based models with varying degree of non linear-

ity, (Babarit et al., 2012; Babarit, 2015; Bhinder et al., 2015) are examples of grey

box model. Morison’s approach (Morison et al., 1950) of modelling viscous flow to

identify real world fluid behaviour around cylinders can be classified as white box

model, but the models developed by abstracting this idea to model flow around other

geometries can be refereed as grey box models.

1.2 Categorization of hydrodynamic models

For WEC applications, several model structures have been categorized and analyzed

in literature (Giorgi et al., 2016b). A brief description of the classification relevant

for the selection of model structure developed in this thesis is provided below.

Continuous/discrete time When the mathematical expression describing the sys-

tem assumes infinite number of points between any two time values the model

is a continuous time model. An advantage of CT models is that they provide

a good insight into system understanding, because the model parameters are

strongly related to the physical system properties. When difference equation

rather than a differential equation is used to describe a system at discrete inter-

vals, the model is called discrete time model. In this thesis Reynolds Averaged

Navier-Stokes equations are used to generate the inputs for the model and the

data driven model that is developed are based on discrete time approach. Dis-

crete time modelling uses signals only specified at the discrete time instants

t = kTs, where k is integer and Ts is sampling period.

Causal/noncausal A system is causal if the output at current instant depends only

on the present and past input where as in a noncausal system the output at

current instant depends on the future input (Falnes, 2007).

Linear/nonlinear input-output relationship If the constants of equation are re-

sponsible for describing a linear relationship between input and output of the
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mathematical model, it can be classified as linear. For example a spring-mass

system with a constant spring coefficient shows a linear input-output relation-

ship between the restoring force and displacement, whereas the drag coefficient

in viscous fluid problems shows a quadratic relation between velocity and drag

force. (Refer Section 3.4.1 for more explanation on this classification and its

application to this thesis).

Static/dynamic A model in which the output depends on the instantaneous value

of input rather than previous or future input values is a static model. Where

as in a dynamic model the memory effects are accounted by sweeping over the

past or future time instants. In other words, in dynamic models current value

of an output can be dependent on the range of inputs seen over a previous time

period as well as on the range of outputs seen over that same time period. In

this thesis a dynamic model is considered over the simplicity of static model.

A mathematical model is required to model WECs with heave plate designs, which

exploits accuracy of nonlinear CFD simulation but not its tardiness for industrial

application. The objective of this thesis is find a balance between the physics based

modelling approaches (use of representative differential equations) and data from

previous tests (used of parameter identification).

1.3 Objectives and contributions

The overall objective of this research is to develop a data-driven grey box modelling

approach suitable for model based performance assessment and simulation of heaving

SRPAs with heave plates. The developed modeling approach would be similarly

applicable to other wave-body interactions where significant viscous-driven separation

hydrodynamic phenomena are present. More specific objectives are itemized as below.

1. Objective A data-driven mathematical model for accurate evaluation of hy-

drodynamic forces on SRPAs with heave plates is required to describe a broader

range of WECs.

Contribution A framework for development of high-fidelity data-driven nu-

merical models, that accurately estimate the hydrodynamic forces acting on a

SRPAs with heave plate is proposed in this thesis. A CFD based wave tank is

used to generate inputs for data-driven models. Performance of five different
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models including two proposed models based on the framework are validated

with a SRPA design with heave plate. The integration of model component to

model the fluid hysteretic effects into existing models, and its application to

wave energy conversions are the novel contributions of this thesis.

2. Objective Establishing confidence in numerical methods for data generation

methodology is another objective of this thesis. To avoid the need for physical

experimentation to provide the data sets on which the new data driven approach

must be built, a technique for modeling SRPA heaving motions in CFD is

implemented and results compared against data produced in published physical

experiments.

Contribution A methodology for estimation of hydrodynamic forces is pre-

sented to validate the data generated by NWT. This methodology includes

viscosity which is neglected in potential theory calculations. The NWT results

are validated for two SRPA designs using 3D geometries. After validation with

physical tank results for two different SPRAs, a solution methodology is devel-

oped using NWT trials for the purpose of data generation for the data-driven

models.

3. Objective An objective of the thesis is to demonstrate a solution approach

for transient simulation of a 3D body fitted mesh, which would capture the

dynamics of multibody WEC.

Contribution The hydrodynamic analysis of WECs is primarily dependent on

the ability to simulate its dynamic motion. As multiple WEC configurations

utilize the concept of harnessing energy by relative motion between different

components, the challenge associated with designing a WEC, is simulation of

multi-body motions using appropriate boundary conditions and capturing the

interaction between these bodies. Though recent development in overset mesh

motion can be an expensive alternative, a methodology is developed in this work

for heaving multibody motion by simulating relative motion between float and

spar for two SRPAs.

1.4 Organization of thesis

This section provides a map of the dissertation. Each chapter is provided with a ded-

icated literature review, as the nature of the subjects of the chapters is substantially
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different. The thesis is sketched out in the following chapters:

Chapter 1 contains a statement of the key contributions which will be proved by

this dissertation followed by an overview of the structure of the document itself.

Chapter 2 contains the literature review, details of governing equations and design

of Numerical Wave Tank (NWT) experiments. The hydrodynamic forces were

calculated using CFD tank experiments in classical framework. The perfor-

mance of the SRPA designs, fixed and constrained to heave motion in regular

waves are compared. This chapter also provides justification on the requirement

of data driven models.

Chapter 3 contains introduction, literature review on data driven models. Along

with the detailed description of models used in this thesis and the identification

and parameter estimation process for various models.

Chapter 4 contains details related to the NWT trials involved in the data gen-

eration and discussion on the results, which reiterates on the required model

architecture.

Chapter 5 demonstrates the implementation of modelling framework to using four

different cases of fixed and oscillating SPAR designs with heave plate and one

case of fixed square cylinder. Results of training and validation simulations

for various cases of WECs in irregular sea is discussed and the performance of

various data-driven models are compared.

Chapter 6 The thesis is concluded in Chapter 6 with summary and discussion on

the contributions as well as recommendation on future work.

Appendices provide details of the physical and numerical models used, and supple-

mentary information referred to in the main text.
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Chapter 2

Hydrodynamic modelling of wave

energy converters

In this chapter a review of physics driven modelling techniques classified as white box

model in Chapter 1 is presented along with a review on various WEC and Numerical

Wave Tank (NWT) designs. Two WECs which are distinct geometrically, and hence

are expected to have a characteristically different power conversion are analyzed under

different sets of conditions. One of the design features a bulbous tank and other

features a large heave plate attached to the bottom of spar. The WECs are subjected

to monochromatic waves, or oscillated with controlled heave motion. The objective of

these experiments are to develop confidence on CFD generated results by comparing

them with physical tank experimental results, before CFD can be used to generated

data for data-driven models.

2.1 Background

Physics based modelling for wave energy conversion, can be broadly classified un-

der two categories based on the underlying assumptions; namely inviscid and viscid

modelling. Inviscid modelling can be further sub divided in linear and nonlinear mod-

elling. It is extremely difficult to devise a generalized modelling approach, therefore

this section tries to assimilate the diverse concepts into a few different groups and

presents a review of existing models.
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2.1.1 Wave Energy Converters

In the current section, the WEC design used in this chapter has been discussed and

an attempt has been made to classify some of the WEC designs analyzed in literature

along with a brief discussion on the modelling techniques used.

SRPAs, which are the WECs used for numerical analysis in this thesis, have been

analysed numerically and also in a physical tank (Beatty et al., 2013, 2015, 2019).

SRPAs typically employ a buoyant, surface piercing body referred to as the float which

reacts against a second surface piercing body referred to as the reacting body, to

generate mechanical energy. The WEC device in the current analysis is axisymetric,

SRPAs primarily operating in heave mode as shown in Figure 1.1. It has a torus

sliding along a vertical float and a hydraulic Power Take Off (PTO) system is driven

by relative motion between the two bodies. Since this system does not need to react

against the seabed, it can be installed in deep water. The key difference between these

strategies is the shape of the reacting body. The first, denoted WEC A, is modeled

after a WaveBob™(WaveBob Ltd., Ireland) device, featuring a positively buoyant float

and a streamlined reacting body with an integral water ballast tank. The second,

denoted WEC B, is modeled after a PowerBuoy (Ocean Power Technologies Inc, USA)

device, featuring the same float as WEC A, but with a reacting body that has fitted

with a large diameter heave plate. A 1 : 25th scale model of a point absorber floating

point WEC has been studied experimentally and numerical (Beatty et al., 2013, 2015)

and the same models are studies in this chapter.

Heave plates are a critical component of many ocean structures and WECs. There-

fore interest in the evaluation of their hydrodynamic behaviour has increased (Cong

and Teng, 2019). The primary purpose of heave plate in offshore platforms is to mit-

igate the heaving motion (Lake et al., 1999; Li et al., 2013). In point absorber wave

energy converters, heave plates are employed at depth below free-surface as relatively

stationary bodies against which the Power Take Off (PTO) can stroke (Beatty et al.,

2013). It is the inertia that reduces the response of heave plate to the reaction force

of PTO. Due to large diameter to thickness ratio of the plate and directional asymme-

try, the flow field is also asymmetrical, rotational (vortical), and transient under the

action of irregular waves (Brown et al., 2017). It is due to these fluid phenomenona

that the mathematical models based on potential theory fail to accurately predict the

hydrodynamic forces on these WECs (Beatty et al., 2015).

In published studies on these WECs, it was concluded that parametrically excited
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motions must be considered in more than one degree of freedom. Self-reacting devices,

where coupling between different modes is important, are highly sensitive to the

nonlinear coupling of heave, roll or pitch. It is clearly demonstrated in Tarrant

and Meskell (2016) that the nonlinear heave, roll and pitch coupling occurs at large

motion amplitudes and that the partially linear potential model is able to predict

the parametric resonance, validating the model against experimental tests in a wave

tank.

A set of power performance measures were estimated and the mean power absorp-

tion of eight WEC with different working principles were compared and a cost based

analysis of WECs was done in Babarit et al. (2012). A similar classification, but based

on capture width ratio was presented by the same author in Babarit (2015). Falcão

(2010) suggests classifying WECs in three different groups based on oscillating flow

field, oscillating body and over-topping. Based on the motion characteristics Penalba

et al. (2017a) classified WECs into four different categories viz. oscillating wave

converters, heaving point absorbers, oscillating pitch converters and oscillating surge

converters. The WECs discussed in this thesis can be placed in the heaving point

absorbers category.

Experimental analysis of the laboratory scaled model of the Wavestar which is

a heaving WEC is done in Hansen et al. (2013). Wavestar is a semi-submerged

hemispherical shaped WEC, oscillating around a pivot point. The limitations of using

linear fluid structure assumption in analyzing this hull shape is shown in Zurkinden

et al. (2014). The coupling of ocean structures can be defined either as one-way

coupling or two-way coupling. A one-way coupling is when the flow-field is influenced

by changing boundary shape, as in predefined rigid body motion. A more complicated

case is a two way coupling like in ocean WEC, where the fluid forces effect the motion,

as well as the radiation and diffraction due to the presence of the body alters the

flow field. The importance of moorings have been identified by several authors like

(Johanning et al., 2007) and (Fitzgerald, 2009). (Fitzgerald and Bergdahl, 2008) and

(Garrett, 2005) mention that the design of moorings should be integrated with the

dynamic analysis of WECs. The importance of moonpool region from wave energy

production perspective has been highlighted in (Liu et al., 2020). Moonpool is the

annular space in-between the spar and the float walls. It was concluded that compared

with the single buoy and moonpool buoy, the moonpool can enhance the wave energy

conversion in the frequency of 1.7–2.5 rad/s. When the wave period is short, the

moonpool hinderd the motion of the cylinder buoy.
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2.1.2 Potential flow (inviscid) approaches

Traditionally, the numerical analysis of ocean waves for engineering application have

been based on the Stokes theory (Stokes, 1847), which assumes small amplitude waves,

irrotational and invicid flows . This strategy helps in solving the problem using lin-

ear decomposition and the excitation and frequency response of the device can be

constructed from the discrete frequency components. Several models for analysis

of WECs are based on Cummins equation (Cummins, 1962). Cummins equation is

used to evaluate fluid-body force corresponding to incident, diffracted and radiated

waves in time domain. Frequency dependent addedmass and drag coefficients which

are functions of single state variable (acceleration and velocity respectively) are used

in mathematical models based on Cummins equation. Hence they do not take into

account the effect of coupling between different state variables in realistic field con-

ditions. However theories which were developed a couple of centuries ago helped

in our understanding of the water wave mechanics and lead to the development of

more relevant linear and non-linear theories as Boussinesq-type (Madsen, 1998) or

statistical (Booij et al., 1999) modelling.

With a rise in the demand of oil and discovery of oil basins in deep oceans, the

focus of ocean research in the 20th century shifted to investigate the interaction of

fixed and floating structures and thereafter design of ocean structures (Folley et al.,

2004). Models based on potential flow theory integrate the pressure over the hull

inorder to determine hydrodynamic forces, but because of invicid approximation it

neglects the force due to form drag. Morison et al. (1950) proposed the idea of adding

the drag force calculated using the drag coefficient into the force equation. Potential

flow theory and the Morison’s Equation which were the state of art are limited to

simple geometries. These theories either employ the known results from flow around

a vertical and horizontal cylinders or other exact techniques (Lewin, 1963; Mei, 1966).

With the use of computers direct calculation of transient problems using Green’s

functions (Shaw, 1975) and hybrid element method (Mei, 1978) for arbitrary geome-

tries in simple harmonic waves became practical. Evans (1976) derived a general

theory for the efficiency of wave absorption for a long cylinder of arbitrary cross-

section oscillating in single or dual modes and later verified it experimentally in Evans

et al. (1979). The same idea was extended to, two independently oscillating bodies

in Srokosz and Evans (1979). In all the references presented above an a priori knowl-

edge of added mass and damping coefficients for the body as a function of wave
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frequency and amplitude was required in order to compute the response of the body.

These hydrodynamic coefficents have to be determined either by experimental

measurment (Morison et al., 1950; Keulegan and Lloyd., 1958; Sarpkaya and Isaacson,

1981) or other numerical techniquies. Experimental determination of these coefficients

is thus possible only for wave conditions reproducible in a wave tank. In order to

numerically determine the hydrodynamic coefficients, Landweber and Macagno (1967)

proposed to use a conformal mapping technique, which was revised and extended

in Ramos and Guedes Soares (1997). The Frank Close fit approch (Frank, 1967)

which is based on Green’s function formulation has been widely used, even though

it was found to calculate unreasonably high values of coefficients for some irregular

frequencies. Even in recent times, coefficients are calculated using potential flow

solvers and then used in time domain equations of motion (Beatty et al., 2013, 2015).

Brown et al. (2017) calculated instantaneous values of these coefficients by utilizing

least squares over the entire signal generated from experimental analysis of a WEC

with damper plate. The details of the WEC used by Brown et al. (2017) for analysis

is shown in Figure 1.2.

2.1.3 Augmented potential flow approaches

The time or frequency domain solution obtained with the assumption of small am-

plitude fails to represent complexities associated with both the turbulent sea state

and the response of the device to the flow field. The non-linear dependence of heave

forces on velocity for various Keulegan-Carpenter (KC ) numbers was studied by Tao

et al. (2000), who calculated the viscous damping forces on the Tension Leg Platform

(TLP) column experiencing springing vibration. Evans et al. (1979) developed rela-

tions between these hydrodynamic coefficients for two bodies based on the results of

single body by Newman (1976). Bonfiglio et al. (2011) performed prescribed harmonic

oscillation experiments on a floating body to determine the hydrodynamic radiation

coefficients of the body at numerous frequencies using a viscous solver. The coeffi-

cients are determined using velocity potential methods, and were compared with CFD

determined values in a similar test setup. Potential solvers with viscous or nonlinear

corrections for application in WEC analysis, have either used simplified geometries

or simplified experiments (monochromatic wave field and single DOF motion) as pre-

viously mentioned in order to calculate parametric coefficients (Bhinder et al., 2015;

Malenica et al., 1999; Bai et al., 2014; Penalba et al., 2017b). The time domain numer-
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ical model used in Beatty et al. (2013, 2015) was based on potential theory which used

drag coefficients from experimental results and added mass and damping coefficients

derived from Boundary Element Method (BEM). The effect of viscosity on the heave

added mass and damping coefficients for four cylinders with different bottom shapes

using Free-Surface Random-Vortex Method (FSRVM) has been documented in Yeung

and Jiang (2011). As shown in Figure 2.1, the bottom shapes are flat (BS), semi cir-

cular (SC), triangular (TC) and reversed-curvature (RC) which represented range of

shapes from bluff to streamlined. The authors studied the effect of draft and bottom

shape on the hydrodynamic coefficients. It was reported that increasing the draft

increases its Response Amplitude Operator (RAO) and added mass but decreased its

damping. It was also found that the damping largely increases with introduction of

viscosity whereas added mass increases at lower frequencies but decreases at higher

frequencies for all the bodies.

Figure 2.1: Schematics of four spar hulls analyzed by Yeung and Jiang (2011).
The bottom shapes are flat (BS), semi circular (SC), triangular (TC) and reversed-
curvature (RC). (From Yeung and Jiang (2011))

The simulation results of moored floating system was reviewed and validated

with the tank test data of a moored horizontal cylinder subjected to monochromatic,

bichromatic and pan chromatic waves in Roy et al. (2015). A methodology is proposed

which introduces a non-linear hydro-static restoring moment in the WEC numerical

model in Zurkinden et al. (2014)
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2.1.4 Computational fluid dynamics

The solution obtained using models which assume small amplitude waves and/or

small oscillation of WEC in irrotational and invicid flow, fails to represent complex-

ities associated with both the turbulent sea state and the response of the device to

the flow field. CFD simulations with realistic transient panchromatic input condi-

tions are inclusive of all the fluid-body forces, and capable of including the nonlinear

effects. CFD simulations capture all the complexity in the fluid domain with added

computational cost. The reason for such computational cost is the ability of CFD

models to predict velocity and pressure fluids at any point in the spacial or temporal

domain. Such an extensive knowledge is very useful in wave energy production con-

text as the final objective of CFD analysis for WEC design is calculation of the total

force applied by the fluid on the body and the fluid-body interaction. Thus the body

of CFD work in the literature can be broken down into generation and propagation

of waves and fluid-WEC interactions.

CFD modelling of propagating monochromatic water waves over a submerged bar

has been done by Morgan et al. (2011) in the open-source CFD library OpenFOAM

(Weller et al., 1998). The problem of absorption of reflected waves from the out-

let boundary was addressed by Jacobsen et al. (2012) where the authors extended

OpenFOAM to include a generic wave generation and absorption method. Newly

developed boundary conditions for wave generation and absorption using a piston

type wave maker and active wave absorption was discussed in Higuera et al. (2013a).

A companion paper (Higuera et al., 2013b) by the same authors discusses specific

cases applied to coastal engineering by solving two phase free surface problems in a

3D domain. Under operating conditions a WEC is subject to different wave envi-

ronments and the above papers provide an insight to boundary conditions used and

their specification using OpenFOAM. Propagation and breaking of regular waves was

modelled by Chenari et al. (2015). Extreme wave events were investigated by Vyzikas

et al. (2013) by modelling a focused wave event, in an experimental wave tank and in

an OpenFOAM Numerical Wave Tank (NWT). In a transient simulation good agree-

ment between the two results were found initially, until unwanted wave reflections

contaminated the experimental wave tank results. The wave reflection can be con-

trolled by various active and passive methods (Windt et al., 2019). This highlights

one of the advantages of the NWT approach for wave energy experiments.

Agamloh et al. (2008) used a 3D numerical flume to perform coupled fluid-
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structure interaction simulation of a wave energy device in order to asses power out-

put. The technique was also expanded to evaluate the interference between two buoys.

By performing forced oscillation on simple 2D circular and rectangular cylinders using

OpenFOAM, Bonfiglio et al. (2011) were able to measure the hydrodynamic forces on

the body during radiation experiments and compare their values to those predicted by

boundary element solvers. The above mentioned approach was repeated by Garrido-

Mendoza et al. (2013) and Guedes and Santos (2014) to determine the added mass

and radiation resistance coefficients of a floating body at discrete frequencies.

A two-dimensional OpenFOAM numerical wave tank was used to simulate non-

linear wave-body interactions between monochromatic waves and a stationary sur-

face piercing body in water of finite depth, with flat and sloping bottoms in Li and

Lin (2010). A good agreement with experimental and numerical results of other re-

searchers was found. This study was later extended by Li and Lin (2012) to include

irregular waves and varying water depth. Chen et al. (2014) assessed how OpenFOAM

performs when applied to non-linear wave interactions with offshore structures for a

range of wave conditions.

Anbarsooz et al. (2014a) studied the behaviour of a submerged circular cylinder

WEC subjected to highly nonlinear incident waves in a viscous numerical wave tank

developed based on Navier-Stokes equation. In Anbarsooz et al. (2014b) a fast fic-

titious domain method to model a submerged wave energy converter subjected to

nonlinear waves. In this method the solid objects in the domain are identified using a

scalar parameter, and the momentum and continuity equations are solved in the entire

domain including the solid object. The methedology presented in this work reduces

the complexity of grid generation close to a solid object, apart from the fluid-solid

two phase interaction. It was shown that the maximum efficiency of WEC occurs at

larger damping coefficients and as the wave height increases it moves towards lower

lower spring constants relative to calculations done from linear theory. The authors

limited the applications of the described method to non-turbulent flow regimes and

low amplitude steep waves. The details of wave generation techniques for both the

above mentioned analysis are provided in Anbarsooz et al. (2013). The authors have

used a piston type and a flap type wave-makers in intermediate and deep waters.

It was found that for large wave steepness, the numerical and experimental wave

heights are slightly lower than the analytical values. The solution was obtained using

a control volume approach in conjunction with the fast-fictitious-domain-method for

treating the solid objects. It was found that the wave-body interaction could not
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be accurately predicted when turbulence dominated. Several other studies can be

found in literature which attempted to include the non-linear viscous damping forces

by directly solving Navier-Stokes equations (Tao et al., 2000; Agamloh et al., 2008;

Afshar, 2010; Yeung and Jiang, 2011; Palm et al., 2013).

An exciting area of research is the simulation of Fluid Structure Interaction (FSI)

in multiphase flows. A notable application in this topic area is the interaction of waves

with ocean structures. Development in the numerical modelling of wave energy FSI

can be attributed to the learnings in the field of naval hydrodynamics. The VOF

technique of Hirt and Nichols (1981) and the immersed boundary formulation were

combined in (Weymouth et al., 2006; Weymouth, 2008) to simulate ship hydrody-

namics with overall first-order accuracy. Shen and Chan (2008) similarly applied the

combined VOF and immersed boundary approach in several 2D case studies, includ-

ing wave propagation over a submerged structure and wave generation by a moving

bed. Paik (2010) incorporated the level set method (Osher and Sethian, 1988) into

CFDShip-Iowa, a computational ship code developed at the University of Iowa based

on RANS models. Sanders et al. (2011) conducted preliminary numerical study on

the rigid-body motion in 2D incompressible two-phase flows, also by incorporating

the level set formulation for the free surface representation. Thus some of the the

capabilities in FSI that were particularly relevant to wave energy application are inter-

action of free surface flows with structures, dynamic meshing, green water, structural

deformation etc.

In the context of two-body heaving SRPAs the simulation of fliud in the moon-

pool region is particularly challenging. Such FSI problems pose significant challenges

to current numerical methods, as both the fluid-fluid interface and fluid-solid interface

must be accurately computed to faithfully represent the important physics involved.

Though recent development in overset meshing adds several capabilities in simulation

of heaving motion of two closely placed annulus geometries. As of time of this research,

it is believed that all the overset capabilities were at infancy when this work started

and to this date these capabilities are only available commercially and are not present

in the open source domain. Thus, few works have been conducted along this direction

in ocean energy domain, and even fewer have considered the realistic interactions

involving all the important aspects: fluid motion, structure movement and multiphase

free-surface flow.



18

2.2 Numerical wave tanks

NWTs are a set of boundary conditions that can be applied to patches which replicate

physical boundaries in physical wave tanks. This boundary conditions are used to

perform wave generation or absorption and assign values of fluid parameters (veloc-

ity, pressure, viscosity, turbulence properties, fluid type etc) to finite volume cells.

NWTs have been used for many years in ocean engineering to analyze fluid structure

interaction. Numerical tanks not only provide an alternative to the expensive phys-

ical tank experiments but also give the flexibility of designing an experiment. Thus,

it is important that the numerical tank uses high fidelity numerical models. The

numerical tank in this study is based on the open-source CFD software OpenFOAM.

OpenFOAM uses a finite-volume discretization technique that require a computa-

tional mesh which divides the spatial domain into discrete finite domains known as

control volumes. The governing equations are solved for each finite control volume

in the mesh, and the variables like velocity and pressure are solved and computed at

the nodes and face centres respectively for a staggered grid. Sections 2.2.1-2.2.6 pro-

vides a background on the fundamentals of NWT utilized in this thesis and has been

divided into several parts which briefly touch upon the governing equations of fluid

flow, solid body motion, relaxation zone, volume of fluid, arbitrary mesh interface

and various discretization schemes used.

Some of the important advantages of using a numerical wave tank for analysis are

as below.

• Reflections from ‘tank’ walls can be effectively controlled

• Can test the device at full scale, eliminating scaling effects

• Free response tests can be implemented

• The device can be constrained to different modes of motion without requiring

mechanical restraints, which can add friction and alter the device dynamics

• Hydrodynamic force measurement.

• Specialist equipment, including a prototype WEC device, is not required

However, NWTs are not without drawbacks. Some of the disadvantages are item-

ized as below.
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• The chief disadvantage, over a conventional wave tank, is the excessively long

time to perform the numerical computation. Thus it is a key part of any NWT

assessment. The computational requirements can be quantified by the run time,

tr, normalised by the simulated time, ts , and the normalised for run time per

cell. The normalised for run time for most of the state of solver were found to

be in the range 250− 300 as published in Windt et al. (2019).

• NWTs can take considerable experience to use well, in particular setting up a

spatial mesh, which offers a reasonable compromise between computation time

and accuracy.

• The pressure peaks, due to the impact between waves and the WEC, occur over

short time scales; therefore, it is necessary to utilise small time steps, in order

to accurately describe the pressure peaks, which increases the simulation time.

2.2.1 Governing equations

The Reynolds Averaged Navier-Stokes (RANS) equations are time-averaged equations

of motion for fluid flow. These equations are derived by time averaging of the Navier-

Stokes equations. For an unsteady, incompressible, turbulent flow the continuity

equation Eq. (2.1) and the momentum equations Eq. (2.2) are:

∂Ui

∂xi

= 0 (2.1)

ρ
∂Ui

∂t
+ ρ

∂(U − Ug)iUj

∂xj

= ρgi −
∂p

∂xi

+
∂τij
∂xj

+ µ
∂2Ui

∂x2
j

(2.2)

where ρ is fluid density, xi (i = 1, 2, 3) represent x, y and z directions respectively, t is

time, gi (i = 1, 2, 3) are the body force intensities in x, y and z directions respectively,

p is pressure, (U −Ug)i (i = 1, 2, 3) is the resultant velocity components in x, y and z

directions respectively when the grid points have a velocity Ug in that direction, Uj

(i = 1, 2, 3) are the mean velocity components in x, y and z directions respectively and

µ is dynamic viscosity of the fluid. In the above τij = −ρu′

iu
′

j represents the Reynolds

stress components and u′

i (i = 1, 2, 3) are the components of fluctuating velocity in

x, y and z directions respectively. These equations cannot be solved directly as they

no longer constitute a closed set and require additional equations in the form of turbu-

lence models. In this study the realizable k-ε model (Shih et al., 1995) for turbulence
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has been used. The aim of any turbulence model is to express the Reynolds stress

in terms of known or calculable quantities. In Cartesian coordinates the components

of the viscous stress tensor which represents additional momentum transfer due to

turbulent fluctuations are defined based on the Boussinesq eddy viscosity hypothesis

as:

τij = −
2

3
ρkδij + µtSij (2.3)

Sij =
∂Ui

∂xj

+
∂Uj

∂xi

(2.4)

In the above δij is Kronecker delta (= 1 when i = j, otherwise 0), k is the ki-

netic energy, µt is the turbulent viscosity and Sij is the mean strain rate. As the

Reynolds stresses are not known, appropriate turbulence models (realizable k-ε in

current study) are introduced for calculating these stresses and their interaction with

the mean flow variables. These models are called closure models. The additional

viscosity due to turbulence of flow known as the turbulent viscosity µt is given by:

µt = ρCµ

k2

ε
(2.5)

where Cµ is calculated as follows for realizable k-ε model:

Cµ =
1

A0 + AskU∗/ε
(2.6)

A0 is a model constant (= 4.0), where as the parameter As is a function. Readers

are directed to (Shih et al., 1995) for further curiosity on model parameters used in

realizable k-ε turbulence models.

2.2.2 Turbulence modelling

In this study the realizable k-ε model (Shih et al., 1995) for turbulence has been used.

This turbulence model belongs to the family of 2-equation eddy viscosity models and

involves two transport equations, one for the kinetic energy (k) and other for the

dissipation rate of the kinetic energy (ε). The transport equations for k and ε are:

ρ
∂k

∂t
+ ρ

∂(kUj)

∂xj

= −ρu′

iu
′

j

∂Ui

∂xj

− ρε+
∂

∂xj

[(µt

σk

+ µ
) ∂k

∂xj

]
(2.7)
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ρ
∂ε

∂t
+ ρ

∂(εUj)

∂xj

= Cε1
ε

k
ρu′

iu
′

j

∂Ui

∂xj

− Cε2ρ
ε2

k
+

∂

∂xj

[(µt

σε

+ µ
) ∂ε

∂xj

]
(2.8)

where Cε1, Cε2, are constants, σk and σε are the turbulent Prandtl numbers for k and

ε respectively. The values of the constants for realizable k-ε turbulence model are as

follows: Cε1 = 1.44, Cε2 = 1.9, σk = 1, σε = 1.2.

2.2.3 Volume of fluid

The multi-phase problem is addressed using the volume of fluid formulation, where an

additional parameter known as the volume fraction (α) is used to represent the phase

of the fluid in the finite volume cells. The free surface is tracked as α = 0 represents

the pure air phase while α = 1 represents pure water phase and the interface is

represented by the intermediate α values. The properties of the fluid are computed

based on the volume fraction of the cell:

φ = αφw + (1− α)φa (2.9)

where φ is any fluid property like density (ρ) and viscosity (µ); while index w and a

indicate water and air respectively. The diffusive property of the VoF method at the

wave interface is suppressed by introducing an artificial compression term into the

transport equation for the volume fraction as mentioned in (Rusche, 2002).

∂α

∂t
+∇.(α(U − Ug)i) +∇.(α(1− α)Ur) = 0 (2.10)

Eq. (2.10) is the transport equation for the volume fraction, where Ur is the

velocity field suitable to compress the interface. The artificial compression term has

an effect only at the interface region (Hemida, H., 2008).

2.2.4 Relaxation zone

The relaxation zones are implemented to avoid reflection of waves from the far field

boundaries. The free surface is displaced from equilibrium due to generation of waves

caused either by the heaving motion of the spar or its reflection from the float. The

deformation of the free surface may propagate to the boundaries of the numerical

tank and in turn be reflected to contaminate the near field of the WEC. The present

relaxation technique was implemented in Jacobsen et al. (2012) and is based on Mayer

et al. (1998).
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A relaxation function (ξR) is calculated using Eq. 2.11 inside the relaxation zone

ξR(χR) = 1−
exp(χ3.5

R − 1)

exp(1)− 1
(2.11)

The value of χR in the above equation should be between 0 and 1. The term χR is

defined such that ξR should be 1 at the interface of relaxed and unrelaxed zone. The

value of fluid velocity (U) or volume fraction (α), can be found out by substituting

the value of ξR in the Eqs. 2.12 and 2.13 below,

U = ξRUc+ (1− ξR)Ut (2.12)

α = ξRαc + (1− ξR)αt (2.13)

where index c and t indicate computed and target values respectively.

2.2.5 Arbitrary mesh interface

In the current work, two different finite volume domains surrounding the spar and

the float have been considered. The governing equations for continuity, momentum,

turbulence and rigid body motion are solved separately for each domain. The ex-

change of values of fluid properties takes place across the outer boundary of the inner

domain and the inner boundary of outer domain using a conservative interpolation

method by local Galerkin projection proposed in Farrell and Maddison (2011). This

technique has been implemented in OpenFOAM and is known as an Arbitrary Mesh

Interface (AMI). It enables simulation across disconnected, adjacent, mesh domains;

where each face accepts contributions from partially overlapping faces of the neigh-

bour patch. AMI weights define the contribution as a fraction of the intersecting

areas. For each face, the sum of the weights should equal 1. Conservation errors

are introduced as the sum of weights deviates from 1 where the patch geometries are

not well matched. Though these errors are localized and do not cause the method to

fail, users can specify a lower limit to the sum of weights. When the sum of weights

goes below this limit, the interpolation across the AMI boundary cells stops and a

Dirichlet boundary condition is imposed to particular patch faces.

The grid for the float and spar have been generated separately, yet care has been

taken that the inner most extent of domain containing the float matches exactly

with the outer most extent of the domain containing the spar. Initially the spar and
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(a) View of the complete extent of mesh in
the outer domain (Front view)

(b) View of the mesh close to float in the
outer domain (Top view)

(c) View of the mesh in the inner domain
(Front view)

(d) View of the mesh in the inner domain
(Bottom view)

Figure 2.2: 2D plane visualization of the structure of mesh in the outer and inner
domain close to float and spar of WEC A.
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float are placed at the centre of their respective CFD domains. Thus when both the

domains are combined the central axis of the combined domain coincides with the

central axis of each individual domain. The outer domain is shown in Figure 2.2a

and Figure 2.2b and the inner domain in Figure 2.2c and Figure 2.2d. Perfectly

overlapping boundaries at the mesh interface throughout the simulation would imply

consistent spatial distribution of fluid properties, but it can be seen from Figure 2.2c

that the interface close to the upper conical section of the WEC is also conical.

Thus, with the current dynamic mesh algorithm maintaining overlapping interfaces

throughout the simulation at the upper conical section is not possible. This is treated

as a limitation in the current study and may be addressed in any future work.

2.2.6 Discretization schemes

The governing equations are solved at the center of the cells in a finite volume do-

main discretized into structured hexahedral cells. The discretisation scheme used for

the Laplacian and gradient terms as ∇.(µ∇U) is Gaussian integration (here after

referred as Gauss) with linear interpolation of values from cell centres to face centres,

and the interpolation scheme for the diffusion coefficient (µ) is linear (central differ-

encing) with explicit surface normal gradient scheme which includes non-orthogonal

correction. For the divergence terms the discretisation scheme used is Gauss and the

interpolation schemes for velocity (U), turbulent kinetic energy (k) and dissipation

of kinetic energy (ε) is first/second order, bounded. A first order, bounded implicit

scheme is used for the first time derivative. The algorithm used for the resolution

of the governing Equations 2.1 and 2.2 is based on the PIMPLE method which is a

combination of the algorithms SIMPLE (Semi-Implicit Method for Pressure Linked

Equations) and PISO (Pressure Implicit with Splitting of Operator). The SIMPLE

algorithm (Patankar, 1980; Versteeg and Malalasekera, 2007) is used to solve steady-

state problems with emphasis on the treatment of the non-linear effects of the velocity

rather than the precise determination of the pressure field. Each iteration is assumed

to be a pseudo time step. Stability is assured and convergence is improved by under-

relaxation of fluid properties. The PISO algorithm (Marquez, 2013; Issa, 1986), is

suitable for solving the velocity-pressure coupling for each time step in a transient

simulations. The non-linear effects of the velocity are reduced by setting small time

steps characterized by Courant numbers (Courant et al., 1967) below 1.
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2.3 Validation of NWT in diffraction and radiation

framework

The objective of CFD simulation in the classical framework of diffraction and radia-

tion is to establish confidence in the quality of the numerical wave tank results. Data

generated by NWT will be used for the data-driven models described in Chapter 3.

The experiment design for data generation is discussed in Chapter 4. In these ex-

periments the oscillating WECs are subjected to panchromatic wave inputs. In this

chapter, results from a simplified setup of NWT is validated. The simplified experi-

ments in NWT consists of diffraction and radiation. The results are validated against

the experimental and numerical results in Beatty et al. (2015). In the published

results, the Boundary Element Method (BEM) code WAMIT was used to calculate

the nondimensionalized parameter, and two sets of physical tank experiments were

performed. These experimets will be referred as diffraction experiment and radiation

experiment. In the diffraction experiment, direct measurements were taken of the

wave forces on the WEC bodies while held fixed in regular waves. In the radiation

experiment, forced oscillation of spar induces WEC body motions in a quiescent tank.

The hydrodynamic force on the components of WEC is recorded over the duration

of experiment. Though the performance of BEM model was validated against dif-

ferent physical tank experiment conditions, it failed to simulate the complex flow

phenomenon in the moon-pool region between the float and spar. A numerical moon-

pool lid was introduced at the water surface in the annular gap between the float

and reacting body. The moon pool lid mitigates erroneous BEM numerical solutions

such as negative added mass and unrealistically high radiation damping in the fluid

domain arising from resonant oscillations.

The methodology to simulate oscillating motion between two annulus geometries

discussed in Section 2.2.5 is used to address this issue and will be one of the major

contribution from the current thesis as mentioned in Section 1.3. The Finite Volume

Method (FVM) code OpenFOAM is used to for comparison with experimental and

WAMIT results. The finite volume mesh is shown in Figure 2.2, Figure 2.3 and Fig-

ure 2.4. The water depth in all the cases is 2.0 m. The spatial domain is assumed

to have finite and infinite size (i.e. tank wall effects were neglected) for FVM and

BEM calculations. A two-body analysis of each WEC configuration was performed

in OpenFOAM, so that the hydrodynamic effects of float and reacting body were

included in the presence of the other body. But the effect of float was not considered
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in BEM and physical tank experiments.

2.3.1 Domain and grid details

Two different meshes were used to perform diffraction and radiation tests. The diffrac-

tion tests involves generation and absorption of waves a, therefore a cuboid shaped

domain is used where as wave are not generated in radiation test therefore a cylin-

drical domain is used. The acceptable distance between the cell centroid and wall

adjacent cells is usually measured in the wall unit y+ as, and is given by the formula

y+ = l1uτ/ν where uτ =
√
τw/ρ is the friction velocity and τw is the wall shear

stress. For the wall law to be applicable, the grid size should be adjusted such that

30 ≤ y+ ≤ 300, and the wall adjacent cells are not placed in the buffer layer of y+

= 5 ∼ 30. An excessively fine mesh has been avoided near the body surface when

standard and nonlinear k-ε turbulence models are used.

The verification study of determining grid resolution and domain dimensions are

presented in Appendix A. The grid resolution close to the freesurface are based on the

Appendix A. A separate verification study for 3D tank is described in Section A.3.

(a) Mesh for WEC A in xy plane

(b) Mesh for WEC B in yz plane

Figure 2.3: 2D plane view of a 3D mesh and domain for diffraction test

Diffraction tests

The domain dimensions and the associated structured mesh around the WEC is shown

in Figure 2.3. For this test the spar is placed at 15 m from inlet and 13 m from outlet,
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because wave modelling requires larger distance from inlet and outlet boundaries

to allow wave generation and absorption. A generation zone and absorption zone

is placed close to the inlet and outlet respectively according to the discussion in

Section 2.2.4. Figure 2.3a shows the domain dimensions in xy plane when WEC A is

in the NWT. Whereas, Figure 2.3b shows the mesh around WEC B in yz plane. In

all the tests, numerical tank is 2.23 m deep and 4.4 m and the total number of finite

volume cells in the domain were around 4 million.

Radiation tests

The outer and inner computational domain is contained in r ∈ [0.176, 5.5] m and

r ∈ [0.0, 0.176] m respectively in the radial direction and the extent in the azimuthal

direction for both the domains is z ∈ [−3.21, 2.79] m. The draft is z = 1.4 m.

The structured hexahedral mesh extends to both the domains such that continuity

of node points and gradient is maintained in the same domain and also across the

AMI boundary. A narrow band of highly resolved mesh can be seen at the location of

free surface to maintain a sharp air-water interface and suppress the diffusive nature

of the VoF technique. It can bee seen from Figure 2.4 that when a heaving motion is

imposed between the domains, the outer boundary of the inner domain also oscillates

at the same frequency and amplitude as the spar.

(a) t = 0, T (b) t ⋍ T
4 (c) t ⋍ 3T

4

Figure 2.4: 2D plane view showing the position of spar relative to float over 1 time
period

Grids with varying degree of mesh resolution have been studied for their prediction

of force values in the grid independence study. The total cell count for different grids

are approximately 3−5 million. The results of the grid independence study have been
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discussed in Section A.3. In the previous study by Yu and Li (2013), the geometry was

simplified to a locked single-body system in order to avoid mesh deformation in the

moon-pool region. An important feature of this study is that the mesh deformation

close to the float and spar has been avoided by use of AMI, hence the system is

representative of actual WEC operation and the forces are expected to be calculated

with accuracy.

2.3.2 Diffraction tests

The wave excitation forces in the heave direction on all bodies were measured in

regular waves for frequencies in the range of 1.5 − 4 rad/s and for wave heights of

0.04 m. Diffraction tests were executed for each body with the other body held fixed

at its equilibrium position. The durations of experiments in NWT were limited to 20

time periods in this thesis to avoid longitudinal tank reflections as well as to attain

steady state. 10 time period of wave oscillations were chosen for analysis between 1.5

to 4 rad/s. The physical tank experiment (Beatty et al., 2015) were conducted for

150 sec. In these experiments, the float and reacting body were held fixed, the heave

forces and the water surface elevation were recorded. The excitation force magnitude

and phase data were extracted from the force time series in following steps.

1. First, the force time series was split into non-periodic transient and periodic

steady-state data.

2. The initial (physical wave tank and NWT data) and final transients (physical

wave tank data) were discarded.

3. From the remaining data the force time series was split into windows of data,

of duration 1 wave period, each containing an excitation force maximum and

minimum.

4. Lastly, for each window, the diffraction force magnitude for physical wave tank

experimental and numerical results were obtained. An ensemble averaging over

one time period was done over the sample period.

The CFD, experimental and BEM derived diffraction forces, for WEC A, WEC

B, and the float, are summarized by the frequency dependent diffraction force plots

shown in Figure 2.5. WEC A features a bulbous tank and WEC B features a large

heave plate. Both WECs have identical float shapes (refer Figure 1.1). A comparison
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(a) Diffraction force on WEC A

(b) Diffraction force on WEC B
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(c) Diffraction force on Float

Figure 2.5: Normalized diffraction force magnitude (fd/η) for WEC A, WEC B and
Float. The physical tank experiment and WAMIT results were processed and repro-
duced from the experiments done by Beatty et al. (2015)

.

of force time series for all the frequencies for WEC B and float is also presented

in Figure B.9a to Figure B.1a in Appendix B.

Key observations to be made from Figure 2.5 are as follows. First, the numerical

diffraction force data agrees well with the tank test data as well as BEM calculated

values. The excitation force magnitude curves seen in Figures 2.5a, 2.5b and 2.5c, are

normalized by wave amplitude, and are observed to collapse together. It should be

noted that in setup in NWT the float was present with the spar whereas in physical

wave tank or WAMIT results the float was not considered along with spars. This

might have contributed to the difference what-so-ever between the values of diffraction

forces. It is apparent therefore, that diffraction forces are well predicted by FEM and

BEM analysis in most of the wave frequencies tested.

2.3.3 Radiation tests

The objective of the radiation tests was to establish the methedology to simulate

motioin of two annulus geometries oscillating in heave and to see the influence of

oscillating amplitude and frequency on the profile of hydrodynamic force. These tests

comprised of forced heave only motions of WEC A and WEC B. WEC A features a
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bulbous tank and WEC B features a large heave plate. Both WECs have identical

float shapes (refer Figure 1.1).

WEC A

The hydrodynamic forces on a oscillating self-reacting point absorber wave energy

converter WEC A is calculated using CFD. The component geometries of float and

spar are enclosed in two different fluid domains, each subjected to relative motion

using a dynamic mesh algorithm. The transfer of field variables across the domains

is achieved through an Arbitrary Mesh Interface (AMI). This unique methodology

avoids cell deformation close to the component parts of the WEC, thus eliminating

the errors in force calculation due to deformed cells. The continuity and momentum

equations along with the free surface are solved separately in each domain. The

validation of radiation force calculated from CFD is done by the experimental results

of Beatty et al. (2015).

In this section four cases are analysed for the forces acting on the WEC when the

spar is oscillating at a constant frequency. The displacement profiles used as input

in these cases were generated using a sine function x(t) = A sin(ωt). Where A is the

amplitude of oscillation of the spar, ω is the angular frequency and t is the instan-

taneous time. Four different cases with the amplitude A = 0.04m but with different

angular frequencies ω = 2.06, 2.61 , 3.17 and 3.99 rad/s were used. The variation

of hydrodynamic forces acting on the WEC as obtained from CFD were compared

with the experimental results. The variation of forces for different cases are shown

in Figure 2.6a, Figure 2.6b, Figure 2.6c and Figure 2.6d. The Pearson’s coefficient of

correlation between the CFD and experimental results are 0.99, 0.98, 0.99 and 0.99

respectively. The values of correlation coefficients were found to be close to a perfect

correlation. However, it should be noted that the filtered values of experimental data

were used for finding the coefficients. The comparison of values of hydrodynamic

forces obtained from CFD and experiment are satisfactory for all the cases, though a

negligible phase shift can be seen in all the cases. The coefficient reflect the correlation

of the magnitude only and not of the phase of the profile. One of the possible reason

for this shift may be the absence of float in the physical tank experiment another pos-

sible explanation can be the mapping of the interface near the upper conical region

when the spar is not at the mean position, as mentioned in Section 2.2.5. It can also

be seen that the discrepancy in peak force magnitude increases with frequency. The
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possible reason for this discrepancy can be the poor resolution of the linear motor

that was used as an actuator to control the displacement of the spar in the physical

experiment. The close proximity of the tank bottom in experiments can be another

possible contributor to this discrepancy. The distance between the spar and tank

bottom is only 0.6 m at mean position in experiment, while the same is 2.71 m in

CFD. The decision on the depth of numerical tank was taken to ensure minimum

influence on the WEC hydrodynamics from the NWT tank bottom.
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(a) ω = 2.06 rad/s (r = 0.99)
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(b) ω = 2.61 rad/s (r = 0.98)
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(c) ω = 3.17 rad/s (r = 0.99)
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(d) ω = 3.99 rad/s (r = 0.99)

Figure 2.6: Variation of hydrodynamic force on oscillating spar for A = 0.04 m, r
is the correlation coefficient. The x -axis is nondimensionalized over time period of
oscillation.
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2.4 NWT results for radiation test on WEC B

For this test the spar of WEC B was subjected to forced oscillation with amplitudes

in the range of 0.03 − 0.08 m and frequency in the range of 1.5 − 3.99 rad/s us-

ing CFD simulations in a quiescent tank. The test was performed for 30 s and the

displacement, acceleration, and heave force were recorded. The hydrodynamic force

on WEC B for amplitudes of 0.03 m, 0.04 m , 0.06 m, 0.08 m is plotted in Fig-

ure 2.7a, Figure 2.7b, Figure 2.7c and Figure 2.8b respectively. The time in the x

axis is normalized with the time period of ocsillation. It can be seen that as the

amplitude increases the profile of hydrodynamic force changes.

Beatty et al. (2015) concluded that the experimentally derived total damping from

the physical wave tank radiation tests results for both the bodies is much greater

than the BEM derived damping (Beatty et al., 2015). The reason stated for this is

that the BEM code accounts for the damping effect due to radiation of waves but

does not account for viscous effects. Since radiation is a free surface phenomenon

and the geometries of both the reacting bodies are small at the free surface, the

radiation damping is negligible. From this argument it is clear that viscous effects

are the dominant source of damping for both reacting bodies. Apart from the viscous

effect, the nonlinear relationship between the body position and hydrodynamic force

is exposed by Figure 2.8. The body was oscillated in a perfectly sinusoidal manner

about the mean position, yet the output force profile deviated from the perfect sine

form.

The validation of the NWT using the diffraction and radiation tests establishes

confidence in the overall accuracy of results generated using this NWT. Though inac-

curacies exists between the NWT and physical wave tank results, the source of these

can be attributed to several reasons as mentioned below.

• It has been concluded in Beatty (2015) that the transverse waves were present in

the physical tank experiment. An assessment of the tank standing wave resonant

frequencies and are given in Beatty (2015, Appendix F). The regression results

indicate repeatable differences between the centreline and offset wave probe

signals at 2.6 rad/s-4 rad/s. These repeatable differences are likely a result of

excitation of transverse standing waves between the walls of the tank.

• It has also been mentioned in Beatty (2015) that the poor resolution of the

linear motor (used as a position control actuator forcing the displacement of
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(a) Amplitude = 0.03 m

(b) Amplitude = 0.04 m
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(c) Amplitude = 0.06 m

Figure 2.7: Hydrodynamic forces on WEC B oscillating at amplitudes of 0.03 m,
0.04 m and 0.06 m. (Hydrodynamic forces on WEC B oscillating at amplitude of
0.08 m is shown in Figure 2.8b. The x -axis is non-dimensionalized over time period
of oscillation

spar in the experiment) as possible source of error in the physical tank test.

• In the physical experiments, the float was not present, and the tank depth was

kept 2 m.

2.5 Summary and discussion

The potential theory formulation for WEC analysis along with the various assump-

tions also requires a set of reduced experiments. These simplified tank tests are used

to generate constant hydrodynamic coefficients. Due to the nature of the tank tests

and the superposition of various components in the mathematical model the accu-

racy of the results is adversely affected. The modified form of Newton’s second law

with distinct diffraction and radiation components derived from these tests is called

Cummins equation (Cummins, 1962). Several attempts that have been made to in-

clude the non-linearity (mainly, viscid forces) as an additional term to the famous

Cummins' equation have been discussed in this chapter. Though this approach is

systematic, time tested and accurate for simple geometries and simplified environ-
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mental conditions, it fails to predict the response for either oscillation of complex

single/multi body geometry or complex environmental conditions. It can be confi-

dently said that the due to the mathematical complexity, the sources of nonlinearity

cannot be segregated. It was found that force magnitude obtained from CFD or

NWT compared very well with the physical tank test results. But, due to absence of

viscosity the BEM method could not provide accurate values of damping. Thus these

results developed confidence in CFD methedology for further analysis.

In engineering applications, hysteresis nonlinearlity is often used to model the

memory effect (Talatahari et al., 2012). The hysterisis nonlinearity has rate depen-

dent characteristics, i.e. the output is nonlinearly dependent on the rate of input.

This has been confirmed based on Figure 2.8a as the input to the NWT was sinusoidal

oscillation of WEC B. From the WECs context it means that the hydrodynamic force

should be related to the rate of input like body velocity/relative velocity or higher

derivative of it like acceleration. The geometry considered is WEC B. The hydrody-

namic force plotted in Figure 2.8a with heave velocity show hysteresis effect, these

results have been plotted over various cycles of oscillations. The above mentioned hys-

teresis and nonlinearity indicate that the model structure previously studied should

be analyzed with new perspectives, keeping in mind the heave plate designs of WEC

geometries.

Thus, it is required that relationship between state variables and hydrodynamic

forces should include variables like relative height, relative velocity and relative accel-

eration rather than fluid free surface, fluid velocity and fluid acceleration. The effect

of fluid coupling due to radiation from oscillating geometries and scattering from ir-

regular wave field should be simultaneously captured. This relationship should be

the foundation on which mathematical complexity is added to simulate phenomenon

like memory effect and causality/non-causality. An approach to use the data from

a diverse set of representative tests and development of a model which would pre-

dict the systems response in a border set of environmental conditions is required.

The estimation/training data used should provide a true description of the test case,

i.e the data should be generated from high fidelity numerical modelling or physical

experiments.
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(a) Hysteretic relationship between hydrodynamic force
and spar velocity

(b) Hydrodynamic force on spar in transient simulation

Figure 2.8: CFD calculated hydrodynamic force on WEC with heave plate oscillating
with an amplitude of 0.08 m
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Chapter 3

Data-driven hydrodynamic

modelling of WECs

In the previous chapters it has been shown that, even though potential theory and

mesh-based CFD methods are popular for modeling WECs, they have inherent lim-

itations. Potential flow theory assumes that the fluids are inviscid and irrotational

and can only model simple hull structures and small amplitude motions. Similarly

in the finite volume based CFD codes it is difficult to treat large deformation and

displacement of the fluids and structures and the complex fluid-structure interactions

like over topping, wave breaking etc. Thus, new numerical models are necessary to

solve these problems and to model SPARs more accurately.

The modelling approach presented in this Chapter and validated in Chapter 5 is

that of system identification, where models are constructed from input/output data

measured from the system under study. These models are used across a range of

engineering fields to produce dynamic models of various systems as discussed in the

literature review in Chapter 2. There are three main components to data-driven

modelling, the input/output data, parametric model structure, and the identification

process. These components are analysed in this chapter. A brief overview of the

system identification, in general and specific to hydrodynamic modelling, along with

a review of previous work is presented in Section 3.1. The characteristics of the input

signal and advantages of numerical wave tank utilized for data generation is described

in Section 3.2. Section 3.4 details the general classification of model structures based

on the modelling issues that a system identification model should resolve, along with

the specific characteristics of the blocks involved in block oriented models used in
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this thesis. Section 3.3 describes the models used in this thesis. These models are

subdivided into blocks with specific input, output and process. The block division

facilitates parameter identification, which has been discussed in Section 3.5. The

validation of models is discussed in Section 3.6. The chapter ends with a summary

of various candidate models in Section 3.7.

3.1 System identification for hydrodynamic appli-

cation

For hydrodynamic applications described in Chapter 2, a mathematical model is

required which could reduce the errors associated with superposition of forces from

different experiments, yet be able to capture the important nonlinearities of the real

system in real time. The above requirements suggest that data models (black box),

or a combination of data and physics model (grey box) could be a good alternative

to a purely physics model (white box). A general discussion on the colour coded

classification is presented in Chapter 1, with emphasis on the the characteristics of

grey box model used in this and Chapter 5.

3.1.1 Overview and classification

In this chapter the complexity of the physical system is captured using limited CFD

tests and the data thus generated is used to train the model to operate on various

realizations of input condition. Several other applications of such models in wave

energy conversion field (Bacelli et al., 2017; Cho and Coe, 2018) suggest that with

sufficiently informative input data for the identification of nonlinear system, conver-

gence with experimental or numerical data is obtained. Based on the above model

categories, the building blocks of this work have been applied successfully to simple

hull geometries heaving in water in Giorgi et al. (2016a,b) and Ringwood et al. (2016).

In previous studies the focus was to construct a model structure to find a relation-

ship between free surface and total hydrodynamic force for 2D; square, circular and

triangular cylinders. The hydrodynamic force for these geometries were predicted

from the model trained by CFD tests and performance of four discrete time mod-

els viz. Autoregressive with exogenous input (ARX), Nonlinear autoregressive with

exogenous input (NARX), Artificial neural network (ANN) and Kolmogorov-Gabor

polynomial (KGP) were compared. Though these models were able to predict the



41

hydrodynamic forces for simple hull shapes, these were limited to static non-linearity

and did not include rate dependent input-output relationships. It is expected that

the model structures employed in this thesis to simulate the hydrodynamics of more

realistic WEC geometries like heave plates, should have capability to include larger

degree of nonlinearity. The performance of the models employed in this thesis have

been evaluated in Chapter 5.

3.1.2 Steps in system identification

The expectations from a system identification model is that it should be capable

of describing the real system accurately, thus the objective of system identification

is illustrated with the help of Figure 3.1. Assuming that the process or CFD tests

produces only a single output, it is expected that the model will also do so and

represent the behaviour of a process as closely as possible. The quality of model is

measured in terms of the error between the process output and model output. This

error should be utilized to tune and optimize the parameters of the model.

Figure 3.1: Working principle of system identification

In order to understand the data based modelling methodology, the procedure can

be divided into various steps (Nelles, 2001; Isermann and Münchhof, 2011). The

general order in which these steps are sequenced in this chapter and Chapter 5 is

presented in Figure 3.2. The complexity and requirement of prior knowledge typically

decreases as we move from step 1 to step 5. Each step in the procedure involves some

decision making and can be intervened. The decisions involved in this thesis are

enumerated as below and discussed in detail in Sections 3.2-3.6

1. Choice of model input
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2. Choice of excitation signal

3. Choice of model structure and complexity

4. Choice of model parameters

5. Evaluation of above choices (Validation)

Based on the five steps mentioned above the purpose of system identification is

to identify parameters that minimize the difference in the model output and process

output. The model utilizes these parameters and predicts the output with different

set of input data.
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Figure 3.2: Block diagram representing sequence of steps in system identification

3.2 Input data

The primary requirement in system identification is ensuring that the experimental

design used to generate data and the input-output data pair used to determine the
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model is sufficiently representative of the system dynamics. Data generation pro-

cess for the system identification can be subdivided into three main components as

discussed below.

3.2.1 Choice of model input

As discussed in Chapter 2, the general procedure in wave tank testing is to either

control the body oscillation or the free surface (radiation is modelled by forcing the

device in the absence of waves and excitation by locking the device and measuring the

force excreted by the waves). However, it has been well established in literature and

previous chapter that the nonlinear effects are not captured because of this simplifi-

cation. A better approximation of the nonlinear effects can be obtained by including

both the inputs in the model as well as in the experiment design. Thus in this thesis,

the model input encapsulates the free surface height (η) and the relative position of

spar and float by a superimposed relative height (ζ) time series. This relative height

represents the dynamic position of the spar with respect to free surface height. The

main advantages of forcing both the inputs at the same time rather than single inputs

are

1. Broader representation of operating conditions

2. Reduced signal to noise ratio

Once a model input, capable of reproducing the desired phenomenon to be modelled in

an actual process is selected, the next step is to come up with the design of experiment.

A brief outline on the modes of experiments for WEC, highlighting the benefits of

one over the other is presented below in Section 3.2.2. The CFD experiments utilized

in this thesis for data generation will be discussed in Section 4.1.

3.2.2 Design of experiments

In the case of WEC, there are three possible modes for data generation for populating

a system identification model, viz. open ocean, physical wave tanks and numerical

wave tanks. In this thesis the input data considered for the system modelling are

generated using Numerical Wave Tanks (NWTs).

NWTs are used primarily for modelling nonlinear free surface waves, hydrody-

namic forces and floating body motions, these are generalized virtual simulators with



44

first principles application of fluid dynamics. Current day computing power allows

the implementation of NWTs using CFD. A comparison between various numerical

tank software can be found in (Windt et al., 2019). In this thesis NWT has been

introduced in Section 4.1.1 and the testing procedure will be detail in Sections 4.2

and 4.3 from data generation perspective for system identification application.

Using a CFD based NWT to generate data for WEC model identification has the

following advantages:

• A wide variety of excitation signals, including incident waves and forces directly

applied to the device.

• Low run time if 2D WEC geometries are simulated.

• Control on temporal resolution of measurement.

• Signals can be passively measured without requiring physical sensor devices,

which can alter the device or fluid dynamics and are subjected to measurement

error.

• In addition to the significant cost, physical wave tank experiments need physical

prototyping.

• Tank wall reflections in physical tank may limit the range and duration of viable

tests. The tank reflection have been discussed in several literature like (Beatty

et al., 2019). In NWT these reflections can be controlled at initial level of tank

design or by implementing appropriate boundary condition.

• A range of excitation signals is not likely to be available in the open ocean (at

least not in a reasonably short time frame) and there are difficulties in exactly

enumerating the excitation experienced by the device as there is no external

control of the excitation

• NWT allows measurement of free surface at the location of WEC due to re-

peatability of exact simulation conditions in the absence of WEC.

• Do not require physical sensor devices, which are typical sources of random and

systematic errors in the measurements (Giorgi et al., 2016b,a; Ringwood et al.,

2016).



45

• One of the primary advantages of CFD is that once complete all the flow field

variables are accessible and this can be used to develop improved white and

grey models.

3.2.3 Choice of excitation signal

The signal used to excite the system during the experiment plays an important role

in system identification. Input signals directly influence the identification process, as

they affect the quality of the models, data processing and experimentation time. The

characteristic of the signal is mostly dictated by the purpose of the model, required

model input and design of experiment. If the presence of system nonlinearity is antic-

ipated, it is important to properly excite the system in order to observe the system’s

response over the full range of interest. The experiment for data generation can be

designed if the mathematical model structure utilised to model the process is available

forehand. Ideally, the objective is to excite the system as much as possible, in the

shortest possible time, in order to obtain all the required identification information.

In this thesis a multisine signal is used as input freesurface height and the WEC

is oscillated with a periodic signal. The multisine signal allows strong control over

the spectral content, with free choice for the maximum amplitude of each harmonic.

For a multisine signal there is flexibility in the amplitude distribution, indeed the

amplitude distribution is determined by the phases of the harmonic components. This

leads to control over the amplitude content, through phase optimisation techniques

(Schoukens et al., 1998; Pintelon and Schoukens, 2012). Typically, the crest factor for

a multisine signal is 1.7. Other useful signals that can be use in system identification

are random and pseudo-random binary signals, random amplitude random period

signals and chirp signals (Isermann and Münchhof, 2011).

For a WEC, the input excitation signal ranges should be bounded between a

maximum and minimum level, either because of survivability issues of the WEC, or

because the WEC is intentionally designed to work in a specific ranges as discussed

in Sections. 2.3.2 and 2.3.3. In the identification experiment design, it is important

to restrict the input and output amplitude to the ranges at which the system is sup-

posed to normally operate. Indeed, it is not advantageous to introduce unnecessary

complexity in the model structure, just in order to describe the system behaviour,

in conditions which are not of interest, from a practical point of view. For exam-

ple, in the case of WEC modelling for power production, the objective is to obtain
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a model able to describe the WEC dynamic in power production mode, and not in

extreme sea conditions when the WEC switches to survival mode. The survivability

conditions translate to situation of latched float and spar which is not important to

simulate. This condition occurs mostly during storm and are associated with over-

topping. Thus in current study it is made sure by means of bounds of input signal

that such situation is never encountered.

3.3 Block Oriented Models (BOM)

In this thesis, the nonlinear system identification models used in (Giorgi et al.,

2016a,b), have been extended to include a nonlinear rate dependent block, so that the

additional nonlinearities can be modelled and the input free surface data can be trans-

formed into more accurate hydrodynamic force data. As with the introduction of the

nonlinear static block, the black box ARX model becomes a grey box Hammerstein

model. Similarly, it can be said that after inclusion of a nonlinear rate dependent

block the modified Hammerstein model takes a lighter shade of grey. This model will

be hereafter referred as a rate dependent Hammerstein model. Another nonlinear

model that has been discussed in this chapter and in Chapter 4, is rate dependent

Kolmogorov-Gabor Polynomial model (KGP), which has been built by introducing

rate dependent block in the KGP model. The Hammerstein model is discussed in

Section 3.3.1 and the rate dependent Hammerstein and KGP models are discussed in

Sections 3.3.2 and 3.3.3, respectively.

3.3.1 Hammerstein model

The model chosen for the prediction of hydrodynamic force is expected to exploit the

relationship between the relative position of the spar and the hydrostatic force along

with the excitation force values obtained from hydrodynamic CFD tests. A model

with a cascade connection of several individual blocks, performing specific functions

is simple to understand and easy to implement computationally. One such model,

which finds wide application in engineering is the Hammerstein model (Eskinat et al.,

1991).

Hammerstein model assumes a separation between the nonlinearity and the dy-

namics of the process. Hammerstein model has been previously used to predict hy-

drodynamic force on simple spars geometries by exploiting the relationship between



47

freesurface with hydrostatic force (Giorgi et al., 2015, 2016a,b). In this work simi-

lar methodology has been adopted and discussed to predict hydrodynamic force on

simple hull shapes and widely used spars fitted with heave plates. It was found that

though the model accurately predicted hydrodynamic forces on simple geometries it

failed to do so for Heave Plate cylinder (HP cylinder).

The Hammerstein model can be represented by a static block with linear or non-

linear relationship between the input ζ(k) and output variables fES = s(k) followed

by a dynamic block (ARX model) with linear dependence between input s(k) and

estimated output fEd(k) as shown in Figure 3.3. It implies that the general structure

of the model should be represented by the following equation:

s(k) = r(ζ(k))

= fEs(k) (3.1a)

fEd(k) = b1s(k − 1) + b2s(k − 2) + ....+ bms(k −m)

− a1fEd(k − 1)− a2fEd(k − 2)− ...− amfEd(k −m) (3.1b)

where ζ is the input relative height, s is an inaccessible intermediate variable, r (· ) is

the function which describes the static function, fEd is the output estimated hydro-

dynamic force, a1, a2 .... am and b1, b2 .... bm are the coefficient values of output and

intermediate variables. The estimated current value of the output fEd(k) is dependent

on the previous values of input s(k − i) and output fEd(k − i), where i = 1, 2 . . .m.

Figure 3.3: Block diagram representing Hammerstein model

Yu and Falnes (1995) found that the relationship between input freesurface height
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η and output excitation force fe is causal. Therefore, it is expected that the system

identification model should include causality in the formulation. Since the current

value of hydrodynamic force fEd(k) is dependent on various values of two variables

fEd(k−i) and s(k−i) , it is expected thatm is specific to these variables. In a discrete

time model, the value of m can be determined by reducing the error between the value

of estimated hydrodynamic force fEd and those generated by CFD fd. In Figure 3.3,

this is represented by the training circuit with closed switch. Let na be the weighted

factor to determine the contribution of hydrodynamic force. The dynamical order

of model is represented by na and nb. They can be correlated to the stiffness of the

model. Higher orders make the model more representative of complex behaviour at

the expense of generalization on new data. By introducing nb and nd the effect of

relative position on the dynamic force can be quantified. nd will be referred as the

time delay constant. Thus, by including the dynamic order and time delay constants

Eq. (3.1) can be written as:

fEd(k) =
na∑

i=1

aifEd(k − i) +

nb∑

i=0

bir(ζ(k − nd − i)) (3.2)

For a causal system, nd ≥ 0 implies that the variable at any instant only depends on

the variable at previous times, otherwise if nd < 0 the system is non-causal and the

present value is influenced by future variable values as shown in Figure 3.5. Though

the Hammerstein model is linear in ai and bi, depending on the function r (· ) it

can be characterized to have a linear or nonlinear input-output relationship. Most

previous works on Hammerstein model and identification have focused on the case

of memoryless nonlinearities. In general, the static nonlinear block of Hammerstein

model can be carried out using polynomial form, neural network (Lawrynczuk, 2011),

spline functions (Chan et al., 2006) and LS-SVM (Falck et al., 2009) etc. In terms

of wave energy application Giorgi et al. (2015, 2016a,b) have compared the effect

of linear/nonlinear static function for various geometrical shapes like straight walled

(rectangular cylinder, triangular cylinder) and curved wall (circular cylinder). For a

generalized nonlinear system, a Hammerstein based model is discussed in terms of

WEC applications and procedure to identify the model parameters of the hydrostatic

model and linear dynamic ARX model are established in Sections 3.5.2 and 3.5.4.
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3.3.2 Rate dependent Hammerstein model

Even though the classical Hammerstein model can accurately model a simple physi-

cal system with linear/nonlinear static block and linear dynamic block, it fails when

the output of the real system is effected by memory from previous times. Memory

dependent nonlinear behaviour have often been described by hysteresis. In WEC

applications it implies that the hydrodynamic force is not only dependent on instan-

taneous or past values of forces and positions of spar but also on the relative velocity

and relative acceleration of of spar. This hysteretic behaviour is also encountered in

oscillation of damper plates as shown in Chapter 2, where the hydrodynamic force on

the plate is dependent not only on the instantaneous position of the plate but also

on the previous positions with respect to the free surface. Thus if the fluid memory

effects, dominates the hydrodynamic forces on the plate, a component of hydrody-

namic force is represented by hysteresis loop. It has been shown that the shape of

hysteresis component of hydrodynamic force depends on the applied frequency of the

input (Wang et al., 2012). Such a hysteresis is called rate-dependent or dynamic hys-

teresis. This can be verified for analyzing hydrodynamic force when WEC is subjected

to monochromatic waves of different characteristics. In this thesis only panchromatic

input waves are used for calculating the hydrodynamic force.

A Hammerstein model for rate-dependent hysteresis in WEC application is pro-

posed in this thesis. The block diagram of the Hammerstein model with rate-

dependent characteristics for a WEC can be constructed as shown in Figure 3.4,

which is similar to a classic Hammerstein model, except that a new block with higher

order state dependence and a hysteresis function is added. A survey of mathematical

models for hysteresis can be found in (Mayergoyz, 1993). In this thesis the Bouc-Wen

model (see Section3.4.2) is employed to model the hysteresis effect.

3.3.3 Rate dependent Kolmogorov-Gabor polynimial model

The Kolmogorov-Gabor polynimial (KGP) model represents a nonlinear model with

output feedback and utilizes polynomial nonlinearity to describe the system dynam-

ics (Nelles, 2001; Bacelli et al., 2017). Like the ARX model described in Section 3.4.3,

KGP is also a block box model linear in model parameters, but unlike ARX, KGP can

model a nonlinear input/output relationship. The block diagram for KGP model is

same as Figure 3.3, except that the dynamic block can model a nonlinear relationship
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Figure 3.4: Block diagram of modified nonlinear system identification model with
rate dependent block (i.e. Bouc-Wen model)
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between the input and output. KGP model is described by the following equation:

fEd(k) =
na∑

i=1

ai1fEd(k − i) +

nb∑

i=0

bi1r(ζ(k − nd − i))

+
na∑

i=1

ai2f
2
Ed(k − i) +

nb∑

i=0

bi2r(ζ
2(k − nd − i))

+ . . .

+
na∑

i=1

aipf
np

Ed(k − i) +

nb∑

i=0

bipr(ζ
np(k − nd − i))

+ . . .

+
na∑

i=1

nb∑

j=0

cijfEd(k − i)r(ζ(k − nd − i))

+ . . .(other cross-product terms) (3.3)

where ζ is the input relative height, r (· ) is the function which describes the static

function, fEd is the output dynamic force, aij, bij and cij are the model parameters.

The number of parameters required for identification can be obtained by modifying

the equation in (Nelles, 2001) into following equation

Npar =
((na + nb + 1) + np)!

(na + nb + 1)! np!
(3.4)

The number of regressors increase strongly with an increase in polynomial order p,

and dynamical order na, and nb leading to instability issues. Even if the problem is

stable, huge model complexity requires utilization of computationally intensive linear

subset selection techniques. Thus, attempt should be made to reduce the model

complexity by evaluating the relevance of each term. It was found that the presence

of cross-terms cause stability issues (Alves et al., 2016), thus neglecting the cross

terms, Eq.(3.3.3) can be modified to:

fEd(k) =

np∑

j=1

[ na∑

i=1

aijf
j
Ed(k − i) +

nb∑

i=0

bijr(ζ
j(k − nd − i))

]
(3.5)
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In the absence of cross product terms, the number of terms to be estimated for the

KGP model reduces substantially and is given by:

Npar = np(na + nb + 1) (3.6)

A rate dependent KGP model is proposed in this thesis. The block diagram for rate

dependent KGP model is shown in Figure 3.4, which is similar to the rate dependent

Hammerstein model except that the dynamic block can model a nonlinear relationship

between the input s and output fEd. Performance of KGP models has been evaluated

and compared with other models in Section 5.5.

3.4 Blocks of BOM

The choice of model architecture is the most subjectively influenced decision. The

intended application of a model along with several other factors can often determine

the most appropriate model architecture. The selection of model can be subdivided

into the choices to be made in regards to the model structure, complexity, dynamic

representation, model order and model parameters. Indeed, it is usual to describe

a complex system as an interconnection of smaller sub-systems, each one having a

specific input and output. Therefore, the experiments are designed to excite each sub-

block, leading to the direct measurement of the input and output of each sub-system.

This provides data for the identification of each sub-block. A similar approach has

been utilized in this thesis. The details of the model presented in Section 3.3 reflect

on the requirement of individual blocks with specific task of modelling independent

components.

Thus keeping in mind the expectations from the model along with the detailed

discussion on classification of models in Section 1.1, decision is made on the pro-

posed model structure. Though the continuous time models are widely used in WEC

modelling as discussed in Sections 2.1.2 and 2.1.3, discrete time models should be

exploited primarily because of discrete nature of experimental results and easy com-

puter implementation. It should be a nonlinear discrete time model capable of sim-

ulating dynamic and causal or noncausal behaviour. Considering the time domain

discrete nature of the data from CFD, the system identification should be based on

discrete time models. The model should exploit the relationship between the input

and output data and use them to predict the required output for a new set of input
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data (see Figure 3.2). These relationships are primarily freesurface/relative position

with hydrostatic force, freesurface velocity/relative velocity with hydrodynamic force,

freesurface accelaration/relative accelaration with hydrodynamic force and the cou-

pling between various input parameters with the hydrodynamic force. Since most

of the phenomenona are understood beforehand parametric curves can be utilized

and external dynamics approach with feedback loops can exploit the data generated

in open loop experiments. The individual components of the proposed architecture

are discussed below in Sections 3.4.1, 3.4.2 and 3.4.3. The cascade of these individ-

ual components result in complete model structure, which has been discussed in the

Section 3.3.

Another important factor to consider is the choice of model order; with external

dynamics approach the choice of dynamic order of the model increases the dimen-

sionality of the problem and hence the complexity. When using a low model order

while simulating nonlinear dynamics it can be expected that a significant amount

of dynamics goes unmodeled (Nelles, 2001). It has been shown that a significantly

low order model is applicable while simulating the hydrodynamics of a simplified

WEC geometry like a square cylinder (Giorgi et al., 2015). It is expected that the

model order should be higher while simulating WECs with heave plate. Nonetheless,

lower order models must suffice because often the modelling error is dominated by

approximation error caused by an inaccurate description of the process nonlinearity.

3.4.1 Static block

In floating bodies the hydrostatic force due to the submergence of body in water is

the dominating force. It is expected that the calculation of hydrostatic force will

have a direct relationship with the water plane area. The model in any structural

format should include this force which is a function of free surface. A simple way to

model this is to assume a linear or nonlinear relationship between the input relative

height, ζ, and the output hydrostatic force, fs. The nature of this relationship can

be described by following equation:

fs(k) = r(ζ(k)) (3.7)

where ζ is the input variable, fs is the hydrostatic force and r (· ) is the function

which describes the static function. Eq.(3.8) shows that, in the model, there is no

memory effect; the output at the instant k depends only on the input at the same
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instant k. The static function, r, can be approximated with a linear combination of

basis functions; therefore Eq. (3.7), can be re-writtern as:

fEs(k) = c1ζ(k) + c2ζ
2(k) + ....+ cnc

ζnc(k) (3.8)

where ζ is the input variable, fEs is the estimated value hydrostatic force, and

c1, c2, . . . cn are linear combination of coefficients

3.4.2 Rate dependent block

Bouc developed a hysteresis model for an inelastic SDOF system subjected to forced

vibration (Bouc, 1967), which was further generalized by Wen (Wen, 1976). An ap-

proximate solution procedure for random vibrations was mathematically found. Later

known as Bouc-Wen model, it has been extensively used as a mathematical model

obtained by deterministic approach to represent systems with hysteresis and non-

linear behaviour. The Bouc-Wen model has been applied to model a wide class of

hysteretic systems, like piezoelectric actuator (Wang et al., 2012), magnetorheological

dampers (Kwok et al., 2007; Talatahari et al., 2012) and wood joints (Foliente, 1995).

Though the literature suggests that this model has been successfully used to predict

the behaviour of the physical hysteretic element and also for control purposes, the

review of literature in this thesis have not found any application related to hydrody-

namics of ocean WECs. Thus this thesis proposes modelling the nonlinear hysteretic

hydrodynamic force encountered during oscillation of WEC under the influence of

waves with a Bouc-Wen model independently, as well as in-line, with the system

identification models like the Hammerstein and KGP models. The Bouc-Wen model

is a set of differential equations describing the hysteretic characteristic of the excita-

tion force on WEC as obtained from the hydrodynamic test mentioned in Section 4.3.

In the context of WECs, the governing equation for Bouc-Wen model can be written

as in Eq. (3.9). In this model, nonlinear restoring force is related to the system input

through a first order nonlinear differential equation, as shown in Eq. (3.9b):

fEe = aζ + bζ̇ + cζ̈ + h (3.9a)

ḣ = α ζ̇ − β | ζ̇ | h | h |n−1 −γ ζ̇ | h |n (3.9b)

where fEe is the model calculated dynamic excitation force (i.e. to approximate

residual of static force fEs and CFD calculated dynamic force fd) a, b and c are
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the coefficients of relative position ζ, relative velocity ζ̇ and relative acceleration

ζ̈ respectively. The hysteretic nonlinear term is represented by static variable h. α

controls the amplitude of the hysteretic loop, while the coefficients β and γ control the

shape of the hysteresis loop. Though these range of unknown parameters (α, β, γ

and n) are directly responsible for the shape of hysteresis, their physical meaning

cannot be comprehended directly, but will be discussed later in Section 5.3. The

response of the system depends on the values of these parameters.

3.4.3 Dynamic block

The dynamic block consists of an autoregressive with exogenous input (ARX) model,

also known as the equation error model (Nelles, 2001). The dynamic block operates

on the combined output of static and rate dependent block, who’s combined output is

termed as “internal force”. The dynamic block therefore acts to reduce residual error

of the prediction. The ARX model is the simplest linear discrete-time input/output

model. This model can be easily extended to accommodate nonlinear relationship

between input and output variables. In this thesis linear and nonlinear input/output

relationship ARX models are utilized to describe the relationship between the esti-

mated output hydrodynamic force fEd and input internal force s signal.

fEd(k) = γ[fEd(k−1), ... fEd(k−na), s(k−nd), s(k−nd−1), .... s(k−nd−nb)] (3.10)

where, fEd and s are the output and input variables respectively, γ[· ] is a linear or

nonlinear function and fEd(k) is the present value of output which depends on the

past values of output fEd(k − 1), ... fEd(k − na) and input variables s(k − nd), s(k −

nd− 1), .... s(k−nd−nb). The dynamic order of the model is represented by integers

na and nb. They can be correlated to the stiffness of the model. Higher orders make

the model more representative of complex behaviour at the expense of generalization

to new data. To account for nonlinearity, the model should be flexible and the model

order should be optimal to avoid possible over fitting. The difference between a

causal system and a noncausal system can be explained with the help of Figure 3.5.

For a causal system, nd ≥ 0 implies that the variable at any instant only depends

on the variable at previous times (see Figure 3.5a and Figure 3.5b), otherwise if

nd < 0 system is noncausal and present value is influenced by future variable values

(see Figure 3.5c). From WEC prespective it would mean that for a causal system,

the relative height information from past would be required inorder to predict the
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current hydrodynamic force, where as for noncausal systems either only the future

information or a combination of past and future information would be used. Since,

the relative position at the centre of the spar is considered and so the wave elevation

that is yet to arrive might be causing a vortex at the extreme leading edge of the heave

plate. The parameters can be estimated by linear least square techniques. Parameter

estimation of dynamic will be discussed in Section 3.5.4.

(a) Causal system with no time delay

(b) Causal system with positive time delay

(c) Non-causal system

Figure 3.5: Possible scenarios in system identification describing causality, blocks
represent discrete time steps

3.5 Parameter identification

Given a parametric model structure and the measured input-output data from an

investigated process (i.e. CFD tank experiments), the objective of SI is to find the
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values for the model parameters in order to obtain the ‘best’ model to describe the

process. Therefore, it is necessary to select a quantifiable criteria to evaluate the per-

formance of a model. In this thesis the quantifiable criteria is defined as error metric

and a methodology for identification of parameters of individual blocks of models dis-

cussed in Sections. 3.3 is presented. The objective functions and the constraints of the

optimization problem along with the mathematical techniques for parameter identifi-

cation are also discussed. The identification procedure for parameter C of static block

(see Eq. (3.8)), seven parameters of Bouc-Wen model (se Eq. (3.9)) and three param-

eters (see Eq. (3.10)) of the dynamic block is as mentioned in Sections 3.5.2, 3.5.3

and 3.5.4, respectively. These identification technique are implemented to case studies

in Sections 5.2, 5.3 and 5.4 respectively.

3.5.1 Error metric

Error metrics measure the error between the output of a model and training or val-

idation data. Several error metrics exist in literature and they can provide a way to

quantitatively compare the performance of two models or case scenarios. In this the-

sis these metrics have been used to compare the performance of individual blocks, by

comparing the input and output of that block as well as to compare the performance

of entire model. These error metrics are also used to calculate the loss function in

objective function during the optimization process. Two error metrics that are used

in this thesis:

Mean absolute percentage error (MAPE) measures the average of errors, i.e

the average difference between the estimated value and the actual value. Math-

ematically it can be writtern as:

MAPE =
100

N

N∑

k=1

|y(k)− yE(k)|

|y(k)|
(3.11)

where, y(k) is the true value of the parameter or the process output and yE(k)

is the estimated value, N is the total number of samples or total number of

measurement at discrete time. Thus discrete time steps are represented by k,

where k = 1, 2 . . . N . The MAPE is a measure of the quality of an estimator

it is always non-negative, and values closer to zero are better. Though this

error metric is normalised with respect to true value y(k), it fails to provide

an accurate picture at y(k) = 0. In the context of wave energy, it is common
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that values oscillates around the mean value, and the mean is often translated to

zero. Therefore their is a possibility of obtaining a distorted picture of the error.

Thus in this thesis whenever the error of nonperiodic and positive quantity is

measured MAPE is used, particularly for evaluating the model performance in

frequency domain. For oscillating variables or time domain results another error

metric is used as discussed below.

Normalised root mean squared error (NRMSE) Another error metric that is

widely used in this thesis is normalised root mean squared error, which has the

advantage of being normalized as well as it presents an undistorted picture even

for oscillating signals. Mathematically it can be written as:

NRMSE =

√
1
N

∑N

k=1 |y(k)− yE(k)|2
√

1
N

∑N

k=1 |y|
2

(3.12)

This metric has been used extensively for error measurement between input and out-

put signal across blocks. For example, refer to Eqs.(3.15), (3.23) and (3.18) for its

application in static, rate dependent and dynamic blocks respectively. In these equa-

tions, y(k) has been replaced with the respective force signals and notation “ε” has

been used to represent NRMSE. For training and blind cases, NRMSE has been used

as loss function in the objective function.

3.5.2 Static block identification

Considering the model structure of the Hammerstein model, rate dependent Hammer-

stein model and rate dependent KGP model discussed in Sections 3.3.1, 3.3.2 and 3.3.3

respectively, the static block is a common feature in all the models. Static block in

all the models is exploited to transform the relative height ζ into a static force fEs.

Thus, the first step in the identification of any one of the three system identification

models used in this thesis is to identify the nonlinear static block. Linear regression

can be utilized for identification, if the static function in Figure 3.3 and Figure 3.4

is approximated with a linear combination of polynomials. The relationship between

input ζ(k) and output fEs of the nonlinear static block can be represented by:

fEs(k) = c1ζ(k) + c2ζ
2(k) + ....+ cnc

ζnc(k) + ε(k) (3.13)
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where ci (i = 1, 2, 3 . . . nc) are the unknown parameters. The input ζ and output

fs of the hydrostatic experiment (see Section 4.2) can also be approximated by a

polynomial fit. Therefore the estimated hydrostatic force fEs can be equated to the

linear combination of coefficients and relative displacements by a polynomial fit:

fs(k) = c1ζ(k) + c2ζ
2(k) + ....+ cnc

ζnc(k) =
nc∑

i=1

ciζ
i(k) (3.14)

Least squares method can be utilized to extract polynomial coefficients. The normal-

ized root mean square error (NRMSE) is ε(k) = fs(k)− fEs(k). In matrix notation:

ε =
‖fs − fEs‖2

‖fs‖2
=

√
|fs −XC|2√

|fs|
2

(3.15)

where for all the values of k:

ε =
[
ε(1) ε(2) · · · ε(N)

]T
(3.16a)

fs =
[
fs(1) fs(2) · · · fs(N)

]T
(3.16b)

fEs =
[
fEs(1) fEs(2) · · · fEs(N)

]T
(3.16c)

X =




[ζ(1)]1 [ζ(1)]2 · · · [ζ(1)]nc

[ζ(2)]1 [ζ(2)]2 · · · [ζ(2)]nc

...
...

. . .
...

[ζ(N)]1 [ζ(N)]2 · · · [ζ(N)]nc




(3.16d)

C =
[
c1 c2 · · · cnc

]T
(3.16e)

(3.16f)

The parameters that minimize the least squares error are given by

C = (XTX)−1XT fs (3.17)

The minimization of the loss function in Eq. (3.15) is not computed directly us-

ing Eq. (3.17) because the use of XTX increases the possibility of obtaining an ill-

conditioned problem. Instead, a QR factorization method is implemented, which

computes the LS solution directly from X, without forming XTX (Golub and Or-
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tega, 1991). The parameter vector C is calculated for different values of nc using the

optimization function in Eq. (3.15). The smallest nc, with the ε value less than 5%

is chosen as the order of the polynomial fit.

3.5.3 Rate dependent block identification

In this section the rate dependent models with hysteresis nonlinearity are discussed in

terms of WEC applications and procedure to identify the parameters of the the Bouc-

Wen model are established. The model parameters to be identified are a, b, c, α, β, γ

and n (see Eq.(3.9)). In linear potential theory a is known as the stiffness coefficient,

b the viscous coefficient and c as the addedmass coefficient. The parameter α affects

the rate-of-change of the hysteresis through the product with the velocity, i.e., the

term αζ̇. Its effect is negligible when the velocity is small. It is more noticeable at

large velocities and contributes to the slope of the hysteresis. Hence, a small value

for α is anticipated. The model parameters β and γ affect the hysteresis rate through

the expressions β | ζ̇ | h | h |n−1 and γ ζ̇ | h |n.

The parameters of Bouc-Wen model to be identified will have a coupling effect

on the hysteresis and are subject to severe non-linearities. In general, conventional

or gradient based system identification methods may not be appropriate as they

require more parameters to be identified at a given accuracy or more computational

resources for a given model. Thus in this study the Particle swarm optimization

(PSO) algorithm discussed in Section 3.5.3 is utilized for identification of hysteresis

block parameters.

Once the optimization technique to decided and the limits of optimal values for

the parameters of Bouc-Wen model is known, an appropriate objective function must

be minimized through optimization procedure. In current section minimization of

normalized root mean square error (NRMSE) between the excitation force fe val-

ues from CFD and those estimated from Bouc-Wen model fEe is used as objective

function. The estimated excitation force fEe and the estimated static force fEs con-

stitute internal signal (s). In order to determine the objective function, Eq. (3.15) in

Section 3.5.2 can be modified to:

ε =
‖fe − fEe‖2

‖fe‖2
=

√
1
N

∑N

k=1 |fe(k)− fEe(k)|2
√

1
N

∑N

k=1 |fe(k)|
2

(3.18)



61

Initial value of hysteresis

To integrate the rate of hysteretic variable ḣ in Eq. (3.9b), the “integrate.solve ivp” in

python is utilized. This function numerically integrates a system of ordinary differ-

ential equations using explicit Runge-Kutta method of order 5(4) (Dormand and

Prince, 1980), given an initial value. The initial value of the system is not known as

this is an optimization problem with guessed initial values of parameters. Therefore

the initial values are obtained heuristically by finding the values of fEe(k) − h(k) =

aζ(k)+bζ̇(k)+cζ̈(k) in Eq. (3.9a), and subtracting them to the CFD calculated values

of fe(k). The mean of calculated value of (fe− (fEe−h))(k) is stored and the process

is repeated again for k = 1, 2 . . . 10. The minimum thus obtained is considered the

initial value of the hysteresis component of force (h0)

Particle swarm optimization

The parameters of the Bouc-Wen model that need to be identified will have a cou-

pling effect on the hysteresis and are subject to severe non-linearities. In this regard

literature points out to several computational techniques, like adaptive estimation

approach (Chassiakos et al., 1998), genetic algorithm (Kwok et al., 2007) and evo-

lutionary algorithm like PSO (Wang et al., 2012). The PSO technique is one of the

powerful and widely used method for solving unconstrained and constrained global

optimization problems. Thus in this study, PSO algorithm is utilized for identification

of hysterisis block parameters.

In the PSO algorithm, the position of each particle in the swarm represents a pos-

sible solution to a problem in a g-dimensional space. Their are three main attributes

of each particle, current position xj , current velocity vj and past best position pbestj ,

for particles in the search space. Each particle in the swarm is iteratively updated

according to the aforementioned attributes. Particles flocking optimizes a certain

objective function in a PSO. Each particle knows its best value pbestj so far and

its position. This information has analogy to personal experiences of each particle.

Moreover, each particle knows the best value so far in the group gbestj among all

pbest positions. The PSO algorithm targets to changing the velocity of each particle

towards its pbestj and gbestj locations. In the algorithm, each particle moves to a new

position according to new velocity and the previous positions of the particle. This is

compared with the best position generated by previous particles in the fitness func-

tion, and the best one is kept; so that each particle accelerates in the direction of not
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only the local best solution but also the global best position. If a particle discovers

a new probable solution, other particles will move closer to it to explore the region

in the process more completely. After several iterations, the swarm converges to the

best particle position, which represent the best solution.

Applying the algorithm to obtain Bouc-Wen model coefficients results in the best

particle position, which is the best value of seven model parameters that describe the

input time series to the model. Since, a static model block that describes the static or

the buoyancy force already exist, the input to the Bouc-Wen model is the excitation

force fe time series obtained by subtracting the hydrodynamic force and the obtained

static force before the training phase of the model fd−fEs. The obtained parameters

are thereafter used in the training and simulation phase to obtain the ovearall model

output fEd

Limits of parameters

Due to large number of unknown parameters in the optimization function, the com-

putational overhead of the PSO algorithm will be very high when compared to rest

of the identification process. Thus inorder to bring down the computational time of

Bouc-Wen parameter identification, it is important to define the search space of the

parameters. This is done by providing an initial guess to the maximum and minimum

values of the parameters in Eqs. (3.9a) and (3.9b).

Let the hysteresis term in Eqs. (3.9a) set to “0”. Then the excitation force can be

approximated by the slope at the two ends of the hysteresis. This occurs when the

relative velocity ζ̇ is at its extremes while the relative displacement ζ is crossing zero.

Assuming that the hysteresis is symmetric about the zero velocity axes and about

the force offset, then a slope can be defined as

bmax ≤
∆fEe

∆ζ̇
=

(fEe)max − (fEe)min

ζ̇max − ζ̇min

(3.19a)

bmin ≥ −bmax (3.19b)

Based on the above argument the values of cmax and cmin can be determined by
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following equation

cmax ≤
∆fEe

∆ζ̈
=

(fEe)max − (fEe)min

ζ̈max − ζ̈min

(3.20a)

cmin ≥ −cmax (3.20b)

Similarly, when the relative velocity and relative acceleration is zero, the relative

displacement attains its maximum and minimum values. Due to severe non-linearity,

an empirical approximation to a is bounded by

amax ≤
∆fEe

∆ζ
=

(fEe)max − (fEe)min

ζmax − ζmin

(3.21a)

amin ≥ −amax (3.21b)

The remaining model parameters α, β and γ, are directly responsible for the shape

of the hysteresis and it is not straightforward to comprehend their physical meanings.

Since n determines the order of terms in the Eq. (3.9b), it is necessary to have a

positive value of the order, thus lower limit of n is set to 2. Higher orders are limited

by limiting the upper bound of n to 5. However some analytical and experimental

trial and error provides an insight on their effects on the shape of the hysteresis. For

example in order to initialize the value of α, we can utilize the values of a, b and c,

determined above and calculate the value of (fEe − h) in Eq. (3.9a).

αmax ≤ (fe − (fEe − h))max − (fe − (fEe − h))min (3.22a)

αmin ≥ −αmax (3.22b)

The above equations only provide a guideline to determine the limits of parameter

values in the search space for the optimization algorithm. The accuracy of these

parameters for this purpose will also depend on the signal, the above equations are

for monochromatic signal. As the objective of this work is to determine these param-

eters for multisine signal, the right hand side are multiplied by a factor unique for

each equation. These factors were obtained by trial and error process and will differ

with the signal under analysis. A point to be noted as shown in the block diagram

in Figure 3.4 is that, the internal signal s(k) is not same as fEs as it was for the

Hammerstein model, rather it is s(k) = fEs(k) + fEe(k).
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3.5.4 Dynamic block identification

In this section the methodology to determine the parameters of dynamic block (ARX

model) for all the three block oriented models is outlined. The knowledge of input and

output signal to the dynamic block is required in order to identify the parameters.

From the block diagram in Figure 3.3 and Figure 3.4 it can be seen that the internal

signal s is the input to the dynamic block and the estimated hydrodynamic force

fEd is the required output. For the purpose of identification the estimated value of

hydrodynamic force fEd is to approximate the CFD calculated values of hydrodynamic

force fd.

Depending on the model the internal signals changes to acomodate details ac-

cording to that model. For example internal signal is estimated static force fEs, if

basic Hammerstein model is used, or estimated values of static force along with es-

timated excitation force (fEs + fEd) if either of the rate dependent models are used.

Using the data from quasi-static and dynamic test discussed in Sections 4.2 and 4.3

respectively and the identification technique in Sections 3.5.2 and 3.5.3 the values

of polynomial coefficients in C, state dependent coefficients (a, b, c) and hysteresis

coefficients (α, β, γ, n) are known and it is possible to calculate the internal signal

s.

Once the internal signal s(k) is known, an appropriate objective function must

be minimized through optimization procedure. In current section minimization of

normalized root mean square error (NRMSE) between the hydrodynamic force fd

from CFD and those estimated fEd by the Hammerstein/rate dependent Hammerstein

model (see Eq. (3.2)) or rate dependent KGP model (see Eq. (3.5)) is used as objective

function. In order to determine the objective function, Eq. (3.15) in Section 3.5.2 can

be modified to:

ε =
‖fd − fEd‖2

‖fd‖2
=

√
1
N

∑N

k=1 |fd(k)− fEd(k)|2
√

1
N

∑N

k=1 |fd(k)|
2

(3.23)

The values of total hydrodynamic force fd from the dynamic test described in Sec-

tion 4.3 should ideally be the output of the ARX block for training case (provided ε

in Eq. (3.23) = 0). So, it can be said that both the input and output of ARX block

is known.

It can be seen from Eq. (3.2) that the estimate of hydrodynamic force is a function
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of two variables. This implies that the parameters for linear optimization problem

might be dependent on each other. Under such condition the parameters cannot be

estimated directly by LS because the optimal parameters obtained by Eq. (3.17) for

identification of nonlinear static block cannot be directly used. A constraint equation

should be used and the least squares technique should accommodate for the constraint

application. This constraint is shown in Eq. (3.24). It can be seen that the equation

discribes the dependence of coefficients of output parameter and input parameter on

each other and implies that the sum of the coefficients of output and input terms

should be equal to 1.
na∑

i=1

ai +

nb∑

i=0

bi = 1 (3.24)

where, ai and bi are coefficients of the output and input signals of ARX block, na and

nb are the number of terms of output and input signals influencing the current value

of the estimate. The linear equality constraint is given by:

Aθ = d (3.25)

where θ is (N × (na + nb + 1)) matrix, and each equation in the linear equation

system represents an equality constraint. Eq. (3.25) can be solved by performing the

constrained optimization with Lagrange multipliers, leading to following parameter

estimate as mentioned in (Nelles, 2001):

θconstr = θunconstr −H−1AT (AH−1AT )−1(Aθunconstr − d) (3.26a)

θunconstr = (XTX)−1XT fEd (3.26b)

where θunconstr is the unconstrained least square estimate obtained by QR factor-

ization and H−1 = XTX is the inverse Hessian (Golub and Ortega, 1991), A =[
−1 −1 · · · 1 1

]T
and d = 1.

k =





τ + 1 first model output

Ñ




N if nd ≥ 0

N + nd if nd < 0
last model output

(3.27)

where τ = max{na, (nb + nd)}, τ values of data are used to initialize the system. In

Eq. (3.27), first possible predicted model output is for k = τ+1 and the last predicted
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model output is for k = Ñ = N for causal system (nd ≥ 0) or k = Ñ = N + nd for

non causal system (nd < 0) (see Figure 3.5).

Thus in order to determine the NRMSE (see Eq. (3.23)), the error between the

estimated fEd and CFD calculated fd values of hydrodynamic forces, can be calculated

using equations Eq. (3.28), Eq. (3.29) or Eq. (3.30) and Eq. (3.31). X can be written as

Eq. (3.29) for Hammerstein model and Eq. (3.30) for KGP model (assuming np = 2).

ε =
[
ε(1) ε(2) · · · ε(N)

]T
(3.28a)

fd =
[
fd(1) fd(2) · · · fd(N)

]T
(3.28b)

fEd =
[
fEd(τ + 1) fEd(τ + 2) · · · fEd(Ñ)

]T
(3.28c)

In Eqs. (3.29) and (3.30), fd(τ) · · · fd(τ + 1− na) provides the initial guess values of

the estimated dynamic forces, these values can be assumed “0” to avoid initial bias

or can be taken from the training data. In order to obtain θconstr, the parameters

that minimize the least squares error are given by Eq. (3.31) after solving Eq 3.26.
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Dynamic order estimation

Based on the argument presented in Section. 3.3, that the current estimate of hydro-

dynamic force fEd is dependent on previous vaules of two variables (ζ and fEd), it is

important to determine the weight of each variable. Being a discrete data model the

weight can be attributed to the number of data points of each variable influencing

the current value of the estimate. In Eq. (3.2), this is represented by the dynamical

order of the equation na and nb, implying that the fEd is a function of na number of

outputs of fEd and nb + 1 number of input of ζ values as shown in Figure 3.5. The

flexiblity (ability to show complex behaviour) of the model increases with increase

of the model order, where as very high orders limit the generalization on new data.

Thus an ideal value of na and nb should be determined. This ideal value is indicated

by the fact that the model performance does not increase significantly by increasing

the model order beyond that value (Isermann and Münchhof, 2011).

Time delay estimation

Another important paramerter to be determined is the one that indicates the phe-

nomenone of causality. A system is causal if the output at current instant depends

only on the present and past input where as in a noncausal system the output at

current instant depends on the future input. Since the model is trained on the data

obtained from physical system (training case), it is necessary to consider this effect

when the physical system is not present (validation case). The presence of nonlinear-

ity also influences this parameter. Hence the parameter nd represents the input delay

time and represents (for nd ≥ 0) the number of samples before the output reacts

to the input (causal system). If nd < 0 the system is noncausal and nd represents

the number of future input values, which influence the present value of the output

(see Figure3.5).

The input delay time nd and the dynamical order (na and nb) are collectively

estimated by measuring the error function from Eq. (3.23), by trial and error process

on several ARX models. Ultimately, a combination of na, nb and nd is selected which

results in lowest error in the estimate of ε.
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3.6 Model Validation

In Section 3.1.2, it has been explained that model validation is the last and important

step in the system identification process. This section highlights the process of model

validation. Common methods utilised for model validation are prediction and sim-

ulation. In this section the difference between prediction and simulation is outlined

with the help of Figure 3.6. Prediction is the process of forecasting a single value

in future. For parameter identification, prediction steps are repeated multiple times

with the knowledge of process input e.g. ζ(k − i) and process output e.g. fd(k − i).

In simulation the model uses only the process input values (Nelles, 2001). When this

prediction procedure is repeated for model identification, it is referred as training

process.

In a case where the performance achieved using prediction on the training data

is acceptable, a rigorous validation has to be done by testing the model on new data

set. The model is validated by following a similar approach as prediction; but with a

different set of input data, as the truth signal (output of CFD) is not utilized. This

will be referred as simulation in this thesis. A nonlinear dynamic model can be used

for the purpose of either prediction or simulation. The difference between training

and simulation can be shown by following equations respectively:

fEd(k) = γ[fd(k− 1), ... fd(k−na), s(k−nd), s(k−nd− 1), .... s(k−nd−nb)] (3.32)

fEd(k) = γ[fEd(k−1), ... fEd(k−na), s(k−nd), s(k−nd−1), .... s(k−nd−nb)] (3.33)

In this thesis, the ultimate goal for the model is to perform simulation. The

parameters required for simulation are obtained from the training, which requires

repeated application of prediction algorithm. The results of simulation are validated

against the process output for a different realization of process input. In the validation

process the model has to predict the outcome of an experiment which was not used

for the training. For doing so the model utilizes the simulation process shown in

the diagram Figure 3.6. Even if the performance achieved on the training data is

acceptable, without testing the model performance of new data the model cannot be

accepted.
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Figure 3.6: Process diagram representing difference between prediction and simu-
lation. Basic difference between training and simulation is the input and output
variables of the model. When a single value in the future is predicted using only
the process input and output values it is prediction process, when this procedure is
repeated for model identification, it is referred as training process but when model
output is used instead of process output it is possible to predict multiple steps and
this is referred as simulation.
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3.7 Summary of the various candidate Data-driven

models.

In this chapter, a new methodology for hydrodynamic parametric model identification

is presented, which is based on the use of CFD-NWT data. The major improvement

compared to previous work is the introduction of nonlinear hysteretic model as a

stand alone model and also in the data-driven modelling frame work. Another more

general improvement is increased modelling accuracy over linear potential theory

models which are based on strong assumptions of absence of hydrodynamic nonlinear

effects, such as viscosity, nonlinear restoring force and vortex shedding.

Table 3.1: Summary of input and output of each block

Model
Static block Rate dep. block Dynamic block

Input Output Input Output Input Output

S
ta
te

d
ep
.

Hydrostatic ζ fEs = fEd − − − −

Hydrostatic
+ Bouc-Wen

ζ fEs ζ, ζ̇, ζ̈ fEe = fEd − −

T
ra
in
in
g
n
ee
d
ed Hammerstein ζ fEs − − fEs fEd

Rate dep.
Hammerstein

ζ fEs ζ, ζ̇, ζ̈ fEe fEs + fEe fEd

Rate dep.
KGP

ζ fEs ζ, ζ̇, ζ̈ fEe fEs + fEe fEd

A summary of the models used in this chapter and analyzed in Chapter 4 is

presented in Table 3.1. The input and output of individual blocks employed in these

models is also compared. The identification of the entire block oriented framework is

divided into identification of the parameters required in individual block. Each block

will require a set of data, which should excite the system inorder to obtain all the

required information. Thus a diverse set of data should be used.
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Chapter 4

Numerical wave tank trials

The use of a NWT to replicate physical tank experiments was discussed in detail in

Chapter 2 and it was illustrated that NWT qualifies as a means to generate data

that can be used in data-driven models. Another important conclusion was that the

heave plate on WEC B caused a nonlinear relationship between input state variables

and output hydrodynamic force, which was not seen for WEC A. These NWT trials

were performed either by using monochromatic waves or quiescent fluid as discussed

in Sections. 2.3.2 and 2.3.3 respectively. The hydrodynamic forces thus obtained

were validated against the results obtained from physical tank tests utilizing the

same strategy. Since the validation process increased confidence in CFD experiment

design, this approach can be extended to generate data for data driven models.

This chapter presents the experiment design and data generation process, which

will be utilized for identification of the model parameters for the block oriented models

discussed in Chapter 3. A brief outline of NWT trial involved in data generation

is provided Section 4.1. The WEC and domain details along with the input wave

characteristics are also discussed in the same section. The details of the NWT trials

involved in data generation are discussed in Sections 4.2 and 4.3. The characteristics

of the flow field in hydrodynamic trials are discussed in Section 4.4.

4.1 NWT trials for data generation

NWT trials in this thesis are used to identify different types of model components and

are classified based on the environmental and input-output conditions as represented

in Figure 4.1 and Table 4.1. This classification criterion leads to primarily two types of
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NWT trial, viz. hydrostatic and hydrodynamic NWT trial. NWT trials provide data

that can be used to determine the relationship between freesurface and hydrostatic

force can be achieved by displacing the spar in a quasi-static manner and recording

the force on it for discrete draft values. This experiment will be here-after refereed

as hydrostatic NWT trial. A hydrodynamic NWT trial is done in the presence of

transient input waves to establish a relationship between the state variables and the

dynamic force experienced by the spar. These state variables are either the position,

velocity and acceleration of the freesurface for stationary spar or relative values of

position, velocity and acceleration for moving spars.

Assuming that the hydrodynamic force fd thus obtained has a component of static

contribution, the effects of which have been identified in the hydrostatic test, it can

be substracted from the measured hydrodynamic force. This component of force will

be referred as excitation force fe (i.e. fe = fd − fs).

NWT trial

Static flow field Dynamic flow field

Hydrostatic force Relative position Hydrodynamic force

Figure 4.1: Classification of experiments for data generation. The input and output
of these experiments are tabulated in Table 4.1

Table 4.1: Characteristics of various NWT simulations used for data generation

Flow field Static Dynamic

Exp. type Hydrostatic Hydrodynamic

Input ζmax > z > ζmin Hs, Tp Hs, Tp, z

Output fs η ζ, fd

While most models of WEC (Bacelli et al., 2017; Giorgi et al., 2015, 2016b) use

a formulation with surface elevation as input, in this study the model uses relative

position of spar (w.r.t free surface) for broader representation of operating condi-

tions. The NWT trials required for the identification of various parameters and the
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resulting parameters of these experiments are shown in Figure 4.1. The input to the

experiments and the obtained output for the subsequent identification experiments

are tabulated in Table 4.1.

4.1.1 Spar geometry and CFD domain details

Geometries of some hydrodynamic significance to wave energy conversion have been

considered in this study. As it has been discussed in Chapter 2 that a 3D CFD

simulations at wave tank scale is beyond practical implementation, a 2D analysis

should be adopted. 2D geometry provides the characteristics in the hydrodynamic

force that were seen for the 3D geometry. This implies that the geometry chosen

is such that the flow field developed during the operation of the device is similar

to that developed by the operation of 3D SRPA with heave plate. Thus in the

current work infinitely long cylinder having vertical cross-sections of a heave plate at

the end of rectangular cylinder (shape of an inverted T), hereafter known as Heave

Plate (HP) cylinder will be considered. In order to establish the importance of rate

dependent block (Bouc-Wen model) in the context of the HP cylinder and to compare

the performance of the basic model structure on which the proposed model is build,

a simpler 2D square cylinder is also considered. The sketch and dimensions of the

spars used are as shown in Figure 4.2.

Figure 4.2: Schematics of 2D prismatic test geometries: a square cylinder and a Heave
Plate (HP) cylinder

Though only 2D geometries with single Degrees of Freedom (DOF) were considered

in this study, this methodology can be easily extended to 3D geometries. In the

current study, the effect of fluid motion in only the plane of oscillation (xy plane)

affects the results.
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The setup of 2D numerical tank requires cells of unit thickness in the third di-

mension and a symmetry boundary condition is imposed on the the cell faces in xz

plane. The domain dimensions and the associated structured mesh around the WEC

is shown in Figure 4.3. Two different domains and mesh were considered for the

hydrostatic and hydrodynamic experiments. The dimensions of the tank are based

on the requirement of the wave absorption at the tail end of NWT and previous work

of Giorgi et al. (2015, 2016a).

(a) Mesh and domain for hydrostatic experiment

(b) Mesh and domain for hydrodynamic experiment

Figure 4.3: Domain dimensions and mesh for NWT trials. The WEC was placed
equidistant from tank walls for hydrostatic test. Due to the requirement of wave
damping zone at the tail end of the NWT the WEC was placed closer to the wall in
the upstream than in the downstream in hydrodynamic test

The spar is placed at 100 m, equidistant from both the ends (i.e. max and min x

coordinate) for the hydrostatic test. Since hydrostatic experiments are a quasi-static

process: body is moved very slowly so as not to generate surface waves. For the case

of hydrodynamic test the spar is placed at 150 m from inlet and 450 m from outlet

to allow wave generation and absorption. In all the experiments, the numerical tank
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is 50 m deep. The discussed in Section 2.2, one of the advantages of NWT is that

reflections from tank walls can be controlled in multiple ways. In this work the tank

dimensions are chosen such that the walls are far away from the WEC and numerical

damping is applied at the tail end of the tank, to ensure no wave are not reflected.

4.1.2 Grid sensitivity analysis

A uniform grid with square cells in the entire domain is not desirable, due to the high

cell count. It was decided to reduce the number of required cells by using different

refinement levels and cell size grading for the discretisation of the NWT. Eight meshes

with the same layouts but varying degree of resolution were considered. The layout

is shown in Figure 4.4. The cells with largest size are situated next to the bottom of

the tank in the transverse direction and at the far field damping region next to the

outlet boundary in the longitudinal direction. The size of the largest cell height is

represented by ∆. The smallest cells ∆/24 are placed close to the free surface. With

increasing cell sizes in the order of 2n where n = 3, 2, 1 away from the free surface.

Each layer has a thickness of wave height H/2, above and below the mean free surface.

A gradient of 0.87 is used to decrease the size of cells away from the bottom towards

the freesurface and, a gradient of 0.91 was applied in the direction from the outlet

to the simulation zone. The details of the mesh and results of the sensitivity test

are tabulated in Table 4.2. The details of the convergence metrics chosen for the

sensitivity study and the mathematical formulation of the three error metrics used

in the study can be found in Appendix A. The three metrics are viz Metric-1 is grid

Figure 4.4: Schematic of mesh sizes used in the sensitivity study. ∆ represents the
largest cell size along the depth of the NWT



77

Table 4.2: Grid independence study on 2D NWT. Monochromatic waves of wave
height H = 5 mand wave length λ = 300 m were used for 700 s of simulation. Mesh-c
has the coarsest resolution and Mesh-f has the finest resolution

.

Mesh
Index

Division+ Total no.
of cells

No. of cells
Convergence

(%)

x y CPH& CPL∗ U dH̄

c 50 30 12723 11 120 − − −

1 55 35 16360 13 140 Monotone −1.035 −0.688

2 67 28 14928 15 28 Oscillatory 11.4 3.61

3 67 40 14512 15 40 Oscillatory 10.9 2.97

4 67 40 21904 15 160 Monotone −1.58 −1.05

5 80 45 30395 18 180 Monotone −6.24 −4.08

6 90 55 40210 20 220 Oscillatory 14.1 7.12

f 105 60 51170 24 240 − − −

Number of divisions before refinement
No of cells per wave height at the free surface
No of cells per wave length at the free surface

uncertainty. Metric-2 is the relative deviation of the phase averaged wave height for

various meshes with respect to the mean wave height of the finest mesh. Metric-3 is

the mean error and standard deviation of the measured phase averaged wave height.

From Table 4.2, it can be seen that the values of U (Metric-1) and dH̄ (Metric-2)

are higher by an order of magnitude for Mesh-2, Mesh-3 and Mesh-6 when compared

to Mesh-1, Mesh-4 and Mesh-5 for which monotonic convergence is obtained. Thus,

the meshes for which oscillatory convergence is obtained are not analyzed further.

In order to decide the final grid distribution Mesh-1, Mesh-4 and Mesh-5 are further

analyzed by evaluating the wave damping in NWT for these meshes.

The capability of absorbing waves travelling from the generation boundary to-

wards the far field boundary is crucial for an efficient NWT. The far field boundary

must absorb the outgoing waves to prevent undesired reflections back into the NWT

simulation zone, contaminating the generated wave field. Metric-3 is used to evaluate

the consistency of the wave field along the length of the NWT. Table 4.3 shows the

relative error at two different locations x/λ = 1 and x/λ = 1.5 in the tank. A con-

sistent value of error at both the locations is desired. It is also expected that under

ideal condition the upper and lower bounds of errors are equal. From Table 4.3, it

can be seen that the values of errors are higher for the coarsest and the finest mesh.

The inconsistency in the error values at both the locations for Mesh-1 is evident along
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Table 4.3: Relative error ǫH̄ between target and resulting wave height ± standard
deviation at x/λ = 1 and x/λ = 1.5 in the tank. Mesh-c has the coarsest resolution
and Mesh-f has the finest resolution

.

Mesh
Index

x/λ = 1 x/λ = 1.5

ǫH̄+ ǫH̄− ǫH̄+ ǫH̄−

c −7.7 −9.4 −3.7 −5.25

1 3.3 2.0 −0.09 −2.0

4 3.4 1.2 2.6 −0.5

5 0.44 −2.1 0.72 −4.0

f 4.1 2.7 1.6 0.34

with positive and negative bias. The error values for Mesh-5 are smaller compared

to the errors for Mesh-4.

Considering the values of Metric-1, Metric-2 and Metric-3 for Mesh-1, Mesh-4 and

Mesh-5 and keeping in mind the computational expense, it was decided to use the

grid parameters corresponding to Mesh-4 for further analysis.

4.1.3 Input signal characteristics (Sea state)

For the NWT hydrodynamic trial a list of wave characteristics are provided as input

to OpenFOAM code. The provided characteristics are wave model, wave length, am-

plitude, phase and angle. The characteristics have been generated using an Matlab

script developed in-house, which utilizes the Wave Analysis for Fatigue and Oceanog-

raphy (WAFO) toolbox. WAFO is a toolbox of Matlab routines for statistical analysis

and simulation of random waves and random loads. The characteristics of sea state in

terms of Hsand Tp are specified to this script, and it generates OpenFOAM readable

file with a list of required parameters (wave model, wave length, amplitude, phase

and angle). The input sea state used in this paper has a JONSWAP spectra charac-

terized by Hs = 0.5 m and Tp = 10 s. The sea state has been obtained as multisine

signal selecting random phases. An example of the spectral content used in thesis is

shown in Figure 4.5. For each oscillation characteristics three different realizations

have been generated and utilized with each geometry, they will be referred as R1, R2

and R3.
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(a) Amplitude-frequency distribution

(b) Wavelength-frequency distribution

Figure 4.5: Distribution of characteristics of input signal forHs = 0.5m and Tp = 10 s
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4.2 Hydrostatic NWT Trail

The objective of hydrostatic experiment is to determine the parameters governing

the relationship between the input and output of static block. This is represented by

function r(· ) in Eq. (3.7). In this experiment, the spar is submerged in a nearly static

flow field condition such that no dynamic effects are present. The spar initialized to

oscillate at a frequency of 8×10−4 Hz and amplitude of 20 m, but the simulation was

stopped in 20 s. The details of hydrostatic experiments are also tabulated in Table 4.4.

In this time the spar moved by 2 m distance in the direction of submergence. Two

vectors are produced by this experiment one containing the hydrostatic force fs on

the spar and another position of centroid of spar with respect to water surface The

change in the hydrostatic force with respect to relative height measured from the

centroid of the square and HP cylinder is in Figure 4.6. In this experiment, the

forces on spar were recorded at an interval of 0.002 s, thus during submergence each

value of time corresponds to a unique value of relative height. The x-axis of the plot

shows mapped values of relative height ζ for the corresponding value of time. The

identification procedure of this test is discussed in Section 3.5.2, and the case study

explaining the process is discussed in Section 5.2

Figure 4.6: Results from the hydrostatic test and fitting of the static curve. The
section of curve shown here ζ = −1, 1 represents the spar length that was submerged
in this experiment

For geometries with straight wall the hydrostatic curve can be obtained from
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Archimedes’ principle without the requirement of expensive CFD simulations. How-

ever, the purpose of this exercise is to lay out a general methodology for determination

of the hydrostatic curve for SRPAs with wall of arbitrary shapes.

4.3 Hydrodynamic NWT Trail

The hydrodynamic force fd and the excitation force fe corresponding to the relative

position ζ on WEC is calculated from the hydrodynamic experiment. The results

from this experiment are used for parameter identification of rate dependent block

(refer Section 3.5.3) and the dynamic block (refer Section 3.5.4).

In order to determine ζ the wave height η has to be determined first. One way

to find the wave height in a transient CFD simulation is by placing probes around

the spar in dynamic test and interpolating the wave heights. The values of wave

heights thus obtained will be influenced by diffraction, scattering as well as radiation,

particularly when the spar has a damper plate placed close to the free surface. Thus

in order to avoid the effect of above mentioned phenomenon and since repeatability

of the environmental conditions is ensured in a numerical tank, this thesis proposes

performing the hydrodynamic experiment with a wave probe placed at the location of

spar. The time series of signal that are generated from the hydrodynamic experiments

are enumerated below.

1. The wave probe provides the time series TS-1 of wave elevation at the location

of spar. This time series is presented in Figure 4.7a

2. The position signal generated by monochromatic oscillation of HP cylinder is

referred as TS-2 signal, this signal is a sinusoid of amplitude and frequency

presented in Table 4.4.

3. The superposition of TS-1 and TS-2 produces TS-3, which is the time series of

relative position ζ of spar. This signal is shown in Figure 4.7b.

The relative position is thus extracted from a difference of two signals gathered

independently. In the current study, HP spar is forced to oscillate with frequency

of ω = 1.25 rad/s and with three different amplitudes 0.25 m, 0.15 m, and 0.05 m.

Fourth case with a stationary spar is also analyzed. The details of various NWT

trials and test cases analyzed are tabulated in Table 4.4. The relative position of the
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(a) Freesurface height at spar location (TS-1)

(b) Relative height at spar location (TS-3)

Figure 4.7: Free surface height (η) and relative height (ζ) from dynamic test for R2
realization for HP oscillating at 0.15 m and 1.25 rad/s
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spar is same as the wave elevation TS-1 if the spar is stationary, otherwise relative

position is the time series TS-3.

Once the relative position of the spar is determined the CFD hydrodynamic ex-

periment is repeated with spar at the location of the wave probe. Spar is either

forced to oscillate periodically at the amplitude and frequency tabulated in Table 4.4

or remain stationary in a dynamic flow field depending on the case under study. The

excitation force fe is also calculated from this test by subtracting the hydrostatic force

fs from the total measured hydrodynamic force fd. The hydrostatic force is obtained

by the knowledge of function r(·) obtained from identification of static block (refer

Sections 3.5.2 and 5.2). The hydrostatic force corresponds to the relative position of

the body with respect to the free surface in the presence of waves.

As the hydrostatic force is obtained from a quasi-static experiment, the excitation

force is inclusive of all the nonlinear forces due to oscillation of heave plate and

the viscosity of water. The identification of the rate dependent block utilizes the

excitation force, and the procedure to obtain the constants in Bouc-Wen model are

described in Section 3.5.3 and demonstrated in Section 5.3, respectively.

Table 4.4: Characteristics NWT trials of various test cases used for data generation.
All the hydrodynamic experiments have been conducted for 700 s in order to capture
several cycles of the lowest frequency waves in the spectrum.

Experiment type

Spar oscillation Sea state+

Durationamp ω Hs Tp

(m) (rad/s) (m) (s) (s)

Hydrostatic 20 0.005 - 20

Hydrodynamic&

0.0

0.5 10 700

0.05

1.250.15

0.25

Hydrodynamic∗ Fixed wave probe
+ 3 hydrodynamic CFD simulations for 3 sea state realizations R1, R2 and R3
* panchromatic free surface height at the location of wave probe generates TS-1 signal
& the position signal generated by monochromatic oscillation of HP cylinder generate

TS-2 signal

The HP cylinder discussed in this chapter is a 2D simplification of the 3D WEC

B discussed in Chapter 2. It is expected that the flow fields around the HP cylinder

and WEC B are similar in characteristics.
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4.4 Characteristics of the 2D WEC Fluid Struc-

ture Interaction

The characteristics of the flow field in hydrodynamic trials are analyzed to find sim-

ilarity with the characteristics in the wave force that were seen for the 3D WEC B

geometry. Figure 4.8 shows the process of vortex generation around the HP cylinder

oscillating at amp = 0.25 m and amp = 0.05 m, and common frequency = 1.25 rad/s

in a panchromatic wave field for realization R1 during one cycle of oscillation. The

images corresponds to instants of time that are 1/4 period of the HP oscillation. Fig-

ure 4.8a, 4.8b show that when the cylinder reaches the top dead centre and starts

moving down the plate tries to displace the water below it, which quickly fills up the

vacuum created above the plate from the previous cycle (shown by the direction of

velocity vector). The asymmetry in the pressure field is the result of the dynamic

wave field, and the low pressure region on the left of the cylinder is due to the wave

trough. On the right of the cylinder’s central axis a rolled up vortex ring, which was

formed below the plate’s bottom edge during the previous ascent, is fully developed

has moved upwards. The vortex developed on the right of the cylinder shown in Fig-

ure 4.8a has diffused in Figure 4.8c and the small eddy at the edge of plate on the left

has developed into a larger eddy forming a pair with existing vortex. This is not true

for the HP cylinder oscillating at lower amplitude as the pair of vortices on the right

of cylinder in Figure 4.8b has developed into three vortex in Figure 4.8d. The pair of

vortices in the left of HP cylinder in Figure 4.8c develop into three vortices system on

the early upward stroke of HP cylinder, as shown in Figure 4.8e, whereas the three

vortex system in Figure 4.8d develops into four vortices in Figure 4.8f. These vor-

tices move close to the free surface as shown in Figure 4.8g when compared to those

in Figure 4.8h, as the incoming crest increases the hydrostatic pressure on the left

side of the cylinder. Figure 4.8 shows that there are clearly changes in the pressure

distribution that manifest due to past motions.

Earlier studies and visualizations on shedding of vortices from isolated oscillating

sharp edges showed that vortices shed at each half cycle formed pairs that convected

away from the edge (Graham, 1980). Another study on oscillating spar columns (Tao

et al., 2000), showed that the first vortex formed in an up stroke depleted its strength

rapidly due to diffusion, and was not able to convect away from the edge. Unlike

the current analysis, these previous studies were done in a quiescent fluid condition

and it is expected that the presence of panchromatic wave field will show unique
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vortex behaviour on each cycle of spar oscillation. It is difficult to generalize the

vortex shedding characteristic, due to combination of spar oscillations along with the

panchromatic wave field.

(a) amp = 0.25 : 100 + T
4 (s) (b) amp = 0.05 : 100 + T

4 (s)

(c) amp = 0.25 : 100 + T
2 (s) (d) amp = 0.05 : 100 + T

4 (s)
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(e) amp = 0.25 : 100 + 3T
4 (s) (f) amp = 0.05 : 100 + 3T

4 (s)

(g) amp = 0.25 : 100 + T (s) (h) amp = 0.05 : 100 + T (s)

Figure 4.8: Flow field around HP cylinder oscillating at 0.25 m and 1.25 rad/s for
R1 realization of sea state
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Chapter 5

Identification of data driven

models for Heave Plate (HP) Spar

geometry in irregular waves

In Chapter 3, the framework for the data driven modelling technique was discussed

in detail. The current chapter demonstrates application of the approach using CFD

based Numerical Wave Tank (NWT) discussed in Chapter 4 as the source of data

for identifying model parameters and for the training procedure. The identification

procedures for the block oriented models were discussed in Section 3.5. These pro-

cedures are explained for each test case in Sections 5.2, 5.3 and 5.4. The results are

discussed in Section 5.5.

5.1 Overview

A summary of parameters that must be obtained from the identification of sub-models

is tabulated in Table 5.1. Three different linear and nonlinear discrete time, data-

driven models viz. Hammerstein, rate dependent Hammerstein and rate dependent

KGP model are compared in this work.

The structure of each model is based on combination of two or three different

blocks. Each block is either based on some physical structure or are purely data-

driven. A static block consisting of hydrostatic model and a dynamic block consist-

ing of black-box ARX model is common to all data-driven models analyzed. This

model is known as Hammerstein model. An additional block consisting of Bouc-Wen
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Table 5.1: Summary of identification procedure, identified parameters, input variables
required and composition of internal signal

Model

Identified block Validation

Internal
signal
s

Test
cases+∗

Static Rate dep. Dynamic
Input

sea state
Identified parameters

R3

(TS-3)$
C

a, b, c na, nb,

α, β, γ nd

Sea state realizations& used

- R2 R1

S
ta
te

d
ep
.

Hydrostatic � - - ζ - HP

Hydrostatic
+ Bouc-Wen

� � - ζ, ζ̇, ζ̈ - HP

T
ra
in
in
g
n
ee
d
ed Hammerstein � - � ζ fEs

HP

Square

Rate dep.
Hammerstein

� � � ζ, ζ̇, ζ̈ fEs + fEe HP

Rate dep.
KGP

� � � ζ, ζ̇, ζ̈ fEs + fEe HP

+ For HP cylinder 1 test case for fixed cylinder and 3 cases for oscillating cylinder at
ω = 1.25 rad/s and amplitude = 0.05 m, 0.15 m, 0.25 m were analyzed

* For square cylinder 1 test case for fixed cylinder was analyzed
& R1, R2 are used for identification and R3 is used for validation
$ TS-3 is time series of relative position generated by superposition of TS-1 and TS-2,
which are time series of freesurface ht and spar oscillation respectively
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model is applied to the basic Hammerstein model resulting in two rate dependent

data driven models known as rate dependent Hammerstein and rate dependent KGP

model. These models differ in the structure of dynamic block as the rate dependent

KGP model uses the nonlinear input-output relationship in the dynamic block. The

dynamic block (ARX or KGP) is tasked with making up the difference observed in

the internal signal and CFD generated hydrodynamic force. Two additional models

which are dependent on the state are also assessed.

These models have been compared on their validation capabilities of hydrody-

namic forces on four cases of fixed and oscillating HP cylinders. The proposed rate

dependent models have been built on the foundation of existing Hammerstein model.

By providing a comparison between hydrodynamic force on fixed square cylinder and

fixed HP cylinder predicted by Hammerstein model, the requirement of rate depen-

dent models to model HP spars will be firmly established. Since the purpose of using

square cylinder was only to validate and compare the accuracy of the code developed

to already published result, only Hammerstein model was analyzed for fixed square

cylinder. Whereas for the HP cylinder all the three models were considered.

5.2 Static block identification

The identification of static block has been discussed in detail in Section 3.5.2. The

current section demonstrates the methodology to determine the hydrostatic coeffi-

cients C in Eq. (3.15) for a square cylinder and a HP cylinder. These coefficients are

determined from the results of hydrostatic experiment discussed in Section 4.2. The

value of the static block parameter nc is 1, and the values of the fitting coefficients C

for the square cylinder and the heave plate cylinder are 19.28 kN/m and 19.4 kN/m,

respectively. The hydrostatic coefficients are dependent on the geometry, and will be

same for all the cases pertaining to a particular geometry. From the shape of spar and

corresponding test results, it can be concluded that the value of nc = 1 is expected

due to the straight walls of spar and therefore linear increment in the hydrostatic

force. Once the parameter nc has been determined based on Section 3.5.2, the esti-

mated value of static force fEs(k) can be calculated with the knowledge of relative

height ζ(k). Though the value of nc = 1 indicates that a linear model is sufficient, a

nonlinear model is also developed for geometries which do not have straight walls at

the interface.
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5.3 Rate dependent block identification

As shown in Table 5.1, the rate dependent block consists of the Bouc-Wen model

that is used only for analyzing test cases with HP spar. Utilizing the test results

from the hydrodynamic tests described in Section 4.3 and the strategy outlined in

Section 3.5.3, the identification of parameters of the rate dependent block are per-

formed using the PSO algorithm (refer Section 3.5.3). The hydrodynamic force fd

obtained from the hydrodynamic experiment using sea state realization R2 and the

values of hydrostatic coefficients C obtained from identification of static block are

used inorder to determine the excitation force fe, (fe = fd − fEs). fEs is estimated

hydrostatic force on spar for sea state realization R2. The excitation force fe is used

to calculate the seven parameters of the Bouc-Wen model using Eq. (3.9), and the

PSO optimization algorithm.

The cost function is defined as the difference between the estimated value to the

excitation force fEe and the CFD obtained value fe (refer Eq. 3.18). The values of

the coefficients thus obtained for for the HP cylinder oscillating with a frequency

of 1.25 rad/s and amplitudes of 0.0 m, 0.05 m, 0.15 m and 0.25 m for sea state

realization R2 are tabulated in Table 5.2.

The values of parameters thus obtained were substituted in Eq. (3.9) along with

the time series of ζ, ζ̇ and ζ̈. The values of excitation force fEe(k) were determined

for training signal R1, but the parameters of rate dependent block were identified

using realization R2. The estimated values of the excitation force for the oscillating

HP cylinder are plotted along with the CFD generated values in Figure 5.1a and the

comparison between the amplitude spectrum of estimated excitation force signal and

CFD generated excitation force signal is shown in Figure 5.1b. The NRMSE between

the excitation forces and MAPE between the signals of amplitude spectrum for the

entire signal of 600 s is shown in respective plots.

The excitation force is expected to have a nonlinear force relationship with the

relative velocity ζ̇. It is also expected that this nonlinear force relationship can be

expressed by hysteresis plot. To verify this, the true excitation force obtained via the

NWT is plotted with respect to relative position and relative velocity for the entire

700 s signal and shown in Figure 5.2. These plots are for the realization R1 when

the HP cylinder is oscillating with amp = 0.05 m. It can be seen that the excitation

force and relative velocity relationship follows a hysteresis curve implying that the

maximum relative velocity does not correspond to the maximum excitation force on
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(a) Comparison between time series of excitation force fe from CFD
experiment and estimated excitation force from Bouc-Wen model
fEe (only 40 s of the 600 s segment are plotted) (NRMSE = 0.25)

(b) Comparison between amplitude spectrum of excitation force ob-
tained from CFD experiment and that estimated using Bouc-Wen
model from (MAPE = 3.8× (10−2))

Figure 5.1: Comparison between CFD calculated and Bouc-Wen model calculated
excitation force fEe on HP cylinder oscillating with amp = 0.25m and ω = 1.25 rad/s
for realization R1. Coefficients are obtained from excitation force time series for sea
state realization R2
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(a) fe − ζ

(b) fe − ζ̇

Figure 5.2: Excitation force fe = fd − fEs on oscillating HP cylinder (amp = 0.05 m)
for realization R1 with relative position and velocity. The hydrodynamic force fd is
obtained from the hydrodynamic experiment in CFD and the estimated static force
fEs is calculated from the static block coefficient C and the time series of relative
height ζ of the spar
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Table 5.2: Values of parameters of Bouc-Wen equation, obtained from PSO for R2

amp a b c α β γ
n

(m) (kN/m) (kNs/m) (kNs2/m) (kNs/m) (m−1) (m−1)

0 1.1× 10−4 5.134 7.352 −8.99 −3641.57 −71959 2.54

0.05 1.6× 10−3 3.17 13.25 −5.25 −2392.2 −46566 2.2

0.15 1.18× 10−2 6.35 18.72 −3.47 −1515.24 −43014 2.3

0.25 1.86× 10−2 13.84 13.97 −11.62 −3542.61 −69835 2.0

the HP spar.

Based on the nature of input and output relationship as shown in Figure 2.8

for regular waves input and Figure 5.2 for irregular wave input, it is necessary that

data driven models should accommodate hysteresis relationship. Another important

conclusion that can be drawn from these images is the asymmetry in excitation force

values during up and down strokes. It can be seen from Figure 5.2a that the force

magnitude in upstroke (positive values of ζ and negative values of fe) is higher for

most of the oscillation cycle. A similar observation was made in (Brown et al., 2017);

the authors found that the added mass and drag coefficients were different for up

and down stroke of WEC oscillation for spar fitted with various heave plate designs,

including flat plate.

5.4 Dynamic block identification

The dynamic block generalizes the overall model therefore the parameters of dynamic

block have been identified from the experiment using sea state realization R1 whereas

R2 is used only to identify the parameters of rate dependent block. Once the param-

eters of the rate dependent block are identified; ζ, ζ̇, ζ̈ from R1 are used to calculate

the estimated excitation force fEe and it is compared with the hydrodynamic force

obtained from hydrodynamic experiment using R1. The comparison between these

signals are plotted in Figure 5.1a. The state dependent model at this stage is referred

as Hysteresis model (Hydrostatic+Bouc-wen) in Table 5.1. This stage is intermediate

for the rate dependent models and the dynamic block has not been added to the model

structure. In this section the procedure to identify the dynamic block coefficients is

outlined for the HP and the square cylinder.
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The composition of internal signal which is the input to dynamic block for various

models is tabulated in Table 5.1. In the Hammerstain model the internal signal

only consists of estimated values of hydrostatic forces fEs whereas for rate dependent

models the internal signal includes the estimated values of excitation force fEe through

the addition of the Bouc-Wen model. Identification of the dynamic block utilizes the

results of the experiments in which the spar was made to oscillate at amplitudes of

0.25 m, 0.15 m, 0.05 m and frequency ω = 1.25 rad/s for 700 s. Two different ranges

of model order and time delay na, nb and nd as described in Eq. (3.2), are analyzed

to find an optimal combination these parameters in each range.

• Range 1 refers to the lower values of model orders in which substantial drop in

the NRMSE is observed.

• Range 2 refers to the combination of model order values higher than Range 1,

where second substantial drop in the NRMSE is observed.

• For both the ranges the step size was kept same at 0.2 s.

• ta = na × 0.2 represents the previous transient information of fEd that influ-

ence the current value of fEd, similarly tb = nb × 0.2 represents the previous

transient information of internal signal that influence the current value of fEd

(refer Figure 3.5).

5.4.1 Choice of Range 1 model order and time delay

The identification of the dynamic block is done based on the procedures outlined in

Section 3.5.3. It has been found by Giorgi et al. (2016a) that this procedure is very

effective for simple geometries like square, triangular and circular cylinders. That

procedure is based on the iteratively changing the values of na, nb and nd with an

objective of determining a smallest value of NRMSE between the estimated values

of hydrodynamic force fEd and the CFD calculated hydrodynamic force fd. For a

linear model, the dynamic order of the model should be kept as small as possible

to reduce dimensionality of the problem and hence complexity. Based on the above

arguments, 2 ≤ na ≤ 9, 15 ≤ nb ≤ 30 and −20 ≤ nd ≤ 5 were chosen as possible

combinations for the ARX structure. This range of values will be referred as Range

1. This leads to identification of around 735 ARX structures for Range 1 for square

cylinder and 4500 for HP cylinder for each case study. Range 1 is used for 1 case of
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fixed square cylinder, 1 case of fixed HP cylinder and 1 cases each for HP cylinder

oscillating at 0.05 m, 0.15 m and 0.25 m.

This process has been very effective for 2D square cylinder when the order of the

ARX model is low (2 ≤ na ≤ 9 and 2 ≤ nb ≤ 9 has been used in Giorgi et al.

(2016a) for a Hammerstein model). It has also been utilized in this thesis for the

square and HP cylinder cases. For the following reasons the effect of higher ranges of

model order are also considered for the oscillating HP cylinder cases.

1. In this thesis the HP cylinder is forced to oscillate at high frequency and am-

plitude, compared to the input spectrum of the sea.

2. The Bouc-Wen modelling approach to resolve hysteresis dependent phenomenon

is used with Hammerstein model and KGP model. Since additional physics

based model is used the accuracy of internal signal which is input to dynamic

block is expected to increase.

3. In the proposed models the nonlinear rate dependent block is used with the dy-

namic block. Since the dynamic block utilizes a linear (used in Rate dependent

Hammerstein) or a nonlinear model (used in Rate dependent KGP) to model

the input fEe and output fd of the dynamic block, a possibility exists that the

significant dynamics remain unmodelled if lower order approximations to the

internal signal are adopted.

Based on the above hypothesis, Range 2 will be considered for all the data-driven

models and accuracy of the model in both the ranges will be analyzed before any

conclusion is drawn on the requirement of higher order models.

5.4.2 Choice of Range 2 model order

Based on the discussion in Section. 3.4.3 and Figure 3.5, na represents the number

of values of estimated hydrodynamic force fEd in the past and nb + 1 represents the

number of values of the internal signal that influence the current value of estimated

hydrodynamic force fEd. Since in the training fEd is compared to fd. The values of

fd and fEe can provide an indication on the range of values of na and nb that should

be investigated in order to find the optimal value. The amplitude spectrum of the

hydrodynamic force generated by NWT experiment is plotted in Figure 5.3. It can

be seen that the peak value of hydrodynamic force for oscillating HP cylinder occurs
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around 0.2 Hz, which is the oscillation frequency of the HP cylinder. The same peak

can be seen from the amplitude spectrum of the internal signal for the cases of with

and without Bouc-Wen model in Figure 5.4a and Figure 5.4b respectively. From

these plots we can see that for all the cases of HP oscillation, the high amplitude

values of hydrodynamic force and internal signal are concentrated between 0.09 Hz

and 0.25 Hz. From Figure 5.4b it can be concluded that ta and hence na should

correspond to the oscillation frequency between 0.09-0.15 Hz. The corresponding ta

and na values are 7-11 s and 35-55 respectively. Similarly, the initial values of nb

should correspond in the range of 0.05-0.04 Hz or 20-25 s.

Figure 5.3: Amplitude spectrum of CFD calculated hydrodynamic force on HP cylin-
der oscillating at ω = 1.25 rad/s for realization R1

5.4.3 Choice of Range 2 time delay

The time delay between the current estimated value of hydrodynamic force and the

last value of internal signal that influences the calculation is represented by td. An

observation here is that td represents the time shift between the output of the dynamic

block and the input to the dynamic block-i.e the internal signal. From Figure 5.3

and Figure 5.4, it can be said that the peak values of amplitudes of hydrodynamic

force and internal signal are close, and hence the requirement of a large time delay

is unlikely. Thus, a relatively small range of delays is considered: −2 s ≤ td ≤ 1 s.

Based on the above arguments, for the case of HP cylinder another set of values as

35 ≤ na ≤ 55, 100 ≤ nb ≤ 125 and −10 ≤ nd ≤ 5 were chosen as possible
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(a) Amplitude spectrum of estimated excitation force/internal
force signal for rate dependent models (s = fEs + fEe)

(b) Amplitude spectrum of estimated hydrostatic force/internal
force signal for Hammerstein model (s = fEs)

Figure 5.4: Comparison of amplitude spectrum internal signal for different amplitude
of spar oscillation for realization R1 and oscillating HP cylinder (ω = 1.25 rad/s)
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combinations for the ARX structure. This range of values will be referred as Range

2.

After establishing the ranges which define the search space for the optimization

problem, the next step is to determine the optimum values of na, nb and nd by

identifying different ARX structures. Each ARX structure is a specific combination

of dynamical order of the equation Eq. (3.2) and delay parameter (na, nb and nd)

values. The training procedure involves application of steps discussed in Section 3.5.4,

with various combination of na, nb, nd. This leads to identification of around 2340

ARX structure for Range 2 for HP cylinder for each case study. Range 2 are used

only for 2 cases of HP cylinder oscillating at 0.25 m and 0.15 m. A summary of the

ranges analyzed for various models and test cases is presented in Table 5.3.

5.4.4 Results of dynamic block identification

The value of NRMSE between the estimated values of the hydrodynamic force fEd and

CFD calculated hydrodynamic force fd are recorded for each ARX structure. Since

na provides the number of poles of the system, it is the most important parameter

to be determined. The optimal values of na for fixed square cylinder are determined

for Range 1 from Figure 5.5a. The optimal value of na, is the values of na at which

the value of NRMSE is sufficiently low and increasing na after that doesn’t reduce

the value of NRMSE, significantly. Thus it can be said that the reduction in the

values of NRMSE for na ≥ 4, is insignificant. Therefore the optimal na for Range 1

is 4. The values of nb and nd are determined by plotting NRMSE at na = 4 for all

the values of nb and nd. In the current case, 2 ≤ nb ≤ 9 and −10 ≤ nd ≤ 5

were chosen. From Figure 5.5b, it can be concluded that the NRMSE doesn’t show

significant improvement for nb > 5 and nd < −4 or nd > −4.

Similarly for oscillating HP cylinder at amp = 0.25 m and ω = 1.25 rad/s and

for sea state realization R1 and using Hammerstein model; na, nb and nd values

are determined for Range 1 and Range 2 from Figure 5.6. The optimal value of na

for each range, is the value of na at which the value of NRMSE is lowest. Thus

from Figure 5.6a and Figure 5.6c it can be said that the reduction in the values of

NRMSE for na ≥ 5, or na ≥ 55 is insignificant. Therefore the optimal na for Range

1 and Range 2 is 5 and 55 respectively.

Once na is selected, the next step is the estimation of nb and nd. By plotting

the loss function against td, for each value of nb, Figure 5.6b and Figure 5.6d show
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.
Table 5.3: Ranges analyzed for various data-driven model and test cases. The figures
and tables to be referenced for the combination of model, range and test case analyzed
is tabulated

Model Range

Square HP

Oscillation amplitude (m)

Fixed Fixed 0.05 0.15 0.25

Reference plot (Figure No.)

Hammerstein
1 5.5 C.5a, C.5b C.4a, C.4b C.2a, C.2b 5.6a, 5.6b

2 - - - C.3a, C.3b 5.6c, 5.6d

Rate dep.
Hammerstein

1 - C.5c, C.5d C.4c, C.4d C.2c, C.2d C.1a, C.1b

2 - - - C.3c, C.3d 5.7a, 5.7b

Rate dep.
KGP

1 - C.5e, C.5f C.4e, C.4f C.2e, C.2f C.1c, C.1d

2 - - - C.3e, C.3f 5.7c, 5.7d

Reference
Table No.

5.8 5.7 5.6 5.5 5.4

Note: Click on the Figure No. and Table No. to refer.
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that the minimum of the NRMSE occurs at different nd, depending on the value of

nb. Figure 5.6b shows the NRMSE curves for the case of na = 5 and 15 ≤ nb ≤ 29,

the minima of the curves stop decreasing at nd equal to −9 and Figure 5.6d shows that

at na = 55 and 110 ≤ nd ≤ 124 the minima of the curves stop decreasing for about

nd equal to −4. The objective is to obtain small values of NRMSE, and it is possible

to see that their is no significant difference for nb ≥ 27 in Figure 5.6b and NRMSE

is lowest for nb = 124 in Figure 5.6d. This shows that nb = 27 and nb = 124 are

the optimal value to obtain a parsimonious model structure. The optimal values of

na, nb and nd corresponding to both the ranges are tabulated in Table 5.4. It can be

seen from Figure 5.6 and Table 5.4 that a significant reduction in the values of NRMSE

has been obtained for Range 2. The variation of NRMSE for rate dependent models in

Range 2 are shown in Figure 5.7. The variation of NRMSE for rate dependent models

in Range 1 for same test case are shown in Figure C.1. A summary of all the figures

and tables corresponding to identification of dynamic block are provided in Table 5.3.

A significant reduction in the values of NRMSE has also been obtained for Range 2

(a) NRMSE Vs na for Range 1 (b) NRMSE Vs nd for Range 1

Figure 5.5: NRMSE for fixed square cylinder for realization R1, each vertical line
in Figure 5.5a shows the range of loss function for a specific values of na and prede-
termined values of nb and nd, each line in Figure 5.5b shows the loss function for a
specific values of nb and all the values of nd

for the test case of oscillating HP cylinder at amp = 0.15 m and ω = 1.25 rad/s.

The variation of NRMSE against na and nd for all the models used in this test case

in Range 1 and Range 2 is shown in Figure C.2 and Figure C.3, respectively and the

values are tabulated in Table 5.5. In order to confirm the observations, the FFT of

the estimated values of hydrodynamic force are compared with the CFD generated
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values. The MAPE for two ranges is also tabulated in Table 5.4 and Table 5.5 for

oscillating HP cylinder at amp = 0.25 m and amp = 0.15 m respectively and it can

be seen that MAPE for Range 2 is also lower when compared to Range 1.

In this work the need for a high dynamic order for HP oscillating at 0.25 m and

0.15 m is clearly evident based on the steep reduction in the NRMSE for Range 2.

For cases of HP cylinder oscillating at 0.05 m and fixed HP cylinder, it was found

that the drop in the NRMSE was gradual and insignificant in the window of Range

2, or any other window between Range 1 and Range 2. Therefore for these cases

only results corresponding to Range 1 have been shown in Table 5.6 and Table 5.7

respectively. The plots for variation of NRMSE for HP cylinder oscillating at 0.05 m

and 0.00 m for Range 1 is shown in Figure C.4 and Figure C.5 respectively.

Table 5.4: Optimal values of na, nb and nd for HP cylinder oscillating at amp = 0.25m
and ω = 1.25 rad/s for realization R1

Model Range na nb nd

delay NRMSE MAPE

(s) (fEd, fd) FFT-(fEd, fd)

Hammerstein
1 5 23 −4 −0.8 1.62× (10−2) 7.66× (10−3)

2 55 122 −11 −2.2 1.39× (10−2) 6.17× (10−3)

Rate dep.
Hammerstein

1 5 27 −9 −1.8 1.6× (10−2) 7.52× (10−3)

2 59 124 −4 −0.8 1.38× (10−2) 6.0× (10−3)

Rate dep.
KGP

1 5 29 −10 −2 1.53× (10−2) 7.35× (10−3)

2 59 129 −10 −2 1.2× (10−2) 5.6× (10−3)

Since the input signal to the dynamic block in the case of rate dependent models

has more state dependent system information compared to the Hammerstein model,

it is expected that the accuracy of the rate dependent models will be higher than

the Hammerstein model. It can be seen from Table 5.4, Table 5.5, Table 5.6 and Ta-

ble 5.7 that the NRMSE decreases for both the rate dependent models in both the

ranges. The accuracy of prediction improves by a minimum and maximum of 75 %

and 88 % for maximum HP oscillation and 61 % and 67 % for fixed HP cylinder.

Similarly the results predicted by rate dependent KGP model also show significant

improvement in prediction of hydrodynamic forces. In rate dependent KGP model

a nonlinear dynamic block is used along with the Bouc-Wen model. Thus it is the

most expensive model in terms of computational cost, and the most accurate. It can
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(a) NRMSE Vs na for Range 1 (b) NRMSE Vs nd for Range 1

(c) NRMSE Vs na for Range 2 (d) NRMSE Vs nd for Range 2

Figure 5.6: NRMSE for HP cylinder oscillating at amp = 0.25 m and ω = 1.25 rad/s
for realization R1 using Hammerstein model in the Range 1 and Range 2 is plotted
against na or ta values, each vertical line shows the range of loss function for a specific
values of na and predetermined values of nb and nd
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(a) NRMSE Vs na (Rate dependent Ham-
merstein model)

(b) NRMSE Vs nd (Rate dependent Ham-
merstein model)

(c) NRMSE Vs na (Rate dependent KGP
model)

(d) NRMSE Vs nd (Rate dependent KGP
model)

Figure 5.7: NRMSE for HP cylinder oscillating at amp = 0.25 m and ω = 1.25 rad/s
for realization R1 and Range 2, illustrating a comparison between all the system
identification models used in this thesis
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Table 5.5: Optimal values of na, nb and nd for HP cylinder oscillating at amp = 0.15m
and ω = 1.25 rad/s for realization R1

Model Range na nb nd

delay NRMSE MAPE

(s) (fEd, fd) FFT-(fEd, fd)

Hammerstein
1 5 23 −1 −0.2 1.69× (10−2) 7.3× (10−3)

2 59 129 −6 1.2 1.5× (10−2) 5.89× (10−3)

Rate dep.
Hammerstein

1 5 27 −4 −0.8 1.65× (10−2) 7.0× (10−3)

2 59 116 −7 −1.4 1.49× (10−2) 5.9× (10−3)

Rate dep.
KGP

1 6 29 0 0 1.6× (10−2) 6.7× (10−3)

2 59 129 −7 −1.4 1.36× (10−2) 5.0× (10−3)

Table 5.6: Optimal values of na, nb and nd HP cylinder oscillating at amp = 0.05 m
and ω = 1.25 rad/s for realization R1

Model na nb nd
delay NRMSE MAPE
(s) (fEd, fd) FFT-(fEd, fd)

Hammerstein 5 25 −6 −1.2 1.65× (10−2) 7.0×(10−3)

Rate dep.
Hammerstein

5 27 −4 −0.8 1.65× (10−2) 7.0×(10−3)

Rate dep.
KGP

5 27 −4 −0.8 1.53× (10−2) 5.3×(10−3)
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also be concluded that the prediction accuracy with optimal parameters in Range 2

is higher compared to Range 1, this is expected as the model becomes more flexible.

The effect of increasing the dynamical order of the model is be validated for validation

case simulation in Section 5.5.

Table 5.7: Optimal values of na, nb and nd fixed HP cylinder for realization R1

Model na nb nd
delay NRMSE MAPE
(s) (fEd, fd) FFT-(fEd, fd)

Hammerstein 6 29 −5 −1 1.58× (10−2) 6.1×(10−3)

Rate dependent
Hammerstein

6 27 −7 −1.4 1.53× (10−2) 5.8×(10−3)

Rate dependent
KGP

7 27 −9 −1.8 1.43× (10−2) 4.9×(10−3)

5.5 Validation

In the current study a different realization of sea state R3 is considered for valida-

tion. The dynamical order (na, nb) and the delay constant nd were established using

realization R1. These values were given in Table 5.8 for the square cylinder and Ta-

ble 5.4, Table 5.5, Table 5.6 for values corresponding to cases studies of HP cylinder

oscillating at ω = 1.25 rad/s and amp = 0.25 m, 0.15 m, 0.05 m respectively and

from Table 5.7 for the fixed HP cylinder.

Before comparing the model performance on the different cases of HP cylinder, a

comparison between the hydrodynamic force on a fixed square cylinder and a fixed

HP cylinder is to be done using the Hammerstein model. Under that conventional

Hammerstein approach optimal values of na = 3, nb = 6 and nd = −4 and na =

6, nb = 29 and nd = −5 were determined for fixed square cylinder and fixed HP

cylinder respectively. These values along with the values of NRMSE are tabulated

in Table 5.8.

For the fixed square cylinder, the results of the simulation using the Hammerstein

model are plotted in Figure 5.9a. This plot shows the time series of hydrodynamic

force obtained from CFD and that estimated from the Hammerstein model. The

plot of the amplitude spectrum of the hydrodynamic forces on the fixed square cylin-

der in shown in Figure 5.8. The values of NRMSE and MAPE are 0.15 and 0.014
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Table 5.8: Optimal values of na, nb and nd fixed square cylinder and HP cylinder
oscillating at amp = 0.25 m and ω = 1.25 rad/s for realization R1

Spar Range na nb nd

delay NRMSE MAPE

(s) (fEd, fd) FFT-(fEd, fd)

Square 1 3 6 −4 −0.8 2.29× (10−3) 1.0× (10−3)

HP 1 6 29 −5 −1 1.58× (10−2) 6.1× (10−3)

Figure 5.8: Comparison of amplitude spectrum of hydrodynamic force on square cylin-
der from CFD experiment and that estimated from Hammerstein model for training
data-Range 1 (MAPE= 1.4×−2)
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(a) Square cylinder

(b) HP Cylinder

Figure 5.9: Prediction of forces on fixed spar for R3 realization of sea state, based on
the parameters identified form R1 realization of sea state. The system identification
model utilizes data from 110 s to 700 s but only a portion of it is plotted for clarity.
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respectively. The value of NRMSE reported in Giorgi et al. (2015) is 0.13. It can

be seen that the model prediction based on training data accurately predicts the

hydrodynamic force. The process is repeated for fixed HP cylinder in Range 1 and

the predicted hydrodynamic forces along with the CFD generated values is shown

in Figure 5.9b. The corresponding NRMSE for HP cylinder is 0.54.

Thus, based on the values of NRMSE and the plot of hydrodynamic force it can

be concluded that the Hammerstein model in its conventional form cannot accurately

predicts forces for the HP cylinder geometry, and the model has to be modified to

account for the hysteresis between force and higher order parameters like velocity and

acceleration.

Two additional models with stand-alone application of the static block and a com-

bination of the state dependent Bouc-Wen model and static block were used. These

models will be hereby referred as Hydrostatic model and Hysteresis model respec-

tively. The characteristics of all the five models, composition of internal signals, the

input parameter for each block and the output of each block is tabulated in Table 5.1.

Though rate dependent block is used in the Hysteresis model, training will not be

required as the final output of the model is estimated the hydrodynamic force fEd,

rather than internal signal s.

Four cases of HP cylinder oscillation at a frequency of 1.25 rad/s and amplitudes

of 0.25 m, 0.15 m,0.05 m and 0.0 m are used for the validation purpose. The values

of the error metric for these cases have been tabulated in Table 5.9. The time series

and the FFT plots of the HP cylinder oscillating at amplitude of 0.25 m and 0.15 m

are plotted in Figure 5.10 and Figure 5.11 for Range 1 and Range 2 respectively. For

0.05 m and 0.0 m the plots corresponding to Range 1 are plotted in Figure 5.12. The

model with the lowest error is mentioned in brackets in the corresponding caption.

The hydrostatic model has not been plotted in these plot because the error metric

are high and their tabulated values provide enough insight in their insignificance as

an independent model.

In the hydrostatic model, it is expected that the accuracy will improve as the input

signal to the static block approaches to the free surface height. From Table 5.9, this

conclusion is affirmed as the value of NRMSE decreases as body oscillation approaches

to fixed cylinder. At the same time increase in MAPE values indicated that, though

the model’s accuracy to predict the amplitude improves; there is a significant phase

difference at lower amplitude of oscillation. The over all performance of Bouc-Wen

model is significantly better compared to hydrostatic model. From the FFT plots
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it can be concluded that the Bouc-Wen model’s accuracy in predicting the force

corresponding to amplitude of oscillation decreases with the decrease in oscillation as

well as it over predicts low frequency components in the presence of high amplitude

oscillation in the input signal (see Figure 5.10b and Figure 5.11b). This also indicates

the lag is caused by vortex shedding due to body oscillating at high frequency and

amplitude as due to vortices non-linearity between position of spar and hydrodynamic

force develops. Similar conclusions can be drawn when the fixed WEC is subjected

to low frequency waves (see Figure 5.12d).

Table 5.9: Error metric for all the cases of HP cylinder oscillation

Model

NRMSE MAPE (×10−2)

(fEd, fd) (FFT-fEd, fd)

Amplitude (m) Amplitude (m)

0.25 0.15 0.05 0.0 0.25 0.15 0.05 0.0

S
ta
te

d
ep
.

Hydrostatic 1.53 1.17 0.812 0.77 8.1 10.2 13.1 27.0

Hydrostatic
+ Bouc-Wen

0.431 0.589 0.635 0.44 4.8 3.8 3.7 6.6

T
ra
in
in
g
n
ee
d
ed Hammerstein

R
an

ge

1 0.243 0.353 0.432 0.54 3.71 3.95 3.94 6.69

2 0.224 0.284 - - 3.29 3.36 - -

Rate dep-
Hammerstein

1 0.236 0.337 0.44 0.35 3.59 3.48 3.7 4.0

2 0.217 0.261 - - 3.25 3.26 - -

Rate dep-
KGP

1 0.234 0.315 0.449 0.33 3.61 3.49 3.67 3.42

2 0.228 0.26 - - 3.37 3.23 - -

The overall accuracy of Hammerstein model is lower when compared to the rate

dependent models and it decreases with decrease in the oscillation amplitude. The

presence of Bouc-Wen model along with the hydrostatic model shows that the im-

provement in the prediction when compared to only the hydrostatic model. When

rate dependent block is augmented with linear dynamic block, further improvement

in the accuracy by 20−50% is observed for all the test cases except for fixed cylinder.

The rate dependent models for these cases show almost 25% when compared to model

without dynamic block and 38% when compared to Hammerstein model.

In all the cases corresponding to Range 1, Hammerstein model over-predicts the

force especially in the low frequency range. This is the result of lower dynamical order

values compared to those in Range 2. The high oscillation of force in low frequency
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proves the point that by using Hammerstein model without hysteresis nonlinearity

significant amount of dynamics goes unmodelled. The dynamic order of the model

was increased in Range 2 for HP oscillating at 0.25 m and 0.15 m but not for other

cases as no significant drop in error values was found. The low frequency oscillation

were not found for higher orders for any of the models, and the rate dependent models

were again found to be more accurate in this range.

Comparing the performance of rate dependent Hammerstein and rate dependent

KGP models, it was found that KGP model was as accurate as the rate dependent

Hammerstein model for the validation case, though the values of NRMSE were found

to be significantly lower in the training case compared to any other data-driven model.

The trend in the MAPE values was also same as NRMSE and hence it gives a con-

fidence on the values of na, nb and nd selected for validation. It was found that

the values of MAPE increases in Range 2 compared to values in Range 1 for test

cases corresponding to 0.25 m oscillation amplitude. This is due to overfitting and as

frequency component were introduced at 0.2 Hz. The improvement for HP cylinder

oscillating at 0.15 m is noticeable but for other cases, particularly in Range 2, the

rate dependent KGP model proves to be computationally expensive without improve-

ment in accuracy. The difference between these two models, is the use of nonlinear

input-output relationship in the dynamic block (ARX model) of rate dependent KGP

model. This implies that higher order values of internal signal and hence the higher

number of nb + 1 coefficients were used in rate dependent KGP model.

The fitting error of an identified model is larger in validation than in training due

to accumulation of numerical error in simulation procedure. It can be concluded from

the values of NMRSE and MAPE that the performance of the models are best for high

oscillation amplitude of HP cylinder in an irregular wave field. Though the overall

trend of decrease in model accuracy towards lower oscillations amplitudes can be seen

in all the candidate data-driven models, a reversal in this trend was observed for the

rate dependent and Bouc-Wen models when the amplitude of oscillation was between

0.15m and 0.05m. It should be noted that at oscillation amplitude of 0.05m the order

of magnitude of hydrodynamic force at frequency of oscillation is comparable to the

hydrodynamic force on a fixed spar. The linear model has difficulty in following peaks

in the hydrodynamic force. The data utilised in the case studies show the presence of

hydrodynamic nonlinearities, which the rate dependent or nonlinear model are able

to describe. Though the HP cylinder has a linear restoring curve, it has a very flat

bottom with sharp corners and a positive aspect ratio of the plate with the spar. The
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heave plate is the source of important nonlinear effects due on viscosity and vortex

shedding.

Other authors (Nelles, 2001; Giorgi et al., 2016b) have cautioned on the use of

KGP models, due to its computational requirements and sensitivity with respect to

noise. Though in this thesis KGP model has been used with Bouc-Wen model, the

results reiterates on the points made by other authors and concludes that KGP models

though accurate are expensive.

(a) amp = 0.25 m (Min. NRMSE: R-KGP) (b) amp = 0.25 m (Min. MAPE: R-Hamm.)

(c) amp = 0.15 m (Min. NRMSE: R-KGP) (d) amp = 0.15 m (Min. MAPE: R-Hamm.)

Figure 5.10: Hydrodynamic force on HP cylinder oscillating at ω = 1.25 rad/s and
amplitudes of 0.25and0.15 for realization R3 (Training data-Range 1)

The approximate time required in each step of data generation and SI process is

consolidated in the Table 5.10. Though the high performance computing facility at

Compute Canada was used in the CFD and training simulation, these clock times

represent the wall clock time on a 4 core, x86 64 architecture Intel Xeon desktop

computer. The parameters that are generated by each of these processes are also

tabulated. It can be seen that the data generation process takes most of the time,

particularly in the hydrodynamic test case, in which three simulations are required for
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(a) amp = 0.25 m (Min. NRMSE: R-
Hamm.)

(b) amp = 0.25 m

(Min. MAPE: R-Hamm.)

(c) amp = 0.15 m

(Min. NRMSE: R-KGP)
(d) amp = 0.15 m

(Min. MAPE: R-KGP)

Figure 5.11: Hydrodynamic force on HP cylinder oscillating at ω = 1.25 rad/s and
various amplitudes for realization R3 (Training data-Range 2)
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(a) amp = 0.05 m (Min. NRMSE: Hamm.) (b) amp = 0.05 m (Min. MAPE: R-KGP)

(c) amp = 0.0 m (Min. NRMSE: R-KGP) (d) amp = 0.0 m (Min. MAPE: R-KGP)

Figure 5.12: Hydrodynamic force on HP cylinder oscillating at ω = 1.25 rad/s and
amplitudes of 0.05 and fixed cylinder for realization R3 (Training data-Range 1)
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each realization. The difference in the values of two cases of hydrodynamic simulation

is because in the case of spar oscillation moving mesh algorithm is utilized.

The simulation time when moving mesh is involved is higher compared to fixed

mesh cases. In addition to the CFD simulation time another huge portion of time

which has not been tabulated is the geometry and mesh generation time, which is

dependent on the skill of the analyst. The coefficients of Bouc-Wen equation Eq. (3.9)

uses PSO algorithm and is computationally faster relative to compared to data gener-

ation or training depending on the values of initial guess of particle position, number

of particles and number of iterations. A guideline on the selection of these values

are provided in Section 3.5.3. Since two ranges have been analyzed in this thesis,

the values corresponding to both of the ranges is tabulated and it can be seen that

the time required for training and simulation for Range 2 is higher than Range 1 for

all the models. This is due to the higher values of na, nb for Range 2. The clock

times tabulated for training process are for 1 ARX structure, each ARX structure

is a combination of na, nb and nd values. The number of ARX structure used in

particular cases are discussed in Section 5.4. It can be seen from the table that the

time required by rate dependent KGP model is higher in all the cases when com-

pared to rate dependent Hammerstein model. This is due to the use of second order

polynomial in KGP model.

Table 5.10: Approximate clock time required in each step

Model

CFD tests (hrs)

PSO
Training

SimulationHydro- Hydro-
(s/ARXstr)&

static dynamic (hrs) (s)

Identification
Parameters

C f+
d ζ∗

a, b, c na, nb
fEs

α, β, γ nd

Hammerstein

8

16
×

3

12
×
3

2

R
an

ge

1 40 59

2 72 66

Rate dep.
Hammerstein

1 74 78

2 80 80

Rate dep.
KGP

1 76 79

2 90 90
+ 3 hydrodynamic CFD simulations to determine fd for 3 sea state realizations (R1, R2 and R3)
* 3 hydrodynamic CFD simulations to determine ζ for 3 sea state realizations (R1, R2 and R3)
& Time taken by model to train 1 ARX structure
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Chapter 6

Summary and conclusions

6.1 Summary

A data-driven modelling framework for numerical prediction of the hydrodynamic

forces on geometries of significance to wave energy conversion is presented. Three time

domain data-driven model structure have been proposed to model the hydrodynamic

force on spar fitted with heave plate. Using CFD simulators to generate training

data, the data driven model structure is subdivided into simpler blocks of physical

importance. These blocks are a static block, a nonlinear hysteresis block and a linear

or nonlinear dynamic block. The nonlinear hysteresis block is realized by a Bouc-

Wen model to capture the rate-dependent effects of hysteresis. The nonlinear static

block and the dynamic block are evaluated utilizing least squares estimation and

ARX model. The Bouc-Wen model parameters are identified by PSO to identify the

hysteresis properties. In order to evaluate the model performance, a fixed square

cylinder and four cases with HP cylinder as spar were simulated, one with stationary

spar and three cases of oscillating spar in an irregular wave field. Five meta-models

were analyzed, two were state dependent models that do not require training while

the other three required training to identify dynamic order or model equations.

In order to develop confidence in the data generation procedure, a high fidelity

CFD modelling for numerical prediction of the hydrodynamic forces on scaled model

of self-reacting point absorber Wave Energy Converter is presented and compared

with experimental results. Two different test methodology were adapted, these are

known as diffraction tests and radiation tests. In the diffraction test the WEC is

subjected to incoming wave and the hydrodynamic force on the body is recorded
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whereas in the radiation test the WEC spar is oscillated in a quiescent field. The

component geometries are enclosed in two different fluid domains, each subjected

to relative motion using a arbitrary mesh interface algorithm. The transfer of field

variables across the domains is achieved through an arbitrary mesh interface. This

unique methodology avoids cell deformation close to the component parts of the

WEC, thus eliminating the errors in force calculation due to deformed cells. The

continuity and momentum equations along with the free surface are solved separately

in each domain. The validation of radiation force calculated from CFD is done by

the experimental results for different heave oscillations test conditions.

6.2 Conclusions

Chapter 2 show the requirement of nonlinear hydrodynamic modelling of WECs,

because of the presence of viscous drag and hysteric structure of state-dependent

variables with the hydrodynamic force. If the projected area of either the float or

spar changes at the free surface a nonlinear restoring force will also be introduced

depending on the wave and oscillation amplitudes. Indeed, large body amplitudes

increase the nonlinear dissipative effects. The ideal WEC modelling solution is a

nonlinear parametric model, characterized by a good compromise between accuracy

and computation time. This model should be able to describe the whole operating

frequency region. In Chapter 2 several time domain CFD simulation were performed

at discrete frequencies, the results hint at the presence of hydrodynamic nonlineari-

ties, particularly at high amplitude oscillations. Multiple WEC configurations utilize

the concept of harnessing energy by relative motion between different components.

A methodology to simulate the heave motion between two closely placed annulus

geometries has been presented. For SRPAs these geometries are float and spar. It

has been pointed out in literature that, the moonpool can enhance the wave energy

conversion in some frequency ranges or hinder the motion of the cylinder buoy in

some other. For the case of WEC B, it was seen that the diffraction force magnitude

obtained from CFD (which considered moonpool between float and spar) is higher

compared to that from physical tank test and BEM results. One of the major im-

provements proposed by this thesis is the use of CFD-NWT instead of traditional

BEM, for hydrodynamic model identification, since NWT data contain the full range

of nonlinear hydrodynamic effects described by the Reynolds Averaged Navier-Stokes

(RANS) equations. The wave generation (at inlet) and absorption (at outlet) is sen-
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sitive to characteristics of the waves. Thus if NWTs are used, sensitivity studies

are required prior to data generation for characterization of absorption coefficients

with respect to incoming waves. For radiation tests a radial NWT with appropriate

boundary condition and oscillating body at the centre of tank is required.

WECs with heave plates generate reaction forces that exhibit nonlinear relation-

ships with single or multiple input parameters including free surface elevation, relative

velocity and acceleration. Some of these input parameters show causal relationships

with the output reaction force, while others show hysteric relationships with compo-

nents of the output reaction forces. Earlier attempts to addressed the nonlinear and

non-causal relationship between free surface and reaction force have been limited to

simple hulls with heaving motion and did not include rate dependent nonlinearities

that develop for heave plates.

In order to capture the full range of nonlinearities high fidelity models are used to

calculate the hydrodynamic force on simple 2D geometries, particularly a 2D cylinder

with heave plate. These meta-models are Hammerstein model, rate dependent Ham-

merstein model and rate dependent Kolmogorov-Gabor polynomial (KGP) model.

The rate dependent models are models with a nonlinear static block, a hysteresis

block (Bouc-Wen model) and a dynamic ARX block (Autoregressive with exogenous

model). These meta-models are based on state dependent Bouc-Wen model. Perfor-

mance of Bouc-Wen model has been evaluated independently and compared with the

hydrostatic model. The hydrostatic model provides an input to the dynamic block.

It was found that Bouc-Wen model independent of meta-model provides substantial

improvement in accuracy of hydrodynamic force.

The comparison between various meta-models was done and it was found that

the linear model had difficulty in following peaks in the hydrodynamic force. The

data utilised in the case study show the presence of hydrodynamic nonlinearities,

which the rate dependent or nonlinear model are able to describe. The HP cylinder

has a linear restoring curve, but a very flat bottom with sharp corners and a positive

aspect ratio of the plate with the spar can be the source of important nonlinear effects,

based on viscosity and vortex shedding. The limitations Hydrostatic, Hysteresis and

Hammerstein models, with respect to the nonlinear model are shown in the validation

experiment.

The identified hysteresis block showed good performance in predicting the ex-

citation force for all the cases, thereby improving the overall performance of rate

dependent models. On the other hand use of nonlinear ARX block either showed
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no improvement or reduced accuracy when higher dynamical orders were used. This

model is computationally expensive compared to models with linear ARX block. The

accuracy of each model depends on the characteristics of input data and a compromise

between the accuracy and computational cost determines the choice of model.

6.3 Limitations

The limitations enumerated in this section present boundaries on the application of

the developed framework, and also insight on the possible path that advancement in

the framework should follow.

1. A major limitation of the modelling approach is that it can only be applied to

bodies in single DOF heave only.

2. The modelling approach is limited to single sea spectrum. The model identifi-

cation process applied to other wave conditions would yield different parameter

values. Use of the model could thus be subject to switching between parameter

sets between wave conditions.

3. The case studies in this thesis pertained to a characteristic 2D WECs with heave

plate, for simplicity. Only cases of a single DoF prescribed heave motion were

considered.

4. The assumption made in modelling the excitation force using Bouc-Wen model

is that the shape of hysteresis is symmetrical about the force and velocity axis.

6.4 Future work

The elaborate hydrodynamic analysis summarized in this thesis provides an insight

into possible and necessary future work. The recommendations presented in this sec-

tion will advance the model developments for not only hydrodynamics but dynamics

of WECs, control and power production assessments.

Multiple DoF analysis An expansion of the current simulation technique in CFD

and modelling to include 3D multi-DoF motion is required. In Earlier stud-

ies (Tarrant and Meskell, 2016) have pointed out the importance of inclusion

of parametrically excited pitch and/or roll motions into hydrodynamic model.
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This can be achieved by allowing unrestrained 6-DoF motion of WEC in 3D

CFD simulation in hydrodynamic tests. The response of the spar should be

recorded and these tests should provide input data for system identification

models. The hydrostatic tests should also be designed to determine hydrostatic

coefficients when the WEC pitches in quiescent fluid.

Analysis of WEC components The system identification framework developed in

this thesis was applied to hydrodynamic forces but the application can be ex-

tended to PTO and mooring system, which are essential for evaluation of WEC

performance.

Alternate WEC designs Though, in this thesis, the models are identified to de-

scribe the hydrodynamics of SRPA geometry, the framework is not limited to

SRAPs. Other WEC designs like oscillating surge/pitch converters, overtopping

devices, oscillating water column converter etc. should be analyzied.

Asymmetric hydrodynamic coefficient The Morison equation with constant co-

efficient always produces symmetric solution, in which sinusoidal motion has

symmetrical force variation in the up and down stroke. This is a limitation for

heave plates with asymmetrical shapes. Alternate methods like instantaneous

coefficients or phase dependent coefficients to account for asymmetry should be

analyzed.

Static nonlinear block The static nonlinearity is approximated by a polynomial

in the current work as the focus was straight walled geometries at the interface.

But for the geometries that have curved shape at the interface, any other static

appropriator can also be utilized. For an efficient identification it is recom-

mended that a linearly parameterized appropriator is used.

Panchromatic spar oscillation One of the limitation in current analysis is that the

oscillation of the spar is limited to monochromatic oscillation. This clearly alters

the input signal to the system identification model, possible future expansion

of current work is inclusion of response of the body to the panchromatic waves.

Recursive Least Squares The computational cost of the data driven model is gov-

erned primarily by the data generation process followed by the training algo-

rithm depending on the number and order of ARX structure. Thus when a

LS method is required to run online in real time, a new algorithem sould be
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developed, since the conputational effort of LS method grows with the number

of data sample collected. A recursive formulation of LS method with will reduce

the required training time.

Subset selection Due to higher model complexity of KGP model even for moder-

ately sized problems, linear subset selection techniques can be utilized. They

allow construction of reduced polynomial model that contained only the most

relevant regressors.
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ald, M. Folley, D. Forehand, S. Giorgi, J. Kofoed, L. Kregting, C. Mingham,

L. Qian, P. Ricci, J. Ringwood, V. Stratigaki, P. Troch, and S. Vaughan. Nu-

merical modelling of wave energy converters. In M. Folley, editor, Numerical Mod-

elling of Wave Energy Converters, page ix. Academic Press, 2016. ISBN 978-0-12-

803210-7. doi: https://doi.org/10.1016/B978-0-12-803210-7.09995-3. URL http:

//www.sciencedirect.com/science/article/pii/B9780128032107099953.

M. Anbarsooz, M. Passandideh-Fard, and M. Moghiman. Fully nonlinear viscous wave

generation in numerical wave tanks. Ocean Engineering, 59(0):73 – 85, 2013. ISSN

0029-8018. doi: http://dx.doi.org/10.1016/j.oceaneng.2012.11.011. URL http:

//www.sciencedirect.com/science/article/pii/S0029801812004374.

M. Anbarsooz, M. Passandideh-Fard, and M. Moghiman. Numerical simulation of a

submerged cylindrical wave energy converter. Renewable Energy, 64(0):132 – 143,

2014a. ISSN 0960-1481. doi: http://dx.doi.org/10.1016/j.renene.2013.11.008. URL

http://www.sciencedirect.com/science/article/pii/S0960148113005867.

M. Anbarsooz, M. Passandideh-Fard, and M. Moghiman. Numerical simulation of

a submerged cylindrical wave energy converter. Renewable Energy, 64, 2014b.

http://www.sciencedirect.com/science/article/pii/S096014810700119X
http://www.sciencedirect.com/science/article/pii/S096014810700119X
http://www.sciencedirect.com/science/article/pii/B9780128032107099953
http://www.sciencedirect.com/science/article/pii/B9780128032107099953
http://www.sciencedirect.com/science/article/pii/S0029801812004374
http://www.sciencedirect.com/science/article/pii/S0029801812004374
http://www.sciencedirect.com/science/article/pii/S0960148113005867


122

doi: 10.1016/j.renene.2013.11.008. URL http://dx.doi.org/10.1016/j.renene.

2013.11.008.

A. Babarit. A database of capture width ratio of wave energy converters. Renewable

Energy, 80(0):610 – 628, 2015. ISSN 0960-1481.

A. Babarit, J. Hals, M. Muliawan, A. Kurniawan, T. Moan, and J. Krokstad. Nu-

merical benchmarking study of a selection of wave energy converters. Renewable

Energy, 41(0):44 – 63, 2012. ISSN 0960-1481. doi: http://dx.doi.org/10.1016/

j.renene.2011.10.002. URL http://www.sciencedirect.com/science/article/

pii/S0960148111005672.

G. Bacelli, R. G. Coe, D. Patterson, and D. Wilson. System identification of a

heaving point absorber: Design of experiment and device modeling. Energies, 10

(4), 2017. ISSN 1996-1073. doi: 10.3390/en10040472. URL https://www.mdpi.

com/1996-1073/10/4/472.

W. Bai, M. A. Hannan, and K. K. Ang. Numerical simulation of fully nonlinear wave

interaction with submerged structures: Fixed or subjected to constrained motion.

Journal of Fluids and Structures, 49:534 – 553, 2014. ISSN 0889-9746. doi: https:

//doi.org/10.1016/j.jfluidstructs.2014.05.011. URL http://www.sciencedirect.

com/science/article/pii/S0889974614001170.

S. Beatty, M. Hall, B. Buckham, and P. Wild. Experimental comparison of self-

reacting point absorber wec designs. In 10th European Wave and Tidal Conference,

EWTEC, Aalborg, Denmark, 2013.

S. J. Beatty. Self-Reacting Point Absorber Wave Energy Converters. PhD thesis,

University of Victoria, 2015.

S. J. Beatty, M. Hall, B. J. Buckham, P. Wild, and B. Bocking. Experimental and

numerical comparisons of self-reacting point absorber wave energy converters in

regular waves. Ocean Engineering, 104(0):370 – 386, 2015. ISSN 0029-8018.

S. J. Beatty, B. Bocking, K. Bubbar, B. J. Buckham, and P. Wild. wave energy

converters in irregular waves. Ocean Engineering, page 16, 2019.

M. A. Bhinder, A. Babarit, L. Gentaz, and P. Ferrant. Potential time domain model

with viscous correction and CFD analysis of a generic surging floating wave energy

http://dx.doi.org/10.1016/j.renene.2013.11.008
http://dx.doi.org/10.1016/j.renene.2013.11.008
http://www.sciencedirect.com/science/article/pii/S0960148111005672
http://www.sciencedirect.com/science/article/pii/S0960148111005672
https://www.mdpi.com/1996-1073/10/4/472
https://www.mdpi.com/1996-1073/10/4/472
http://www.sciencedirect.com/science/article/pii/S0889974614001170
http://www.sciencedirect.com/science/article/pii/S0889974614001170


123

converter. International Journal of Marine Energy, 10:70–96, 2015. ISSN 2214-

1669. doi: 10.1016/j.ijome.2015.01.005. URL http://www.sciencedirect.com/

science/article/pii/S2214166915000090.

L. Bonfiglio, S. Brizzolara, and C. Chryssostomidis. Added mass and damping of

oscillating bodies: a fully viscous numerical approach. In Recent Advances in Fluid

Mechanics, Heat and Mass Transfer and Biology, 2011.

N. Booij, R. C. Ris, and L. H. Holthuijsen. A third-generation wave model for coastal

regions: 1. model description and validation. Journal of Geophysical Research:

Oceans, 104(C4):7649–7666, 1999. ISSN 2156-2202. doi: 10.1029/98JC02622. URL

http://dx.doi.org/10.1029/98JC02622.

R. Bouc. Forced vibration of mechanical systems with hysteresis. 1967.

A. Brown, J. Thomson, and C. Rusch. Hydrodynamic coefficients of heave plates,

with application to wave energy conversion. IEEE Journal of Oceanic Engineering,

pages 1–14, 2017. ISSN 0364-9059, 1558-1691, 2373-7786. doi: 10.1109/JOE.2017.

2762258. URL http://ieeexplore.ieee.org/document/8094941/.

K. H. Chan, J. Bao, and W. J. Whiten. Identification of MIMO hammerstein systems

using cardinal spline functions. Journal of Process Control, 16(7):659 – 670, 2006.

ISSN 0959-1524. doi: https://doi.org/10.1016/j.jprocont.2006.01.004. URL http:

//www.sciencedirect.com/science/article/pii/S0959152406000205.

A. G. Chassiakos, S. F. Masri, A. W. Smyth, and T. K. Caughey. On-Line Identi-

fication of Hysteretic Systems. Journal of Applied Mechanics, 65(1):194–203, 03

1998. ISSN 0021-8936. doi: 10.1115/1.2789025. URL https://doi.org/10.1115/

1.2789025.

L. F. Chen, J. Zang, A. J. Hillis, G. C. J. Morgan, and A. R. Plummer. Numer-

ical investigation of wave–structure interaction using OpenFOAM. Ocean En-

gineering, 88:91 – 109, 2014. ISSN 0029-8018. doi: https://doi.org/10.1016/j.

oceaneng.2014.06.003. URL http://www.sciencedirect.com/science/article/

pii/S0029801814002169.

B. Chenari, S. S. Saadatian, and A. D. Ferreira. Numerical Modelling of Regular

Waves Propagation and Breaking Using Waves2Foam. Journal of Clean Energy

Technologies, 3(4):276–281, 2015. ISSN 1793821X.

http://www.sciencedirect.com/science/article/pii/S2214166915000090
http://www.sciencedirect.com/science/article/pii/S2214166915000090
http://dx.doi.org/10.1029/98JC02622
http://ieeexplore.ieee.org/document/8094941/
http://www.sciencedirect.com/science/article/pii/S0959152406000205
http://www.sciencedirect.com/science/article/pii/S0959152406000205
https://doi.org/10.1115/1.2789025
https://doi.org/10.1115/1.2789025
http://www.sciencedirect.com/science/article/pii/S0029801814002169
http://www.sciencedirect.com/science/article/pii/S0029801814002169


124

G. Cho, Bacelli and R. G. Coe. Linear and nonlinear system identification of a

wave energy converter. In 6th Marine Energy Technology Symposium (METS),

Washington, DC, 2018.

L.-f. Cong and B. Teng. Hydrodynamic characteristics of square heaving plates with

opening under forced oscillation. China Ocean Engineering, 33(6):637–648, Dec

2019.

R. Courant, K. Friedrichs, and H. Lewy. On the Partial Difference Equations of Math-

ematical Physics. IBM J. Res. Dev., 11(2):215–234, Mar. 1967. ISSN 0018-8646.

doi: 10.1147/rd.112.0215. URL http://dx.doi.org/10.1147/rd.112.0215.

W. Cummins. The impulse response function and ship motions, 1962.

J. R. Dormand and P. J. Prince. A family of embedded runge-kutta formulae.

Journal of Computational and Applied Mathematics, 6(1):19 – 26, 1980. ISSN

0377-0427. doi: https://doi.org/10.1016/0771-050X(80)90013-3. URL http:

//www.sciencedirect.com/science/article/pii/0771050X80900133.

E. Eskinat, S. H. Johnson, and W. L. Luyben. Use of hammerstein models in

identification of nonlinear systems. AIChE Journal, 37(2):255–268, 1991. doi:

10.1002/aic.690370211. URL https://aiche.onlinelibrary.wiley.com/doi/

abs/10.1002/aic.690370211.

D. Evans. A theory for wave-power absorption by oscillating bodies. Journal of Fluid

Mechanics, 1976.

D. Evans, D. Jeffrey, S. Salter, and J. Taylor. Submerged cylinder wave energy device:

theory and experiment. Applied Ocean Research, 1:3–12, 1979.

T. Falck, K. Pelckmans, J. A. K. Suykens, and B. D. Moor. Identifica-

tion of wiener-hammerstein systems using LS-SVMs. IFAC Proceedings Vol-

umes, 42(10):820 – 825, 2009. ISSN 1474-6670. doi: https://doi.org/10.3182/

20090706-3-FR-2004.00136. URL http://www.sciencedirect.com/science/

article/pii/S147466701638750X.

A. F. d. O. Falcão. Wave energy utilization: A review of the technologies. Renewable

and Sustainable Energy Reviews, 14(3):899–918, April 2010. URL https://ideas.

repec.org/a/eee/rensus/v14y2010i3p899-918.html.

http://dx.doi.org/10.1147/rd.112.0215
http://www.sciencedirect.com/science/article/pii/0771050X80900133
http://www.sciencedirect.com/science/article/pii/0771050X80900133
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690370211
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690370211
http://www.sciencedirect.com/science/article/pii/S147466701638750X
http://www.sciencedirect.com/science/article/pii/S147466701638750X
https://ideas.repec.org/a/eee/rensus/v14y2010i3p899-918.html
https://ideas.repec.org/a/eee/rensus/v14y2010i3p899-918.html


125

J. Falnes. A review of wave-energy extraction. Marine Structures, 20(4):185 – 201,

2007. ISSN 0951-8339. doi: https://doi.org/10.1016/j.marstruc.2007.09.001. URL

http://www.sciencedirect.com/science/article/pii/S0951833907000482.

P. Farrell and J. Maddison. Conservative interpolation between volume meshes by lo-

cal Galerkin projection. Computer Methods in Applied Mechanics and Engineering,

200:89–100, Jan. 2011. doi: 10.1016/j.cma.2010.07.015.

J. Fitzgerald. Position mooring of wave energy converters, 2009.

J. Fitzgerald and L. Bergdahl. Including moorings in the assessment of a generic

offshore wave energy converter: A frequency domain approach. Marine Struc-

tures, 21(1):23 – 46, 2008. ISSN 0951-8339. doi: http://dx.doi.org/10.1016/j.

marstruc.2007.09.004. URL http://www.sciencedirect.com/science/article/

pii/S0951833907000500.

G. C. Foliente. Hysteresis modeling of wood joints and structural systems. Jour-

nal of Structural Engineering, 121(6):1013–1022, 1995. doi: 10.1061/(ASCE)

0733-9445(1995)121:6(1013).

M. Folley, T. Whittaker, and M. Osterried. The oscillating wave surge converter.

In 14th International Offshore and Polar Engineering Conference, Toulon,France,

2004.

W. Frank. Oscillation of cylinders in or below the free-surface of deep fluids, 1967.

D. Garrett. Coupled analysis of floating production systems. Ocean Engineer-

ing, 32(7):802 – 816, 2005. ISSN 0029-8018. doi: http://dx.doi.org/10.1016/j.

oceaneng.2004.10.010. URL http://www.sciencedirect.com/science/article/

pii/S0029801804002094. Deepwater Mooring Systems; Design, Analysis and Ma-

terials Deepwater Mooring Systems.

A. Garrido-Mendoza, C., A. Souto-Iglesias, and K. Thiagarajan. Numerical sim-

ulation of hydrodynamics of a circular disk oscillating near a seabed. In 32nd

International Conference on Ocean, Offshore and Arctic Engineering, 2013.

S. Giorgi, J. Davidson, and J. Ringwood. Identification of nonlinear excitation force

kernels using numerical wave tank experiments. Proceedings of the 11th European

Wave and Tidal Energy Conference, 2015.

http://www.sciencedirect.com/science/article/pii/S0951833907000482
http://www.sciencedirect.com/science/article/pii/S0951833907000500
http://www.sciencedirect.com/science/article/pii/S0951833907000500
http://www.sciencedirect.com/science/article/pii/S0029801804002094
http://www.sciencedirect.com/science/article/pii/S0029801804002094


126

S. Giorgi, J. Davidson, and J. Ringwood. Identification of wave energy device models

from numerical wave tank data—part 1: Numerical wave tank identification tests.

IEEE Transactions on Sustainable Energy, 7(3):1012–1019, July 2016a. ISSN 1949-

3037. doi: 10.1109/TSTE.2016.2515512.

S. Giorgi, J. Davidson, and J. Ringwood. Identification of wave energy device models

from numerical wave tank data—part 2: Data-based model determination. IEEE

Transactions on Sustainable Energy, 7(3):1020–1027, July 2016b. ISSN 1949-3037.

doi: 10.1109/TSTE.2016.2515500.

G. H. Golub and J. M. Ortega. Scientific Computing and Differential Equations: An

Introduction to Numerical Methods. Academic Press, Inc., USA, 1st edition, 1991.

ISBN 0122892550.

J. M. R. Graham. The forces on sharp-edged cylinders in oscillatory flow at low

Keulegan-Carpenter numbers. Journal of Fluid Mechanics, 97:331–346, Mar. 1980.

doi: 10.1017/S0022112080002595.

C. Guedes, S. and A. Santos, T., editors. Maritime Technology and Engineering.

CRC Pr I Llc, 2014. ISBN 978-1-138-02727-5.

R. Hansen, M. Kramer, and E. Vidal. Discrete displacement hydraulic power take-

off system for the wavestar wave energy converter. Energies, 6(8):4001–4044,

2013. ISSN 1996-1073. doi: 10.3390/en6084001. URL http://www.mdpi.com/

1996-1073/6/8/4001.

Hemida, H. OpenFOAM tutorial: Free surface tutorial using interfoam and rasinter-

foam. Technical report, Chalmers University of Technology, April 2008.

P. Higuera, J. L. Lara, and I. J. Losada. Realistic wave generation and active wave

absorption for Navier Stokes models: Application to OpenFOAM. Coastal En-

gineering, 71(0):102 – 118, 2013a. ISSN 0378-3839. doi: http://dx.doi.org/10.

1016/j.coastaleng.2012.07.002. URL http://www.sciencedirect.com/science/

article/pii/S0378383912001354.

P. Higuera, J. L. Lara, and I. J. Losada. Simulating coastal engineering pro-

cesses with OpenFOAM. Coastal Engineering, 71(0):119 – 134, 2013b. ISSN

0378-3839. doi: http://dx.doi.org/10.1016/j.coastaleng.2012.06.002. URL http:

//www.sciencedirect.com/science/article/pii/S0378383912001093.

http://www.mdpi.com/1996-1073/6/8/4001
http://www.mdpi.com/1996-1073/6/8/4001
http://www.sciencedirect.com/science/article/pii/S0378383912001354
http://www.sciencedirect.com/science/article/pii/S0378383912001354
http://www.sciencedirect.com/science/article/pii/S0378383912001093
http://www.sciencedirect.com/science/article/pii/S0378383912001093


127

C. W. Hirt and B. D. Nichols. Volume of fluid (VOF) method for the dynamics of

free boundaries. 39(1):201 – 225, 1981. ISSN 0021-9991. doi: https://doi.org/

10.1016/0021-9991(81)90145-5. URL http://www.sciencedirect.com/science/

article/pii/0021999181901455.

R. Isermann and M. Münchhof. Identification of dynamic systems: an introduc-

tion with applications. Springer, 2011. ISBN 978-3-540-78878-2 978-3-540-78879-9.

OCLC: 845689930.

R. I. Issa. Solution of implicitly discretized fluid flow equations by operator-splitting.

Journal of Computational Physics, 62:40–65, 1986.

N. Jacobsen, D. Fuhrman, and J. Fredsøe. A wave generation toolbox for the open

source cfd library: OpenFoam. International Journal for Numerical Methods in

Fluids, 70(9):1073–1088, 2012. ISSN 0271-2091. doi: 10.1002/fld.2726.

L. Johanning, G. H. Smith, and J. Wolfram. Measurements of static and dy-

namic mooring line damping and their importance for floating {WEC} devices.

Ocean Engineering, 34(14–15):1918 – 1934, 2007. ISSN 0029-8018. doi: http:

//dx.doi.org/10.1016/j.oceaneng.2007.04.002. URL http://www.sciencedirect.

com/science/article/pii/S0029801807001126.

H. G. Keulegan and C. H. Lloyd. Forces on cylinders and plates in an oscillating

fluid. Journal of Research of the National Bureau of Standards, 41(5):423– 441,

May 1958.

N. Kwok, Q. Ha, M. Nguyen, J. Li, and B. Samali. Bouc–wen model parameter iden-

tification for a MR fluid damper using computationally efficient GA. ISA Trans-

actions, 46(2):167–179, 2007. ISSN 00190578. doi: 10.1016/j.isatra.2006.08.005.

URL https://linkinghub.elsevier.com/retrieve/pii/S0019057807000237.

M. Lake, H. He, A. W. Troesch, M. Perlin, and K. P. Thiagarajan. Hydrodynamic Co-

efficient Estimation for TLP and Spar Structures . Journal of Offshore Mechanics

and Arctic Engineering, 122(2):118–124, 12 1999.

L. Landweber and M. C. Macagno. Added masses of two dimensional forms by

conformal mapping. Journal of Ship Research, 10:109–116, 1967.

http://www.sciencedirect.com/science/article/pii/0021999181901455
http://www.sciencedirect.com/science/article/pii/0021999181901455
http://www.sciencedirect.com/science/article/pii/S0029801807001126
http://www.sciencedirect.com/science/article/pii/S0029801807001126
https://linkinghub.elsevier.com/retrieve/pii/S0019057807000237


128

M. Lawrynczuk. On-line set-point optimisation and predictive control using neu-

ral hammerstein models. Chemical Engineering Journal, 166(1):269 – 287, 2011.

ISSN 1385-8947. doi: https://doi.org/10.1016/j.cej.2010.07.065. URL http:

//www.sciencedirect.com/science/article/pii/S1385894710006844.

M. Lewin. The effect of vertical barriers on progressing waves. Journal of Mathematics

and Physics, 42(1-4):287–300, 1963. doi: 10.1002/sapm1963421287. URL https:

//onlinelibrary.wiley.com/doi/abs/10.1002/sapm1963421287.

J. Li, S. Liu, M. Zhao, and B. Teng. Experimental investigation of the hydro-

dynamic characteristics of heave plates using forced oscillation. Ocean Engi-

neering, 66:82 – 91, 2013. ISSN 0029-8018. doi: https://doi.org/10.1016/j.

oceaneng.2013.04.012. URL http://www.sciencedirect.com/science/article/

pii/S0029801813001595.

Y. Li and M. Lin. Wave-body interactions for a surface-piercing body in water of

finite depth. Journal of Hydrodynamics, Ser. B, 22(6):745–752, Dec. 2010. ISSN

1001-6058.

Y. Li and M. Lin. Regular and irregular wave impacts on floating body. Ocean

Engineering, 42:93–101, Mar. 2012. ISSN 0029-8018.

H. Liu, F. Yan, F. Jing, J. Ao, Z. Han, and F. Kong. Numerical and experimental in-

vestigation on a moonpool-buoy wave energy converter. Energies, 13(9), 2020. ISSN

1996-1073. doi: 10.3390/en13092364. URL https://www.mdpi.com/1996-1073/

13/9/2364.

P. A. Madsen. Higher-order boussinesq-type equations for surface gravity waves:

derivation and analysis. Philosophical Transactions of The Royal Society A:

Mathematical, Physical and Engineering Sciences, 356:3123–3181, 1998. doi:

10.1098/rsta.1998.0309.

S. Malenica, R. E. TAYLOR, and J. B. HUANG. Second-order water wave diffraction

by an array of vertical cylinders. Journal of Fluid Mechanics, 390:349–373, 1999.

doi: 10.1017/S0022112099005273.

D. S. Marquez. An Extended Mixture Model for the Simultaneous Treatment of Short

and Long Scale Interfaces. PhD thesis, Facultad de Ingenieria y Ciencias Hidricas,

Universidad Nacional del Litoral, 2013.

http://www.sciencedirect.com/science/article/pii/S1385894710006844
http://www.sciencedirect.com/science/article/pii/S1385894710006844
https://onlinelibrary.wiley.com/doi/abs/10.1002/sapm1963421287
https://onlinelibrary.wiley.com/doi/abs/10.1002/sapm1963421287
http://www.sciencedirect.com/science/article/pii/S0029801813001595
http://www.sciencedirect.com/science/article/pii/S0029801813001595
https://www.mdpi.com/1996-1073/13/9/2364
https://www.mdpi.com/1996-1073/13/9/2364


129

S. Mayer, A. Garapon, and L. S. Sorensen. A fractional step method for unsteady free-

surface flow with applications to non-linear wave dynamics. International Journal

for Numerical Methods in Fluids, 28(2):293–315, 1998. ISSN 1097-0363. doi: 10.

1002/(SICI)1097-0363(19980815)28:2〈293::AID-FLD719〉3.0.CO;2-1.

I. D. Mayergoyz. Mathematical models of hysteresis. Springer-Verlag New York, 1993.

C. C. Mei. RADIATION AND SCATTERING OF TRANSIENT GRAVITY WAVES

BY VERTICAL PLATES. The Quarterly Journal of Mechanics and Applied Math-

ematics, 19(4):417–440, 01 1966. ISSN 0033-5614. doi: 10.1093/qjmam/19.4.417.

URL https://doi.org/10.1093/qjmam/19.4.417.

C. C. Mei. Numerical methods in water-wave diffraction and radiation. Annual

Review of Fluid Mechanics, 10(1):393–416, 1978.

G. Morgan, J. Zang, D. Greaves, A. Heath, C. Whitlow, and J. Young. Us-

ing the rasinterfoam cfd model for wave transformation and coastal modelling.

Coastal Engineering Proceedings, 1(32):23, 2011. ISSN 2156-1028. URL https:

//icce-ojs-tamu.tdl.org/icce/index.php/icce/article/view/1240.

J. R. Morison, M. P. O’Brain, J. J. W., and S. A. Schaaf. The force exerted by

surface waves on piles. Journal of Petroleum Technology, 2:149–154, 1950. doi:

10.2118/950149-G.

O. Nelles. Nonlinear System Identification: From Classical Approaches to Neural

Networks and Fuzzy Models. Springer, 2001.

J. Newman. The interaction of stationary vessels with regular waves. Proc. 11th

Sympossium of Naval Hydrodynamics, 1976.

S. Osher and J. Sethian. Fronts propagation with curvature dependent speed: Algo-

rithms based on hamilton jacobi formulations. Journal of Computational Physics,

79(12-49), 1988. URL http://dx.doi.org/10.1016/0021-9991(88)90002-2.

K. J. Paik. Simulation of fluid-structure interaction for surface ships with lin-

ear/nonlinear deformations. PhD thesis, The University of Iowa, 2010.

J. Palm, C. Eskilsson, G. Moura Paredes, and L. Bergdahl. Cfd simulation of a

moored floating wave energy converter. In 10th European Wave and Tidal Energy

Conference, 2013.

https://doi.org/10.1093/qjmam/19.4.417
https://icce-ojs-tamu.tdl.org/icce/index.php/icce/article/view/1240
https://icce-ojs-tamu.tdl.org/icce/index.php/icce/article/view/1240
http://dx.doi.org/10.1016/0021-9991(88)90002-2


130

S. Patankar. Numerical Heat Transfer and fluid flow. Series in computational and

physical processes in mechanics and thermal sciences. Hemisphere Publishing Com-

pany, 1980.

M. Penalba, G. Giorgi, and J. V. Ringwood. Mathematical modelling of wave

energy converters: A review of nonlinear approaches. Renewable and Sustain-

able Energy Reviews, 78:1188–1207, 2017a. ISSN 1364-0321. doi: 10.1016/j.

rser.2016.11.137. URL http://www.sciencedirect.com/science/article/pii/

S1364032116308784.
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Appendix A

Numerical tank verification study

The CFD based NWTs used for system identification are assessed on performance pa-

rameter like accuracy by doing a sensitivity analysis. The methodology of sensitivity

analysis adapted in this thesis involves following steps.

1. Identifying the parameters for sensitivity analysis.

2. Identifying various metric to evaluate the accuracy of various NWTs.

3. Analyzing accuracy of various NWTs.

A.1 Parameters for sensitivity analysis

Modelling inaccuracies in NWTs can be attributed to various factors. In this thesis

only uncertainty due to spatial discretization and numerical wave damping has been

considered. For other parameters like solver settings and solution schemes, Windt

et al. (2019) and previous experiences have been considered. The spatial and tem-

poral discretization level (i.e., cell size and time step) affect the solution of the flow

quantities in NWTs. Convergence studies must be performed inorder to quantify the

influence of discretization. The required spatial discretisation is largely driven by the

advection method, and can be determined using monochromatic wave propagation.

Since the spatial and temporal discretization are connected through the Courant-

Friedrichs-Lewy (CFL) condition Courant et al. (1967), temporal convergences was

assured by maintaining Courant Number below 0.8 every where in the domain.
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A.2 Metrics for sensitivity analysis

Metric-1

The wave height is evaluated with three different spatial discretization levels and the

first error metric utilized is grid uncertainty U

U =
Ua

Hf

∗ 100% (A.1)

where Ua is the absolute grid uncertainty and Hf is the mean wave height for the

finest grid size. From the solution for the finest (Hf ), intermediate (Hm) and coarsest

(Hc) discretisation size, the discrimination ratio, RD, is determined as follows:

RD =
Hf −Hm

Hm −Hc

(A.2)

The difference between various convergence types, is represented by RD. Neglecting

any case in which divergence is encountered, the absolute grid uncertainty Ua can

be calculated for monotonic convergence (0 < RD < 1) and oscillatory convergence

(RD < 0 and abs | RD |< 1). For monotonic and oscillatory convergence, the value

of Ua can be calculated by Eqs. (A.3) and (A.4), respectively:

Ua = Fs ×
Hf −Hm

2p − 1
(A.3)

Ua = 0.5× Fs× | max(Hf , Hm, Hc)−min(Hf , Hm, Hc) | (A.4)

where, Fs is factor of safety (= 1.5) and p is the order of accuracy from Richardson

extrapolation (Richardson and Gaunt, 1927) given by:

p =
lnRD

ln 2
(A.5)

Metric-2

Relative deviation of the phase averaged wave height for various meshes with respect

to the mean wave height of the finest mesh is another metric used to quantify the

sensitivity of the solution to the mesh considered. The relative deviation is given by
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following equation:

dH̄m =
H̄m − H̄f

H̄f

× 100% (A.6)

Metric-3

The evaluation metric for the generated wave height is the mean error and stan-

dard deviation of the measured phase averaged wave height, H̄(x), and the desired

theoretical value H given by:

ǭH̄± =
H̄±(x)−H

H
× 100% (A.7)

where the upper and lower bounds of the mean wave height H̄±(x) is given by:

H̄±(x) = H̄(x)± σH̄(x)(x) (A.8)

where σH̄(x)x is the standard deviation of wave height calculated by recording the

η (λ, t) at over the entire duration of simulation

A.3 Grid independence study-3D Mesh

The first test condition was used to conduct the grid independence study and was

assumed valid for all test cases. In this case three different domains with respect to

number of grid points have been used. The total cell count for the different grids are

approximately 2 million, 2.5 million and 5 million. Another difference between the

cases is the degree of resolution of the moon pool region between the spar and float.

The region between spar and float is important because it has been found in previous

study (Beatty et al., 2015), that linear models could not resolve the flow features

in this region. The AMI is also located in this region and accurate prediction of

fluid properties across the AMI boundary is important as the interpolation accuracy

depends on the gradient of the fluid properties. The distribution of node points

between float and spar in the radial direction for the described cases are a uniform

distribution of 20 nodes, 24 nodes and 40 nodes respectively. The simulation was

done for 3 seconds and the convergence of dynamic forces to its arithmetic mean is

presented for spar and float in Figure A.1.

The sensitivity of the force prediction on the distribution and number of cells in
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Figure A.1: Convergence of force on spar for different grid densities. M stands for
millions of cells
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the domain is evident from Figure A.1. It can be seen that the deviation is minimum

for the case with 5 million cells. Hence this grid was considered as an acceptable grid

for the other test cases, and the solution obtained from this case has been considered

as the initial condition for other cases.
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Appendix B

Hydrodynamic forces on WEC B
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Figure B.1: Comparison between CFD and experimental results of hydrodynamic
force values on WEC B oscillating at ω = 4.04 rad/s
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Figure B.2: Comparison between CFD and experimental results of hydrodynamic
force values on WEC B oscillating at ω = 3.72 rad/s
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Figure B.3: Comparison between CFD and experimental results of hydrodynamic
force values on WEC B oscillating at ω = 3.47 rad/s
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Figure B.4: Comparison between CFD and experimental results of hydrodynamic
force values on WEC B oscillating at ω = 3.15 rad/s
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Figure B.5: Comparison between CFD and experimental results of hydrodynamic
force values on WEC B oscillating at ω = 2.90 rad/s
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Figure B.6: Comparison between CFD and experimental results of hydrodynamic
force values on WEC B oscillating at ω = 2.65 rad/s
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Figure B.7: Comparison between CFD and experimental results of hydrodynamic
force values on WEC B oscillating at ω = 2.34 rad/s
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Figure B.8: Comparison between CFD and experimental results of hydrodynamic
force values on WEC B oscillating at ω = 2.08 rad/s
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Figure B.9: Comparison between CFD and experimental results of hydrodynamic
force values on WEC B oscillating at ω = 1.77 rad/s
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Appendix C

Dynamic order and delay constants

The plots for variation of NRMSE for HP cylinder oscillating at 0.15 m, 0.05 m and

0.00 m for Range 1 is shown in Figure C.2, Figure C.4 and Figure C.5 respectively.

Another relevent plot for Range 2 of HP cylinder oscillating at 0.15 m is shown

in Figure C.3. The optimal values obtained from these plots have been tabulated

in Table 5.4, Table 5.5, Table 5.6 and Table 5.7, respectively. The variation of

NRMSE for HP cylinder (see Figure 4.2) oscillating at amp = 0.25 m and 1.25 rad/s

for Range 1 (see Section 5.4.1) is shown in Figure C.1. The plot corresponding to

Range 2 (see Section 5.4.2) has been discussed in Chapter 5, Section 5.4.4 and shown

in Figure 5.7.
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(a) NRMSE Vs na (Rate dependent Ham-
merstein model)

(b) NRMSE Vs nd (Rate dependent Ham-
merstein model)

(c) NRMSE Vs na (Rate dependent KGP
model)

(d) NRMSE Vs nd (Rate dependent KGP
model)

Figure C.1: NRMSE for HP cylinder oscillating at amp = 0.25 m and ω = 1.25 rad/s
for realization R1 and Range 1, illustrating a comparison between all the system
identification models used in this thesis. NRMSE is calculated between the hydrody-
namic force values from CFD and model. na − ta and nd − td relationship is provided
in Section 5.4
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(a) NRMSE Vs na (Hammerstein model) (b) NRMSE Vs nd (Hammerstein model)

(c) NRMSE Vs na (Rate dependent Ham-
merstein model)

(d) NRMSE Vs nd (Rate dependent Ham-
merstein model)

(e) NRMSE Vs na (Rate dependent KGP
model)

(f) NRMSE Vs nd (Rate dependent KGP
model)

Figure C.2: NRMSE for HP cylinder oscillating at amp = 0.15 m and ω = 1.25 rad/s
for realization R1 and Range 1, illustrating a comparison between all the system
identification models used in this thesis
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(a) NRMSE Vs na (Hammerstein model) (b) NRMSE Vs nd (Hammerstein model)

(c) NRMSE Vs na (Rate dependent Ham-
merstein model)

(d) NRMSE Vs nd (Rate dependent Ham-
merstein model)

(e) NRMSE Vs na (Rate dependent KGP
model)

(f) NRMSE Vs nd (Rate dependent KGP
model)

Figure C.3: NRMSE for HP cylinder oscillating at amp = 0.15 m and ω = 1.25 rad/s
for realization R1 and Range 2, illustrating a comparison between all the system
identification models used in this thesis
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(a) NRMSE Vs na (Hammerstein model) (b) NRMSE Vs nd (Hammerstein model)

(c) NRMSE Vs na (Rate dependent Ham-
merstein model)

(d) NRMSE Vs nd (Rate dependent Ham-
merstein model)

(e) NRMSE Vs na (Rate dependent KGP
model)

(f) NRMSE Vs nd (Rate dependent KGP
model)

Figure C.4: NRMSE for HP cylinder oscillating at amp = 0.05 m and ω = 1.25 rad/s
for realization R1 and Range 1, illustrating a comparison between all the system
identification models used in this thesis
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(a) NRMSE Vs na (Hammerstein model) (b) NRMSE Vs nd (Hammerstein model)

(c) NRMSE Vs na (Rate dependent Ham-
merstein model)

(d) NRMSE Vs nd (Rate dependent Ham-
merstein model)

(e) NRMSE Vs na (Rate dependent KGP
model)

(f) NRMSE Vs nd (Rate dependent KGP
model)

Figure C.5: NRMSE for HP cylinder oscillating at amp = 0.00 m and ω = 0.00 rad/s
for realization R1 and Range 1, illustrating a comparison between all the system
identification models used in this thesis
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