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ABSTRACT

Stochastic model predictive control (MPC) is a fascinating field for research and

of increasing practical importance since optimal control techniques have been inten-

sively investigated in modern control system design. With the development of com-

puter technologies and communication networks, networked control systems (NCSs)

or cyber-physical systems (CPSs) have become an interest of research due to the com-

prehensive integration of physical systems, such as sensors, actuators and plants, with

intricate cyber components, possessing information communication and computation.

In CPSs, advantages of low installation cost, high reliability, flexible modularity, im-

proved efficiency, and greater autonomy can be obtained by the tight coordination of

physical and cyber components. Several sectors, including robotics, transportation,

health care, smart buildings, and smart grid, have witnessed the successful applica-

tion of CPSs design. The integration of extensive cyber capability and physical plants

with ubiquitous uncertainties also introduces concerns over communication efficiency,

robustness and stability of the CPSs. Thus, to achieve satisfactory performance

metrics of efficiency, robustness and stability, a detailed investigation into control

synthesis of CPSs under the stochastic model predictive control framework is of im-

portance. The stochastic model predictive control synthesis plays a vital role in CPSs

design since the multivariable stochastic system subject to probabilistic constraints
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can be controlled in an optimized way. On the other hand, aperiodically sampled, or

event-based, model predictive control has also been applied to CPSs extensively to

improve communication efficiency. In this thesis, the control synthesis and analysis

of aperiodically sampled stochastic model predictive control for CPSs is considered.

Chapter 1 provides an introductory literature review of the current development

of stochastic MPC, distributed stochastic MPC and event-based MPC. Chapter 2

presents a stochastic self-triggered model predictive control scheme for linear systems

with additive uncertainty and with the states and inputs being subject to chance

constraints. In the proposed control scheme, the succeeding sampling time instant

and current control inputs are computed online by solving a formulated optimization

problem. Chapter 3 discusses a stochastic self-triggered model predictive control al-

gorithm with an adaptive prediction horizon. The communication cost is explicitly

considered by adding a damping factor in the cost function. Sufficient conditions are

provided to guarantee closed-loop chance constraints satisfactions. Furthermore, the

recursive feasibility of the algorithm is analyzed, and the closed-loop system is shown

to be stable. Chapter 4 proposes a distributed self-triggered stochastic MPC control

scheme for CPSs under coupled chance constraints and additive disturbances. Based

on the assumptions on stochastic disturbances, both local and coupled probabilistic

constraints are transformed into the deterministic form using the tube-based method,

and improved terminal constraints are constructed to guarantee the recursive feasibil-

ity of the control scheme. Theoretical analysis has shown that the overall closed-loop

CPSs are quadratically stable. Numerical examples illustrate the efficacy of the pro-

posed control method in terms of data transmission reductions. Chapter 5 concludes

the thesis and suggests some promising directions for future research.
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Chapter 1

Introduction

In this chapter, the merits and challenges of stochastic model predictive control

(SMPC) are first introduced. Then existing methodologies and research results on

distributed SMPC and self-triggered SMPC are reviewed. Finally, the motivation of

conducting the research of this thesis and the overall thesis outline is presented.

1.1 Literature review on stochastic model predic-

tive control

Optimal control has been widely applied to modern control systems design and has

drawn great attention for decades. In the optimal control theory, the control problem

is formulated as an optimization problem, and the control law is calculated by solv-

ing the optimal control problem (OCP). Comparing with traditional control methods

like PID control, optimal control is capable of providing an optimal control law in a

systematic way. However, optimal control can achieve an analytic expression of the

optimal control law only for some relatively simpler cases, for instance, unconstrained

linear systems. Specifically, the optimal feedback control law for unconstrained linear

systems with a quadratic cost function is in a simple linear form, and the optimal

control gain is obtained by solving a Riccati equation. In practical systems, most of

the physical plants are essentially nonlinear systems subject to physical constraints.

For these cases, it is difficult to obtain an analytical solution to the optimal control

problems. In order to find the optimum to an intractable optimization problem, ap-

proximate solutions have to be taken into account. Due to the rapid development in

computer technologies and advanced optimization algorithms, numerical solutions to
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nonlinear constrained optimal control problems have been extensively studied. Ac-

cordingly, model predictive control (MPC) is proposed to seek a sub-optimal solution

to the practical optimal control problem.

MPC has attracted considerable research attention in the past decade due to its

distinct advantages and broad applications in the industry. Numerous notable results

have been proposed in the literature, and the research interest is still increasing in

recent years. Applications of MPC in the industry have been reported in [1] and

theoretical properties of MPC are well discussed in [2]. The philosophy of MPC in

discrete paradigm is briefly illustrated in Figure 1.1. In Figure 1.1, the dash-dot

k +N

PredictionPast

k

Desired 
Set-pointx(k)

u(k) u(k + 1|k)

Closed-loop State

Closed-loop Input

Prediction Horizon N

    Constraint Violation

xmin

Predicted Nominal 
State Trajectory (time k)

Predicted Optimal 
Control Trajectory (time k)

xmax

umax

umin

x̄(k + 1|k)

x(k + 1)

k + 1

Predicted Optimal 
Control Trajectory (time k+1)

Moving Horizon Scheme:
Solve the OCP with 

New Measurements at k+1 

Figure 1.1: The schematic of model predictive control.

lines xmax, xmin, umax and umin represent the state constraints and input constraints,

respectively. The black curves on the left hand side of the vertical axis are the real

closed-loop state trajectory and the control input trajectory. The dash line on the

top is the predicted nominal state trajectory, and the bottom one is the predicted

optimal control trajectory. At time instant k, given the current system state x(k) and
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a hypothetical control input sequence u(k) =
[
u(k|k), u(k + 1|k), . . . , u(k +N |k)

]
,

MPC utilizes the system dynamics to predict the system behavior N steps ahead.

A constrained optimal control problem is then formulated where the control input

sequence u(k) is defined as decision variables. The number of decision variables is

related to the prediction horizon N , and the cost function can be defined as a sum

of weighted matrix norms of predicted state and control input in general. Then, an

optimal control input sequence u∗(k) can be obtained by solving the MPC problem

online, and only the first element in u∗(k) is applied to the plant. The rest elements

in u∗(k) are discarded and the process is repeated at the subsequent time k + 1 with

the new state measurement x(k + 1). Since the prediction horizon in MPC is shifted

forward at each time instant, MPC is also called receding horizon control. One feature

of MPC is that a compromise between the optimality and the computational load can

be guaranteed by applying the receding horizon scheme.

It should be noted that feedback is implicitly introduced into MPC by the re-

ceding horizon scheme, and such a receding horizon fashion guarantees some certain

degrees of inherent system robustness, as discussed in [3]. Rather than the inher-

ent robustness of the MPC paradigm, elaborated investigation on the robustness of

MPC under uncertainties and disturbances has drawn great attention. In practical

systems, uncertainties are inevitable and arise in different ways. The system per-

formance is greatly affected by the uncertainties. In the MPC area, robust model

predictive control (RMPC) and SMPC have been respectively investigated to deal

with model uncertainties and external disturbances in the system. In RMPC, each

element in the set of uncertain parameters is treated without distinction. The critical

feature of RMPC is to assume that the constraints are satisfied for all realizations

of the uncertainty. Consequently, the worst-case consideration of the uncertainties is

dominant in the RMPC controller design. However, from the practical application

standpoint, some values of uncertainties are more likely to be than others. Intuitively,

the chances of realizations of uncertainty lying around the nominal state are higher

than that in the boundary of the uncertainty set. Alternatively, the model uncer-

tainty can be viewed as stochastic with a known distribution. To utilize this statistic

information, SMPC treats the model uncertainty from a statistical point of view.

When the system performance is strictly required, the constraints have to be

imposed robustly to ensure that the constraints are satisfied with all realizations of

uncertainties. In this case, we call the constraints as hard constraints. However,

when constraint violations are permitted, it is conservative to impose the constraints
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robustly. With the price of allowing for constraint violations, the system performance

can be improved, and the region of attraction can be enlarged. In this case, we call the

constraints as chance constraints or probabilistic constraints since the constraints are

permitted to be violated within a given probability. One unique feature in SMPC is to

allow for constraint violations to utilize the probability distribution of uncertainties.

An example of constraint violation is illustrated by the top-left red pentagram in the

real closed-loop state trajectory in Figure 1.1. Different forms of chance constraints

have been proposed in the literature, and details will be discussed in the sequel.

Both theoretical studies and practical applications of SMPC have been studied

extensively in the literature over the past decade. An overview of SMPC applications

in different areas is provided in Table 1.1. SMPC applications can be found in various

emerging areas, such as the automotive industry, building climate control, microgrids,

process industry and robotics. We consider building climate control as an example

since it is the most widely studied SMPC applications in the literature. Buildings

now consume about 40% of the total energy in the world and about 76% and 73% of

electricity in Europe and the United States [4], respectively. In [4], SMPC is applied

to the building climate control for the first time. A bilinear model is proposed to

predict the state of the system, and decoupled time-varying chance constraints are

considered in the problem formulation. The additive stochastic uncertainty comes

from the estimation error in the weather prediction. In [5], the authors extend the

ideas in [4] by using an affine disturbance feedback control law. In [6, 7], the nonlinear

SMPC has been applied to HVAC systems. The SMPC is formulated as a nonlinear

programming problem, which can be solved efficiently by the sequential quadratic

programming method. In [6], based on Boole’s inequality, the joint chance constraints

in linear SMPC are decoupled, and the optimization problem can be solved by a

tailored interior-point method. Based on the ideas of randomized optimization, a

scenario-based SMPC approach has been used in the building climate control [8, 9]

as well. Recently in [10, 11] new problem formulations have been proposed to reduce

the amount of the sampled constraints in the scenario-based MPC.

Notations: N denotes the set of integers, and N[a,b] represents the set of integers

from a to b, where a ≤ b, a, b ∈ N. N>a, N≥a, N<a, and N≤a denote sets {n ∈ N|n > a},
{n ∈ N|n ≥ a}, {n ∈ N|n < a}, {n ∈ N|n ≤ a} for a ∈ N. Rn stands for the n-

dimensional real space.
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Table 1.1: Applications of SMPC for linear and nonlinear systems.

Stochastic
tube

Scenario-
based

Stochastic
program-

ming

Nonlinear
SMPC

Automotive industry [12, 13] [14]
[15, 16, 17,

18]

Building climate [5, 6, 8] [9, 10, 11, 19] [6, 7]

Finance and operation
policy

[20, 21] [22, 23]

Microgrids [24, 25] [26]

Process industry
[27, 28, 29,
30, 31, 32]

[33, 34, 35,
36]

Robotics [37, 38] [39, 40] [41]

1.1.1 General formulation in SMPC

In this section, the most widely adopted problem formulations in SMPC algorithms

design will be introduced. First, an appropriate model should be selected to de-

scribe the statistical information in the system. Then, chance constraints imposed on

the states and control inputs can be suitably reformulated to a deterministic form.

Finally, an optimal control problem with a suitable cost function and reformulated

constraints can be solved to calculate the optimal control sequence.

The general system model considered in SMPC can be described by the following

discrete-time model

x(k + 1) = f(x(k), u(k), w(k)), (1.1)

where x(k) ∈ Rnx , u(k) ∈ Rnu are the system state and control input, respectively.

The function f(·) is a nonlinear Borel-measurable function that characterizes the

system dynamics. w(k) ∈ Rnw denotes the stochastic disturbance or uncertainty

whose realization is unknown at current and future time instants.

In SMPC, it is always assumed that the probability distributions Pw of w(k) is

known, and assumptions on w(k) play a vital role in SMPC controller design. In

most existing literature in SMPC, w(k) is assumed to lie in a bounded and convex

nonempty set W . In some papers, w(k) is assumed to have some specific probability

distributions or only the moments of the probability distribution are required. Few

methods allow for general probability distributions due to the complexity in handling

chance constraints and guaranteeing closed-loop properties. One common assumption



6

Table 1.2: SMPC classification: Representative model dynamics and uncertainty
types.

Linear system Nonlinear system

Add. Multi. Add./Multi.
Time

invariant
Time

varying

Bounded [42, 43, 44] [45, 46, 47] [48, 49] [50, 34] [51, 52]

Unbounded
[53, 54, 55,
56, 57, 30]

[58] [59, 41]

in SMPC is that the disturbance elements w(k + i), i ∈ N≥0 are independent and

identically distributed. In Table 1.2, we categorize SMPC algorithms in terms of

different assumptions on system dynamics and uncertainty types. Much of the SMPC

algorithms in the literature have been developed for linear systems. For linear systems

with additive disturbances, the general formulation in (1.1) is modified as

x(k + 1) = Ax(k) +Buu(k) +Bww(k), (1.2)

where A,Bu and Bw are state equation matrices with appropriate dimension. For

linear systems with multiplicative uncertainties, the model is described as

x(k + 1) = Ax(k) +Buu(k) +

q∑
j=1

[Ajx(k) +Bju(k)]wj(k), (1.3)

where time-varying uncertainties in state matrices A,Bu are represented by the se-

quence {w1(k), . . . , wj(k), . . . , wq(k)}.
The general form of feedback control policy in SMPC can be defined as

π(·) := {π0(·), . . . , πN−1(·)}, (1.4)

where the function πi(·) : R(i+1)nx → U, i ∈ N[0,N−1], denotes a general feedback

control law and N ∈ N>0 denotes the prediction horizon. Thus, the i-step ahead

predicted control input u(i|k) can be selected as u(i|k) = πi(·). Different parameter-

ization methods of (1.4) have been studied in SMPC, and we will discuss this topic
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in the next section. In general, the cost function in SMPC can be defined as

JN(x(k), π) := Ek

{
N−1∑
i=0

l(x(i|k), u(i|k)) + lf (x(N |k))

}
, (1.5)

where the functions l(·, ·) : Rnx×U→ R and lf (·) : Rnx → R are defined as stage cost

and terminal cost. Ek{·} denotes the expectation of a random variable at time instant

k. The i-step ahead predicted state and control input are defined as x(i|k) and u(i|k)

given the initial state x(k), feedback control law π, and probability distribution of

{w(k), . . . , w(k+i−1)} at time instant k. In the SMPC framework, the predicted state

x(i|k), i ∈ N[1,N ] are random variables affected by the uncertainties w(k + i) in the

system, implying that the cost function JN(x(k), π) contains stochastic components.

Thus, the cost function in SMPC needs to be optimized in a probabilistic form and

four different types of cost functions have been developed in the literature:

(J1) Based on the certainty equivalence principle [60, 55, 52], the cost function in

(1.5) can be rewritten as a deterministic one:

JN(x(k), π) :=
N−1∑
i=0

l(x̄(k + i|k), u(k + i)) + lf (x̄(k +N)),

where the nominal state x̄(i|k) evolves according to system dynamics x̄(i+1|k) =

f(x̄(i|k), u(i|k), w̄(k+i)) with initial condition x̄(k|k) = x(k). The term w̄(k+i)

is the nominal disturbance trajectory which is usually defined as the expected

value of w(k + i).

(J2) For linear systems, one commonly adopted cost function used in the literature

[58, 56] is defined in linear quadratic form as follows:

JN(x(k), π) := Ek

{
N−1∑
i=0

(‖x(i|k)‖2
Q + ‖u(i|k)‖2

R) + ‖x(N |k)‖2
P

}
,

where the cost function (1.5) is reformulated as a function of mean and vari-

ance of the state and control input variables. Let Var{·} denote the variance

of a random variable. If we define E[x(i|k)] = x̄(i|k), E[u(i|k)] = ū(i|k),

Var(X(i|k)) = X(i|k) and Var(u(i|k)) = U(i|k), then the cost can be expressed
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as

JN(x(k), π) :=
N−1∑
i=0

‖x̄(i|k)‖2
Q + ‖ū(i|k)‖2

R + ‖x̄(N |k)‖2
P

+
N−1∑
i=0

tr(QX(i|k) +RU(i|k)) + tr(PX(k +N)).

(J3) Another type of cost function for linear systems is the expectation infinite-

horizon cost function [43, 45] defined as follows:

J∞(x(k), π) := Ek

{
∞∑
i=0

‖x(i|k)‖2
Q + ‖u(i|k)‖2

R

}
.

(J4) In the scenario-based method [61, 62], a sampled average cost function over Ns

uncertainty realizations can be formulated as follows:

J '
1

Ns

Ns∑
l=1

N−1∑
i=0

l(x[l](i|k), u(i|k)) + lf (x
[l](k +N)).

Define w[l](k+i), i ∈ N[0,N−1], l ∈ N[1,Ns] as the lth disturbance realization at pre-

dicted time instant k+i and Ns is the number of samples. The i-step ahead pre-

dicted state x[l](i|k) evolves according to x[l](i+1|k) = f(x[l](i|k), u(i|k), w[l](k+

i)) with initial condition x[l](0|k) = x(k).

The optimization problem in SMPC is commonly performed subject to chance

constraints. The general form of joint chance constraints [31] on the predicted state

x(i|k) over the prediction horizon is given by:

Prk

[
gj(x(i|k)) ≤ 0, j ∈ N[1,Nx]

]
≥ 1− p, i ∈ N[0,N−1], (1.6)

where gj(·) : Rnx → R is a Borel-measurable function, Nx is the number of con-

straints and p is the probability of constraint violations. The value of p provides a

tradeoff between the system performance and chance of constraints violation. For

all constraints j ∈ N[1,Nx] over the prediction horizon i ∈ N[0,N−1], the probability

Prk is conditional on the system state at time k. One reason to impose the chance

constraints on the state is that, when the disturbance w(k) in (1.1) is unbounded, it

may result in unavoidable constraint violations since the disturbance could be arbi-

trarily large. Moreover, although the disturbance can be assumed to be bounded, the
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worst-case consideration in RMPC may lead to a conservative result and the system

performance can be improved by taking the stochastic form of (1.6) into account. Due

to the difficulty of expressing the joint chance constraints in a tractable way, one sim-

ple method [63] is to approximate the overall set using a sequence of individual chance

constraints. An overview of this problem can be found in [64]. As demonstrated in

[57], this approach is relatively conservative, and the resulting feasible region is much

smaller than the one obtained by using joint chance constraint directly. Thus, in most

of existing literature on SMPC, only individual chance constraints in the following

form are considered:

Prk

[
gj(x(i|k)) ≤ 0

]
≥ 1− pj, j ∈ N[1,Nx], i ∈ N[0,N−1], (1.7)

where pj is the probability of constraint violation for different inequality constraints.

In the literature, three types of formulation of (1.7) have been proposed:

(C1) Individual chance constraints defined in (1.7) represent the probability of con-

straints violation for pointwise-in-time constraints. It is the most commonly

adopted type of chance constraints.

(C2) Average constraints violation formulation in [48, 46, 42] is defined as the number

of constraint violations over a horizon Nh will not exceed a given maximum

number Nmax:

1

Nh

Nh−1∑
t=0

1gj(x(i|k)) <
Nmax

Nh

, j ∈ N[1,Nx], i ∈ N[0,N−1].

The indicator function 1gj(x(i|k)) is defined as

1gj(x(i|k)) :=

{
1, gj(x(i|k)) > 0;

0, gj(x(i|k)) ≤ 0.

(C3) Expectation type [58, 65] of chance constraints is defined as

E[gj(x(i|k))] ≤ 0, j ∈ N[1,Nx], i ∈ N[0,N−1].

In this formulation, it is required that the constraints are satisfied on average,

and hence constraint violations are not considered explicitly.
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The effect and comparison of these types of stochastic formulation of chance con-

straints in SMPC can be found in [53]. An integrated-type chance constraint in [66]

provides a more quantitative way to express the idea of constraint violation but re-

ceives relatively little attention. A summary of representative works using these types

of constraint formulation and cost function is given in Table 1.3.

Table 1.3: Representative types of chance constraints and cost function in SMPC.

Formulation Linear Nonlinear

State constraints

Joint-type Prk
[
gj(x(i|k)) ≤ 0, j ∈ N[1,Nx]

]
≥ 1− p [31]

Individual-type Prk
[
gj(x(i|k)) ≤ 0

]
≥ 1− pj [43], [45] [50]

Average violation
type

1

Nh

∑Nh−1
t=0 1gj (x(i|k)) <

Nmax

Nh

[48, 46, 42]

Expectation-type E[gj(x(i|k))] ≤ 0 [58] [65]

Input
constraints

Hard input type h(x(i|k), u(i|k)) ≤ 0 [34] [35]

Probabilistic input
type

Prk{h(x(i|k), u(i|k)) ≤ 0} ≥ 1− pu [58],[67]

Saturated input
type

‖h(u(i|k))‖∞ ≤ umax [68]

Cost function

Equivalence type
∑N−1
i=0 l(x̄(i|k), u(i|k)) + lf (x̄(N |k)) [55, 60]

with terminal
penalty

Ek

{∑N−1
i=0 ‖x(i|k)‖2Q + ‖u(i|k)‖2R + ‖x(N |k)‖2P

}
[58, 56]

Infinite horizon
type

Ek

{∑∞
i=0 ‖x(i|k)‖2Q + ‖u(i|k)‖2R

}
[45, 43]

Sampled average
type

1

Ns

∑Ns

j=1

∑N−1
i=0 l(x[l](i|k), u(i|k)) + lf (x[l](N |k)) [52]

The stochastic optimal control problem for system (1.1) subject to both proba-
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bilistic state constraints (1.7) and hard input constraints can be formulated as

J∗N(x(k)) := min
π
JN(x(k), π)

s.t. x̄(0|k) = x(k),

x̄(i+ 1|k) = f(x̄(i|k), u(i|k), w(k + i)), i ∈ N[0,N−1]

πi(·) ∈ U, i ∈ N[0,N−1]

Prk

[
gj(x(i|k)) ≤ 0

]
≥ 1− pj, j ∈ N[1,Nx], i ∈ N[0,N−1],

w(k + i) ∼ Pw, i ∈ N[0,N−1],

(1.8)

where J∗N(x(k)) is the optimal cost function given the optimal control law π(·) =[
π0(·) . . . πN−1(·)

]
. By solving the stochastic OCP (1.8) at each time instant k, the

optimal control action u(k) = π∗0(x(k|k)) will be applied to the plant, which implies

the receding horizon implementation of SMPC.

1.1.2 Theoretical approaches in SMPC

As discussed in Section 1.1.1, the general SMPC problem can be casted as an chance-

constrained stochastic OCP as shown in (1.8). In order to solve the stochastic OCP

(1.8), there are three main challenges: a) The form of control law π is arbitrary; b)

the implementation of chance constraints makes the OCP (1.8) intractable in general;

c) the propagation of uncertainties through system dynamics is complex, especially

when considering nonlinear systems. Numerous theoretical approaches have been

proposed in the literature to generate a tractable surrogate for OCP (1.8). Specifically,

four main approaches have been proposed to approximate the chance-constrained

stochastic OCP (1.8). In Table 1.4, we categorize SMPC algorithms in terms of

different control parameterization methods and uncertainty propagation methods.

(A1) Stochastic tube or analytic approximation approach for linear systems.

In order to obtain predicted system states x(i|k) in the prediction horizon,

we need to determine the probability distribution of system states x(i|k) over

multiple time instants i ∈ N[0,N−1]. This requires evaluating a multivariable

convolution integral, and in general, this problem is intractable for systems of

large dimensions, especially for nonlinear systems or multiplicative uncertainty.

The chance-constrained stochastic OCP (1.8) is reformulated as deterministic

terms thanks to the superposition property in linear systems. For linear sys-

tems, dynamics can be decomposed into nominal dynamics and error dynamics,
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Table 1.4: Control parameterization and uncertainty propagation

Uncertainty propagation

Stochastic tube Scenario-based NSMPC

Mixed Polytope gPCEs FP GM

State-
feedback

[43]
[45, 46, 48,

69]
[49] [50] [35] [70, 71]

Disturbance-
feedback

[55] [42]

Output-
feedback

[44] [67]

both of which can be tackled separately. This reformulation will result in some

conservativeness, and the offline design is often cumbersome.

In stochastic tube approaches [48, 46, 45, 69, 43, 72], the stochastic OCP is

defined as the infinite horizon cost function J∞(x(k), π) subject to chance con-

straints. The construction of stochastic tubes can ensure closed-loop properties

such as recursive feasibility of the optimization algorithm, chance constraint

satisfaction, and system stability. Generally speaking, the control law (1.4)

is parameterized by the dual mode prediction paradigm, which consists of the

state feedback control policy u(i|k) = Kx(i|k) + c(i) with perturbation vari-

ables c(i) for i ∈ N[0,N−1] and a pre-stabilizing control law u(i|k) = Kx(i|k) for

i ∈ N≥N . The sequence of control perturbation variables {c(0), . . . , c(N − 1)},
being decision variables, is calculated by solving the stochastic OCP (1.8). The

feedback gain matrix K is designed by ensuring that Φ := A + BuK to be

Schur stable. The importance of introducing the pre-stabilizing control law

u(i|k) = Kx(i|k) is in three-folds: a) The mean-square stability of the sys-

tem x(i + 1|k) = Φx(i|k) + Bww(k + i) without constraints can be guaran-

teed under the control law u(i|k) = Kx(i|k); b) based on the convergence

analysis of x(i|k) under the control law u(i|k) = Kx(i|k) for i ∈ N≥N , the

infinite-horizon cost J∞(x(k), π) can be reformulated into a finite horizon cost

as J∞(x(k), π) − Lss, where Lss = limi→∞ Ek
{
‖x(i|k)‖2

Q + ‖u(i|k)‖2
R

}
is the

limit of stage cost function; c) the terminal invariant set is constructed based

on the control law u(i|k) = Kx(i|k) to guarantee the recursive feasibility of the

algorithm.
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To demonstrate constraints tightening in stochastic tube approaches, we con-

sider linear systems with bounded additive uncertainties in the form of (1.2) as

an example, where disturbance w(k) is assumed to be a white noise with zero

mean. Due to the superposition principle, we can decompose the real system

state x(i|k) into nominal state x̄(i|k) and error state e(i|k):

x(i|k) = x̄(i|k) + e(i|k), i ∈ N≥0,

x̄(i+ 1|k) = Φx̄(i|k) +Buc(i),

e(i+ 1|k) = Φe(i|k) +Bww(k + i),

(1.9)

with x̄(0|k) = x(k) and e(0|k) = 0. e(i|k) describes the effect of uncertainties

on the predicted state x(i|k). Due to this decomposition, the state linear chance

constraints Prk{gTx(i|k) ≤ h} ≥ 1− p can be replaced by hard tightened con-

straint gTx̄(i|k) ≤ ĥ, ĥ ≤ h [43], such that Prk{gTx(i|k) ≤ h} ≥ 1−p is ensured

for all i ∈ N[0,N−1]. The original chance constraints are approximated by tight-

ened constraints on predicted nominal state x̄(i|k), leading to a reduction in

the number of decision variables. The stochastic OCP is reformulated as a con-

vex quadratic programming problem such that the computational complexity of

stochastic tube SMPC problem is similar to that of a nominal MPC. Numerous

variations of stochastic tube approaches, such as ellipsoidal tube [45], nested

layer tube [46], tube with a fixed cross-section and varying scalings [69], tube

with striped structure control policy [42], for either additive disturbances or

multiplicative uncertainties have been studied in this area. It should be noted

that the tube cross-section and scalings are computed offline. The efficiency

of the SMPC algorithm relies on the construction of the tube section, which

is essentially determined by the propagation of uncertain components through

system dynamics.

(A2) Affine parameterization of control policy for linear systems.

One of the key challenges in formulating a tractable stochastic OCP (1.8) is that

the optimization over the arbitrary control policy π(·) is generally intractable.

In general, the resulting stochastic OCP is a nonconvex problem, and various

SMPC algorithms have been proposed to find a tractable surrogate of this prob-

lem. Different from the dual-mode prediction diagram used in stochastic tube

approaches, affine state parameterization and affine disturbance parameteriza-
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tion have also been used in SMPC algorithm design to obtain a convex OCP.

In contrast to stochastic tube approaches, the uncertainty w(k) is generally

assumed to be unbounded in this type of SMPC algorithm, while hard input

constraints are imposed. This poses theoretical challenges on establishing the

recursive feasibility of the SMPC algorithm and the stability of the system. To

deal with these problems, the control policy can be affinely parameterized by

a saturation function. In the following, we will illustrate these affine feedback

control policies in the presence of both hard input constraint and unbounded

uncertainties. For simplicity, the error dynamics for linear systems subject to

additive disturbances evolves in a general form of

e(i|k) = Eiw(k + i), (1.10)

where wT(k + i) = [w(k)T · · ·w(k + i− 1)T] and the vector Ei depends on the

parameterization of control policy.

Open-loop policy. In [63, 54], an open-loop control policy u(i|k) = c(i), i ∈
N[0,N−1] is utilized and the resulting optimization problem doesn’t depend on

the uncertainty sequence w(k + i). The vector Ei in (1.10) corresponds to the

ith row of the matrix 
Bw 0 . . . 0

ABw Bw . . . 0
...

...
. . .

...

AN−1Bw AN−2Bw . . . Bw

 .

Under this type of control policy, the evolution of e(k+i) is substantially uncon-

trolled. Even though this approach can be readily designed and implemented,

the drawbacks of this approach are obvious: When the system is unstable, the

strategy may cause the critical infeasible solution and even leads to the unsta-

bility of the closed-loop system.

State or error feedback policy. The control policy is called error feedback policy if

it is defined in form of u(i|k) = Ki|ke(i|k)+c(i), i ∈ N[0,N−1]. Compared to state

feedback control policy, the sequence of decision variables {c(0), K0|k, . . . , c(N−
1), KN−1|k} contains a larger set of decision variables. Under this control policy,
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the vector Ei is defined as the ith block row of the matrix
Bw 0 . . . 0

Φk+1Bw Bw . . . 0
...

...
. . .

...

Φk+N−1 · · ·Φk+1Bw Φk+N−1 · · ·Φk+2Bw . . . Bw

 . (1.11)

Alternatively, the control policy is called state feedback policy if it is defined

as u(i|k) = Ki|kx(i|k) + c(i), i ∈ N[0,N−1], as suggested in [67]. The hard in-

put constraints are relaxed to probabilistic input constraints in [67] for linear

systems subject to unbounded disturbances. Based on Cantelli’s inequality,

chance constraints are reformulated into deterministic forms. The sequence

{c(0), K0|k, . . . , c(N − 1), KN−1|k} is optimized by solving a convex OCP online

to minimize the variance of state x(i|k). Initial and terminal constraints are

imposed to guarantee the feasibility of the resulting SMPC problem in the pres-

ence of the unbounded uncertainties, and the closed-loop system is shown to

be input-state stable. The inherent limitation of this approach comes from the

utilization of Cantelli’s inequality that gives rise to a conservative approxima-

tion for chance constraint. Meanwhile, the optimization problem is nonconvex

due to the control parameterization. If we further assume Ki|k = K, then Ei

corresponds to the ith block-row of the matrix (1.11) with Φk+i = Φ. This

type of control policy is widely utilized in stochastic tube approaches and the

number of decision variables in solving the stochastic OCP (1.8) is finite.

Disturbance feedback control. In this approach [42, 55], the disturbance feedback

control policy is defined as u(i|k) = c(i) + Θkw(k+ i), i ∈ N[0,N−1], where Θk is

the ith row of matrix

0 0 0 . . . 0

θk+1,k 0 0 . . . 0

θk+2,k θk+2,k+1 0 . . . 0
...

...
...

. . .
...

θk+N−1,k θk+N−1,k+1 θk+N−1,k+2 . . . 0


. (1.12)

The decision variables to (1.8) are the sequence of {c(0), . . . , c(N − 1)} and
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elements in matrix (1.12). The error dynamics is described by

e(i+ 1|k) = Ae(i|k) +Buc(i)Θkw(k +N − 1) +Bww(k + i), i ∈ N[0,N−1].

Hence, the matrix Ei corresponds to the ith block-row of the matrix
Bw 0 . . . 0

ABw Bw . . . 0
...

...
. . .

...

AN−1Bw AN−2Bw . . . Bw

+


Bu 0 . . . 0

ABu Bu . . . 0
...

...
. . .

...

AN−1Bu AN−2Bu . . . Bu

Θk.

It shows that the uncertainty sequence w(k + i) is controlled by Θk, which

can be obtained by solving the optimization problem online. The essential

idea of the disturbance feedback control policy originates from the assumption:

The realization of disturbance and predicted state will be known at a future

time instant. Accordingly, such known information will be utilized to design

predicted control input over the prediction horizon N . When unbounded un-

certainties and hard input constraints are taken into account, the disturbance

feedback control policy is further extended to a more general form of u(i|k) =

c(i)+ΘkΨi(w(k+i)), i ∈ N[0,N−1], as shown in [73], where Ψi(·) : Ri∗nw → Ri∗nw

is a saturation function such that the element in w(k + i) is upper bounded as

w(k + j) ≤ Ψmax < ∞, j ∈ N[0,i−1]. Different from previous control policy

design, the saturation function Ψi(·) renders the policy nonlinear. As shown

in [73], the recursive feasibility and mean-square stability can be established

by this nonlinear control policy even in presence of hard input constraints and

unbounded uncertainties. Extensions of this type of nonlinear control policy

include output feedback implementation [68] and vector-space approach [74].

(A3) Stochastic programming or scenario-based approach.

The first attempt of using stochastic programming techniques to solve the

stochastic OCP (1.8) is reported in [75] for linear systems subject to additive

disturbances. An optimization scenario tree is generated based on a maximum-

likelihood method, and a multi-stage stochastic optimization problem is formu-

lated. To consider probabilistic state constraints, an extension of this approach

is reported in [47]. Since the number of nodes in the optimization tree grows ex-

ponentially as the prediction horizon increases, evaluation of chance constraints
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on every node is computationally intractable in general.

To obtain a tractable surrogate for the stochastic programming problem, the

randomized approach or sample-based approach [76] has been utilized. In the

sample-based approach, a sufficient amount of uncertainty realizations will be

generated online, and accordingly, a suitable approximation to the stochastic

OCP (1.8) can be obtained with these realizations. Compared with other SMPC

approaches, this method can be utilized in more general situations at the price

of a heavier online computational load. In [41], a sample-based SMPC algorithm

is proposed for linear Markov jumping systems with arbitrary disturbance dis-

tributions. A property in [41] shows that as the number of samples approaches

to infinity, an exact deterministic OCP can be obtained to approximate the

stochastic OCP (1.8). Extensions of this approach include [47] for Markovian-

jump systems and [77] for Markovian-switching systems. It should be noted

that no theoretical guarantee on the number of samples at each time instant is

provided in the aforementioned sampled-based SMPC methods. This leads to

a drawback that sample-based SMPC algorithms are generally computationally

intensive, implying that they are impractical for implementation, especially for

large scale nonlinear systems.

Significant improvement to tackling the drawback in sample-based stochastic

programming has been proposed in the scenario-based approach [78], [61]. In

the scenario-based approach, instead of verifying original chance constraints

in (1.7), a finite amount of sampled deterministic constraints is verified. The

sampled constraints are selected by sampling the original chance constraints,

and an explicit bound on the size of generated scenarios is given to guar-

antee the probability level of constraint violation. In [62] and [51], scenario-

based SMPC algorithms are developed for linear systems subject to multiplica-

tive uncertainties and additive disturbances. For chance constraints in form

of Prk{gTx(i|k) ≤ h} ≥ 1 − p, the scenario-based reformulation is given as

gT(x̄(i|k) + Eiw
[i,ki](k)) ≤ h,, where ki ∈ N[1,Ns,i] is the samples index for time

step k + i, w[i,ki](k) denotes the kith disturbance realizations and Ns,i is the

total number of samples at time k + i. Hence, from the results in [78], the

constraint satisfaction probability Prk{gTx(i|k) ≤ h} ≥ 1− p with a confidence
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level β is given by
di−1∑
k=1

(
Ns,i

k

)
pk(1− p)Ns,i−k ≥ β,

where di is the number of variables in the optimization problem. The resulting

OCP is formulated as a convex deterministic cost function subject to hard input

and sampled state constraints. The number of required scenarios Ns,i is selected

according to the sufficient bound provided in [78] as

Ns,i ≥
di + 1 + ln(1/β) +

√
2(di + 1) ln(1/β)

p
.

It should be noted that the sufficient bound Ns,i as suggested in [78] is usu-

ally conservative since the number of extracted scenarios is more extensive than

what is needed. To deal with this problem, an iterative sample-removal algo-

rithm is proposed in [61]. In [79], to reduce the size of generated samples, only

part of the sampled set is utilized to construct chance constraint reformulation.

Furthermore in [52], the average-in-time chance constraints are considered in-

stead of the pointwise-in-time form. The support rank of chance constraints

determines the bound Ns,i, which is independent of the state dimension, for the

required amount of scenarios. This property significantly reduces the size of the

sample set even for large scale systems. The method is then further extended in

[80], where an improved lower bound is achieved when chance constraints have

certain structural properties. In scenario-based SMPC, closed-loop theoretical

properties such as recursive feasibility and stability are not well established in

general. In a recent work [81], the online sampling of uncertainties is replaced

by an offline sampling scheme, and the asymptotical stability of the chance-

constrained system can be established.

(A4) Nonlinear SMPC (NSMPC) approach.

The development of SMPC algorithms for nonlinear systems has drawn little

attention in the literature. The primary challenge in designing NSMPC al-

gorithms lies in the lack of efficient uncertainty propagation methods through

nonlinear dynamics. Different from linear systems, the state decomposition as

in (1.9) cannot be conducted since nonlinear systems do not have the superpo-

sition property. Based on different uncertainty propagation methods, NSMPC

can be categorized into the following methods: generalized polynomial chaos
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expansions (gPCEs) approach [34, 82], Gaussian-mixture (GM) approximation

approach [83, 84, 70, 71, 85], and Fokker-Planck (FP) equation approach [35].

In gPCEs based approach, polynomial chaos expansions are utilized to obtain a

surrogate for the nonlinear dynamics, which provides an efficient way to predict

the state evolution. The nonlinear model (1.1) is approximated by expansions of

orthogonal polynomial basis functions, and the statistical moments of predicted

state can be computed from expansion coefficients. In this way, the chance

constraint Prk{gTx(i|k) ≤ h} ≥ 1− p can be readily reformulated as a second-

order cone expression. Gaussian-mixture approximation SMPC approach relies

on its universal approximation property to predict the probability distribution

of stochastic state variables along with the disturbed nonlinear dynamics. Dif-

ferent from gPCEs based approach, where the cost function is defined in terms

of some specific moments of states, the cost function in GM based approach

utilizes the complete probability distribution of state variables. Similarly, the

Fokkler-Plank equation is utilized in [35] to describe the state evolution for

nonlinear input affine system subject to probabilistic joint constraint. Two

common shortcomings of the aforementioned NSMPC approaches are: a) The

computational complexities of uncertainty propagation methods are intensive;

b) establishing the closed-loop theoretical properties for NSMPC algorithms is

still a challenging problem.

In the context of MPC, the concept of recursive feasibility means that if the MPC

problem can be solved for the initial state x(k), then the MPC problem is feasible

for any subsequent states x(k + i), i ∈ N≥1. However, it is not easy to guarantee

such property for the aforementioned SMPC algorithms. We consider linear systems

subject to unbounded disturbances as an example. Suppose the stochastic OCP (1.8)

is feasible at the last time instant k − 1. At the time instant k, the initial nominal

predicted state is x̄(0|k) = x(k) = f(x(k− 1), u∗(k− 1), w(k− 1)), implying that the

initial predicted state x̄(0|k) contains the realization of uncertainties w(k− 1). If the

uncertainty at the last time instant w(k−1) takes unbounded large values (even with

low probability), then it may be impossible for predicted states x̄(i|k), i ∈ N[1,N−1] to

satisfy the constraint Prk{gTx(i|k) ≤ h} ≥ 1−p. Since the feasibility guarantee of the

associated optimization problems directly determines the successful implementation of

the SMPC algorithms, it is of paramount importance to rigorously establish conditions

to ensure feasibility. In the literature, three main approaches on the feasibility analysis
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have been proposed for linear systems:

1. Recursive feasibility guarantee with a probability. For example, as proved in

[59], if the MPC problem is feasible at time instant k, then it will be feasible

for the subsequent states x(k + 1), . . . , x(k +N) only with a given probability.

In stochastic tube approaches [48, 45], the ellipsoidal invariant tube with prob-

ability is constructed by extending the invariant analysis to stochastic systems.

When the optimization problem is infeasible, an alternative feasible optimiza-

tion problem is solved to steer the state back to the invariant set.

2. Strict recursive feasibility guarantee. Based on the assumption that the system

is subject to bounded uncertainty, a mixed probabilistic/worst-case constraints

tightening technique [46, 43, 69] is designed in stochastic tube approach. The

chance constraint Prk{gTx(i|k) ≤ h} ≥ 1−p is only imposed at time i = 1, and

the worst-case realizations of w(k + i) are considered for i ∈ N[2,N−1], implying

robust constraints tightening over subsequent prediction horizon.

3. Recursive feasibility guarantee with initial constraint. In [56, 72], besides the

original initial condition, the pair {x̄(0|k) = x̄(0|k−1),Var[e(0|k)] = Var[e(1|k−
1)]} is imposed to the SMPC problem as an additional initial constraint to

guarantee the recursive feasibility. Define x̄(0|k − 1) = Ek−1{x(1|k − 1)} and

Var[e(1|k−1)] = Ek−1[(x(0|k)−Ek−1[x(1|k−1)])(x(0|k)−Ek−1[x(1|k−1)])T] 6= 0.

Stability analysis of the resulting closed-loop system is another important task. In

the literature, the mean-square stability is generally used. If considering additive

uncertainties, it can be proved that

lim
k→∞

E[‖x(k)‖2] = lim
k→∞

(‖E[x(k)]‖2 + var(x(k))) ≤ c,

where c is a constant. This implies that the system state is steered to the neighbor-

hood of origin. When considering multiplicative uncertainties, the point-wise conver-

gence to the origin can be achieved as shown in [48].

It should be noted that the recursive feasibility of the SMPC problem in stochas-

tic programming approach and NSMPC approach is usually given by assumption.

This poses theoretical challenges for these two approaches. Meanwhile, few results

in NSMPC consider the stability of the closed-loop system, except for the pioneering

work [86] where Lyapunov constraints are introduced in the stochastic OCP. A sum-
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mary of recent progress in the SMPC stability and convergence analysis is given in

[87].

1.1.3 Distributed stochastic MPC

With the development of computer technologies and communication networks, cyber-

physical systems (CPSs) have become an interest of research due to the comprehensive

integration of physically engineered systems, such as sensors, actuators and plants,

with intricate cyber components, possessing information communication and compu-

tation. In CPSs, advantages of low installation cost, high reliability, flexible modu-

larity, improved efficiency, and greater autonomy can be obtained by the tight coordi-

nation of physical and cyber components. Several sectors, including robotics, trans-

portation, health care, smart buildings, and smart grid, have witnessed the successful

application of CPSs design. Due to the heterogeneous and spatially interconnected

nature in CPSs, it necessitates the adoption of a distributed control structure to im-

prove the structural flexibility and scalability requirements while maintaining some

desirable closed-loop properties. Meanwhile, the integration of extensive cyber capa-

bility and physical plants with ubiquitous uncertainties also introduces concerns over

the robustness and stability of the CPSs. Thus, in order to achieve satisfactory per-

formance metrics of efficiency, robustness and stability, a comprehensive investigation

into control synthesis of CPSs under the distributed paradigm is of importance. The

distributed model predictive control (DMPC) synthesis plays a vital role in CPSs

design since the general nonlinear dynamics and state or input constraints can be

systematically handled under this framework. In the DMPC framework, the overall

system is divided into many subsystems, and subsystems can communicate with each

other. Then a local MPC controller for each subsystem can be designed to meet the

requirement for each subsystem. For a local MPC controller, the predicted control

actions for actuators and the corresponding state trajectories of the subsystem can be

easily obtained. Then, the predicted information can be transmitted to the neighbour

subsystems. This feature can help to improve the control performance of the overall

system.

The research on distributed SMPC (DSMPC) for large scale interacting systems

subject to probabilistic uncertainties has drawn increasing interest in the last decade.

Pioneering works in the area include [88], where the state-affine based SMPC al-

gorithms [56, 72] are applied to distributed decoupled system with coupled chance



22

constraints. For linear decoupled systems subject to additive disturbances and cou-

pled chance constraints, DSMPC methods have been proposed in [89] using gPCEs-

based technique and in [90] using stochastic tube technique. Mean square stability

of the closed-loop surrogate system has been shown in these two works [89, 90]. For

unbounded additive disturbances, DSMPC algorithms for linear systems subject to

hard input constraints are developed in [91, 92]. DSMPC algorithms for systems

with bounded or unbounded multiplicative uncertainties have been investigated in

[93, 94]. Recently, based on the stochastic tube approach, [95] studies the DSMPC

algorithm for linear systems with both multiplicative and additive uncertainties. The

scenario-based SMPC approaches have also been extended to distributed MPC area,

as shown in [96, 97]. Considering the output-feedback control parameterization, the

output-feedback based DSMPC approaches are studied in [89, 98]. Moreover, in [91],

DSMPC tracking control for linear systems subject to coupled constraints is proposed.

Table 1.5: Distributed stochastic MPC review summary

SMPC method

Stochastic tube Scenario-based

Uncertainty assumptions

Add. & Bounded [89, 90]

Add. & Unbounded [91, 92] [97, 98]

Multi. & Bounded [93]

Multi. & Unbounded [94]

Add. & Multi. & Bounded [95] [96]

In summary, developments in the area of DSMPC are given in Table 1.5. It

should be noted that existing DSMPC methods rely on extending the well-developed

uncertainty propagation methods in SMPC to the diagram setup. Meanwhile, the

communication protocol among subsystem utilizes the sequential update rule as sug-

gested in [99]. In general, a fully connected communication topology is assumed, and

network issues such as data dropouts or time delays are not considered in existing

works. More challenging issues such as advanced system decomposition method for

large-scale stochastic systems, more efficient communication protocols design among

subsystems or advanced stochastic distributed optimization algorithms are still open.
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1.2 Literature review on event-based MPC

In recent years, with the increasing development of CPSs, the theory on aperiodic con-

trol or event-based control has been developed significantly due to two reasons [100].

The first reason is to handle the cost, computation, and communication constraints

in CPSs explicitly. The second one is that some benefits of the event-based control

can be introduced in [101, 102]. In general, event-based control can be classified into

event-triggered control and self-triggered control. Motivated by the advantages pro-

posed in [101], several important papers [103, 104, 105] with systematical design of

the stabilizing event-triggered controller for linear or nonlinear systems are proposed,

respectively. At the same time, based on the aperiodic sampling scheme, another

approach [106] called self-triggered control is introduced for the first time.

Two elements are of importance in the event-triggered and self-triggered control

systems. The first one is a feedback controller that computes the control input.

Different control methods, such as PID control, optimal control, nonlinear control, or

other types of control methods with specific system requirements, can be utilized to

design the corresponding controller. The second one is a triggering mechanism that

determines when the control inputs are updated. The main difference between event-

triggered control and self-triggered control is the triggering mechanism. In the event-

triggered control, a trigger will be generated when the continuously measured system

state violates a preset threshold. In the self-triggered control, the next sampling time

instant will be computed at the current sampling time instant based on the system

dynamics and current state.

1.2.1 Self-triggered SMPC

Currently, it is a tendency to take constraints, such as communication constraints,

computational constraints, and input/ state constraints, into account explicitly in

the design of feedback control law. Also, for CPSs design, it is crucial to consider

the event-triggered, and self-triggered implementation of the control law since the

computational and communication load of the control system can be reduced. Mean-

while, MPC is an ideal candidate for constraint handling and multivariable control

purposes, and many research efforts have been made in combining the MPC with the

event-based control method. In [107], an event-triggered predictive control strategy

is proposed, and the triggering condition is given by comparing the system state and

the forecast states continuously. Once the difference is greater than a preset thresh-
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old, an event is triggered, and a new control input is updated by the controller. In

[108], an event-triggered MPC algorithm based on the output-feedback is proposed

for linear systems. In [109], an event-triggered MPC for nonlinear continuous-time

systems has been proposed, and the triggering condition is designed based on the

concept of input-state stability.

The integration of SMPC and self-triggered MPC can ensure closed-loop chance

constraints satisfaction, and therefore reduce the inherent conservativeness of RMPC.

Alternative stochastic self-triggered MPC schemes are available in the literature, such

as [110, 111, 112]. In [110] and [111], the similar self-triggering condition inspired by

[113] is adopted, while different chance constraints handling methods from [43] and

[72] are utilized, respectively. In [110], the stability is analyzed in the mean-square

sense, whereas the input-state stability of the closed-loop system is proved in [111].

In [112], the self-triggering condition is designed based on the summation of the MPC

value function bound and the performance measure at the last sampling time. One

common feature of previously mentioned works on self-triggered SMPC is that the

open-loop control paradigm is applied between triggering time instants, and resulting

constraint tightening parameters are therefore more complex and time-varying com-

pared to conventional SMPC methods. The triggering condition design relies on the

bounds of the MPC value function, where a periodical sampling is assumed after the

open-loop phase. In addition, to evaluate the triggering condition at each sampling

time instant, the solution to a set of quadratic programs with time-varying tightened

constraints is required.

Table 1.6: Self-triggered MPC review summary.

Uncertainty Linear Nonlinear

STMPC Robust [113] [114]

ETMPC Robust [115] [116]

OUPUT ET/STMPC Robust [117] [118]

ET/STMPC Stochastic - [111, 110, 112]
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1.3 Motivation and organization of Ph.D. Thesis

In previous sections, we have reviewed the development of stochastic MPC, the evo-

lution of distributed SMPC and the growth of event-based MPC. Specifically, we

have distinguished the difference between stochastic MPC and robust MPC, demon-

strated the improvement of distributed SMPC and clarified the diversities between

event-triggered MPC and self-triggered MPC. Based on the understanding of these

various technologies and application backgrounds, we could establish a novel control

framework for large scale CPSs where chance constraints and the communicational

load among subsystems should be considered explicitly. The model uncertainties and

communication uncertainties can be handled by stochastic MPC; the cooperation

between each subsystem can be handled by distributed algorithm; and the communi-

cation load can be reduced by the self-triggered mechanism. The integration of these

technologies will lead to novel control methods that can be applied in many areas,

such as industrial process control, smart grid and autonomous vehicle.

Chapter 1 provides an overview of the current development of stochastic MPC,

distributed SMPC and event-based MPC. For each topic, some representative

methods have been demonstrated. Existing problems and promising directions

are introduced as well.

Chapter 2 presents a stochastic self-triggered model predictive control scheme for

linear systems with additive uncertainty and with the states and inputs being

subject to chance constraints. In the proposed control scheme, the succeeding

sampling time instant and current control inputs are computed online by solving

a formulated optimization problem. The chance constraints are reformulated

into a deterministic fashion by leveraging the Cantelli’s inequality. Under few

mild assumptions, the online computational complexity of the proposed control

scheme is similar to that of a nominal self-triggered MPC algorithm. Further-

more, initial constraints are incorporated into the MPC problem to guarantee

the recursive feasibility of the scheme, and the stability conditions of the system

have been developed. Finally, numerical examples are provided to illustrate the

achievable performance of the proposed control strategy.

Chapter 3 discusses a stochastic self-triggered model predictive control algorithm

with adaptive prediction horizon for linear systems subject to additive uncer-

tainties and state chance constraints. The communication cost is explicitly con-
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sidered by adding a damping factor in the cost function. A novel self-triggered

condition is proposed and the asymptotic sampling behaviour is analyzed. Suf-

ficient conditions are provided to guarantee closed-loop chance constraints sat-

isfactions. Furthermore, the recursive feasibility of the algorithm is analyzed,

and the closed-loop system is shown to be quadratically stable. Finally, the

effectiveness of the control method is verified by numerical examples.

Chapter 4 proposes a distributed self-triggered stochastic MPC control scheme for

CPSs under coupled chance constraints and additive disturbances. To mitigate

performance degradation due to the implementation of self-triggered mecha-

nism, a self-triggered MPC optimization problem is defined. Both the next

sampling time instant and resulting control action sequences are determined by

solving the self-triggered problem and then transmitted from controller to ac-

tuator through communication networks at each sampling time instant. Based

on the information on stochastic disturbances, both local and coupled chance

constraints are transformed into the deterministic form using the tube-based

method. Improved terminal constraints are constructed to guarantee the recur-

sive feasibility of the control scheme. Theoretical analysis has shown that the

overall closed-loop CPSs are quadratically stable. Numerical examples illus-

trate the efficacy of the proposed control method in terms of data transmission

reduction.

Chapter 5 concludes the thesis and suggests some promising directions for future

research.
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Chapter 2

Stochastic Self-triggered MPC for

Linear Constrained Systems under

Additive Uncertainty and Chance

Constraints

2.1 Introduction

Stochastic model predictive control (MPC) has received considerable attention be-

cause it is capable of optimizing the system performance under stochastic uncer-

tainties and chance constraints on the state and input variables. The development

of stochastic MPC has stimulated a wide range of applications in industry, such as

building climate control [5, 7] and automotive control [119, 120]. In contrast to robust

MPC, which relies on the worst-case consideration on the uncertainties, stochastic

MPC makes use of the information about the distribution of the uncertainties. If the

uncertainties are characterized as random processes, it is desirable to reformulate the

constraints in a probabilistic framework. Also, stochastic MPC caters for many cases

in which the constraints are probabilistic in nature. As shown in [81], for the same

prediction horizon, if the constraints are formulated as chance constraints, the region

of attraction will be enlarged significantly.

Two cruxes exist in the design of a stochastic MPC algorithm: (i) reformulating

chance constraints into deterministic representations and (ii) theoretically analyzing

stability and recursive feasibility. As stated in [57] two main approaches to the for-
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mer have been proposed to handle the optimization problem with chance constraints:

analytical approximation methods and scenario-based methods. For linear systems

subject to additive uncertainties, various methods cast the stochastic optimal control

problems with chance constraints as a tractable problem by deterministic reformula-

tions of the chance constraints [48, 69, 43, 121]. The online computational complexity

of the resulting algorithm is comparable to that of a nominal MPC, but some degree

of conservativeness is introduced due to the approximation of the chance constraints.

Alternatively, in scenario-based methods [52, 61, 81], a set of disturbance realiza-

tions is randomly generated to find the optimal solution of the stochastic MPC prob-

lem with arbitrarily high accuracy. It is worth noting that scenario-based methods

cope with generic probability distributions, cost functions and chance constraints. In

comparison with analytical methods, the resulting algorithm is computationally de-

manding because a large number of disturbance realizations is required for the online

computation.

As discussed above, the stochastic MPC schemes are executed periodically on digi-

tal platforms. In networked control systems (NCSs), whose components are connected

through a communication network, the communication cost among components can-

not be neglected, and the high communication load is the main concern for implement-

ing stochastic MPC. If the components are connected through wireless networks, the

communication load will be heavier, possibly leading to packet dropouts and network-

induced delays. These challenges, introduced by the communication network, may

degrade the system performance and even destabilize the control system [122], [123].

To deal with these challenges, the aperiodic sampling scheme is a promising solution

since a considerable amount of communication load can be reduced. For consensus

problems in the multi-agent system in which agents share information through the

networks, a novel event-triggered transmission strategy is reported in [124]. Reviews

on NCSs considering the aperiodical control and filtering schemes are referred to

[125, 126, 127, 128].

In periodic sampling schemes, without considering the particular dynamics of the

system, this general implementation can lead to redundant samplings. However, in

aperiodic sampling schemes, the control inputs are updated only when the system

performance cannot meet some specified requirements (i.e., the performance index

violates some predefined thresholds), and this sampling mechanism can lead to a

lower average sampling rate. Results in [129, 100] have highlighted these advan-

tages, and since then, several results on MPC using aperiodic sampling schemes have



29

been proposed. Recently, robust event-triggered MPC and robust self-triggered MPC

have been proposed, and these control strategies have received increasing attention.

For nonlinear continuous-time systems affected by additive uncertainties, an event-

triggered robust MPC algorithm has been proposed in [116]. For nonlinear input-

affine dynamical systems, a self-triggered MPC control scheme, in which the control

sequence is adaptively sampled is reported in [114]. For linear systems, the co-design

problem of jointly determining the control input to the plant and the next sampling

instant has been discussed in [130, 131, 110]. The authors in [132, 113] separate the

problem to a bilevel optimization problem while tube-based MPC is utilized to deal

with the additive disturbance.

Note that the aforementioned self-triggered MPC algorithms only consider hard

constraints, with an exception in a most recent work [110], where the chance con-

straints are considered. In this study, we aim to develop a stochastic MPC algorithm

for disturbed linear systems under the framework of self-triggered mechanism. The

difference between our proposed work and the existing work is that we take the pos-

sibly unbounded stochastic uncertainty and chance constraints into account. The

difference between SMPC and RMPC makes our work essentially different from the

existing work on robust self-triggered MPC. As a result, the main challenges of this

work are: How to propagate the uncertainties during two sampling instants; and how

to formulate a tractable optimization problem in the presence of chance constraints.

Comparing with [110], chance constraints in our work are reformulated in a completely

different way; consequently, the resulting theoretical analysis is inherently different.

The main contribution of this work is two-fold:

• A stochastic self-triggered MPC scheme is proposed for linear systems under

additive uncertainty and chance constraints. The chance constraints on the

states and inputs are reformulated into deterministic terms by leveraging the

Cantelli’s inequality [56, 72]. At each sampling time instant, the co-design prob-

lem of deciding the next sampling instant and the control input sequence during

the inter-execution time interval is addressed by solving a set of optimization

problems. With the proposed aperiodic scheduling strategy, the controller only

needs to sample the state and transmit control input when necessary, therefore

reducing the communication load between the sensor and controller significantly.

• Theoretical analysis of the proposed stochastic self-triggered MPC algorithm is

performed. Tightened constraints on the state and control input are designed to
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guarantee the satisfaction of chance constraints of the proposed control scheme.

In [110], the recursive feasibility is guaranteed based on the assumption that the

uncertainty is bounded, while in our method, additional initial constraints are

imposed to ensure the recursive feasibility of the scheme. Meanwhile, sufficient

conditions under which the closed-loop system is stable are given, and it has

been shown that the system state will converge to an invariant set around the

origin.

The remainder of this chapter is organized as follows. Section 2.2 introduces

the formal problem formulation of the work, where the reformulation of chance con-

straints and constructions of constraint sets are presented. In Section 2.3, the pro-

posed stochastic self-triggered MPC problem is defined. Following that, the closed-

loop properties of the proposed control scheme are summarized in Section 2.4, and

sufficient conditions to guarantee the stability of the system are given. In Section

2.5, the advantages of the proposed control scheme are demonstrated by numerical

examples. Section 2.6 concludes this chapter.

Notations: N denotes the set of integers, and N[a,b] represents the set of integers

from a to b, where a ≤ b, a, b ∈ N. Rn stands for the n-dimensional real space. E{·}
and var{·} denote the expectation and variance of a random variable, respectively.

For a matrix X, XT denotes the transpose of X, and tr(X) denotes the trace of X.

X = diag(x1, x2, . . . , xn) denotes a diagonal matrix with elements x1, x2, . . . , xn. The

maximum and minimum eigenvalues ofX are denoted by λ̄(X) and λ(X), respectively.

Given a set B and a point η, d(η,B) := inf{‖η − b‖, b ∈ B} denotes the point-to-set

distance. Br := {x ∈ Rn : ‖x‖ ≤ r} denotes the ball with a radius of r around the

origin.

2.2 Problem formulation

We consider the following discrete-time linear system

x(k + 1) = Ax(k) +Bu(k) + Fw(k), k ∈ N≥0, (2.1)

where x(k) ∈ Rnx is the system state, u(k) ∈ Rnu is the control input, and w(k) ∈ Rnw

is an additive uncertainty with zero mean and a known variance W , and possibly un-

bounded support. It is assumed that w(k) is independent and identically distributed.
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Assumption 1. The state is perfectly known at each time instant, and the pair (A,B)

is stabilizable.

The state and input variables are subject to the following single chance constraint:

For time instant k, and i ∈ N≥0

P{bT
r x(k + i) ≥ 1} ≤ px,r, r ∈ N[1,nr], (2.2)

P{cT
s u(k + i) ≥ 1} ≤ pu,s, s ∈ N[1,ns], (2.3)

where P{·} denotes the probability of the constraint violation, br, r ∈ N[1,nr] and

cs, s ∈ N[1,ns] are constant vectors, and px,r, pu,s are design parameters for each single

chance constraint. It is assumed that both polyhedrons defined by bT
r x(k) ≤ 1 and

cT
s x(k) ≤ 1 contain the origin.

Self-triggered MPC

kj

kj+1

x(kj)
w(kj), . . . , w(kj+1 − 1)

u(kj)

Plant

Sensor

MPC STM

Actuator

Figure 2.1: The schematic diagram of the stochastic self-triggered MPC system.

The system framework is shown in Figure 2.1. To reduce the frequency of informa-

tion transmission from the sensor to the controller, a self-triggered mechanism (STM)

is introduced to the framework of stochastic MPC. The triggering time sequence is

defined as {kj}, j ∈ N≥0. At sampling time instant kj, the next sampling time in-

stant kj+1 and the control input sequence u(kj) = {u(kj + i), . . . , u(kj+1 − 1)}, i ∈
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N[0,kj+1−kj−1] are jointly determined by a self-triggered controller as shown below:

u(kj + i) = u∗(i|kj), i ∈ N[0,kj+1−kj−1], (2.4a)

kj+1 = kj + l∗(kj), j ∈ N≥0, k0 = 0, (2.4b)

where ū∗(l∗(kj)) = {u∗(0|kj), . . . , u∗(l∗(kj) − 1|kj)} is the optimal control input se-

quence and l∗(kj) is the optimal inter-execution time interval. ū∗(l∗(kj)) and l∗(kj)

are determined by solving the stochastic self-triggered optimal control problem de-

fined in the next section. Then, the controller sends the obtained control sequence

to the actuator to control the plant. During the time interval kj+1 − kj, the system

is controlled in an open-loop fashion since no state measurement is required, and the

sensors can be turned off. At the next sampling time instant kj+1, this procedure is

repeated, resulting in a closed-loop system

x(kj + i+ 1) = Ax(kj + i) +Bu∗(i|kj) +Fw(kj + i), i ∈ N[0,kj+1−kj−1], j ∈ N≥0. (2.5)

Let x̄(kj + i) = E{x(kj + i)} denote the nominal state of x(kj + i). Since w(k) is

assumed to be a disturbance with zero-mean, the predicted nominal state x̄(i|kj),
given the state x̄(0|kj) at time instant kj, evolves according to

x̄(i+ 1|kj) = Ax̄(i|kj) +Bū(i|kj), i ∈ N[0,N−1], (2.6)

in which ū(i|kj) is the predicted nominal control input, and it is determined online

by solving the optimization problem defined in the next section. Consider the state-

feedback control law at time instant kj,

u(i|kj) =

{
ū(i|kj), i ∈ N[0,l−1];

ū(i|kj) +Kkj+i(x(kj + i)− x̄(i|kj)), i ∈ N[l,N−1],
(2.7)

in which the predicted input and gain sequences ūN = {ū(0|kj), . . . , ū(N − 1|kj)},
KN−l = {Kl|kj , . . . , KN−1|kj} are defined as the result of a suitable optimization prob-

lem solved at time instant kj. l ∈ N[1,N−1] is defined as the inter-execution time. In

the first l − 1 steps, the system is controlled in an open-loop fashion, and the state

measurements are not required in this period. The state feedback is introduced in

the last N − l steps to deal with the disturbance. The open-loop controlled phase

is involved because of the self-triggered mechanism. As pointed out in [2], when the
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system is affected by disturbances, closed-loop MPC shows great advantages com-

pared with open-loop MPC. This type of control law (2.7) is also used in a recent

work [113].

Define e(i|kj) = x(kj + i)− x̄(i|kj) for i ∈ N≥0, as the error between the real state

and the predicted nominal state. And E(i|kj) = var{e(i|kj)} = E{e(i|kj)e(i|kj)T}
is defined as the variance of the predicted error term. It can be shown that E(i|kj)
evolves according to the following equations

E(i|kj) =



AiE(0|kj)(Ai)T +
i−1∑
h=0

AhFW (AhF )T, i ∈ N[0,l−1],[
i−l∏
h=1

Φl+h−1|kj

]
E(l − 1|kj)

[
i−l∏
h=1

Φl+h−1|kj

]T

+
i−1∑
h=1

Φl+h−1|kjFW (Φl+h−1|kjF )T, i ∈ N[l,N ],

(2.8a)

(2.8b)

in which Φl+h−1|kj = A+BKl+h−1|kj for i ∈ N[l,N−1], h ∈ N[1,i−1]. When the system is

sampled periodically, i.e., for ∀k, l = 1, the evolution of the predicted variance E(i|kj)
reduces to the one in [56].

Remark 1. In (2.7), the control sequence ūN is designed to control the predicted

nominal state x̄(i|k), for i ∈ N[0,N−1]; and the feedback gain sequence KN−l is utilized

to restrain the evolution of E(i|kj), for i ∈ N[l,N ]. At time instant kj, if the initial

condition for the variance is E(0|kj) = 0, in which 0 is a zero matrix with suitable

dimensions, then the evolution of the E(i|kj) is solely determined by the disturbance

variance W in the first l − 1 steps.

2.2.1 Reformulation of the chance constraints

The chance constraints handling is based on the Cantelli’s inequality. It has been

shown in [56] that the chance constraints can be reformulated as deterministic terms

by the following inequality (2.9).

Lemma 1. [56] Let y be a (scalar) random variable with mean ȳ and variance Y .

Then for every 0 ≤ α ∈ R, it holds that

P(y ≥ ȳ + α) ≤
Y

Y + α2
. (2.9)
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By using the Cantelli’s inequality, the chance constraints (2.2) and (2.3) are veri-

fied for time instants kj + i, i ∈ N≥0, if

bT
r x̄(i|kj) ≤ 1−

√
bT
r E(i|kj)brf(px,r), r = 1, . . . , nr, (2.10)

cT
s ū(i|kj) ≤ 1−

√
cT
s U(i|kj)csf(pu,s), s = 1, . . . , ns, (2.11)

where f(p) =
√

(1− p)/p, regardless of the specific distribution of the disturbance

w(k). The covariance matrix of the control variable U(i|kj) is defined as

U(i|kj) =

{
0, i ∈ N[0,l−1];

KT
kj+i

E(i|kj + i)Kkj+i, i ∈ N[l,N−1],

in which 0 is a zero matrix with suitable dimensions. With an additional tightening

of the constraint, the state constraints (2.10) and input constraints (2.11) can be

linearized as:

bT
r x̄(i|kj) ≤ (1− 0.5ε)−

1− px,r
2εpx,r

bT
r E(i|kj)br, r = 1, . . . , nr, (2.12)

and for s = 1, . . . , ns,

cT
s ū(i|kj) ≤


1, i ∈ N[0,l−1];

(1− 0.5ε)−
1− pu,s
2εpu,s

cT
s U(i|kj)cs, i ∈ N[l,N−1],

(2.13)

in which 0 < ε < 1 is a linearization factor.

Remark 2. Since the Cantelli’s inequality is a variant of the Chebyshev’s inequality,

it can only give a conservative estimate of the original chance constraints. The benefit

of replacing the chance constraints by the sufficient upper bound is that the reformu-

lation is obtained without introducing any specific assumptions on the uncertainties.

Also, if the uncertainty is assumed to be normally distributed, a less conservative

reformulation of the constraint can be achieved.
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2.2.2 Cost function

At sampling time instant kj, the cost function is defined as

Jl(x(0|kj), E(0|kj)) =E

{
1

α

l−1∑
i=0

(‖x(kj + i)‖2
Q + ‖u(kj + i)‖2

R)

+
N−1∑
i=l

(‖x(kj + i)‖2
Q + ‖u(kj + i)‖2

R) + ‖x(kj +N)‖2
P

}
,

(2.14)

where E{·} denotes the expectation of a random variable. l denotes the inter-

execution time interval in the self-triggered control scheme and α ≥ 1 is a tuning

parameter that penalizes the cost in the open-loop phase. N is the prediction hori-

zon. kj is the current sampling time instant. Q and R are positive definite, symmetric

matrices of appropriate dimensions, and P is the solution to the algebraic equation

(A+BK̄)TP (A+BK̄) +Q+ K̄TRK̄ − P = 0, (2.15)

where K̄ is a suitable stabilizing gain for the pair (A,B). The cost function can be

rewritten as Jl(x(0|kj), E(0|kj)) = J̄l(x(0|kj)) + J̃l(E(0|kj)), where

J̄l(x(0|kj)) =
1

α

l−1∑
i=0

(‖x̄(i|kj)‖2
Q + ‖ū(i|kj)‖2

R)

+
N−1∑
i=l

(‖x̄(i|kj)‖2
Q + ‖ū(i|kj)‖2

R) + ‖x̄(N |kj)‖2
P ,

(2.16)

is the nominal cost function obtained at kj, and

J̃l(E(0|kj)) =
1

α

l−1∑
i=0

tr{QE(i|kj)}

+
N−1∑
i=l

tr{(Q+KT
kj+i

RKkj+i)E(i|kj)}+ tr{PE(N |kj)},
(2.17)

is the predicted variance cost function obtained at kj. At each sampling time instant

kj, the controller will determine both the optimal inter-execution time interval l∗kj ∈
N[1,N−1], and the corresponding control sequence ū∗l∗(kj)

and gain sequence KN−l∗(kj).
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2.2.3 Terminal constraint

To guarantee recursive feasibility of the algorithm and the stability of the closed-loop

system, terminal constraints are enforced at the end of the prediction horizon on both

the mean value x̄(N |kj) and the variance E(N |kj) as follows,

x̄(N |kj) ∈ X̄f , (2.18)

E(N |kj) ≤ Ē. (2.19)

The set X̄f is a positively invariant set for the system with the control law u(k+ i) =

K̄x̄(i|k), that is

(A+BK̄)x̄(i|k) ∈ X̄f ,∀x̄(i|k) ∈ X̄f .

The dynamics of E(i|kj) is given in (2.8), and the terminal constraint for E(N |kj) is

the steady state solution of the Lyapunov equation in (2.8b) with a constant stabi-

lizing K̄. So Ē verifies the Lyapunov-type equation

Ē = (A+BK̄)Ē(A+BK̄)T + FW̄FT, (2.20)

where W̄ ≥ W is an artificially selected matrix for all x̄(i|kj) ∈ X̄f . By choosing the

value of W̄ , we can obtain a larger Ē.

The following linearized constraints should also hold for all x̄(i|kj) ∈ X̄f :

bT
r x̄(i|kj) ≤ 1−

√
bT
r Ēbrf(px,r), r = 1, . . . , nr. (2.21)

cT
s K̄x̄(i|kj) ≤ 1−

√
cT
s K̄ĒK̄

Tcsf(pu,s), s = 1, . . . , ns. (2.22)

2.2.4 Initial constraints

To guarantee the recursive feasibility, the initial conditions (x̄(0|kj), E(0|kj)) at the

current sampling time instant kj should also be incorporated as free variables in the

optimization problem, as shown in the following two strategies.

• Strategy 1: the initial condition for the optimal control problem is chosen as the

new state measurement x̄(0|kj) = x(kj), and the initial variance E(0|kj) = 0.

• Strategy 2: the initial state and variance variables are set to be the predicted

nominal state and variance which are obtained at the last sampling time instant
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kj−1, i.e., x̄(0|kj) = x̄(kj|kj−1), E(0|kj) = E(kj|kj−1).

The resulting initial constraint for the pair (x̄(0|kj), E(0|kj)) is given as:

(x̄(0|kj), E(0|kj)) ∈ {(x(kj), 0), (x̄(kj|kj − 1), E(kj|kj − 1))}. (2.23)

Remark 3. In Strategy 1, since the initial condition for E(0|kj) is reset at every sam-

pling time instant, as stated in Remark 1, E(i|kj) are all constants for i ∈ N[1,N ]. In

this strategy, the predicted variance performance index defined in (2.17) is a constant,

and can be removed from the optimization problem.

2.3 Stochastic self-triggered MPC problem

In this section, we address the stochastic self-triggered MPC synthesis problem. At

sampling time instant kj, by solving the corresponding optimization problem, the

controller provides the optimal inter-execution time interval l∗(kj) and the optimal

control sequence {u(kj), . . . , u(kj+1 − 1)} for the interval [kj, kj+1 + 1), j ∈ N≥0 to

the plant. With the initial state x̄(0|kj) and initial variance E(0|kj), the decision

variables of the optimization problem are defined as:

dl(kj) = (x̄(0|kj), E(0|kj), ū(0|kj), . . . , ū(N − 1|kj), Kl|kj , . . . , KN−1|kj). (2.24)

Given an l ∈ N[1,N−1], Dlkj is defined as the feasible set:

Dlkj = {dl(kj)|(2.6), (2.8), (2.10), (2.11), (2.18), (2.19), (2.23)}. (2.25)

For all l ∈ N[1,N−1], define the finite horizon optimization problem as:

Vl(dl(kj)) : min
dl(kj)∈Dlkj

Jl(dl(kj)). (2.26)

The stochastic self-triggered MPC problem is defined as:

l∗(kj) := max{l ∈ N[1,Lmax]|D1
kj
6= ∅,Dlkj 6= ∅, Vl(dl(kj)) ≤ V1(d1(kj))}, (2.27a)

d∗l∗(kj) := argmin
dl∗ (kj)∈Dl

∗
kj

Jl∗(dl∗(kj)), (2.27b)

where Lmax ∈ N[1,N ] is the maximal length of the open-loop phase chosen by the
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designer. For simplicity of presentation, let l∗ denote l∗(kj) in (2.27b). The outer

optimization is over the interval length which is an integral multiple of the sampling

interval, and the inner optimization is over the control input sequence and the gain

sequence. The main idea is to maximize the inter-execution time interval l, while

guaranteeing the penalized cost Jl(x(0|kj), E(0|kj)) defined in (2.14) is not larger

than J1(x(0|kj), E(0|kj)).
Since (2.10) and (2.11) are nonlinear constraints in terms of decision variables

E(i|kj) and U(i|kj), the linearization steps in (2.12) and (2.13) can significantly reduce

the complexity of the optimization problem. As discussed in [72], we can further

reduce the complexity of the optimization problem by using a constant gain Ki|kj =

K̄, i ∈ N[l,N−1]. Under this assumption, the online optimization (2.26) is a standard

quadratic programming problem, and nuN + nx + n2
x scalar variables are involved

in the optimization problem. Numerically, this will reduce the number of decision

variables, and for the finite horizon optimization problem defined in (2.26), the online

computational complexity is similar to that of the nominal MPC problem for relatively

small-scale problem, e.g., nx ≤ 10.

The resulting stochastic self-triggered MPC algorithm is summarized in Algorithm

1:

Algorithm 1: Stochastic self-triggered MPC algorithm

Offline: Determine the linearization factor ε, open-loop phase penalizing
parameter α, and the constraints violation probability px,r, pu,s.

while Termination conditions not satisfied do
Step 1. At time instant kj+i, measure the system state x(kj+i).
Step 2. Solve the optimization problem defined in (2.27). Get the next
sampling time instant kj+i+1 = kj+i + l∗(kj+i), and the control sequence
{u(kj+i), . . . , u(kj+i+1 − 1)} for this time interval.
Step 3. During the time period from kj+i to kj+i+1 − 1, implement the
obtained control sequence {u(kj+i), . . . , u(kj+i+1 − 1)}.
Step 4. Set kj+i = kj+i+1, go to Step 1, and repeat the procedure.

end

2.4 Feasibility and stability analysis

In this section, the recursive feasibility of the proposed stochastic self-triggered MPC

scheme and the stability of the closed-loop system are analyzed. We first prove



39

that the proposed control scheme is recursively feasible given appropriately chosen

terminal constraints on x̄(N |kj) and E(N |kj). Then, sufficient conditions are given

to guarantee the input-state stability of the closed-loop system.

Theorem 1. (Recursive feasibility) At the sampling time instant kj, for any l ∈
N[1,Lmax], D1

kj+1
6= ∅, given that the stochastic self-triggered MPC problem admits a so-

lution with decision variables d∗l∗(kj)
(kj) ∈ Dl

∗(kj)
kj

, and the next sampling time instant

is kj+1 = kj + l∗(kj).

Proof. At the sampling time instant kj, by solving (2.27), the stochastic self-triggered

MPC problem admits an optimal solution

(x̄∗(0|kj), E∗(0|kj), ū∗N(kj),K
∗
N−l∗(kj)

(kj)) ∈ Dl
∗(kj)
kj

,

where ū∗N = {ū∗0|kj , . . . , ū∗N−1|kj} is the control sequence, and

K∗N−l∗(kj)
= {K∗l∗(kj)|kj , . . . , K

∗
N−1|kj}

is the gain sequence generated at time instant kj. At the next sampling time instant

kj+1 = kj + l∗(kj), assume that

(x̄f (0|kj+1), Ef (0|kj+1), ūfN(kj+1),Kf
N−1(kj+1)) ∈ D1

kj+1
,

is an admissible but not optimal solution to the stochastic self-triggered MPC prob-

lem, in which

x̄f (0|kj+1) = x̄∗(l∗(kj)|kj), Ef (0|kj+1) = E∗(l∗(kj)|kj),
ūfN(kj+1) = {ū∗(l∗(kj)|kj), . . . , ū∗(N − 1|kj), K̄x̄(N |kj),

. . . , K̄(A+BK̄)l
∗(kj)−1x̄(N |kj)},

and

Kf
N−1(kj+1) = {K∗l∗(kj)|kj , . . . , K

∗
N−1|kj , K̄, . . . , K̄(A+BK̄)l

∗(kj)−1}.

Note that, x̄f (0|kj+1) and Ef (0|kj+1) are chosen according to initial constraints (2.23).

Constraints (2.10), (2.11) can be readily verified for (x̄(kj+1+i|kj), E(kj+1+i|kj)), i =

0, . . . , N − l∗(kj) − 1, in view of the feasibility of the ST-SMPC problem at kj.

Constraint (2.18) is verified from the definition of X̄F . If x̄(N |kj) ∈ X̄F , then
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x̄(N + i|k) = (A + BK̄)ix̄(N |kj) ∈ X̄F , for i ∈ N[1,l∗(kj)]. From the definition of

(2.19), for i = 1, . . . , l∗(kj),

E(N + i|kj) = (A+BK̄)E(N + i− 1|kj)(A+BK̄)T + FWFT

≤ (A+BK̄)Ē(A+BK̄)T + FW̄FT = Ē.

Hence, constraint (2.19) is verified. From (2.21), since x̄(N + i|kj) ∈ X̄F , for i =

0, . . . , l∗(kj), we have

bT
r x̄(N + i|kj) ≤ 1−

√
bT
r Ēbrf(prx) ≤ 1−

√
bT
r E(N + i|kj)brf(prx).

Therefore, constraint (2.10) is verified. By following the similar lines (2.11) can be

verified. The above analyses prove that D1
kj+1
6= ∅.

In the following, we provide stability results by presenting Theorem 2.

Theorem 2. (Stability) If a ρ ∈ (0, 1) exists such that the variance matrix W verifies

βmax

ρλ(Q)
tr(PFWFT) < min(σ̄2, λ(Ē)), (2.28)

where σ̄ is the maximum radius of Bσ̄ included in X̄F , and βmax is defined as

βmax := max
l∈N[1,Lmax]

N +
αλ̄(P )

λ(Q)

(
l −

∆(l)

tr(PFWFT)

)
, (2.29)

in which ∆(l) = 1
α

∑l−1
i=0 tr((l − i− 1)QAiFW (AiF )T), then

d(E{‖x(kj)‖2
Q}, [0, ρ−1βmaxtr(PFWFT)])→ 0,

as j → +∞.

Proof. At time instant kj+1 = kj + l∗(kj), considering the feasible but yet possibly

suboptimal control sequence defined in the proof of Theorem 1, and for notation

simplicity, we denote the cost at time kj as Jl(kj)(kj), for j ∈ N≥0. The predicted

cost at the next sampling time instant kj+1 is defined as Jl(kj+1)(kj+1|kj). From the

triggering condition at the next samplng time instant kj+1, the optimal cost computed

at kj+1 is J∗l∗(kj+1)(kj+1) ≤ J∗1 (kj+1) = J̄∗1 (kj+1) + J̃∗1 (kj+1). In view of optimality at
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time kj+1,

J∗1 (kj+1) ≤ Jf1 (kj+1|kj) = J̄1(x̄f (0|kj+1), ūfN(kj+1)) + J̃1(Ef (0|kj+1),Kf
N−1(kj+1)).

(2.30)

Note that,

J̄∗l∗(kj)
(kj)− J̄f1 (kj+1|kj) =

1

α

l∗(kj)−1∑
i=0

(‖x̄(i|kj)‖2
Q + ‖ū(i|kj)‖2

R) + ‖x̄(N |kj)‖2
P

− ‖x̄(N |kj)‖2
Q − ‖K̄x̄(N |kj)‖2

R − ‖Φ̄x̄(N |kj)‖2
Q

− ‖K̄Φ̄x̄(N |kj)‖2
R − · · · − ‖Φ̄l∗(kj)x̄(N |kj)‖2

P

=
1

α

l∗(kj)−1∑
i=0

(‖x̄(i|kj)‖2
Q + ‖ū(i|kj)‖2

R)− ‖x̄(N |kj)‖P̄ ,

in which P̄ = −P + (Q+ K̄TRK) + Φ̄T(Q+ K̄TRK)Φ̄ + · · ·+ (Φ̄l∗(kj))TP Φ̄l∗(kj). In

view of (2.15), we can get P̄ = 0 by iteration, yielding

J̄∗l∗(kj)
(kj)− J̄f1 (kj+1|kj) =

1

α

l∗(kj)−1∑
i=0

(‖x̄(i|kj)‖2
Q + ‖ū(i|kj)‖2

R). (2.31)

In addition,

J̃∗l∗(kj)
(kj)− J̃f1 (kj+1|kj) =

1

α

l∗(kj)−1∑
i=0

tr{QE(i|kj)}+ tr{PE(N |kj)}

− tr{(Q+ K̄TRK̄)E(N |kj)}
− tr{(Q+ K̄TRK̄)E(N + 1|kj)} − · · · − tr{PE(N + l∗(kj)|kj)}.

From (2.8) we have E(N + i|kj) = Φ̄iE(N |kj)(Φ̄i)T +
∑i−1

h=0 Φ̄hFW (Φ̄hF )T and in

view of (2.15), we obtain

J̃∗l∗(kj)
(kj)− J̃f1 (kj+1|kj) =

1

α

l∗(kj)−1∑
i=0

tr{QE(i|kj)} − l∗(kj)tr{PFWFT}. (2.32)
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Combining (2.31) and (2.32), and recalling (2.30), we have

J∗1 (kj+1) ≤ J∗l∗(kj)
(kj)−

1

α

l∗(kj)−1∑
i=0

E(‖x(kj + i)‖2
Q + ‖u(kj + i)‖2

R) + l∗(kj)tr{PFWFT}.

(2.33)

Since A is assumed to be non-singular, and Q > 0, it can be readily verified that

λ(
∑l∗(kj)

i=1 (Ai)TQAi) > 0, where λ(·) denotes the minimum eigenvalue of a matrix. It

can be shown that

l∗(kj)−1∑
i=0

E(‖x(kj + i)‖2
Q + ‖u(kj + i)‖2

R) ≥ E{‖x(kj)‖2
Q}+

l∗(kj)−1∑
i=1

tr{QE(i|kj)}

= E{‖x(kj)‖2
Q}+

l∗(kj)−1∑
i=1

tr{(Ai)TQAE(0|kj)}

+

l∗(kj)−1∑
i=0

tr{(l∗(kj)− i− 1)QAiFW (AiF )T}

≥ E{‖x(kj)‖2
Q}+

l∗(kj)−1∑
i=0

tr{(l∗(kj)− i− 1)QAiFW (AiF )T}

≥ λ(Q)E{‖x(kj)‖2}+

l∗(kj)−1∑
i=0

tr{(l∗(kj)− i− 1)QAiFW (AiF )T}.

Recalling (2.33), we have

J∗1 (kj+1) ≤J∗l∗(kj)
(kj)−

1

α
λ(Q)E{‖x(kj)‖2}+ l∗(kj)tr{PFWFT}

−
1

α

l∗(kj)−1∑
i=0

tr{(l∗(kj)− i− 1)QAiFW (AiF )T}.
(2.34)

Also, from the definition of Jl∗(kj)(kj), we have

Jl∗(kj)(kj) ≥
1

α
E{‖x(kj)‖2

Q} ≥
1

α
λ(Q)E{‖x(kj)‖2}. (2.35)

Based on the previous analysis on the cost function, we can proceed to prove the

stability of the closed-loop system. Define the terminal set for the nominal state and

variance as ΩF = {(x̄(k), E(k)) : x̄(k) ∈ X̄F , E(k) ≤ Ē}. For (x̄(0|kj), E(0|kj)) ∈ ΩF ,
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we can find a corresponding feasible control sequence {K̄x̄(0|kj), . . . , K̄Φ̄N−1x̄(0|kj)}.
The auxiliary nominal and variance cost functions with respect to the feasible control

input sequence can be defined as

J̄a1 (kj) =
N−1∑
i=0

‖Φ̄ix̄(i|kj)‖2
Q + ‖K̄Φ̄ix̄(i|kj)‖2

R + ‖Φ̄N x̄(N |kj)‖2
P ,

and

J̃a1 (kj) =
N−1∑
i=0

tr{(Q+ K̄TRK̄)[Φ̄iE(0|kj)(Φ̄i)T]

+
i−1∑
k=0

Φ̄kFWFT(Φ̄k)T}+ tr{P Φ̄NE(0|kj)(Φ̄N)T}+
N−1∑
i=0

Φ̄iFWFT(Φ̄i)T.

It can be readily shown that

J∗l∗(kj)
(kj) ≤ J∗1 (kj) ≤ J̄a1 (kj) + J̃a1 (kj) = E{‖x(kj)‖2

P}+Ntr{PFWFT}
≤ λ̄(P )E{‖x(kj)‖2}+Ntr{PFWFT}.

(2.36)

If (x̄0|k, E0|k) ∈ ΩF , then from (2.34) and (2.36), we have

J∗1 (kj+1) ≤J∗l∗(kj)
(kj)

(
1−

1

α

λ(Q)

λ̄(P )

)
+

(
1

α

λ(Q)

λ̄(P )
N + l∗(kj)

)
tr{PFWFT}

−
1

α

l∗(kj)−1∑
i=0

tr{(l∗(kj)− i− 1)QAiFW (AiF )T}.
(2.37)

If Jl∗(kj)(kj) ≤ ρ−1βmaxtr{PFWFT}, from (2.29) and (2.35), we have

E{‖x(0|kj)‖2} = ‖x̄(0|kj)‖2 + tr(E(0|kj)) ≤
βmax

ρλ(Q)
tr(PFWFT). (2.38)

Recalling (2.28), we have

‖x̄(0|kj)‖2 < σ̄2, tr(E(0|kj)) < λ(Ē), (2.39)

which implies that (x̄(0|kj), E(0|kj)) is in the interior of the terminal set ΩF . Recalling

(2.37), we can guarantee if Jl∗(kj)(kj) ≤ ρ−1βmaxtr{PFWFT}, then Jl(kj+1)(kj+1) ≤
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J∗l∗(kj)
(kj) ≤ ρ−1βmaxtr{PFWFT}. Based on this, we can establish a positive invari-

ant set D as

D = {(x̄kj , Ekj) : Jl(kj)(kj) ≤ ρ−1βmaxtr(PFWFT)}. (2.40)

The following proof is similar as the one in [133]. For (x̄(0|kj), E(0|kj)) ∈ ΩF\D, it

holds that

Jl∗(kj)(kj) > ρ−1βmaxtr(PFWFT). (2.41)

Considering (2.34), (2.36), we can get

Jl∗(kj+1)(kj+1)− Jl∗(kj)(kj) < 0. (2.42)

Meanwhile, for all (x̄(0|kj), E(0|kj)) ∈ Ξ\ΩF , where Ξ is the initial feasible set,

there exist constant c̄ and set (x̄Ω, EΩ) ∈ ΩF\D such that −λ(Q)E{‖x(kj)‖2} ≤
−λ(Q)E{‖xΩ‖2} − c̄. This implies that for all (x̄(0|kj), E(0|kj)) ∈ Ξ\ΩF ,

Jl∗(kj+1)(kj+1)− Jl∗(kj)(kj) < −c̄. (2.43)

This implies that there exists T1 > 0 such that (x̄(0|kj+T1), E(0|kj+T1)) ∈ ΩF . From

the invariance of the setD, (x̄(0|kj+T1), E(0|kj+T1)) ∈ D implies (x̄(0|kj), E(0|kj)) ∈
D for all kj ≥ T1. If (x̄(0|kj + T1), E(0|kj + T1)) ∈ ΩF\D, we have

Jl∗(kj+1)(kj+1)− Jl∗(kj)(kj) ≤ −(1− ρ)
λ(Q)2

λ̄(P )
E{‖xkj+T1‖2}. (2.44)

Then for all ε > 0, there exists T2 ≥ T1 such that,

Jl∗(kj)(kj) ≤ ε+ ρ−1βmaxtr(PFWFT),

for all k ≥ T2. Considering (2.35), it can be shown that

d(E{‖x(kj)‖2
Q}, [0, ρ−1βmaxtr(PFWFT)])→ 0

as j → +∞.

Remark 4. In the proof, we need to assume that A is non-singular, and this is always

true if we discretize the continuous-time linear system by a sample-and-hold method

to get the system in (2.1).
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Remark 5. From Theorem 2, it can be observed that the stability condition of the

designed stochastic self-triggered MPC algorithm is to check the existence of a ρ that

satisfies (2.28). βmax defined in (2.29) can be readily decided offline, and it has been

shown that βmax can be determined by the inter-execution time interval l and the open-

loop dynamics of the system. σ̄2 in the right hand side of (2.28) defines a ball in the

state terminal region XF , and the maximum value of σ̄ is restrained by XF . The

terminal variance constraint Ē is related to W̄ , which is a design parameter defined

in (2.20).

2.5 Numerical examples

In this section, two examples are given to demonstrate the reduction of communication

load by applying the stochastic self-triggered MPC control method. Simulations were

accomplished in MATLAB on a Laptop with a 2.6 GHz Intel Core i7 CPU and 16 GB

RAM. We used Yalmip [134] and SDPT3 as the QP solver to solve the optimization

problem.

2.5.1 Comparison between the self-triggered and the period-

ically triggered stochastic MPC

Let the system be given as follows:

x(k + 1) =

[
1.1 1

0 1.2

]
x(k) +

[
0.5

1

]
u(k) +

[
1 0

0 1

]
w(k), k ∈ N≥0

in which x(k) and u(k) are subject to the state constraint x(k) ∈ X = [−20, 20] ×
[−8, 8], input constraint u(k) ∈ U = [−8, 8], respectively. The disturbance vec-

tor w(k) is assumed to be normally distributed with a zero mean, and a variance

W =diag(1/12, 1/12). The weighting matrices are selected to be Q = diag(1, 1) and

R = 0.1. K̄ =
[
−0.745 −1.4270

]
is chosen to be linear quadratic optimal with the

weighting matrices Q and R. The state and input chance constraints (2.10) with

p = 0.3 are considered in the simulation. We select ε = 0.3 as the linearization factor

of the chance constraints. The prediction horizon N is selected to be 10, and the

maximum open-loop phase Lmax is selected to be 5. To satisfy the stability condition

(2.28), W̄ is chosen as W̄ = 10W for a larger terminal constraint Ē in (2.19).
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Convergence of the state to the invariant set D. We first investigate the

sampling frequency of the system with the proposed scheme. The initial state and

initial variance are chosen as x(0|kj) =
[
0 0

]T

and E(0|kj) = 0. For α = 2, a

simulation of Tsim = 104 steps yields the state trajectories as shown in Figure 2.2a.

The light grey region is the terminal set X̄f , and the dark grey region is the state

constraint set X. By selecting a ρ ∈ (0, 1), the condition (2.28) can be readily verified.

The red circle centred at the origin is the invariant set D with the smallest radius

βmaxtr(PFWFT). The zoomed-in part of the set D and the state trajectories are

shown in Figure 2.2b, and it shows the invariance of the set D. For different values

of α, the average inter-execution time and distribution of the inter-execution times

are illustrated in Table 2.1. The average inter-execution time can be evaluated by

Tsim/(total sampling times). Note that, as stated in (2.29), since βmax is related to

the value of α and W , to guarantee D ∈ X̄f , the value of α cannot be selected too

large.

(a) State trajectories. (b) Cost invariant set D.

Figure 2.2: State trajectories of the closed-loop system for the stochastic self-triggered
MPC scheme with the initial point [0, 0]T.

Constraints violation in the transient response. To investigate the transient

behaviour of the closed-loop system, we randomly select 300 initial conditions in the

set X\X̄f , and all initial conditions that result in an infeasible solution are excluded.

For each initial condition, the closed-loop system is simulated with both self-triggered

controller and periodically triggered controller for Tsim steps. The realizations of the

disturbance are identical for these two controllers. As a result, the average inter-
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Table 2.1: Distribution of average inter-execution time for the stochastic self-triggered
MPC schemes with 100 different realizations of uncertainties.

α Aver. inter-exe. time Frequency of inter-exe. time l

1 2 3 4 5

1 1 100% 0 0 0 0

2 1.10 81.1% 18.1% 0.8% 0 0

3 1.25 76.2% 22.3% 1.4% 0.1% 0

4 1.35 68.6% 27.9% 3.1% 0.4% 0

6 1.43 63.9% 29.3% 6.46% 0.4% 0

12 1.55 56.1% 34.5% 7.5% 0.6% 1.3%

14 1.58 54.8% 35.3% 7.4% 2.1% 0.5%

execution time for the self-triggered stochastic MPC controller is 3.35, which amounts

to a 70% reduction in the communication load compared to the periodically sampling

scheme. For a randomly selected initial condition, a set of state trajectories of the

closed-loop system for 100 realizations of the disturbance sequence are plotted in

Figure 2.3. In Step 1, 10% of the state trajectories violates the state constraint, while

in Step 2, 25% of the trajectory set violates the state constraint.

Comparison with the robust self-triggered MPC. In addition, the proposed

stochastic self-triggered MPC scheme is compared with the tube-based robust self-

triggered MPC scheme [132]. The performance index is defined as

Jperf =
1

Tsim

Tsim−1∑
k=0

(‖x(k)‖2
Q + ‖u(k)‖2

R). (2.45)

300 closed-loop simulations with a simulation length Tsim = 50 are conducted to

evaluate the performances of two algorithms. In each simulation, the same realizations

of uncertainty are used for both schemes. The average performance for the stochastic

self-triggered MPC is 11.04, as compared with 12.33 for the robust self-triggered MPC.

The average inter-execution time for robust self-triggered MPC is 2.55, while it is 2.34

for the proposed stochastic self-triggered MPC method. It can be concluded that the

performance is improved without sacrificing much in communication reduction.
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Figure 2.3: Blue crosses denote random initial conditions in the simulation. The
solid lines denote the state trajectories of the closed-loop system for the stochastic
self-triggered MPC scheme with the initial point [−17, 6.5]T. The grey region denotes
the terminal constraints, and the red region is the cost invariant set.

2.5.2 2-D point-mass double-integrator plant

In the second example, we implement the designed stochastic self-triggered MPC al-

gorithm to a two dimensional point-mass double-integrator system with uncertainty

in positions. This model has already been considered in [59], and the control objective

is to regulate the states of the system to the origin while reducing the communica-

tion load between the sensor and controller. The double-integrator system can be

described as (2.1) in which

A =


1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

 , B =


1
2

0

0 1
2

1 0

0 1

 , F =


0.1 0

0 0.1

0 0

0 0

 .

The positions of the system are constrained in a square with vertices (−5,−5), (5,−5),

(−5, 5), (5, 5). The input constraint is given by ‖u(k)‖∞ ≤ 1. The disturbance w(k)
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is an independent and identically distributed white noise with zero mean and variance

matrix W = I2. The weighting matrices are selected to be Q = 10−4 × diag(1, 1, 1, 1)

and R = 1. Comparing to R, Q is chosen significantly smaller since the optimal

solutions will push the state to boundaries of chance constraints. p = 0.2 is selected

for the state and input chance constraints (2.10) and the linearization factor is chosen

to be ε = 0.2. N and Lmax are selected to be the same as the previous example. K̄ is

obtained as the optimal LQ gain, and Ē is calculated by using (2.20) with W̄ = W .

Figure 2.4: State trajectories under two implementation of stochastic MPC with the
same initial point [3, 0, 0, 0]T. The blue circle and red square denote the sampling
instants for self-triggered scheme and periodical-triggered scheme, respectively.

Figure 2.4 shows the state trajectories under periodical-triggered and self-triggered

stochastic MPC for the same realization of uncertainty, respectively. For each scheme,

1000 closed-loop simulations with Tsim = 40 steps have been performed. For both

schemes, it can be observed that the states can be stabilized around the origin. The

average inter-execution time for the self-triggered stochastic MPC is 2.22. Compar-

ing to the periodical triggered scheme, the communication cost is reduced by 55%.

The performance index is defined as (2.45), and it can be calculated that the perfor-

mance index for the self-triggered scheme is 10% smaller than the periodical-triggered



50

scheme. It can be observed the sampling rate for the stochastic self-triggered MPC

is larger than the periodically sampling case without much loss in performance.

2.6 Conclusions

In this chapter, a stochastic self-triggered MPC scheme is proposed for linear con-

strained discrete-time systems. The proposed self-triggered sampling scheme effec-

tively reduces the communication load between the sensor and the controller because

of the implementation of the self-triggered sampling scheme. The recursive feasibility

of the proposed control scheme and the stability conditions are developed. Simulation

results have demonstrated the effectiveness of the algorithm.
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Chapter 3

Stochastic Self-triggered MPC

with Adaptive Prediction Horizon

for Linear Systems subject to

Chance Constraints

3.1 Introduction

Recently, stochastic model predictive control (SMPC) has received great attention

for constrained control of systems subject to stochastic disturbances and chance con-

straints. Different from robust MPC (RMPC) approaches, in which worst-case realiza-

tions of disturbances are assessed explicitly, SMPC utilizes the stochastic characteri-

zation of disturbances to relax the inherent conservativeness of RMPC. Particularly,

SMPC offers less conservative treatment of constraints by exploiting the probabilistic

distribution information of disturbances to define chance constraints, which allows

some degree of constraint violations. Based on chance constraints handling methods,

SMPC algorithms in the literature can be broadly classified into two approaches: An-

alytic approximation approach [43, 69, 121], and randomized approach [61, 51]. In

the first formulation, chance constraints are offline reformulated into deterministic

form by exploiting the distributional information of disturbances, leading to linear

constraints imposed on nominal prediction dynamics. This method results in a con-

servative approximation to the original chance-constrained optimization problem, but

the decision variables in the online optimization problem are significantly reduced.
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Closed-loop properties, such as the convergence of states, recursive feasibility, and

chance constraints satisfaction, have been established for linear systems subject to

either bounded [43] or unbounded [72] disturbances. One limitation of the analytic

approximation approach is that the reformulation relies on specific disturbance distri-

butions. On the other hand, the randomized approach depends on the scenario-based

optimization technique [61] and the main feature of this approach is to utilize appro-

priate sampling of constraints to approximate the original stochastic optimal control

problem. It offers flexible applicability to a broader class of SMPC problems since no

probability distribution of uncertainty is assumed to be known as long as samples of

uncertainties can be obtained. Generally speaking, this approach is computationally

intensive, especially for large scale systems, and the recursive feasibility of the MPC

algorithm is not well investigated, except for the recent work [49] which combines

the scenario approach and robust constraint tightening technique. Interested reader

please refer to [57, 135] for a detailed review of SMPC.

Modern networked control systems or cyber-physical systems are subject to ubiq-

uitous physical constraints, model uncertainties, external disturbances and indispens-

able communication constraints, which can severely degrade the control performance

and even destabilize the closed-loop system. The event-based MPC is an ideal ap-

proach for controlling this type of system due to advantages such as achieving optimal

performance, handling state and control input constraints explicitly, and reducing

the communicational load for networked systems. As a result, the event-based MPC

[100, 136], including event-triggered MPC and self-triggered MPC, has been exten-

sively investigated in recent years. In event-triggered MPC, a pre-designed triggering

condition, based on the error between the real system state and predicted one, will

be checked continuously to determine whether the MPC control update is triggered

or not. Differently, in self-triggered MPC, the next triggering time instant is pre-

computed at the current sampling time by designing an appropriate self-triggering

condition using the system dynamics and state predictions. This feature overcomes

the drawback in event-triggered MPC, where the continuous checking of triggering

conditions maybe not practical. The self-triggered MPC control method has been

developed in recent years, and most of the proposed strategies [137, 114, 138] are

for systems without uncertainties or disturbances. When model uncertainties or dis-

turbances are taken into account, existing self-triggered algorithms focus mainly on

robust constraint satisfaction. Inspired by the tube-based MPC method, a class

of robust self-triggered MPC is proposed in [113], where the triggering condition is
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designed based on the bounds of the MPC value function. The same triggering con-

dition is also adopted in [139], where a robust min-max self-triggered MPC method

is proposed. Later in [140] and [141], robust self-triggered MPC strategies based on

reachability analysis and relaxed dynamic programming method are reported, respec-

tively.

As discussed above, the integration of SMPC and self-triggered MPC can ensure

closed-loop chance constraints satisfaction and therefore reduce the inherent conser-

vativeness of RMPC. Alternative stochastic self-triggered MPC schemes are available

in the literature, such as [110, 111, 112]. In [110] and [111], the similar self-triggering

condition inspired by [113] is adopted, while different chance constraints handling

methods from [43] and [72] are utilized, respectively. In [110], the stability of the sys-

tem is analyzed in the mean-square sense while input-state stability of the closed-loop

system is proved in [111]. In [112], the self-triggering condition is designed based on

the summation of the MPC value function bound and the performance measure at the

last sampling time instant. One common feature of previously mentioned works on

self-triggered SMPC is that the open-loop control paradigm is applied between trig-

gering time instants, and resulting constraint tightenings are therefore more complex

and time-varying compared to conventional SMPC methods. The triggering condi-

tion design all relies on the bounds of the MPC value function, where a periodical

sampling is assumed after the open-loop phase. In addition, to evaluate the triggering

condition at each sampling time instant, the solution to a set of quadratic programs

with time-varying tightened constraints is required. Thus, another fundamental limi-

tation is that all methods are essentially computationally expensive at each sampling

time instants.

In this chapter, the design of a self-triggered SMPC algorithm is considered for

linear systems subject to additive disturbances and chance constraints. The self-

triggering mechanism proposed in [138] explicitly handles the communication effect

in the cost function by adding a damping factor, and both the control inputs and

next triggering time are optimized designed simultaneously. One unique feature in

[138] is that the prediction horizon is designed as a variable associated with inter-

execution time, and therefore the patterns of control sequence change adaptively. The

self-triggering mechanism is then further extended to the distributed case in [142].

However, both [138] and [142] consider undisturbed systems, which omit the ubiq-

uitous uncertainties in practice. Since disturbances are not considered in previous

works [138], [142] under the adaptive triggering condition, some appropriate modifi-
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cations are required: (i) a dynamic feedback gain selection procedure is designed to

compensate for disturbance propagations in the open-loop operations, leading to a

more complex error prediction formulation to construct the tightening parameters;

(ii) a modified terminal constraint is imposed to the terminal state in order to guaran-

tee the recursive feasibility of the scheme in spite of the dynamic gain selection; (iii)

an improved self-triggering condition with more tunning parameters is proposed to

evaluate the tradeoff between control performance and communication cost explicitly.

In summary, the contribution of this chapter is in two-folds:

• The co-design of self-triggering mechanism and SMPC algorithm can effectively

reduce both the communication and computation burden, while the sacrifice of

control performance is guaranteed within some specific levels. The presented

self-triggering mechanism offers greater flexibility in tunning the triggering be-

haviour in the presence of state chance constraints and external disturbances.

• The probability of state constraint violations is tight to the desired value under

the self-triggered mechanism. Also, the recursive feasibility of the proposed

method and closed-loop stability of the system have been analyzed in this work.

The structure of this chapter is organized in the following way. In Section 3.2, the

problem formulation is given and a prototype SMPC controller is defined. Following

that in Section 3.3, the modified cost function and constraint tightening methods

are introduced. In Section 3.4, the self-triggered stochastic MPC problem is defined,

and closed-loop properties of the system under the control scheme are analyzed. The

numerical example is given in Section 3.5 and Section 3.6 concludes this chapter.

Notations: In the following, N denotes the set of integers and R denotes the set

of real numbers. N0 denotes the set of natural number. For some integers a ≤ x ≤ b

is denoted as x ∈ N[a,b]. The matrix I and 0 denote identity matrix and zero matrix

with some appropriate dimensions. For a vector x(k) ∈ Nnx , the A− weighted norm

is written as ‖x(k)‖2
A = xTAx. A � 0, A � 0 denote the matrix A is positive definite,

semi-definite positive, respectively. x(i|k) denotes the i-step ahead predicted state

given the state x(k). For a random variable x, Pr(x) and E(x) denote the probability

and expected value of x.
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3.2 Problem setup

In this section, we will introduce the problem formulation of the stochastic self-

triggered MPC with adaptive prediction horizon, including the system dynamics,

self-triggered mechanism, control objectives, and resulting prototype optimization

problems.

3.2.1 System dynamics and chance constraints

Consider the following linear time-invariant system subject to stochastic additive

disturbances:

x(k + 1) = Ax(k) +Bu(k) + w(k), k ∈ N0, (3.1)

in which x(k) ∈ Rnx denotes the state, u(k) ∈ Rnu denotes the control input and

w(k) ∈ Rnw denotes stochastic additive disturbance. The disturbance sequence

{w(0), . . . , w(k), . . . } is a realization of random process W (k), k ∈ N0 satisfying the

following assumption.

Assumption 2. The random process W (k) is independent, identically distributed

with zero mean, and is supported by W, in which W is a bounded and convex set. The

probability distribution of W (k) is given by F (·).

Moreover, the system is subject to chance constraints on predicted states in the

form of

Pr(gTx(i+ 1|k) ≤ h) ≥ px, i ∈ N0, (3.2)

where px is the constraint violations probability level. The predicted state at time

instant k + i+ 1 is modeled as:

x(i+ 1|k) = Ax(i|k) +Bu(i|k) +W (k + i), i ∈ N0,

in which x(i|k) and u(i|k) are predicted state and control input given x(0|k) = x(k).

3.2.2 Self-triggered mechanism

In conventional SMPC, a widely used control parameterization of predicted inputs

u(i|k) is in the form of

u(i|k) = Kx(i|k) + c(i|k), i ∈ N0, (3.3)
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in which c(i|k), i ∈ N[0,N−1] are optimization variables, and c(i|k) = 0, i ∈ N≥N with

a given prediction horizon N . By solving the stochastic MPC problem, the control

input is then applied to the system in a receding horizon fashion, as shown in Figure

3.1a. In contrast, in the self-triggered scheme with fixed prediction horizon N , control

inputs are not generated and transmitted at each sampling time instant k. Define

the triggering index as j ∈ N0, and the time sequence for control input updates as

{k0, k1, . . . , kj, . . . } with k0 = 0. As shown in Figure 3.1b, at sampling time instant

kj, the next sampling time instant is defined as kj+1 = kj + τj, where τj ∈ N[1,N−1]

is defined as the inter-execution time determined by the self-triggered mechanism

given the state x(kj). The main objectives of self-triggered mechanism design are to

determine the next sampling time instant kj+1 and control actions during the period

kj+1 − kj, given the system information at time instant kj.

τ = 1
kN

(a) Periodically sampling scheme.

k
Nτ

(b) Self-triggered sampling scheme with fixed prediction horizon.

kτ τN

(c) Self-triggered sampling scheme with adaptive prediction horizon.

Figure 3.1: Comparions of periodically sampling scheme, self-triggered mechanisms
with fixed prediction horizon and adaptive prediction horizon.

Inspired by [138], the prediction horizon is formulated as a variable that is related

to the inter-execution time τ , as shown in Figure 3.1c. In this case, the cost function

in the stochastic paradigm at kj corresponding to some fixed inter-execution time
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instants τ ∈ N[1,N ] can be defined as

J(x(kj), c
[τ ](kj), τ) =e−γτE

{
Nτ−1∑
i=0

‖x(i|kj)‖2
Q + ‖u(i|kj)‖2

R + ‖x(Nτ |kj)‖2
P

}

=e−γτE

{
N−1∑
l=0

L[τ ](x(lτ |kj), c[τ ](l|kj), τ) + ‖x(Nτ |kj)‖2
P

}
,

(3.4)

where the stage function corresponding to τ is defined as L(x(lτ |kj), c[τ ](l|kj), τ) =∑τ−1
s=0 ‖x(lτ + s|kj)‖2

Q + ‖u(lτ + s|kj)‖2
R. The scalar γ > 0 is a tuning parameter

and e−γτ is therein the damping factor characterizing the communication cost. Q �
0, R � 0 and P � 0 are symmetric weighting matrices. For any τ , patterns of control

perturbation sequence c[τ ](kj) are defined as

c[τ ](kj) =[
c(0|kj)T, . . . , c(0|kj)T︸ ︷︷ ︸

τ

, . . . , c(l|kj)T, . . . , c(l|kj)T︸ ︷︷ ︸
τ

, . . . , c(N − 1|kj)T, . . . , c(N − 1|kj)T︸ ︷︷ ︸
τ

]T

.

(3.5)

When τ = 1, the communication frequency is the highest for the reason that the

least damping e−γ is given to the cost function (3.4). As τ increases, the damping

factor on the cost increases, while on the other hand, the cost function value also

increases, leading to a poorer control performance. The existence of a possible optimal

τ represents the tradeoff between the communication cost and control performance.

Remark 6. Note that the cost function defined in (3.4) is different from that in [138]

because an expectation form of the cost function is adopted in this work. Different

from the cost function in [110] where a penalty scalar is introduced in the open-loop

phase, a damping factor e−γτ is introduced in the cost to take the communication cost

into account explicitly. Also, the terminal cost ‖x(Nτ |kj)‖2
P is added to approximate

the infinite horizon cost.

At sampling time instant kj, the prototype finite horizon optimal control problem
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P[τ ]
0 (x(kj), c

[τ ](kj)) given x(kj) is defined as

min
{c[τ ](kj)}

J(x(kj), c
[τ ](kj), τ)

s.t. x(0|kj) = x(kj),

x(i+ 1|kj) = Ax(i|kj) +Bu(i|kj) +W (kj + i), i ∈ N0,

Pr(gTx(i+ 1|kj) ≤ h) ≥ px, i ∈ N0, .

(3.6)

To this end, the objective of this work is to design an appropriate self-triggered mecha-

nism with modifications on the prototype optimization problem (3.6) to maximize the

inter-execution time interval τ while guaranteeing chance constraints satisfaction (3.2)

and closed-loop stability. Solving the optimization problem P[τ ]
0 (x(kj), c

[τ ](kj)) online

is generally computationally intractable because of the presence of probabilistic state

constraints over infinite dimensions. To solve these challenging issues, some proper ap-

proximations and modifications are required to be carried out for P[τ ]
0 (x(kj), c

[τ ](kj)),

as shown in the next section.

3.3 Cost function and chance constraints handling

In this section, the chance-constrained optimization problem P[τ ]
0 (x(kj), c

[τ ](kj)) is re-

formulated to a computationally tractable MPC problem by transforming the chance

constraints into a deterministic form. Then, chance constraints handling methods

are introduced, and recursive feasible stochastic tubes are constructed for predicted

states x(i|kj). Finally, an improved terminal constraint is designed to deal with the

infinite horizon constraints.

3.3.1 Receding horizon performance with terminal cost func-

tion

As discussed in aforementioned discussions, the prediction horizon in P[τ ]
0 (x(kj), c

[τ ](kj))

changes adaptively with inter-execution time interval τ ∈ N[1,τ̄ ], where τ̄ is the max-

imum length of τ . Then, the control parametrization associated with τ is defined

as

u(lτ + s|kj) = Ksx(lτ |kj) + c(l|kj), s ∈ N[0,τ−1], l ∈ N[0,N−1]. (3.7)

Note that, if the inter-execution time τ is chosen as τ = 1 (the system is sampled

periodically), and a fixed feedback gain Ks = K is chosen, then the control parameter-
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ization (3.7) is equivalent to (3.3). (3.7) emphasizes that the control parametrization

relies on the predicted triggering time sequence {kj, . . . , kj + lτ, . . . }. The predicted

control actions during the inter-execution time interval depend on the sampling of

state at kj since the real state during the period is missing because of the self-

triggering mechanism. Different from [110] where linear state feedback is introduced

after the first τ steps, state feedback is introduced every τ steps because of the form

of the control parametrization in (3.7).

Remark 7. The control parametrization contains a set of state feedback gain Ks, s ∈
N[0,τ−1] to deal with the open-loop phase in the prediction. In previous works on

self-triggered SMPC, such as [110, 111, 112], an important assumption is that state

feedback is introduced to the prediction after the first τ steps. However, this is not the

case in the proposed formulation, and a dynamic gain feedback Ks is therefore intro-

duced. This dynamic parametrization of control input will reduce the conservativeness

of the fixed state feedback gain scheme (3.3) in relative self-triggered mechanisms [138]

and [110] significantly.

At sampling time instant kj, the control perturbation matrix c[τ ](kj) for each

inter-execution time τ ∈ N[1,τ̄ ] can be defined similarly as (3.5):

c[τ ](kj) = [c[τ ](0|kj)T, . . . , c[τ ](N − 1|kj)T]T,

c[τ ](l|kj) = [c(l|kj)T, . . . , c(l|kj)T︸ ︷︷ ︸
τ

]T ∈ Rnu×τ , l ∈ N[0,N−1]. (3.8)

It should be noted that a spatial self-triggering strategy is adopted in this work, which

means that the decision variable during triggering instants is constant. This strategy

dramatically reduces the number of decision variables in the proposed work despite

the prediction horizon increases as τ increases. Due to the linearity of system (3.1),

the predicted state x(lτ + s|kj) can be separated into predicted dynamics in nominal

state z(lτ + s|kj) and error state e(lτ + s|kj) as

x(lτ + s|kj) = z(lτ + s|kj) + e(lτ + s|kj). (3.9)

With the control parametrization defined as (3.7), z(i|kj) and e(i|kj) can be expressed
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as, for τ ∈ N[1,τ̄ ] and l ∈ N0, s ∈ N[1,τ ],

z(lτ + s|kj) = Φs−1z(lτ |kj) +H
[s]
B c[τ ](l|kj),

e(lτ + s|kj) = Φs−1e(lτ |kj) +
s−1∑
n=0

As−1−nW (kj + lτ + n),

(3.10a)

(3.10b)

where H
[s]
B =

[
As−1B . . . B 0

]
︸ ︷︷ ︸

τ

and c[τ ](l|kj) are defined in (3.8). The matrix Φs

is defined by iteration:

Φs = AΦs−1 +BKs,Φ0 = A+BK0.

From (3.10a) and (3.10b), the predicted system dynamics which is related to the

system state with τ is given by, for l ∈ N0,

z((l + 1)τ |kj) = Φτz(lτ |kj) +H
[τ ]
B c[τ ](l|kj),

e((l + 1)τ |kj) = Φτe(lτ |kj) +
τ−1∑
n=0

Aτ−1−nW (kj + lτ + n).

(3.11a)

(3.11b)

where the matrix H
[τ ]
B is defined as H

[τ ]
B =

[
Aτ−1B . . . B

]
︸ ︷︷ ︸

τ

.

Assumption 3. The pair (A,B) is controllable and no eigenvalue of the matrix A is

λ(A) = 1 and λ(Ai) = 1 for i ∈ N[1,τ̄ ].

Remark 8. The design objective of the feedback gain Ks is to guarantee all Φs, s ∈
N[1,τ ] are Schur stable. One method is to solve the semi-definite programming problem

iteratively to find feasible Ks, s ∈ N[1,τ ] satisfying ΦT
s Ps + PsΦs ≤ −I. Gain selection

methods with theoretical guarantees are subject to a future research topic.

Proposition 1. (Reformulation of stage function) For τ ∈ N[1,τ̄ ] and l ∈ N[0,N−1],

the expectation of stage function in (3.4) can be expressed as

E{L(x(lτ |kj), c[τ ](l|kj), τ)}
=‖z(lτ |kj)‖2

Q[τ−1] + 2z(lτ |kj)TN [τ−1]c(l|kj) + ‖c(l|kj)‖2
R[τ−1]

+E
{
‖e(lτ |kj)‖2

Q[τ−1]

}
+

τ−1∑
s=0

tr

(
s−1∑
n=0

AnΣw(An)TQ

)
,

(3.12)
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where the matrices Q[τ−1], R[τ−1] and N [τ−1] can be defined by the following iteration:

For s ∈ N[0,τ−1],

Q[s] = Q[s−1] + ΦT
sQΦs +KT

s RKs,

R[s] = R[s−1] + (B[s−1])TQB[s−1] +R,

N [s] = N [s−1] + ΦT
sQB

[s−1] +KT
s R,

(3.13)

with Q[0] = Q+KT
0 RK0, R[0] = R, N [0] = KT

0 R, and B[s−1] =
∑s

n=0A
s−1−nB.

By using the Proposition 1, the cost function in (3.4) can be expressed as

J(x(kj), c
[τ ](kj), τ)

=e−γτ
(N−1∑

l=0

‖z(lτ |kj)‖2
Q[τ−1] + 2z(lτ |kj)TN [τ−1]c(l|kj) + ‖c(l|kj)‖2

R[τ−1]

+
N−1∑
l=0

E
{
‖e(lτ |kj)‖2

Q[τ−1]

}
+N

τ−1∑
s=0

tr

(
s−1∑
n=0

AnΣw(An)TQ

)
+ E

{
‖x(Nτ |kj)‖2

P

})

=e−γτ
(N−1∑

l=0

‖z(lτ |kj)‖2
Q[τ−1] + 2z(lτ |kj)TN [τ−1]c(l|kj) + ‖c(l|kj)‖2

R[τ−1] + ‖zNτ |kj‖2
P

)
+W

[τ ]
const,

(3.14)

where W
[τ ]
const is a constant that doesn’t depend on x(kj) and c[τ ](kj) and can therefore

be removed from the optimization problem, as shown in the Lemma 1 of [112]. Hence

the modified cost function without constants is given by

J̃(x(kj), c
[τ ](kj), τ) =e−γτ

(N−1∑
l=0

‖z(lτ |kj)‖2
Q[τ−1] + 2z(lτ |kj)TN [τ−1]c(l|kj)

+ ‖c(l|kj)‖2
R[τ−1] + ‖zNτ |kj‖2

P

)
.

(3.15)

Similar result can also be verified in the following statements on the construction

of tightened constraints since the resulting tightened constraints are independent to

W
[τ ]
const. The selection of the terminal cost weighting matrix P will be introduced in

Section 3.3.3.
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3.3.2 Chance constraints handling

In this subsection, we will convert the chance constraints into the deterministic form to

render the prototype optimization problems P[τ ]
0 (x(kj), c

[τ ](kj)) numerically tractable

for every τ ∈ N[1,τ̄ ]. Suppose the control parametrization (3.7) is implemented, the

chance constraints (3.2) have an equivalent form as shown in the following lemma.

Lemma 2. (Probabilistic constraint satisfaction) For τ ∈ N[1,τ̄ ], at sampling time

instant kj, the chance constraints Pr(gTx(lτ + s|kj) ≤ h) ≥ px are satisfied if and

only if c[τ ](kj) satisfies

gTΦs−1Φl
τz(0|kj)+gT

(
Φs−1HΦτ (l)c

[τ ](kj) +H
[s]
B c[τ ](l|kj)

)
≤ h

− ν [τ ]
lτ+i, s ∈ N[1,τ ], l ∈ N0,

(3.16)

where the matrix HΦτ (l) is defined as HΦτ (l) =
[
Φl−1
τ H

[τ ]
B . . . ΦτH

[τ ]
B 0 . . . 0

]
,

and ν
[τ ]
lτ+s is defined as the minimum value such that

Pr

{
gT

[
Φs−1

(
l−1∑
m=0

Φm
τ

τ−1∑
n=0

Aτ−1−nW (kj + (l − 1−m)τ + n)

)

+
s−1∑
n=0

As−1−nW (kj + lτ + n)

]
≤ ν

[τ ]
lτ+s

}
= px.

(3.17)

Proof. By linearility of the system (3.1) and equation (3.10), the predicted state can

be reformulated as for s ∈ N[1,τ ], l ∈ N0,

x(lτ + s|kj) = z(lτ + s|kj) + e(lτ + s|kj)

=Φs−1z(lτ |kj) +H
[s]
B c[τ ](l|kj) + Φs−1e(lτ |kj) +

s−1∑
n=0

As−1−nW (kj + lτ + n),

=Φs−1

(
Φl
τz(0|kj) + Φl

τe(0|kj) +HΦτ (l)c
[τ ](kj)

)
+H

[s]
B c[τ ](l|kj)

+ Φs−1

(
l−1∑
m=0

Φm
τ

τ−1∑
n=0

Aτ−1−nW (kj + (l − 1−m)τ + n)

)

+
s−1∑
n=0

As−1−nW (kj + lτ + n),

where z(lτ |kj) = Φτz((l − 1)τ |kj) + H
[τ ]
B c

[τ ]
l−1|kj , and e(lτ |kj) = Φτe((l − 1)τ |kj) +
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τ−1∑
n=0

Aτ−1−nW (kj + (l − 1)τ + n), are given by (3.11) for l ∈ N≥1. Considering the

assumption on the initial error state e(0|kj) = 0, it follows directly by (3.17) that

(3.2) has an equivalent form as (3.16).

Remark 9. The computation of ν
[τ ]
lτ+i involves univariate convolutions which can

be performed offline with arbitrarily small error, as suggested in [43]. Meanwhile,

sampling-based approximation to ν
[τ ]
lτ+i has also been proposed, as shown in [121].

At sampling time instant kj, the existence of c[τ ](kj) implies only that future

constraints will be satisfied with some given probability px. Since worst case real-

izations of uncertainties are not taken into account, the usual recursive feasibility

cannot work in this case. As suggested in [43] and [110], at each sampling instant

kj, our concern is whether or not a feasible solution exists at the next sampling in-

stant kj+1 = kj + τj. This depends not only on x(kj+1), which in turn relies on

W (kj),W (kj + 1), . . . ,W (kj+1 − 1), but also on the assumption on the next inter-

execution time interval τj+1. In [110] and [111], the predicted next sampling time

interval τj+1 is assumed to be 1, which indicates the system is sampled periodically

after the first open-loop phase, while it is not the case in the proposed work. Simi-

larly, worst case realizations for W (kj),W (kj + 1), . . . ,W (kj+1− 1) are considered to

account for the x(kj+1), and the following lemma provides conditions for the recursive

feasibility of the algorithm to be asserted.

Theorem 3. (Recursively feasible probabilistic tubes) At sampling time instant kj, j ∈
N0, for any inter-execution time interval τ ∈ N[1,τ̄ ], consider the closed-loop dynamics

x(kj + i+ 1) = Ax(kj + i) +Bu(kj + i) + w(kj + i), i ∈ N[0,τ ]

u(kj + i) = Kix(kj) + c(0|kj).
(3.18)

Suppose there exists a control sequence c[τ ](kj) satisfying

gTΦs−1Φl
τz(0|kj) + gT

(
Φs−1HΦτ (l)c

[τ ](kj) +H
[s]
B c[τ ](l|kj)

)
≤ h

− β[τ ]
lτ+s, s ∈ N[1,τ ], l ∈ N0,

(3.19)

where β
[τ ]
lτ+i is defined as the maximum element of the (lτ + i)th column of the matrix
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Γ[τ ] in (3.20).

Γ[τ ] =
ν
[τ ]
1 · · · ν

[τ ]
τ ν

[τ ]
τ+1 · · · ν

[τ ]
2τ ν

[τ ]
2τ+1 · · · ν

[τ ]
3τ · · ·

0 · · · 0 ν
[τ ]
1 + d

[τ ]
τ+1 · · · ν

[τ ]
τ + d

[τ ]
2τ ν

[τ ]
τ+1 + d

[τ ]
2τ+1 · · · ν

[τ ]
2τ + d

[τ ]
3τ · · ·

... · · ·
... 0 · · · 0 ν

[τ ]
1 + d

[τ ]
τ+1 + d

[τ ]
2τ+1 · · · ν

[τ ]
τ + d

[τ ]
2τ + d

[τ ]
3τ · · ·

...
...

...
...

...
...

...
...

...
. . .

 ,
(3.20)

with d
[τ ]
lτ+i = gT

[
Φs−1

(∑l−1
q=0 Φq

τ max
w∈W

τ−1∑
n=0

Aτ−1−nw

)]
, s ∈ N[1,τ ], l ∈ N≥1. Then for

the closed-loop system (3.18), at the next sampling time instant kj+1 = kj + τ , there

exists at least one feasible solution c[τ ](kj+1) satisfying (3.19). Also, if future sampling

time instants are assumed to be kj+m, where kj+m+1 = kj+m + τ and m ∈ N0, the

chance constraints (3.2) are satisfied for all k ∈ N0.

Proof. The definition of the first row in matrix Γ[τ ] makes (3.19) equivalent to (3.16).

At the next sampling time instant kj+1 = kj +τ , the feasibility of (3.19) is considered

by assuming τj+1 = τ . At time kj+1, define a candidate solution as c̃[τ ](kj+1) =[
c[τ ](1|kj)T . . . c[τ ](N − 1|kj)T 0

]T

, and it holds that c(lτ + s|kj+1) = c((l+ 1)τ +

s|kj) for l ∈ N[0,N−1], s ∈ N[1,τ ]. The resulting predicted state at kj+1 for l ∈ N0, s ∈
N[1,τ ], is given by

x(lτ + s|kj+1) = z(lτ + s|kj+1) + e(lτ + s|kj+1)

=Φs−1

(
Φl
τz(0|kj+1) + Φl

τe(0|kj+1) +HΦτ (l)c̃
[τ ](kj+1)

)
+H

[s]
B c̃[τ ](l|kj+1)

+ Φs−1

(
l−1∑
m=0

Φm
τ

τ−1∑
n=0

Aτ−1−nW (kj+1 + (l − 1−m)τ + n)

)

+
s−1∑
n=0

As−1−nW (kj+1 + lτ + n).

Note that from (3.11), z(0|kj+1) and e(0|kj+1) are given by z(0|kj+1) = Φτz(0|kj) +

H
[τ ]
B c[τ ](0|kj), and e(0|kj+1) = maxw∈W

τ−1∑
n=0

Aτ−1−nwkj+n, where e(0|kj) = 0 and the

worst case realizations of w in the period [kj, kj+1] are considered. Hence, the can-

didate solution c̃(kj+1) is a feasible solution at time kj+1 if the following condition
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holds for l ∈ N≥1, s ∈ N[1,τ ],

gTΦs−1Φl
τz(0|kj) + gT

(
Φs−1HΦτ (l)c

[τ ](kj) +H
[s]
B c[τ ](l|kj)

)
≤ h

− gT

[
Φs−1

(
Φl
τ max
w∈W

τ−1∑
n=0

Aτ−1−nw

)]

− gT

[
Φs−1

(
l−1∑
m=0

Φm
τ

τ−1∑
n=0

Aτ−1−nW (kj+1 + (l − 1−m)τ + n)

)

+
s−1∑
n=0

As−1−nW (kj+1 + lτ + n)

]
,

(3.21)

which is the second row of the matrix Γ[τ ] and the subscripts in w are omitted for

notation simplicity. Similarly, the feasibility of (3.19) at the sampling time instant

kj+p = kj + pτ, p ∈ N0 can be guaranteed if it holds that for l ∈ N≥p, s ∈ N[1,τ ],

gTΦs−1Φl
τz(0|kj) + gT

(
Φs−1HΦτ (l)c

[τ ](kj) +H
[s]
B c[τ ](l|kj)

)
≤ h

− gT

[
Φs−1

(
l−1∑
q=0

Φq
τ max
w∈W

τ−1∑
n=0

Aτ−1−nw

)]

− gT

[
Φs−1

(
l−1∑
m=0

Φm
τ

τ−1∑
n=0

Aτ−1−nW (kj+1 + (l − 1−m)τ + n)

)

+
s−1∑
n=0

As−1−nW (kj+p + lτ + n)

]
,

(3.22)

which is the pth row of the matrix Γ[τ ]. As a result, the feasibility at sampling instant

kj+m = kj + pτ, p ∈ N0, can be ensured by taking intersection of the above equations,

and elements in those equations define matrix Γ[τ ] for τ ∈ N[1,τ̄ ].

Remark 10. Theorem 3 implies that for some fixed τj ∈ N[1,τ̄ ], the optimization

problem is always feasible for the following sampling time instant. By setting τ = 1,

the results are reduced to Theorem 3 in [43]. The key difference between the proposed

Theorem 3 here and Theorem 3.1 in [110] is that τkj+m = τkj ,m ∈ N≥1 in our work

while τkj+m = 1,m ∈ N≥1 in [110].
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3.3.3 Terminal cost and terminal constraints

When l ≥ N , the predicted control input is u(lτ + s|kj) = Ksx(lτ |kj), s ∈ N[0,τ−1],

and the resulting predicted state dynamics evolves for s ∈ N[0,τ−1], l ∈ N≥N according

to

x(lτ + s+ 1|kj) = Φsx(lτ |kj) +
s−1∑
n=0

As−1−nW (kj + lτ + n).

The selection of the terminal weighting matrix P follows the Section V in [138], where

the similar result is extended to the stochastic setting.

Proposition 2. (Terminal cost parameter design) If the terminal cost in (3.4) is

designed as ‖x(Nτ |kj)‖2
P , where P � 0 satisfies

ΦT
τ−1PΦτ−1 − P +Q[τ−1] � 0, ∀τ ∈ N[1,τ̄ ], (3.23)

then it holds that

E{‖x((N + 1)τ |kj)‖2
P − ‖x(Nτ |kj)‖2

p} ≤ −eγτL(x(Nτ |kj), 0, τ). (3.24)

Remark 11. The existence of a matrix P in (3.23) can be ensured by Lemma 3 in

[138]. Since matrices Φτ are Hurwitz by construction for every τ ∈ N[1,τ̄ ], there exists

a unique matrix P [τ ] satisfying ΦT
τ P

[τ ]Φτ − P [τ ] + Q̄[τ ] ≺ 0. Therefore the matrix P

can be selected as P =
∑τ̄

τ=1 P
[τ ] following the similar result in [138]. The selection

of P ensures that for all τ ∈ N[1,τ̄ ], the Proposition 2 is true, which is an extension

of the Assumption 2 in [138] and plays a vital role in guaranteeing the stability of

closed-loop system as shown in the Section 3.4.

By using Theorem 3, the chance constraints (3.2) in the infinite horizon optimiza-

tion problem P[τ ]
0 (ckj) can be transformed into the deterministic form. However, to

render the problem numerically tractable, a terminal constraint has to be used to

ensure the constraint (3.19) is satisfied over an infinite prediction horizon. In the

following, for every s ∈ N[1,τ ], the bounds on the sequence β
[τ ]
lτ+s are given first.

Lemma 3. (Bounds on β
[τ ]
lτ+s) For τ ∈ N[1,τ̄ ], and s ∈ N[1,τ ], the sequence

β[τ ]
s , β

[τ ]
τ+s, . . . , β

[τ ]
lτ+s, . . .
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is monotonically nondecreasing and upper bounded by

β̄[τ ]
s := ν [τ ]

s +
λ−1∑
n=1

d
[τ ]
nτ+s +

ρvs

1− ρs
‖g‖

Θ
[τ ]
s
, (3.25)

where λ ∈ N>0, ‖g‖
Θ

[τ ]
s

=

√
gTΘ

[τ ]
s g and ρ

[τ ]
s ,Θ

[τ ]
s satisfy

max
w∈W
‖
τ−1∑
n=0

Anw‖
(Θ

[τ ]
s )−1 ≤ 1,

Φs−1Φl
τΘ

[τ ]
s (Φs−1Φl

τ )
T ≤ ρ2

sΘ
[τ ]
s , ρs ∈ (0, 1).

(3.26a)

(3.26b)

Proof. From the definition of Γ[τ ] matrix, it follows that β
[τ ]
lτ+s ≤ β

[τ ]
(l+1)τ+s for every

s ∈ N[1,τ ], and we have

lim
l→∞

β
[τ ]
lτ+s = β̄[τ ]

s ≤ ν [τ ]
s +

∞∑
l=1

d
[τ ]
lτ+s. (3.27)

It should be noted that both Φs−1 and Φτ are strictly stable due to the control

parametrization in (3.7), so conditions in (3.26) are feasible. From (3.26a), it holds

that

d
[τ ]
lτ+s = max

w∈W
gTΦs−1Φl

τ (
τ−1∑
n=0

Anw)

≤ max
‖λ‖

(Θ
[τ ]
s )−1

gTΦs−1Φl
τλ

≤ ‖(Φs−1Φl
τ )

Tg‖
Θ

[τ ]
s
.

Therefore (3.26b) implies that d
[τ ]
lτ+s ≤ ‖(Φs−1Φl−1

τ )Tg‖
Θ

[τ ]
s

, which by recursion leads

to (3.25) since 0 < ρ
[τ ]
s < 1.

Remark 12. To guarantee the existence of the recursive feasible tube (3.19), it is

desirable to assume h ≥ β̄
[τ ]
s .

From the predicted nominal dynamics in (3.10a), the terminal nominal dynamics

can be written as

z((N + l)τ + s|kj) = Φs−1Φl
τz(Nτ |kj), l ∈ N0, s ∈ N[1,τ ], (3.28)
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since cN+l|kj = 0 for all l ∈ N0. The terminal constraint is therefore defined as

Z [τ ]
f :=

{
z ∈ Rnx

∣∣∣ gTΦs−1Φl
τz ≤ h− β[τ ]

Nτ+lτ+s, l ∈ N0, s ∈ N[1,τ ]

}
. (3.29)

From Lemma 3, the value of β
[τ ]
Nτ+lτ+i is upper bounded, and an inner approximation

of (3.29) can be formulated as:

Ẑ [τ ]
f :=

{
z ∈ Rnx

∣∣∣∣∣ gTΦs−1Φl
τz ≤ h− β[τ ]

Nτ+lτ+s, l ∈ N[0,N̂−1], s ∈ N[1,τ ],

gTΦs−1Φl
τz ≤ h− β̄[τ ]

s , l ∈ N≥N̂ , s ∈ N[1,τ ]

}
.

(3.30)

To remove the consideration of infinite number of constraints in (3.30), using the

Theorem 2.3 from [143], there exists a n∗ ∈ N≥1 such that (3.30) are ensured through

the first (N̂ +n∗)τ constraints. The terminal constraints for τ ∈ N[1,τ̄ ] can be defined

as

Z̄ [τ ]
f :=

{
z ∈ Rnx

∣∣∣∣∣ gTΦs−1Φl
τz ≤ h− β[τ ]

Nτ+lτ+s, l ∈ N[0,N̂−1], s ∈ N[1,τ ],

gTΦs−1Φl
τz ≤ h− β̄[τ ]

s , l ∈ N[N̂,N̂+n∗], s ∈ N[1,τ ]

}
.

(3.31)

3.4 Stochastic self-triggered MPC with adaptive

prediction horizon

3.4.1 Optimization problem and algorithm

Given the state x(kj) at sampling time instant kj, the reformulation of the prototype

MPC optimization problem P[τ ](x(kj), c
[τ ](kj)) for τ ∈ N[1,τ̄ ] is defined as

min
{c[τ ](kj)}

J̃(x(kj), c
[τ ](kj), τ)

for l ∈ N[0,N−1], s ∈ N[1,τ ],

s.t. z(lτ + s|kj) = Φs−1z(lτ |kj) +H
[s]
B c[τ ](l|kj),

gTΦs−1Φl
τz(0|kj) + gTΦs−1HΦτ (l)c

[τ ](kj) + gTH
[s]
B c[τ ](l|kj) ≤ h− β[τ ]

lτ+s,

z(Nτ |kj) ∈ Z̄ [τ ]
f .

(3.32)

Define V
[τ ]
kj

and c∗[τ ](kj) as the optimal value function and optimal solution to the

corresponding problem P[τ ](x(kj), c
[τ ](kj)). At each sampling time instant kj, in order
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to reduce the communication burden, the largest inter-execution time interval τj is

obtained by solving the following self-triggered MPC problem P[st](x(kj)):

τ ∗j := arg max
τ∈N[1,τ̄ ]

τ

s.t. F [τ ]
x(kj)
6= ∅,

V
[τ ]
kj
≤ V

[τ∗j−1]

kj
+ αe−γτ

∗
j−1ηkj−1

+ (e−γ − e−γτ∗j−1)E{
τ∗j−1−1∑
s=0

‖Asw‖P},

(3.33)

where 0 < α < 1 is a tuning parameter, ηkj−1
=
∑τ∗j−1−1

s=0 (‖x(kj−1 + s)‖2
Q + ‖u(kj−1 +

s‖2
R) and F [τ ]

x(kj)
is the feasible set with respect to the OCP P[τ ](x(kj), c

[τ ](kj)). The

resulting optimal control sequence is denoted as c∗[τj ](kj) and the stochastic self-

triggered MPC algorithm is summarized in Algorithm 2.

Algorithm 2: Stochastic self-triggered MPC with adaptive prediction horizon

Offline: Set k = 0. Determine the control gains Ki, i ∈ N[0,τ̄ ]. Define the
chance constraints reformulation parameters and terminal constraints
parameters.

while Termination conditions not satisfied do
Step 1. Get the system measure x(k);
Step 2. Obtain the inter-execution time interval τ ∗ and optimal control
sequence c∗[τ ](k) by solving problem P[st](x(k));
Step 3. Apply control input u(k + i) = Kix(k) + c∗(0|k) to the system for
i ∈ N[0,τ∗−1];
Step 4. Set the next sampling time instant as k = k + τ ∗, and return to
Step 1.

end

The closed-loop system under the Algorithm 2 is given by

x(k + 1) = Ax(k) +Bu(k) + w(k), k ∈ N[kj ,kj+1−1]

u(k) = Kk−kjx(kj) + c∗(kj),

kj+1 = kj + τ ∗j , k0 = 0, j ∈ N.

(3.34)

and the closed-loop properties for the system are summarized in the following sub-

section.

Remark 13. Even though the prediction horizon adapts to changes in τ , the number

of decision variables in the MPC optimization problem is fixed for all τ ∈ N[1,τ̄ ] due
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to the sparse structure of self-triggering control patterns (3.8). The computational

complexity will increase as τ increases because τN linear constraints will be imposed

on nominal dynamics and terminal state as shown in (3.19) and (3.31).

3.4.2 Closed-loop properties

Theorem 4. (Recursive feasibility) At sampling time instant k0, if the self-triggered

MPC problem P[st](xk0) is initially feasible, then for any sampling time instant kj, j ∈
N>0, the problem P[st](x(kj)) is feasible. Furthermore, it can be ensured chance con-

straints (3.2) are satisfied for i ∈ N0.

Proof. At sampling time instant kj, let the solution to self-triggered MPC problem

P[st](x(k)) be τ ∗j and c∗[τj ](kj). At the next sampling time instant kj+1, define the

candidate solution as τj+1 = τ ∗j and c̃[τj+1](kj+1) = {c∗[τj ](1|kj), . . . , c∗[τj ](N−1|kj),0}.
For l ∈ N0 and s ∈ N[1,τ ], it holds that

gTΦs−1Φl
τx(Nτ |kj+1)

=gTΦs−1Φl+1
τ z(Nτ |kj) + gTΦs−1Φl+1

τ

s−1∑
n=0

As−1−nW (kj +Nτ + n)

≤h− β[τ ]
(l+1)τ+s + d

[τ ]
(l+1)τ+s ≤ h− β[τ ]

lτ+s

(3.35)

Therefore we can obtain that z(Nτ |kj+1) ∈ Z̄ [τj ]
f . From Theorem 3 and terminal

constraint satisfaction, it can be concluded that at sampling time instant kj+1, the

candidate solution c̃[τj+1](kj+1) is a feasible solution to the self-triggered problem

P[st](x(j + 1)), and by induction, the optimization problem is feasible at all sampling

time instant kj, j ∈ N0.

Theorem 5. (Stability) Consider the closed-loop system (3.34) under Algorithm 2,

we have

lim
n→∞

1

n

n∑
j=0

τ∗j −1∑
k=0

E(‖x(k)‖2
Q + ‖u(k)‖2

R) ≤
e−γ

(1− α)e−γτ̄
E{

τ̄−1∑
n=0

‖Asw‖P}. (3.36)

Proof. At sampling time instant kj, denote the optimal solution to the self-triggered

problem P[st](x(kj)) as τ ∗j and c[τ∗j ](kj) = {c[τ∗j ](0|kj), . . . , c[τ∗j ](N−1|kj)}. At the next

sampling time instant kj+1, define the candidate solution c̃[τ∗j ](kj+1) with respect to
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inter-execution time τ ∗j as c̃[τ∗j ](kj+1) = {c[τ∗j ](1|kj), . . . , c[τ∗j ](N − 1|kj),0}. The self-

triggering condition and optimality of P[st](x(kj+1)) at sampling time kj+1 implies

that

E
{
V

[τ∗j+1]

kj+1
(x(kj+1), c[τ∗j+1](kj+1))

}
− E

{
V

[τ∗j ]

kj
(xkj , c

[τ∗j ](kj))
}

≤E
{
V

[τ∗j ]

kj+1
(x(kj+1), c[τ∗j ](kj+1))

}
− E

{
V

[τ∗j ]

kj
(xkj , c

[τ∗j ](kj))
}

+ αe−γτ
∗
j ηkj

+ (e−γ − e−γτ∗j )E{
τ∗j −1∑
s=0

‖Asw‖P}

≤E
{
Ṽ

[τ∗j ]

kj+1
(x(kj+1), c̃[τ∗j ](kj+1))

}
− E

{
V

[τ∗j ]

kj
(xkj , c

[τ∗j ](kj))
}

+ αe−γτ
∗
j ηkj

+ (e−γ − e−γτ∗j )E{
τ∗j −1∑
s=0

‖Asw‖P}.

where ηkj =
∑τ∗j −1

s=0 (‖xkj+s‖2
Q + ‖ukj+s‖2

R). It should be noted that from the feasibil-

ity analysis in Theorem 4, P[st](x(kj+1)) admits a solution with inter-execution time

τ ∗j . From (3.11), it holds that x(kj+1) = z(0|kj+1) + e(0|kj+1), where z(0|kj+1) =

z(τ ∗j |kj) = Φτ∗j
x(kj) + H

[τ∗j ]

B c[τ∗j ](0|kj), and e(0|kj+1) =
∑τ∗j −1

n=0 Aτ
∗
j −1−nw(kj + n).

Therefore,

E
{
Ṽ

[τ∗j ]

kj+1
(x(kj+1), c̃[τ∗j ](kj+1))

}
− E

{
V

[τ∗j ]

kj
(x(kj), c

[τ∗j ](kj))
}

=− e−γτ∗j
τ∗j −1∑
s=0

E{‖x(s|kj)‖2
Q + ‖u(s|kj)‖2

R}

+ e−γτ
∗
j E{

N−1∑
l=0

‖Φl
τ∗j
e(0|kj+1)‖2

Q
[τ∗
j
−1] + ‖ΦN

τ∗j
e(0|kj+1)‖2

P},

where the last term is equal to E{‖e(0|kj+1)‖2
P} from (2). So it implies that

E
{
V

[τ∗j+1]

kj+1
(x(kj+1), c[τ∗j+1](kj+1))

}
− E

{
V

[τ∗j ]

kj
(x(kj), c

[τ∗j ](kj))
}

≤− (1− α)e−γτ
∗
j

τ∗j −1∑
s=0

(‖x(kj + s)‖2
Q + ‖u(kj + s)‖2

R) + e−γE{‖e(0|kj+1)‖2
P}

≤ − (1− α)e−γτ̄
τ̄∗j −1∑
s=0

(‖x(kj + s)‖2
Q + ‖u(kj + s)‖2

R) + e−γE{
τ̄−1∑
s=0

‖Asw‖P}

(3.37)
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Summing (3.37) from j = 0 to j = n results in

E{V [τ∗0 ]
k0
} − E{V [τ∗n]

kn
}

≥ (1− α)e−γτ̄
n∑
j=0

τ∗j −1∑
s=0

(‖x(kj + s)‖2
Q + ‖u(kj + s)‖2

R)− ne−γE{
τ̄−1∑
s=0

‖Asw‖P},

impling the quadratic stability condition (3.36) since E{V [τ∗n]
kn
}−E{V [τ∗0 ]

k0
} is bounded.

3.5 Numerical examples

Consider the linearized DC-DC converter system as shown in [121] and [110]:

x(k + 1) =

[
1 0.0075

−0.143 0.996

]
x(k) +

[
4.798

0.115

]
u(k) + w(k),

Pr
{[

1 0
]
x(k) ≤ 2

}
≥ 0.8,

(3.38)

where w(k) is assumed to be a truncated identical independently distributed Gaussian

random process with zero mean and a variance 0.042. w(k) is bounded by ‖w(k)‖ ≤
0.1, and Q = diag{1, 10}, R = 1. The prediction horizon is chosen as N = 10,

the extended horizon is chosen as N̂ = 5, the n∗ in (3.31) is selected as 1, and the

maximal triggering interval is selected as τ̄ = 5. For s ∈ N[0,τ̄−1], the state feedback

gains Ks in (3.7) are given in Table 3.1, and it can be readily verified that all Φs are

Schur stable. The terminal weighting matrix P is selected by (3.23) and Remark 11

Table 3.1: Selection of feedback gain Ks.

Feedback gain Ks

K0 [−0.2093 0.0766]

K1 [5.6403× 10−4 − 0.0349]

K2 [9.8827× 10−5 − 0.0142]

K3 [1.3912× 10−4 − 0.0084]

K4 [1.8643× 10−4 − 0.0059]

as P =
[
24.1653 −102.5252; −102.5252 605.0106

]
. The tuning parameter α in
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self-tiggered condition (3.33) and the damping parameter γ are chosen as α = 0.01

and γ = 0.001, respectively. Simulation studies are provided to demonstrate the

effectiveness of the proposed method in comparison with the self-triggered SMPC

control scheme with a fixed prediction horizon in [110]. For each control strategy,

Ntrial = 100 realizations of uncertainty sequence are generated with initial condition[
2.5 2.8

]T

and the simulation length is Tsim = 20 steps.

Chance constraint violations : The state trajectories of the closed-loop system are

illustrated in the left plot in Figure 3.2, where the alternative blue and red lines denote

the evolution of state trajectory with respect to time steps. The black line denotes the

chance constraint, and the right plot in Figure 3.2 enlarges the constraint bound region

to show constraint violations. With the selected parameters, it can be observed that

probabilities of constraint violations at time step 1, 3, 5, 7 are 19.3%, 19.6%, 19.8% and

20.3%, respectively. The simulation results implies that the proposed self-triggered

SMPC controller steers the closed-loop trajectories to the region around origin while

the constraint violations probability is tight to the specific value 20%.

Figure 3.2: State trajectories of closed-loop system under self-triggered MPC with
adaptive prediction horizon.

Average inter-execution time and performance: The closed-loop trajectories of

state x1, control input u and inter-execution interval under the self-triggered SMPC
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algorithm with an adaptive prediction horizon (STSMPC-AP) and a fixed prediction

horizon (STSMPC-FP) for one realization of uncertainty sequence are illustrated in

Figure 3.3. The sampling instants are highlighted by red circles for STSMPC-AP

and blue diamonds for STSMPC-FP to demonstrate the different sampling behaviour

between the two algorithms. Considering 100 realizations of uncertainties, the average

inter-execution time for STSMPC-AP is 2.67 while it is 1.81 for STSMPC-FP. As

shown in the bottom plot in Figure 3.3, it can be observed that the inter-execution

time converges to the maximal triggering length τ̄ = 5 for the proposed STSMPC-

AP while that almost converges to 1 for STSMPC-FP. This difference arises from the

improved design of triggering condition (3.33).
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Figure 3.3: State trajectories, control inputs and triggering interval of closed-loop
system under STSMPC-AP and STSMPC-FP with one realization of uncertainty
sequence.

To further evaluate the proposed algorithm, the performance index is defined as

Jindex =
1

Ntrial

1

Tsim

Tsim∑
k=0

(‖x(k)‖2
Q + ‖u(k)‖2

R). (3.39)
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It can be obtained that the measure is 15.9292 for STSMPC-AP and 15.5632 for

STSMPC-FP. Compared with the self-triggered SMPC method with a fixed predic-

tion horizon, our proposed algorithm achieves a more desirable asymptotic sampling

behaviour without sacrificing the performance too much. This can also be demon-

strated from the top plot in Figure 3.3.

Impacts of tuning parameters on average sampling interval: To analyze the impact

of tuning parameters γ and α on the proposed algorithm, 50 and 10 different values of

γ and α are evenly chosen in the intervals [10−3, 10−1] and [0.01, 0.4]. The relationship

between the average sampling interval with respect to γ and α are plotted in Figure

3.4. It can be observed that the average sampling interval increases as γ and α

increase.
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(a) The average sampling interval versus different value of γ. α = 0.01 is selected
as a constant.
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(b) The average sampling interval versus different value of α. γ = 0.001 is selected
as a constant.

Figure 3.4: The average sampling interval versus tuning parameters γ and α.
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3.6 Conclusions

In this chapter, a novel self-triggered SMPC algorithm with an adaptive prediction

horizon is proposed for linear systems subject to both additive disturbances and state

chance constraints. The prediction horizon in the MPC algorithm changes adaptively

to generate some appropriate inter-execution time intervals. To deal with the additive

disturbance, an improved triggering condition is designed, and the asymptotic sam-

pling behaviour is analyzed. Sufficient conditions to guarantee the recursive feasibility

of the algorithm are given, and the closed-loop system is proven to be quadratically

stable. Simulation results have shown the efficacy of the designed self-triggered con-

trol method in reducing the communication burden while guaranteeing some specific

performance loss.
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Chapter 4

Distributed Self-triggered

Stochastic MPC for CPSs with

Coupled Chance Constraints: A

Stochastic Tube Approach

4.1 Introduction

With the development of computer technologies and communication networks, cyber-

physical systems (CPSs) have become an interest of research due to the compre-

hensive integration of physically engineered systems, such as sensors, actuators and

plants, with intricate cyber components, possessing information communication and

computation. In CPSs, advantages of low installation cost, high reliability, flexible

modularity, improved efficiency, and greater autonomy can be obtained by the tight

coordination of physical and cyber components. Several sectors, including robotics,

transportation, health care, smart building, and smart grid, have witnessed the suc-

cessful application of CPSs design. The model-based control synthesis plays a vital

role in CPSs design as the dynamic behaviour can be systematically adjusted under

this approach. Due to the heterogeneous and spatially interconnected nature of CPSs,

it necessitates the adoption of distributed control structure to improve the structural

flexibility and scalability while maintaining some desirable closed-loop properties.

Meanwhile, the integration of extensive cyber capability and physical plants with

ubiquitous uncertainties also introduces concerns over the robustness and stability of
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the CPSs. Thus, in order to achieve satisfactory performance, robustness and sta-

bility, a detailed investigation into control synthesis of CPSs under the distributed

paradigm is of importance.

The distributed controller design for CPSs is also contingent on physical con-

straints and performance considerations and distributed MPC (DMPC) has attracted

much attention since it simultaneously handles the need for meeting system con-

straints and the quest for desirable performance goals. In the literature, DMPC has

been extensively studied and applied for large-scale CPSs, such as nonlinear chemical

systems [144], natural gas refrigeration plant [145] and unicycle robots [146]. For

distributed networked systems subject to uncertainties with a given probability dis-

tribution, stochastic DMPC has been investigated over the last several years. For

subsystems that are dynamically decoupled [88], the Chebyshev type inequality is

used to transform the coupled chance constraints into deterministic form. In [93],

for distributed systems subject to parametric uncertainties, the uncertainty propaga-

tion is approximated by the generalized polynomial chaos expansions (gPCEs), and

a gPCEs-based DMPC method with guaranteed closed-loop properties is proposed.

The tube-based stochastic MPC in [43] is extended to the distributed form in [90] for

a linear system subject to additive disturbances. The DMPC control strategy in [90]

is then further extended for systems with both parametric and additive uncertainties,

where the stochastic tube technique in [69] is utilized to deal with coupled constraints.

It is well known that the handling of coupling in DMPC relies on the subsystem

update rule design. In the literature, the sequential and iterative update rule have

been proposed, which will lead to a heavy communication burden for the network. It is

therefore interesting to study the event-based distributed MPC, which will reduce the

communication burden for the network. Interested readers please refer to [100, 136]

for a detailed review of event-based control, involving event-triggered control and

self-triggered control. Several results [137, 114, 138] on self-triggered MPC have been

developed for systems without uncertainties in the literature over the last few years.

For the system under bounded uncertainties, results on robust self-triggered MPC

can be found in [132, 113]. In [140], a robust self-triggered SMPC control method

is proposed using the reachability analysis. Furthermore, [111] and [110] extend

the result [113] to the stochastic setting where the system is affected by stochastic

disturbances. In [111], the Cantelli inequality is utilized to construct the tightened

constraints, while in [110, 112] the constraints are constructed using the probability

distribution explicitly following the ideas in [43]. It should be noted that self-triggered
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DMPC schemes receive relatively little attention and only reported in [147, 148, 149,

142]. In [147, 148, 149], the self-triggered mechanism and DMPC algorithm are

designed separately, while in [142], the self-triggered mechanism and DMPC are co-

designed following the line of [138].

Motivated by the aforementioned discussions, a distributed self-triggered SMPC

control strategy is proposed for linear CPSs subject to additive stochastic disturbance

and coupled chance constraints. One important class of controlled systems in stochas-

tic DMPC design is that all subsystems are dynamically decoupled but share coupled

constraints. The aim of this work is to extend the self-triggered SMPC framework

described in [110] to the distributed paradigm by making the following modifications:

(i) deterministic reformulations of both local and coupled chance constraints are con-

structed to evaluate the uncertainty propagation through the distributed systems;

(ii) a sequential self-triggered update rule is designed to achieve a tradeoff between

the overall system performance and communication among each subsystem; (iii) to

construct recursive feasible stochastic tubes, terminal constraints are redesigned con-

sidering both coupled chance constraints and inter-execution time. Contributions of

this work are given as follows:

• Both local and coupled chance constraints are handled in a cooperative fashion

by using the distribution information of uncertainties arising from either local

subsystem or other neighbouring subsystems;

• The amount of communication among each subsystem and computation re-

quired by each subsystem are significantly reduced thanks to the co-design of

the self-triggered mechanism and distributed SMPC controller, while the sacri-

fice of overall system performance can be tuned to some specific level of tradeoff;

• Sufficient conditions on constraint parameters tightening are developed to guar-

antee the recursive feasibility of the algorithm, and the quadratic stability of the

overall system is investigated in the presence of additive stochastic disturbances.

The remainder of this chapter is organized as follows. Section 4.2 presents the

problem setup of the distributed CPSs subject to coupled chance constraints and

reviews the self-triggered SMPC scheme in [110] for a single system. This then ushers

in the centralized self-triggered SMPC method presented in Section 4.3 for distributed

systems subject to coupled chance constraints. Beginning from Section 4.4, we seek

to formulate the distributed self-triggered SMPC algorithm and establish sufficient
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conditions to guarantee recursive feasibility and stability. Section 4.5 compares the

performance of the proposed algorithm with the corresponding distributed SMPC

method by numerical examples. The chapter concludes in Section 4.6 with a concise

summary.

Notations: In the following, sets of natural numbers and real numbers are denoted

as N and R. For any a, b ∈ N, define N0, N≥a, N≤a, N[a,b] as sets {n ∈ N|n ≥ 0},
{n ∈ N|n ≥ a}, {n ∈ N|n ≤ a}, {n ∈ N|b ≤ n ≤ a}, respectively. x(k) denotes state

at time k, and x(i|k) denotes predicted i-step ahead state given the state x(k). For

a random variable x, denote Pr{x} and E(x) as the probability and expectation of x,

respectively. For n ∈ N≥1, the matrix In×n denotes the identity matrix in Rn×n.

4.2 Problem formulation

4.2.1 Distributed cyber-physical control systems

The studied distributed CPSs, as shown in Figure 4.1, feature that subsystems to-

gether with associated actuators and sensors are spatially separated and connected

via a communication network. The system state measurements are communicated

from the sensors to the online MPC controller; then, the next sampling time instant

and generated control sequences are transmitted to the actuator through the same

network. Consider the following cyber-physical control systems consisting of Np sub-

systems:

xp(k + 1) = Apxp(k) +Bpup(k) +Dpwp(k), p ∈ P := N[1,Np], (4.1)

in which xp(k) ∈ Rnp,x , up(k) ∈ Rnp,u and wp(k) ∈ Rnp,w denote system state, control

input, and stochastic additive disturbance for subsystem p with appropriate system

matrices Ap, Bp and Dp. The additive disturbance sequence {wp(0), wp(1), . . . } is

assumed to be independent and identically distributed with zero mean and covariance

matrix σwp ∈ Rnp,w×np,w . For wp(k) = [wp,1(k) . . . wp,nw(k)]T, the distribution of

wp,i(k) is given by

Pr{wp,i(k) ≤ ξp,i} =


1 , ξp,i ≥ αp,i,

Fp,i(ξp,i) , −αp,i ≤ ξp,i ≤ αp,i,

0 , ξp,i ≤ −αp,i,
(4.2)
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Figure 4.1: System configuration of distributed self-triggered CPSs with Np subsys-
tems.

where αp,i ∈ R>0 and it follows that wp(k) is assumed to lie in a polytope Wp =

{wp : |wp| ≤ αp} with αp = [αp,1 . . . αp,nw ]. The sequence {wp(0), . . . , wp(k), . . . } is a

realization of random process Wp(k), k ∈ N0.

Each subsystem p is assumed to be subject to both local chance constraints and

coupled chance constraints in the form of

Pr
{
gT
p xp(i+ 1|k) ≤ hp

}
≥ pp, i ∈ N0, p ∈ P , (4.3a)

Pr

{
Np∑
p=1

gT
cpxp(i+ 1|k) ≤ hc

}
≥ pp,c, i ∈ N0, c ∈ C, (4.3b)

in which vectors gp, hp describe the local chance constraints for subsystem p ∈ P
and vectors gcp, hc, p ∈ P , c ∈ C := N[1,Nc] characterize the coupling between each



82

subsystem, where Nc denotes the number of coupled constraints. Parameters pp and

pp,c represent probabilities of local and coupled constraints violation, respectively.

Define Pc := {p ∈ P|gcp 6= 0} as the set of subsystems involved in the coupled

constraint c and Cp := {c ∈ C|gcp 6= 0} as the set of coupled constraints involved in

subsystem p. The set Qp := (∪c∈CPc)\{p} is defined as all coupled subsystems to

subsystem p.

4.2.2 Self-triggered mechanism overview

As suggested in [150], at each sampling instant, only one subsystem is permitted to

update the control sequence by solving the DMPC problem. Figure 4.2(a) shows

the periodical sampling behaviour for a group consisting of three subsystems, and

the dashed line denotes the communication between each subsystem. To reduce the

communication burden between each subsystem, the self-triggered mechanism is im-

plemented on the cyber-physical system (4.1), as shown in Figure 4.2(b).

t
subsystem 1

t
subsystem 2

t
subsystem 3

(a) Periodical sampled DMPC with sequential update rule [150].

t
subsystem 1

t
subsystem 2

t
subsystem 3

(b) Self-triggered DMPC.

Figure 4.2: Illustration of periodical and self-triggered sampling scheme for CPSs
with 3 subsystems.
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Different from the periodically-triggered distributed SMPC scheme, the states

xp(k) are only measured and transmitted to neighbor subsystems at sampling time

instant kj, j ∈ N0, where the triggering time sequence is defined as {k0, . . . , kj, . . . }
with kj+1 = kj+τ

∗
j and k0 = 0. In the following, preliminaries on self-triggered SMPC

problem formulation described in [110] for a single subsystem are reviewed. The

optimized variable τ ∗j ∈ N≥1 is the inter-execution time interval, which is determined

by the self-triggered mechanism at sampling time instant kj. Define an integer τ ∈
N[1,τ̄ ] as the fixed sampling interval where τ̄ ∈ N[1,N−1] is the offline given maximum

of inter-execution time interval and N is the prediction horizon. At sampling time

instant kj and for subsystem p, the predicted control input up(i|kj; τ) corresponding

to τ can be parameterized as

up(i|kj; τ) =


Kpzp(i|kj) + vp(i|kj; τ), i ∈ N[0,τ−1],

Kpxp(i|kj) + vp(i|kj; τ),i ∈ N[τ,N−1],

Kpxp(i|kj), i ∈ N≥N ,

(4.4a)

(4.4b)

(4.4c)

where zp(i|kj) denotes the predicted nominal state, with zp(0|kj) = xp(kj). For each

subsystem p, the feedback gain matrix Kp ∈ Rnp,x×np,u is chosen offline such that

the matrix Φp = Ap + BpKp is Schur stable. The variables vp(i|kj; τ), i ∈ N[0,N−1]

are control perturbations in the prediction associated to inter-execution time interval

τ . Define vp(kj; τ) =
[
vT
p (0|kj; τ); . . . ; vT

p (N − 1|kj; τ)
]T

as the matrix of decision

variables, which are determined by solving the MPC optimization problem defined

below. Note that, the predicted control input up(i|kj; τ) for first τ step depend only

on xp(kj), vp(i|kj; τ) and is therefore deterministic. Due to the implementation of

the self-triggered mechanism, there is no communication between the controller and

sensor during the period [kj, kj + τ ], and the subsystem p are therefore controlled in

an open-loop fashion. Meanwhile, the disturbed state feedback (4.4b) is introduced

after τ steps to reduce the effect of disturbance in prediction.

Inspired by [48] and [110], the local cost function at sampling time instant kj for

subsystem p corresponding to τ ∈ N[1,τ̄ ] is defined as the expected value of an infinite
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horizon quadratic cost

JO,p(vp(kj; τ)) =
1

α

τ−1∑
i=0

E(‖xp(i|kj)‖2
Qp + ‖up(i|kj; τ)‖2

Rp)

+
∞∑
i=τ

E(‖xp(i|kj)‖2
Qp + ‖up(i|kj; τ)‖2

Rp).

(4.5)

where Qp � 0 and Rp � 0 are weighting matrices and α ≥ 1 is a tuning parameter

penalizing the open-loop phase arising from the self-trigger mechanism. Therein,

the prototype MPC problem P
[τ ]
O,p(vp(kj; τ)) for subsystem p with a fixed sampling

interval τ is formulated as

min
vp(kj ;τ)

JO,p(vp(kj; τ))

s.t. xp(i+ 1|k) = Apxp(i|k) +Bpup(i|k; τ) +Dpwp(k + i), i ∈ N0,

Pr
{
gT
p xp(i+ 1|k) ≤ hp

}
≥ pp, i ∈ N0,

Pr
{∑Np

p=1 g
T
cpxp(i+ 1|k) ≤ hc

}
≥ Pp,c, i ∈ N0.

(4.6)

The feasible set to the optimization problem P
[τ ]
O,p(vp(kj; τ)) is defined as

F [τ ]
O,p(xp(kj)) := {vp(kj; τ)|P[τ ]

O,p(vp(kj; τ)) feasible}. (4.7)

Define the optimal value function of P
[τ ]
O,p(vp(kj; τ)) as V

[τ ]
O,p(x(kj)) := JO,p(v

∗
p(kj; τ)),

where v∗p(kj; τ) := arg min
Vp(kj ;τ)

JO,p(vp(kj; τ)) denotes the optimal solution to the opti-

mization problem P
[τ ]
O,p(vp(kj; τ)). The prototype self-triggered problem PST

O,p(x(kj))

for subsystem p at sampling time instant kj is therefore defined as

τ ∗j := max

{
τ ∈ N[1,τ̄ ]

∣∣∣∣∣ F [τ ]
O,p(xp(kj)) 6= ∅

V
[τ ]
O,p(x(kj)) ≤ V

[1]
O,p(x(kj))

}
,

v∗p(kj) = v∗p(kj; τ
∗
j ).

(4.8)

For subsystem p, by solving PST
O,p(x(kj)) at time instant kj, the next sampling time

instant kj+1 and the control input during the period [kj, kj+1] are given by kj+1 =
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kj + τ ∗j and v∗p(kj). The resulting closed-loop system is then formulated as

xp(k + 1) = Apxp(k) +Bpup(k) +Dpw(k),

up(k) = Kpzp(i|k) + v∗p(i|k), k ∈ N[kj ,kj+1−1],

kj+1 = kj + τ ∗j .

(4.9)

For a single subsystem p controlled by the self-triggered SMPC scheme, the closed-

loop properties of (4.9) have been well discussed in [110]. However, when subsystems

share coupled chance constraints, the existing self-triggered mechanism cannot be

applied directly. Meanwhile, the infinite horizon cost and infinite number of chance

constraints make the prototype optimization problem P
[τ ]
O,p(vp(kj; τ)) intractable for

implementation, leading to the quest of some appropriate approximations and mod-

ifications to the MPC problem P
[τ ]
O,p(vp(kj; τ)). Therefore, the aim of this work is

twofold: (i) to design a computationally tractable MPC formulation of P
[τ ]
O,p(vp(kj; τ))

for online implementation; (ii) to desgin a distributed self-triggered mechanism for the

overall system to reduce the communication burden between each subsystem while

guranteeing the closed-loop properties.

4.3 Centralized Self-triggered SMPC problem un-

der coupled chance constraints

In this section, we will extend the self-triggered SMPC control strategy proposed in

[110] to the CPSs (4.1) subject to coupled chance constraints in a centralized fashion.

To be more specific, the reformulation of the cost function and chance constraints

handling will be presented. Meanwhile, the designed constraints tightening parame-

ters will be utilized in the definition of a distributed algorithm for chance constraints

satisfaction. Then, improved terminal constraints will be introduced to guarantee

the recursive feasibility of the centralized algorithm. Finally, discussions about the

closed-loop properties of the centralized self-triggered SMPC strategy will be given.

The centralized algorithm will not only provide a benchmark to evaluate the dis-

tributed algorithm performance but also plays an important role in the initialization

of the distributed paradigm.
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4.3.1 Cost function reformulation

For each subsystem p ∈ P with given τ , the control parametrization defined in (4.4)

is utilized and the predicted state xp(i|k) can be decomposed into nominal state part

zp(i|kj) = E[xp(i|kj)] and error state part ep(i|kj), as shown below:

xp(i|kj) = zp(i|kj) + ep(i|kj), (4.10)

where

zp(i|kj) = Φi
pzp(0|kj) +H [i]

p vp(kj; τ),

ep(i|kj) =


i−1∑
l=0

Ai−l−1
p DpWp(l|kj), i ∈ N[1,τ ],

Φi−τ
p ep(τ |kj) +

i−τ−1∑
l=0

Φi−l−1
p DpWp(l|kj), i ∈ N≥τ+1,

(4.11)

in which the initial error state ep(0|kj) is assumed to be ep(0|kj) = 0, and the matrix

H
[i]
p is defined as H

[i]
p =

[
Φi−1
p Bp . . . Bp 0

]
. Inspired by [48], an autonomous

description of the predicted dynamics for i ∈ N≥τ can be generated by

ηp(i+ 1|kj) = Ψpηp(i|kj) + δp(kj + i), i ∈ N≥τ , (4.12)

where

ηp(τ |kj) =
[
xp(τ |kj)T (M τ

p vp(kj; τ))T
]T

,

Ψp =

[
Φp BpEp

0 Mp

]
, δp(kj + i) =

[
wp(kj + i)

0

]
,

Ep =
[
Inp,u×np,u 0 . . . 0

]
,

Mp =


0 Inp,u×np,u 0 . . . 0

0 0 Inp,u×np,u . . . 0
...

...
...

0 0 0 . . . 0

 .
The variable ηp(i|kj) is defined as the i-step ahead augmented state given xp(kj) and

vp(kj; τ) at kj. The difference between the autonomous model (4.12) and that in [48]

is that we use the τ -step ahead predicted state xp(τ |kj) = zp(τ |kj) + ep(τ |kj) here

to construct the initial augmented state in (4.12). So the error between two time

instants kj and kj + τ is taken into account to derive the convergence of augmented
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state lim
i→∞

ηp(i|kj), which is given by the following proposition.

Proposition 3. (Convergence of ηp(i + 1|kj), i ∈ N≥τ) Given τ ∈ N[1,τ̄ ], the se-

quence {ηp(i + i|kj)}, i ∈ N≥τ , generated by (4.12) satisfies lim
i→∞

E{ηp(i|kj)} = 0 and

lim
i→∞

E{ηp(i|kj)ηp(i|kj)T} = Θp, where Θp is the solution to Lyapunov equation

Θp −ΨpΘpΨ
T
p = δp(kj + i)δT

p (kj + i), (4.13)

if and only if there exists Pp � 0 satisfying

Pp −ΨpPpΨ
T
p � 0. (4.14)

Proof. Define the nominal and error state of ηp(i|kj) as η̄p(i|kj) = E{ηp(i|kj)} and

ηe,p(i|kj) = ηp(i|kj)− η̄p(i|kj), respectively. For i ∈ N≥τ , it holds that

η̄p(i+ 1|kj) = Ψpη̄p(i|kj),
ηe,p(i+ 1|kj) = Ψpηe,p(i|kj) + δp(kj + i),

(4.15a)

(4.15b)

with ηe,p(τ |kj) =
[
eT
p (τ |kj) 0

]T

. It follows directly from the mean square stable

(MSS) condition (4.14) and (4.15a) that lim
i→∞

η̄p(i|kj) = 0.

Define Θ̂p(i|kj) = E{ηe,p(i|kj)ηT
e,p(i|kj)} −Θp. From (4.15b), we have

E{ηe,p(i+ 1|kj)ηT
e,p(i+ 1|kj)}

=ΨpE{ηe,p(i|kj)ηT
e,p(i|kj)}ΨT

p + δp(kj + i)δT
p (kj + i).

Following (4.13), it implies that

Θ̂p(i+ 1|kj) = E{ηe,p(i+ 1|kj)ηT
e,p(i+ 1|kj)} −Θp

= ΨpE{ηe,p(i|kj)ηT
e,p(i|kj)}ΨT

p + δp(kj + i)δT
p (kj + i)−Θp

= Ψp

(
E{ηe,p(i|kj)ηT

e,p(i|kj)} −Θp

)
ΨT
p

= ΨpΘ̂p(i|kj)ΨT
p .

From the MSS condition in (4.14), it follows that lim
i→∞

Θ̂p(i|kj) = 0, and hence

lim
i→∞

E{ηe,p(i|kj)ηT
e,p(i|kj)} = Θp.
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Thus the proof is complete.

Remark 14. As shown in Proposition 3, the covariance matrix E{ηp(i|kj)ηp(i|kj)T}
will converge to a fixed finite value Θp as i → ∞ regardless of the selection of the

inter-execution time τ . As shown in (4.4b), periodical state feedback is introduced to

the control parametrization for i ∈ N≥τ and Φp is designed to be schur stable, so the

initial error ηe,p(τ |kj) will be eliminated as i→∞.

Hence, the sum of predicted cost of all subsystems over i ∈ N≥τ can be expressed

as

Np∑
p=1

∞∑
i=τ

E(‖xp(i|kj)‖2
Qp + ‖up(i|kj)‖2

Rp) =

Np∑
p=1

∞∑
i=τ

E(ηT
p (i|kj)Q̃pηp(i|kj)), (4.16)

where the augmented state weighting matrix Q̃p is defined as

Q̃p =

[
Qp +KT

p RpKp KT
p RpEp

ET
p RpKp ET

p RpEp

]
.

By Proposition 3, the stage cost in (4.16) converges to a finite value

Lp :=

Np∑
p=1

lim
i→∞

E(ηT
p (i|kj)Q̃pηp(i|kj)) = tr(ΘpQ̃p)

along trajectories of (4.12), so the predicted cost in (4.16) is infinite. Hence, to

obtain a finite cost, the centralized cost function for the whole system with τ ∈ N[1,τ̄ ]

is defined as

JC(vC(kj; τ)) =
1

α

Np∑
p=1

τ−1∑
i=0

E(‖xp(i|kj)‖2
Qp + ‖up(i|kj; τ)‖2

Rp − Lp)

+

Np∑
p=1

∞∑
i=τ

E(ηT
p (i|kj)Q̃pηp(i|kj)− Lp),

(4.17)

where the matrix vC(kj; τ) =
[
v1(kj; τ); . . . ; vNp(kj; τ)

]
contains control perturbation

variables corresponding to τ , and vp(kj; τ) for subsystem p are defined in the Section

4.2.2. The centralized cost function (4.17) is intractable for online implementation

because it involves an infinite horizon cost. The cost function defined in (4.17) can
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be rewritten as a quadratic form of decision variables v(kj) as shown in the following

lemma.

Lemma 4. The second summation term in (4.17) evaluated along (4.12) is given by

Np∑
p=1

∞∑
i=τ

E(ηT
p (i|kj)Q̃pηp(i|kj)− Lp) =

Np∑
p=1

E


[
ηp(τ |kj)

1

]T

P̃p

[
ηp(τ |kj)

1

]
=

Np∑
p=1

[
η̄p(τ |kj)

1

]T

P̃p

[
η̄p(τ |kj)

1

]
+ tr(P̃pθ

[τ ]
p,w),

(4.18)

where the matrices P̃p and θ
[τ ]
p,w are defined as

P̃p =

[
Pp,z 0

0 Pp,c

]
, θ[τ ]
p,w =


τ−1∑
s=0

AspDpσ
wp(AspDp)

T · · · · · ·
... 0
... 1

 ,

with Pp,z and Pp,c are given by

Pp,z −ΨT
p Pp,zΨp = Q̃p,

Pp,c = −tr(ΘPp,z).

(4.19a)

(4.19b)

Proof. Define a function Vp(i|kj) = ηT
p (i|kj)Pp,zηp(i|kj) + Pp,c for i ≥ τ . From (4.12),

it holds that

E(Vp(i|kj))− E(Vp(i+ 1|kj))
=E(ηT

p (i|kj)Pp,zηp(i|kj))− E(ηT
p (i+ 1|kj)Pp,zηp(i+ 1|kj))

=E
(
ηT
p (i|kj)(Pp,z −ΨT

p Pp,zΨp)ηp(i|kj)
)
− E(δT

p (kj + i)Pp,zδp(kj + i)).

(4.20)

From (4.19a), it holds that

E
(
ηT
p (i|kj)(Pp,z −ΨT

p Pp,zΨp)ηp(i|kj)
)

= E
(
ηT
p (i|kj)Q̃pηp(i|kj)

)
. (4.21)

By post-multiplying Pp,z and extracting the trace, (4.13) becomes

E{δT
p (kj + i)Pp,zδp(kj + i)} =tr(ΘpPp,z −ΨpΘpΨ

T
p Pp,z)

=tr(Θp(Pp,z −ΨT
p Pp,zΨp)) = tr(ΘpQ̃p).

(4.22)
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Hence, from (4.21) and (4.22), (4.20) can be expressed as

E(Vp(i|kj))− E(Vp(i+ 1|kj)) = E
(
ηT
p (i|kj)Q̃pηp(i|kj)

)
− tr(ΘpQ̃p).

For i ∈ N≥τ , summing the above recursion over p ∈ N[1,Np] gives

Np∑
p=1

(E(Vp(τ |kj))− lim
i→∞

E(Vp(i|kj))) =

Np∑
p=1

∞∑
i=τ

E(‖xp(i|kj)‖2
Qp + ‖up(i|kj)‖2

Rp − Lp).

From the definition of (4.19b) and Vp(i|kj), it implies that lim
i→∞

E(Vp(i|kj)) = 0. There-

fore, the first equality of (4.18) is verified. Due to the linearity of (4.12), the sec-

ond equality can be readily verified since η̄p(i|kj) = E{ηp(i|kj)} and ηe,p(τ |kj) =[
eT
p (τ |kj) 0

]T

, with ep(τ |kj) =
∑τ−1

s=0 A
τ−1−s
p Dpwp(kj + s). Thus the proof is com-

plete.

Consequently, by Lemma 4 and (4.4), a computationally tractable reformulation

of the cost function (4.17) is given by

JC(vC(kj; τ)) =
1

α

Np∑
p=1

τ−1∑
i=0

(
‖zp(i|kj)‖2

Qp+KT
p RpKp

+ ‖vp(i|kj; τ)‖2
Rp

+ 2zp(i|kj)TRpvp(i|kj; τ) +
i−1∑
l=0

tr(QpA
l
pDpσ

wp(AlpDp)
T)− Lp

)

+

Np∑
p=1

[η̄p(τ |kj)
1

]T

P̃p

[
η̄p(τ |kj)

1

]
+ tr(P̃pθ

[τ ]
p,w)

 .

(4.23)

4.3.2 Local and coupled chance constraints handling

To ensure chance constraints satisfactions (4.3) in the closed-loop operation, necessary

and sufficient conditions are provided in following lemmas, which transforms chance

constraints into deterministic forms.

Lemma 5. (Local and coupling chance constraints handling) Given τ ∈ N[1,τ̄ ], for

each subsystem p, local chance constraints Pr
{
gTp xp(i|kj) ≤ hp

}
≥ pp and coupled

chance constraints Pr
{ Np∑
p=1

gTcpxp(i|kj) ≤ hc

}
≥ Pp,c are satisfied if and only if there
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exists vp(kj; τ) such that

gTp zp(i|kj) ≤ hp − γ[τ ]
p,i , i ∈ N≥1, (4.24a)

Np∑
p=1

gTcpzp(i|kj) ≤ hc − ν [τ ]
c,i , i ∈ N≥1, (4.24b)

where γ
[τ ]
p,i is defined as the minimum value such that

Pr
{
gTp

i−1∑
l=0

Ai−l−1
p DpWp(l|kj) ≤ γ

[τ ]
p,i

}
= pp, i ∈ N[1,τ ], (4.25a)

Pr
{
gTp
(
Φi−τ
p ep(τ |kj) +

i−τ−1∑
l=0

Φi−l−1
p DpWp(l|kj)

)
≤ γ

[τ ]
p,i

}
= pp, i ∈ N≥τ+1. (4.25b)

and ν
[τ ]
c,i is the minimum value such that

Pr
{ Np∑
p=1

gTcp

i−1∑
l=0

Ai−l−1
p DpWp(l|kj) ≤ ν

[τ ]
c,i

}
= pp,c, i ∈ N[1,τ ], (4.26a)

Pr
{ Np∑
p=1

gTcp
(
Φi−τ
p ep(τ |kj) +

i−τ−1∑
l=0

Φi−l−1
p DpWp(l|kj)

)
≤ ν

[τ ]
c,i

}
= pp,c, i ∈ N≥τ+1.

(4.26b)

Proof. Conditions for local chance constraints satisfaction (4.24a) have been given in

Lemma 3.1 in [110]. Considering the coupled chance constraints (4.3b), we have

Pr
{ Np∑
p=1

gT
cpxp(i|kj)

}
= Pr

{ Np∑
p=1

gT
cpzp(i|kj) +

Np∑
p=1

gT
cpep(i|kj)

}
≤ hc, i ∈ N≥1,

where
∑Np

p=1 g
T
cpep(i|kj) represents the sum of stochastic components of the prediction

of
∑Np

p=1 g
T
cpxp(i|kj). From (4.26), ν

[τ ]
c,i is the minimum value such that the probability

of the sum of stochastic components is greater than ν
[τ ]
c,i is pp,c. Therefore, (4.24b) is

equivalent to (4.3b) for i ∈ N≥1.

Remark 15. The computation of parameters γ
[τ ]
p,i and ν

[τ ]
c,i relies on either numerically

approximation to the relevant probability distribution [151] or sampling-based approx-

imation [112]. The essential assumption of conducting this approximation is that wp

is distributed independently for all p ∈ P.
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Similar to Theorem 3.1 in [110], recursive feasible constraint tightening conditions

can be derived by modifying Lemma 5 as:

Lemma 6. (Recursive feasible constraint tightening) Define matrix Γ
[τ ]
p and matrix

Γ
[τ ]
c as shown in (4.27) and (4.28).

Γ[τ ]
p =


γ

[τ ]
p,1 . . . γ

[τ ]
p,τ γ

[τ ]
p,τ+1 γ

[τ ]
p,τ+2 . . .

0 . . . 0 b
[τ ]
p,τ+1 + ξ

[τ ]
p,τ+1 b

[τ ]
p,τ+2 + ξ

[τ ]
p,τ+2 . . .

0 . . . 0 0 b
[τ ]
p,τ+2 + d

[τ ]
p,τ+2 + ξ

[τ ]
p,τ+1 . . .

...
...

...
...

...
. . .

 , (4.27)

where d
[τ ]
p,i = max

w∈Wp

gTp Φi−τ−1
p w, b

[τ ]
p,i = max

w∈Wp

gTp Φi−τ
p

l∑
τ−1

Alpw and ξ
[τ ]
p,i is the minimum

value such that Pr

{
i−τ−1∑
l=0

gTp Φl
pwp ≤ ξ

[τ ]
p,i

}
= pp,

Γ[τ ]
c =


ν

[τ ]
c,1 . . . ν

[τ ]
c,τ ν

[τ ]
c,τ+1 ν

[τ ]
c,τ+2 . . .

0 . . . 0 b
[τ ]
c,τ+1 + ξ

[τ ]
c,τ+1 b

[τ ]
c,τ+2 + ξ

[τ ]
c,τ+2 . . .

0 . . . 0 0 b
[τ ]
c,τ+2 + d

[τ ]
c,τ+2 + ξ

[τ ]
c,τ+1 . . .

...
...

...
...

...
. . .

 , (4.28)

where d
[τ ]
c,i =

Np∑
p=1

gTcp max
w∈Wp

Φi−τ−1
p Dpw, b

[τ ]
c,i =

Np∑
p=1

gTcpΦ
i−τ
p Dp max

w∈Wp

l∑
τ−1

AlpDpw and ξ
[τ ]
c,i is

the minimum value such that Pr

{
Np∑
p=1

gTcp
i−τ−1∑
l=0

Φl
pDpwp ≤ ξ

[τ ]
c,i

}
= pc. At time instant

kj, if there exists vp(kj; τ) satisfying:

gTp zp(i|kj) ≤ hp − β[τ ]
p,i ,i ∈ N≥1,

Np∑
p=1

gcpzp(i|kj) ≤ hc − ζ [τ ]
c,i ,i ∈ N≥1,

(4.29a)

(4.29b)

where β
[τ ]
p,i and ζ

[τ ]
c,i are the maximum element of the ith column of matrix Γ

[τ ]
p and

Γ
[τ ]
c . Then there exists at least one solution at time instant kj+1 such that local and

coupled chance constraints defined in (4.3) are satisfied for all i ∈ N≥1.

Proof. The existense and recursive feasibility of local probabilitic constraint at the

next sampling time instant kj+1 have been presented in Theorem 3.1 in [110] and
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details are omitted here. In the following, we consider the construction of recursive

feasible tube for the coupled constraints. If ζ
[τ ]
c,i is defined as the first row in (4.28),

then (4.29b) is equivalent to (4.24b). At time instant kj+1 with τ = 1, the candi-

date solution for subsystem p ∈ P can be defined as ṽp(kj+1; 1) = M
[τ ]
p vp(kj; τ) =[

vT
p (τ |kj; τ); . . . ; vT

p (N − 1|kj; τ); 0; . . . ; 0
]T

. By (4.10), it follows that for i ∈ N0,

xp(i|kj+1) = Φτ+i
p xp(kj) +H [τ+i]

p vp(kj; τ) + Φi
pep(0|kj+1) +

i−1∑
l=0

Φi−1−l
p Dpwp(l|kj+1),

= zp(i+ τ |kj) + Φi
pep(0|kj+1) +

i−1∑
l=0

Φi−1−l
p Dpwp(l|kj+1),

where ep(0|kj+1) =
τ−1∑
i=0

Aτ−1−i
p Dpwp(i|kj) denotes the error between two sampling time

instant kj and kj+1. To ensure the existence of a feasible solution at time kj+1, the

worst-case realization of ep(kj+1|kj+1) is considered, and hence the coupled constraints

(4.3b) can be reformulated as

Np∑
p=1

gT
cpzp(i|kj) ≤ hc − b[τ ]

c,i − ξ[τ ]
c,i , i ∈ N≥τ+1,

which follows the second row in (4.28). Similarly, the predicted state at sampling

time instant kj+l, l ≥ 2, with τ = 1 follows

xp(i|kj+l) = zp(τ + l + i|kj+l) + Φi
pep(0|kj+l) +

i−1∑
l=0

Φi−1−l
p Dpwp(l|kj+l), i ∈ N0,

where ep(0|kj+l) = Φl−τ
p Dp

τ−1∑
i=0

Aτ−1−i
p Dpwp(i|kj)+

l+τ∑
s=τ+1

Φs−τ−1
p Dpwp(τ +s|kj). So the

feasibility of the solution at sampling time instant kj+l, l ≥ 2 can be ensured by

Np∑
p=1

gT
cpzp(i|kj) ≤ hc − b[τ ]

c,i −
τ−2∑
s=0

d
[τ ]
c,i−s − ξ[τ ]

c,i−l+1, i ∈ N≥τ+l.

Therefore, the existense of a feasible solution at sampling time instant kj+l, l ∈ N0 can

be ensured if ζ
[τ ]
c,i is selected as the maximum element of the ith column of (4.28).

Remark 16. The proof of Lemma 6 is an extension of Theorem 3.1 in [110] where the
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coupled chance constraints are considered. The parameters β
[τ ]
p,i and ζ

[τ ]
c,i are determined

by the prediction step i and inter-execution time τ .

To guarantee the chance constraints are satisfied over an infinite prediction hori-

zon, the terminal set should be constructed. The terminal dynamics of the nominal

system can be written as zp(N + i + 1|kj) = Φpzp(N + i|kj), i ∈ N0, and terminal

constraints are imposed to the nominal state zp(i|kj), i ∈ N≥N to deal with the infi-

nite prediction horizon. For each subsystem p ∈ P , the terminal constraints Z [τ ]
p,f for

dealing with local chance constraints (4.3a) are defined as

Z [τ ]
p,f :=

{
z ∈ Rnp,x

∣∣∣ gT
p Φi

pz ≤ hp − β[τ ]
p,N+i, i ∈ N0

}
, (4.30)

and similarly, the terminal constraints for the coupled chance constraints (4.3b) are

given by
Np∑
p=1

gT
cpΦ

i
pzp(N |kj) ≤ hc − ζ [τ ]

c,N+i, i ∈ N0. (4.31)

Bounds for β
[τ ]
p,N+i and ζ

[τ ]
p,N+i with i ∈ N≥τ+1 are given by the following lemma.

Lemma 7. For τ ∈ N[1,τ̄ ] and p ∈ P, there exist positive scalars 0 < ρp < 1 and

positive definite matrices Sp such that the sequences β
[τ ]
p,N+i and ζ

[τ ]
c,N+i for i ∈ N≥τ+1

is upper bounded by

β
[τ ]
p,N+i ≤ β̄[τ ]

p := b̄[τ ]
p +

vp−1∑
l=τ+2

d
[τ ]
p,l +

ρ
vp
p

1− ρp
‖gp‖Sp + γ

[τ ]
p,1,

ζ
[τ ]
c,N+i ≤ ζ̄ [τ ]

c := b̄[τ ]
c +

vc−1∑
l=τ+2

d
[τ ]
c,l +

Np∑
p=1

ρvcp

1− ρp
‖gcp‖Sp + ν

[τ ]
c,1,

(4.32a)

(4.32b)

with integers vp, vc ∈ N≥3. The bounds on b
[τ ]
p,i and b

[τ ]
c,i are given by

b̄[τ ]
p := max

i∈N≥τ+1,w∈W
gTp Φi−τ

p Dp

τ−1∑
l=0

AlpDpw,

b̄[τ ]
c := max

i∈N≥τ+1,w∈W

Np∑
i=1

gcpΦ
i−τ
p Dp

τ−1∑
l=0

AlpDpw.

Proof. The bounds (4.32a) on parameters β
[τ ]
p,i have been proved in Lemma 3.4 in [110],

so it is omitted here. For the coupled constraints, the existence of the bound b̄
[τ ]
c can be
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guaranteed since Φp are all strictly stable. For i ∈ N[1,τ ], ζ
[τ ]
c,i = ν

[τ ]
c,i holds from (4.28).

For i ∈ N≥τ+1, it can be readily verified that ν
[τ ]
c,i ≤ b

[τ ]
c,i + ξ

[τ ]
c,i and ξ

[τ ]
c,i ≤ d

[τ ]
c,i + ξ

[τ ]
c,i−1

because the worst-case realization consideration in the RHS of the inequalities. Hence,

it holds by iteration that ζ
[τ ]
c,i = b

[τ ]
c,i +

∑i
s=M+2 d

[τ ]
c,s + ν

[τ ]
c,1 for i ∈ N≥τ+1. In addition,

it holds that
∑i

s=M+2 d
[τ ]
c,s ≤

∑∞
s=M+2 d

[τ ]
c,s. Following the Corollary 4 in [151], the

bound on
∑∞

s=M+2 d
[τ ]
c,s can be calculated by

∑vc−1
l=τ+2 d

[τ ]
c,l +

∑Np
p=1

ρvcp
1−ρp‖gcp‖Sp , leading

to (4.32b).

By using Lemma 7, we can split the terminal prediction horizon into two parts:

i ≤ τ + N̂ and i ≥ τ + N̂ + 1. Following Theorem 2 in [152], the terminal constraint

Z [τ ]
p,f and (4.31) can be approximated by

Ẑ [τ ]
p,f :=

{
z ∈ Rnp,x

∣∣∣∣∣ gT
p Φi

pz ≤ h− β[τ ]
p,N+i, i ∈ N[0,τ+N̂ ],

gT
p Φi

pz ≤ h− β̄[τ ]
p , i ∈ N[τ+N̂+1,τ+N̂+n∗]

}
, (4.33)

and
Np∑
p=1

gT
cpΦ

i
pzp(N |kj) ≤ h− ζ [τ ]

p,N+i, i ∈ N[0,τ+N̂ ],

Np∑
p=1

gT
cpΦ

i
pzp(N |kj) ≤ h− ζ̄ [τ ]

p , i ∈ N[τ+N̂+1,τ+N̂+n∗],

(4.34)

where n∗ is the smallest integer such that the infinite number of constraints can be

ensured through the first τ + N̂ + n∗ constraints.

4.3.3 Centralized self-triggered SMPC algorithm

At sampling time instant kj, define the augmented state xc(kj) for the overall system

as xc(kj) =
[
xT

1 (kj), . . . , x
T
p (kj), . . . , x

T
Np

(kj)
]T

, with p ∈ P . Then the centralized

optimization problem P
[τ ]
C (xc(kj)) for the prototype optimization problem (4.6) with
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a fixed τ ∈ N[1,τ̄ ] is formulated as

min
vC(kj ;τ)

JC(vC(kj; τ))

for p ∈ P , c ∈ C,
s.t. zp(0|kj) = xp(kj),

zp(i+ 1|kj) = Φpzp(i|kj) +Bpvp(i|kj; τ), i ∈ N[0,N−1]

gT
p zp(i|kj) ≤ hp − β[τ ]

p,i , i ∈ N[1,N−1],

zp(N |kj) ∈ Ẑ [τ ]
p,f ,

Np∑
p=1

gcpzp(i|kj) ≤ hc − η[τ ]
c,i , i ∈ N[1,N−1],

Np∑
p=1

gT
cpΦ

i
pzp(N |kj) ≤ h− ζ [τ ]

c,N+i, i ∈ N[0,τ+N̂ ],

Np∑
p=1

gT
cpΦ

i
pzp(N |kj) ≤ h− ζ̄ [τ ]

c , i ∈ N[τ+N̂+1,τ+N̂+n∗],

(4.35)

The centralized self-triggered SMPC problem PST
C (xc(kj)) at sampling time in-

stant kj is therefore formulated as

τ ∗j := max

{
τ ∈ N[1,τ̄ ]

∣∣∣∣∣ F [τ ]
C (xc(kj)) 6= ∅,

V
[τ ]
C (xc(kj)) ≤ V

[1]
C (xc(kj))}

}
,

v∗C(kj) = v∗C(kj; τ
∗
j ),

(4.36)

where F [τ ]
C (xc(kj)) is the feasible set to P

[τ ]
C (xc(kj)) and V

[τ ]
C (xc(kj)) is the optimal

value function to P
[τ ]
C (xc(kj)) defined as V

[τ ]
C (xc(kj)) = JC(v∗C(kj)). The resulting

centralized self-triggered SMPC method is summarized in Algorithm 3.

Theorem 6. Under Algorithm 3, the self-triggered SMPC problem PST
C (xc(kj)) is

recursively feasible and the overall closed-loop system is quadratically stable as shown

lim
kr→∞

1

kr

kr−1∑
k=0

Np∑
p=1

E(‖xp(k)‖2
Q + ‖up(k)‖2

R) ≤
Np∑
p

Lp. (4.37)

Proof. (Recursive feasibility) At sampling time instant kj, define τ ∗j and v∗C(kj) as

the optimal solution to problem PST
C (xc(kj)). The next sampling time instant is

kj+1 = kj + τ ∗j . As discussed in Lemma 6, a feasible solution to PST
C (xc(kj+1))
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Algorithm 3: Centralized self-triggered SMPC algorithm.

Init.: For p ∈ P , c ∈ C, τ ∈ N[1,τ̄ ], determine local and coupled chance

constraints tightening parameters β
[τ ]
p,i , ζ

[τ ]
c,i and terminal sets Z [τ ]

p,f and

Z [τ ]
c,f . Set k = 0.

while Termination condition not satisfied do
Step 1: Measure the overall system state xc(k);
Step 2: Solve the self-triggered SMPC problem PST

C (xc(k)), obtain the
optimal control input sequence v∗C(k; τ ∗) for the overall system; broadcast
the optimal inter-execution time interval τ ∗ and control input sequence
v∗p(k; τ ∗) to subsystem p;
Step 3: Apply the control input up(k + i) = Kpzp(i|k) + vp(i|k; τ ∗), for
i ∈ N[1,τ∗];
Step 4: Set the next sampling time instant k = k + τ ∗;
Step 5: Go to Step 1.

end

includes

ṽC(kj+1; 1) = [M
τ∗j
1 v∗1(kj; τ

∗
j ) . . .M

τ∗j
p v∗p(kj; τ

∗
j ) . . .M

τ∗j
Np

v∗Np(kj; τ
∗
j )],

τj+1 = 1.

For i ∈ N0, it can be readily verified that

Np∑
p=1

gT
cpΦ

i
pzp(kj+1 +N |kj+1) =

Np∑
p=1

gT
cpΦ

τ∗j +i
p zp(kj +N |kj) + gT

cpΦ
N+i
p

τ∗j −1∑
l=0

AlpDpw

≤ h− ζ [τ∗j ]

c,N+τ∗j +i + b
[τ∗j ]

c,N+τ∗j +i ≤ h− ζ [1]
c,N+i,

where the last inequality follows from Lemma 3.3 in [110]. Therefore, it can be con-

cluded that a feasible solution exists for PST
C (xc(kj+1)). By induction, PST

C (xc(kj+l))

is feasible for l ∈ N≥1 if PST
C (xc(kj)) is feasible.

(Stability) The stability proof follows the similar line of Theorem 4.2 in [110]. De-

fine the cost function with ṽC(kj+1; 1) as Ṽ
[1]
C (xc(kj+1)). Since the value of xc(kj+1)

is not known at time kj, the expectation value of Ṽ
[1]
C (xc(kj+1)) at kj is given by

Ekj{Ṽ [1]
C (xc(τ

∗
j |kj))}, where xc(τ

∗
j |kj) is the prediction of the augmented state xc(kj+1)

given xc(kj). By the design requirement α ≥ 1, it holds that 1
α

∑Np
p=1 Ekj{‖xp(τ ∗j |kj)‖2

Qp
+

‖up(τ ∗j |kj)‖2
Rp
− Lp} ≤

∑Np
p=1 Ekj{‖xp(τ ∗j |kj)‖2

Qp
+ ‖up(τ ∗j |kj)‖2

Rp
− Lp}. Hence, from
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(4.17), it holds that

Ekj{Ṽ [1]
C (xc(τ

∗
j |kj))} ≤ V

[τ∗j ]

C (xc(kj))−
Np∑
p=1

1

α

τ∗j −1∑
i=0

Ekj{‖xp(i|kj)‖2
Qp + ‖up(i|kj)‖2

Rp − Lp}

≤ V
[1]
C (xc(kj))−

Np∑
p=1

1

α

τ∗j −1∑
i=0

Ekj{‖xp(i|kj)‖2
Qp + ‖up(i|kj)‖2

Rp − Lp},

where the second inequality follows the triggering condition defined in (4.36). Fur-

thermore, the optimality of PST
C (xc(kj+1)) at time kj+1 implies that

Ekj{V [1]
C (xc(τ

∗
j |kj))} ≤ V

[1]
C (xc(kj))−

Np∑
p=1

1

α

τ∗j −1∑
i=0

Ekj{‖xp(i|kj)‖2
Qp + ‖up(i|kj)‖2

Rp − Lp}.

Summing the above inequality over j ∈ N[0,l] and taking expectation on both sides

leading to

Ekl{V
[1]
C (xc(τ

∗
l |kl))} ≤ Ek0{V [1]

C (xc(k0))}

−
1

α

Np∑
p=1

l∑
j=0

τ∗j −1∑
i=0

Ekj{‖xp(i|kj)‖2
Qp + ‖up(i|kj)‖2

Rp − Lp}.

Using the fact that Ekl{V
[1]
C (xc(τ

∗
l |kl))} is lower bounded leads to (4.37). Thus the

proof is complete.

4.4 Distributed self-triggered stochastic MPC un-

der coupled chance constraints

4.4.1 Distributed self-triggered SMPC algorithm

In the distributed self-triggered stochastic MPC setup, the centralized optimization

problem PST
C (xc(k)) is distributed amongst subsystems as local optimization prob-

lems. In this work, the sequential update rule in [150] is adopted, meaning only

one subsystem is required to update the control sequence at each time. At sampling

time instant kj, only subsystem pk is permitted to solve the distributed optimization

problem to get a new control sequence, while other subsystems q ∈ Qpkj uses the
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constructed candidate control sequence:

ṽq(kj; 1) : = M
τ∗j−1
q v∗q(kj−1; τ ∗j−1)

=
[
v∗q (τj−1|kj−1; τ ∗j−1); · · · ; v∗q (N − 1|kj−1; τ ∗j−1); 0

]
,

(4.38)

which is generated by augmenting the optimal control sequence at the previous sam-

pling time instant kj with 0. The update sequence {pk0 , . . . , pkj , . . . } is chosen by

the designer and the cost function for subsystem p = pkj with a fixed inter-execution

time interval τ is defined as

Jp(vp(kj; τ)) =
1

α

τ−1∑
i=0

E(‖xp(i|kj)‖2
Qp + ‖up(i|kj)‖2

Rp − Lp)

+
∞∑
i=τ

E(‖xp(i|kj)‖2
Qp + ‖up(i|kj)‖2

Rp − Lp),
(4.39)

whose tractable expression can be found following Lemma 4. Hence, at sampling

time instant kj, the local optimization problem P
[τ ]
D,p(xc(kj)) for updating subsystem

p = pkj is defined as

min
vp(kj ;τ)

Jp(vp(kj; τ))

s.t. zp(0|kj) = xp(kj), zq(0|kj) = xq(kj),

zp(i+ 1|kj) = Φpzp(i|kj) +Bpvp(i|kj; τ), i ∈ N[0,N−1]

gT
p zp(i|kj) ≤ hp − β[τ ]

p,i , i ∈ N[1,N−1],

gcpzp(i|kj) +
∑
q∈Pc

gcpz
∗
q (i|kj) ≤ hc − η[τ ]

c,i , i ∈ N[1,N−1]

zp(N |kj) ∈ Ẑ [τ ]
pc,f ,

(4.40)

where the construction of the recursive feasible constraint tightening parameters β
[τ ]
p,i ,

η
[τ ]
c,i and local terminal constraints Ẑ [τ ]

p,f are given in subsection 4.3.2. z∗q (i|kj), i ∈
N[0,N ], denote the predicted nominal state for subsystem q ∈ Qp, which are determined

by initial state zq(0|kj) and candidate control sequence ṽq(kj; 1). It should be noted

that values of z∗q (i|kj) don not rely on vp(kj; τ) and hence they are constant in the

local optimization problem P
[τ ]
D,p(xc(kj)). The coupled terminal sets Ẑ [τ ]

pc,f are defined
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as

Ẑ [τ ]
pc,f :=


z

∣∣∣∣∣∣∣∣∣∣∣∣

gT
p Φi

pz ≤ h− β[τ ]
p,N+i, i ∈ N[0,τ+N̂ ],

gT
p Φi

pz ≤ h− β̄[τ ]
p , i ∈ N[τ+N̂+1,τ+N̂+n∗],

gT
cpΦ

i
pz ≤ h− ζ [τ ]

p,N+i −
∑
q∈Pc

gT
cpΦ

i
qz
∗
q (N |kj), i ∈ N[0,τ+N̂ ],

gT
cpΦ

i
pz ≤ h− ζ̄ [τ ]

p −
∑
q∈Pc

gT
cpΦ

i
qz
∗
q (N |kj), i ∈ N[τ+N̂+1,τ+N̂+n∗]


,

(4.41)

where z ∈ Rnp,x and the parameter bound ζ̄
[τ ]
p in (4.32b) is modified as

ζ̄ [τ ]
c := max

i∈N≥τ+1,w∈W
gcpΦ

i−τ
p Dp

τ−1∑
l=0

AlpDpw +
∑
q∈Qp

max
i∈N≥τ+1

gcqΦ
i−τ
q Dqz

∗
q (N |kj)

+
vc−1∑
l=τ+2

d
[τ ]
c,l +

Np∑
p=1

ρvcp

1− ρp
‖gcp‖Sp + ν

[τ ]
c,1.

Hence, the distributed self-triggered SMPC reformulation PST
D,p(xp(kj)) of the proto-

type self-triggered problem PST
O,p(x(kj)) defined in (4.8) is given by

τ ∗j := max

{
τ ∈ N[1,τ̄ ]

∣∣∣∣∣ F [τ ]
D,p(xp(kj)) 6= ∅,

V
[τ ]
p (xp(kj)) ≤ V

[1]
p (xp(kj))

}
,

v∗p(kj) = v∗p(kj; τ
∗
j ),

(4.42)

where F [τ ]
D,p(xp(kj)) is the feasible set to P

[τ ]
D,p(xp(kj)) and V

[τ ]
p (xp(kj)) is the optimal

value function to P
[τ ]
D,p(xp(kj)) defined as V

[τ ]
p (xp(kj)) = Jp(v

∗
p(kj; τ

∗
j )). The resulting

sequential distributed self-triggered SMPC algorithm is summarized in Algorithm 4.

4.4.2 Closed-loop properties of the distributed algorithm

The main result of this chapter is stated in the following theorem.

Theorem 7. (Recursive feasibility and stability) At time instant kj = 0, if centralized

optimization problem PST
C (xc(0)) admits a feasible solution v∗p(0) to subsystem p ∈ P,

and the closed-loop system is controlled under the Algorithm 4, then all subsequent

distributed self-triggered optimization problems PST
D,p(xp(kj)) are feasible for j > 0.

Furthermore, the closed-loop system satisfies the quadratic stability condition for the
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Algorithm 4: Cooperative distributed self-triggered SMPC algorithm

Init.: For p ∈ P , c ∈ C, τ ∈ N[1,τ̄ ], determine tightened local, global, and

terminal constraints Z [τ ]
p,i ,Z [τ ]

pc,i and Z [τ ]
p,N . Determine the update sequence

and set k0 = 0. Solve the centralized optimization problem PST
C (xc(k0)),

obtain control sequence v∗p(k0; τ ∗0 ) and inter-execution time τ ∗0 . For each
subsystem p, apply up(k0 + i) = Kpzp(k0 + i) + v∗p(i|k0; τ ∗0 ), i ∈ N[0,τ∗0 ], set
sampling time instant as k = k0 + τ ∗0 , and construct candidate input

ṽq(k) = M
τ∗0
q v∗q(k0; τ ∗0 ).

while Termination condition not satisfied do
Step 1: For update system pk:

1. Recieve measurement xq(k) from q ∈ Qpk ;

2. Obtain v∗pk(k) and τ ∗k by solving PST
D,p(xpk(k));

3. Apply upk(k + i) = Kpkzp(k + i) + v∗pk(i|k) for i ∈ N[0,τ∗k ] and transmit the
inter-execution time τ ∗k to other subsystem q ∈ Qpk ;

Step 2: For subsystem q ∈ Qpk :

1. Transmit xq(k) to subsystems pk and recieve τ ∗k ;

2. Apply uq(k + i) = Kqzq(k + i) + ṽq(i|k) for i ∈ N[0,τ∗k ]

3. Construct vq(k + τ ∗k ) = M
τ∗k
q vq(k);

Step 3: Set k = k + τ ∗k , and return to Step 1.
end

entire system as shown by

lim
kr→∞

1

kr

kr−1∑
k=k0

Np∑
p

E{‖xp(k)‖2
Q + ‖up(k)‖2

R} ≤
Np∑
p=1

Lp. (4.43)

Proof. (Recursive feasibility) If the centralized self-triggered MPC PST
C (xc(0)) is ini-

tially feasible, then there exit feasible solutions {v∗p(k0; τ ∗0 )} for subsystem p ∈ P .

At the next sampling time instant k1 = τ ∗0 , denote the update system as pk1 and

define ṽpk1
(k1) = M

τ∗0
pk1

v
τ∗0
pk1

(k0). It can be readily verified ṽpk1
(k1) satisfies the local

chance constraint (4.29a). The coupled chance constraint (4.24b) can be ensured if

the centralized problem P
[1]
C (xc(k1)) adopts z∗q (k1) = xq(k1), zpk1

(k1) = xpk1
(k1), and

ṽ1
q(k1) = M

τ∗0
q v

τ∗0
q (k0). Therefore, it follows that ṽpk1

(k1) is a feasible solution to the
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distributed optimization problem P
[1]
D,pk1

(xpk1
(k1)) at time instant k1, which implies

that the problem PST
D,p(xpk1

(k1)) is feasible.

Next, let the feasible solution at sampling time instant kj−1 be {vp(kj−1; τ ∗kj−1
)}

for all subsystems p ∈ P . Following the Algorithm 4, the candidate control input

sequence will be updated to ṽq(kj) = M
τ∗j−1
q vq(kj−1; τ ∗j−1) for all subsystems q 6= pkj .

For subsystem pkj , the distributed self-triggered MPC problem P
[1]
D,pkj

(xpkj (kj)) is

equivalent to the centralized self-triggered MPC problem P
[1]
C (x(kj)) constrained to

vq(kj) = ṽq(kj). From the recursive feasibility of PST
C (x(kj)) in Theorem 6, it can

be verified that ṽq(kj), p ∈ P are feasible solutions to PST
C (x(kj)) and ṽpkj (kj) =

M
τ∗j−1
pkj

vpkj (kj−1; τ ∗j−1) is feasible to PST
D,pkj

(xpkj (kj)). Therefore, it implies that initial

feasible solutions to PST
C (x(k0)) ensures PST

D,pkj
(xpkj (kj)),j ∈ N0 are feasible regardless

of update sequence.

(Quadratic stability proof) At sampling time instant kj, j ∈ N0, define the update

subsystem as pkj , and denote the solution to corresponding distributed self-triggered

optimization problem PST
D,pkj

(xpkj (kj)) as τ ∗kj and v∗pkj
(kj; τ

∗
kj

). Let Jpkj (vpkj (kj; τ
∗
kj

))

be a stochastic Lyapunov function candidate at sampling time instant kj for update

system pkj . The global cost over the whole system is defined as the summation of

cost associated with each subsystem JC(vC(kj; τ
∗
kj

)) =
Np∑
p=1

Jp(vp(kj; τ
∗
kj

)). At sam-

pling time instant kj+1, a feasible candidate solution for subsystem pkj is defined as

ṽpkj (kj+1; 1) = M
τ∗kj
pkj

vpkj (kj; τ
∗
kj

) with τkj+1
= 1.

At sampling time instant kj+1, the updating subsystem is pkj+1
and the closed-loop

system follows Algorithm 4. Thus, the global cost at time kj+1 is

JC(vC(kj+1; τ ∗kj+1
)) = Jpkj+1

(vpkj+1
(kj+1; τ ∗kj+1

)) +

Np∑
q 6=pkj+1

Jq(M
τ∗kj+1
q vq(kj; τ

∗
kj

)).

(4.44)

Define J̃C(ṽC(kj+1; τ ∗kj+1
)) as the cost with all subsystem updating with the candidate

control ṽp(kj+1; 1) = M
τ∗kj+1
p vp(kj; τ

∗
kj

), p ∈ P . It follows that

JC(vC(kj+1; τ ∗kj+1
)) =J̃C(ṽC(kj+1; τ ∗kj+1

))

+ Jpkj+1
(vpkj+1

(kj+1; τ ∗kj+1
))− Jpkj+1

(ṽpkj+1
(kj+1; 1)).

(4.45)
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From the optimality of PST
D,pkj+1

(xpkj+1
(kj+1)), it follows that

Jpkj+1
(vpkj+1

(kj+1; τ ∗kj+1
))− Jpkj+1

(ṽpkj+1
(kj+1; 1)) ≤ 0,

which further implies that JC(vC(kj+1; τ ∗kj+1
)) ≤ J̃C(ṽC(kj+1; τ ∗kj+1

)). From the trig-

gering condition in (4.42), it holds Jpkj+1
(vpkj+1

(kj+1; τ ∗kj+1
)) ≤ Jpkj+1

(vpkj+1
(kj+1; 1)).

So we have

E {JC(vC(kj+1; 1))} ≤ JC(vC(kj; 1))

−
1

α

τ∗j −1∑
i=0

Np∑
p

E{‖xp(i|kj)‖2
Q + ‖up(i|kj)‖2

R − Lp}.
(4.46)

Summing (4.46) for 0 ≤ j ≤ r and taking expectation on both sides lead to

E {JC(vC(kr; 1))} ≤ JC(vC(k0; 1))

−
r−1∑
j=0

1

α

τ∗j −1∑
i=0

Np∑
p

E{‖xp(i|kj)‖2
Q + ‖up(i|kj)‖2

R − Lp}.
(4.47)

Since JC(vC(k0; 1)) is finite and α ≥ 1 by assumption and E {JC(vC(kr; 1))} is lower

bounded, it holds that

lim
r→∞

1

kr

r−1∑
j=0

τ∗j −1∑
i=0

Np∑
p

E{‖xp(i|kj)‖2
Q + ‖up(i|kj)‖2

R} ≤
Np∑
p=1

Lp, (4.48)

which implies the quadratic stability condition that

lim
kr→∞

1

kr

kr−1∑
k=k0

Np∑
p

E{‖xp(k)‖2
Q + ‖up(k)‖2

R} ≤
Np∑
p=1

Lp. (4.49)

Thus the proof is complete.
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4.5 Numerical examples

4.5.1 Case 1: Homogeneous subsystems

In the first example, we consider the control of a group of distributed homogeneous

DC-DC converter systems subject to additive disturbance and coupled chance con-

straint. The benchmark DC-DC converter model has been widely utilized as in [48],

[110]. Model parameters in (4.1) are given as for ∀p ∈ N[1,3]:

Ap =

[
1 0.0075

−0.143 0.996

]
, Bp =

[
4.798

0.115

]
, Dp =

[
1 0

0 1

]
.

The additive disturbance wp(k) for subsystem p is assumed to be independently and

identically truncated Gaussian distributed with zero mean and variance 0.042, and the

bound in (4.2) on wp(k) is αp,i = 0.1, i = 1, 2. Local and coupled chance constraints

on system states are given as:

gp =
[
1 0

]
, hp = 2, pp = 0.8,

gcp =
[
1 0

]
, hc = 5.5, pp,c = 0.8,∀p ∈ N[1,3], c = 1.

The prediction horizon is defined as N = 8. To construct the terminal constraint

(4.33) and (4.34), the extended prediction horizon is chosen as N̂ = 12 and n∗ = 0.

The tuning parameter and weighting matrices in the cost function (4.39) are selected

as α = 1.2 and Qp =
[
1 0; 0 3

]
, Rp = 1. The linear feedback gain Kp in (4.4) is cho-

sen as Kp =
[
0.263− 0.329

]
, which is LQ optimal, and the maximal inter-execution

interval is chosen as τ̄ = 3. The simulation is conducted in Matlab 2019b with Yalmip

[153] and the QP solver is Gurobi [154]. The initial condition for each subsystem is

defined as x1(0) =
[
3.5 3

]T

, x2(0) =
[
2.5 2

]T

and x3(0) =
[
2.5 2.8

]T

. The sim-

ulation length is Tsim = 18 steps. As discussed in Section 4.4, the sequential update

sequence {1, 2, 3, . . . } is adopted to update the control action for each subsystem.

For comparison purposes, simulations with 1000 realizations of disturbances are per-

formed for the proposed distributed self-triggered SMPC (DSTSMPC), distributed

self-triggered robust MPC (DSTRMPC, setting pp = 1, pp,c = 1) and distributed

SMPC (DSMPC [110]).

Chance constraints satisfaction: Figure 4.3 demonstrates the closed-loop trajec-

tories {xp(k), k = 1, . . . , Tsim} for each subsystem and sum of states {∑Np
p xp(k), k =
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1, . . . , Tsim} of system (4.1) controlled by Algorithm 4. To demonstrate constraint

violations, regions around the constraint bound are enlarged as shown in the right

two figures in Figure 4.3. From simulation results, at time k = 1, 16%, 0%, 19%

of the closed-loop trajectories of subsystem 1, 2, 3 violate the local constraints (4.3a)

and 14%, 0%, 18% at time step k = 2, 17%, 0%, 19% at time step k = 3. The coupled

constraint (4.3b) violation probability is 12% at k = 1, 11% at k = 2, and 15% at

k = 3. The simulation results demonstrate that the convergence of the system state

to a region around the origin and the constraint violation probability satisfies the

specific requirement.
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Figure 4.3: Top figures show closed-loop trajectories of homogeneous subsystems
under the sequential update rules. The vertical black line is the state constraint
for three subsystems. The blue, green and red lines denote the state trajectories of
subsystem 1,2,3, respectively. Bottom figures show the evolution of sum of all states.
Right figures show the enlarged region around the constraint bound.

Average communication reduction and performance evaluation: Figure 4.4 demon-

strates the sum of closed-loop trajectories of overall systems with one realization of

disturbance under DSTSMPC, DSTRMPC and DSMPC. Red markers in the line
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denote sampling steps, and the amount of sampling instants has been reduced sig-

nificantly. In addition, it can be observed that no constraint violation occurs for the

DSTRMPC scheme. The average communication time between each subsystem of
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Figure 4.4: Evolution of
∑3

p=1 xp(k) under DSTSMPC, DSTRMPC and DSMPC for
1 realization of the uncertainty sequence.

the distributed self-triggered SMPC is τaver = 2.8, which implies an average commu-

nication reduction by 59.9% compared to the distributed SMPC scheme. Moreover,

define the performance index as

Jindex =
1

Tsim

Np∑
p=1

Tsim∑
k=0

(‖xp(k)‖2
Qp + ‖up(k)‖2

Rp − Lp).

It can be shown that Jindex is 16.71 for DSTSMPC, 16.31 for DSMPC, and 18.75

for DSTRMPC. It concludes that the communication between each subsystem is

reduced significantly without sacrificing too much performance. This can also be

observed from Figure 4.4 since all closed-loop trajectories converge to the origin in a

similar pattern. By allowing for constraint violation, the performance of the proposed

DSTSMPC is improved compared to the DSTRMPC scheme.
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4.5.2 Case 2: Heterogeneous subsystems

Consider a team of heterogeneous subsystems, which has been used in [90] and [155],

modeled by

A1 =

[
1.6 1.1

−0.7 1.2

]
, B1 =

[
1

1

]
,

A2 =

[
1.5 1.1

0 1.2

]
, B2 =

[
0.8

0.9

]
,

A3 =

[
1.4 1.2

−0.3 1.1

]
, B3 =

[
1.2

0.8

]
,

Dp =

[
1 0

0 1

]
, p ∈ P := N[1,3],

and the chance constraints are defined as

g1 =
[
1 1.3

]
, h1 = 15, p1 = 0.8,

g2 =
[
1.4 0.6

]
, h2 = 8.4, p2 = 0.8,

g3 =
[
0.9 0.4

]
, h3 = 9, p3 = 0.8,

gcp = gp, hc = 33, pp,c = 0.8, p ∈ P .

The disturbance wp,i(k), i = 1, 2 follows a truncated Gaussian distribution with zero

mean and variance
1

122
and |wp,i(k)| ≤ 0.5. The subsystem control update sequence

is defined as {1, 2, 3, . . . , } and N = 6, N̂ = 7, n∗ = 1, Qp = I2×2, R = 1, α = 1.3.

The feedback gain Kp are chosen as the LQ optimal gain as K1 =
[
−1.04 −1.04

]
,

K2 =
[
−0.93 −1.19

]
, K3 =

[
−0.76 −0.95

]
. The initial state for each subsystem

is given by x1(0) =
[
−6 25

]T

, x2(0) =
[
−3 45

]T

, x3(0) =
[
−6 60

]T

, and 1000

simulations are carried out with different realizations of uncertainties wp.

The closed-loop trajectories of each subsystem is illustrated in Figure 4.5. At

time step k = 1, 19%, 20%, 18% of the closed-loop trajectories violate the local

constraints (4.3a) for subsystem 1, 2, 3, respectively. When simulation step length is

selected as Tsim = 10 and the self-triggered tuning parameter is chosen as α = 2, the

average communication time during the transient is τaver = 1.8, implying that over

30% communication between each subsystem are reduced. The average performance

index Jindex for DSTSMPC is 1438.65 while it is 1390.90 for DSMPC.
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Figure 4.5: The red, blue and greed lines denote the closed-loop state trajectories of
subsystem 1,2,3, respectively.

4.6 Conclusions

In this chapter, a distributed self-triggered stochastic MPC control scheme is proposed

for CPSs subject to chance constraints and additive disturbances. To be more specific,

the self-triggered SMPC proposed in [110] is extended to distributed paradigm subject

to coupled chance constraints. The communication burden between each subsystem

can be significantly reduced while guaranteeing chance constraints satisfaction. Both

local and coupled chance constraints are transformed into the deterministic form

using the constraints tightening method in [151]. In addition, sufficient conditions to

guarantee recursive feasibility of the algorithm and stability of the closed-loop system

are developed. The results are illustrated by numerical examples for homogeneous

and heterogeneous systems.
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Chapter 5

Conclusions

The thesis mainly focuses on the control analysis and synthesis of aperiodically sam-

pled stochastic model predictive control schemes. We design appropriate SMPC

strategies for different types of stochastic systems subject to various uncertainties

and disturbances, and rigorously analyze the resulting closed-loop properties. We

further demonstrate the effectiveness of the proposed SMPC methods through com-

prehensive numerical examples.

5.1 Conclusions

In Chapter 2, a stochastic self-triggered MPC scheme is proposed for linear con-

strained discrete-time systems. The proposed self-triggered sampling scheme effec-

tively reduces the communication load between the sensor and the controller thanks

to the implementation of the self-triggered sampling scheme. The recursive feasibility

of the proposed control scheme and the stability conditions are developed. Simulation

results have demonstrated the effectiveness of the algorithm.

In Chapter 3, a novel self-triggered SMPC algorithm with adaptive prediction

horizon is proposed for linear systems subject to additive disturbances and state

chance constraints. The prediction horizon in the MPC algorithm changes adaptively

to generate appropriate inter-execution time intervals. To deal with the additive dis-

turbance, an improved triggering condition is designed and the asymptotic sampling

behavior is analyzed. Sufficient conditions to guarantee the recursive feasibility of the

algorithm are given, and the closed-loop system is proven to be quadratical stable.

Simulation results have shown the efficacy of designed self-triggered control method
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in reducing the communication burden while guaranteeing some specific performance

loss.

In Chapter 4, a distributed self-triggered stochastic MPC control scheme is pro-

posed for CPSs subject to coupled probabilistic constraints and additive disturbances.

To be more specific, the self-triggered SMPC proposed in [110] for a single system is

extended to distributed systems subject to coupled constraints. The communication

burden among subsystems can be significantly reduced while guaranteeing proba-

bilistic constraints satisfaction. Both local and coupled probabilistic constraints are

transformed into the deterministic form using the constraints tightening method in

[151]. In addition, sufficient conditions to guarantee recursive feasibility of the algo-

rithm and stability of the closed-loop system are developed.

5.2 Future work

Some promising directions for further exploration are listed below:

• Output-feedback self-triggered SMPC: The self-triggering conditions pro-

posed in Chapter 2 and 3 are developed for linear systems under full state feed-

back, whereas the full state measurements are not possible for many practical

applications. Some pioneering SMPC works considering state estimation have

been presented in [44] and [68]. The integration of self-triggered control and

output-feedback SMPC remains an open problem. Another interesting topic

along this direction is to combine the self-triggered SMPC with the moving-

horizon estimation technique for stochastic system.

• Advanced self-triggering condition design: Self-triggered SMPC of non-

linear systems poses a major theoretical challenge due to the difficulties in

uncertainty propagation analysis, especially compared with that in Chapter

2 and 3. Thanks to recent developments in uncertainty propagation meth-

ods [35, 36], charactering the full probability distribution information through

nonlinear dynamics is possible now. The complete probability distribution of

predicted state allows for advanced self-triggering condition design for both

event-triggered SMPC and self-triggered SMPC.

• Distributed self-triggered SMPC considering network and security is-

sues: In Chapter 4, a perfect communication channel in the CPSs is assumed.
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However, network issues such as transmission delay and data dropout are un-

avoidable for practical CPSs. In [156, 157], the random delays are modelled as

Markov chains, and a state-feedback controller whose gain is dependent on the

delay parameters is designed to stabilize the system. Inspired by this, network

issues such as time delay or packet dropout should be explicitly taken into ac-

count in order to formulate a more general DSMPC problem. Meanwhile, CPSs

also have many entry points for intrusions and malicious attacks such as DoS

attack or replay attack. The successful integration of distributed self-triggered

SMPC with resilience control in a unified framework may lead to significant

developments of CPSs.
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Appendix A

Publications

The following is a list of pubilications during the Ph.D. studies

• Journal papers

(J1) J. Chen, and Y. Shi. Distributed self-triggered stochastic MPC for CPSs

with coupled chance Constraints: A stochastic tube approach, to be sub-

mitted.

(J2) J. Chen, and Y. Shi. Stochastic self-triggered MPC with adaptive pre-

diction horizon for linear systems subject to chance constraints,to be sub-

mitted.

(J3) Q. Sun, J. Chen, and Y. Shi. Event-triggered robust NMPC of cyber-

physical systems under DoS attacks. Science China Information Sciences,

submitted.

(J4) J. Chen, and Y. Shi. Stochastic model predictive control framework for

resilient cyber-physical systems: Review and perspectives, Philosophical

Transactions Royal Society A, accepted with minor revisions.

(J5) H. Wei, Q. Sun, J. Chen, and Y. Shi. Robust distributed model predictive

platooning control for heterogeneous autonomous surface vehicles. Control

Engineering Practice, vol. 107, p. 104655, 2021.

(J6) Q. Sun, J. Chen, and Y. Shi. Integral-type event-triggered model predic-

tive control of nonlinear systems with additive disturbance. IEEE Transac-

tions on Cybernetics, accepted for publication, 2020. [Online]. Available:

http://dx.doi.org/10.1109/TCYB.2019.2963141.
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(J7) J. Chen, Q. Sun, and Y. Shi. Stochastic self-triggered MPC for linear

constrained systems under additive uncertainty and chance constraints.

Information Sciences, 459:198–210, 2018.

(J8) B. Mu, J. Chen, Y. Shi, and Y. Chang. Design and implementation of

nonuniform sampling cooperative control on a group of two-wheeled mobile

robots.IEEE Transactions on Industrial and Electronics, 64(6):5035–5044,

2016.

(J9) L. Zuo, J. Chen, and Y. Shi. Time-optimal coverage control for multiple

unicycles in a drift field.Information Sciences, 373:571–580, 2016.

• Conference papers

(C1) K. Zhang, J. Chen, Y. Chang, and Y. Shi. EKF-based LQR tracking

control of a quadrotor helicopter subject to uncertainties. In Proceedings

of 42nd Annual Conference of the IEEE Industrial Electronics Society,

Florence, Italy, 2016, pp. 5426–5431.
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