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Anäıssia Franca

B.Eng, University of Victoria, 2015

Supervisory Committee

Dr. Curran Crawford, Supervisor

(Department of Mechanical Engineering)

Dr. Ned Djilali, Supervisor

(Department of Mechanical engineering)



iii

ABSTRACT

This thesis presents a battery electric bus energy consumption model (ECONS-M)

coupled with an electrochemical battery capacity fade model (CFM). The underlying

goals of the project were to develop analytical tools to support the integration of

battery electric buses. ECONS-M projects the operating costs of electric bus and the

potential emission reductions compared to diesel vehicles for a chosen transit route.

CFM aims to predict the battery pack lifetime expected under the specific driving

conditions of the route. A case study was run for a transit route in Victoria, BC

chosen as a candidate to deploy a 2013 BYD electric bus. The novelty of this work

mainly lays in its application to battery electric buses, as well as in the coupling of

the ECONS-M and the electrochemical model to predict how long the batteries can

last if the electric bus is deployed on a specific transit route everyday. An in-depot

charging strategy is the only strategy examined in this thesis due to the charging rate

limitations of the electrochemical model. The ECONS-M is currently being utilized

in industry for the preparations of Phase I and II of the Pan-Canadian Electric Bus

Demonstration & Integration Trial led by the Canadian Urban Transit Research and

Innovation Consortium (CUTRIC). This project aims to deploy up to 20 battery

electric buses for phase I and 60 electric buses for phase II across Canada to support

the standardization of overhead fast chargers and in-depot chargers, which in a first

in the world. At this time, the developed CFM can not support any final claims due

to the lack of electrochemical data in the literature for the high capacity lithium-ion

cells used in electric buses. This opens the door to more research in the ageing testing

of batteries for heavy-duty applications.
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Chapter 1

Introduction

1.1 Motivation and Battery Electric Buses State

of the Art

Particle matter (PM) and nitrogen oxides (NOx) in urban air are linked to alarming

increases in adults lung cancers, asthma and premature deaths [1]. It is estimated

that vehicles contribute to 40-70% of urban NOx emissions, 85% of which is from

diesel engines [2]. In 2009, 94% of the Canadian bus fleet operated diesel buses [3],

producing a large amount of particle matter and nitrogen oxides (NOx) [4]. Deploying

battery electric buses (BEBs) instead of diesel, bio-diesel or hybrid buses is a solution

to tackle this public health issue, as this technology does not produce exhaust gases

and therefore can improve cities local air quality.

Expanding the use of BEBs can effectively reduce greenhouse gas emissions. This

step towards the decarbonization of transportation goes along Canada’s engagement

to the Paris Agreement signed by 175 parties around the world to limit global warming

to 2oC above pre-industrial levels [5].

Other advantages of BEBs compared to diesel and hybrid buses include less noisy
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operation thanks to the electric motor and the simple transmission system which

makes its application suitable for densely populated areas.

Additionally, BEBs can effectively recover power during braking, which can be

problematic for trolley electric buses [6]. For regenerative braking to function in

trolley buses, there has to be another bus requiring to use this surplus generated

energy in the power lines at the same time, which is challenging to operate due to

many variables during operations.

Furthermore, BEBs are up to six times more efficient compared to buses using

compressed natural gas (CNG) according to Proterra, one of the largest american

bus manufacturer [7]. Currently, the scientific community challenges the benefits of

low tailpipe emissions of natural gas automotive technologies because the extraction

and storage of natural gas comes with high risks of methane leakage that can can

worsen the impact on climate change [8] and water pollution [9].

Battery electric buses for transit applications have been compared to fuel cell

(FCB) and fuel cell hybrid buses (FCHB) in [10]. It was found that BEBs have a

smaller energy fuel consumption on average compared to FCBs and FCHBs. More-

over, FCB are facing many technical challenges that prevent their large-scale adop-

tions, such as the lack of global technical regulations for hydrogen vehicles [11] and

hydrogen production and distribution being capital and energy intensive [12].

Several factors, such as passenger safety, comfort, accessibility and reliability can

be social barriers to the wide use of public transit [13]. In [14], the authors discussed

a phenomenon called the “car effect”, stating that people tend to show biases towards

the use of personal vehicles, even when using a car is not in the person’s best economic

interest. This irrational bias is partially explained by the fact that in western societies,

car is a symbol of freedom.

Despite these barriers, transit systems including buses, trolleys and light rail,
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subways etc... present many advantages over the use of passenger cars. According

to the American Public Transportation Association, travel delays would increase by

27 percent without public transportation [15]. Public transportation can protect the

environment, improve cities air quality, provide support in emergency situations and

reduce dependence in foreign oil. Financial savings is without a doubt one of the main

benefit of public transportation. The American Public Transportation Association

has developed a tool that assesses the potential savings of using public transportation

for commuting instead of personal vehicles depending on the characteristics listed in

Table 1.1 which shows the results of a common 2008 scenario. It should be noted

that these estimations were calculated using data collected during the financial crisis

of 2008 with a gas price of $4/gallon which is twice the average of June 2018 prices.

Today’s savings would be less than the $1,843 shown in the table but still substantial.

Table 1.1: Estimated savings from using public transportation using national averages
for June 2008 [16]

Car’s gas mileage: 20 MPG
Price of gas per gallon: $4
Number of miles in round trip commute: 24.22 miles
Size of car: SUV
Daily parking cost: $5
Daily round trip commute cost using public transportation: $3.5
Yearly cost of commuting with a car: $2,683
Yearly cost of commuting with public transportation: $840
Total savings: $1,843

Buses compared to other transit modes such as subways are less expensive and

offer the most flexibility in terms of mobility. It is common in cities to have bus

rapid transits, for which only major stops are serviced. Municipalities with a low

population density such as Victoria BC (495 people/km2) rely heavily on buses as the

only public transport. On the contrary cities such as Vancouver (5,249 people/km2)

use a combination of very well connected trains, boats and buses to facilitate transit,
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though busing remains the only way to get around the entire city as trains require

considerable civil infrastructures that can be challenging to build and operate in

highly populated areas.

A diesel bus is replaced every 12 years as part of a fleet, compared to approximately

6 years for cars [17]. Fleets ownership models vary greatly with the location and

policies in place in the municipality. A public transport bus fleet can be owned by a

municipal or by transit authority or it can have mixed funding (public and private).

For example, BC Transit operating over most of the province of British-Columbia

(BC) has two main sources of funding: the government (provincial and municipal)

and passenger fares. The Utah Transit Authority, operating in Salt Lake City, is

funded from the same main sources and with private investors. Buses are operated

by drivers working for the transit authority.

Regarding the improvements of the user experience, transit agencies have made

continuous IT efforts to develop user-friendly applications able to facilitate commutes

and help users plan for their trips. Applications showing the real-time location of

buses on a map are becoming more popular in large and smaller cities (Victoria and

Vancouver in BC).

BEB manufacturers offer a wide variety of bus sizes and battery capacities to

serve diverse transportation specifications. Different bus models, such as typical

12m long transit bus, coach bus or school bus are being deployed. For short routes,

smaller battery packs are recommended. Bus manufacturers also use different types

of battery chemistries and charging strategies. Table 1.2 shows different electric bus

specifications from various manufacturers in North America for a transit application.

The characteristics that are not publicly disclosed are marked with the symbol “(?)”.

As shown in this table, a wide range of technology is currently available on the market,

including different battery systems and battery chemistries. It is important to note
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that the capacity shown for each bus technology is the total installed battery capacity.

Depending on the battery chemistry, manufacturers recommend different ranges of

operating state-of-charge for their batteries, e.g. from 10-90% or 5-95%, to limit

battery degradation. This implies that 10 to 20% of the installed battery capacity

should not be used. Another important element to note is that manufacturers do

not disclose their battery warranties and lifespan, or if they do the testing conditions

are unknown (e.g: BYD refers to 4,000 cycles which is not indicative of the actual

lifespan). The warranty on battery ranges from 6 years to 4,000 cycles (above 10

years if considering one charge/discharge per day).

Various pilot projects aiming to develop and expand BEB fleets while testing dif-

ferent charging strategies are flourishing in North America [22], Asia [23] and Europe

[24] [25]. Table 1.3 shows some demonstration projects that have been implemented

or are currently ongoing around the world.

To date, around 173,000 electric buses have been deployed around the world, 98%

of which are in circulation in China [30].

To conclude this section, the key challenges to the adoption of BEBs are:

• the confidence in the technology since it is recent as shown in Table 1.3

• the lifetime of the batteries that are shorter than a typical diesel bus (replaced

every 12 years) as shown in Table 1.2

• the performance that can be affected by the route on which the bus is deployed

The energy consumption and lifespan analyses developed in this thesis involve

several factors and considerations that are reviewed next, including: impacts on the

environment and the electricity grid; the impact of drivetrain and route on energy

consumption; and the modeling of battery degradation processes. Progress in each of

these topics is reviewed in the next sections.
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Table 1.3: BEB deployment project around the world

Location Starting/ending
date

Bus deployed Manufacturers Charging type

Geneva, Switzer-
land [26]

Spring 2018 (?) 12 ABB and HESS Overhead high-
power charging,
600kW

Edmonton,
Canada [27]

January 2016 -
February 2016

2 BYD and New Flyer Trickle-charging
(60 kW, slow)
En-route charging
(300kW, fast)

San Joaquin
County, USA [28]

May 2013 - Ongo-
ing

12 Proterra In depot (slow)
and fast charging

London, UK [29] September 2016 -
Ongoing

73 BYD, ADL In depot (slow)

China [30] 2016 - Ongoing 170,000 Yutong,BYD,Nanjing Slow and fast
charging

1.2 Environmental and Grid Impact of Charging

Battery Electric Buses

The essential components in a BEB drivetrain are the battery packs. BEB lithium-

ion battery can restore the energy accumulated during charging or during the use of

regenerative braking to propel the vehicle. Several methods for charging BEBs are

commercially available. The most common techniques used are slow charging (in-

depot or at terminal stations) and fast charging (at bus stops and terminal stations)

[31]. A third less commonly used method consists of swapping the discharged batter-

ies with charged ones. Charging can be achieved through a direct physical connection

between the charger and the bus (plug-in or conductive) or wireless [32]. The wireless

charging infrastructure or inductive charger offers some advantages over plug-in meth-

ods. One of the main advantages of wireless charging is its very high power efficiency

for the power transfer between the bus and the charging pad [33]. In [34], the life

cycle greenhouse gas (GHG) emissions is assessed, for both conductive and inductive

technologies and it was found that the wireless charging system consumes less energy
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and emits slightly less GHG compared to a plug-in charging system over the systems

lifetimes. Nevertheless, this study failed to take into account the emissions related

to the electricity generation mix, which could increase the GHG emissions of the fast

charging infrastructures.

Electric cars chargers are categorized according to their charging power levels [35]:

• level 1 is typically an at home charger with an expected output power up to

2 kW

• level 2 is a “primary” charger with an expected output power in the 8-19 kW

range

• level 3, or “DC fast charging”, can have an output power between 50 kW and

100 kW

Level 2 chargers can be used to charge electric buses with small battery packs, such

as school buses. The power level 3 is usually considered as slow/in-depot charging for

electric buses. This is currently being used by BYD and Proterra as shown in Table

1.2. For electric buses, fast charging occurs above 120 kW.

In Canada during the winter of 2016, two electric buses were deployed in Edmonton

using two different charging techniques, namely trickle-charging and on-route fast

charging. Marcon Engineering was the consulting company hired to determine the

feasibility of introducing BEBs in service. Their study on the feasibility of the project

for both charging strategies found that BEBs can lead to potential environmental and

economic net benefits [27]. Most of the research carried out around BEBs focuses

on the optimization of charging locations and infrastructure cost [36] [24], vehicle

scheduling for fast charging [37][38] and battery sizing [39].

BEBs is a relatively new technology: the first BEB was deployed in Shanghai in

2009. Therefore, transit agencies take high business and technical risks when deciding
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to purchase an electric bus. To shield the transit agencies from these risks, a business

model designed to facilitate the adoption of BEBs is described in [40]. An enabling

company was created to purchase 8 electric buses and their chargers. This company

acted as a customer with the bus and charger manufacturers, the bus operator, the

city council, the electricity operator, the power distributor and the electricity supplier.

The company first purchased the buses and chargers and then leased them to the

operating company. This has been shown to be a successful business case, though it

raised a couple of concerns for regulatory and innovation policies. The majority of

demonstration projects do not communicate the business model used to operate and

own the bus and charging infrastructures in the literature.

In [41], the authors evaluate the electricity consumption of an electric bus using

real-life data collected from the deployment of a BEB fleet with an ultra fast charging

technology. The impact of fast charging on battery cost reduction is investigated.

However, the impact of fast charging on the electric grid wasn’t considered in that

paper. According to Karakitsios et al. [42], fast chargers can potentially create

network problems at the distribution level by disrupting the voltage profile and line

loading which can create network losses. As shown in Table 1.3, fast chargers can

supply up to 600 kW of power at their peak when buses charge, which can represent

a significantly large load for the distribution network. There is currently a gap in the

literature to identify the impact of fast charging for large BEBs fleet on the power

grid, though this topic is being widely investigated for electric cars [43] [44] [45].

In current electricity market structures, customers are classified according to the

installed capacity (kW) required and the energy (kWh) required for the operation.

Electricity for large general customers is billed according to the following scheme:

• a basic cost, in $/day, covering administration fees

• a demand or delivery cost, in $/kW, covering the cost of installations
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• an regulatory or energy cost, in $/kWh, covering the cost of electricity alone

Depending on the Canadian jurisdiction, electricity market prices can either vary

hourly or stay constant. In Ontario, the Independent Electricity System Operator

(IESO) manages the power system in real-time with pricing changing hourly. Con-

versely, in British Columbia, BC Hydro is the main electricity provider with fixed

pricing no matter how the demand fluctuates. Demand costs are generally the high-

est cost in the bill, and depending on jurisdiction rates it could potentially make the

adoption of BEBs more expensive than the deployment of diesel buses [46] [47].

To mitigate the potential negative impact of fast charging, adding an energy

storage system (ESS) to buffer the instantaneous power draw from the grid is a

promising solution that has been investigated for electric cars in the literature. In [48],

ESSs are characterized into different categories, namely mechanical, electrochemical

or electrical. ESS are devices that can store energy on various forms and restitute it

as electricity.

Battery energy storage (BES) systems is one of the most popular types of ESS.

It has the ability to reduce both the charging costs of BEBs and avoid large infras-

tructure modifications in the original grid system (including feeders and distribution

transformers). In case of a grid failure, the ESS can offset the electricity supply chal-

lenge so that the buses can keep running as scheduled for a small period of time. In

[49], a sizing optimization algorithm is proposed to install a BES for an electric bus

fast charging station. In this paper the optimally sized BES is predicted to shave

peak load reducing operating costs and decrease the investment cost by reducing

the required capacity of the transformer and feeder. These results are obtained in

the case of a time-of-use electricity pricing, thus more work is required to assess the

feasibility of BES for different grid and electricity pricing systems such as the one

used in British Colombia based on how much energy and power is consumed. Other
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storage methods, such as flywheels, capacitors or ultra-capacitors are considered to

be attractive technologies because of their durability and power density [50], though

they are not yet widely available.

As battery electric buses are being deployed, a key step is to develop standards

for both on-route and in-depot charging to be used by bus manufacturers around the

world. Adopting standards at an early stage of development reduces infrastructure

costs later on, as more BEBs are purchased. As shown in Table 1.3, different projects

use different charging power and strategies. The on-going project “Pan-Ontario Elec-

tric Bus Demonstration and Integration Trial” in Canada facilitated by the Canadian

Urban Transit Research and Innovation Consortium (CUTRIC) aims to gather sev-

eral large bus and charger manufacturers to test and develop standards to be used

throughout Canada to unify the industry and facilitate the large scale adoption of

BEBs [51].

1.3 Literature Review of Modeling for E-bus Fea-

sibility Studies

Feasibility analysis on battery electric bus fleets deployment in city networks has been

investigated in several studies [52, 37, 53, 38, 27]. The energy consumption of the

bus is used to predict the project operational costs and is influenced by the road

topography, the battery weight, the weather and the load variation [53]. This section

will discuss the state-of-art for modeling the energy consumption of electric buses.

1.3.1 Drivertrain modeling

The total energy consumed by an electric bus is the aggregate of three loads:

• the energy consumed by the traction system to propel the vehicle
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• the energy required to heat the bus or to operate the air conditioning

• the energy consumed by the rest of the electrical system, such as lights or control

systems [54]

In [53], the authors developed a discrete time-step energy consumption model

using the sum of the kinetic, potential and rotational components involved in the

vehicle propulsion. Losses due to air friction, curve and rolling resistance and external

loads such as air conditioning are accounted for and balanced out in the vehicle

energy equation to get the overall energy consumption. The energy used from the

vehicle’s battery or gained through regenerative braking can be found by scaling the

energy consumption by a propulsion or a regeneration efficiency, respectively. One

of the important assumption this model uses is a constant propulsion or regenerative

efficiency throughout the driving cycle. This should be brought into question as

these efficiencies varies depending on the torque and rotational speed, as shown in

commercial electric motor efficiency maps.

A different backward approach is used in [52] to determine the energy consump-

tion. Using a specific driving cycle for urban buses, the vehicle longitudinal dynamics

are found as a function of velocity. The defined equations are time dependant. Aero-

dynamic, rolling and climbing resistance forces as well as accessory load forces are

summed to get total force acting on the vehicle. The torque is calculated from the

longitudinal dynamic equation. The electric motor map is then used to interpolate

the rotational speed and get the instantaneous energy use or regeneration at a given

motor efficiency. While this approach has shown reliable results for the test driving

cycle it has used, it has failed to take into account that the motor rotational speed is

directly linked to the wheel speed which can lead to inconsistencies.

More recently, in [41], the authors have attempted to calculate the energy con-

sumption of a transit bus subjected to test driving cycles or real-life cycles. The power
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drawn or supplied to the battery is calculated using a constant motor efficiency which

as previously stated can lead to inaccuracies in the final results. Additionally, the

power regained from regenerative braking is obtained by dividing the power at the

wheel by the motor efficiency, when it fact it should be multiplied. The power drawn

from the battery should be greater than the actual power at the wheel, on the other

hand the power supplied to the battery should be smaller than the power at the wheel

to account for losses. To the knowledge of the author, the previous research done on

this field always uses assumptions that can negatively affect the results.

1.3.2 Input loads and component specifications

To achieve an accurate energy consumption simulation, it is crucial to properly gen-

erate a vehicle model containing the main aerodynamic properties and components’

efficiencies. Researchers use published data from electric bus manufacturer, such as

the Proterra FCBE 35 bus in [52] or the BYDs ebus-12 2015 series in [38].

Accurately modeling the auxiliary or accessory load is also important in the de-

termination of energy use. Auxiliary power is defined as the power consumed by

the heating, cooling and electric systems. This load can significantly contribute to

increasing the energy consumption and it is sensitive to external temperature vari-

ations. The energy models described in [52] and [53] consider the power or force

generated by the load as constant, without accounting for its variations depending on

weather conditions. In [39], the auxiliary power is modelled by two constant values,

9 kW for an articulated bus on regular days and 21 kW on hot and cold days. These

values are based on data collected during the H2-Bus-NRW project deploying electric

hybrid 18m fuel cell buses in Germany.

The feasibility study in [37] focuses on examining the worst-case scenario for aux-

iliary load during a hot summer day where cooling is continuously used. The dynamic
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behavior of the BEB auxiliaries with respect to the temperature have never been mod-

elled for time-based energy consumption modeling of an electric bus. Implementing

such feature can improve SOC calculations by making it more accurate.

In addition to the auxiliary load variation, the overall mass of the bus while

in service is frequently changing due to the flow of passengers getting on and off

which also impacts the energy consumption. Rogge et al. [37] calculated that for an

18m fully packed bus, the passenger mass represents 37.5% of the maximum gross

vehicle weight. This study considers the worst-case scenario only. The authors in

[55] accounted for a constant average load of 20 passengers, while other authors in

[53] used data recorded with a passenger counting system to get an approximation of

the bus mass at any point in time. Considering the weight of the bus in the worst

case scenario is a good strategy to ensure the sizing of the battery can sustain this

scenario. However, it is insufficient to optimize the charging strategy. Therefore, it

would be interesting to implement a stochastic feature to model the buses’ weight

throughout the operating days.

The next important factor to consider in energy modeling is the driving cycle of the

bus. A driving cycle is a representation of the speed of the vehicle over time. It greatly

depends on the traffic, the road topography and the bus stops during the operation.

In order to define a driving cycle, the bus route properties including the traveled

distances and coordinates, the topography and the dwell time at each bus stop should

be know. In [39], the authors first used an internet mapping service (Google Maps)

and converted the route direction in global positioning systems (GPS) data. Another

tool was then used to obtain the elevation data collected from the NASAs Shuttle

Radar Topography Mission (SRTM) and the National Elevation Dataset (NED). The

topography of a given route impacts not only the driving cycle but also the climbing

resistance and the amount of energy gained by regenerative braking. In particular
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cases, such as the ones depicted in [52] and [56], the route is considered flat and the

energy model for the bus doesn’t include route topography.

1.3.3 Field trials

Heavy-duty testing driving cycles are available for simulation and widely used by bus

manufacturers. Testing driving cycles are constrained driving patterns developed to

set standards for vehicles before they enter the market, in order to estimate their CO2

emission and overall energy consumption. In the case of electric vehicles, the vehicle

range can be measured when tested under the conditions defined by the testing cycle.

These testing cycles are useful to compare the energy consumed by an electric bus

in real-life and the energy simulated. In Europe, the Dutch Urban Bus driving cycle

and Braunschweig-cycle are widely used, while the Central Business District (CBD) or

Manhattan Bus Cycle (MBC) are used in the USA [19]. The authors in [52] compared

the simulated energy consumption of their system using the CBD driving cycle with

the published energy consumption measured by Proterra when their bus performed

the CBD cycle. A similar approach was used by Burmeister et al.in [38] to validate

their model, using the Standardized on-road test cycles (SORT) developed by the

international Association of Public Transport.

When a case study is implemented, such as in the Milton Keynes Demonstration

Project described in [25], data such as the velocity and road altitude can be recorded,

for certain days of the project, by the fleet operator. However in some cases data

are not available and the actual driving cycles have to be modelled. Simulating an

accurate driving cycle without measuring data for electric bus can be complex be-

cause it depends on many parameters. In [57], the authors developed an algorithm to

generate arbitrary driving cycles based on the characteristics of the original cycle for

buses. The arbitrary driving cycle has a similar speed distribution and power spectra
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compared to the original pattern, and can be defined with a different duration. This

modeling approach requires an accurate driving cycle to start with, which might be

unavailable when modeling electric bus deployment before a real life implementation.

The Institute of Transportation Systems at the German Aerospace Center has devel-

oped an open-source traffic simulation tool that only requires information relative to

the route and chosen vehicle in order to simulate an accurate driving cycle [58]. This

simulation package, called SUMO (Simulation of Urban Mobility) is a microscopic

model in which each vehicle is individually simulated. Information relative to the

road, such as its topography and GPS data, are inputs, as well as the main vehicle

characteristics. The output of the simulation is the velocity of the targeted vehicles

at any time. In [59], a 2D simplistic version of SUMO that does not take into account

the height variations of the road was used to generate a realistic driving cycle for one

plug-in hybrid vehicle designed at the university of Salento. A 3D add-on feature of

SUMO was developed by Maia et al. [60] to incorporate topographic data as an input,

which resulted in a more accurate driving cycle. Modeling the driving cycle is also

possible by combining testing cycles to fit a specific road conditions as demonstrated

in [52] where a combination of the MBC and City Suburban Cycle (CSC), represent-

ing suburban driving pattern, was used to simulate the a traffic pattern inside and

on the periphery of the Ohio State University Campus.

In 2014, the Milton Keynes demonstration project in the UK successfully con-

verted a diesel fleet operating route to electric buses [25]. The fleet is composed of

eight buses in total. The chosen route is 24km long and operates 17 hours a day at

a 15 minutes frequency. Inductive opportunity charging as well as in-depot charging

were implemented to recharge the system, which increased the range of each vehicle.

To assess the performances of the project, the average energy consumption of each

bus was estimated and compared with the actual energy consumption recorded dur-
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ing the first five months of the project. The authors found from the recorded data

that the energy consumption was affected by extreme weather conditions causing

a variation in the auxiliary load. The driver’s performance affects the energy con-

sumption significantly. The average energy consumption for 46 drivers was recorded.

The minimum and maximum average consumption per mile were 1 kWh/mile and

2 kWh/mile, respectively. Another factor that affected the energy consumption was

the topography of the road which was responsible for 1-2% of energy use. Finally, the

efficiency of the charging system was calculated by comparing the power drawn from

the grid and the power at the battery pack terminals, which averaged 78%. Overall

the Milton Keynes project analysis has shown that the actual performances of the

buses are close to the ones initially predicted, and the project was deemed successful.

1.4 Modeling the Degradation Phenomenon in Lithium-

Ion Battery Background Information

The lithium based family of batteries is the most popular technology for transporta-

tion applications due to its high energy and power densities, low weight and fast

charging abilities. Other chemistries, namely lead acid or nickel metal hydride bat-

tery (NiMH), have been previously used for automotive applications. A qualitative

comparison is shown in Table 1.4, while a graphical comparison is shown in Figure

1.1.

Within the lithium-ion based family, several postive electrode materials are cur-

rently commercialized [63, 64]:

• LCO Lithium Cobalt Oxide (LiCoO2)

• LMO Lithium Manganese Oxide (LiMn2O4)
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Table 1.4: Comparison of lead acid, NiMH and Li-Ion batteries [61]

Characteristics Lead acid NiMH Li-Ion
Weight Poor Fair Good
Volume Poor Good Good

Capacity / Energy Poor Fair Good
Discharge power Good Fair Good

Cost Good Poor Poor
Calendar life Poor Good Fair
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Figure 1.1: Energy density comparison of size and weight of the main types of battery
chemistries in automotive applications, adapted from [62]

• NCA Lithium Nickel Cobalt Aluminium Oxide (LiNiCoAlO2)

• NMC (NCM) Lithium Nickel Cobalt Manganese Oxide (LiNiCoMnO2)

• LFP Lithium Iron Phosphate (LiFePO4)

Table 1.5 summarizes the different applications, advantages, output voltages and

specific energies of each lithium-ion chemistries currently commercialised.

NMC and LFP chemistries are most commonly used in the EV industry, LFP

being more safe and stable and NMC being more powerful. Current research focuses
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on trying to increase the specific capacity and lifetime of lithium-ion batteries by

testing new positive electrode materials that allow high coulombic efficiency and good

power capability [64]. One key research aspect is decreasing the risk of short-circuits

by improving the separator technology, thus improving the safety of the battery [66].

Some of the main limitations of Li-Ion batteries are that their capacities and

power outputs decay with time [67]. Much research has been undertaken to push the

boundaries of the current lithium-ion cell limitations, especially by investigating new

positive electrode materials [68]. Currently, sulfur is an attractive material because

of its high theoretical capacity [68] and its cheap price [69]. However, Lithium Sul-

fur battery suffer from high electrical resistance, capacity fading and self-discharge,

therefore more research is required to improve their overall performance [69]. Addi-

tionally, recent years have seen a rise in interest for lithium-air batteries, which also

have a remarkably high theoretical capacity compared to what is being sold in the

market currently. However, the biggest challenge preventing its adoption for electric

vehicle applications is its limitations on the charge and discharge currents [70].

Though the future may hold breakthroughs and discoveries on new battery mate-

rials, current lithium-ion chemistries will be prevalent in the near term. This section

will provide a literature review on the research done to capture the performance and

the effect of degradation on lithium-ion cells.

1.4.1 Lithium-ion battery fundamentals

A battery is a device that converts electric energy into chemical energy during the

charge, and the opposite occurs during discharge. The basic components of the bat-

tery are cells. Cells are connected in series and/or in parallel and assembled in a

mechanical enclosure to form a module. The battery pack itself is assembled by

connecting multiple modules in series or parallel to achieve the desired power capac-
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ity. When assembling lithium ion cells, safety is one of the most important concerns

since the battery can be subjected to extreme operating conditions such as over-

charge/over-discharge, heating or crush which can cause the electrolyte to leak, which

itself can lead to smoke, fire or even explosion [71].

Most cells in the automotive industry are either prismatic (left in Figure 1.2 and

Figure 1.3)) or cylindrical (right in Figure 1.2 and Figure 1.3).

Figure 1.2: A prismatic and two cylindrical cells [72]

Each cell has two electrodes (a negative and a positive), separators, two terminals

(a negative and a positive), an electrolyte that can be a liquid, a gel or a solid material

and an enclosure [74]. In lithium-ion batteries, the negative electrodes are composed

of graphite, carbon, titanate or silicone [75] while there is a wide array of active

material at the positive electrodes.

Two main processes govern the cell dynamics during operation. In the discharge

mode, ions contained in the cell migrate from the negative electrode through the elec-

trolyte towards the positive electrode, causing a difference in potential (or voltage).
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Figure 1.3: A cutaway vierw of a prismatic and a cylindrical cell [73]

This difference generates an electron flow which creates electricity that is collected by

the current collector at the terminals to power a load. The general discharge chemical

reaction for a lithium-ion battery is shown below.

LixC → C + xLi+ + xe− (1.1)

In the charge mode, the reverse reaction occurs where electricity is used to push the

ions towards the least attractive electrode (negative electrode).

Figure 1.4 shows a schematic of the charging process in a battery. The performance

and characteristics of a battery are described as follow [76]:

• the battery capacity, expressed in amp-hour, represents the quantity of electrons
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Figure 1.4: Discharge process in a battery

that move between cell terminals

• the cell nominal voltage, expressed in Volts, characterizes the ions inclination to

migrate from their elevated energy state to their discharge state in the second

electrolyte

• the energy density, in Wh/L, is the nominal battery energy per unit volume

• the state-of-charge (SOC), expressed as a percentage of the total remaining

battery capacity. It is defined as SOC(t) = cap(t)/capmax where cap(t) is the

current battery capacity at a given time t in kWh or amp-hour and capmax is

the initial capacity of the battery in kWh or amp-hour

When designing the battery module, the basic layout can either use fewer large
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cells or many small cells [71]. Some of the main advantages of the “many small cells”

design configuration includes improved safety and a higher quality production while

the advantages of the “fewer large cells” configuration are lower assembly costs, better

reliability since the number of component is reduced, and better volume efficiency.

Both configurations have different disadvantages, the final design choice is should be

a trade-off.

1.4.2 Available modelling methods for characterizing battery

degradation in electric vehicle

Modeling the lithium-ion cell performance can be done through different approaches

listed below.

1. Physics-based / electrochemical models intend to simulate the physical and

chemical phenomena occurring in the cell during its utilization or storage. These

models can be very complex because they capture the transport phenomena and

electrochemical kinetics at a small scale [77]. Because of their high computation

time, they are not suitable for system level design exercises [78].

2. Equivalent circuit based models, which are tools that capture the major electri-

cal and thermal properties of the battery while avoiding detailed calculations of

internal electrochemical processes. These models use battery parameters that

can be identified from measurements [79].

3. Performance based model use empirical equations to model battery ageing. Age-

ing tests are conducted on battery cells under several conditions, from which

the correlations between stress factors and capacity fade and impedance raise

can be identified. The impact of the ageing factors can be obtained, as well as

a descriptive expression of the battery performance level over its lifetime [75].
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4. Analytical model with empirical data fitting is a fourth type of modelling

method available. The battery lifetime is predicted by means of extrapola-

tion from test results and field data. Four methods are commonly used in this

type of model:

• the coulomb counting method: estimates the battery state-of-health (SOH)

by a simple integration of current over time [80]

• the fuzzy logic approach: computing method based on “degrees of truth”

rather than the usual “true or false” (1 or 0) Boolean logic, based on the

assumption that the ageing is a steady stochastic process and focuses on

mining the relationship between external excitation and object response

rather than the degradation mechanism [81]

• the state observation method: estimates the SOC, SOH and state-of-life

(SOL) using a Particle Filter (PF) framework [82]

• the Artificial Neural Networks (ANN) or Neural Networks (NN) [83] method:

learning from input and output data by altering internal relationships be-

tween them to predict the capacity, resistance, or SOH

For the purpose of our research, each modelling method was carefully reviewed

and compared to choose an optimum approach that would fit project constraints.

These constraints were mostly related to the available testing material on site and

available battery chemistries to be tested. The SSDL and ESTP laboratories have

fast computers, but there is no experimental setup available at the time to test cell

ageing. The electrochemical modeling approach was chosen because it provides a

more fundamental approach that requires very little experimental data compared to

any other method, and is the most accurate model that exists in the literature.
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1.4.3 Electrochemical degradation models

Two types of electrochemical models are described in the literature: the pseudo-2D

model (P2D) and the single-particle model (SPM).

Pseudo-2D model

The P2D model is generic and can be applied to most battery chemistries. One

of the oldest pseudo 2D-model was developed in 1993 by Doyle [84]. This model

was able to predict the galvanostatic charge and discharge of a lithium negative

electrode/solid polymer separator cell. Many improvements have been made to this

generic model since. In [85], a first principles capacity fade model was developed based

on a continuous occurrence of a very slow solvent diffusion near the surface of the

negative electrode. In this model, the molar flux equation at the negative electrode is

split into two components: one for the intercalation reaction and another for the side

reaction that forms a film on the carbon particles leading to the capacity fade, called

the solid electrolyte interface (SEI). The derived coupled nonlinear partial differential

equations (PDEs) were solved simultaneously. Other authors such as Pinson and

Bazant [86] and Safari and Delacourt [87] have developed models that can predict

battery degradation under cycling conditions. A consensus is yet to be reached on

which approach is the most accurate for specific operating conditions [88].

The pseudo 2D physics-based model is the most widely used by battery researchers

because it can solve for the electrolyte concentration, electrolyte potential, solid-state

potential, and solid state concentration within the porous electrodes, along with the

electrolyte concentration and electrolyte potential within the separator [89].

Figure 1.5 shows the schematic of a pseudo-2D model in which the active material

particles are represented spherically, and the solid lithium concentration varies as a

function of time, the x-direction and the radial coordinate. The main advantage of
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Figure 1.5: Schematic of a pseudo-2D electrochemical model

this method is its high predictive capability because it can capture the main physio-

chemical phenomena occuring in a battery in a detailed and accurate way. However,

its computational cost is higher than the single particle model (SPM) discussed next.

Single particle model

The single particle model (SPM) is an approach that incorporates the effects of trans-

port phenomena in a simplified manner. Each electrode is represented by a single

spherical particle whose area is equivalent to that of the active area of the solid phase

in the porous electrode [90] as shown in Figure 1.6.

The particularity of this method compared to the pseudo-2D model is that the

diffusion and potential effects in the solution phase are neglected. Zhang et al. in
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Figure 1.6: Schematic of a single particle model

[91] used a SPM approach to model the lithium intercalation phenomena in a battery.

In this model, the concentration of lithium in the solution phase is assumed to be

constant which is a valid assumption for low charge/discharge rates [92]. One of the

main advantage of this approach is that it can be extended to include other physical

phenomena in the cell. For example, Guo et al. [93] applied an energy balance

equation to find the thermal behaviour of the cell. The developed model neglected

the spatial temperature distribution in the the cell so that the temperature was a

function of time only. It should be noted, though, that in an automotive battery

configuration the cells are subjected to different temperature boundary conditions

and it is not accurate to assume that the temperature is constant throughout the

cell. Because of these simplifications, this model allows fast computations but is only
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valid for a certain range of operating conditions and set-up (low charge/discharge

rates and thin electrodes). In [94], Safari et al. developed an isothermal model

for the electrochemical behaviour of a commercial graphite/LiFePO (LFP) at 25oC

and 45oC using a non-intrusive analysis based on the electrochemical measurements

carried out on commercial cells. In recent years much attention has been paid to

lithium iron phosphate (LFP) batteries because of their high thermal stability and

energy density. LFP has a poor intrinsic electronic conductivity [39]. A way to

overcome this resistivity is to mix the resistive active material with a conductive

additive such as carbon.

In [95], Ning et al. have developed a generalized charge-discharge model based on

the loss of the active lithium-ions due to electrochemical solvent reduction reaction

at negative electrode/electrolyte interface. This model can be applied to charge rates

of less than 1C operating between 0oC up to 30oC. This is because simultaneous

transport equations in both solid phase and electrolyte phase are solved. The results

from this model show good correlations with experimental results, since the relative

error in the discharge capacity was found to be less than 2% after 1968 cycles.

The aforementioned SPM model [95] is used in the research work carried out and

presented in the following sections. The choice justification on the model to be used

are described in section 2.2.2.

1.5 Scope and Contributions

The scope of this thesis is to develop a set of tools that support the deployment of

battery electric buses by attempting to answer the following three key questions:

• What are the operational costs and GHG emissions associated with the deploy-

ment of BEBs for a given set of selected transit routes?
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• What are the available methods that can be used to predict battery degradation

associated with a specific battery usage?

• When does the battery need to be replaced on a BEB if it is deployed on a

selected transit route?

The research contributions outlined in this thesis are listed below:

1. Developed a drivetrain energy consumption model that assesses the charging

cost and GHG emission reduction potential of an electric bus throughout a year

for any specified jurisdiction, as overall cost and benefits and varies greatly

depending on the jurisdiction

2. Conducted a sensitivity analysis of the energy consumption model for BEB

input parameters

3. Coupled an existing SPM model with a degradation model to estimate battery

lifetime

4. Applied the battery CFM to battery electric buses driving cycle

1.6 Thesis Overview

This thesis is structured as follow:

• chapter 2 describes the energy consumption model (ECONS-M) and capacity

fade model (CFM), how they are coupled together and the model limitations

• chapter 3 presents the case studies and applications of the models

• chapter 4 describes the conclusion and future work including several areas to

focus on to improve the CFM
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Chapter 2

Model development

This chapter describes the theory and implementation of the electricity consumption

model (ECONS-M), followed by the battery capacity fade model (CFM). The final

section describes how the two models are coupled.

2.1 Electricity consumption model (ECONS-M) de-

velopment for an electric bus

This section describes the theory and implementation of the simulation tool developed

to assess the energy consumption of a battery electric bus for a given route. This

model is referred to as “ECONS-M” (energy consumption model) throughout the

thesis report. Using a backward approach, previously defined in section 1.3.1, the

model calculates the vehicle longitudinal dynamics as a function of the driving cycle

velocity and grade profile. The main output of this tool is an energy consumption

profile. There are multiple applications possible for the model, which are shown

in Figure 2.1. The main focus of this thesis is to describe the coupling between

the energy consumption model and the capacity fade model (CFM) to estimate the
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battery degradation associated with a given driving cycle.

Predict the electricity consumption 
ECONS-M 

Predict charging costs  
And CO2 emissions 

per year  

Perform economic 
analysis  to assess 
project feasibility  

(ROI …) 

Planning charging 
infrastructure & 
optimize battery 

sizing 

Estimate battery 
lifespan for a given 

duty cycle 

Figure 2.1: ECONS-M: multiple relevant applications

2.1.1 Theoretical Model

For the case of a vehicle in motion, the tractive force can be obtained using a simple 2D

application of Newton’s second law to describe translational and rotational systems.

The most significant forces acting on the vehicle are part of the translational system.

Newton’s second law is given in equation 2.1; in this case the 2D version is applicable

to vehicles going up/down a grade.

M ×−→a =
∑−→

F (2.1)

In this model, the effect of angular moments created by rotating drivetrain com-

ponents is captured by adding an equivalent mass Meq to the vehicle mass in equation
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2.1. This equivalent mass is estimated to be 10% of the vehicle weight [52] for buses.
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Figure 2.2: Free body diagram of a bus in motion

Figure 2.2 shows a free body diagram of a vehicle in motion. The top and bottom

rigid bodies represented are equivalent, according to Newton’s second law. The main

forces acting on the body are the grade force Fg, the rolling resistance force Fr and

the aerodynamic force Fa. Fprop represents the force supplied by the motor to propel

the vehicle forward by overcoming the external resistive forces. Fprop is the unknown

in this analysis. Equation 2.1 can be rewritten as:

(M +Mequ)× a(t) = Fprop(t)− Ftot(t) (2.2)

Ftot is the sum of the external forces acting on the vehicle. The grade force,
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aerodynamic force and rolling resistance forces are defined in equations 2.3, 2.4 and

2.5 respectively.

Fg(t) = (M +Meq)× g × cos(α) (2.3)

Fa(t) =
1

2
× ρ× A× CD × V (t)2 (2.4)

Fr(t) = Cr(V (t))× (M +Meq)× g × sin(α) (2.5)

In these equations, α is the road slope, expressed in degrees. In equation 2.3 and

g is the standard gravity constant. In equation 2.4, the air density is represented by

ρ, the frontal area of the vehicle is A, the drag coefficient is CD and the speed is V .

Finally, in equation 2.5, Cr is the rolling resistance coefficient, which depends on the

vehicle speed and tires conditions. For this study, the rolling coefficient expression

used is shown in equation 2.6 [96].

Cr(V (t)) = 0.006 + 4.5× 10−7 × V (t)2 (2.6)

Once Fprop(t) is determined from equation 2.2, the torque at the wheel TW (t) is found

using this relation:

TW (t) = Fprop(t)×Rw (2.7)

where RW is the radius of the wheel. The electric motor torque TM(t) can be related

to the wheel torque using the following relationship:

TM(t) =
TW (t)

GR× ηT
(2.8)

where GR is the constant gear ratio of the bus and ηT is the constant transmission

efficiency.
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Additionally, the rotational speed ωM(t) of the wheels is found the following rela-

tionship:

ωW (t) =
V (t)

RW

(2.9)

and related it to the motor rotational speed ωM(t) using this equation:

ωM(t) = ωW (t)×GR (2.10)

Once the motor efficiency ηM is obtained from an efficiency map, the instantaneous

power consumption of the bus can be calculated using the relation:

Pinst(t) = Pcons(t) =
TM(t)× ωM(t)

ηM × ηconv
+
Pauxi
ηconv

(2.11)

where ηconv is the converter efficiency and Pauxi is the accessory load. When the bus

brakes, the motor becomes a generator. This phenomenon is referred to as regener-

ative braking and allows the partial recovery of the kinetic energy to recharge the

batteries. In case of regeneration, the instantaneous power is:

Pelec,batttery = TM,reg(t)× ωM(t)× ηM,reg × ηconv +
Pauxi
ηconv

(2.12)

In equation 2.12, TM,reg is the motor torque calculated when the bus uses regen-

erative braking. It is calculated using the following equations:

(M +Mequ)× a(t) = Fbrake(t)− Ftot(t) (2.13)

Freg = S × Fbrake (2.14)

where Fbrake is the braking force of the bus and S is the power split ratio between

the friction brakes and the regenerative brakes. In this model, it is assumed that the
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brake split between friction and regeneration is 60-to-40, respectively. This number

was obtained after discussions with manufacturers. TM,reg is then found using the

same approach as described in equations 2.7 and 2.8.

The energy consumption of the bus is simply the integral of the instantaneous

power over time:

Etotal =

∫ tend

0

Pinst(t)dt (2.15)

The main scope of the ECONS-M tool is to determine the total energy drawn

from or supplied to the battery to power the bus over given driving conditions. The

approach described in this analysis is a systems approach, for which the main driv-

etrain components are represented by efficiencies that can be set constant or vary

according to various parameters (such as the torque, the speed, etc...). The system

used to model the electric bus energy consumption is shown in Figure 2.3.

Figure 2.3: ECONS-M’s system components

Once the instantaneous energy consumption has been determined, the state-of-

charge at each instant t of the battery, assuming an ideal battery, were found using
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the following relationship:

SOC(t) = SOC(t− 1)− Einst(t)

cap
(2.16)

where Einst(t) is the instantaneous energy used or recovered calculated from the in-

stantaneous power defined in equation 2.11. cap is the battery capacity in kWh. In

these simulations, the initial SOC is assumed to be 90%. It should be noted that

the SOC of the battery pack is expressed as a percentage of the total remaining

battery capacity. That is, 100% state-of-charge means that the battery charge level

is full, while 0% SOC means that the battery charge level is empty. In real-time

in a vehicle, the SOC is often calculated by measuring the current and voltage of

the battery to assess how many kWh are used. It should be noted that the electro-

chemical SOC is different from the battery SOC. Indeed, the electrochemical SOC

is a ratio of the remaining lithium concentration (Cs(t) in mol/m3) over the maxi-

mum lithium concentration (Cs,max in mol/m3) in both electrode. It is expressed as

SOCelectrode(t) = θn,p(t) = Cs(t)/Cs,max.

Finally, charging time and the charging energy for each route was calculated using

equations 2.17 and 2.18, respectively. Pcharge is the charging power of the charger,

ηcharge is the charger efficiency and ηBMS is the battery management system efficiency:

tcharge =
(SOCi − SOCf )× cap
Pcharge × ηcharge × ηBMS

(2.17)

Echarge,grid = tcharge × Pcharge (2.18)

The final step of the ECONS-M analysis is to obtain the battery C-rate to be

coupled with the degradation model. The C-rate of a battery describes the rate at

which a battery is charged or discharged relative to its maximum capacity [76]; 1C
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denotes full energy discharge in 1 hour.

To find the battery C-rate, the current flowing from or to the battery is related

to the cell terminal voltage using equation 2.19 [97]:

Vterm(t) = VOCP (SOC(t))−R(SOC(t))× I(t) (2.19)

where I(t) is the battery current in amps, Vterm is the potential between the

cell terminals in V, VOCP is the open-circuit potential in V and R is the internal

battery resistance in Ohm. The open-circuit potential is the voltage in the battery

and depends on the instantaneous SOC. The relation between the battery voltage

and the SOC is experimentally characterized and varies depending on the battery

chemistry and initial capacity.

Additionally, the instantaneous power at the battery can be related to the current

and terminal voltage with the following equation:

Pelec,batttery(t) = Vterm(t)× I(t) (2.20)

Lastly, once the current has been identified, the C-rate of the battery can be found

according to the following equation:

Crate(t) =
I(t)

cap
(2.21)

Where cap is the battery overall capacity, in Ah.

It should be noted that the main physical equations of this model can be used to

assess the diesel consumption of diesel buses, however this was out of the scope of this

thesis. It should be noted that ADVISOR can be used in this regard as well, but the

data available are out-of-date (2005). Additionally, other tools modeling the power

consumption of vehicles such as Autonomie or PSAT can be expensive and require
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many input data that can be somewhat challenging to get. Additionally, the solving

algorithm and equations used to solve each module are proprietary.

2.1.2 Model Validation

It is challenging to reliably validate the ECONS-M as the technology is relatively new

and manufacturers tend to keep information confidential regarding their powertrain

performances.

One of the rare source of available information regarding the energy consumption

of BEBs is published by the Altoona Bus Research and Testing Center. This research

center is based in Penn State University and its goal is to ensure better reliability

and performances for buses by providing unbiased comparison of bus models through

various test procedures. Many diesel, hybrid and battery electric bus manufacturers

participate in this test program and it has become a standard in the industry. These

tests focus on the following characteristics:

• maintainability

• reliability

• safety

• acceleration and braking performance

• noise and structural integrity

• fuel economy

In this thesis, the characteristics of a BYD K9 are used to populate the model.

This type of electric bus is one of the most widely deployed to this date [98].



40

The aforementionned Altoona tests were performed on a BYD K9 (model 2013)

in June 2014 and results were reported in [99]. The vehicle data form in this report

provides the reader with the parameters shown in Table 2.1.

Table 2.1: BYD K9 (2013) characteristics

Parameter Value Unit Source
Curb weight 31,890 - 14,465 lbs - kg [99]
Seated load weight
(curb weight plus 150 lb for every designed

passenger seating position and for the driver) 37,290 - 16,914 lbs - kg [99]
Width 101.5 - 2.57 in - m [99]
Height 133.0 - 3.38 in - m [99]
Maximum seated passengers 36 - [99]
Maximum standing passengers 13 - [99]
Charger power 80 kW [100]
Maximum motor torque 700 Nm [100]
Maximum motor power 180 kW [100]
Motor maximum revolutions per minute 7500 RPM [100]

The fuel economy test is a fuel consumption test that is performed for a standard

driving cycle called advance design bus (ADB) cycle. ADB cycle is a combination of

three driving cycles. First, the Central Business District (CBD) cycle is performed,

followed by the arterial (ART) driving cycle. This pattern is repeated, followed by a

third CBD cycle and a final commuter cycle to reach the starting point again. The

ADB cycle is repeated until the bus battery are depleted, e.g when the state-of-charge

(SOC) of the batteries is below 5%.

In the case of the BYD K9, the test is repeated 10 times. The overall test corre-

sponds to a distance of 3.22 km, with an average speed of 20.23 km/h and an average

acceleration of 0.89 m/s2. The CBD cycle, shown in Figure 2.4, is the only driving

cycle part of the ADB that is publicly available.

The test is performed with a fully seated passenger load, and the HVAC system

switched off. However, other auxilliaries related to the control of the bus represent
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Figure 2.4: Central Business District (CBD) driving cycle (SAE standard J1376)

a load, therefore an additional load of 2.5 kW was assumed as a base load [101].

During the test, a power meter was connected to the bus battery to measure the

SOC, current and energy consumption in kWh at any point in time. The SOC and

energy consumed after every single drive phase of the cycle are reported. The average

energy consumption for the 29 CBD cycles is 1.18 kWh/km. An histogram showing

the distribution of the energy consumption for each run performed is shown in Figure

2.5. The vertical red dotted line represents the average of 1.18 kWh/km.

It can be seen that under the same driving conditions, the range of energy con-

sumption varies between 0.72 and 1.56 kWh/km. Table A.1 in Appendix A shows the

input parameters used in the ECON-M to reproduce Altoona’s test results. Using

these input, a result of 1.17 kWh/km was found, which is a 0.8% difference compared

to the average energy consumption calculated in Altoona’s tests. This comparison

allows to assess the accuracy of the model to an error below 5%.

A graphical-user interface (GUI) in Python was developed to easily run the model.

A screenshot of this GUI with the parameters used to reproduce Altoona’s data for

the CBD driving cycle is shown in Figure 2.6.
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Figure 2.5: Altoona fuel economy test results for a BYD K9 (2013) for each CBD
cycle

2.2 Capacity Fade Model Development and Appli-

cations

2.2.1 Background on the Degradation Mechanisms in a Lithium-

Ion Cell

In a battery, the storage capacity decreases and its internal resistance increases

throughout its lifetime reducing the amount of energy available to propel the ve-

hicle [102]. Battery degradation is a complex process because it depends on many
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Figure 2.6: GUI developed to run the ECONS-M

factors, including environmental conditions and utilization mode which can be chal-

lenging to model. This section describes the main mechanisms that cause battery

degradation and the factors that influence it.

Degradation Phenomena in the Negative Electrode

Most negative electrodes in lithium-ion batteries are made of carbon, especially in

the form of graphite. Changes occurring at the interface of the negative electrode

and the electrolyte are considered to be the major cause of ageing in lithium ion cells

[67].

Over time, an accumulation of solid lithium conductive particles agglomerate to

form a solid layer at the electrolyte/electrode interface, referred to as the solid elec-

trolyte interphase (SEI). The formation of SEI is triggered by side (or parasidic)

reactions occurring in the cell. Depending on the material used in the lithium-ion

cell, the SEI can be composed of different coumponds. The commonality between all

side reactions forming the SEI for all lithium-ion chemistries is that lithium ions are
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consumed to produce a lithium based solid [83]. This solid interphase is naturally

created during the first charge of the cell [75]. The SEI forms a permeable layer that

allows ions to go through it while blocking electrons or the solvent.

However, the irreversible creation of the SEI decreases the overall number of

lithium ions that can cycle through the cell during charging and discharging. The

creation of this passivation layer also causes a change in the capacity balance of the

cell. The capacity balance is the optimized mass ratio of positive to negative electrode

materials to achieve a maximum capacity under steady cycling conditions [103]. It

depends on the amount of lithium available for cycling. If this amount is modified,

the output energy that the cell can produce will be decreased. Additionally, the pres-

ence of the SEI results in an increase in electrode resistance because of the decrease

in active surface and cell polarisation [104].

The solvent can interact with the graphite at the negative electrode and corrode

it, creating graphite exfoliation which generates gases that can lead to cracks in the

SEI structure allowing for its expansion in the cell [75]. This phenomenon mainly

occurs during storage and when the cell is subjected to a high voltage.

A high state-of-charge causes a large potential difference between the electrodes,

which can accelerate the formation of the SEI. High temperatures can cause the SEI

film to break down or to dissolve. This effect frees lithium salts in the solvent causing

an increase in the negative electrode effective resistance.

The last identified phenomenon likely to occur at the negative electrode is lithium

plating at low temperature. This can lead to a slow lithium ion diffusion into the

electrolyte. Under normal operating conditions, lithium ions intercalate into or de-

intercalate from the active materials reversibly between the electrodes. Under ab-

normal operating condition, such as high charge rates or at low charge temperature,

lithium ions can be reduced to metallic lithium and deposit as an interphase, forming
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a lithium plating [105]. Side reactions from the lithium metal plating accelerate the

ageing phenomena.

Ageing mechanism at the positive electrode

The positive electrode degradation is mainly associated with physical degradation

of its materials [83], but positive electrode degradation is not the primary cause for

degradation in a cell. The chemical reaction occurring at the cathode, or positive

electrode, involves the insertion (or extraction) of lithium ions in (or from) metal

oxide. This leads to changes in the molar volume of the material which can cause

mechanical stresses to the oxide particles and the electrode.

Additionally, the reaction might induce a phase change which will distort the

crystal lattice and induce further stresses [106]. This will induce structural changes

during cycling, chemical decomposition/dissolution reactions and surface modification

[67]. The main consequences of these phenomenon are an impedance increase as well

as a capacity fading, causing the positive electrode to age. It should be noted that

the degradation of the cathode mostly depends on the SOC and cycling conditions.

Calendar and cycling ageing of batteries

Ageing of a battery can be differentiated in two groups: calendar and cycle ageing.

Calendar ageing is the irreversible loss in capacity due to battery storage whether

or not the battery has been charged and discharged. Batteries tend to self-discharge

at a rate that depends upon storage conditions [107]. At higher temperatures, side

reactions accelerating corrosion and lithium losses can occur and result in capacity

fading. Storing the battery at a lower temperature can prevent such effects but creates

different challenges due to the loss of material diffusion which can alter the battery

chemistry [75].



46

Cycle ageing refers to the battery deterioration due to its utilization mode when

charging or discharging. Both calendar and cycle ageing are accelerated and trig-

gered by common factors listed below. It can be challenging to measure their effects

independently in certain cases because these factors have coupled effects on battery

degradation.

Factors involved in battery degradation

Many factors influence the rate of battery degradation, especially storage, cycling

and the environmental conditions. Operating batteries at high SOC (>95% according

to discussions with battery manufacturers) is identified as one of the most important

degradation factors. A high SOC enhances the creation of the SEI at the electrode/-

electrolyte interface resulting in a capacity decay, power fade and impedance rise

[108].

The second important factor is the temperature at which the battery is stored

and operates. High temperature in batteries has both a positive and a negative

effect on performance. It accelerates the rates of the chemical reactions which leads

to a decrease in activation losses and an increase in efficiency. However, it also

accelerates side reactions which leads to an increase in the calendar ageing [102].

Low temperatures can increase the degradation rate as it causes lithium plating as

previously discussed which itself causes capacity and power fade [67].

Other factors identified in the literature for impacting the battery lifetime per-

formance are the rates of charge and discharge. The higher the discharge rate, the

greater the loss in conductivity between adjacent particles in the active material elec-

trode which leads to an increase in internal resistance. If the same amount of charge

is drawn from plates that are less conductive, it will lead to uneven current distribu-
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tion and an increase in the stress and mechanical fatigue in the cell [109]. In battery

electric vehicles, fast charging capability is considered a desirable feature. The storing

capacity of the battery strongly depends on the applied charging current [110]. At

high current rates during fast charging, the storage capacity of the battery is limited

due the increase in internal resistance causing a voltage drop.

The depth-of-discharge (DOD) is an important factor that influences battery

degradation. The DOD describes how deeply the battery is discharge. The DOD,

in percent, is equivalent one minus the SOC: %DOD = 100% − %SOC. The loss

of active material particles at the negative electrode due to volume changes during

cycling and constant stripping and re-depositing of the solid electrodes is enhanced

by high DOD [67].

Lastly, overcharging significantly impacts the battery lifespan. If a cell is over-

charged, solvent co-intercalate more which creates gases and subsequent cracks in

the battery. This leads to a capacity fade. Overcharging causes irreversible partial

decomposition of the anode resulting in an increase of surface resistance and loss of

active lithium [102].

Concluding remarks on battery degradation phenomena and factors

Battery degradation is a complex phenomenon, characterized by calendar and

cycling ageing. The literature identifies battery average state-of-charge (SOC) and

change in SOC, temperature, charge/discharge (C/D), depth of discharge and over-

charging as the principle agents in battery degradation [111]. Both calendar and

cycling ageing are mostly influenced by the temperature, charging current and av-

erage SOC. Cycling ageing also depends on factors that are function of the battery

utilization mode [75]. These factors are greatly influenced by the external climate and
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the driving cycle. Moreover, factors will react differently if the vehicle is subjected

to, for example, excessive acceleration.

Capacity fade and power fade

Capturing the full degradation process of a battery involves predicting both its ca-

pacity and power fade. The capacity fade of a battery is mainly affected by the loss

of cycleable lithium and/or the loss of active electrode material that can host lithium

[112]. The power fade, however, is mainly affected by the film resistance increase

of the SEI. In this research, the change in resistance was not considered. Solely the

capacity fade was considered to predict the end-of-life (EOL) of the battery.

Power fade is not typically used for the purpose of predicting the EOL of the

battery. However, it is a useful information as it communicates how much the vehicle

will be limited in its speed and performances after many cycles [83]

2.2.2 The Single Particle Model (SPM)

Definitions of conductivity, transport and diffusion in a porous media

This section provides a short definition on the main transport phenomenon occurring

in a battery electrode, which is a porous media. In batteries, the electrodes are

usually composites made of active material, conducting materials and binders. The

liquid electrolyte penetrates the pores of the solid electrodes at a rate that depends

on its porosity. The porosity of the electrodes is a measure of the void spaces in the

electrode and is a characteristic that highly influences the performance of the cell.

The electrical conductivity of the porous media is also influenced by the porosity

and is defined as the degree to which the material can conduct electricity. The ion

transport in porous media or migration often consists of an electrolyte phase which

has a very high ionic conductivity allowing fast diffusion and a solid phase which has
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very little to no diffusivity [113]. Another important physical phenomenon occuring in

a cell is the diffusion, which in a porous media is the random movement of molecules

moving toward regions of lower concentration in order to reach an equilibrium.

Detailed mathematical model of the cell behaviour

Most of the current rigorous lithium-ion battery models in use are based on the

concentration solution and the porous electrode theories proposed by Doyle [84] and

Newman and Tiedemann [114].

The concentrated solution theory is used to describe the transport of electrolyte

in the liquid phase accounting for ion pairing inside the electrolyte phase [115]. The

porous electrode theory is used to model the transport of ions in porous micro-

structure [116]. These models describe mathematically the charge, discharge and

species transport in the solid and electrolyte phases across a 1+1D structure, ne-

glecting the dynamics in the other two dimensions. The 1+1D structure is a notation

describing that 1 dimension is along the depth of the cell, or the “x” direction, and

the other is along the radius of the particle, the “r” dimension. This approximation

applies to most cell structures along the x-direction where the cell is of the order of 100

µm thick [117]. The main variables involved in the macro-homogeneous 1+1D electro-

chemical model of a battery are the solid phase lithium concentration Cs(x, r, t) in the

positive and negative electrodes, the lithium concentration Ce(x, t) in the electrolyte,

the potential φs(x, t) in the positive and negative electrodes, the potential φe(x, t) in

the electrolyte, the ionic current ie(x, t) in the electrolyte, and the molar ionic flux

jLi(x, t) between the active material in the electrodes and the electrolyte [118]. These

variables are time dependant (t) and spatially dependant (x for spatial coordinate

and r for radial coordinate).

The following subsections describes the governing equations simulating the main
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physical phenomena in a lithium-ion cell.

Mass transport in the solid phase

A typical porous electrode in a cell is composed by active material, conductive

filler, and binder. The active material can be represented by many spherical particles

across the electrode. It is widely accepted in the literature that diffusion in the

negative and positive electrodes can be modeled using spherical equations of Fick’s

law shown in equation 2.22 [119], [120]. A schematic of the modelled system is

shown in Figure 2.7. Additionally, Figure 2.8 gives a representation a cylindrical cell

cross sectional area to be able to locate the modelled system within the cell. Each

combination of separators, current collectors and electrodes are put together is series

and rolled in an spiral shape to form the common cylindrical battery shape.

The subscripts n and p are indicators that the equation work for the negative and

positive electrode. In this equation, Ds is the diffusion coefficient in the solid state

(m2/s).

∂Cs,i(x, r, t)

∂t
=
Ds,i

r2
∂

∂r
[r2
∂Cs,i(x, r, t)

∂r
], i = n, p (2.22)

The initial conditions are such that the initial solid concentration is known from

the type of chemistry used, so that Cs(x, r, t = 0) = C0
s . The Newmann (or second-

type) boundary conditions used to solve for the concentration of solid lithium are

shown in equations 2.23 and 2.24, where r is the sphere radius, jLi is the reaction cur-

rent given by the Butler Volmer kinetics equation in 2.36 and F is Faradays constant

(96, 487C/mol) and as is the specific interfacial area of porous electrode (m2/m3)

defined in equation 2.25 where εs, εe and εfl are the volume fractions of the solid,

electrolyte and current conductive fillers respectively [95].
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Figure 2.7: Each electrode modeled as a sphere

∂Cs,i
∂r
|r=0 = 0, i = n, p (2.23)

Ds
∂Cs,i
∂r
|r=R =

−jLi

asF
, i = n, p (2.24)

as,i =
3εs,i
r

=
3× (1− εe,i − εfl,i)

ri
, i = n, p (2.25)

Mass transport in the liquid phase

The mass transport in the electrolyte is described by Fick’s law of diffusion in the x

direction in equation 2.26. This equation is used to describe the evolution of lithium

ion concentration due to flow of ions and electrons [120].

εe
∂(Ce(x, t))

∂t
= Deff

e

∂

∂x

(∂Ce(x, t)
∂x

)
+

1− t+0
F

jLi (2.26)



52

Cylindrical Lithium-ion Cell
Section A-A
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Figure 2.8: Cross sectional representation of a cylindrical lithium-ion cell

In this equation, t+0 is the transference number assumed to be constant due to

limited available data [95]. The transference number, so called ion transport number,

is a measure of the fraction of the total electrical current carried in an electrolyte by

an ion. Additionally, the effective diffusion coefficient inside the porous electrode is

calculated using the Bruggeman relation in equation 2.27 [84]. This equation captures

the tortuous path of lithium ion through the porous electrodes and separator [120].

Deff
e = Deε

1.5
e (2.27)

The initial conditions associated with this differential equation describe the fact

that there is no flux at the current collectors.

Changes in potential in the solid electrodes

The change in potential in the solid electrodes is described by Ohm’s law in equation
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2.28 and relates the electrical potential φs(x, t) to the solid phase current is [117].

σeffs,i

∂2φs,i(x, t)

∂2x
+ is = 0, i = n, p (2.28)

The current density carried by the electrons in the solid phase is = asj is related

to the current density carried by the ions in the electrolyte ie by Kirchoff’s law [121].

σeffs , the effective conductivity of the solid phase, is found using equation 2.29, also

called Bruggeman’s relation.

σeffs = σsε
1.5
s (2.29)

The boundary conditions to solve this equation depend on the charge/discharge

operational mode: if the applied current is known when the cell is subjected to a

constant current charge or discharge Iapp, equation 2.30 is applied. When the end of

charge voltage (EOCV) is known during a constant voltage charge, equation 2.31 is

used.

−σeffs,p

∂φs(x, t)

∂x
|x=0,x=L =

Iapp
S

(2.30)

φs|x=0 − φs|x=L = EOCV (2.31)

Additionally, the solid potential is the highest at the electrode/separator interface,

which is translated in the equation below:

∂φs(x, t)

∂x
|x=xn =

∂φs(x, t)

∂x
|x=xn+δsep = 0 (2.32)
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Changes in potential in the electrolyte

In the solution phase, the governing equation for the potential distribution φe(x, t) is

derived from the charge conservation law [119]:

κeff
∂φe,i(x, t)

∂x
− κeffD

∂lnCe,i(x, t)

∂x
+ jLi = 0, i = n, p (2.33)

where κeffD is the diffusional conductivity, given by the following relation:

κeffD =
RT

F
(1− 2t+0 )κeff (2.34)

The boundary conditions are:

∂φe(x, t)

∂x
|x=0 =

∂φe(x, t)

∂x
|x=L = 0 (2.35)

Volumetric rate of the chemical reactions

Butler-Volmer kinetics equation is used to relate the reaction current jLi to the local

overpotential η:

jLi = asi0
[
exp
(αaF
RT

η
)
− exp

(−αcF
RT

η
)]

(2.36)

where as was evaluated using equation 2.25. The exchange current density i0 is

evaluated according to the following formula [121]:

i0 = κF (Cmax
s − Csurf

s )αa(Csurf
s )αc(Ce)

αa (2.37)
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Simplifications used in the SPM

The main assumption made in the single-particle model (SPM) is that the current

distribution is uniform along the tickness of the electrode. Therefore, instead of

modeling many small intercalation particles along the electrode, the entire porous

electrodes can be modelled as a single intercalation particle [93]. Additionally, the

concentration gradient in the electrolyte is neglected. That is, ∂Ce(x, t)/∂x = 0 and

∂Ce(x, t)/∂t = 0. This assumptions lead to significant simplifications in the model

that are describe thoroughly in [122].

Numerical discretization and solution procedure

The SPM model used in this research has been implemented in Matlab 2016 by

Bizeray et al. [123]. This model [121] is freely available online and implemented in

Matlab 2016.

The discretised SPM model described in this section 2.2.2 is a set of ordinary dif-

ferential equations (ODEs) and differential algebraic equations (DAEs). These equa-

tions were first discretized using a method called Chebyshev orthogonal collocation.

This spectral method is used to numerically solve the ODEs and DAEs by defining

grid points on the extrema of the Chebyshev polynomials of the first kind, which is

a sequence of polynomial related to the de Moivre’s formula (cos(x) + i sin(x))n =

cos(nx) + i sin(nx). A thorough discussion on this method is presented in [124].

The discretized equation are then integrated using the solver “ode45” in Matlab

to get a numerical solution, or “ode15s” if the former is too slow. The “ode15s” solver

is a time adaptive solver which reduces the time steps required during slow transient

behavior, therefore reducing computational efforts [125]. According to Matlab’s doc-

umentation [126], “ode45” is the first solver one should try for most problems to solve

equations of the form y′ = f(t, y) or problems with a mass matrix M(t, y)y′ = f(t, y).
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2.2.3 Modelling the SEI growth to predict the capacity fade

The ability to accurately predict the capacity fade of a battery due to its usage can

support battery technology improvement and lifetime enhancement. It can also help

matching battery life to a particular duty cycle, given a particular battery chemistry.

As discussed in the introduction, the most important source of capacity fade in au-

tomotive batteries is the expansion of the Solid Electrolyte Interphase (SEI) causing

the loss of cyclable lithium in the cell [127].

In this research we use a model developed by Ning et al. [95] to predict the

capacity fade of an electric bus lithium-ion battery. In this model, it is assumed that

under normal cycling conditions, i.e no overcharge or overdischarge, the capacity fade

occurs only during the charge process, e.g when the battery is being charged through

plug-in/induction or when regenerative braking occur. That is because the main side

reactions causing the SEI growth only occur during charging.

The cell capacity, that is how much energy (in Ah or kWh) a battery can provide

before it is fully discharged for a given discharge rate (C-rate), relates to the amount

of cyclable lithium in a cell [128]. When this amount decreases, the battery is no

longer able to support the same discharge rate for as long as compared to when it

was new.

It is assumed that a battery reaches its end-of-life (EOL) when the capacity de-

teriorates below 70% of its initial value [129]. This would both mean that once the

battery reaches its EOL, the bus can only be deployed in short routes and eventually

won’t be able to complete any route of the transit system, and that the associated

output power would drop. If one can predict how the capacity decreases, it can be pos-

sible to estimate how long the battery packs can last before being re-purposed [130].

For slow charging electric buses, that can be a game changer as the bus will require

longer charging periods during the day which can be a great operational challenge for
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transit agencies.

In [95], the loss of cyclable lithium due to the SEI creation during the first cycle

is characterized based on the volume-averaged loss capacity Q1 [131]:

Q1 =

∫ tcharge

0

|jside(t)|anegdt (2.38)

where jside is the current density of the side reaction causing the increase in SEI layer

thickness and aneg is the specific interfacial area of the negative electrode. tcharge is

the time during which charging occurs. jside is calculated using the Tafel equation

(2.39), where j0side and αneg are experimentally determined parameters, and ηneg is

the negative electrode overpotential [95] defined in equation 2.40 .

jside(t) = −j0sideexp(
αnegF

RT
ηneg(t)) (2.39)

ηneg = φs − φe − Uneg − j ×Rf (2.40)

In equation 2.40, Uneg is the open circuit potential of the negative side electrode, j is

the local current at the negative electrode and Rf is the resistance of the SEI.

In [95], with every cycling phase, the available lithium decreases according to

equation 2.41:

CN+1 = CN −
QN

Fεneg
(2.41)

where CN+1 and CN are the lithium concentrations at the beginning of the charging

cycle “N+1” and “N”, respectively. F is Faraday’s constant and εneg is the volume

fraction of the negative solid electrode and QN is the volume-averaged capacity lost

due to parasitic reaction in (C/m3). However, this method is computationally inten-

sive because the SPM model is re-run for every cycle and the capacity lost during the
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cycle is re-calculated every cycle. Since this research focuses on finding the capacity

fade for a repeated driving cycle pattern, another approach was used to improve com-

putational time based on the results obtained in [95]. Instead of re-calculating the

capacity fade for every cycle, the capacity loss is linearized according to equations

2.42 and 2.43:

CN+1 = C0 −N × C1,s,neg (2.42)

C1,s,neg =
Q1

Fεneg
(2.43)

where CN+1 is the concentration at the beginning of the charging cycle “N+1”, C0 is

the initial lithium concentration before the cell has been used, N is the cycle number

and Q1 was defined in equation 2.38.

This assumption was based on the results in Ning’s paper for the lithium concen-

tration loss for every cycle, shown in Table 2.2. As shown here, when the cell reaches

its end-of-life at cycle number 1968, the maximum difference between the results is

3.56%.

Table 2.2: Linearization of the capacity fade for each cycle based on the results in
[95]

Cycle
number

Lithium concentration
of the negative elec-
trode (x103 mol/m3)
using equation 2.41

Lithium concentration
of the negative elec-
trode (x103 mol/m3)
using equation 2.42

Difference
(%)

0 25.39 25.39 0.00
455 24.29 24.29 0.00
822 23.52 23.41 0.50
1124 22.94 22.67 1.14
1545 22.13 21.66 2.13
1732 21.76 21.20 2.56
1968 21.39 20.63 3.56
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2.2.4 Coupling the Capacity Fade Model with the SPM Model

As mentionned in the above section 2.2.2, the SPM model used in this research was

developed by Bizeray et al. [123]. Solving for the SPM equations is a challenging

task, therefore using this tool that was available and validated was preferred rather

than re-developing the code in-house. The battery chemistry specification used to

test the model against Ning’s results are shown in Table 2.3.

The Matlab SPM model uses the output values of the developed CFM that cal-

culates the increase in SEI thickness and the battery capacity for every charging/dis-

charging cycle.

The following steps are implemented to run the two models together:

1. the ECONS-M produces a time-dependant C-rate profile according to the given

driving cycle, which is then fed into the capacity fade model (CFM)

2. the CFM implemented in Python passes the input parameters listed in Table

2.3 and the C-rate profile to the SPM model (Matlab)

3. the SPM model simulates the discharge or charge of a lithium-ion cells and

produces results, such as the cell voltage, the negative electrode over-potential

and the simulation time steps

4. the CFM running in Python reads the results, especially the phase difference

between the electrolyte and the solid state of the negative electrode, and the

second by second applied current used to calculate the local negative electrode

overpotential

5. the CFM running in Python calculates the new thickness of the SEI and the

decrease in the available lithium concentration
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Table 2.3: Electrochemical model input used to validate the degradation module

Parameter in Bizeray’s SPM model
[121]

Value from Ning’s
degradation model [95]

Unit Symbol

Negative electrode material MCMB (graphite powder) - -
Positive electrode material LiCoO2 (Lithium cobalt ox-

ide)
- -

C rate (discharge, constant) 1C - -
Nominal battery capacity 1.67 Ah cap
Current collector resistance 20× 10−4 Ω/m2 -
Rf

Thickness of negative electrode 75.50× 10−6 m -
Thickness of positive electrode 74× 10−6 m -
Thickness of separator 25× 10−6 m -
Electrode active surface area 0.087 m2 -
Positive and negative electrode solid partic-
ules’ radius

2× 10−6 m r

Initial SOC of negative electrode when fully
charged

0.83 - θneg

Initial SOC of positive electrode when fully
charged

0.48 - θpos

Volume fraction of active material (negative
electrode)

0.51 - εs,neg

Volume fraction of active material (positive
electrode)

0.48 - εs,pos

Maximum Solid phase concentra-
tion(negative electrode)

30556 mol/m−3cneg,max

Maximum Solid phase concentration(positive
electrode)

51555 mol/m−3cpos,max

Diffusion coefficient of Lithium in active ma-
terial (negative electrode)

3.8× 10−14 m2.s−1 Dneg,s

Diffusion coefficient of Lithium in active ma-
terial (positive electrode)

1.0× 10−13 m2.s−1 Dpos,s
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6. the CFM calculates the lithium concentration for each cycle according to equa-

tion 2.42

7. when the battery has reached its end of life, e.g when the capacity is 70% of its

initial value, the process is stopped and the final capacity is checked through a

final run in the SPM
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CFM

EOL?

Yes

No
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Figure 2.9: Coupling the ECONS-M, the SPM and the CFM

Figure 2.9 shows a flow diagram summarizing the process that has just been

described. One limitation of using this coupling tool is that the code in Python has

to be implemented in Python 2.7 while the latest version of Python to this date is
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3.5. This is because the package matlab.engine of Python used to communicate with

Matlab is not available for newer versions.

The open circuit potential (OCP) curves of the negative and positive electrodes

from Ning’s model were digitalized and used in the Matlab SPM code as inputs.

The open circuit potential curves of the negative and positive electrodes that were

gathered in Ning’s research are shown in Figure 2.10 and 2.11, respectively. The

x-axis labelled SOC represents the negative and positive electrode SOC θneg and θpos,

not the overall cell SOC.

The open circuit potential (OCP) plays an important role in the CFM as it allows

to find the surface overpotential for the negative electrode in equation 2.40. It is

expressed in function of the electrode SOC. It measures the difference in electrical

potential between the current collectors of the positive and negative electrode when

the system is disconnected from an external load, so when there is no current flowing.

The curves obtained for the OCP greatly vary between battery chemistries therefore

it requires specialized individual electrode testing.

2.2.5 Model Reproduction and Validation

To ensure that coupling the two models predicts the capacity fade behavior of the

cell as accurately as shown in Ning’s research [95], two tests were performed:

1. run the electrochemical model charge with the same battery characteristics

defined in [95] at 1C for one cycle to ensure the same voltage versus capacity

can be reproduced

2. run the electrochemical model charge for many cycle and compare the capacity

fade after 455, 822, 1124, 1545, 1732 and 1968 cycle to verify the validity of the

produced model against Ning’s model
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Figure 2.10: Open circuit potential (OCP) of the negative electrode, adapted from
[95]

Figure 2.11: Open circuit potential (OCP) of the positive electrode, adapted from
[95]
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Test the SPM model at a constant C-rate charge

The first test that was required to reproduce Ning’s results was to ensure that the

cell behavior was well captured by the Matlab SPM model on a simple 1C charge.

The Matlab SPM model run using the parameters listed in Table 2.3 and the

comparison between Ning’s results and the SPM model are shown in Figure 2.12.
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Figure 2.12: SPM model output cell voltage curve compared to Ning’s voltage curve
[95] for a 1C charge

Ning’s voltage curve is shown in the red diamond line while the SPM model

voltage curve is the blue continuous curve. The average difference between the two

curves was calculated to be 1.15 %, while the maximum difference between the two

curves was 9.91% at t=0. This difference can be explained by the fact that the SOC

of the negative and positive electrode when the battery is fully discharged wasn’t

provided in Ning’s paper. This means that the OCP of the negative and positive

electrodes is different, especially at the beginning of the charging process. Due to

a lack of available data in the literature on this specific point, the initial value of

the SOC when the battery is discharged was set to 0.8933 for the positive electrode

and 0.0068 for the negative electrode. These values were already implemented in

Bizeray’s Matlab model for the same type of chemistry used in Ning’s model. To
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back-up this explanation, Table 2.4 shows the maximum and average error difference

between the output voltage of Ning’s model and of the SPM model for the constant

C-rate discharge curve.

Table 2.4: Maximum output voltage difference for the constant C-rate charge curve
when modifying the initial positive and negative electrode SOC

Initial positive
SOC

Initial nega-
tive SOC

Maximum dif-
ference (%)

Average dif-
ference (%)

0.8933 0.0068 9.91 1.15
0.8933 0.003 5.72 0.88
0.92 0.003 4.97 0.87
0.92 0.0025 4.61 0.87

Test the coupling of the SPM and the CFM for many cycles

The model was then run for a constant 1C rate charge for many different cycles using

the parameters shown in Table 2.5. The negative electrode lithium concentration at

the beginning of the discharge was compared to the results in [95]. The results are

shown in Figure 2.13. At cycle N=455, the difference between the reproduced CFM

coupled with the SPM model and Ning’s model is 2.4%. The cell was found to reach its

end of life after 1968 cycles. At this point, the concentration difference had increased

up to 9.05 %, the end-of-life being predicted earlier in Ning’ model. It is believed that

this error is due to the fact that the charge was solely an imposed constant current,

while Ning’s model accounts for an additional constant voltage phase. Indeed, this

additional constant voltage charge is responsible for a larger capacity fade, therefore

the battery end-of-life would occur earlier in Ning’s model. This limitation will be

discussed next.
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Figure 2.13: Lithium concentration for different cycle (1968 corresponds to the end-
of-life of the cell): comparison between Ning’s results and the buid-in model results

Table 2.5: Parameter values used to simulate the parasidic reaction [95]

Parameter Value Unit
Uneg 0.38 V
j0side 0.8× 10−7 A/m2

αneg 0.5 -
aneg 735,000 m−1

2.2.6 Model Limitations

The current electrochemical model in use is a single particule model implemented in

Matlab [123]. This type of model assumes the negative and positive electrodes can

be represented as two solid single circular particles, with the same surface area as

the initial electrodes. This simplification involves neglecting the concentration and

potential changes in the solution phase between the active material particles in the

electrodes [89].

While this model runs faster, one of its main limitation is that it cannot accurately

predict the behaviour of the cell at charging and discharging rates greater than 1C



67

despite what was claimed in [95]. In [90], the authors showed that the percentage error

between the simple particle and pseudo 2D models for a discharge rate of 1C is 3.4%.

The pseudo 2D model is a more detailed physics based model accounting for variation

of lithium concentration across the electrodes and effects of the electrolyte [132]. It can

be characterized as an extension of the SPM model. For a 2C discharge rate, it reaches

59.4% therefore the model can no longer predict the cell voltage behavior. This is

due to the basic assumption that the concentration in the solution phase is constant

during the discharge in an SPM model, which isn’t correct at higher discharge/charge

rates. For a discharge rate up to 1C, the change in the solution phase concentration

is less than 10%, but for a 2C rate it goes up to 40% so this assumption is no longer

valid [90]. The SPM model is therefore incapable of predicting the discharge profile

in the kinetics-dominated regime.

In [85], the current density of the side reaction is assessed using the equation

below:

jside = −j0side
( Cs
Cs∗

)( CLi+
CLi+∗

)
e

αnegF

RT
ηneg

(2.44)

where jside is the current density of the side reaction, Cs is the concentration of

solid lithium, Cs∗ is the maximum solid lithium concentration, CLi+ is the lithium

ion concentration, CLi+∗ is the maximum lithium ion concentration, F is Faraday’s

constant, αneg and j0side are known experimental parameter, R is the gas constant and

T is the cell temperature. It is explicitly stated that there is not much variation in

the concentration of lithium ion in the solution phase for low to moderate rates of

charge and discharge, which simplifies equation 2.44 further to:

jside = −j0sidee
αcF

RT
ηneg

(2.45)

which is equivalent to equation 2.39 in section 2.2.3 used in [95]. In the introduction
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of [95], however, the authors mentioned that their model is applicable not only for

mild but also for harsh charge/discharge conditions. From the previous argument

that was made, it appears that the simplification cannot in fact hold for large-C

rates, as there is a non-negligible lithium concentration difference at the surface of

the electrode. Hence, equation 2.44 must be applied throughout the electrodes using

the variable concentrations present throughout at high C-rates.

The second model limitation is due to the fact that only a constant-current charge

or discharge can be modeled in the Matlab SPM model. In [95], the charging pro-

cedure uses a constant current charge (CC) up until a certain voltage is reached. In

the experiment conducted in [95] the upper voltage limit is set to 4.0 V. The volt-

age is held constant until the cutoff current of 50mA is reached. This procedure

is called “constant-current constant-voltage” charge (CC-CV). The CV part of the

charge avoids the risk of reaching high potentials in the battery that could result in

overcharging degradation (i.e. high overpotentials leading to rapid SEI formation)

[97]. The Matlab SPM used in this simulation doesn’t include a function to switch

and use constant current and constant voltage charges. Therefore, the CFM doesn’t

capture the effect of constant voltage (CV) degradation, not because it is deficient,

but because of the limited implementation of the full set of equations.

As shown the previous section, the predicted lithium concentration at the negative

electrode at the end of life of the cell was 9.05 % higher than the one measured by

Ning et al. In [95], it is said that for a charging rate of 1C, roughly 10% of the capacity

was estimated to be supplied by the CV charge mode. Though it is challenging to

estimate how much CV charge impacts the battery capacity decay, it impacts 10% of

the charging capacity during every charging cycle. This could explain the differences

in the results.

The third main limitation lays in the fact that the SEI resistance change was
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not included in this model. The growth in SEI results in an increase in internal

resistance of the battery cell. This change in internal resistance impacts the cell

output power by reducing the battery voltage for a given discharge current rate over

time [112]. As explained is section 2.2.1, the end-of-life of a cell is usually predicted

using solely the capacity fade (i.e. cyclable Li), as the resistance change is a second-

order performance degradation effect. However, the impact of resistance increase is

useful to assess the future performance of the batteries and should be considered to

have a broader understanding of the battery degradation.

Lastly, another limitation is the lack of thermal model for the battery/cell. The

model assumes a constant room temperature throughout the cell during the charge/dis-

charge process. In [133], a lithium-ion cell thermal model is developed to model dis-

charge performance at different operating temperatures. Transport properties, diffu-

sion coefficient, exchange current density and conductivity are variables that all vary

with temperature. Additionally, the battery pack modeled in this study is assumed to

have an ideal thermal management system, which means that every cells of the pack

operate at the same temperature. In reality, cells are more or less hot depending on

their location inside the pack. Air cooling is one of the simplest cooling system used

by manufacturers to cool a pack and unify its temperature, however the rate of heat

transfer from the cells to the air is low due to the limited thermal conductivity of air.

If this method is chosen, high mixture rate of the air is required to effectively transfer

heat from the system which is difficult to achieve in a space-constraint environment

such as an electric vehicle [134]. On the other hand, liquid coolant is a more compact

and efficient solution but it can lead to safety hazards if not managed properly due

to the use of coolants such as Dexcool.



70

2.3 Coupling the Electricity Consumption Model

with the Capacity Fade Model

The ECON-M and the CFM were coupled in order to assess the battery lifetime

when the battery is subjected to real life driving cycles. This method has not yet

been investigated in the literature, to the knowledge of the author. Equation 2.19

in section 2.1.1 showed that the current flowing from or towards the battery in case

of charging or regenerative braking can be linked to the battery output power and

terminal voltage. However, the VOCP and resistance need to be known.

From various conversations with electric bus manufacters, the usual choice for cell

capacity is 40Ah. To find the VOCP and internal resistance of the battery, the model

in [135] was applied to a 40 Ah LiFePO4 because of a lack of proprietary cell data.

The 0.3C discharge curve was provided by the manufacturer in [136] and digitalized

to extract the required information to characterise the VOCP and internal resistance

of the cell. The result of the digitalization is shown in Figure 2.14.

From the model in [135], four parameters need to be specified in order to capture

the cell voltage behaviour as a function of the current, namely the internal resis-

tance, the voltage drops and the charge at the end of the exponential zone, and the

polarization voltage.

First the internal resistance R is characterized using the equation below, where

Vnom is the nominal voltage of the cell in volts, η is the efficiency of the cell and Qnom

is the nominal capacity of the cell in Ah:

R = Vnom
1− η

0.2Qnom

(2.46)
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R = 3.2
1− 0.995

0.2× 40
= 0.002Ω (2.47)

Next, to find VOCP , parameters A (equation 2.49), B (equation 2.50), K (equation

2.51) and E0 (equation 2.52) need to be determined.

VOCP (SOC(t)) = E0 −
K

SOC(t)
+ A× exp(−B ×Q(1− SOC(t))) (2.48)

A is the voltage drop during the “exponential zone” shown in Figure 2.14. The

end of the exponential zone is achieved when the rapid initial voltage drop stabilizes.

The end of the nominal zone is achieved when the voltage starts to drops abruptly

[137].

End of 
exponential 

zone
End of 

nominal  zone

Figure 2.14: 0.3C discharge curve: defining the exponential and nominal zone

3/B represents the charge at the end of the exponential zone, K is the polarization

voltage and E0 is a voltage constant.

A = EFull − EExp = 3.26− 3.27 = 0.09V (2.49)
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B =
3

Qexp

= 3/10 = 0.3(Ah)−1 (2.50)

K =
(Efull − Enom + A(exp(−BQnom)− 1))(Q−Qnom))

Qnom

= 0.014V (2.51)

E0 = Efull +K +Ri− A = 3.31V (2.52)

Finally, to find the terminal voltage, this equation is used:

Vterm = E0 −
K

SOC(t)
+ A× exp(−BQ(1− SOC(t)))−Ri(t) (2.53)

Figure 2.15: 0.3C discharge curve: manufacturer data versus model prediction

Figure 2.15 shows the difference between the manufacturer data versus what the

results from using parameters A,B, K and E0 in equation 2.53 for a constant discharge

current of 12 A (0.3 C rate). The maximum difference between the two curves is 2.6%,

which validates the model used in [135] for this particular cell. This difference can be

explained by the fact that since every discharge curve is different, it can be somewhat
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challenging to accurately find the end point of the exponential and nominal zones.

We want to model a 324 kWh and 540V, or 600 Ah battery pack as used in the

BYD K9 electric bus [138] because it is the type of BEB with the most publicly avail-

able data in the litterature that uses low C-rate charging. A possible configuration

for this battery is to have 600 Ah / 40 Ah = 15 branches of cells connected in parallel.

The total voltage of each branch would be 324kWh/600A = 540V . We know that the

nominal voltage of a 40 Ah lithium iron phosphate cell is 3.2V [136]. Therefore, each

branch needs to have 540V/3.2V = 169 cells in series. A schematic of the modelled

battery pack is shown in Figure 2.16.

… … … ……… …

i(t) i(t) x 15

Vterm x 169

+

-
Vterm

+

-

Figure 2.16: 324 kWh and 540 V battery pack representation

Assuming the ideal case in which every cell of the battery packs behaves the

same way and an ideal battery management system, the overall battery current is

equal to the current flowing through each branch multiplied by 15 branches. Using

the same approach, the terminal voltage of the battery voltage multiplied by 169

cells. The charging and discharging current required to power the vehicle is found

by solving simultaneously equations 2.53 and 2.54, which related the output power

of the battery to the cell voltage and current. The second-by-second current array is

then transformed into a C-rate (current divided by the battery capacity of 600 Ah)

and fed into the SPM / battery degradation model with a C-rate that changes every
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second.

Pelec,batttery(t) = Vterm,cells(t)×Ncells,series × i(t)×Nbranch,parallel (2.54)

2.4 Chapter Conclusion

In this chapter, two models are described: the electricity consumption model (ECONS-

M) and the capacity fade model (CFM). Both models are coupled to convert a real-life

BEB driving cycle into a C-rate profile, then fed into the CFM.

The ECONS-M is a first-principle based dynamic analysis that uses the speed

of the vehicle as a function of time to obtain the acceleration and forces acting on

the bus [131]. This allows to calculate the torque of the electric motor, considering

the transmission efficiency and the gear ratio as constants. Regenerative braking is

also included in this analysis. The model was tested using standardized Altoona’s

driving cycle, and the average energy consumption measured and modelled showed a

difference of 0.8%.

The CFM is based on an single particle model (SPM). This type of model assumes

the negative and positive electrodes can be represented as two solid single circular

particles, with the same surface area as the initial electrodes. This simplification

involves neglecting the concentration and potential changes in the solution phase

between the active material particles in the electrodes. In this research, we solely

consider the change in lithium concentration to estimate the decrease in battery

capacity. The reproduced capacity model is run against Ning’s results [95] and shows

that the capacity decrease calculation has up to a 9.05% difference when the battery

reaches it’s end-of-life, which is explained by the fact that the charging strategy only

uses CC charge instead of a CC-CV charge modeled in Ning’s research. The model
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limitations are also discussed. These limitation include the fact that the model is only

valid at low charging rates (less than 1C) and that the increase in internal resistance

is not considered in this study.

Finally, the coupling methodology between the two models consists in obtaining

a second-by-second C-rate profile for the batteries, which is then scaled down to the

cell level. This cell level C-rate is then fed into the SPM and CFM to assess the cell

lifetime, assuming every cell of the battery pack degrades at the same rate.

The next chapter focuses on direct applications of the two models. Especially,

the ECONS-M is used to project electricity prices and GHG reduction potential for

a selected route in Victoria, BC. The CFM is then applied to this selected route to

assess the battery lifetime under these conditions.
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Chapter 3

Case studies and applications of

the ECONS-M and CFM

This chapter describes the applications of the ECONS-M and the CFM. First, the

energy consumption of a 2013 BYD K9 bus was assessed for a real-world route in

Victoria BC. This chapter describes how the driving cycle data were recorded and

the road grade profile obtained and presents a sensitivity analysis for the ECONS-M

followed by projections of the financial benefits of the BEB along with potential emis-

sion reductions. The second part of the chapter discusses how the CFM can be used

to project the lifetime of lithium-ion batteries subject to real-world driving cycles.

Lastly, other possible applications of the model, future research and improvements

are discussed.
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3.1 Energy Consumption of a BEB for Real-World

Transit Route

3.1.1 Speed and GPS Coordinates Inputs

Data Gathering

An essential input of the ECONS-M is the driving cycle of the bus, which includes

the speed and the road elevation profile versus time. A Tracking Key GPS Logger

2 from LandAirSea, so called “passive GPS tracker”, is used in this study. One of

the advantages of using a passive GPS tracker is that it stores the recorded data

instead of sending them in real-time, therefore there is no monthly-fee associated

with its operation. The sampling rate can also be varied. This tracker records the

GPS coordinates of the vehice.

The sampling rate for this study was set to be 1Hz. A 12.9 km long Westward and

13.3 km Eastward route was selected. It is representative of a typical Victoria transit

system route through universities, downtown and residential areas and as such is

frequented by many students and workers. The hours of operation are between 5AM

and 1AM the following day (20 hours of operation) on weekdays and 6 or 7AM until

1AM or 11PM on Saturdays and Sundays, respectively. A bus leaves both terminals

every 10 to 20 min, therefore there is always at least two buses on this route, one

in each direction. Additionally, the buses drive through an important bridge and up

and down a steep hill.

To record the data the device has to be placed horizontally with the top face

facing up as shown in Figure 3.1. There is a strong magnet at the bottom that makes

it easy to position inside the bus. Note that the bus was a double-decker each time

the data were recorded. The technical specifications indicate that the GPS Tracking
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Key receives signals from the 24 Department of Defense satellites orbiting the Earth,

and its GPS location accuracy is +/− 2.5m [139].

Figure 3.1: GPS Tracker Key setup to record the bus speed, elevation and GPS
coordinates on a double decker

One issue is that there is no power button on the GPS: it automatically turns

off after a few seconds without detecting a motion. This was problematic during the

data gathering phase as it would stop recording data for a few minutes at a time after

the bus stopped at a traffic light for about 1 min. For this reason, the experiment

was repeated 3 times and the dataset with least jumps in the data was used in this

analysis.

Table 3.1: Characteristics of the chosen transit route in Victoria, BC

Parameter Westward direction Eastward direction Unit

Average speed 25.7 27.5 km/hr
Total distance 12.9 13.3 km
Average acceleration 1.5 1.3 m/s2

Final deceleration -2.7 -2.5 m/s2

Average grade -0.04 0.2 deg
Time to complete the route 45.3 40.1 min

The results after riding the bus for the selected route in each direction are shown

in Figures 3.2 and 3.3, respectively. Table 3.1 shows the main characteristics of the

driving cycle for the chosen route in Victoria.
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Figure 3.2: Raw driving cycle recorded in the Western direction

Data Post-processing

Using GPS data points, the elevation data can be obtained using a Digital Elevation

Model (DEM). There are many DEM databases available, including the Space Shuttle

Radar Topography Mission (SRTM) or the JAXAs Global ALOS 3D World which

both have a spacial resolution of about 30m. The National Elevation Dataset (NED)

is the U.S. Geological Survey that covers the United States, Canada, and Mexico that

has a resolution of up to 1/9 arc-second (3m) in certain areas. The NED model is

publicly accessible and updated every 2 months from diverse source data. For Victoria

area, the resolution is 1/3 arc-second, which is the highest seamless DEM resolution

for the U.S to this date [140].

Another tool that can be used to extract elevation profiles is Google Maps API,

used in Google Maps and Google Earth. Google’s data comes from many different

sources, but Google has yet to release detailed information regarding the accuracy of

their road elevation profiles [141].



80

0 5 10 15 20 25 30 35 40
Time [min]

0

5

10

15

20

25

30

35

40

45

S
pe

ed
 [k

m
/h

r]

Figure 3.3: Driving cycle recorded in the Eastern direction

Once the GPS data is recorded, it can be loaded into the online platform LandAirSea

[142]. The data is stored in “.LAT” format which is specific to this website and cannot

be read by other software. This platform displays the displacement of the vehicle on

a map generated by Google Maps API at the time recorded. The elevation profile and

speed of the vehicle are calculated using information from Google Maps’ database.

The GPS coordinates, speed and elevation profile can be downloaded as CSV or

KLM files from this platform. The KLM format provides geographic annotation and

visualization that can be loaded into different tools, such as Google Earth or GPS

Visualizer.

The elevation data obtained from Google Maps API shows spikes in altitude as

indicated by the red line in Figure 3.4; such spikes are unlikely to occur in real-life.

As such, the NED DEM database which has a known accuracy and is freely available

was used to extract elevation data from the GPS coordinates. Additionally, due to

the inaccuracies of the DEM, it is crucial to apply a filtering method to smooth the

elevation profile. Pouya Amid, a PhD student at the University of Victoria part of
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the Sustainable Systems Design Lab (SSDL) developed a computation tool in Matlab

to smooth the obtained elevation profile using Savittzky-Golay filter. His help was

required to complete this task.

Using this smoothing algorithm, a more realistic elevation profile, shown in the

blue line in Figure 3.4, was obtained. The realistic elevation profile, besides being

smoothed, shows an offset between 2-4m compared to the raw data. This is due to the

fact that the DEM and the Google Maps API give different elevations for the same

GPS coordinate. For instance, if one looks at the first GPS point recorded (latitude:

48.46616211, longitude:-123.3090495) the elevation height is 63.35m using the NED

DEM. For the same point, the resulting altitude is 58.6m when using Google Maps

API, which corresponds to a 7.5% difference when compared to the DEM result. This

explains the offset observed in Figure 3.4.

It should be noted that DEM databases do not account for man-made construc-

tions such as bridges, therefore the data need to be filtered when the bus crosses a

bridge. In this elevation profile, it can be seen that the bus crosses over a bridge in

both directions when the altitude drops down to 0m (sea level). To correct for this,

the altitude at these points was assumed to be the same as the one given by Google

Maps API. A flat road was assumed for this small portion of the trip.
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Figure 3.4: Raw elevation data for the whole trip (both directions)
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The resulting road grade in degrees in shown in Figure 3.5 for the East direction.

Since the difference in altitude between two GPS points and the actual travelled

distance is known, the road angle is simply determined by triangulation.
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Figure 3.5: Road grade (deg) for the East direction travel

Once the grade profile is obtained, a second post-processing manipulation of the

data is necessary, as the recorded speed does not drop to 0 at any point in time.

As such, when the speed drops below 5km/hr, it was set as 0. This assumption was

made based on the study of the driving cycles and GPS coordinates on the LandAirSea

online platform. These corresponded to bus stops or possible intersection or traffic

stops. There was no traffic jam during the time the data were recorded. It should be

noted that since grade and speed are both being derivatives of elevation and position,

signal noise is inherently amplified in base measurements. The effect of this change

is shown in Figure 3.6.

During the data gathering phase, the sampling frequency was not maintained at

exactly 1Hz over the test. The device would stop recording when the bus stopped

for a few seconds, then start collecting data again. A 1D interpolation function was
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Figure 3.6: Driving cycle recorded in the Eastern direction with post-processed data

therefore used to obtain the speed, time, grade and travelled distance array used in

the ECONS-M for every second.

3.1.2 ECONS-M Sensitivity Analysis

To better assess how the ECONS-M results are influenced by input parameters, a sen-

sitivity analysis was performed. During the Milton Keynes demonstration project in

2014, the energy consumption for the buses were recorded. The driver’s performance

was found to have a significant impact on the energy consumption of the electric buses

[25]. Up to 0.62 kWh/km difference in energy consumption was measured between

two different drivers corresponding to 100% difference in energy consumption.

Zhou et al. [143] reported that though the drivers were asked to not change their

behavior when driving the e-buses in Macao, different drivers would drive at different
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speed under similar road conditions (13 km/h versus 17 km/h) which indicates it

can be a challenge for drivers to control their driving pattern. Frank et al. in [144]

modeled the effect of driving style on energy consumption and developed an “eco-

driving application” informing the driver of her/his energy efficiency. This application

can be very useful for battery electric bus drivers.

Senstivity analysis for energy demand in electric cars has been investigated in

[145] but to the best of the author’s knowledge, such an analysis is yet to be done

with electric buses input parameters. This research did not focus on capturing the

driver impact on the energy consumption due to lack of data. Instead, different

parameters, identified in [145], were varied over a range of values assumed or found

in the literature to study the impact of each parameter on energy consumption. This

method is called a “parametric sweep”.

The parameters listed below were all related to the bus physical characteristics

and varied for the sensitivity analysis:

1. Drivetrain efficiency

2. Mass of the vehicle

3. Mass of the passengers

4. Coefficient of rolling resistance

5. Frontal area

6. Auxiliary load

7. Drag coefficient

The analysis was performed for a test driving cycle with a constant speed of 25

km/hr on a flat road. Table 3.2 summarizes the range of value for each parameters,

the sampling variation and the nominal value.
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The ranges for the curb weigh, passenger number and frontal area were obtained

by comparing all the available Altoona reports for 12-m long battery electric buses

[146, 147, 99, 148]. The individual passenger weight was chosen to be 75 kg.

Table 3.2: Sensitivity analysis performed with electric bus parameters

Parameter Min value Max value Variation Step Nominal value Unit

Motor efficiency 80 95 1 88 %
Curb weight of the vehicle 12,414 14,864 100 14,465 kg
Passenger number 0 71 1 0 -
Coefficient of rolling resistance 0.006 [149] 0.01 [150] 0.0001 0.00800 -
Frontal area 6.2 [101] 8.9 [149] 0.1 8.9 m2

Auxiliary load 0 10 [151] 0.1 0 kW
Drag coefficient 0.6 [101] 0.8 0.01 0.66 -

The results of the energy consumption sensitivity analysis are shown in Figure

3.7. The energy consumption in kWh/km was normalised compared to a basecase.

This basecase used the input shown as nominal values in Table 3.2. In Figure 3.7

the basecase corresponds to the value “1”. For each parameter, the boxes represent

the energy consumption range compared to the basecase when the model is run with

the maximum and minimum values of Table 3.2. For example, when looking at the

“Motor eff” case which stands for the motor efficiency, the box indicates a span of

0.16. This means that the output of the model using a maximum motor average

efficiency of 95% or a minimum efficiency of 80% showed a span of 16% difference in

energy consumption when normalized with the results of the basecase.

This gave a good insight as to which parameters impact the energy consumption

the most within a range of feasible values found in the literature. In Figure 3.7, the

parameters with the largest impact are listed from left to right. This means it is

crucial to correctly model the auxilary power use and the tire rolling coefficient to

obtain realistic results. Interestingly, these results coincide well with the sensitivity

analysis performed by Asamer et al. [145] for electric cars. However, the impact of

the passengers weight when the bus is empty compared to when it is fully loaded was
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Figure 3.7: Normalized energy consumption: sensitivity analysis results for parame-
ters regarding the bus physical characteristics for a constant speed and flat road

also found to be much more important than for an electric car.

Other important factors include the motor efficiency and the mass of the vehicle

which do not greatly vary between manufacturers. Finally, other factors such as the

drag coefficient or the frontal area had a limited impact on the energy consumption

calculations; i.e when these parameters were varied within a reasonable range, there

was not much change in the associated resistive forces.

The impact of the average speed was considered next in the analysis. In Figure

3.8, the energy consumption output is compared to the basecase run at 25km/hr. It

shows that the greater the speed, the greater the impact on the energy consumption

is. At average speeds lower than 35 km/hr, the impact of average speed is minimal

compared to higher speeds.
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Figure 3.8: Normalized energy consumption sensitivity analysis results for varying
speed using the basecase bus input on a flat road

3.1.3 Electricity Cost Compared To The Diesel Cost and Po-

tential CO2e savings

The ECONS-M model is used to estimate the energy consumption of a 2013 BYD

K9 on the transit route chosen in Victoria, BC. The model uses the input parameters

shown in Appendix A. The driving cycle for the East direction is shown in Figure

3.6 in section 3.1.1.

It it assumed that throughout the run, a constant auxiliary load of 2.5kW is

drawn and an average of 15 passengers remain onboard. The recommended SOC

usage window for Lithium Iron Phosphate batteries is between 10-90 % therefore it

is assumed the bus starts its route at a 90% SOC [136]. The calculated energy and

final SOC is shown in Table 3.3.

Table 3.3: Results from the ECON-M for the selected route of Victoria, BC

Parameter Westward direction Eastward direction Unit

Energy consumption 0.9 1.1 kWh/km
Total energy consumed 12.4 14.2 kWh
Final SOC after one way 85.9 85.2 %
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If the bus does a round trip, it will consume in total 29.0 kWh. The total battery

capacity is 324 kWh. That is, it can perform 10 round trips before the battery state-

of-charge is depleted to 10% and the bus has to return to depot to charge. Assuming

a 5% SOC buffer to return to the depot for its charge, the bus can only actually

complete 9.5 trips. The BYD in-depot charger is 80 kW, with a rated voltage of

400V and a maximum current of 126 A. The charger efficiency is assumed to be 91%

[152]. When the bus arrives into the depot it has to charge back to a 90% from a

10% SOC: 90%× 324− 10%× 324 = 259.2kWh.

The time to charge the battery, assuming a constant output power from the

charger, is:

259.2kWh

80kW × 0.91
× 60min

1h
= 3hr33min = 213min.

The energy consumed from the grid is:

213min

60min/hr
× 80kW = 284.8kWh.

It takes 85 min for the bus to complete a round trip run. Assuming the bus stops

for 5 min after completing one direction of the route, the total trip is 95 min. As

explained in section 3.1.1 the selected route operates for 20 hr per day. As modeled,

the BEB can operate for 15 hr before requiring a 3 hr charge.

To estimate the diesel costs of operating a diesel bus on the selected route in

Victoria, an average fuel consumption of 55.5L/100km is used as reported by BC

Transit in [153]. Diesel costs are assumed to be $1/L after discussions with different

Canadian Transit authorities. In Table 3.5 the yearly fuel consumption for the specific

route is obtained assuming the bus performs 9.5 runs per day for 7 days a week, 52.2

weeks per year.

The electricity rate for the charge of the modeled BYD K9 are obtained using BC

Hydro’s most up-to-date rate structure. BC Hydro is the main provider of electricity

in British Colombia and the unique electricity supplier in the Victoria area. The
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in-depot charger falls into the Medium General Service category. It should be noted

that this rate structure is different compared to a residential consumer charge as

it contains an additional $/kW “demand charge”. This rate structure applies to

customer with an annual peak demand between 35 and 150 kW. The in-depot charger

has a 80 kW peak demand, charging the vehicle with a CC-CV cycle (with varying

power). BYD buses have integrated on board chargers, therefore grid AC power can

be directly delivered to the bus. Other manufacturers using in-depot chargers don’t

usually include a charger within the bus, therefore extra charging and power supply

installations are required in the depot.

Table 3.4 summarizes the different charges of this rate structure. The demand

charges are calculated for the maximum demand over a 15-min period average over a

month. In the simulation, the BEB stays plugged in until it is fully charged; therefore

the peak demand is 80 kW over this period. In addition to these charges, different

discounts and additional taxes are applicable.

• 1.5% on entire electricity bill if electricity is metered at primary potential (as-

sumed to be true)

• Rate Rider: 5% on entire electricity bill, covers additional and unpredictable

energy costs

• Transformer owner discount (per kW): $-0.25

• GST and PST (taxes): 12% on the final electricity bill

Table 3.4: BC Hydro Medium General Service rates [154]

Charge Value

Basic charge $0.2429 per day
Demand charge $4.92 per kW for a 15-min interval per month
Energy charge $0.0880 per kWh
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The results of the cost analysis are summarized in Table 3.5. Under the electricity

price structure considered, the largest part of the electricity bill is the energy charge,

though the demand charge portion is also substantial. Overall, the total savings

are up to $34,215 per year for the energy/fuel charges to operate the electric bus

compared to the diesel one.

Table 3.5: Yearly operational benefits of deploying the BEB compared to diesel buses

Parameter Value

Total distance (km) 26.2
Price of diesel ($/L) 1
Fuel consumption (L) 50,476
Diesel price ($) 50,476
Basic charge ($) 88.65
Demand charge ($) 4,723
Energy charge ($) 9,148
Total electricity cost ($) 16,261
Fuel cost ($) 50,476
Savings ($ ) 34,215
Savings percentage 67%

The rate structure studied in this section is valid for the entire province of BC.

In Ontario, however, electricity price is set by a supply/demand market with prices

changing hourly, and the demand and energy charges depend on the electricity sup-

plier of the jurisdiction. Certain jurisdiction’s prices may be less favourable than the

cheap rates experienced in BC, and perhaps even unfavourable for the adoption of

BEB. Future work will consist in studying different rate structures across Canada to

assess the feasibility of deploying BEBs based on the current charges implemented.

This can drive policies changes and decision making in this area to ensure electricity

rates for these projects do not handicap the deployment of BEBs.

It is also important to assess the emissions of the electric bus from the electricity

production and compare them to the diesel emission to estimate the potential CO2e

reduction.
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CO2e, or C02 equivalent, is a metric that describes the effect of different green-

house gases in a common unit [155]. The most commonly known GHG is CO2, but

methane and nitrous oxide have for instance a higher GHG potential than CO2. As

an example, 1kg of methane emitted corresponds to 25kg of CO2 emitted in terms of

global warming impact.

BC Hydro reports that 92% of its energy supply comes from hydro power - that is

a “clean source”. It also reports an average emission factor of 11 tonnes CO2e/GWh

generated [154]. Other real marginal emissions, such as those related to a unit change

in electricity demand, are more complicated and out of scope of this thesis. In [156],

the BC Ministry of Environment has identified the direct emissions from heavy duty

diesel vehicles to be 2.63 kgCO2e/L of fuel. Diesel buses are considered to be heavy

duty vehicles just like freight and delivery trucks.

Using these emission factors, the yearly CO2e emission savings for the selected

route are shown in Table 3.6. The percentage of potential emission reduction is shown

in the last row. The projected emission reduction are up to 99% for the deployment

of BEBs.

Table 3.6: Yearly CO2e savings from deploying the BEB compared to diesel buses

Parameter Value

Yearly electricity use (MWh) 104.0
Yearly fuel consumption (L) 50,476
Emissions from the grid (tCO2e) 1.1
Emissions from diesel use (tCO2e) 132.7
Yearly tCO2e saved 131.6
Percentage of tCO2e saved 99%
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3.2 Estimate the Battery Lifetime Using the Ca-

pacity Fade Model

The scope of this section is to describe how the ECON-M and the CFM are used to

estimate the battery lifetime of a BEB subjected to real-life operating conditions.

The first step is to obtain a C-rate profile for the given driving cycle using the

methodology described in sections 2.1.1 and 2.3. By solving equations 2.53 and 2.54

the current and voltage of the cell are obtained. The current and voltage that each cell

would be subject to during the recorded driving cycle for the transit route in Victoria

are shown in Figure 3.9 and 3.10, respectively. As expected during discharge, the

overall trend of the voltage is to decrease as the battery is depleted. In this figure,

positive and negative current correspond to the battery powering the drivetrain and

to regenerative braking respectively.
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Figure 3.9: Cell current for the East direction driving cycle

The C-rate of the battery to be input to the CFM is shown in Figures 3.11 and

3.12.
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Figure 3.10: Cell voltage for the East direction driving cycle

The bus is charged with an assumed constant current charger at the rated current,

126 A which corresponds to a C-rate of 0.21, i.e less than 1C and within the model

validity range as noted in section 2.2.6. The overall C-rate profile to be fed into the

degradation model was built-up to include 9 East direction trips, 10 West direction

trips, followed by a 213 minutes CC charge. This process is repeated 7 days a week,

365 days a year.

To the knowledge of the author, there is no study available in the literature listing

all the parameters required to run the CFM for a LFP cell like the ones used in a BYD

K9. Therefore, the parameters listed in Table 2.3 are used in this study. It should

be noted that these parameters are not for the actual BYB cell chemistries, and the

following study is therefore an illustrative example aiming to showcase the possible

CFM outcomes. Chapter 4 details the different experiments required for future work

to populate this model with BEB cell-specific data.

The results of the CFM are shown in Table 3.7. Interestingly, the capacity fade

in the West direction is slightly higher than in the East direction, even though the
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Figure 3.11: Cell C-rate for the East direction driving cycle
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Figure 3.12: Cell C-rate for the West direction driving cycle
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energy consumption of the East direction is higher. This is due to the fact that in the

West direction, there are more regenerative braking events occurring than in the East

direction. Since the model captures the degradation occurring during the charging

events only, the more such events, the more capacity fade.

Table 3.7: Daily capacity fade resulting from the driving cycles

Parameter Value

Capacity fade in the West direction (mol/m3) 3.8
Capacity fade in the East direction (mol/m3) 3.4
Capacity fade from charging (mol/m3) 1.1
Total daily capacity fade (mol/m3) 8.3

The battery end-of-life is deamed to have been reached when the capacity has

decreased by 4,000 mol/m3 [95]. Using the results provided in Table 3.7 the lithium

cobalt oxide batteries would only last for 481 days or 1.31 years when subjected to

the assumed BEB driving conditions which is far too short for an electric vehicle

application.

As previously discussed, there is virtually no data in the literature for high capacity

LFP or NMC batteries which are commonly used in BEBs. Therefore it is not possible

to make any quantitative claims with regards to the CFM at this point of the research.

The developed Python Code for the CFM is shown in Appendix B.

3.3 On the Applications of the Models

In this chapter, different possible outcomes based on the modeling results were de-

scribed. The ability to project the energy consumption of an electric bus for a given

driving profile can support the planning and optimization of the charging strategy.

Whether the buses use in-depot charging, terminus charging or on-route charging,

there are many parameters such as the location or the output power of the chargers

that need to be considered in the planning phase of a deployment project.
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In this thesis, we explored two different applications of the ECONS-M: prediction

of the electricity charging cost for a year and the potential GHG savings compared to a

diesel, CNG or hybrid bus in use within the fleet; and support of decision making and

assessing if the bus schedule allows sufficient downtime for charging, if fast charging

is the chosen strategy. Current bus schedules have been optimized for diesel buses,

which usually fuel upon their return to depot. It is likely that for routes with high

traffic the bus schedule does not allow enough time to charge the bus on route or at the

terminals. Schedules will therefore need to be revised to accommodate electrification.

The application of the CFM goes beyond estimating the lifetime of the simulated

battery for a specific route. It can also predict the performance of new chemistries

applied to automotive applications. In section 3.2, it was shown that lithium cobalt

oxide batteries are not a good fit for BEB application as they would reach an EOL

before 2 years.

If input cell parameters become available to feed the CFM and validate it, the

model could also support financial planning of a deployment project to determine

when the bus operator will need to replace the battery packs of the bus. Different

routes will have a different impact on battery degradation. In section 3.2 it was shown

that the East and West directions of the same route result in a different degradation

profile due to a different pattern of regenerative braking. With proper planning, the

operator can decide to change the routing of a bus after a certain number of years to

maximize the battery use before it reaches its EOL.

3.4 Chapter Conclusion

The goal of this chapter was to give an overview of possible applications of the model

for a particular transit route selected in Victoria, BC. First, the driving cycle (speed
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versus time) of the vehicle was recorded using a GPS tracker. The data were gathered

every second to obtain an accurate profile of the vehicle speed. The GPS coordinate

were then used to obtain the road grade using a DEM database.

This input was then fed into ECONS-M to simulate a 2013 BYD K9 using an

in-depot charging strategy. The energy consumption and battery SOC are assessed,

as well as the maximum amount of runs possible before the battery is depleted. A

sensitivity analysis has shown that the auxiliary load, coefficient of rolling resistance

and passenger weight were crucial parameters to accurately estimate energy consump-

tion. The yearly savings of deploying a battery electric bus compared to a diesel bus

from a strictly operational standpoint, are $34,215, corresponding to a 67% saving.

The yearly CO2e savings are 131.56 T which corresponds to a 99% reduction, making

the electric bus deployement extremely attractive in British Columbia to mitigate

emissions.

Battery lifetime was estimated using the CFM with lithium cobalt oxide chemistry

inputs due to a lack of available data on LFP electrochemical inputs (actual BYD

cell). Though this results doesn’t allow conductive results at this point, it opens

the door to more research questions and the need to generate degradation testing on

battery electric bus cells.

Lastly, the possible applications of the model were discussed. It should be noted

that the ECONS-M has been used in several studies done for different transit agencies

across Canada as part of Phase I of the Pan-Canadian Electric Bus Demonstration

& Integration Trial led by the Canadian Urban Transit Research and Innovation

Consortium (CUTRIC). This specific application will be discussed further in the

Conclusions.
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Chapter 4

Conclusion and Recommendations

4.1 Conclusion

This thesis reviewed the development and application of two models to support de-

cision making for the deployment of battery electric buses: the energy consumption

model (ECONS-M) and the CFM. In the introduction, a literature review on the

different BEB feasibility studies and deployments was provided, along with a review

on how to model the degradation phenomena in lithium-ion cells.

Deploying BEBs in transit route is somewhat challenging, as the technology is

relatively new and the existing system is not yet optimized to adapt full fleet elec-

trification. The ECONS-M and the CFM were developed to tackle these challenges

that need to be addressed during the planning phase of deployment projects and to

provide valuable insights to the industry.

The second chapter of this thesis described the background of the two models as

well as the theoretical equations behind them. It also explained how the models are

coupled to convert a real-life BEB driving cycle into a C-rate profile to estimate the

battery lifetime. The models are route specific.
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The ECONS-M is a first-principle based dynamic analysis that uses the speed

of the vehicle as a function of time to calculate the energy consumption of the bus,

in kWh/km. The model was tested using standardized Altoona’s driving cycle, and

the average energy consumption measured and modelled showed a difference of 0.8%

for a 2013 BYD K9, which is a 324kWh battery electric bus using in-depot charging

strategy.

The CFM uses a single particle model (SPM) to predict the cell potential versus

time. The main assumption of the SPM is that the electrodes can be represented as

solid single circular particles. This neglects the concentration and potential variations

in the solution phase between the particles in the electrodes. In this research, we solely

considered the decrease in lithium concentration to estimate the capacity decay, and

did not include the resistance increase. The CFM implemented in this thesis follows

Ning’s model [95] but models a CC charging strategy rather than the CC-CV used in

Ning‘s research.

The model limitations were also discussed in the second chapter. The main limi-

tations of this model are:

• valid for C-rates up to 1C

• the resistance increase isn’t accounted for

• it is not possible to implement a CC-CV charge using the SPM model developed

by Bizeray et al. in Matlab as it is, though equations to be solved in a CV

context are well known

Lastly, the ECONS-M and the CFMs were coupled to generate a second-by-second

C-rate profile based on real-life operating conditions. This profile was then scaled

down to be applied to the cell level. The cell lifetime is then assessed using the CFM.
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The third chapter studied the direct applications of the two models. The ECONS-

M was used to show the financial benefits of deploying a BEB versus a diesel bus and

the CO2,e reduction potential for a selected route in Victoria, BC. The CFM was also

used to provide an insight on the battery lifetime if the bus was to drive under the

specified conditions.

A sensitivity analysis was performed for the ECONS-M. The results showed that

the auxiliary load, coefficient of rolling resistance and passenger weight have the

highest impact on the energy consumption and therefore should be carefully selected

to obtain a realistic output.

A GPS tracker was used to record the speed and GPS coordinates of a bus driving

through the selected route. Post-processing of the data was required to smooth the

elevation and speed profiles to obtain a more realistic pattern.

Using this driving pattern with the characteristics of a 2013 BYD K9, the yearly

financial and emission savings of deploying a BEB were obtained from the ECONS-

M. This thesis demonstrates the advantages of deploying BEBs in British Columbia,

where the electricity is generated 92% from clean power source. Compared to a diesel

bus, 67% of financial savings can be achieved on the operational costs and 99% savings

can be achieve on the CO2,e emissions.

Lastly the C-rate profile was generated using the ECONS-M and fed into the

CFM to estimate the battery lifetime. However, due to a lack of available data in

the literature on electrochemical characteristics of battery used in BEBs, the CFM

was run using the inputs of a typical lithium cobalt oxide cell. This is the type of

battery used to power small electronics, such as cellphones and laptops which means

that it does not suit a heavy duty vehicle application. This highlighted the fact that

more research is required in this area to accurately predict battery lifetime of electric

buses, which is a growing industry.
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4.2 Main Contributions

The main contributions of this thesis are detailed below.

1. A drivetrain energy consumption model (ECONS-M) that assesses the energy

consumption of a BEB was developed. This model was used to assess the

potential GHG and financial savings if a 2013 BYD K9 was to be deployed on

a selected transit route in Victoria instead of a typical diesel bus. Large energy

cost savings were demonstrated and shown in chapter 3. It should be noted

that operation, maintenance and procurement costs are outside the scope of

this thesis. This type of GHG and financial benefits analysis for electric buses

had not been performed before. This model is currently set-up to use Canadian

electricity rate structure and transit schedule, but its scope of application can

be broadened internationally.

2. A sensitivity analysis of the ECONS-M identified the main factors impacting

energy use of a BEB; these are the auxiliary load, coefficient of rolling resistance

and the passenger load. This had not yet been investigated.

3. The ECONS-M helped demonstrate the environmental and financial benefits of

deploying BEBs in British Columbia, where the electricity is mainly generated

from clean energy sources.

4. An existing SPM model was coupled with an in-house developed CFM to esti-

mate battery lifetime under a BEB driving cycle. This novel approach provides

a potentially powerful tool for long term planning. Its features were illustrated

for generic LiCoO2 batteries but its application to the type of batteries used in

BEB’s will have to await open availability of input data.

5. The battery C-rate resulting from the driving cycle was produced by the ECON-
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M and input into the SPM / CFM. This allows the SPM/CFM to directly read

simulated driving condition of BEB changing current. This is important to cap-

ture real use of electric buses in an effort to further model battery degradation

and to predict the lifetime of the batteries if the bus is deployed on a particular

route.

4.3 Recommendation For Future Work

The research and results described in this thesis open avenues to further investiga-

tions, experiments and research which are outlined in this section.

4.3.1 Improving the ECONS-M model

The ECONS-M has been developed as a research tool, but also to support the demon-

stration and integration of BEBs for three different Canadian jurisdictions during

Phase I of the Pan-Canadian Electric Bus Demonstration & Integration Trial led by

the Canadian Urban Transit Research and Innovation Consortium (CUTRIC).

Phase 1 of the project connects over 18 national and international consortium

members, including Siemens and ABB on the charger side and Nova Bus and New

Flyer on the BEB manufacturing side. 18 BEBs and 7 overhead chargers are in the

process of being deployed over three different jurisdictions - Vancouver (TransLink),

Brampton (Brampton Transit), and York (York Region Transit. The goal of phase

I is to achieve standardized opportunity charging for on-route optimized charging,

which is a world first. This project positions Canada as a global leader in low-carbon

transit mobility [157, 158].

The second phase of the project aims to deploy 60 BEB across Canada and 10

additional standardized overhead charging systems, and standardized depot charging



103

systems. Another area of focus will be to integrate energy storage with the overhead

chargers to buffer the load of the high-powered superfast chargers on the grid.

The ECONS-M was used during the planning of phase I and will be used for

phase II as well. Each transit agency partner selects potential route candidate for

electrification, then the model is run to estimate the charging requirements, costs and

GHG savings for each route. These outcomes of the model have supported decision

making for the members of the consortium and funding applications.

An interesting prospect of this project is that once the BEBs are deployed on

the selected routes, a third party data logger will be installed on board to gather

data to test the accuracy of the ECONS-M. These data will include the speed of the

vehicle, GPS coordinates, SOC and overall energy consumption. Other sensors can

be installed at the charger level to measure how much electricity is provided from the

grid and actually delivered to the battery.

At this point of the research, the only available information that can validate the

model is from the Altoona testing results. During the CUTRIC trial the model will

be more rigorously tested, improved and validated.

Though the model can be constantly improved especially in terms of software

development and user friendliness, one of the main recommendation for the next

steps is to include varying auxiliary load according to the operating conditions. This

is a key aspect according to the results found from the sensitivity analysis, section

3.1.2. In [151], He et al. developed a model that predicts the HVAC load of a BEB

according to the number of passengers. The number of passengers influences the heat

dissipated in the cabin temperature which can itself impact the energy consumption

of the bus. Additionally, the air humidity could also impact the energy use of the

bus, especially on the West Coast (according to conversations with BC Transit).

Though the authors do not detail the value of the parameters used for their analysis
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in this paper [151], they discuss how the AC thermal load was calculated using the

summation of the convective heat flowing between the cabin and the bus surface, the

solar radiation, the heat load of the passengers and additional loads due to auxiliaries.

The next version of the model should implement a similar approach to model the

energy consumption in the summer and winter time. That is, modeling both the AC

and the electrical heating system will be important to model the energy consumption

as close to reality as possible. Additionally, some manufacturers make the choice of

having diesel heaters on board: this can also be modelled cost and emission wise, and

compared to resistive heaters or full vapour-compressor AC-heat pump systems on

board for purely electric function.

Additionally, the passenger count should be modelled more dynamically. As shown

in the sensitivity analysis in section 3.1.2, the bus energy consumption varies greatly

depending whether the bus is empty or full. Sensors such as the one developed by

Clever Devices can perform passenger count that are 95% accurate. The sensors

can either be overhead at the doors, that is counting ”vertically” or dual beam sen-

sors counting ”horizontally”. This kind of device can be used for accurate ridership

information that can be fed to the ECONS-M to improve its accuracy.

Lastly, it would be of good use to develop a battery pack thermal modelling to

assess the influence of battery temperature on the battery performance, especially

in terms of efficiency. The impact of external temperature on the battery initial

performance should also be modelled, to ensure that the bus can work given the

harsh winter conditions in Canada.

4.3.2 Improving the Battery Degradation Model

The different limitations of the capacity fade and SPM model are described in section

2.2.6. These limitations can be addressed to improve the prediction of the lifetime of
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batteries for heavy duty applications.

Specifically, it is important that a constant current - constant voltage (CC-CV)

mode is implemented. Currently, the Matlab SPM model developed by Bizeray et

al. [123] only supports constant current charging until a certrain time limit or a

certain voltage is reached. Adding this constant voltage feature would require further

software development and solving the SPM equations differently. During this thesis

research, a more complex electrochemical model in Fortran developed by Doyle et al

[84] in 1998 and available online was used before adopting the SPM model. Doyle’s

model took longer to run, and though the charge could be programmed to be constant

voltage, it was not possible to specify a “cut-off” current. When the CC-CV is defined,

the CC portion is performed until a certain cut-off voltage is reached, then the CV

takes place until a very low current is reached. Therefore more work is required to

allow this charging strategy to be modeled.

Another limitation is the fact that the model cannot be used for fast charging, i.e

C-rates between 1 to 2C or more available for electric buses. To the knowledge of the

author, the mathematical model of SEI formation has not been tested or validated

at high charging rates. That would require ageing testing and further development

of appropriate model equations. There is currently a lot of research and development

in the area of fast DC chargers for battery electric bus. In Geneva in 2017, ABB

was chosen to deploy 13 “flash stations” 600 kW each as part of the TOSA project,

claiming that the BEBs deployed in the route can charge up at a stop in the amount

of time it takes for passengers to get on and off [159]. Siemens also proposes off-

board DC fast chargers ranging from 150kW-600kW. Fast chargers present many

advantages, as the bus can have unlimited range as long as there are chargers allocated

without needing to head back to depot in case the battery is depleted midday. This

is a great motivator to study the impact of fast charging for battery degradation.
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This limitation also comes from the fact that the SPM model assumption to neglect

concentration gradient in the electrolyte is no longer true at higher C-rates. As such,

it is crucial to use a more detailed mathematical model that describes the changes of

concentration in the electrolyte such as the pseudo-2D model for C-rates higher than

1C.

The resistance increase during battery degradation was not considered in this

research. To estimate the battery lifetime, the capacity fade is the only element

required. However, resistance increase results in a decrease of the output power which

is also crucial to quantify. In fact, a bus may not be able to perform the route it is

initially scheduled for if the battery output power is insufficient. Future work needs

to account for this change if one wants to obtain a fuller understanding of battery

degradation.

Another important point to consider is the influence of temperature and calendar

ageing on battery degradation. In this research the effect of temperature and storage

ageing were neglected to simplify the development of the CFM. Future work should

investigate the effect of these two parameters on battery power and capacity fade to

improve the degradation model [83]. A good starting point to model the temperature

fluctuations of the cell can be to replicate the methodology in [160], in which the

authors coupled a thermal model with an enhanced SPM.

Finally, another important assumption that was made to scale the C-rate of the

battery down to a cell level was that the battery and battery mangement system

(BMS) were “ideal” which means that every cell behaved the same way. According

to Baumhfer et al. in [161] every cell in a battery pack ages differently. This age-

ing difference is explained not only by the local operating conditions that vary from

branches to branches, but also by the variances generated during the cell manufac-

turing process. In their research, the authors have tested 48 cells of the same type



107

from a mass production line and with the same charge and discharge protocol. Even

when the cells are brand new, the measured capacity of the batteries vary +/- 1%

from the mean. After ageing, an even greater variance in measured capacity is ob-

served between -4.5% and 3.5% difference from the mean. The conclusion that can

be drawn from these results is that mass production manufacturing processes lead to

variations in the material properties and parameters, which in turn lead to different

individual ageing of the cells. It was found that within these samples, in the worst

case scenario one of the cell had a lifetime one quarter shorter than the lifetime of

the best cell. Therefore, future research will have to investigate the scalability of the

battery degradation process from the cell level to the battery pack level.

4.3.3 Potential Battery Ageing Experiments to be replicated

on BEB cells

In section 3.2, the lack of available electrochemical data for LFP and NCM lithium-ion

batteries was outlined, especially for high capacity cells such as the one used in BEBs.

As stated in the introduction, deployment projects of BEBs are gaining momentum

around the world, and are not viewed as pilot or test projects anymore because the

technology has proven to be suitable for operations.

As such, there is an important research opportunity to carry out more testing

on 40Ah lithium-ion cells with chemistries such as LFP, NMC or Lithium titanate.

Battery ageing characterizations of these cell can especially advance the field to get

a better understanding of the degradation.

Appendix C provides a literature review of the available testing methods to mea-

sure the degradation effects and mechanisms for electric vehicle batteries, especially

the capacity and power fade and the increase in the system overall resistance. Such

testing setup can be reproduced and/or improved on in future research to test electric
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bus lithium-ion battery cells.
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M. Wohlfahrt-Mehrens, C. Vogler, and A. Hammouche, “Ageing mechanisms in

lithium-ion batteries,” Journal of Power Sources, vol. 147, no. 1-2, pp. 269–281,

2005.

[68] N. Nitta, F. Wu, J. T. Lee, and G. Yushin, “Li-ion battery materials: Present

and future,” Materials Today, vol. 18, no. 5, pp. 252–264, 2015.

[69] X. Zhang, H. Xie, C. S. Kim, K. Zaghib, A. Mauger, and C. M. Julien, “Ad-

vances in lithiumsulfur batteries,” Materials Science and Engineering R: Re-

ports, vol. 121, pp. 1–29, 2017.

[70] N. Imanishi and O. Yamamoto, “Rechargeable lithium-air batteries: Charac-

teristics and prospects,” Materials Today, vol. 17, no. 1, pp. 24–30, 2014.

[71] Ahmad A. Pesaran, Gi-Heon Kim and M. Keyser, “Integration Issues of Cells

into Battery Packs for Plug-in and Hybrid Electric Vehicles,” International

Electrical Vehicle Symposium (EVS-24), no. May, p. 7, 2009.

[72] Nordkyndesign.com, “Lithium Battery Banks Fundamentals,” [Accessed:

2017-06-30]. [Online]. Available: http://nordkyndesign.com/lithium-battery-

banks-fundamentals/

[73] Auvac.org, “The Current Condition and Future Potential of Au-

tomotive Batteries,” [Accessed: 2017-09-06]. [Online]. Available:

http://auvac.org/newsitems/view/1082



119

[74] H. Berg, “The electrochemical cell,” in Batteries for electric vehicles: materials

and electrochemistry. Cambridge University Press, 2015, pp. 1–45.
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[161] T. Baumhöfer, M. Brühl, S. Rothgang, and D. U. Sauer, “Production caused

variation in capacity aging trend and correlation to initial cell performance,”

Journal of Power Sources, vol. 247, pp. 332–338, feb 2014.

[162] S. Naumann and H. Vogelpohl, “Cactus: Models and Methods for the Evalu-

ation and the Optimal Application of Battery Charging and Switching Tech-

nologies for Electric Busses,” IFAK, Tech. Rep., 2015.

[163] J. Sullivan, K. Fenton, F. El, G. Marquez, C. Harris, C. Carl, N. Hudak,

K. Jungjohann, C. Kliewer, K. Mccarty, A. Mcdaniel, G. Nagasubramanian,

D. Joshua, A. Talin, C. Tenney, and K. Zavadil, “The Science of Battery Degra-

dation,” no. January, 2015.

[164] X. Liu, J. Wang, S. Huang, and F. e. a. Fan, “In situ atomic-scale imaging of

electrochemical lithiation in silicon,” Nature nanotechnology, vol. 7, no. Octo-

ber, pp. 749–756, 2012.

[165] V. Stancovski and S. Badilescu, “In situ Raman spectroscopic-electrochemical

studies of lithium-ion battery materials: A historical overview,” Journal of

Applied Electrochemistry, vol. 44, no. 1, pp. 23–43, 2014.

[166] L. O. Valoen and J. N. Reimers, “Transport Properties of LiPF6-Based Li-Ion

Battery Electrolytes,” Journal of The Electrochemical Society, vol. 152, no. 5,

p. A882, 2005.



131

[167] M. S. Ding, K. Xu, S. S. Zhang, K. Amine, G. L. Henriksen, and T. R. Jow,

“Change of Conductivity with Salt Content, Solvent Composition, and Tem-

perature for Electrolytes of LiPF[sub 6] in Ethylene Carbonate-Ethyl Methyl

Carbonate,” Journal of The Electrochemical Society, vol. 148, no. 10, p. A1196,

2001.

[168] M. Broussely, S. Herreyre, P. Biensan, P. Kasztejna, K. Nechev, and R. J.

Staniewicz, “Aging mechanism in Li ion cells and calendar life predictions,”

Journal of Power Sources, vol. 97-98, pp. 13–21, 2001.

[169] I. Bloom, B. Cole, J. Sohn, S. Jones, E. Polzin, V. Battaglia, G. Henriksen,

C. Motloch, R. Richardson, T. Unkelhaeuser, D. Ingersoll, and H. Case, “An

accelerated calendar and cycle life study of Li-ion cells,” Journal of Power

Sources, vol. 101, no. 2, pp. 238–247, 2001.

[170] A. Eddaheck, O. Briat, and J.-M. Vinassa, “Performance comparison of four

lithiumeion battery technologies under calendar aging,” Energy, vol. 84, pp.

542–550, 2015.

[171] T. Waldmann, M. Wilka, M. Kasper, M. Fleischhammer, and M. Wohlfahrt-

Mehrens, “Temperature dependent ageing mechanisms in Lithium-ion batteries

A Post-Mortem study,” Journal of Power Sources, vol. 262, pp. 129–135, 2014.

[172] J. Groot, M. Swierczynski, A. I. Stan, and S. K. Kær, “On the complex ageing

characteristics of high-power LiFePO4/graphite battery cells cycled with high

charge and discharge currents,” Journal of Power Sources, vol. 286, pp. 475–

487, 2015.



132

[173] W. Gu, Z. Sun, X. Wei, and H. Dai, “A new method of accelerated life testing

based on the Grey System Theory for a model-based lithium-ion battery life

evaluation system,” Journal of Power Sources, vol. 267, pp. 366–379, 2014.

[174] T. Guan, P. Zuo, S. Sun, C. Du, L. Zhang, Y. Cui, L. Yang, Y. Gao, G. Yin, and

F. Wang, “Degradation mechanism of LiCoO2/mesocarbon microbeads battery

based on accelerated aging tests,” Journal of Power Sources, vol. 268, pp. 816–

823, 2014.



133

Appendix A

ECONS Model Validation Inputs

Parameter Value Unit Source

Bus physical characteristics

Weight 16,914 kg [99]

Frontal area 8.66 m2 width× height

Seated passengers 37 - [99]

Tire radius 0.50 m [99]

Motor performances

Maximum motor torque 700 Nm [100]

Maximum motor power 180 kW [100]

Motor maximum revolu-

tions per minute

7500 RPM [100]

Powertrain and battery performances

Gear ratio 15 - Assumed

Transmission (wheel to mo-

tor) efficiency

95% - [162]

Converter efficiency 97% - Assumed
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Regenerative braking power

split

40% - From conversa-

tions with BEB

manufacturers

Charger power 80 kW [100]

Battery capacity 324 kWh [99]

Environmental characteristics

Air density 1.225 kg/m3 Assumed

Drag coefficient 0.6 - Assumed

Rolling resistance coeffi-

cient

0.01 - [101]

Table A.1: ECON-M input to simulate Altoona’s results for a 2013 BYD K9
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Appendix B

Capacity model code developed in

Python

”””

@author : a n a i s s i a

”””

#import the r equ i r ed modules

import matlab . eng ine

import numpy as np

import s c ipy . i n t e g r a t e

import matp lo t l i b . pyplot as p l t

import math

eng = matlab . eng ine . s t a r t mat l ab ( )



136

de f degradat ion ( ) :

#l i s t o f input

Rf=8.7∗10∗∗−3

Cnom=1.67

Tref = 25 + 273.15

Rc = 20.0∗10∗∗−4

th i ck1 = 75.0∗10∗∗−6

th i ck2 = 25.0∗10∗∗−6

th i ck3 = 74.0∗10∗∗−6

As = 0.087

Rs1 = 2.0∗10∗∗−6

Rs3= 2.0∗10∗∗−6

eps1s = 0.51

eps3s = 0.48

cs1max = 30550.0

cs3max = 51555.0

x1soc0 = 0.009

x1soc1 = 0.62

y3soc0 = 0.94

y3soc1 = 0.50

Ds1re f = 3.8∗10∗∗−14

Ds3re f = 1.0∗10∗∗−13

EaDs1 = 35.0∗10∗∗3

EaDs3 = 29.0∗10∗∗3

k1 r e f = 1.0∗10∗∗−6

k3 r e f = 10.∗10∗∗−6
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Eak1=20.0 e3

Eak3=58.0 e3

ceavg = 1.0∗10∗∗3

Cs N= 25342 #x1soc0∗cs1max

Cs N disc= x1soc1∗cs1max

c y c l e=2

N=[1 ,2 ]

c=0

#run Matlab model

r e s u l t=eng .SPM(Cnom,\

Tref ,\

Rc ,\

th ick1 ,\

th ick2 ,\

th ick3 ,\

As ,\

Rs1 ,\

Rs3 ,\

eps1s ,\

eps3s ,\

cs1max ,\

cs3max ,\

x1soc0 ,\
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x1soc1 ,\

y3soc0 ,\

y3soc1 ,\

Ds1ref ,\

Ds3re f ,\

EaDs1 ,\

EaDs3 ,\

k1re f ,\

k3re f ,\

Eak1 ,\

Eak3 ,\

ceavg ,\

c )

#Run degradat ion

j p=r e s u l t [ ’ j1 ’ ] . data . t o l i s t ( )

p h a s e d i f f p=r e s u l t [ ’ p h a s e d i f f ’ ] . data . t o l i s t ( )

t p=r e s u l t [ ’ time ’ ] . data . t o l i s t ( )

temp p=r e s u l t [ ’ temperature ’ ] . data . t o l i s t ( )

j p a r a=c a l c j s i d e ( p h a s e d i f f p , j p , Rf , temp p )

Rf , d i f f R=i n c r e a s e r e s i s t a n c e ( Rf , j para , t p )

Rc=Rc+d i f f R

Cs N , d i f f C=d e c r e a s e c o n c e n t r a t i o n (Cs N , j para , t p )

p r i n t ( d i f f C , ” degradat ion C” , d i f f R , ” r e s i s t a n c e deg ”)

p r i n t ( ’ Cs N ’ , Cs N , ’R n ’ , Rf )

Cs N=f l o a t ( Cs N )

Rf=f l o a t ( Rf )
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Rc=f l o a t (Rc)

x1soc0=f l o a t ( Cs N/cs1max )

x1soc1=f l o a t ( ( Cs N disc−d i f f C )/ cs1max )

f o r c in range (1 , c y c l e ) :

p r i n t ( ’ Model running f o r c y c l e : ’ , c , ’ / n ’ )

Cs N , d i f f C=d e c r e a s e c o n c e n t r a t i o n (Cs N , j para , t p )

i f c in N:

p r i n t ( d i f f C , ” degradat ion C” , d i f f R , ” r e s i s t a n c e deg ”)

p r i n t ( ’ Cs N ’ , Cs N , ’R n ’ , Rf )

Cs N=f l o a t ( Cs N )

x1soc0=f l o a t ( Cs N/cs1max )

x1soc1=f l o a t ( ( Cs N disc−d i f f C )/ cs1max )

i f c==c y c l e :

r e s u l t=eng .SPM(Cnom,\

Tref ,\

Rc ,\

th ick1 ,\

th ick2 ,\

th ick3 ,\

As ,\

Rs1 ,\

Rs3 ,\

eps1s ,\

eps3s ,\
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cs1max ,\

cs3max ,\

x1soc0 ,\

x1soc1 ,\

y3soc0 ,\

y3soc1 ,\

Ds1ref ,\

Ds3re f ,\

EaDs1 ,\

EaDs3 ,\

k1re f ,\

k3re f ,\

Eak1 ,\

Eak3 ,\

ceavg ,\

c )

de f c a l c j s i d e ( phase , j p , Rf , temp ) :

# c a l c u l a t e d the l o c a l cur r ent o f the s i d e r e a c t i o n

Upara=0.38 # s i d e r e a c t i o n vo l tage (V)

j0 =0.8∗10∗∗−7

F=96485.3329 #faraday ’ s constant

R=8.3144598 # J/mol k

a lpha c =0.5

o v e r p o t e n t i a l =[ ]

jpara =[ ]
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f o r i in range (0 , l en ( phase ) ) :

o v e r p o t e n t i a l . append ( abs ( phase [ i ])−Upara−Rf∗( abs ( j p [ i ] ) ) )

jpara . append(− j 0 ∗math . exp . .

( a lpha c ∗F∗abs ( o v e r p o t e n t i a l [ i ] ) / (R∗temp [ i ] ) ) )

r e turn jpara

de f d e c r e a s e c o n c e n t r a t i o n (Cs N , j para , time ) :

#c a l c u l a t e s the dec r ea s e in concent ra t i on

eps e =0.440 #e l e c t r o l y t e volume f r a c

e p s f l =0.07 #conduct ive f i l l e r volume f r a c

r s =2∗10∗∗−6 #rad iu s p a r t i c u l e m

e p s s=(1−eps e−e p s f l )

a neg=3∗ e p s s / r s

F=96485 #C/mol (C=A. s ) Faraday

Q=[ ]

Q tot=abs ( s c ipy . i n t e g r a t e . t rapz . .

( j p a r a [ 1 : l en ( time ) ] , time [ 1 : l en ( time ) ] ) ∗ a neg )

Cs N1=Cs N−(Q tot )/ ( e p s s ∗F)

d i f f C= ( Q tot )/ ( e p s s ∗F)
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re turn Cs N1 , d i f f C

degradat ion ( )
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Appendix C

Review on Battery Ageing

Experiments

Various methods are used to observe the battery ageing level on electrodes and elec-

trolytes experimentally, especially using spectroscopy and electrochemical techniques.

Transmission electron microscopy (TEM) especially in-situ or “on-site” TEM are ef-

ficient techniques to observe and analyze nanoscale mechanisms associated with elec-

trode lithiation, delithiation, cycling, mechanical fatigue and failure [163]. In [164],

Liu et al. have shown that real-time lithiation of lithium-ion battery anodes can be

observed using TEM. TEM provides extremely high spatial resolution for thin ac-

tive electrode particles but when observing thicker particle the results are negatively

impacted due to a limited chemical sensitivity. The scanning transmission x-ray

microscopy (STXM) addresses this issue. STMX creates an x-ray absorption map

with a 20 nm spatial resolution of a sample by using highly collimated x-ray beam

[163]. Recent advances in the development of in-situ Raman spectroscopy, especially

the integration of Raman spectrometers into non-optical microscopes such as atomic

force microscope (AFM) or scanning electron microscope (SEM) have shown great
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prospects for studying the electrochemical degradation in lithium ion battery [165].

These techniques allow a deeper insight into the degradation phenomenon in batteries

and into the creation and dynamic change of the SEI.

Ex-situ or “off-site” testing can be performed to measure the characteristics of

an electrolyte [166]. The conductivity, density and viscosity of the electrolyte can be

measured through experiments such as the ones described in [167]. Electrolytes typ-

ically used in LPF batteries are prepared by mixing EC and EMC solvents and LPF

salts in a dry glove box filled with argon. The temperature is controlled in an environ-

mental chamber. To determine the conductivity, the electrolyte impedance is scanned

from 1MHz to 20Hz at various temperatures. This method is called impedance spec-

troscopy. A Nyquist plot is then obtained and the conductivity is obtained at the

intersection of the impedance curve with the real “X” axis.

In section 2.2.1, several factors influencing the battery lifetime were identified that

were not taken into account in this research. High temperature was shown to have

a significant impact on increasing calendar and cycling ageing. In [168], Broussely

et al. investigate the effect of temperature on calendar ageing by using LiCoO2 or

LiNiO2 electrode material cells and by storing them at various temperatures (14 oC,

30oC, 40oC, 60oC) at a constant voltage. The cell capacities are diagnosed by either

discharging or charging the cells at different ambient temperatures.

In [169] and in [170], the authors also investigated the effect of temperature on

calendar ageing and accounted for the SOC level (60% and 80% and 30%, 65% and

100% respectively). The fully charged cells are first discharged at a constant C-rate

until the desired SOC is reached. The cells are then heated to the desired temperature

and their voltage is recorded for a period of four weeks. A second experiment was

conducted to study cycling ageing using an “accelerated cycle life” testing procedure.

The goal of this procedure is to shorten the experiment time to not have to wait for
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the “natural” EOL to occur. The cells are exposed to various temperatures, SOC

and ∆SOC, defined as the amount of nominal capacity discharged during a current

pulse. The various ∆SOC represent different driving conditions, such as a few seconds

of regenerative breaking or “charge pulse” and some constant discharge and charge

events.

Wadmann et al. in [171] tested lithium-ion cells cycled with a constant 1C charge

and discharge at constant temperatures between -200C and 700C, which represents

the expected temperature range of an electric vehicle. Several research efforts have

been carried to identify the impact of various charging rates on batteries but there

is a gap in the literature to experimentally study how fast charging conditions would

impact battery life.

In [172], the capacity and power degradation in LiFePO4 are quantified for different

current rates, temperatures and SOC ranges. Current rates of 1 and 2C are chosen to

be within the operating condition range for electric vehicles. The influence of current

rate and asymmetric cycles on cell degradation for various ∆SOC is investigated in

this research. For the testing four main pieces of equipments were used:

• a cell tester - Maccor Series 4000: this is a fully automated test system with

high level accuracy and time resolution to calibrate the capacity of the cells.

The main parameters that can be controlled are the current and the voltage, it

can contain between 1 to 192 individual test channels

• an environmental chamber to keep the temperature constant

• a potentiostat/galvanostat - Gamry Reference 3000: used to perform electro-

chemical impedance spectroscopy up to 1 MHz at a constant current or voltage

• a computer equipped with a post-processing analysis tool - TrueData-EIS: an

impedance analyzer to measure the electrochemical impedance spectrum of com-
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ponents during operation under different loads

There are several kinds of brands with different characteristics for each of these

testing apparatus. Depending whether the experiment is to be performed on a pack

or a single cell, the equipment should be different. The same testing apparatus can

be used to test for calendar and accelerated cycling ageing. Similar testing procedure

are used in [173] and in [174].

The figure below shows how the apparatus setup are linked together. Note that

the potentiostat/galvanostat is optional if a constant current/constant voltage testing

is not required. These equipments are required to setup ageing experiments on high

capacity lithium-ion cells.

Computer / Electrical Impedance 
Spectroscopy (EIS) analyser

Cell tester 
(Maccor 4000)

Potentiostat/galvanostat
(Gamry 3000)

Ambiant chamber


