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ABSTRACT

This thesis applies a stochastic programming approach to the techno-economic

analysis of a wind farm coupled with a pumped storage facility. The production

of an optimal day-ahead generating schedule is considered. Wind forecasts contain

an element of random error, and several methods of addressing this uncertainty in

the optimization process are compared. The methods include robust and reliability-

based design optimization in addition to a combination of both approaches, and

results indicate that reliability-based design optimization is best-suited to this par-

ticular problem. Based on a set of wind forecast error scenarios and historical data,

a probability-weighted forecast wind generation scenario set is developed. Reliabil-

ity constraints are imposed to meet a minimum of 80% of the generating schedule

time intervals. This methodology is applied to a case study on Vancouver Island.

Preliminary results show that when compared to the base case of a standalone wind

farm on Vancouver Island, a wind farm coupled with pumped storage can prove to be

economically competitive with pumped storage capital costs below $1.53 million/MW

installed pumped storage capacity and a firm energy price of $130/MWh.
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Chapter 1

Introduction

1.1 Research Objective

Current-day power systems have been developed for large, centralized, and dispatch-

able power plants. Utilities have been faced with limits on the construction and oper-

ation of the seemingly inexhaustible source of CO2-emitting coal-fired power plants.

In the case of British Columbia, restrictions have been placed on additional large

conventional hydropower. Interest has been directed toward the development of re-

newable energy to meet increasing demand and reduce greenhouse gas emissions, and

with the introduction of these variable and nondispatchable energy resources such

as wind, flexibility is demanded from the existing power system. To use these new

resources to their fullest extent, business-as-usual operation has to be re-examined.

This subject requires input from multidisciplinary engineering fields as well as eco-

nomic, social, and political fields. Projects can be formed around individual turbines,

wind farms, utilities, or international interconnections. This analysis considers a sin-

gle wind farm. Wind forecasting and energy storage are commonly suggested methods

of addressing wind speed variability, and this work aims to assess the value of apply-

ing those methods to a wind generator in British Columbia. Specifically, the goal of

the thesis is to assess the operational and economic feasibility of an independently

owned wind farm coupled with a pumped storage facility in British Columbia, in part

by applying wind forecasting and stochastic day-ahead generation schedule optimiza-

tion. The following sections provide background information required to explain this

overall concept and compile the necessary analytical tools and methodologies.
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1.2 Wind Energy Background Information

1.2.1 Wind Power Integration

Power systems worldwide are experiencing a surge in the amount of installed wind

capacity, whether it is to meet rising system demand or to replace fossil fuel plants

with clean alternatives. The primary difficulties in integration of wind energy into

the electricity grid result from its inherently unpredictable and variable nature. The

variability of renewable energy technologies such as wind, solar, and run-of-river hy-

droelectricity introduces additional system operational constraints with respect to

transmission and reserve requirements, system stability and security, and operat-

ing costs. As energy policy moves towards increasing renewable portfolio standards,

setting wind generation targets, and reducing greenhouse gas emissions, these new

system requirements must be addressed.

Electricity System Implications of Wind Power Integration

The effect of wind power on the electricity system is heavily dependent on the sys-

tem generation mix and regional geography. For instance, several wind plants located

throughout a large area, such as the United Kingdom, will experience less overall vari-

ability than individual plants, referred to as an aggregational or smoothing effect [1].

This may reduce the additional reserves required for short-term balancing. Another

example involves load and generation balancing within the grid, which is relatively

straightforward with a traditional thermal or hydroelectric power plant. Balancing a

grid with variable generation may alter the efficiencies of thermal generators operating

at reduced capacities.

Existing transmission networks may also be restricting in terms of line capacities

and distance to favourable wind plant sites. Networks tend to be well-developed in

heavily populated areas, and wind resources are often high in rather remote locations,

which can result in high transmission infrastructure investments to avoid bottlenecks

and reach plant locations.

According to The Utility Wind Integration Group (UWIG), following an unex-

pected offline plant or line outage, system stability may be improved by the presence

of wind energy [2]. This is due to the reactive power control and low-voltage ride-

through capabilities of state-of-the-art wind plants. Wind should be considered an

energy resource rather than a capacity resource, resulting in the argument that no
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Time Scale Area Impact

Up to several
minutes

Local/System Voltage management: Wind farms can
provide reactive reserve

Several minutes
to one hour

System Reserves: Wind farms can provide
some primary and secondary control

One to 24 hours Local/System Transmission and distribution system
losses or benefits

One to 24 hours System Cycling losses: Suboptimal use of ther-
mal/hydro capacity

One to 24 hours System Replaced energy: Wind energy replaces
other production forms

Several Hours System Discarded energy: Wind farms can ex-
ceed the amount of energy that the sys-
tem can absorb

One to several
years

System System reliability: Adequacy of power
– Wind power has capacity credit

Table 1.1: Wind Power Integration Impacts – Adapted from [4]

additional new capacity is required as a back-up generator. However, spinning and

nonspininng reserves are required in a system to cover fluctuations in load. With the

addition of wind this flexibility requirement is increased [3]. Wind plants have asso-

ciated capacity factors (roughly 10% to 40% of installed capacity) that can provide

additional reserves for long-term planning, but not for daily operations planning [2].

Wind variability and unpredictability result in consequences for wind generators, for

example, bidding into markets as price takers and being charged firming or energy

imbalance penalties.

Time scale is an essential factor to consider when assessing the impacts of wind

energy in the power system. Electricity system time scales range from several hun-

dredths of a second to years. Table 1.1, adapted from [4], summarizes the general

power system effects of wind power integration. The reader is directed to [5] for

further discussion on the details of wind power integration.
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Economic Implications of Wind Power Integration

UWIG estimates that wind penetrations of up to 20% of the system peak demand

can increase the system operating costs by 10% of the wholesale value of the wind

energy. This value could be imposed on the wind generator and, using the United

States as an example, is significantly less than current energy imbalance penalties

[2]. Additionally, in a region that applies a price to carbon dioxide emissions, the

displacement of fossil fuel generators could place added value on wind energy while

reducing fuel dependence, such as natural gas used for ramping control. In recent

research done based on Ontario, Canada, it has been shown that this may be less

effective than desired [6]. The specifics, however, will be dependent on the particular

electricity system involved. Costs such as network connection, network upgrade, and

system operation costs may be distributed differently among wind farm operator,

network operator, and energy customers, depending on the system considered [7], [8].

Issues commonly addressed include the requirement for additional system reserves.

Reserves can be classified into either primary reserves, which deal with regulation on

the order of minutes and less, or secondary reserves, which are expected to be available

within roughly 15 minutes to hours in advance. Wind forecasting errors are generally

dealt with using secondary reserves domestically. Denmark is an example of a coun-

try which realized over 18% wind power penetration in 10 years with no additional

primary reserve installation requirements1. In this market, up- and down-regulation

can range from roughly 12 �/MWh and 7 �/MWh2, respectively throughout the

year. For perspective, the average price of energy in the Nordic market that year

was roughly 25�/MWh3. Overall, experiences in Europe show that increasing wind

penetration does negatively impact the price of energy [7], but studies must be done

on a case-by-case basis. In North America various studies have shown an increase

in operating costs of approximately 3-5 US$/MWh for penetrations around 20% [9].

It has been recently demonstrated that considering wind energy as a ‘must-take’ re-

source, or negative load, results in an unreasonably high integration cost of up to 10%

1The considerable international interconnection contributed to this result
2Values per MWh regulated in 2002
3Denmark is divided into two independent power systems: the Nordic synchronous power system
(Nordel) in Eastern Denmark, operated by Elkraft, and the European synchronous power system
(UCTE) in Western Denmark, operated by Eltra. Wind power development has taken place in
both regions, with the majority located in the Eltra area. UCTE serves 23 European countries.
Eltra uses the Nord Pool Elspot for regulation on a daily basis, which is inclusive of Nordic coun-
tries and Northern Germany. The pricing provided is for Elspot and is not inclusive of socialized
interconnection costs.
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higher than strategic dispatch and forecasting methods [10].

1.3 Pumped Storage Background Information

Before the present day large scale introduction of variable renewable energy sources,

the concept of pumped storage was first used to store run-of-river energy generated

at night for use during the day [11]. Used in conjunction with renewable energy, it

can act as a form of energy reserve, similarly to conventional operating reserves. The

concept of pumped hydro storage physically relies upon an upper and lower water

reservoir, and economically, the price differential between off-peak and peak factoring

round trip energy efficiency. Simply put, water is pumped from the lower reservoir to

the upper reservoir during periods of low demand and therefore low price, typically at

night. When demand and prices are high, the water is allowed to flow back down the

system through turbines to generate electricity. It can be used for load leveling, peak

shaving, and potentially import/export arbitrage. It is also inherently well matched

with renewable energy sources such as wind, as it can offset the intermittency and

firm up electricity generation forecasts when they are used in joint operation, as will

be demonstrated in this work.

1.3.1 History of Pumped Storage

The first known conceptual demonstration of pumped storage was seen in Zurich,

Switzerland in 1882 in which a reciprocating pump was proposed for energy storage.

The first official facility was opened in 1909 in Schlaffhausen, Switzerland with a

capacity of 1500 kW and a separate pump and turbine. Additional installations

followed throughout Europe over the next few decades. The extent of its development

was largely increased by two particular installations: The first plant over 20 MW near

Dresden, Germany in 1928, and the first large-scale North American installation in

Connecticut in 1929 which featured a reversible pump-generator [12].

Early arrangements typically included a horizontal arrangement of a separate

pump/turbine assembly aligned with the generator/motor. These units in which the

separate pump/motor and turbine/generator assembly were aligned were referred to

as a 4-unit type and are seldom used today [11]. As installations increased in size the

arrangement was moved to vertical. There were limited installations of 3-unit sets

in which the turbine, pump, and generator/motor were together on one either hori-
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zontal or vertical shaft. Eventually in the 1930s, reversible pump turbines (or, 2-unit

sets) were introduced, the first installation occurring in Baldeney, Germany. This

advancement typically allows for a cost savings of approximately 30% while compro-

mising on complicated starting modes, efficiency, and longer changeover times [11].

Although this resulted in an efficiency loss through compromise, the capital savings

and system simplification were significant. This particular technology underwent ma-

jor development in the 1960-70s and is often used to date. Staged pumping was seen

in the 1970s in France and Japan to accommodate higher heads, which lead to the

double staged reversible Francis turbine and several Japanese sea water installations.

Pelton turbines are also used in high-head single stage situations. In the late 1980s

the idea of variable speed reversible pump turbines was introduced by means of a two

speed synchronous motor-generator followed by advancements in power electronics

and continuously variable speed drives. Although potentially more expensive, these

systems have significant efficiency gains when operating with large head differentials

greater than a ratio of 1.25. The potential for a variable storage system is in-line

with the requirements of renewables such as wind power and their variable nature.

Many systems are still designed with a well-sized pump and constant flow rate, and

unless a large head differential is required, the option of transient pumping may not

be considered [12].

1.3.2 Technical Details of Pumped Storage Systems

Round-trip system efficiencies are generally between 70 and 85 percent [11]. The

overall efficiency does depend on the project design and configuration. Due to the

system inefficiencies, to generate profit from the peak and off-peak period pricing

scheme alone, this pricing differential has to compensate for these losses. Occasionally

old installations are retrofitted with more modern equipment to realize efficiency

improvements on the order of 30% [13]. Ramping rates can reach up to 3 MW

per minute, so plants are capable of very fast response [14]. It is considered that

a two-mode system (pumping and generating) requires approximately four minutes

between mode changes [15]. This means it may not be available for fine balancing,

so in practice, additional resources may be required for this time period. It must be

considered, however, that currently this is a more economically feasible alternative

for large-scale energy storage than some emerging technologies, such as flow batteries,

in part due to its longstanding establishment [16]. For appropriate geographical sites
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it is also often a feasible alternative in constrained small-scale grid settings when

compared to alternative storage technologies [17].

1.3.3 Literature Review of Wind Energy and Pumped Stor-

age

The coupling of a wind farm with a pumped storage plant has been previously stud-

ied in the literature, but there is room for additional study of this topic within the

context of British Columbia. There has been work regarding wind farms coupled

with pumped storage upgrades in BC Hydro’s facilities [16], in addition to standalone

British Columbia pumped storage facility analysis [18]. There does not appear to be a

public study of the operational and economic feasibility of independent investment in

a wind farm coupled with a pumped storage facility in BC, as proposed in this work4.

The following section contains a helpful summary of results from previous studies

that are relevant to the current project. One particularly interesting application of

pumped storage is in a remote or isolated grid scenario. This has been examined, in

an economic optimization for the Canary Islands in Bueno et al. (2006), an optimal

power flow solution for Rhodes island in Anastasiadis et al. (2010), and detailed

pumping system design optimization of isolated Greek island grids [20],[21],[22]. Al-

though this work is part of the relevant wind energy – pumped storage literature,

isolated grids have different characteristics than large interconnections. For example,

they may require a larger storage system since there is no guaranteed available back-

up capacity in case of an incorrect wind forecast or periods of calms. For the purpose

of the background of the thesis work, the focus of the wind energy – pumped storage

literature will be on the following studies:

1. In Castronuovo et al. (2004), optimal operation and hydro storage sizing of

a wind-hydro power plant is considered in Portugal. The storage system was

set at 20% of the wind farm’s nameplate capacity, and it was found that for a

wind farm of 11 MW, the addition of a pumped storage plant under optimal

operating conditions in the Portuguese energy market increased the net profit

by an annual average of 12% [23].

2. A similar approach to that used in this thesis was taken by Garćıa-González et

al. (2008) in that a stochastic optimization of a wind-pumped storage system

4Benitez et al. (2008) present an interesting analysis on this subject within Alberta [19]
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was considered in the Spanish electricity market. Both electricity prices and

wind generation were considered as random parameters. Increases in profits

with respect to a standalone wind farm were proven, and the most profitable

configuration was determined to be a coupled system which is allowed to both

sell and purchase energy in order to charge the pumped storage device [24].

3. Evans (2009) presented a masters thesis in which the level of wind curtailment in

a hydro-dominated electric generation system was studied, in particular British

Columbia. It was found that, for all cases, wind curtailment was less than

4% for wind penetrations between 3% and 12% [25]. This work was extended

in the masters thesis of Guzman (2010) which used stochastic optimization to

examine the value of pumped storage upgrades to several existing BC Hydro

conventional hydro facilities. This could provide economic benefits that would

increase with increasing wind penetrations [26].

1.4 Wind Energy Integration and Pumped Stor-

age Potential within the British Columbia

Electricity System

1.4.1 Wind Energy

British Columbia has very limited experience with respect to wind energy integra-

tion, especially compared to provinces such as Alberta and Ontario with over 800

and 1300 MW each, and in the next several years the province will likely see hun-

dreds of megawatts installed as a result of the BC Hydro Clean Power Call (CPC).

This call was for clean energy project proposals from Independent Power Producers

(IPPs). IPPs are private companies involved in site selection, electricity bidding, con-

tract submission, permitting, construction, financing, commissioning, and operation

of these projects [27]. Six wind project proposals from various IPPs were accepted and

electricity purchase agreements (EPAs) were reached for each project. The average

price of firm energy was approximately $130/MWh for the wind projects [28].

Studies have been completed with respect to wind monitoring at various sites,

wind forecasting, and expected generation and interconnection costs [29], [30], [31]. A

previous study also shows that wind curtailment in British Columbia would not have



9

a significant impact on wind farm operations, reaching approximately 2% annually

for wind penetrations ranging from 3-12% [25]. Assuming a wind penetration of

20% and reasonable balancing reserve requirements, total wind integration costs are

estimated between $9.9/MWh and $11.0/MWh, respectively, with regulating and

load following costs accounting for approximately 40% of costs and energy shift costs

comprising the remaining increase [32]. This average of $10/MWh would be passed

on to the independent power developers as a ‘wind integration cost’. BC Hydro is

continually addressing the long-term impacts of wind integration in the province [33].

1.4.2 Pumped Storage Potential

Pumped storage requires suitable sites in order to provide an energy storage option

for wind. British Columbia has such sites with reasonable elevation difference, stor-

age reservoirs, and access points. Since the 1970s, BC Hydro has maintained an

inventory of pumped storage sites which is updated periodically. The introduction

of Geographical Information Systems (GIS) advancements in addition to traditional

visual inspection have made it possible to complete a high-level study of the entire

province’s potential including estimated energy storage capacity, rated power, and

construction costs. The most recent study was completed by Knight Piésold Con-

sulting in 2010 [18]. This information was used upon consideration of the parameters

required to conduct the case study.

1.4.3 British Columbia Energy Policy and Practices

Provincial policy developments are an integral component of renewable energy devel-

opment in British Columbia, which is a regulated electricity system. This is different

than a deregulated electricity market such as Alberta or California, where prices

fluctuate with the market. BC Hydro does participate in electricity market activity

such as the Mid-Columbia (Mid-C) market5. However, prices within the province are

regulated. IPPs must reach an agreed-upon price of energy through an electricity

purchase agreement (EPA), which are strictly confidential and therefore data are not

available for economic validation. The components of the EPA include:

1. A firm energy amount, which is an estimate of the amount of energy produced

over the resolution of each season and comprises the bulk of energy produced.

5This is an American electricity market trading hub within the Northwest Electric Power Market.
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This represents roughly 80% of total generation.

2. A nonfirm energy amount, which can be subject to either a set nonfirm energy

price based on region, a nonfirm energy price based on the Mid-C market, or a

combination of both. Non-firm energy is not guaranteed to be bought by BC

Hydro.

The wind energy is remunerated subject to the time-of-generation pricing scheme

as a percentage of their agreed upon firm energy price, shown in Figure 1.1, and the

$10/MWh firming penalty. The contract must be met with 80% certainty over a pe-

riod of 5 years, and there is a 10% adjustment opportunity. This firm energy estimate

framework does not provide incentives for IPPs to invest in advanced wind forecasting

techniques or energy storage, since despite advancements in wind forecasting a time

horizon of one year is unrealistic. The other form of firm energy contract is referred

to as hourly firm and is better-suited to power plants and large conventional hydro,

which is also unrealistic for wind generators. Therefore, for the purpose of this thesis,

a theoretical policy scenario was developed in which day-ahead generating schedules

are provided to the utility. This day-ahead generating schedule would not necessarily

eliminate the need for an annual seasonal forecast. Specifically, the 80% contract

requirement for IPPs is shifted to the day-ahead generating schedules. This allows

the utility to know the hourly wind generation for the next day with at least an 80%

certainty for each time interval over the course of the day while providing the IPP

with an economically optimal generating schedule. From this theoretical structure it

is possible to extend the policy to include other objectives such as smoothing or in-

creased reliability during peak periods. Future sections discuss this policy in greater

detail.

1.5 Model Scope and Key Contributions

Since British Columbia will be experiencing an increase in the installed wind ca-

pacity in the province in addition to the well-known ‘energy gap’, it is desired to

investigate the potential to strategically use this resource for both planning purposes

and offsetting peak demands in high load hours (referred to as peak or super-peak

time periods), while maintaining an attractive investment opportunity for IPPs. The

firming provided by pumped storage could also be provided by large conventional

hydropower in British Columbia; however, its arbitrage capabilities are also desirable
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Figure 1.1: BC Hydro Time-of-Generation Pricing Scheme (% of EPA Price). Data
Source: BC Hydro Clean Power Call [28]
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and so independent investment is worthy of analysis. Although the variability of wind

will not be eliminated, perhaps the unpredictability can be mitigated.

This study is not intended to provide a grid-wide or utility-owned perspective,

both of which have already been studied [26],[34]. It is also not an electrical engineer-

ing or electricity market analysis. Rather it presents an approach using the application

of wind forecasting methods and optimization techniques capable of accounting for

the random error of wind energy forecasts to determine whether independent invest-

ment in pumped storage could present an attractive investment to wind generators

in British Columbia. The investment in pumped storage is considered and is not

compared to investments in additional renewables due to the services that pumped

storage could provide and the desire for strategic wind energy operation within the

province6. Variations on the current IPP contract with the provincial utility, BC

Hydro, are introduced to explore the feasibility of various scenarios.

The model scope follows from the objective of analysing the program from the

perspective of an IPP. The thesis is made up of several models that assess the overall

operational and economic feasibility of a wind farm coupled with a pumped storage

facility. An initial model is required to postprocess the numerical weather prediction

(NWP) forecast data and size the storage facility. Next the postprocessed NWP

forecast data are input to a wind power forecast error generator to generate the

scenarios required for the stochastic optimization. The forecasted scenarios are then

reduced to a computationally manageable size using a scenario reduction algorithm.

Finally the processed forecast scenarios are input to a stochastic day-ahead energy

generation schedule model, and then validated with a real-time hourly operational

dispatch model for each day of the desired time period. At this stage, various methods

of assessing the wind forecast error uncertainty are examined, and the best method

is selected for further analysis. Economic analysis is then done for the selected time

period which is then compared to the base case of a wind farm without a pumped

storage facility under the BC Hydro Clean Power Call. Chapter 2 will discuss each

computation stage in further detail. The methodology presented here is general and

modular, making it readily extendable for analysing additional sites in a variety of

jurisdictions and energy policy scenarios.

The overall findings indicate that it may be attractive for IPPs to investigate

pumped storage options for sites that are less capital intensive. Pumped storage is

an extremely site-dependent technology and so capital costs range widely in the lit-

6Investment in fossil fuel or nuclear power plants is also not considered
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erature. Also there is not a standard policy in place for this type of development in

British Columbia, so various energy policy assumptions were made. One site at Woss

Lake proved to be competitive with the baseline of a standalone wind farm under

the BC Hydro Clean Power Call despite the additional capital requirements. Con-

sidering these assumptions, results are favourable for projects with estimated capital

costs below $1.53 Million/MW as defined in [18]. While this is more expensive than

investment in additional wind generation resources, it is argued that the increased

reliability and the grid services that pumped storage can provide justifies a higher

price of energy.

1.6 Thesis Organization

Chapter 1 provides the research objective and background information essential to

the research objective. Methodology-specific information is presented through-

out the text. This section also contains the scope and key contributions of this

masters thesis and is accompanied by the structure of the document.

Chapter 2 contains the details of model development and the methodologies used

for analysis.

Chapter 3 is a results section in which several optimization methods are applied

and compared against a baseline scenario of the current BC Hydro ‘business-

as-usual’ contract with IPPs.

Chapter 4 applies the best method determined from the previous chapter to a case

study project location on Vancouver Island.

Chapter 5 summarizes the results, future work, and contributions of this work.
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Chapter 2

Model Development and

Methodology

This chapter will outline the overall objective of the model and describe the required

computational steps. Figure 2.1 displays the primary components of the overall com-

putation process: initial storage system sizing and data processing; wind power fore-

cast calculations; and stochastic day-ahead bid generation and real time operational

dispatch. Topics that will be discussed include wind forecasting, types of uncertainty,

scenario analysis, and stochastic programming approaches.

2.1 Model Objective

An appropriate modelling strategy has to be developed to determine whether a wind

farm coupled with a pumped storage facility could present an attractive investment

for IPPs. Recent publications and presentations validate the relevance of this par-

ticular topic [16], [35] for both present-day and future scenarios. For a wind project

with pumped storage to be considered, it must meet or exceed the net income of a

traditional wind farm to compensate for additional design requirements and capital

costs. For it to be approved, it must also meet the operational and regulatory re-

quirements of the provincial utility. The model that has been developed addresses

both of these requirements.

Since current provincial policy does not favour the introduction of independent

energy storage into the electricity system, decisions were made regarding a theoretical

policy scenario that would allow for realistic analysis of a wind farm coupled with
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Figure 2.2: Energy Generation Schedule Schematic for t = 1 : 24 (hours) – Example
Look-Ahead Time Shown for Operation at t = 12

a pumped storage facility. The idea behind this work is that day-ahead generating

schedules, referred to as energy bids, are created with an hourly resolution by the IPP.

This is based on a wind forecast that is done with up to a 72-hour prediction horizon,

so consideration is given to the days following the bid time window to maintain

strategic operation. The pumped storage is considered as both an opportunity for

arbitrage when the bid is formed (i.e. it can be used to shift generation to peak

or super-peak periods) and as a method of offsetting wind forecasting errors. The

pricing for these schedules is not based on an electricity market. It is based on agreed

upon price of energy, which, in the Clean Power Call, is set as an EPA firm energy

price with an average value of roughly $130/MWh. The BC Hydro time of generation

schedule is then applied as a multiplier, so less is received in off-peak periods than

peak or super-peak. This encourages arbitrage from the pumped storage facility.

Once this day-ahead schedule is set, the facility is operated in real-time using the

operational dispatch model, meeting the generation schedule with a set confidence

interval in addition to strategically operating the facility to maintain contingency for

a future timeline. (This is to ensure that shortsighted operation of the storage device

is avoided.) The results of this operational dispatch model then provide the actual

net income for the facility. Figure 2.2 displays how the look-ahead time applies to the

energy generation schedule, or bid, formulation process in addition to the increase

in forecast uncertainty with time. Bids are optimally formulated one day in advance

at t = 1. Since t = 12 in the schematic, that means that the facility is currently in

the real-time operational validation stage. At t = 25, the schedule would be reset to

update the forecast and the process would repeat itself.
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First, it is desirable to accommodate the uncertainties experienced in wind farm

operation and analyze various modeling approaches to this when compared to the

current policy scenario. There are several ways of incorporating uncertainty into

optimization procedures. Depending on the characteristics of the uncertain variables,

different approaches may be selected. It is also possible to combine approaches to

reach the desired performance of the optimizer. This uncertainty is incorporated into

wind speed forecasting.

2.2 Wind Speed Forecasting

Since the foundation of the stochastic energy bid generation is the wind forecast, in

this section some background information will be provided on various methods and

practices.

2.2.1 Wind Speed Forecasting Methods

Wind forecasting takes many forms, from common sense statistical predictions to

complicated numerical models, and combinations of both. The prediction horizon

often determines which approach should be taken. For example, an hour-ahead fore-

cast will not use the same approach as a year-ahead estimate. The following types of

forecast are essential to this project (notation is taken from [36] for consistency with

the literature):

Persistence: This method is referred to as a reference model, and is not generally

used in practice due to its longer horizon inaccuracy. Persistence assumes that the

prediction is equal to the observation at the time the prediction is made:

P̂P (t+ k | t) = P (t) (2.1)

This approach is appropriate for a prediction horizon of an hour, but not for that

of one day. It can be extended to create a moving average predictor stating that the

prediction is equal to the average of the last n observations:

P̂MA,n(t+ k | t) =
1

n

n−1∑
i=1

P (t− i) (2.2)

Climatology: Contrary to the Persistence approach, the Climatology predictor

assumes that the prediction is equal to the global average of measurements for the
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area. This is not appropriate for a short prediction horizon of an hour, but surprisingly

accurate for long prediction horizons.

P̂0(t+ k | t) = P (t) (2.3)

Statistical: Various statistical methods have been developed such as in [37] in

which a correlation between the Persistence and Climatology methods is developed.

More recently Pinson et al. applied multivariate Gaussian distributions to two- to

three-day ahead forecasts [38]. These prediction errors have been studied and applied

to the sizing of energy storage systems [39],[40]. Generally, although statistical meth-

ods can provide acceptable estimations of wind forecasts for analysis, they are not

appropriate for operational purposes. This is due to the fact that wind speeds are

a function of weather systems, and stand-alone statistical methods do not have the

capabilities of predicting individual weather systems without including information

regarding incoming weather systems.

Numerical Weather Prediction (NWP): These forecasts are based on ad-

vanced meteorological models which are used for weather prediction in general. Wind

speeds are only a component of these models. They have the capability to predict

incoming weather systems and their effects, and though they have limitations (predict-

ing high wind ramping events, for example [41]), they provide much better forecasts

in terms of capturing future trends and are in practice used from one hour ahead

up to four days out [31]. NWP forecasts do have known issues such as forecast bias

[42]. Bias correction of NWP forecasts will be discussed upon presentation of the case

study in Chapter 4.

2.2.2 Wind Power Forecast Generation

Before the case study of interest was implemented and NWP data were obtained, a

method of wind forecast generation was required. It was found that the statistical

methods described above were not an accurate representation of current forecast-

ing capabilities. A recent publication from Mello et al. (2011) at Pacific Northwest

National Laboratories was used in which a first-order autoregressive wind power fore-

cast error generator had been determined for real-time, hour-ahead, and day-ahead

applications using the following relationship [43]:

X(t) = aX(t− 1) + bY (t) + ce(t) + d t = 1, ..., T (2.4)
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Here it is acknowledged that wind power forecast error is not an entirely independent

random variable. It is important to note that this time model results in a time series of

wind power forecast error, not a wind power forecast. X(t) represents the wind power

forecast error at time t. The components of the equation include: a, autocorrelation

to the error of the previous time step, X(t − 1); b, cross-correlation to the error of

the time series of finer resolution, Y (t) (e.g. hour-ahead for a day-ahead forecast

error); c, a relationship to a normally distributed random error term, e(t); and d,

a constant term. Note that this error generator utilizes wind power forecast error

statistics from historical utility data. These statistics would not necessarily apply to

wind speed forecast error due to the nonlinear wind turbine power curve relationship.

This method is not included in the previous forecasting section as it is not in itself a

forecasting method1.

The statistics for these values were calculated from a set of forecast data from

the California Independent System Operator (CAISO)2, and the coefficients were

solved for in an unconstrained nonlinear optimization to produce a time series of

forecast errors matching the data statistics. While this method could not be used in

practice since it only generates the forecast error, it can be used exclusively to generate

multiple error time series in conjunction with a wind forecast. For the purposes of

the methodology comparison analysis, these error time series data are combined with

historical data to simulate a wind power forecast. For the case study, the error time

series data are combined with the NWP wind power forecast.

The reproduction of [43] was successful with the exception of the cross-correlation

coefficients, which did not converge for the methodology comparison3. A similar

situation was encountered in [43] with respect to the load forecast error time series.

Refer to Appendix A for a summary of the optimization results. Figure 2.3 displays

an example of the time series and the historical data from Environment Canada over

a 24-hour period. Once the wind forecast error time series has been generated, it is

possible to size the energy storage system.

1Forecasts can be simulated by combining the resulting wind power forecast error time series with
actual wind power data to simulate a forecast. In the case study the bias-corrected NWP model
data specific to BC are used to calculate the wind power forecast error statistics to then generate
the required number of wind power forecast scenarios.

2Initially BC data were not available.
3These did converge for the case study, which Appendix A is based upon
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Figure 2.3: 24-hour Wind Forecast Time Series showing Real-Time, Hour-Ahead
(HA), and Day-Ahead (DA), Forecasts in comparison to Actual Output
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2.2.3 Wind Forecast Error and Pumped Storage System Siz-

ing

First, it is important to note that the energy storage capacity of a pumped storage

facility is largely site dependent. There is no standard value of project capital cost in

$ per MWh of storage, and so it is not realistic to incorporate storage capacity as a

design variable for a high-level analysis. A common assumption is sizing the energy

requirements to meet six hours of generation capability at the rated capacity of the

wind farm and so this value was selected [18], [22] . The important parameter to

decide upon is how to size the rated capacity of the storage system in MW.

Many methods of energy storage system sizing have been presented in the lit-

erature. A thorough review shows that the sizing method is heavily dependent on

the purpose of the wind farm, the electricity system in which it is connected, and the

policy measures in place. For example, if the wind farm were intended as a significant

component of the power system for an isolated island grid as previously discussed, the

pumped storage system would almost need to fulfill the role of a backup generator.

In Anagnostopoulos et al. (2007), this resulted in an pumped storage rated capacity

of 113% installed wind farm capacity [22]. In Bueno et al. (2006), a study done in the

Canary Islands with a separate pump and turbine configuration, the pump capacity

was close to 90% of the rated wind farm capacity while the generation capacity of the

energy storage system was 300% (this system used independent pump and turbine

sets rather than revesible pump-turbines) [20]. In Castronuovo et al. (2004), which

examines the Portuguese system, pumped storage capacity was directly selected as

approximately 18% of the wind farm size [23]. The two studies that were most appli-

cable to this approach were Garćıa-González et al. (2008) in the Spanish electricity

market with a pumped storage capacity of 33% of the wind farm, and Pinson et al.

(2009) in the Danish electricity system with a pumped storage capacity of 25% of the

wind farm [24], [40] . Both of these studies examined energy imbalance costs in an

interconnected grid, which is a similar approach being taken in this thesis.

Initially, the intent was to include the storage system size as a design variable in

the optimization process over the course of an entire year; however, this approach

was computationally expensive and not possible with the scenario-based stochastic

approach. Another sizing method was hence required. The pumped storage rated

capacity can be sized based on the probability distribution of the wind forecast error,

namely in the frequency domain. To justify this method of day-ahead energy bid
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generation, the joint operated system must be capable of meeting the bids within

a set confidence interval to fulfill the purposes of the proposed policy scenario. As

previously mentioned, BC Hydro requires this to be 80% with current practices, and so

this interval was carried over to this analysis as well. For reasons outlined below, the

80th percentile of forecast error does not necessarily correspond to an 80% confidence

interval of energy bid reliability.4

Following several trials, the 95th percentile of forecast error distribution results

in the required energy bid reliability. Based on the forecast error generation method

applied, this corresponds to 24% of the rated capacity of the wind farm, which is in

reasonable agreement with [24] and [40]. This is a conservative approach and it is

believed that it meets the requirements for this type of high-level study. Potential

recommendations for a more in-depth analysis will be presented in a future chapter.

2.3 Types of Uncertainty

To select a realistic optimization routine for this problem, the uncertainty must be

considered. In an optimization problem, uncertainty can be addressed in any of three

areas:

1. Objective function – may reflect the risk attitude of an IPP5

2. Constraints – may be dependent on resource availability

3. Technical coefficients6

When deciding how to represent uncertain parameters, it is important to select

a method that properly represents the characteristics of the optimization problem.

For example, Chance-Constrained Programming is one method of accounting for un-

certainty in the constraints. It is possible to assume that the wind speeds at each

hour follow a known distribution, which can be determined by statistical analysis

and if necessary transformed to an appropriate distribution and normalized. It would

4Upon testing several percentiles of forecast error distribution, it was determined that having the
capability of satisfying the 95th percentile of forecast errors resulted in the satisfaction of 88% of
the energy bids. This is due in part to the fact that the errors are not strictly normally distributed,
they are interdependent, and a small bias is present. In practice, occasionally the system needs to
pump (store) energy at a greater rate than the 80th percentile-based sizing approach would allow.

5The objective function would also be affected by uncertainty within the constraints, however the
uncertainty may not be addressed in the objective function itself.

6This analysis is not within the scope of this research.
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then be possible to formulate the problem so it solves for a set confidence interval, or

equivalently specify the likelihood that the constraint will hold to be (1-α), where α

represents the allowable probability of constraint violation.

However, this does not account for the fact that wind speed uncertainty com-

pounds throughout the day, is dependent on previous time steps (i.e. there is in-

terdependence among right-hand side constraints), and this problem is dynamic in

nature. If this method is selected and applied to a 24-hour day-ahead time interval,

the result is a model that consistently underestimates wind speeds and is therefore

overly conservative. This compounds over the time interval and ultimately reaches

an unrealistic end state. For more information on Chance-Constrained Programming

please refer to [44] and [45].

This work will examine methods of addressing the uncertainty in the constraints,

representing wind forecast uncertainty, and also of addressing the uncertainty in the

objective function, representing net income, which is a function of the wind forecast

uncertainty.

2.4 Stochastic Programming

Decision-making processes must often take place despite the presence of uncertain

parameters. Stochastic programming is a method of optimization for uncertainty that

is used throughout the literature for generator and grid scenarios and is particularly

well-suited to dynamic problems [46], [24], [38] . BC Hydro’s own optimization models

involve stochastic programming [26].

2.4.1 Scenario Selection

Figure 2.4 represents a simplified visualization all possible realizations of qualitative

wind power states over a set time horizon, in hours. This is a dense tree of every

possible scenario realization and it is clear that this would become extremely com-

putationally expensive as time progressed. This figure is centred at the mean and

potential deviations from the mean are represented by the diverging upper and lower

branches of the plot. To make this a more reasonable computation, scenario selection

is employed. Assuming the random variable, in this case a component of the wind

forecast error, has a known distribution, it can be sampled to create a discrete sce-

nario set. This sampling of the wind forecast error generator has a distinct advantage
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Figure 2.4: Dense Scenario Tree – Simplified Qualitative Example

when compared to traditional Monte Carlo methods involving the entire scenario tree.

When applied to this study, the upper and lower bounds in Figure 2.5 represent

scenarios consistently residing in either the highest wind generation state, or the

lowest wind generation state, respectively, for the duration of the time window. The

probability for these states is very low and is influenced by:

1. Sampling the wind forecast error generator; and

2. Historical data.

Since the wind forecast error generator is based on historical NWP data and

statistics, it inherently eliminates the extremely unlikely scenarios. The result is that,

even if sampled over 100,000 times, these upper and lower bound scenarios do not

appear. Figure 2.5 shows a qualitative scenario tree based on cumulative wind power

state transitions. A horizontal line indicates that the wind generation is average,

while divergence up or down indicates transition to higher or lower generation states

for that particular time interval. Scenarios that tend either up or down overall are

either above average or below average wind generation scenarios, respectively. The

particular day represented in Figure 2.5 was a below average wind day. Refer to

Appendix C for the wind state definitions and sample probabilities. This addresses

the first probability item above.

The sampling size in addition to how many scenarios are selected from the sample

population is an independent field of research, and more information is available in
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Figure 2.5: Forecast Error Generator Scenario Tree – Sampling size of 1000 Scenarios
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Figure 2.6: Wind Forecast Distribution Moments Convergence

[47]. The method used in this research was backward selection of single scenarios. In

this work, the original set was reduced to 10 scenarios by scanning the scenarios for

the most redundant scenario, deleting it, and then otpimally redistributing its asso-

ciated scenario probability among the remaining scenarios. Equation 2.5 shows the

optimization in which scenarios are selected for deletion, where l and j represent sce-

nario indices, N represents the number of scenarios, ρ represents scenario probability,

and ω represents the scenario set.

min
l∈1,...,N

ρlmin
j 6=l
‖ωl, ωj‖ (2.5)

Figure 2.6 displays the distribution moments convergence, or normalized mean

absolute error (NMAE), for various scenario sampling sizes based on a reference dis-

tribution of 104 scenarios, which provides suitable accuracy for these purposes.

With respect to computation speed, a sample size exceeding ten scenarios is un-

realistic using a personal computer, which is a trait common to stochastic programs.

Using the method in [47], a reduction algorithm can be performed on an initial set of

1000 scenarios to retain much of the distribution representation present with the 1000

scenario set while maintaining the reasonable computational speed of 10 scenarios.

As mentioned, the second probability item is the probability of scenario realiza-

tion, which can be calculated using historical data and wind speed state transitions.

In this case, 30 years of hourly wind speed data was available from Environment
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Canada for a location near Victoria on Vancouver Island. Refer to Appendix B for

details on this data. Wind state transition probabilities are calculated and used to

define scenario probabilities. A sample wind power data correlation graph for various

time horizons is shown in Figure 2.7. This clearly shows a 24-hour relationship that

deteriorates to statistical noise after a period of roughly five days.

The method of sampling of forecast scenarios based solely on the forecast error

generation method in [43] does not consider the locational wind speed state transition

probabilities for Vancouver Island and ultimately neglects the probability of scenario

realization based on locational data. (It is important to note that this sampling ap-

proach was not the original application of the forecast error generator developed by

Mello et al. and therefore the scenario realization probabilities were irrelevant for

their purposes. This is by no means a shortcoming of their research.) These scenario

realization probabilities can be calculated using historical data as described, and then

incorporated into the weighting factors involved in the reduction approach, which is

an added benefit. From the results analyzed, this provides a set of scenarios that is

representative of both the sampling distribution and the probabilities of scenario oc-

currences. This is clear in the improvement in the normalized mean absolute forecast

error (NMAFE) for the reduced set, and could also potentially explain the very small

shift in mean value from the reference distribution. Table 2.1 shows the improvement

provided by the single-scenario backward reduction algorithm over a sampling set of

10 scenarios. Figure 2.8 displays the difference in the scenario tree after this scenario

reduction, resulting in a manageable problem size. Once these scenarios are selected

it is possible to begin the optimization formulation.

2.4.2 Stochastic Problem Formulation

The aforementioned optimization problem can be classified into the field of multistage

stochastic programming with recourse. The first stage decisions are formulated con-

sidering the potential wind generation scenarios selected, and the generating schedule

is optimized. Imbalance penalties are assigned for missing the set generation sched-

ule. The second-stage, or recourse, decisions satisfy the various scenarios, utilizing

the pumped-storage to offset any discrepancies in the forecasted wind generation for

that scenario in order to meet the generation schedule for that hour. The optimally

determined generation schedule is applied to all wind generation scenarios as it must

satisfy a generation bid common to all scenarios. The second part of the problem is
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Figure 2.7: Sample Wind Power Correlation with Time Horizon
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Figure 2.8: Reduced Scenario Tree – Sampling size of 1000 Scenarios Reduced to 10
Scenarios

10 Scenario Sam-
pling Set NMAE (%)

Reduced 10 Scenario
Set NMAE (%)

µ 1.66 2.36

σ 2.69 2.52

2σ 3.85 2.72

3σ 5.07 3.58

µNMAFE
1 7.71 6.36

1 NMAFE based on actual wind generation, as opposed to NMAE which
is based on deviation the reference scenario generation distribution

Table 2.1: NMAE Comparison - 10 Scenario Set vs. Reduced 10 Scenario Set
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an operational dispatch model that operates the facility in ‘real-time’ with updated

wind energy forecasts, which is not to be confused with the recourse decisions of

the stochastic bid optimization. Considering the pricing scheme applied and pump-

turbine efficiency curves, this is a nonlinear optimization problem and in its simplest

form is formulated as follows:

maximize
x,Storage Level

N∑
n=1

ρn

t∑
i=1

(
Incomei,n − Penaltyi,n

)
− Capital Recovery

subject to |Pi,n| ≤ Prated, i = 1, . . . , t, n = 1, . . . , N.

Storage Level1,n = Storage Levelend, i = 1, n = 1, . . . , N.

Storage Leveli,n ≥ 0, i = 2, . . . , t, n = 1, . . . , N.

Storage Levelt,n ≥ Storage Levelend, i = t, n = 1, . . . , N.

xi ≤ MaxGen, i = 1, . . . , t.

xi ≥ MinGen, i = 1, . . . , t.

(2.6)

where N is the total number of scenarios, t is the total time interval, P refers to the

power generation or consumption of the facility, E refers to the energy in or out of

the storage facility (design variables), Storage Level refers to the water level of the

pumped storage facility (state variables), x refers to the generation schedule or bid for

each time step (design variables), and ρ represents the probability of each scenario.

Due to the relatively simple and straightforward governing equations of this system, as

long as all variables are saved throughout the simulation, the results can be replicated

for the purpose of model validation. The IPP is permitted to consume power from

the grid to charge the energy storage reservoir. The net income function in Equation

2.7 and Figure 2.9 is represented as by an asymmetrical variable exponential function,

which encompasses the step-function pricing scheme while smoothing the transition

points for the sake of operation of the gradient-based optimizer. The function steps up

once the sum of predicted wind generation and energy in or out of the storage system

meets the energy bid for that time period, so the dynamic nature of this curve is that

it varies with changing energy bids and predicted wind generation scenarios. This

is representative of an energy imbalance penalty policy as a method of addressing

deviations from generating schedules. Note that the slope in Figure 2.9 has been

relaxed at transition points for the purpose of visualization and in reality the slope is
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much steeper, resulting in the firm energy price being awarded when the bid is met

and simulating a linear step function without the curvature shown.

Incomei,n − Penaltyi,n = Time of Usei

((
pricefirmxi

+ pricenonfirm(WPowerforecast,i,n + Ei,n)
)

+ pricenonfirm
−xi

(1 + e−2(WPowerforecast,i,n+Ei,n−xi))

− penalty
xi − (WPowerforecast,i,n + Ei,n)

(1 + e−2(−WPowerforecast,i,n−Ei,n+xi))

)
(2.7)

For clarity, the pricing scheme can be described as follows:

� The pricing scheme is a variable step function that steps up from non-firm price

to firm price once the bid is met7. This step depends on:

1. The bid selected by the optimizer (design variable); and

2. The forecasted wind energy, set by the forecast error generator and scenario

reduction algorithm before the optimization begins.

Once the energy in or out of the pumped storage facility (design variable) plus

the forecast wind energy meets or exceeds the bid, the price steps up.

� If x-axis is energy in/out of the pumped storage facility in MWh and y-axis

is price in $/MWh, the pricing curve moves along the x-axis based on the bid

selection, and the price awarded shifts along the pricing curve based on the

energy in/out of the storage facility (again, it steps up when the sum of energy

storage and wind meets bid). This is shown in Figure 2.9.

� If the bid is not met: A penalty is assigned for the amount missed ($/MWh

missed), and the nonfirm price is awarded for the amount produced.

� If the bid is met or exceeded: The firm price is assigned for the bid amount

and nonfirm price is assigned for any overgeneration ($/MWh overproduced).

The result is a pricing scheme with two levels of penalty, one that is proportional

to the amount by which the bid is missed by (i.e. missing bid by 100 MWh is penalized

7The non-firm and firm prices are taken to be $44.39/MWh and $130/MWh, respectively, based on
current provincial policy at the time of analysis. Time of use pricing is provided in Figure 1.1.
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Figure 2.9: Income and Penalty Function

harsher than missing by 5 MWh) and one that stresses the importance of the formality

of meeting the generating schedule for reliability purposes (the step function). For the

reliability case in which constraints are added in order to meet a minimum of 80%

of energy bids, this is not completely necessary. However, it still encourages good

operation in scenarios with lower probability that are exempted from the reliability

constraints. This pricing scheme also reflects the policy standpoint that the increased

reliability justifies a higher price of energy. If these bids are not met that additional

energy price may not be justified. It could be argued that the penalty of nonfirm

price awarded for energy production when bids are missed is not necessary, but it is

used in this analysis for the aforementioned reasons.

This problem will form the basis of the stochastic programming analysis. The

following approaches will be compared:

1. Deterministic design optimization

2. Robust design optimization (RDO)

3. Reliability-based design optimization (RBDO)

4. Robust/Reliable design optimization (R2BDO)
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The concept of RBDO corresponds to typical power industry confidence interval

standards of a required probability of meeting a generating schedule. Each solution

will be compared with the base case of a standalone wind farm operation over the

same time period in order to determine the value of the pumped storage facility to

IPPs in this situation. Further details regarding the implementation of these methods

are provided in the following sections.

2.4.3 Robust Design Optimization

Robust design optimization aims to optimize the problem about the mean in the

presence of random parameters. A variance or standard deviation term is added into

the objective function and weighted. This is a form of addressing objective function

uncertainty, which represents the IPP’s aversion to swings in income across different

generation scenarios. Refer to [48] for application to design and a more comprehensive

description. In economics, this sort of approach may be referred to as mean variance

analysis, and the aim is generally to model risk aversion in an economic optimization

[45]. The optimization problem in Equation (2.6) is modified so that the objective

function is as follows:

maximize
x,Storage Level

N∑
n=1

ρn

t∑
i=1

(
Incomei,n − Penaltyi,n

)
− ωσscenarios − Capital Recovery

(2.8)

where ω represents the selected weighting factor and σscenarios represents the addition

of the net income standard deviation term into the objective function.

2.4.4 Reliability-Based Design Optimization

This design method accounts for safety margins, or target reliability. Reliability

constraints are introduced in which the design variable may not exceed the reliability

target. A thorough review of RBDO is available in [48].

In physical design or manufacturing this can be quantified as a design parameter,

or tolerances in manufacturing. The problem addressed here, however, is an op-

erational optimization, and so the reliability constraints can be imposed on scenario

probabilities while the objective function remains the same as in Equation (2.6). This

results in a scenario probability confidence interval, set by the IPP or BC Hydro, in
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which the facility will be able to meet its generating schedule based on wind forecasts.

The allowable probability of error will be represented by α, resulting in a confidence

interval of (1-α). Constraints are added in the case that the probability exceeds the

confidence interval, (1-α), so that the generator must meet the generating schedule, or

bid, for that hour. This helps avoid the event that a facility sets a schedule in favour

of one particularly profitable scenario at the expense of missing the schedule for a less

profitable scenario with equal probability. The added constraint is as follows:

Ei,n + WPowerforecast,i,n ≥ xi, i = 1, . . . , t, n = 1, . . . , N, ∀ρn ≥ α (2.9)

If this constraint was added to every time step of every scenario, i.e. α = 0, this

would be referred to as a ‘fat solution’, which is safe and will satisfy each possibility;

however, it is unrealistically expensive and overdesigned for this situation. Although

risk analysis is outside the scope of this thesis, this would represent complete risk

aversion. Based on relatively modest current penalty levels for missing generating

schedules in British Columbia, the main beneficiary of this method of optimization

would be the utility, and the increased reliability could be represented by a higher

price of energy for the IPP than the existing agreements in the Clean Power Call.
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Chapter 3

Methodology Comparison Results

In this chapter, criteria required for comparing and analyzing the results of the pro-

gramming approaches mentioned in Chapter 2 are introduced and discussed. This

chapter is to act as a comparative analysis to be refined in the case study, at which

point the best method from this analysis will be applied.

3.1 Case Definitions

The model was run under the following conditions:

� Deterministic: Single expected value (EV) wind generation scenario1

� Stochastic Robust (RDO): Added standard deviation term into the objective

function of the basic stochastic problem to minimize income swings across ten

scenarios

� Stochastic Reliable (RBDO): Added reliability constraints to the basic stochas-

tic problem to meet generation schedule for a 95% scenario probability confi-

dence interval across ten scenarios

� Stochastic Robust/Reliable (R2BDO): Standard deviation term as in RDO in

addition to reliability constraints for a 95% scenario probability confidence in-

terval across ten scenarios as in RBDO

1This single scenario is calculated based on a weighted average of the set of 10 scenarios for each
day.
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The time interval examined was a one-week period with an hourly time step. Due to

this coarse time step, ramping rates were not imposed, as pumped storage units can

respond to changes on the order of several seconds to minutes.

For each scenario (with the exception of the deterministic expected value case), the

value of the stochastic solution (VSS) will be determined as in Equation 3.1. This is

done by running the model with the EV scenario (deterministic), yielding the expected

result of using the EV solution (EEV). This is then compared to the outcome using

the 10-scenario set (stochastic), resulting in the recourse problem (RP) solution and

then computing the difference between the two. For the deterministic case, it follows

that the VSS will be zero and it is therefore only to be applied to the stochastic cases.

Each case is compared to operation under the current BC Hydro Clean Power Call

policy as a reference, or base case, to evaluate whether the method could present an

improvement for IPPs.

VSS = EEV− RP (3.1)

The expected value of perfect information (EVPI) will also be computed by de-

termining the difference between the RP and the wait-and-see solution (WS) as in

Equation 3.2, in which perfect information is known ahead of time in order to make

optimal decisions. Although it will not be possible to obtain perfect forecast informa-

tion, this number can give some insight into the value of increasing forecast accuracy.

Further information regarding the applications and comparison metrics of stochastic

programming is available in [49].

EVPI = RP−WS (3.2)

3.1.1 System Details and Assumptions

The wind farm capacity was selected to represent a large transmission-scale wind

farm installation similar to that in the BC Hydro Wind Data Study [31]. The system

examined for this section of the analysis is a theoretical 512 MW wind farm coupled

with a 124 MW pumped storage facility with a typical round-trip efficiency of 80%,

for which a two-part model optimally formulates a day-ahead generating schedule

using stochastic programming with recourse and then in turn operates the facility in

real-time. No limit to the number of mode changes for the pumped storage facility

per day is imposed. This has proven to be more cost-effective despite reducing the
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lifetime of the plant [50]; however, specific details on the lifetime reduction were not

available and do not seem to have been included in [15], for which a 50-year lifetime

was selected based on [51].

The storage system sizing is not determined by the model due to computational

restrictions that are discussed in later sections. The pumped storage system is sized

to meet 80% of day-ahead wind forecast errors by analyzing the forecast error dis-

tribution in the frequency domain. The requirement of 80% originates from the BC

Hydro Clean Power Call for which the project must meet its firm energy estima-

tion, and is being applied to the day-ahead generating schedule for this analysis. A

firm energy (guaranteed to be bought by BC Hydro) price of $140/MWh is used for

the simulation, and is varied between $110 and $160 as a sensitivity test. The cur-

rent Clean Power Call EPA average is approximately $130/MWh, from which a set

$10/MWh ‘firming’ cost is deducted. Nonfirm energy (energy generated in addition

to firm energy) may be sold in the operational stage of the model in addition to the

amount of the day-ahead generating schedule at a price of $44.39/MWh. Capital

costs as a function of capacity are assumed to be $2 million per MW for wind [52]

and $1 million per MW [26] for pumped storage with a discount rate of 8% as used

in the Clean Power Call and a capital recovery period of 40 years. This is consistent

across all cases and therefore variations in capital costs or discount rate do not affect

the primary purpose of this particular modelling analysis as it is testing the most ap-

propriate optimization approach to take when considering uncertainty. (A sensitivity

analysis will also be included in the case study section with a more thorough capital

cost breakdown.)

As previously mentioned, optimal day-ahead generation schedules are simulated

while satisfying a 36-hour look ahead time (to be extended to 72-hours for the case

study with validated forecast data), and deviations from these schedules are penalized

based on hourly energy imbalance penalties. It is important to note that energy

imbalance penalties are not currently applied to wind energy in British Columbia –

the $10/MWh firming cost is assumed to encompass the firming cost to the utility –

however it is used by other utilities and is applied to other generators by BC Hydro.

This analysis takes the perspective of other markets in forming agreements on a

more short-term basis, which can be more representative of the wind resource, rather

than the long-term schedule estimation currently applied in BC (although there is no

reason not to include the current practice of seasonal energy estimation as well). It is

therefore a theoretical scenario for British Columbia. The energy imbalance penalty
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schedule itself was taken from BC Hydro Ancillary Services, and varies depending on

where the imbalance lies with respect to a bandwidth of 1.5% of generating capacity.

It is currently assumed that all energy will be sold to the utility based on a very low

British Columbia wind curtailment calculation in [25].

The wind data was taken over thirty years from a location near Victoria on Van-

couver Island, publicly available from Environment Canada’s National Climate Data

and Information Archive, which allowed reliable calculation of wind speed state tran-

sition probabilities. Although the raw data did not have a suitable wind resource

and scaling was necessary to reach an economically acceptable capacity factor, this

location was selected due to the requirement for hourly data for each hour of the day2.

A correction factor of 1.5 was applied to scale the average wind speed up to 6.5 m/s

at 80m. It is acknowledged that this may not be completely representative of actual

measured wind speed distributions; however, for the case study real data are utilized.

For the purposes of this methodology comparison it satisfies the requirements.

3.1.2 Deterministic Expected Value (EV) Case

The deterministic case involves forming a single expected wind generation scenario

for each 24-hour period by calculating the probability-weighted average of all sce-

narios as shown in the following equation, where W̄n represents the wind generation

vector for scenario n over time interval 1 : t and ρn represents the individual scenario

probabilities.

W̄EV =
N∑
n=1

ρnW̄n (3.3)

This single-scenario analysis is treated as the baseline case for determining an op-

timal day-ahead bid, and provides the EEV solution. Recall the previously mentioned

idea that the generator should have the ability to not only manage forecast error, but

also shift generation to peak periods when profitable, referred to as arbitrage. This

optimization allows for that, but as it is a single scenario analysis, there is no built-in

accommodation for varying forecast error. Therefore, the simulation will optimize the

energy bid and arbitrage for this single scenario within the allowable constraints, and

cannot always accommodate changes in wind generation realized in the operational

2Many wind monitoring sites in British Columbia do not operate 24-hours a day and so it was
necessary to use the Victoria location despite poor wind speeds.
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optimization process. A more realistic case for a single-scenario analysis would be to

treat the pumped storage solely as a forecast error buffer, but for consistency among

methodology comparisons this was not done, nor is it an ideal configuration for the

IPP since it does not fully utilize the capabilities of the pumped storage investment.

3.1.3 Robust Optimization

To justify the analysis of the robust problem, it was necessary to solve the problem

without the standard deviation term in the objective function to analyze the distri-

bution of net income across scenarios without reliability constraints. In particular,

if the net income had no significant variance across scenarios, the attempt to reduce

it would be trivial. This preliminary problem formation is referred to as the basic

stochastic problem.

Basic Stochastic Problem Optimization

For this optimization, it has been mentioned that a single day-ahead generation sched-

ule is decided upon based on a set of 10 potential wind generation scenarios. For the

basic and robust problems, the individual recourse decisions are not required to meet

the schedule at each point in time (no reliability constraints), and a simple penalty

function is applied for undergeneration as part of the objective formulation in Equa-

tion 2.7. If a unique optimal generation schedule is calculated for each individual

scenario with the requirement of meeting the schedule, a set of 1000 scenarios (cho-

sen to show a representative distribution) leads to the distribution of income levels

in Figure 3.1. This shows significant variance among scenarios which can therefore

be shaped using RDO.

A histogram was also generated for the basic stochastic problem solution, in which

a single generating schedule was optimally chosen for a set of ten scenarios. Figure 3.2

shows preference for scenarios with high probability and high potential for income.

This figure shows the polarized outcomes for this problem, which may somewhat ex-

plain the results. This is at the expense of lower income or lower probability scenarios,

and the potential for income swings based on the outcome of wind generation led into

the motivation to analyze the robust case. These figures are also shown in Appendix

D with the scenario income multiplied by scenario probability to see the preferential

weightings to higher probability scenarios. Ideally this approach would improve the

net income of the facility at the expense of missing several energy bids; however,
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Figure 3.1: Daily Income over a Set of 1000 Scenarios - Optimal Generating Schedule
for Each Scenario

this is currently having a negative effect overall due to the tendency to neglect lower

probability and lower wind generation scenarios. A simplified schematic of this is

shown in Figure 3.3. It is to be noted that in reality the distribution would likely

be asymmetric, and would vary depending on the day and selected scenario set – a

normal distribution is shown for the purpose of illustrating the concept.

Robust Optimization

Once the standard deviation term was added into the objective function the perfor-

mance of the robust problem was similar to the basic stochastic solution. The income

distribution across the ten scenarios is shown in Figure 3.4. When forming the gener-

ation schedule, there seems to be a clear preference of the optimizer to tend towards

the higher income scenarios at the expense of the other potential wind generation sce-

narios. In the operational dispatch model, the energy generation schedule was missed

28% of the time, 26% of which were outside the allowable generation bandwidth.

The concept of modifying the standard deviation of the objective function across

scenarios represents a level of risk aversion to unexpected swings in income; however,

detailed risk analysis is not within the scope of this thesis and a survey of decision
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Figure 3.2: Daily Income over a Set of 10 Scenarios - Single Optimal Generating
Schedule Applied to all Scenarios
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Figure 3.3: Scenario Preference Schematic - Basic Stochastic Case
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Figure 3.4: Daily Income Histogram - Robust Case

makers was not conducted to determine the weighting. Upon consideration, the

addition of the standard deviation term will negatively impact income overall, which

can be seen in Figure 3.4, though it is also clear that the standard deviation term did

not have a dramatic effect due to the moderate weighting3. The income from low wind

generation scenarios cannot necessarily be increased, thus acting as the limiting factor,

and if the distribution is to be tightened it must be by reducing income in high wind

scenarios by selling as extra non-firm energy for reduced compensation or curtailing.

The result is a trade-off between an overly conservative generating schedule tailored

to lower energy bids (standard-deviation motivated) and an ambitious generating

schedule (income-motivated) tailored to high probability and income scenarios. This

does not fare well in the optimizer, resulting in a negative change from the current

BC Hydro Clean Power Call wind-only scenario. If the penalty function is increased

substantially, more reasonable energy bids are created, effectively creating reliability

constraints similar to the R2BDO method, which will be discussed in the following

section. It is therefore not recommended to employ Robust Design Optimization as

an operational strategy for this problem.

3The weighting decides the level of tradeoff between net income and standard deviation across
scenarios, and they were set to result in relatively equal magnitudes between each which will
change depending on the scenario sets. It was not realistic in terms of computational time to test
many weightings, but in the following section the effect of a variance term substitution is discussed.
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3.1.4 Reliable Optimization

The performance of the reliable problem was far superior to the deterministic and

robust methods with respect to optimal bid selection and its effect on net income. It

is believed that this is because of the addition of constraints requiring the optimizer

to meet the generating schedule for both the low and high wind generating states

assuming a probability greater than 5%. The reliable problem succeeded in meeting

88% of energy bids, with 11% of bids outside the 1.5% allowable bandwidth. It is

shown as an attractive investment in Table 3.1, as opposed to the other two scenarios.

Note that these income levels are based on the operational dispatch model in which

the energy generation schedules are validated, not the stochastic robust or reliable

optimization results in which the optimal bid is determined. Figure 3.5 shows the

interesting distribution of income across all scenarios. The income distribution is

clustered around the generating schedule for scenarios within the confidence interval,

as expected, at a value of $688,000 for the sample day chosen. Although due to data

shortcomings in this comparison analysis the figures themselves are not representative

of real income levels, this demonstrates that the reliability constraints (in this case, an

equality constraint) perform as expected for scenarios within the confidence interval.

For the particular day chosen, there were four scenarios with a combined probability

of greater than 80%, while the remaining scenarios had probabilities of less than

4%. The results of this case indicate that it may be a suitable choice in operational

strategy for this problem, as it had both a positive VSS and also exceeded the net

income of the BC Hydro Base Case at an energy price of $140/MWh.

3.1.5 Robust-Reliable Optimization

Using the R2BDO method solved the issues associated with the purely robust ap-

proach. The performance of this method was much better, resulting in only 15%

missed energy bids. To test the optimizer’s performance with the objective function

weightings, the optimization was performed first with a standard deviation term and

then with a variance term in the objective function. It is clear in Figures 3.6 and

3.7 that changing the weight has the intended effect, and also that decreasing the

standard deviation has a significant effect on the overall net income due to the limits

imposed by the low-wind scenarios. The effect of the reliability constraints is seen by

the fact that the net income for the selected day is clustered for scenarios within the

confidence interval at $673,000 and $33,000 for the standard deviation and variance
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Figure 3.5: Daily Income Histogram – Reliability Case

Figure 3.6: Daily Income Histogram – Robust-Reliable Case - Standard Deviation
Term in Objective Function
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Figure 3.7: Daily Income Histogram - Robust-Reliable Case - Variance Term in Ob-
jective Function
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Net
Income
($CAD)1

EVPI
($CAD)

VSS
($CAD)

Total
Missed
Bids (%)

Missed Bids
Outside
Bandwidth
(%)

Wind Only 113000 N/A N/A N/A N/A

Deterministic Problem -246000 610000 0 25 21

Robust Problem -343000 707000 -97000 28 26

Robust-Reliable Problem (σ) 29000 335000 275000 15 14

Reliable Problem 133000 231000 379000 12 11

1 $130/MWh for wind only (minus $10/MWh for firming) and $140/MWh for comparison problems

Table 3.1: Results Comparison from Operational Dispatch Model - One-Week Period

analysis, respectively. This approach had a positive VSS and was profitable over the

week-long term, but did not represent an improvement over the current BC Hydro

Clean Power Call base case.

3.2 Net Income Comparison

The goal of this particular analysis is to determine which optimization method may

best suit this optimization problem for application in the case study; however, the

overarching goal of the project is to analyze the performance of a coupled wind farm

and pumped storage facility with respect to improving reliability while maintaining

an attractive IPP investment. It is therefore necessary to analyze the net income

over a one-week period when compared to the base case of a standalone wind farm.

The energy price was assumed to be $140/MWh, which is $10/MWh in excess of the

CPC EPA firm energy prices due to the increased reliability the storage system and

day-ahead generating schedule provide. Figure 3.8 shows the relationship between

net income and energy price for each case. It is to be noted that this is an hourly

average of wind energy production, and analysis has not been done on sub-hourly

time intervals, such as, those affecting the balancing market. It is suspected that this

would be somewhat of a site-specific analysis.

It was previously mentioned that for the robust case a higher penalty function in

the bid generation stage of the model could alter the behaviour of the system, forcing

the optimizer to meet the generating schedule rather than trying to attain higher

income at potentially lower probability scenarios. Figure 3.9 shows the trend with

net income during the operational stage of the model for various penalty values for



47

Figure 3.8: Net income comparison with respect to energy price

Figure 3.9: Weekly net income with respect to various penalty functions
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the robust and robust-reliable cases. This was not applied to other cases. There is

much more improvement visible with the robust case. There is also some potential

for improvement with the robust-reliable case but this is limited due to the reliability

constraints and the majority of bids already being met within the scenario probability

confidence interval. Due to simulation run times it was not possible to complete an

in-depth sensitivity analysis; however, it is clear that with a higher penalty function

overall the unlikely scenarios that initially had a relatively small effect on the objective

function are weighted higher if they are consistently missing bids. With a time-

compounding nonlinear problem such as this at a concept-level analysis, the location

of the global optima is not known, so perhaps a global solver could be employed for

further analysis.

It is important to note that this week-long period had a capacity factor of below

15% (i.e. it was below the average annual wind generation levels for the theoretical

site), so income levels would be lower than expected over the course of a year. (It was

also an interesting time frame to examine because at times the wind speeds were ex-

ceeding the cut-out value, which is problematic for forecasting since power fluctuation

from rated power to zero is difficult to predict.) The important distinction to make is

the relative difference between each problem. At energy prices of $140/MWh the re-

liability case became financially viable, surpassing the reference case of a stand-alone

wind farm under the Clean Power Call. If this is normalized for a net-zero storage

level (i.e. no income from the storage level difference over the time period), this fi-

nancial viability level is reached at roughly $145-150/MWh depending on the random

error component of the simulation run, which is still within a reasonable range4. It

could be argued that, depending on the overall system effects, the reliable case would

be eligible for a higher price of energy. For the deterministic and robust, it is shown

that the VSS is negative, which indicates that it is a poor decision compared to the

EEV, whereas the reliable and robust-reliable cases present an improvement. It is also

apparent how important an accurate forecast is by the extremely high EVPI, and how

investment in superior forecasting tools could significantly improve income. Future

work will be applied on valuing the accuracy of wind forecasts more thoroughly and

the economic analysis will be refined in the case study.

4This section is based upon 100% wind energy for the CPC base case, which is realistically probably
closer to 85% firm, 15% nonfirm as shown in the case study. This is conservative and income levels
in this section are likely higher than would be expected. Forecasting shortcomings of this section
were also apparent once case study data was obtained.
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3.3 Modelling Challenges

3.3.1 Constraint Relaxation

Upon beginning this research, the problem was originally configured with reliability

constraints, so feasibility was easily reached in the second operational stage of the

model. Once the reliability constraints were removed for the robust case analysis,

despite the penalty for undergeneration, there were multiple hours in which the gen-

erating schedule was missed. Since it is a two-stage model, the second stage was not

initially configured to handle these infeasibilities. This had the result that if several

consecutive hours did not meet their targets early on in the optimization process there

was a cascading effect throughout the rest of the simulation period.

Even with reliability constraints on the stochastic optimization, there is a chance

that due to forecast error the bids may be unattainable in the operational optimiza-

tion. A method of constraint relaxation was applied on bid requirements for these

scenarios to avoid infeasibilities and examine the entire week-long period. There are

two particular points in which constraints can be problematic: meeting a specific bid

and meeting a specific storage level. The first step in addressing this problem of in-

feasibility was to scan the constraint vector within the operational optimization and

determine whether any of the bids were impossible for the storage to accommodate

based on the recent forecast wind speeds with reduced uncertainty. If they proved

to be impossible for the generator to meet in the operational stage of the model, the

constraints were relaxed to a feasible point. The consequences were missed energy

bids for those intervals.

For the robust case without reliability constraints, the constraints on meeting the

energy bid were completely removed from the operational stage of the optimization.

Generally it was the case that this constraint relaxation or removal would facilitate

feasible storage level constraints; however, the second stage was to scan the con-

straint vector for these violations, and, if necessary, relax the storage constraints. It

is important to note that physical constraints such as minimum/maximum generating

capacity and minimum/maximum/end storage levels remained firm. The end storage

level should also not be relaxed as it is set in advance by the stochastic energy gen-

eration schedule optimization stage. If it is lowered, it results in a lower storage level

for the start of the following day, which in turn cascades throughout the remainder

of the time period as expected.
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It is also important to realize that when the reliability constraints are removed,

the design space of the problem is considerably increased, and so computation times

for the basic problem and robust simulation were greatly increased. This limited the

number of simulations available to analyze due to time restrictions.

3.3.2 End Storage Levels

It was just mentioned that it was necessary to set the end storage level for the first

stage of the optimization. Ideally this would be a design variable; however, due

to the absence of day-out forecast data (from one hour ahead to 24-hours ahead),

this was not possible, so assumptions had to be made without adequate knowledge

of these hours. The only forecast data available were real-time, hour-ahead, and

day-ahead. Another option would have been to include the day-ahead forecast as a

day-out forecast; however, this would have been overly conservative since the accuracy

of a day-out should be better than that of a day-ahead forecast. Through manual

testing, it was determined that between 15-25% of the total storage capacity (or

approximately 5 hours of discharge capacity at the rated size of the generators) was

required to maintain feasibility for the reliability case. For the case study, forecast

data are available for day-out all the way to three day-ahead, so this will not present

the same issue and the end storage level will be included as a design variable. Overall

this assumption did not hurt this analysis since it is a comparison and conditions

were constant across each case; however, it is necessary to remove it for a realistic

case study analysis.

3.3.3 Computation Time and Optimizer Difficulties

A fundamental issue with stochastic programming is the required computational time.

The scenario reduction approach was one method of improving computation time

without entirely sacrificing accuracy. The next method explored was the configuration

of the design and state variables, which went through the following iterations:

1. Initially, the project was formed with a long variable vector containing energy

bids, energy in/out of the storage system, and storage levels for all scenarios.

This was extremely time consuming and it was not efficient to contain state

variables within the design vector.
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2. Next, all pumped storage variables were represented by storage levels, and the

energy consumed or generated would be the difference between the storage levels

at times t + 1 and t. This was somewhat of an indirect approach in the sense

that the income function had to do additional computations. This was more

efficient than the previous approach but it became clear that it was not the ideal

configuration in terms of reaching an optimal solution due to the cumbersome

nature of time-compounding computations. At this point analytic gradients

were also supplied to the optimizer which improved the simulation time as well.

3. The final and current approach was to represent the pumped storage variables

as energy pumped/generated at each time step. Storage levels are computed

within a constraint vector and stored as a global variable in order to perform

model validation afterward. This has proved to be the most efficient approach

to date. An interesting difference between approaches 2 and 3 is that when bids

are missed in the reliability case they are almost entirely outside of the allow-

able bandwidth. Approach 2 provided suboptimal bid selection but met those

bids within the allowable bandwidth over 95% of the time, whereas approach 3

provides a more optimal bid which is met 89% of the time. This is likely be-

cause more constraints are active in approach 3. Bids are also generally missed

within the last few hours of the day, so there is room for additional analysis

here. With the acquisition of 96-hour forecast data, this will be less of an issue

since data used in this comparison analysis are only for day ahead forecasting

errors, which is a considerable limitation.

With the current configuration, additional ways to improve the simulation time

have not been explored. However, if a considerably faster simulation is required,

perhaps for longer term results such as one year, this problem could be formulated

as a mixed-integer program, which would require linearization steps. Currently it

involves a nonlinear efficiency term, storage level term, and pricing scheme, in part

to avoid discontinuities and modelling difficulties associated with step functions. If

long-term results are required it is recommended to make this change and configure

for use with a program such as GAMS. Due to software availability at the time of

modelling and the project timeline this was not done.
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Chapter 4

Vancouver Island Case Study

This chapter presents the practical application of all previously discussed method-

ologies. A potential wind farm site on Vancouver Island is coupled with a nearby

potential pumped storage facility to analyse both its operational and economic feasi-

bility when compared to a standalone wind farm of the same size under the BC Hydro

Clean Power Call. A project description is included for both the wind energy and

pumped storage components in addition to the post-processing methodology and re-

sults for the NWP site data. Results of the RBDO and real-time operational dispatch

analysis of this project are then reported and discussed.

4.1 Project Description

The previous research led to the application to a site on Vancouver Island. Van-

couver Island was chosen because of the nature of the island’s grid within British

Columbia. Figure 4.1 shows the interconnection to the mainland transmission system

along with the location of electricity demand percentages. If Vancouver Island is to

see significant wind installations and rising electricity demand, there is a chance that

this connection could present a transmission bottleneck. Additionally, in the event

of a transmission failure at this linkage, wind energy on Vancouver Island may repre-

sent a disproportionately high percentage of generation, which can cause grid issues.

Pumped storage could potentially aid in regulation. Therefore, it might be desirable

for both IPPs on Vancouver Island and BC Hydro to investigate the coupling of wind

farms with storage in this location.
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Figure 4.1: Vancouver Island Transmission and Electricity Demand Locations (Image
used with permission from BC Hydro transmission website [53])
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4.1.1 Wind Resource

In 2009, DNV Global Energy Concepts prepared a study for BC Hydro for which the

goal was to:

‘. . . assess the characteristics of wind resources in regions of British Columbia

that are likely to experience significant wind energy development in the future.’

Simulated wind data were modelled based on measured wind data from both IPPs

and BC Hydro. BC Hydro agreed to provide the simulated wind resource data to

complete this study. Due to confidentiality reasons the specifics of the data cannot be

displayed in this thesis, although aggregated and qualitative results will be discussed.

VI05, a 255.3 MW site on northern Vancouver Island has been selected for this case

study. Its capacity factor is 26%1 with an average wind speed of 6.9 m/s [31]. Capital

cost is taken to be $2 million per MW installed based on an average from several

references [46],[52],[54]. Fixed operations and maintenance costs are taken to be 1%

of the capital costs [46], and variable costs are assumed to be negligible [55].

4.1.2 Pumped Storage Potential

The features of Google Earth are extremely useful when performing a high-level site

assessment of this kind. In this case, it was used to select a potential site on Northern

Vancouver Island at Lake-of-the-Mountains for the pumped storage facility. This was

then cross-referenced with the recent BC Hydro pumped storage evaluation report

[18], where this site had in fact been catalogued. The report provided a much higher

capacity (1000 MW) than required for this work but the site is still applicable2.

Natural inflows account for a very small (<1%) contribution to the levels in these

lakes, which is in line with the assumptions of the model. Unfortunately, although

geographically this site would be the most convenient as it is located right in the midst

of the major wind resource, economically the estimated capital costs are quite high. It

will be simulated along with another potentially more economical site at Woss Lake.

This site is farther away from the wind resource and therefore could potentially cause

transmission congestion issues and face higher interconnection and access costs which

are outside the scope of this thesis (i.e., not reaping the potential benefits of project

1This is based on the 255.3 MW rated power.
2The aim of the study was to assess large scale pumped storage in British Columbia and was not
related to wind integration.
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Figure 4.2: Vancouver Island Wind Sites (Image taken with permission from BC
Hydro Wind Data Study Public Report [31])
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Figure 4.3: Lake of the Mountains – Georgie and Woss 1 Pumped Storage Sitesa

(Image cropped from Knight Piésold Pumped Storage Report with permission from
BC Hydro [18])

aX represents no salmon present while a check mark indicates salmon species are present. Permitting
processes for lakes containing salmon species can be more difficult and fish screening requirements
can increase capital costs. These issues are not addressed in this report.
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Site Name Unit Cost of Capacity
($/MW)

Levelized Cost
($/kW-yr)

Georgie – Lake of the
Mountains*

2,757,740 168.3

Woss 1* 1,536,640 93.8

Nimpkish 2 1,760,535 107.5

North Bonanza 1,571,592 95.9

Upper Quinsam – Upper
Campbell

2,460,524 150.2

* These projects will be considered for the case study analysis

Table 4.1: Selection of Vancouver Island Pumped Storage Sites - Information adapted
from [18]

clustering); however, the site itself is much more economically viable. Initially this

transmission issue was within the scope of this study but this had to be removed due

to data availability, which is discussed in further sections. Table 4.1 displays several

other sites on Vancouver Island that were considered for this case study and their

associated costs [18]. Fixed operations and maintenance costs are taken to be $4.70

per kW installed and variable are $0.004 per kWh in or out of the facility [15].

Upon selection of the project sites, it was necessary to analyze the project data

from the 2009 BC Hydro Wind Data Study.

4.2 Numerical Weather Prediction Data

The following definitions will be used for the forecast terms and it is important to

distinguish between Day-Out and Day-Ahead as they are the primary forecasts used:

Day-Out 1-24 hours in advance

Day-Ahead 25-48 hours in advance

Two Day-Ahead 49-72 hours in advance

Three Day-Ahead 73-96 hours in advance
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Figure 4.4: Lake of the Mountains – Georgie Pumped Storage Site (Image taken from
Google Earth [56])
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The wind data are from a set of NWP simulations done for the BC Hydro Wind

Data Study. There is a set for ‘actual’ measured data and a set for day-out through

three day-ahead forecasts. Getting an NWP simulation to simulate perfectly the mea-

sured wind speeds is not always possible, and various corrections can be applied for

this. Upon analyzing the forecast error statistics of the raw data that were received,

the statistics turned out to be significantly different than the expected outcome. Since

the ‘actual’ measured data have been validated, they are assumed to be the correct

set upon which to base the NWP data. However, that the data had intentionally

not been post-processed to simulate real NWP results, so it was necessary to research

post-processing methods to correct for the bias present in the relevant set. The reason

a bias is undesirable in this situation is because the forecast will generally overesti-

mate or underestimate the wind speeds. This will result in continual discharge and

depletion of the storage device (ultimately, infeasible solutions) or underutilization

of the device resulting in overly conservative energy bids, respectively. It is therefore

required to have either a very small dataset bias or none at all.

4.2.1 Bias Correction of NWP Forecasts

As previously mentioned, it was assumed that the ‘actual’ simulated set was the

reference set to base the corrections off of, since the average wind speed was within a

reasonable range when compared to that in the Wind Data Study. On average there

was roughly a 7-8% wind speed overprediction bias present. Due to the nonlinear

power curve and the effect of the mean wind speed on turbine production3, this led to

an average wind power overprediction bias of between 13-16%, which would result in

simulation infeasibilities due to storage depletion. Realistically any IPP using NWP

software would be aware of the bias and would account for it, therefore bias correction

methodologies are required.

Best Easy Schematic

Since NWP forecasting is its own field of research that is largely outside the scope of

this thesis, a simple yet effective method of addressing this bias was desired. In Kay

et al. (2009), a method known as Best Easy Schematic (BES) was used to address

the bias over a 48-hour window. This window represents the observations of the past

3Siemens SWT-2.3-93 2.3 MW wind turbine
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48 hours at the point of making the prediction [57]. The BES parameter is calculated

as follows:

BES =
(Q1 + 2Q2 +Q3)

4
(4.1)

Here, Q1, Q2, and Q3 represent the first, second, and third quartiles of forecast

error over the past 48 hours, respectively. The BES parameter is then appropriately

summed with the forecast data to reduce the bias. This is a single prediction, and

double predictions can also be investigated but were not in this case. It was found

that when this was applied to the 1- to 24-hour prediction set it matched the mean

well but not the original standard deviation, so additional distribution points and

associated weightings were tested to improve this. This slightly modified method was

applied to the dataset, which worked relatively well for the 1- to 24-hour prediction

set, however did not prove to be effective for the datasets with larger prediction

horizons. For those datasets it was not possible to both reduce the bias and maintain

the same distribution shape. It was mentioned in [57] that future research was planned

to investigate longer prediction horizons, so this was not unexpected. Since it was

desired to find a single bias correction method for all datasets, other methods were

researched.

Model Output Statistics (MOS)

Upon beginning research of this field, the University Corporation for Atmospheric

Research (UCAR) Community Programs (UCP) were used. MetEd is an online mete-

orological teaching and training website. They have a specific seminar that addresses

bias correction in NWP model data which was very useful in providing background

information for the current analysis [42]. MOS is referred to as a statistical guidance

approach, and is used when there is a known systematic error in the NWP model,

or to provide a confidence interval for the forecast [58]. The primary components for

MOS development include a predictor (the forecast), a predictand (observations), and

statistical analysis. A very simple analysis would be to create a linear fit between the

predictor and predictand, but in practice it is generally done using multiple regres-

sion analysis using multiple predictors. The model forecast is then fed into the MOS

forecast to generate improved results. It was not realistic to derive MOS equations

considering the lack of both NWP model data (only wind speeds were provided while

the models can encompass entire weather systems) and background knowledge in this
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Prediction Horizon Mean NWP
Weighting

Mean Modified Per-
sistence Weighting

Mean Climatology
Weighting

Day-out 0.7190 0.1285 0.1094

Day-ahead 0.6887 0.1026 0.1601

Two Day-ahead 0.5985 0.1409 0.2210

Three Day-ahead 0.5074 0.1760 0.2846

Table 4.2: Mean Regression Coefficients for Bias Correction of NWP Data

area, however the concept of multiple regression analysis is a useful tool and knowing

it is used in industry justifies the following approach that was eventually selected.

Multiple Regression Bias Correction Approach

A multiple linear regression model was developed for each of the datasets in order

to remove the bias. The bias was addressed at the root source, the wind speeds, to

capture the issues with the transition from wind speed to wind power using the power

curve (e.g. nonlinear, case where wind speeds exceeds cut-out, etc.). The multiple

regression function in MATLAB R2011a was used. By removing the bias, the NMAE

is also improved since the average forecast error should theoretically lie at zero. Since

only one NWP predictor was provided in the data set for each forecast time horizon, it

was not possible to form the regression from several advanced predictors. Therefore,

a modified version of the persistence forecast was applied in which the previous day’s

average wind speed was used at the point of observation, in addition to the long term

climatology predictor of the global average wind speed for the site. These predictors

are described in detail in Chapter 2.

Please note that there are limitations to this method including compromising

forecast errors for very low levels of wind generation (due to the influence of the

persistence and climatology predictors). This was offset, however, by the improved

average and high wind generation forecast errors, and could potentially be remedied

by applying a nonlinear regression formula. Table 4.2 shows the mean regression

coefficients for each predictor, and the trend towards increased weighting on the

climatology predictor with increasing prediction horizon, as expected. The regression

coefficients were calculated based on the previous month of forecast errors at the

time of observation [59]. The result of this calculation is a better predictor. Pre- and

post-processing statistics are shown in Tables 4.3 and 4.4.
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Prediction
Horizon

Pre-Processing Statistics Post-Processing Statistics

Mean
(m/s)

Standard
Devi-
ation
(m/s)

MAE
(m/s)

Mean
(m/s)

Standard
Devi-
ation
(m/s)

MAE
(m/s)

Day-out 0.4428 2.0006 1.5597 -0.0047 1.8307 1.4204

Day-ahead 0.4978 2.1122 1.6338 -0.0050 1.8910 1.4632

Two Day-
ahead

0.4769 2.5116 1.9279 0.0076 2.2028 1.7181

Three
Day-ahead

0.5050 2.9220 2.2477 -0.0147 2.4902 1.9445

Table 4.3: Wind Speed Pre- and Post-Processing Statistics

Prediction
Horizon

Pre-Processing Statistics Post-Processing Statistics

Mean
(%)

Standard
Devi-
ation
(%)

NMAE Mean
(%)

Standard
Devi-
ation
(%)

NMAE

Day-out 0.1149 0.2039 0.1583 -0.0155 0.1570 0.1076

Day-ahead 0.1289 0.2131 0.1696 -0.0158 0.1621 0.1116

Two Day-
ahead

0.1157 0.2441 0.1841 -0.0224 0.1908 0.1341

Three
Day-ahead

0.1066 0.2807 0.2070 -0.0294 0.2158 0.1542

Table 4.4: Wind Power Pre- and Post-Processing Statisticsa

aThis is based on the raw spreadsheet power data that were provided with unknown assumptions.
Mean and mean absolute error values are generally a few percent less if the actual and forecasted
wind speed data are applied to the same power curve, but there is still a significant bias. Statistics
are available in Appendix E.4. The regression model improves both data sets.
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Net Income
(Million $CAD)1

EVPI (Million
$CAD)

VSS (Million
$CAD)

Wind Only 2.77 N/A N/A

Woss 1 – Deterministic Problem 2.15 1.43 0

Woss 1 – Reliable Problem 3.13 0.46 0.98

Georgie – Deterministic Problem 2.01 1.44 0

Georgie – Reliable Problem 2.95 0.49 0.94

1 $130/MWh for wind only (minus $10/MWh firming) and $140/MWh for comparison problems

Table 4.5: Case Study Results - One-Week Period

4.3 Case Study Results

The simulation was run for a period of one week based on wind speed data provided

by BC Hydro and the methods outlined in previous sections. The rated capacity of

the storage device was selected to meet 95% of the forecast error, as in the previous

section, which resulted in 95 MW. The wind farm capacity was 255 MW. The scenario

probability confidence interval for reliability constraints was set to 90% to meet 80%

bid satisfaction. The storage levels at the end of each bid period were determined

optimally by the optimizer, eliminating the assumption of 20% end storage level from

the previous section. This was enabled by the presence of a ‘day-out’ forecast that

was not available with the other data set.

It is important to note that this was a high wind week, with over a 60% capacity

factor for the time period examined, so the high income levels would not be expected

throughout the entire year. It was desired to test this period to see how the pumped

storage device performed in competitive wind conditions. In low wind scenarios,

wind during peak hours may be less and therefore the arbitrage capability of the

pumped storage would be desirable. The wind only BC Hydro Clean Power Call

base case was based on the wind energy generation over the week-long period and

the assumption that 85% was sold as firm energy and the remaining 15% was sold as

nonfirm energy under Option A4. The simulation was run once with rough tolerances,

and those results were fed into a second run of the simulation with finer tolerances

to further improve results. The pumped storage facility is shown to be economically

attractive compared to the standalone wind farm at an energy price of $130/MWh

at the Woss 1 site and $140/MWh at the Lake-of-the-Mountains site. The Lake

4This is based on the SOP guidelines from the 2008 BC Hydro LTAP Appendix 12[60]
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Figure 4.6: Woss 1 Discount Rate and Energy Price Sensitivity Analysis

of the Mountains / Georgie Lake site did not exceed the income of the standalone

wind farm due to its high capital cost. The costs shown are levelized for a net-

zero change in storage level (i.e. income is not from storage reservoir depletion). It

is shown that there is significant room for economic improvement with increasing

forecast accuracy, equating to roughly $50,000 per % accuracy improvement for the

time period examined. Figure 4.6 is a sensitivity analysis based on the discount rate

applied to the project for capital recovery, with typical daily income levels reflecting

the 26% capacity factor of the project.

Figure 4.7 displays the operation of the facility for one day within the week period.

Figure 4.8 displays the scenarios that were considered, the bid selected, and the actual

wind generation for that same day. The model was validated by replicating results

successfully by applying the governing equations, which for this problem is a simple

procedure.

Overall, this analysis shows that for sites with a reasonable capital cost, the benefit

of pumped storage addition may prove to be attractive for IPPs. This is heavily

contingent on the policy direction of the provincial utility, however, and if a project

such as this were to be considered discussion would be required.
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Figure 4.7: Case Study Facility Operation – Day 7

Figure 4.8: Case Study Scenario Plot – Day 7
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Chapter 5

Conclusions

Upon completing the work presented in previous chapters, several areas for potential

improvement and expansion became apparent that were not within the scope of this

thesis. These areas for future work will be discussed in this chapter in addition to

the overall summary and contributions of this thesis.

5.1 Options for Future Work

In terms of the simulation, several recommendations can be made. Stochastic opti-

mization is inherently a time consuming programming approach. To further validate

the sizing of the pumped storage system that was done based on the aforementioned

analysis of forecast error distributions, it is recommended to run a simplified determin-

istic mixed-integer optimization in software such as GAMS, to allow for the analysis

of an entire year. Due to software limitations at the time of the thesis and the number

of variables required this was not done. The reason for testing this further is that

although the current sizing does account for the amount required to meet forecast

errors (i.e. it is conservative); however, it does not explore the potential benefits to

installing additional storage capacity past the minimum requirements. It is therefore

currently unknown how additional storage capacity would perform long-term.

It is also recommended to potentially explore the possibility of employing a global

solver. There were issues with infeasibility throughout this process based on initial

conditions. Since there is a random error component to this simulation it was not

always possible to anticipate these problems for different testing conditions, and so

built-in constraint relaxation methods previously discussed were occasionally required
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to maintain feasibility. Once a feasible region was found, the optimization was run

with rough tolerances to reach a feasible and optimal solution based on these toler-

ances. These results were then fed into a second run of the stochastic optimization

in which finer resolution tolerances were used. This was also time consuming and it

is not known whether a global optimization could improve either the results or the

required simulation time.

In terms of the wind forecasts, it would be desirable to acquire data that was

professionally post-processed using MOS methods to be completely representative of

a real wind forecast. Once the BC Hydro data were acquired, the simulation perfor-

mance was considerably improved; however, manual correction was still required. It is

shown that this manual correction significantly improved the forecast error statistics.

It is not known how this would compare to industry standard correction, which is out

of the scope of the thesis.

The case study itself is a high-level feasibility analysis, and for more in depth

study it would be required to examine a longer time period of operation, assess

the site-specific interconnection costs1, and assess electricity grid impacts. It would

also be recommended to investigate equipment degradation through increased cycling

(pumping to generation and vice versa) and its effect on the lifetime of the facility

and net income when compared to a limited cycle facility. This is only recommended

if there happened to be significant interest in such a project. For that level of analysis

policy discussions with BC Hydro would be required, as the assumptions in this work

are hypothetical and loosely-based on current provincial policy.

5.2 Summary and Contributions

This thesis aims to address the question of the feasibility of pumped storage within

British Columbia, and how it may be used to offset wind variability. This problem has

not previously been addressed in the open literature from the perspective of an inde-

pendent investor in British Columbia. There are many ways to address this problem,

and the approach taken in this work was to assess the feasibility of the joint opera-

tion of a wind farm and pumped storage facility in satisfying optimally-determined

day-ahead generating schedules. The argument for this is since the pumped storage

1This would likely require a site visit as digital elevation models (DEMs) available with geographic
information systems (GIS) software may not have the necessary resolution to accurately assess the
terrain
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facility requires intensive capital investment, it requires extra income to account for

this, and arbitrage itself would most likely not suffice. Day-ahead generating sched-

ules with an 80% reliability, as required by the BC Hydro Clean Power Call, may

justify a slightly higher energy price to recoup the additional capital requirements.

To regulate and form these day-ahead bids, a theoretical policy and pricing scheme

was developed.

By extending the work of Mello et al. (2011) and Dupaçova et al. (2003),

a location-specific and probability-weighted wind forecast error generator and sce-

nario selector was developed. Various optimization approaches (EV, RDO, RBDO,

R2BDO) were compared in order to address the uncertainty component of wind fore-

casts within the optimizer. Reliability-based design optimization proved to be the

best-suited method, and it was applied to a case study on Vancouver Island.

To run the optimization, case study wind speed data, including NWP forecasts,

were provided by BC Hydro. Since NWP forecasts often include systematic bias,

correction was required, and a multiple linear regression model was developed. The

predictors included the NWP forecast, moving-average persistence, and climatology.

It was shown that for day-out time horizons the NWP forecast had the primary

weighting, but for time horizons three days ahead, the long-term climatology method

began to receive higher weightings, as expected. The model was successful in almost

entirely eliminating the bias and improving the overall NMAE of the forecast without

requiring professional software.

An aspect of pumped storage that is often questioned is the capital cost, and it was

shown that for high capital costs, pumped storage will not compete with a standalone

wind farm under the current BC Hydro Clean Power Call. However, for a competitive

site with a capital cost of $1.53 million/MW installed, preliminary results show it to

be economically attractive at an energy price of $130/MWh, which is comparable to

the Clean Power Call average EPA firm energy price. If, due to rising demand, the

ability of BC Hydro dams to absorb wind variability is affected, this type of project

may be even more attractive. This report is a high-level feasibility analysis, and as

previously mentioned, if this is to be considered further a more detailed analysis would

be required. Ultimately, a testing tool was developed which facilitates the generation

of optimal day-ahead generation schedules for a wind farm coupled with a pumped

storage facility and successfully tests the operational feasibility of these schedules.

This model is easily modified and built upon. Recommendations for future work

have been provided, and it is important to note that the policy direction chosen is
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a very relevant factor. As the province moves towards energy self-sufficiency and

renewable energy development in upcoming years, the option of pumped storage in

British Columbia could prove to be promising for future renewable energy investors.
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Appendix A

Wind Forecast Error Generator

Based on Equation 2.4, also shown again below for reference, the regression coefficients

were calculated by the unconstrained optimization for each optimized forecast set,

where e is the standard deviation of the random error distribution. A modified

version of fminsearch was used for the optimization. The day-out forecast had a high

random error significance when compared to the other terms, which may be partially

because it had no reference time series. Overall the statistics of the distributions

matched well considering it is a weighted regression approach.

X(t) = aX(t− 1) + bY (t) + ce(t) + d t = 1, ..., T

a b c d e

Day-Out 0.8994 0 0.2407 -0.0019 .2674

Day-Ahead 0.7333 0.3181 0.0954 -0.0003 0.3285

Two Day-Ahead -0.1919 1.0063 0.0346 -0.0084 0.4071

Three Day-Ahead 0.4040 .8158 1.6090 0.0012 0.0578

Table A.1: Forecast Regression Coefficients
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Mean Standard De-
viation

Auto-
correlation

Cross-
correlation

Day-Out -0.0155 / -0.0102 0.1570 / 0.1477 0.9682 / 0.9064 0 / 0

Day-Ahead -0.0158 / -0.0156 0.1621 / 0.1600 0.9701 / 0.9724 0.8712 / 0.7896

Two Day-Ahead -0.0224 / -0.0224 0.1908 / 0.1367 0.9686 / 0.9570 0.8221 / 0.9749

Three Day-Ahead -0.0294 / -0.0291 0.2158 / 0.2108 0.9686 / 0.8611 0.7590 / 0.8312

Table A.2: Forecast Regression Statistics – Data Listed as Desired / Achieved
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Appendix B

Environment Canada Wind Data

Details

The National Climate Data and Information Archive with Environment Canada main-

tains a climate database for select locations in British Columbia [61]. Data are avail-

able for download from various stations across the country. Depending on the location,

data may be available up to the resolution of hourly measurements. Since no other

data were available at the time of modelling, 30 years of historical hourly climate

data were downloaded for Victoria, BC. Wind direction was not taken into account.

This data had to be adjusted from the measurement height of 25.6 metres in order

to reach the height of the wind turbine hub at 80 metres using the following common

formula:

u80 = u25.6
z80
z25.6

αatm

(B.1)

where u represents wind speed, z represents height, and αatm represents the Hell-

man exponent, taken to be 0.140. This depends on the atmospheric stability, the

surrounding terrain, and the coastal location.

Since the resulting wind speed was not viable for a wind farm, the data set was

multiplied by a factor of 1.5 to reach an acceptable annual capacity factor. These data

are not used for the case study and only for comparison purposes in the methodology

section, so this assumption is not damaging to the final results. The importance of

the intermediate results in the methodology section is the performance of various

approaches relative to each other.
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Appendix C

Wind State Details

C.1 Wind State Definitions

The following table outlines the definition of wind speed states from 1 through 5 and

the associated wind speed and wind power output ranges. The qualitative state value

column is used in order to compose the scenario state transition trees shown in the

body of the report. They provide an idea of the level of wind resource throughout

the day for each scenario – for example a scenario tree tending downwards overall

is a below average wind day. These qualitative state values are cumulatively added

together for each time step in each individual scenario to visually describe the wind

power output throughout that particular day. It also allows for visual inspection of

the diversity of the scenario set being examined.

Wind
State

Wind Speeds
(m/s)

Power Output
(kW per tur-
bine)

Qualitative State
Value (Mean-
Averaged)

1 <4 or >28 0-100 -2

2 <5 and >4 100-200 -1

3 <7.5 and >5 200-800 0

4 <10 and >7.5 800-1650 1

5 <28 and >10 1650-2300 2

Table C.1: Wind State Definitions for Siemens 2.3 WM Turbine
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C.2 Probability Transition Matrix Examples

By cataloguing historical data it is possible to determine the probability that a wind

speed will transition directly to any other wind state at the next time step. This

can also be done for a state transition with a different time horizon, for example the

wind state 2 hours from observation, or 24-hours from observation. The correlation

relationship with respect to the time horizon is shown in the body of the text in

Figure 2.7.

Scenario probabilities are calculated by calculating the state transition probabili-

ties at each time interval within a 24 hour window (a larger window is not used due to

increasing forecast uncertainty). The probabilities are calculated via state transition

probabilities from one hour to the next (similar to a Markov chain) as opposed to cal-

culating all probabilities based on the current observation. Example state transition

matrices for a one hour-ahead relationship are shown below in Table C.2, which shows

the clear correlation of wind states at small time horizons in the diagonally dominant

probabilities. Table C.3 shows the more distributed range of probabilities throughout

the wind states for 24 hours from the time of observation. This was not calculated

using time of day or seasonal probabilities, and could be extended to address these

factors.

Probability at Time t+ 1

State 1 State 2 State 3 State 4 State 5

Time t

State 1 0.9028 0.0926 0.0046 0 0
State 2 0.1729 0.6442 0.1826 0.0003 0
State 3 0.0028 0.0760 0.8565 0.0641 0.0006
State 4 0 0 0.1038 0.8486 0.0476
Stage 5 0 0 0.0011 0.1352 0.8637

Table C.2: Sample Probability Transition Matrix for t and t+ 1

Probability at Time t+ 24

State 1 State 2 State 3 State 4 State 5

Time t

State 1 0.3837 0.1553 0.2942 0.1298 0.0371
State 2 0.3265 0.1691 0.2947 0.1508 0.0589
State 3 0.2257 0.1319 0.3486 0.2044 0.0894
State 4 0.1397 0.1035 0.3357 0.2727 0.1484
Stage 5 0.0802 0.0887 0.3218 0.2961 0.2133

Table C.3: Sample Probability Transition Matrix for t and t+ 24
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Appendix D

Methodology Comparison Details

D.1 Reference Plots of Wind Generation Scenar-

ios

This appendix includes results from a sample day within the methodology comparison

to be used as reference. In particular, it is useful to graphically view the energy bids

with respect to forecasted and actual wind generation to verify that the model is

operating within reasonable bounds of the forecasted scenarios. Note that for this

comparison study, the simulation tolerances were not refined as they were in the case

study due to computational requirements, since this would not change the results of

the methodology comparison.
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Figure D.1: Scenario Plot - Deterministic Case

Figure D.2: Scenario Plot - Robust Case
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Figure D.3: Scenario Plot - Robust-Reliable Case

Figure D.4: Scenario Plot - Reliability Case
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D.2 Operational Figures

Figure D.5: Sample Day 5 Operation - Deterministic Case

Figure D.6: Sample Day 5 Operation - Robust Case
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Figure D.7: Sample Day 5 Operation - Robust-Reliable Case

Figure D.8: Sample Day 5 Operation - Reliability Case
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D.3 Product of Scenario Probabilities and Net In-

come Histograms

Figure D.9: Probability-Income Product Histogram – Robust Problem
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Figure D.10: Probability-Income Product Histogram – Robust-Reliable Problem (σ)

Figure D.11: Probability-Income Product Histogram – Robust-Reliable Problem (σ2)



89

Figure D.12: Probability-Income Product Histogram – Reliable Problem
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Appendix E

NWP Wind Data Processing

This appendix graphically and numerically summarizes the results of the multiple lin-

ear regression data transformation on the wind forecast error distributions for both

wind speeds and wind power. The bias is not entirely removed and is actually slightly

negative (indicating underprediction) but this is conservative and will not cause in-

feasibilities in the optimizer. Ideally this data would have been professionally post-

processed but this technique provides sufficient results for these purposes.

One issue with the dataset that was received was that the ‘actual’ and ‘forecasted’

wind speeds were not put through the same power calculation, despite the fact there

was a noticeable wind speed bias. The forecast statistics provided in the body of this

thesis are for the raw data that was received versus the improved regression set of

forecast data. To lessen the error by one degree both sets were manually put through

the Siemens 2.3 MW wind turbine power curve. Overall the bias is less severe once

this is done, however note that the distribution of forecast errors is still noticeably

skewed towards overprediction. Even a small tendency towards this is detrimental to a

feasible model solution. While ideally there would be zero bias this was not possible to

achieve. The results from the regression model tend slightly towards underprediction

(this error is exacerbated when transformed from wind speeds to wind power). That

is not an issue for the model and represents a conservative solution.

The figures and tables in this appendix indicate the improvement presented by the

regression model when compared to this manually calculated power data set based

on forecasted wind speeds.
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E.1 Wind Speed Forecast Error Distributions

Figure E.1: Day-Out Wind Speed Forecast Error Distribution

Figure E.2: Day-Ahead Wind Speed Forecast Error Distribution
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Figure E.3: Two Day-Ahead Wind Speed Forecast Error Distribution

Figure E.4: Three Day-Ahead Wind Speed Forecast Error Distribution
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E.2 Wind Power Forecast Error Distributions

Figure E.5: Day-Out Wind Power Forecast Error Distribution

Figure E.6: Day-Ahead Wind Power Forecast Error Distribution
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Figure E.7: Two Day-Ahead Wind Power Forecast Error Distribution

Figure E.8: Three Day-Ahead Wind Power Forecast Error Distribution
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E.3 Wind Speed Scatter Plots

Please note that Figures E.9 and E.10 are shown qualitatively due to confidentiality

reasons. The scales for each graph are identical, which shows a noticeable improve-

ment in the corrected set for both in the bias (y-axis offset) and deviation from the

actual wind speeds (represented by a tighter scatter plot).

Figure E.9: Actual vs. Day-Out Wind Speed Forecast Pre-Processing

Figure E.10: Actual vs. Day-Out Wind Speed Forecast Post-Processing
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E.4 Wind Power Forecast Error Statistics Sum-

mary

Prediction
Horizon

Pre-Processing Statistics Post-Processing Statistics

Mean
(%)

Standard
Devi-
ation
(%)

NMAE Mean
(%)

Standard
Devi-
ation
(%)

NMAE

Day-out 0.0341 0.1710 0.1167 -0.0155 0.1570 0.1076

Day-ahead 0.0427 0.1779 0.1224 -0.0158 0.1621 0.1116

Two Day-
ahead

0.0391 0.2156 0.1481 -0.0224 0.1908 0.1341

Three
Day-ahead

0.0413 0.2483 0.1737 -0.0294 0.2158 0.1542

Table E.1: Wind Power Pre- and Post-Processing Statistics (Manual Power Calcula-
tions)
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