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Demand participation is a basic ingredient of the next generation of power exchanges in 

electricity markets. A key challenge in implementing demand response stems from 

establishing reliable market frameworks so that purchasers can estimate the demand 

correctly, buy as economically as possible and have the means of hedging the risk of lack 

of supply. System operators also need ways of estimating responsive load behaviour to 

reliably operate the grid. In this context, two aspects of demand response are addressed in 

this study: scheduling and baseline estimation.  The thesis presents a market clearing 

algorithm including demand side reserves in a two-stage stochastic optimization 

framework to account for wind power production uncertainty. The results confirm that 

enabling the load to provide reserve can potentially benefit consumers by reducing 

electricity price, while facilitating a higher share of renewable energy sources in the power 

system. Two novel methods, Bayesian Linear regression and Kernel adaptive filtering, are 

proposed for baseline load forecasting in the second part of the study. The former method 

provides an integrated solution for prediction with full accounting for uncertainty while the 

latter provides an online sequential learning algorithm that is useful for short term 

forecasting.  
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Chapter 1: Introduction 

 

The electricity market can be divided into two different types: the spot market, where 

the electrical energy and ancillary services are traded for immediate physical delivery, and 

the futures market, where the delivery is later and normally does not involve physical 

delivery. The futures market is normally used for risk hedging.  Ancillary services are 

functions separated from the electrical energy market, which is used to support reliability 

and power quality of the power system. One example is the power system reserves. 

Coexisting with the electricity market, there are also bilateral contracts that the market 

agents are free to trade. These contracts are normally used to guarantee a certain amount 

of electrical energy for the demand-side, or to guarantee a certain profit for the supply-side, 

or used as a risk hedging mechanism. Figure 1 depicts the general time frame of an 

electricity market.  

 

Figure 1. Structure of the electricity market (E: Electrical energy; AS: Ancillary services) 

In a typical US market, Independent System Operator (ISO) performs functions of 

system optimization and market operation control in a competitive power pool. ISO is 

independent and does not own generation nor transmission or distribution. It makes sure 

that market information is facilitated to all parties on a non-discriminatory basis.  

Today’s electric grid is evolving into a “Smart Grid” where computing and 

communication technology allow assets at all levels of the system to be monitored and 

controlled. Furthermore, deregulation of the power system has led to competition among 
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generation companies (GENCOs), transmission owners (TRANSCOs) and distribution 

companies (DISCOs). These entities are developing innovative smart grid strategies to 

improve their reliability and profit. On the other hand, renewable energy resources 

especially wind and solar power is expected to serve increasing shares of energy 

requirements in the near future as production costs continue to drop. In fact, renewable 

energy accounted for almost two-thirds of new U.S. electrical generation put into service 

during 2015 according to the Federal Energy Regulatory Commission (FERC) [1]. These 

intermittent resources not only are intrinsically incapable of providing load following but 

also contribute to increasing imbalances due to forecast uncertainty.   

In the Smart Grid along with the increasing share of intermittent sources in the supply 

chain, end-users are expected to play an active role in grid management via Demand 

Response (DR). Demand Response (DR) refers to end-use customers reducing their use of 

electricity in response to power grid needs, economic signals from a competitive wholesale 

market or special retail rates [2]. DR is defined by the US Department of Energy (DOE) as 

“a tariff or program established to motivate changes in electric use by end-use customers 

in response to changes in the price of electricity over time, or to give incentive payments 

designed to induce lower electricity use at times of high market prices or when grid 

reliability is jeopardized” [3]. 

DR potentially reduce energy generation in peak times (reduce the cost of energy and 

possibly emissions depends on the electricity mix). Hence, investment in peaking units can 

be avoided. Furthermore, Power system frequency quite often deviates from the nominal 

value due to supply-demand imbalances. Reserve power is required to deal with this 

problem but stand-by power reserve supplied by generating units is expensive. To resolve 

this issue, demand side can be used as an ancillary service provider for reserve and 

regulation. The benefits are more steady frequency, reduce capacity reserve requirements 

or increase the reliability of supply, low-cost reserve for daily operation/critical situations 

and increase penetration level of intermittent renewable resources. 

In transmission and distribution, DR can be used to relieve congestion, manage 

contingencies or avoid outages, reduce overall losses and facilitate technical operation (i.e. 

keep frequency and voltage levels, balance active and reactive power, control power factor, 
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phase imbalance correction, etc.). Hence, utilities are able to defer investment in network 

reinforcement and increase long-term network reliability. From a demand perspective, DR 

makes consumers more aware of their cost and consumption. Therefore, consumers have 

options to maximize their utility by trading-off price with flexibility, thereby reducing 

electricity bills or receiving payments. Price volatility reduction and increased demand 

elasticity are other DR advantages from the retail viewpoint. [4].   

Considering recent developments in real time telemetry, DR has been shifted from load 

curtailment to demand dispatch. In order to contribute services that support the operation 

of the grid, demand dispatch needs to be used actively at all times. Real-time DR will 

improve security and reduce reserves by dynamically adapting loads to available 

generation. The results from demonstration projects like [5], [6] showed that there are no 

technical barriers in the way of large-scale integration of automated technologies for DR.  

In order to make DR compatible with the electricity market framework, an aggregating 

entity in the command and contracting architecture should be included. The presence of 

the aggregator provides the ISO with considerable flexibility in the scheduling of units. 

Thus, the start-up of cycling and peaking units may be delayed or avoided; the availability 

of reserves is improved and during off-peak and the need for the reserve is reduced [7].  A 

load aggregator (LA) is capable of bundling loads to form a single controllable power 

resource. It is responsible for ensuring requested power response is provided and all 

mechanical and process constraints are respected to avoid equipment damage and fatigue. 

LA interfaces with the ISO on supply-side and the DISCOs or loads directly on demand-

side as shown in Figure 2. Moreover, the LA can manage the contract size to maintain 

industry standard reliability over the course of each hour with any time resolution depends 

on the required service [8].  

 

Figure 2. Load aggregator interactions in electricity market 
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Load aggregation is intrinsically more reliable than the decentralized control where the 

reliability is entirely dependent on the uncontrolled behavior of the end-use customers. The 

main goal of an aggregator is to maximize the payment from grid operator by providing 

DR products for capacity, energy or ancillary services. Ancillary services offered by 

aggregator include regulation, contingency reserve, renewable firming, peak demand 

management, fast DR and voltage management (Volt/VAR optimization). Regulation is a 

variable amount of generation power under automatic control which is independent of 

economic cost signals and is dispatchable within five minutes. Reserves are additional 

generation capacity above the expected load. Contingency (primary) reserve, including 

synchronized and off-line reserve is obtainable within 10 minutes, while the secondary 

reserve is obtainable within 10-30 minutes following the ISO request [12].  

Renewable firming is a service to compensate for the variable output from a renewable 

power source and maintain a committed power level for a period of time. Peak shaving 

reduces peak demand to avoid the installation of capacity to supply the peaks of a highly 

variable load that is only called on infrequently.  Fast DR is designed to reduce electricity 

demand in near real time in response to grid changes when generation is not sufficient to 

meet peak load, or to handle sudden drops in the wind or solar generation. Voltage 

management controls voltage magnitude and phase angle at key locations through the 

distribution system. This minimizes the impact of intermittency on the utility, reduces 

voltage violations, reduces tap changer operations, minimize reactive power flow and 

reduces distribution line loss.  

Loads participating in a DR program must be capable of deferring their operation with 

minimal impact on customer comfort. Energy-constrained storage like batteries exhibit 

significant promise, especially with increasing share of Plug-in Electric Vehicles (PEVs). 

Moreover, thermostatically controlled loads (TCLs) including refrigerators, heat pumps, 

air conditioners, hot water heaters, chilled water loops and cold storage facilities are perfect 

candidates as they are capable of storing thermal energy. A general overview of a load that 

can work in a DR environment is shown in Figure 3. For each controllable device, there 

might be an associated input/output storage. The important thing is the capability of 

modulating device power consumption such that storage constraints are not violated.  
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Figure 3. Typical load model capable of demand response 

For ancillary services, the aggregator should provide as much power capacity as possible 

whenever the service is requested by the grid. Revenue of the aggregator could be 

maximized by performing forecasting and optimization so that each load remains idle 

whenever the ancillary service price is high. Therefore, the actions of the loads can be 

optimized by the aggregator to maximize the revenue and eliminate load spikes while 

meeting load requirements.  

Based on the market structure mentioned earlier, LA participates in the competitive 

electricity pool consists of two successive markets: a day-ahead market and a real-time 

balancing market. Let us assume LA bids in the day-ahead market for energy and 

regulation. Deviations from scheduled nominal set point are within the regulation limits. 

In real-time, aggregator monitors and controls the operation of each asset. Regulation 

services are shifting to loads where the nominal power level is set at a negative value to 

provide power. Regulation power consists of down/up-regulation. Down regulation 

representing an increase in consumption. To provide up regulation, LA decreases the 

consumption power of loads.  

Regulation services are contracted by the ISO/RTO on an hourly basis as needed 

throughout the day. The actual dispatch of the contracted regulation is normally a few 

minutes in one direction (up or down) at a time. Payment is typically made for the 

contracted amount of capacity for a given hour ($/MW per hour) as well as energy 

delivered. This price is set hourly through the market clearing process. The aggregator is 

assumed to be price-taker. Although the large-scale integration of loads in future will affect 

market prices but eventually it leads to stable electricity prices at a high penetration level.   
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1. Types of DR programs 

In terms of DR control paradigms, following approaches are currently being practiced: 

 Direct Load Control: where aggregator controls load. It is versatile, fast and better for 

power system and requires minimal attention form load perspective since a centralized 

controller broadcast control signals. 

 Indirect Load Control: where load operators (e.g. end point consumers) controls load 

in response to a control signal for example price. It is less reliable and implausible for 

fast services. It might induce volatility but consumers can choose degree of 

involvement. Since it is a self-organizing price-based mechanism, it is effectively a 

distributed control scheme.  

Based on this, DR programs generally can be categorized into two main groups as shown 

in Figure 4. 

 

Figure 4. Hierarchy of DR programs 

1.1. Non-dispatchable Demand Response Programs (Market-based DRP) 

Typically involve changes in customer load in response to prices, whether fixed or 

dynamic. TOU and CPP are two forms of the pre-defined fixed market-based DR that have 

been employed by utilities for peak demand management. Recently with advances in real-

time telemetry, RTP is getting more attention both in academia and industry. The results 

from the Olympic Peninsula demonstration project [28] and American Electrical Power 

gridSMART project [29] showed that customers are willing and able to respond to real-

time energy pricing information. In [28], DR saved consumers money on power and 
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reduced peak load by approximately %15 over the course of one year. Overall, reduction 

both in household energy consumption and wholesale energy cost is achievable via real-

time pricing. Furthermore, construction of new generation, transmission and distribution 

system can be avoided; with the saving passed along to end-use customers. The key factor 

in RTP is price elasticity of responsive electrical demand (𝜂) defined as the fractional 

change in demand (𝑞) to a given fractional change in price (𝑝) [30]: 

𝜂 =

Δ𝑞
𝑞⁄

Δ𝑝
𝑝⁄
=
𝑝

𝑞

Δ𝑞

Δ𝑝
 

Consider the supply and demand curve in Fig.3. In a typical power pool, the market clearing 

price (MCP) is established as the intersection of the supply curve (constructed from 

aggregated supply bids) and the demand curve (constructed from stacked supply bids). As 

it is shown in Figure 5 (top figure) the cleared market price and quantity are transmitted to 

price responsive devices in an uncongested situation.  

During congestion, the cleared price will increase and the cleared quantity equals the feeder 

capacity. As a result, the bidding equipment is dynamically encouraged to curtail 

operations and mitigate congestion limits. The congestion surplus is shown in Figure 

5(bottom figure) is rebated back to the consumers who were flexible to price changes; thus, 

removing the unfair burden of charging price-responsive customers more. Though RTP 

programs are very appealing due to low communication requirements and private settings, 

the problem of defining appropriate price signals in order to have efficient and secure grid 

operation is still a subject of heated debate and research.  
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Figure 5. A two-settlement electricity market [29] 
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1.2. Dispatchable Demand Response Programs 

Typically involve customer commitments to modify loads within prior agreed-upon 

constraints when needed by ISO (either for capacity, energy or ancillary services) and 

treated much like generation as they are achievable, reliable and capable of responding 

within ISO/RTO time guidelines. Interruptible Load Management (ILM) and Direct Load 

Control (DLC) programs have been practiced since the 1970s for peak load management 

to manage emergency situations. Controlling large industrial/commercial units through 

ILM and residential TCLs through DLC have been addressed before [4].  

Load participation in the wholesale electricity market is another way to achieve DR and is 

getting more attention from utilities and ISOs. In demand/capacity bidding programs, load 

aggregator offers demand reductions via price/quantity bids into energy and capacity 

markets like DADR and EDR programs in NYISO mentioned earlier. If their bids are 

accepted they must provide demand reductions at specified times for a specific duration. 

In some cases, loads can also participate in ancillary services markets like NYISO’s 

DSASP. 

These programs ensure reliable grid operation but suffer from end-users’ hesitation due to 

privacy concerns and high computational and communication requirements.  

 

2. Motivation 

2.1. Main Contributions 

With a high penetration level of renewable generation, measures have to be considered 

to take into account the uncertain nature of these resources. DR is expected to play a major 

role to mitigate the major shortcoming of harvesting power from the wind: the variability 

challenge [31], [32]. The motivation for chapter 3 is to investigate the effect of enabling 

loads to participate in the electricity market clearing process in a stochastic framework.   

Furthermore, regardless of the type of DR program employed (dispatchable vs. non‐

dispatchable), all require analysis to estimate the demand reduction. Baseline models are 

used for a variety of purposes including DR measurement and verification (M&V), 

improving DR program design, and operation and financial settlement for DR participants. 

Therefore, it is in the best interest of the utilities, LAs, and end-users to have as accurate a 

baseline estimation as possible. Measuring DR performance is of utmost concern for policy 
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makers and DR program designers, as mentioned in the FERC report that “development of 

standardized practices for quantifying demand reductions would greatly improve the ability 

of system operators to rely on demand response programs” and is “central to the issue of 

measurement is a determination of the customer baseline” [33]. This is a challenge due to 

limited communication, complex inputs such as weather and uncertain end-use behavior. 

Chapters 4 and 5 are proposing new online techniques that both utilities and aggregators 

can use for baseline load forecasting. Chapter 4 introduces the idea of using a recursive 

Bayesian linear regression approach. Chapter 5 continues the topic of on-line baseline load 

forecasting using the nonlinear filtering technique. 

2.2 Thesis Structure 

This thesis proceeds as follows: Chapter 2 provides an overview of existing demand 

response programs in Europe and U.S. Stochastic unit commitment with demand response 

scheduling is addressed in chapter 3. In chapter 4, a multiple linear regression model is 

used in a Bayesian framework to forecast load baseline. Bayesian method offers an 

integrated approach to inference with a full accounting for uncertainty. In Chapter 5, Kernel 

adaptive filters are introduced as a new method for short-term baseline analysis. Chapter 6 

concludes the thesis, providing a summary of key findings and recommendations for future 

work.  
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Chapter 2: Demand Response Programs 

 

Incorporating demand response in the power market has been an active research topic in 

recent years. A number of grid operation governance policies have been aimed at 

encouraging DR participation in the power markets. ISOs and utilities around the world 

have already realized the benefits of relying on DR for ancillary services provision. The 

success of enabling demand response capable customers to bid into capacity markets has 

led systems to open up their energy, capacity, and ancillary service markets to entities 

providing load control [9-13].  

1. DR programs in Europe 

DR programs in Europe is used to be mainly interruptible tariffs to promote participation 

by large industrial consumers and time-of-use tariffs for small consumers [14]. However, 

with the development of Smart Grid this situation is changing in Europe [15]. For example, 

the TSO of Norway (Statnett) is acquiring DR through market bidding, mainly focused on 

end-users and independent aggregators [16]. Denmark’s TSO (Energinet.dk), in order to 

promote the participation of small loads in the regulation power market, published a 

proposal in 2011 which outlines participation in the regulation market and self-regulation 

[17].  

TSOs in Germany call for a joint monthly tender to procure a fixed quantity (1500 MW as 

of now) of the interruptible load for measures to maintain network and system security. 

Interruptible loads are seen as large consumption units which are connected to the high and 

extra high voltage network. The Federal Network Agency defined new conditions for 

primary and secondary reserve providers in order to facilitate market participation for small 

generators, loads and storage [18], [19]. 

 The interruptible loads are categorized into two categories: immediately interruptible 

loads (SOL) and fast turn off loads (SNL). Loads can select any of the following options 

to serve under:  

 at least 15 minutes in each case at any time several times a day at any distance 

up to the duration of one hour per day at least four times a week 
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 at least four hours at a time at any time once every seven days 

 at least eight hours at a time at any time once every 14 days 

In Italy, the transmission system is mainly controlled by a single TSO [20]. TSO is assigned 

with the responsibility to procure the resources necessary to guarantee the balance of the 

power system and to release the intra-zonal congestions. These resources are procured 

through an Ancillary Service Market (MSD). The MSD is cleared through a pay as bid 

algorithm. TSO is the central counterparty which accepts bids/offers from market 

participants related to different reserve and balancing services. This market is further 

divided into two: 

Ex-ante MSD: In this market, TSO accepts energy demand bids and supply offers in order 

to relieve residual congestions and to create reserve margins. There are 4 different 

scheduling sub-stages. These consecutive sub-stages are instances before starting operation 

hour that TSO updates reserve requirements for the system. In spite of having 4 different 

scheduling sub-stages, there is only a single session for bid/offer submission that starts at 

12:55 p.m. of the day before the day of delivery and closes at 5.30 p.m. on the same day. 

The result of each of scheduling sub-stages is declared at the different point of times. 

Balancing Market (MB): In this market actual balancing take place. The TSO selects 

bids/offers in respect of groups of hours of the same day on which the related balancing 

session takes place. For now, there are 5 balancing sessions. The first session of the MB 

takes into consideration the valid bid/offers that participants have submitted in the previous 

ex-ante MSD session. For the other sessions of the MB, all the settings for bid/offer 

submission open at 10.30 p.m. of the day before the day of delivery (and anyway not before 

the results of the previous session of the ex-ante MSD are made known) and close 1 hour 

and a half before the first hour which may be negotiated in each session. TSO accepts 

energy demand bids and supply offers in order to provide its service of secondary control 

and to balance energy injections and withdrawals into/from the grid in real time. 

2. DR programs in U.S. 

Important regulatory decisions in U.S. paved the ground for DR resources participation 

in wholesale markets and increase the revenue they can generate. As a result, the number 
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of DR programs integrated into the electricity markets are increasing across the country. In 

June 2011, DOE and the Federal Energy Regulatory Commission (FERC) jointly submitted 

the Implementation Proposal for The National Action Plan on Demand Response report to 

Congress. In Ref. [21] the authors proposed a framework for evaluating the cost-

effectiveness of DR which was prepared for the national forum on the national action plan 

on DR. At the state level, at least 28 states require utilities to include demand-side resources 

in their resource planning for their future energy needs [22]. 

 FERC order 719 (2008) requires ISOs to accept bids from DR resources in their 

ancillary service markets. It enables DR resources to compete in the market on a basis 

comparable to other resources [23]. Market structure is very much still evolving to fully 

unleash the power of DR as evidenced by the debate around FERC Order 745 (2011). In 

this order, FERC set the compensation for DR at the locational marginal price (LMP) for 

the place and time the DR is offered [24]. It tried to establish uniform rules for customer 

engagement in U.S. electricity markets. However, US Court of Appeal in 2014 invalidated 

Order 745 by ruling that FERC does not have jurisdiction to federally regulate demand 

response as a tool of the wholesale bulk power market. The challengers also argue that 

demand response was, in essence, a retail sale and thus not subject to FERC’s jurisdiction. 

In October 2015, U.S. Supreme Court heard oral arguments over whether the FERC had 

jurisdiction to issue Order 745 and eventually approved the specific rules set in FERC 

Order 745 in January 2016 [25]. There is also this question that whether this Order 

effectively ensures double compensation for responsive loads providing DR. One possible 

approach could be implementing real-time retail pricing at the LMP to eliminate wholesale 

DR compensation. [26] 

In the restructured market of ERCOT, loads directly compete with generators in day-

ahead ancillary service market (load acting as a resource). Scheduled load resources 

receive capacity payment regardless of whether they are called. In January 2015, the 

ERCOT average demand response from load resources was around 1366 MW [9]. 

The NYISO has four demand response programs: 1) emergency demand response 

program (EDRP); 2) ICAP special case resources (SCR) program; 3) day ahead demand 

response program (DADRP); 4) demand side ancillary services program (DSASP). The 

EDRP and SCR programs are capacity programs in which load resources are curtailed in 
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energy shortage events in order to maintain a reliable system. The DADRP program allows 

load resources to bid into NYISO’s day-ahead energy market in a method similar to 

generators. Finally, the DSASP program allows load resources to provide load-following 

and regulation services. Capacity programs are still NYISO’s most popular product for 

demand response, followed by energy markets, and then ancillary services.  

As of July 31, 2014, a total of 1210.7 MW of demand response was enrolled in the 

NYISO’s EDRP and ICAP/SCR program. This corresponded to a 4.6% decrease from the 

MW enrolled in 2013 and represents 4.1% of the 2014 Summer Capability Period peak 

demand of 29,782 MW. During the analysis period of August 2013 through July 2014, 

there were no offers or schedules of DADRP resources. There are three demand side 

resources actively participating in the DSASP as providers of Operating Reserves. The 

resources represent 126.5 MW of capability and had an average performance of 154% 

during the analysis period of May 2014 through October 2014 [10]. 

Demand response is an integral part of PJM’s markets for energy, day-ahead reserve 

scheduling, capacity, synchronized reserve and regulation. Like NYISO, PJM allows load 

entities to participate in their capacity, energy, and ancillary service markets. Also like 

NYISO, demand response participation is almost an order of magnitude greater in PJM’s 

capacity market (8,683 MW) versus its energy market (1,727 MW).  

In 2015, the total demand reduction assuming full DR compliance and economic 

reductions is estimated to be 10,432 MW. But unlike NYISO, the load is an active 

participant in PJM’s ancillary service markets, particularly PJM’s synchronized reserve 

market that provides load-following services. In the first quarter of 2011, demand response 

provided on average 84,551 MWh of synchronized reserve service in PJM, which translates 

to an average demand response capacity of 118 MW while in the first month of 2015, DR 

provided an average synchronized reserve and regulation capacity of 335 MW and 12 MW 

respectively [11], [12]. 

The MISO demand response participation is also similar to NYISO and PJM. It allows 

demand response resources to participate in its capacity, energy, and ancillary service 

markets. But where MISO differs is that it has 17 MW of the load from an aluminum 

smelter providing regulation service, making it the only ISO or RTO to have a load entity 

providing flexible operating reserve service on timescales shorter than 10 minutes. Another 
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example is the demand response reserves pilot project from ISO-NE for load resources 

[13]. 

CAISO is working towards the development of full-fledged Demand Response products 

[27].  As of December 2015, CAISO has introduced two DR programs: Proxy Demand 

Resource (PDR) and Reliability Demand Response Resource (RDRR). The prior 

introduction of these programs on CAISO platform, the development, and implementation 

of the Demand Response programs were the responsibilities of Investors Owned Utilities 

(IOUs). In fact, each of the IOUs has their own wide range of DR programs which are 

open to their customers. Altogether there are 3 IOUs in California: Pacific Gas and Electric 

(PG&E), San Diego Gas and Electric (SDG&E), and Southern California Edison (SCE). 

The current time is seen as a transition phase where California ISO and utilities are 

moving away from Integrated Demand Side Management (IDSM) approach towards 

Integrated Demand Side Resources (IDSR) approach. The focus of the IDSM approach 

was in the development of utility led programs focused on energy efficiency, programs like 

critical peak pricing, Load Response, Local Generation etc. it focused towards more 

coherent and efficient optimization of operations and maintenance of these programs. 

IDSR approach on the other hand shifts focuses towards developments of collective actions 

to optimize demand response resources rather than utility driven tailored programs. 

California Public Utilities Commission (CPUC) has set the deadline of 2018 to enable 

all DR resources (within CAISO and all utilities) to participate in CAISO 

programs. CAISO and utilities have been asked to develop guidelines for the enablement 

of this target. They are still working on defining the rules and regulation for aggregator 

participation. However, IOU programs have well-defined guidelines and rules for each of 

their DR programs. 

PDR is a load or aggregation of loads that is capable of measurably and verifiably 

reducing their electric demand. It is treated just like a supply resource and, it can bid 

economically into following CAISO markets just as other supply sources do: 

1.    day-ahead energy market 

2.    5-minute real-time energy markets,  

3.    Day-ahead and real-time non-spinning reserves markets.  
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A PDR must meet a minimum load curtailment defined for different markets. As of 

January 2016 following are the minimum load curtailments required: 

1.    0.1 MW (100 kW) for Day-Ahead and Real-Time energy 

2.    0.5 MW (500 kW) for Day-Ahead and Real-Time energy Non-Spinning Reserve 

Each aggregation must meet the minimum load curtailment requirement on aggregation 

level to participate in the market. 

RDRR is a wholesale product that enables emergency-responsive DR resources to 

integrate into the CAISO’s economic day-ahead and real-time reliability market. RDRR is 

a load or aggregation of loads that is capable of measurably and verifiably reducing their 

electric demand. It relies on the same functionality and infrastructure designed for PDR 

and is modeled like a supply resource. Resources first offer economic energy in the day-

ahead market, then provide the remaining uncommitted capacity as energy in real-time 

when required under a system or local emergency. An Individual and aggregated demand 

response resources are eligible to participate if the resource is configurable to offer day-

ahead energy and respond to real-time reliability events. Program Specifications are as 

follows: 

1.    Minimum Load Curtailment: 500 KW 

2.    Real-time reliability service must reach full curtailment within 40 minutes 

3.    Minimum Run Time >=1 hour 

4.    Maximum Run Time <= 4 hours 

5.    Can opt for voluntary discrete dispatch (all or nothing) 

6.    Must be available for up to 15 events and/or 48 hours per 6 month period 

CAISO is working on a 'bifurcation policy for demand response programs' which is 

expected to be implemented fully by 2018. Under this policy, all demand response 

resources have to be categorized in either of two categories: 'Load Modifying 

Resource' and 'Supply Side Resource'. The objective of this bifurcation is to 

separate 'event-based dispatchable' supply side resources from load modifying resources. 

 Load Modifying Resource: Load-modifying resources (LMRs) refer to non-event 

demand response programs not integrated into the wholesale market. CAISO emphasizes 

that the primary purpose of LMRs is to avoid capacity costs (not avoid energy costs), to 

reduce peak generation and avoid the construction of additional capacity. 
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Supply Side Resource: Supply-side resources participate in event-based demand 

response programs and are integrated into the ISO wholesale market. CPUC wants 

increased participation in this category hence they bound the utilities to come up with pilot 

projects to competitively solicit supply-side DERs for demand response programs.  

CPUC launch a pilot project 'Demand response Auction Mechanism' (DRAM) which 

allows DR providers, including third-party aggregators, to directly participate in CAISO’s 

day-ahead energy market. The plan calls for utilities to procure resource adequacy (RA) 

from third-party demand-response providers (e.g., utilities, third party aggregators) on a 

monthly basis. Through this mechanism, they are creating a path for transitioning away 

from bilateral utility contracts toward a pay-as-bid auction-based method for securing 

supply-side resources. DR resources under DRAM will be marketed in CAISO’s energy 

market. DR providers will have to register DERs with CAISO as a Proximity Demand 

Resource (PDR). The first DRAM mechanism was completed by late 2015. The second 

phase will seek demand response to meet traditional, system-wide RA needs in 2016. 

Distributed Energy Resource Provider (DERP) Framework 

CAISO is in process of introducing a new category of market players named DERP with 

the objective to increase participation in the wholesale market. The DERP will be defined 

as 'The owner/operator of one or more DERs that participates in ISO markets as an 

aggregated resource.' DERP is aimed to alleviate different barriers for small DER's such 

as 500 kW minimum capacity requirement, strict telemetry and metering requirements 

directly with the ISO etc. In DERP though revenue-grade metering will be required to be 

deployed to all resources, however, DERP to ISO communication will be mediated through 

a scheduling coordinator. The DERP will either have to hire a third-party scheduling 

coordinator entity or fill the role itself. Broadly four stakeholders will perform following 

responsibilities: 

 ISO: ISO will coordinate dispatch with the scheduling CAISO’s DERP Framework 

coordinator. It also holds the authority to audit and test metering facilities, data 

handling, and processing procedures. 

 Scheduling Coordinator: SC will be responsible for submitting aggregated 

settlement quality meter data (SQMD) from all underlying DERs directly to ISO. 

SCs will also be responsible for performing audits and tests to ensure compliance 
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with local regulatory requirements, disaggregating resource-level SQMD of a 

DERP’s underlying resources, Scheduling, bidding, real-time telemetry, control 

signal disaggregation, SQMD submittal and settlement with participating DERs and 

other related activities. 

 DERP:  The DERP is required to operate and maintain DERs following applicable 

ISO tariffs. As a DERP will be a scheduling coordinator-metered entity (SCME), it 

will forward directly metered underlying DER data to the scheduling coordinator. It 

will also provide the ISO with basic, historical underlying DER information, 

including resource attributes and meter/telemetry data for settlement and operational 

purposes. DERPs are not prohibited from also being scheduling coordinators. 

 Resources: All resources will be required to follow the local regulatory authority 

requirements. Furthermore, DERs must install revenue quality metering and employ 

direct meters to measure performance, rather than relying on a baseline 

methodology. 
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Chapter 3: Stochastic Unit Commitment with Demand Response 
Scheduling 

 

Based on the operation of the markets previously mentioned in chapter 1, we represent 

the day-ahead scheduling and simultaneous energy and reserve market clearing problem 

that needs to be addressed by the ISO. The most related previous works to the study 

presented in this chapter are [8], [34], [35] as they address the market-driven power system 

operation with DR integration into simultaneous energy and reserve market clearing 

algorithms.  

In [8], the market clearing problem is formulated considering random outages of 

generating units and transmission lines and highlights the benefits of customers’ response 

to a DR program of the ISO.  In [34], a DR program is proposed which helps to integrate 

wind power by reshaping the load of the system and provides a framework to procure load 

reduction from DR resources in the wholesale energy market. In the most recent study [35], 

the authors proposed a detailed DR model including load shifting, curtailment, and use of 

energy storage and on-site generation in the market clearing process but in a deterministic 

context. Other studies like [36] proposed a day-ahead market clearing model with DR in 

the hourly solution of security constrained unit commitment. In [37] hourly DR scheduling 

was proposed considering the ramping costs of generation. 

The difference compared to previous studies is that the goal here is to investigate how 

enabling loads to provide reserve power affect unit commitment, system operation cost, 

and renewable penetration level. In this study, a stochastic model for operations planning 

with wind power generation is proposed. The proposed model is formulated as a two-stage 

stochastic mixed-integer programming (SMIP) problem and it would schedule 

commitment states of generating units and their scheduled energy along with the reserve 

provided by generating units and LAs over the scheduling horizon. 

The rest of this chapter is organized as follows. First, the structure of the problem is 

introduced. An SMIP is proposed for the bidding strategies of resources considering DR. 

The numerical studies conducted on the three-bus system and IEEE-RTS to highlight 

benefits of the DR program on the power system.  
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1. Solution Method 

In a power pool, the ISO receives energy offers and bids from LAs to determine the 

power production, the consumption level, and the price. The aim is to maximize the net 

social welfare in a process known as market clearing [38]. In many markets, the market 

clearing procedure is a day-ahead procedure, since the ISO needs to verify in advance that 

the schedule is feasible and the physical constraints of the grid are not violated. The 

balancing (or real-time) market operates a very short time before the delivery in order to 

keep the balance between supply and demand to ensure delivery and system reliability. The 

balancing market complements the day-ahead market but it is not the only technical market. 

To minimize reaction time in case of a mismatch between supply and demand, the ISO also 

runs ancillary services which typically involves spinning and non-spinning reserve, up and 

down regulation, responsive reserve service, black start and reactive services [39]. 

In this chapter, a stochastic dispatching model that co-optimizes simultaneously day-

ahead and balancing markets is presented. This kind of model is appropriate for those 

power systems with a significant penetration of renewable resources [40]. The model 

consists of a two-stage stochastic programming problem, whose first stage is day-ahead 

scheduling, and the second stage is the real-time system operation under a set of plausible 

scenarios. Both stages are part of the ISO scheduling bids for day-ahead. For example, the 

ISO clears the market at 𝑡 = 0 each day for the next day (𝑡 = 24 to 𝑡 = 48). 15 minutes 

before starting the next day (𝑡 = 23: 45) it adjusts the bids and offers based on new 

information gained of uncertain processes in the market and thus updates the pervious 

variables at each time and each scenario.  

In this manner, each scenario constitutes a possible realization of the stochastic 

processes together with an occurrence probability [41]. The final output of the two-stage 

optimization process is the day-ahead schedule, with the second stage as part of that process 

to consider scenarios of how resources would be dispatched. It still remains to actually 

move through time and have a balancing market active based on the schedule set the day 

before. 

A scenario tree comprises a set of nodes and branches as shown in Figure 6. The nodes 

represent the points where decisions are made. In the root node, the first-stage decisions 

are made.  The nodes connected to the root node are the second-stage nodes (leaf node) 
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and represent the points where the second-stage decisions are made. They constitute the 

real-time operation of the power system in order to accommodate the specific realization 

of the wind power production with adequate reserve deployment.  A scenario is a single 

path between the root and a leaf node. The set of scenarios characterizes the stochastic 

processes considered in this problem are wind power production. In the technical literature 

is possible to find multiple scenarios generating procedures [42]. The stochastic wind 

power production is described with a discrete probability distribution [43]. 

 

  Figure 6. Scenario tree for the two-stage problem 

Specifically, the considered decision-making process faced by the ISO is the 

following: at the beginning of the planning horizon, the day-ahead scheduling of the 

production for the whole planning horizon is decided for generating units and LAs. 

Afterward in the second stage for each hour and scenario, the ISO adjusts the real-time 

dispatch decisions. Note that these decisions depend on the energy schedule previously 

decided and on the availability of renewable energy. The entire two-stage formulation is 

solved in one integrated optimization problem. 

2. Problem Formulation 

The objective function to be minimized separately groups those terms representing the 

costs pertaining to the day-ahead scheduling and real-time operation of the system. Three 

sets of constraints are first stage constraints; second stage constraints and finally, the 
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linking constraints which bind the day-ahead market decisions to the real-time operation 

of the power system through the deployment of reserves provided by generation units and 

loads. First stage variables define the day ahead scheduling decisions while the second 

stage variables are the knobs that we must tweak to meet the constraints of the day-ahead 

schedule and real-time system operation. The resulting model is formulated as a mixed-

integer linear programming problem. The notation and formulation proposed in [42] is used 

for consistency to show the effect of demand-side reserve participation. 

2.1. Objective Function 

The objective function seeks to minimize the total expected cost of the system consists 

of energy production cost, generation-side reserve cost, and demand-side reserve cost. The 

balancing market is also accounted for in the cost function implicitly in (1). The list of 

variables is provided  in Symbols section at the beginning of the thesis.  
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𝜔=1

𝑆𝑡𝜔
}
  
 

  
 

          (1) 

The term ∑ ∑ 𝑑𝑡𝜆𝑗𝑡
𝐿 𝐿𝑗𝑡

𝑆𝑁𝐿
𝑗=1

𝑁𝑇
𝑡=1  is the consumers’ utility function. Due to the correlation 

between electricity consumption and price, consumer utility maximization promotes the 

overall system welfare. The term ∑ ∑ ∑ 𝜋𝜔𝑑𝑡𝑉𝑗𝑡
𝐿𝑂𝐿𝐿𝑗𝑡𝜔

𝑠ℎ𝑒𝑑𝑁𝐿
𝑗=1

𝑁𝑇
𝑡=1

𝑁Ω
𝜔=1  accounts for 

involuntarily load shedding. The energy production cost function in (2) represents start-up 

and variable costs of generation units including wind power generator (WPG) (assuming 

zero operating cost component for WPG) besides cost due to change in the start-up plan of 

units for all scenarios: 

∑∑𝐶𝑖𝑡
𝐸

𝑁𝐺

𝑖=1

𝑁𝑇

𝑡=1

=∑∑𝐶𝑖𝑡
𝑆𝑈

𝑁𝐺

𝑖=1

𝑁𝑇

𝑡=1

+∑∑∑ 𝑑𝑡𝜆𝑖𝑡
𝐺 (𝑚)

𝑁𝑀

𝑚=1

𝑃𝑖𝑡
𝐺(𝑚) + ∑∑∑𝜋𝜔𝐶𝑖𝑡𝜔

𝐴

𝑁𝐺

𝑖=1

𝑁𝑇

𝑡=1

𝑁Ω

𝜔=1

𝑁𝐺

𝑖=1

𝑁𝑇

𝑡=1

       (2) 

The reserve cost function shown in (3) accounts for generation-side reserve offers 

consisting of scheduled up, down and non-spinning reserves in addition to deployed reserve 

in real time: 
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∑∑𝐶𝑖𝑡
𝑅

𝑁𝐺

𝑖=1

𝑁𝑇

𝑡=1

=∑∑𝑑𝑡

𝑁𝐺

𝑖=1

(𝐶𝑖𝑡
𝑅𝑈𝑅𝑖𝑡

𝑈 + 𝐶𝑖𝑡
𝑅𝐷𝑅𝑖𝑡

𝐷 + 𝐶𝑖𝑡
𝑅𝑁𝑆𝑅𝑖𝑡

𝑁𝑆)

𝑁𝑇

𝑡=1

+ ∑∑∑∑ 𝜋𝜔𝑑𝑡𝜆𝑖𝑡
𝐺 (𝑚)𝑟𝑖𝑡𝜔

𝐺 (𝑚)

𝑁𝑀

𝑚=1

𝑁𝐺

𝑖=1

𝑁𝑇

𝑡=1

𝑁Ω

𝜔=1

     (3) 

The demand-side services cost function in (4) includes scheduled up and down reserves 

in addition to deployed reserve in real time.  

∑∑𝐶𝑗𝑡
𝐿 =

𝑁𝐿

𝑗=1

𝑁𝑇

𝑡=1

∑∑𝑑𝑡

𝑁𝐿

𝑗=1

(𝐶𝑗𝑡
𝑅𝑈𝑅𝑗𝑡

𝑈 + 𝐶𝑗𝑡
𝑅𝐷𝑅𝑗𝑡

𝐷)

𝑁𝑇

𝑡=1

+ ∑∑∑𝜋𝜔𝑑𝑡𝜆𝑗𝑡
𝐿 (𝑟𝑗𝑡𝜔

𝑈 − 𝑟𝑗𝑡𝜔
𝐷 )

𝑁𝐿

𝑗=1

𝑁𝑇

𝑡=1

𝑁Ω

𝜔=1

     (4) 

2.2. Constraints 

Three sets of constraints are imposed on the optimization as follows. 

2.2.1. First stage constraints 

Real power generation and load balance constraints: 

∑𝑃𝑖𝑡
𝑆

𝑁𝐺

𝑖=1

=∑𝐿𝑗𝑡
𝑆

𝑁𝐿

𝑗=1

                                                 , ∀𝑡(5) 

𝑃𝑖
𝑚𝑖𝑛𝑢𝑖𝑡 ≤ 𝑃𝑖𝑡

𝑆 ≤ 𝑃𝑖
𝑚𝑎𝑥𝑢𝑖𝑡                                , ∀𝑖, ∀𝑡(6) 

𝐿𝑗𝑡
𝑆,𝑚𝑖𝑛 ≤ 𝐿𝑗𝑡

𝑆 ≤ 𝐿𝑗𝑡
𝑆,𝑚𝑎𝑥                                      , ∀𝑖, ∀𝑡(7) 

0 ≤ 𝑃𝑖𝑡
𝐺(𝑚) ≤ 𝑃𝑖𝑡

𝐺,𝑚𝑎𝑥(𝑚)                           , ∀𝑚, ∀𝑖, ∀𝑡(8)  

𝑃𝑖𝑡
𝑆 = ∑ 𝑃𝑖𝑡

𝐺(𝑚)

𝑁𝑀

𝑚=1

                                           , ∀𝑖, ∀𝑡(9) 

Up and down spinning reserve and non-spinning reserve limits for generating units in:  

0 ≤ 𝑅𝑖𝑡
𝑈 ≤ 𝑅𝑖𝑡

𝑈,𝑚𝑎𝑥𝑢𝑖𝑡                                      , ∀𝑖, ∀𝑡(10) 

0 ≤ 𝑅𝑖𝑡
𝐷 ≤ 𝑅𝑖𝑡

𝐷,𝑚𝑎𝑥𝑢𝑖𝑡                                     , ∀𝑖, ∀𝑡(11) 

0 ≤ 𝑅𝑖𝑡
𝑁𝑆 ≤ 𝑅𝑖𝑡

𝑁𝑆,𝑚𝑎𝑥(1 − 𝑢𝑖𝑡)                           , ∀𝑖, ∀𝑡(12) 

Up and down LA reserve constraints: 
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0 ≤ 𝑅𝑗𝑡
𝑈 ≤ 𝑅𝑗𝑡

𝑈,𝑚𝑎𝑥                                     , ∀𝑗, ∀𝑡(13) 

0 ≤ 𝑅𝑗𝑡
𝐷 ≤ 𝑅𝑗𝑡

𝐷,𝑚𝑎𝑥                                    , ∀𝑗, ∀𝑡(14) 

Generating units’ start-up cost constraint: 

𝐶𝑖𝑡
𝑆𝑈 ≥ 𝜆𝑖𝑡

𝑆𝑈(𝑢𝑖𝑡 − 𝑢𝑖,𝑡−1)                               , ∀𝑖, ∀𝑡(15) 

𝐶𝑖𝑡
𝑆𝑈 ≥ 0                                               , ∀𝑖, ∀𝑡(16) 

Minimum up and down time constraints: 

[𝑋𝑖
𝑜𝑛 − 𝑈𝑇𝑖](𝑢𝑖,𝑡−1 − 𝑢𝑖𝑡) ≥ 0                         , ∀𝑖, ∀𝑡(17) 

[𝑋𝑖
𝑜𝑓𝑓

− 𝐷𝑇𝑖](𝑢𝑖𝑡 − 𝑢𝑖,𝑡−1) ≥ 0                       , ∀𝑖, ∀𝑡(18) 

Ramping up and down constraints: 

𝑃𝑖𝑡
𝑆 − 𝑃𝑖,𝑡−1

𝑆 ≤ 𝑅𝑈𝑖𝑢𝑖,𝑡−1 + 𝑆𝑈𝑖[𝑢𝑖𝑡 − 𝑢𝑖,𝑡−1] + (1 − 𝑢𝑖𝑡)𝑃𝑖
𝑚𝑎𝑥    , ∀𝑖, ∀𝑡(19) 

𝑃𝑖,𝑡−1
𝑆 − 𝑃𝑖𝑡

𝑆 ≤ 𝑅𝐷𝑖𝑢𝑖𝑡 + 𝑆𝐷𝑖[𝑢𝑖,𝑡−1 − 𝑢𝑖𝑡] + (1 − 𝑢𝑖,𝑡−1)𝑃𝑖
𝑚𝑎𝑥    , ∀𝑖, ∀𝑡(20) 

2.2.2. Second stage constraints 

Power balance for the nodes at which the WPG is located: 

∑ 𝑃𝑖𝑡𝜔
𝐺

𝑖:(𝑖,𝑛)∈𝑀𝐺

− ∑ (𝐿𝑗𝑡𝜔
𝐶 − 𝐿𝑗𝑡𝜔

𝑠ℎ𝑒𝑑)

𝑗:(𝑗,𝑛)∈𝑀𝐿

+ 𝑃𝑡𝜔
𝑊𝑃 − 𝑆𝑡𝜔 − ∑ 𝑓𝑡𝜔(𝑛, 𝑟)

𝑟:(𝑛,𝑟)∈Λ

= 0             

    𝑛 = 𝑛′, ∀𝑡, ∀𝜔(21) 

Power balance for rest of the nodes: 

∑ 𝑃𝑖𝑡𝜔
𝐺

𝑖:(𝑖,𝑛)∈𝑀𝐺

− ∑ (𝐿𝑗𝑡𝜔
𝐶 − 𝐿𝑗𝑡𝜔

𝑠ℎ𝑒𝑑)

𝑗:(𝑗,𝑛)∈𝑀𝐿

− ∑ 𝑓𝑡𝜔(𝑛, 𝑟)

𝑟:(𝑛,𝑟)∈Λ

= 0       ∀𝑛

≠ 𝑛′, ∀𝑡, ∀𝜔(22) 

DC power flow equation in steady state: 

𝑓𝑡𝜔(𝑛, 𝑟) =
𝛿𝑛𝑡𝜔 − 𝛿𝑟𝑡𝜔
𝑋(𝑛, 𝑟)

                 ∀(𝑛, 𝑟) ∈ Λ, ∀𝑡, ∀𝜔(23) 

Transmission flow limits in the base case: 
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−𝑓𝑚𝑎𝑥(𝑛, 𝑟) ≤ 𝑓𝑡𝜔(𝑛, 𝑟) ≤ 𝑓𝑚𝑎𝑥(𝑛, 𝑟)      ∀(𝑛, 𝑟) ∈ Λ, ∀𝑡, ∀𝜔(24) 

Constraints (25) and (26) accounts for the decomposition of the deployed reserve into 

blocks for generating units: 

𝑟𝑖𝑡𝜔
𝑈 + 𝑟𝑖𝑡𝜔

𝑁𝑆 − 𝑟𝑖𝑡𝜔
𝐷 = ∑ 𝑟𝑖𝑡𝜔

𝐺 (𝑚)

𝑁𝑀

𝑚=1

                          , ∀𝑖, ∀𝑡, ∀𝜔(25) 

−𝑃𝑖𝑡
𝐺(𝑚) ≤ 𝑟𝑖𝑡𝜔

𝐺 (𝑚) ≤ 𝑃𝑖𝑡
𝐺,𝑚𝑎𝑥(𝑚) − 𝑃𝑖𝑡

𝐺(𝑚)      , ∀𝑚, ∀𝑖, ∀𝑡, ∀𝜔(26) 

Deployed power generation and ramp limits: 

𝑃𝑖
𝑚𝑖𝑛𝑣𝑖𝑡𝜔 ≤ 𝑃𝑖𝑡𝜔

𝐺 ≤ 𝑃𝑖
𝑚𝑎𝑥𝑣𝑖𝑡𝜔                         , ∀𝑖, ∀𝑡, ∀𝜔(27) 

𝑃𝑖𝑡𝜔
𝐺 − 𝑃𝑖,𝑡−1,𝜔

𝐺 ≤ 𝑅𝑈𝑖𝑣𝑖,𝑡−1,𝜔 + 𝑆𝑈𝑖[𝑣𝑖𝑡𝜔 − 𝑣𝑖,𝑡−1,𝜔] + (1 − 𝑣𝑖𝑡𝜔)𝑃𝑖
𝑚𝑎𝑥   , ∀𝑖, ∀𝑡, ∀𝜔(28) 

𝑃𝑖,𝑡−1,𝜔
𝑆 − 𝑃𝑖𝑡𝜔

𝑆 ≤ 𝑅𝐷𝑖𝑣𝑖𝑡𝜔 + 𝑆𝐷𝑖[𝑣𝑖,𝑡−1,𝜔 − 𝑣𝑖𝑡𝜔] + (1 − 𝑣𝑖,𝑡−1,𝜔)𝑃𝑖
𝑚𝑎𝑥   , ∀𝑖, ∀𝑡, ∀𝜔(29) 

Involuntary load shedding limit: 

0 ≤ 𝐿𝑗𝑡𝜔
𝑠ℎ𝑒𝑑 ≤ 𝐿𝑗𝑡𝜔

𝐶                                     , ∀𝑖, ∀𝑡, ∀𝜔(30) 

Wind power spillage limit: 

0 ≤ 𝑆𝑡𝜔 ≤ 𝑃𝑡𝜔
𝑊𝑃                                            , ∀𝑡, ∀𝜔(31) 

2.2.3.  Linking constraints 

Deployed up and down spinning reserve and non-spinning reserve constraints for 

generating units: 

𝑃𝑖𝑡𝜔
𝐺 = 𝑃𝑖𝑡

𝑆 + 𝑟𝑖𝑡𝜔
𝑈 + 𝑟𝑖𝑡𝜔

𝑁𝑆 − 𝑟𝑖𝑡𝜔
𝐷                        , ∀𝑖, ∀𝑡, ∀𝜔(32) 

Deployed LA reserve constraint: 

𝐿𝑗𝑡𝜔
𝐶 = 𝐿𝑗𝑡

𝑆 − 𝑟𝑗𝑡𝜔
𝑈 + 𝑟𝑗𝑡𝜔

𝐷                             , ∀𝑗, ∀𝑡, ∀𝜔(33) 

Deployed reserve limits: 

0 ≤ 𝑟𝑖𝑡𝜔
𝑈 ≤ 𝑅𝑖𝑡

𝑈                                       , ∀𝑖, ∀𝑡, ∀𝜔(34) 

0 ≤ 𝑟𝑖𝑡𝜔
𝐷 ≤ 𝑅𝑖𝑡

𝐷                                       , ∀𝑖, ∀𝑡, ∀𝜔(35) 

0 ≤ 𝑟𝑖𝑡𝜔
𝑁𝑆 ≤ 𝑅𝑖𝑡

𝑁𝑆                                     , ∀𝑖, ∀𝑡, ∀𝜔(36) 
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0 ≤ 𝑟𝑗𝑡𝜔
𝑈 ≤ 𝑅𝑗𝑡

𝑈                                       , ∀𝑗, ∀𝑡, ∀𝜔(37) 

0 ≤ 𝑟𝑗𝑡𝜔
𝐷 ≤ 𝑅𝑗𝑡

𝐷                                       , ∀𝑗, ∀𝑡, ∀𝜔(38) 

Adjustment cost in the start-up plan: 

𝐶𝑖𝑡𝜔
𝐴 = 𝐶𝑖𝑡𝜔

𝑆𝑈 − 𝐶𝑖𝑡
𝑆𝑈                                  , ∀𝑖, ∀𝑡, ∀𝜔(39) 

𝐶𝑖𝑡𝜔
𝑆𝑈 ≥ 𝜆𝑖𝑡

𝑆𝑈(𝑣𝑖𝑡𝜔 − 𝑣𝑖,𝑡−1,𝜔)                          , ∀𝑖, ∀𝑡, ∀𝜔(40) 

𝐶𝑖𝑡𝜔
𝑆𝑈 ≥ 0                                            , ∀𝑖, ∀𝑡, ∀𝜔(41) 

Each LA reserve quantity is: 

𝑞𝑗𝑡𝜔 = 𝑟𝑗𝑡𝜔
𝐷 − 𝑟𝑗𝑡𝜔

𝑈 = 𝑞𝑗𝑡𝜔(0)𝑥𝑗𝑡𝜔 +∑𝛾𝑗𝑡𝜔(𝑘)

𝑁𝐾

𝑘=1

𝑥𝑗𝑡𝜔        , ∀𝑗, ∀𝑡, ∀𝜔(42) 

𝛾𝑗𝑡𝜔(𝑘) = 𝑞𝑗𝑡𝜔(𝑘) − 𝑞𝑗𝑡𝜔(𝑘 − 1)                       , ∀𝑗, ∀𝑡, ∀𝜔(43) 

𝑢𝑖𝑡, 𝑣𝑖𝑡𝜔 , 𝑥𝑗𝑡𝜔 ∈ {0,1}                                  , ∀𝑖, ∀𝑡, ∀𝜔(44) 

where 𝑞𝑗𝑡𝜔(0) is greater than the minimum curtailment level of the DR program specified 

by the ISO. The LA’s bid-quantity offer curve in period 𝑡 is the same as suggested in [8]. 

Note that DR costs are assumed here as parameters rather than how to provide the actual 

DR loads.  

3. Computer Simulation 

The proposed formulation is demonstrated on a three-bus system [42] and the 24-bus 

IEEE reliability test system (RTS) [44]. The case studies were solved using the MILP 

solver of CPLEX 12.2 [45] on a desktop computer with a 3.4-GHz i7 processor and 16 GB 

of RAM. The computation time is trivial for the three-bus system and less than 30 seconds 

for the IEEE RTS. The upper bound on the duality gap is set to be zero and the minimum 

up and down time constraints are not considered in this study.  

3.1. Three-bus System Case Study 

The three-bus system shown in Figure 7 is used to demonstrate the features of the 

proposed method. Table 1 provides an example of wind power scenarios. The scheduling 

horizon spans four time periods. The operator generates three possible wind production 
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scenarios 𝜔 ∈ 𝑁Ω = {𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑, 𝐻𝑖𝑔ℎ, 𝐿𝑜𝑤} with probabilities 0.6, 0.2 and 0.2, 

respectively. The ISO then tries to find a strategy that minimizes the expected cost (or 

equivalently maximize the expected profit).  

 

    Figure 7. One-line diagram of the three-bus system 

 

Table 1. Wind power scenarios 

 

Period # 
𝑷𝒕𝝎
𝑾𝑷 [MW] 

As forecast              High                      Low 

1 6                            9                            2 

2 20                          30                          13 

3 35                          50                          25 

4 8                           12                           6 

 

Figure 8 presents the total expected cost of the system for different demand side reserve 

offer costs (𝐶𝑗𝑡
𝑅𝑈  and 𝐶𝑗𝑡

𝑅𝐷assumed to be equal). It highlights the fact that facilitating a 

higher share for DR in reserve (i.e. decreasing the cost of DR participation) will increase 

the overall system welfare. Based on this, two case studies were conducted for different 

demand side reserve costs of 10 $/MWh and 20 $/MWh. 
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  Figure 8. Total expected cost of the system variations 

 

Table 2 shows how utilizing DR reserve decreases the wind power spillage and 

consequently facilitate higher share of renewable energy integration in the power system. 

When demand side reserve costs are $20/MWh, 7 MW of wind power production is spilled 

in the High scenario. Tables 3 and 4 summarize the optimal results for the two cases. In 

addition, the higher the LA reserve cost, the higher the locational marginal price (LMP).  

 

Table 2. Amount of spilled wind power production [MW] 

Demand-side 

Reserve Cost 

WP 

Scenarios 

Period # 

1            2            3          4 

10$/MWh 

(Case1) 
𝜔1 

𝜔2 

𝜔3 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

20$/MWh 

(Case2) 
𝜔1 

𝜔2 

𝜔3 

0 

3 

0 

0 

0 

0 

0 

0 

0 

0 

4 

0 
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Table 3. Scheduling results [MW] – Case 1 

  

Unit 

Period # 

1              2              3             4 

 

𝑃𝑖𝑡
𝐺 

G1 

G2 

G3 

0 

0 

21 

0 

0 

42 

0 

0 

50 

0 

0 

28 

 

𝑅𝑖𝑡
𝑈 

G1 

G2 

G3 

0 

0 

4 

0 

0 

0 

0 

0 

0 

0 

0 

2 

 

𝑅𝑖𝑡
𝐷 

G1 

G2 

G3 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

𝑃𝑖𝑡
𝐺 WP 9 38 60 12 

𝑅𝑗𝑡
𝑈 LA 3 8 11 4 

𝑅𝑗𝑡
𝐷 LA 0 0 0 0 

 

Table 4. Scheduling results [MW] – Case 2 

  

Unit 

Period # 

1             2             3             4 

 

𝑃𝑖𝑡
𝐺 

G1 

G2 

G3 

0 

0 

24 

0 

0 

42 

0 

0 

50 

0 

0 

32 

 

𝑅𝑖𝑡
𝑈 

G1 

G2 

G3 

0 

0 

4 

0 

0 

0 

0 

0 

0 

0 

0 

2 

 

𝑅𝑖𝑡
𝐷 

G1 

G2 

G3 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

𝑃𝑖𝑡
𝐺 WP 6 38 60 8 

𝑅𝑗𝑡
𝑈 LA 0 8 11 0 

𝑅𝑗𝑡
𝐷 LA 0 0 0 0 

 

Figure 9 shows the variation of LMPs under first scenario (Forecasted) over scheduling 

horizon when DR reserve cost is $5/MWh and $40/MWh.  LMPs are the marginal values 

obtained from power balance equations (21), (22) or the Lagrange multipliers of the dual 

problem. 
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    Figure 9. LMP variations for different LA reserve costs 

3.2.  IEEE-RTS Case Study 

The proposed model is applied over a 24-hour horizon to the IEEE-RTS shown in 

Figure 10. 

 

Figure 10. One-line diagram of the IEEE-RTS 
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 The system data are given in [44] including costs. The power system includes 12 

generating units. Units 8 and 9 are nuclear power plants and unit 10 is a hydro generator. 

Unit 12 is a wind power generator whereas the rest are thermal. The wind, hydro and 

nuclear generators are assumed to be must-run units. The LAs’ contribution in percentage 

to the total system demand is listed in Table 5 [42]. 

Table 5. Distribution of the total system demand 

LA # % of system 

load 

LA# % of system 

load 

1 3.8 10 6.8 

2 3.4 11 9.3 

3 6.3 12 6.8 

4 2.6 13 11.1 

5 2.5 14 3.5 

6 4.8 15 11.7 

7 4.4 16 6.4 

8 6.0 17 4.5 

9 6.1   

 

The load profile for the 24-hour scheduling horizon is shown in Figure 11 in a stacked 

bar chart. The shading shows the contribution of each of the 17 LAs based on Table 5.  All 

the LAs offer identical rates for up and down spinning reserves. LAs can be curtailed from 

their normal levels up to 𝛼% of their scheduled consumption for all hours to provide up 

spinning reserves. Likewise, LAs can increase by the same quantity to provide down 

spinning reserve. 

 

Figure 11. Daily load profile of the IEEE-RTS 



 

 

32 

 

For scenario generation the stochastic process wind power (𝑃𝑊𝑃) is determined using 

an autoregressive moving average (ARMA) model. The resulting model can then be used 

to simulate the output of the system for a given input or more generally system analysis, 

prediction and also control design. An ARMA (p,q) process WP is mathematically 

expressed as:  

𝑃𝑡
𝑊𝑃 =∑𝜙𝑗

𝑝

𝑗=1

𝑃𝑡−𝑗
𝑊𝑃 + 𝜀𝑡 −∑𝜃𝑗𝜀𝑡−𝑗

𝑞

𝑗=1

                                      (45) 

with p autoregressive parameters  𝜙1, 𝜙2, … , 𝜙𝑝, and q moving average 

parameters 𝜃1, 𝜃2, … , 𝜃𝑞. The term 𝜀𝑡 in equation (45) represents an uncorrelated normal 

stochastic process with mean zero and variance 𝜎𝜀
2 and is also uncorrelated 

with  𝑃𝑡−1
𝑊𝑃, 𝑃𝑡−2

𝑊𝑃, … . , 𝑃𝑡−𝑝
𝑊𝑃. The stochastic process 𝜀𝑡  is also referred to as white noise, an 

innovation term, or an error term [42]. In this study the following ARMA (1,1) model for 

characterizing 𝑃𝑊𝑃 is considered: 

𝑃𝑡
𝑊𝑃 = 𝜙1𝑃𝑡−1

𝑊𝑃 + 𝜀𝑡 − 𝜃1𝜀𝑡−1 + 𝑐                                       (45) 

 

Figure 12. Simulated ARMA(1,1) process, 20 scenarios, each with 24 observations, dashed line represents 

the mean wind power production 

The parameters of the model are  𝜙1 = 0.99 and 𝜃1 = 0.011 and constant 𝑐 = 0.15. 

The standard deviation of the error term is 0.021 based on the scaled data of wind power 

production in Denmark for the first day of August 2013 [46]. In order to make the 



 

 

33 

optimization problem tractable, a reduction technique can be applied to obtain a set of 

reduced scenarios that maintains the statistical properties of the original set to acceptable 

levels [47]. However, in this study 20 equiprobable scenarios are considered to make the 

problem tractable as shown in Figure 10 where the dashed line represents the average wind 

power production. Each path is a single realization of the stochastic process, i.e., one wind 

power generation scenario for 𝑡 = 24 to 𝑡 = 48.  

Different cases are looked at to illustrate the impacts of DR reserve utilization. Figure 

13 presents the total expected cost of the system for different demand side reserve offer 

costs. It again highlights the fact that facilitating a higher share of DR reserve will increase 

the overall system welfare. Based on this, two cases are examined in the following for 

different demand side reserve costs of $5 and $30 per MWh. 

 

  Figure 13. Total expected cost of the system variations 

 

Table 6 shows how utilizing DR reserve decreases the wind power spillage and 

consequently facilitates a higher share of renewable energy integration in the power 

system. When demand side reserve cost is 30 $/MWh, on average 2.3 MW of wind power 

production is spilled compared to 1.46  MW wind power spillage when the LA reserve cost 

is $5/MWh. Note that the total number of events is 24 ℎ𝑜𝑢𝑟𝑠×20 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 = 480. 
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Table 6. Amount of spilled wind power production 

LA reserve offer cost [$/MWh] $5 $30 

Average wind power spillage [MW] 1.46 2.30 

Wind power spillage incidents 18 109 

 

DR could also modify the scheduled commitment status of generating units and offer 

more economic options. As it is shown in table 7, in case 1 (5 $/MWh) at hour 22 the 

expensive generating units 1 and 2 would not be committed compared to case 2 (30 

$/MWh).  

Table 7. Number of committed units at each hour 

Hours 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Case1  8 6 6 6 6 6 9 9 9 10 10 9 9 9 9 9 10 10 10 10 9 7 7 5 

Case2  8 6 6 6 6 6 9 9 9 10 10 9 9 9 9 9 10 10 10 10 9 9 7 5 

 

The average marginal price of electricity is shown in Figure 14 for three different cases 

where the demand-side reserve offer costs are $3/MWh, $5/MWh and $10/MWh. This 

highlights the fact that deploying DR decreases the average price of electricity.    

 

Figure 14. Marginal cost variations for different demand side reserve offer costs 

 

The marginal cost associated with constraint (5) shows how much the optimal value of 

the objective would increase per unit increase in the amount of resources available. In other 
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words, the marginal value associated with a resource represents how much more profit ISO 

would gain by increasing the amount of that resource by one unit.  

Table 8 shows the effect of DR penetration level on the system. The higher the 

penetration level, the higher the performance of the system in terms of reduced total 

expected cost, average wind power spillage for different scenarios and the marginal cost of 

the system. 

Table 8. Impact of DR level on the system (LA reserve cost is 5 $/MWh) 

% of DR 

penetration level 

(𝛼) 

Total expected 

cost [$] 

Average wind power 

spillage [MW] 

Average marginal 

generation cost [$/MWh] 

5 % 306,660 1.67 7.87 

10 % 305,195 1.46 7.79 

20 % 305,013 1.32 7.75 

4. Summary 

The stochastic model has been used to schedule energy and reserve provided by 

generation and demand-side resources. It is necessary to adopt stochastic approaches for 

decision making under uncertainty as in the case of clearing electricity markets with high 

levels of wind generation. This permits the scheduling of loads and services in coordination 

with the system operator, thus enhancing the power system’s efficiency and security while 

reducing its environmental impact. The proposed stochastic model is formulated as a two-

stage SMIP problem. A number of case studies are conducted and the results presented 

demonstrate the benefits of customers’ response for ISO. DR can potentially benefit 

consumers by offering cheaper electricity while facilitating a higher share of renewable 

energy sources in the power system. 
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Chapter 4: Baseline Load Forecasting Using Bayesian Approach 

 

Any demand response program requires a clear procedure for determining customer 

baseline loads that are intended for use by customers or aggregators enrolled in that 

program. Aggregators of retail end users may claim load reduction or ancillary service 

provision from demand side resources with which they have a contractual arrangement. 

Customer Base Load (CBL) is the average power demand of the resource if the DR had 

not occurred (not necessarily an hourly period). CBL is used to determine the level of load 

curtailment provided and thereby compensate the participant. 

There are many examples of baseline models in the literature. For example, Coughlin et 

al [48] compared the performance of predictions produced by different baseline models 

statistically for commercial buildings. Goldberg et al [49] developed a standardized M&V 

procedure. Various baseline and M&V methodologies currently developed have been 

discussed in [50]. Day matching and regression analysis [51, 52] are the two most common 

techniques for calculating baselines. For example, California electric utilities use methods 

such as averaging the consumption profiles of the three days with the highest energy usage 

out of the last ten business days [4]. A rolling average baseline has been used by ISO-NE 

[53]. In NYISO, there are two sub-categories for CBL calculation: Average Day CBL and 

Adjusted CBL. It is the responsibility of the customer service provider (CSP) that during 

the enrolment of any resource in each capability period, it must identify the type of CBL for 

that resource. The choice of CBL method can be changed when registering for the 

next capability period.  It is also the responsibility of the CSP to provide a complete and 

accurate CBL calculation to the NYISO, based on the chosen method during capability 

period registration. The details of how to calculate the CBL in NYISO is explained in 

Appendix A. 

In Ref. [54] the authors investigated the effect of baseline modeling implementation on 

DR assessment using the linear regression baseline model developed in [55]. The results 

indicate strong sensitivities to outside air temperature and data filtration method, but weak 

sensitivities to data resolution. Ref. [56] proposed an exponential smoothing model with 

weather adjustment to compute customer baseline load. The baseline calculation for 
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individual or aggregated residential customers has not been addressed so far. Current 

research has attempted to address it using historical data analysis and ordinary regression 

techniques at best which do not address uncertainty appropriately. Most of the baseline 

models discussed are applicable to commercial and industrial customers. Besides, baseline 

estimation is an evolving process with a limiting factor being data availability. New 

methods of establishing baselines and measuring their accuracies are required as DR 

utilizing advanced technologies that will be enabled by Advanced Metering Infrastructure 

(AMI) is deployed more widely [57].   

In this thesis, we address this issue using statistical machine learning. Bayesian Linear 

Regression (BLR) has been employed due to several advantages over Ordinary Linear 

Regression (OLR) such as: the use of prior information to update existing parameters, 

improved performance for small samples, higher flexibility and greater stability, lower 

influence of outliers and directly estimating uncertainty in the parameters and predicted 

values [58-60]. In machine learning, offline learning algorithms are used when one has 

access to the entire training dataset at once in advance. Online learning methods, which 

update their solution iteratively, are a promising approach towards baseline modeling with 

improvements in real time. The mapping from the input dataset to the corresponding 

outputs is updated after the arrival of the new dataset. The recursive Bayesian approach 

has been used in this work as an online algorithm as new data becomes available in a 

sequential fashion. 

Specifically, we propose a self-learning and updating BLR model to predict power 

consumption using an autoregressive approach. Two case-studies are explored:  

Vancouver, BC, Canada where hourly load data is used; and Austin, TX, USA where 

minute resolution data is used. The performance of the models is then examined and 

compared before summarizing the main research results. 

The rest of this chapter is organized as follows. An overview of data-driven models and 

the proposed Bayesian Linear Regression model is presented and formulated. Next, data 

collection and model implementation procedures are explained. The numerical simulation 

conducted on two case studies are presented to quantify the benefits of the Bayesian 

approach.  
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1. Data-driven Models and Uncertainty Analysis 

A Baseline model is a type of data-driven model, which is a class of numerical models 

that create generalized links between input and output datasets [61]. Examples of data–

driven models include linear regression, autoregressive models, neural networks, fuzzy 

regression and fuzzy rule–based systems, model trees, and genetic programming. Data-

driven methods have been widely used in many fields because they provide good 

agreement between observed and modeled data [62]. They are generally easier to calibrate, 

are based on objective information and require limited assumptions about the physical 

process being modeled. In addition, data–driven models are useful in solving practical 

problems, especially when knowledge driven simulation models cannot be constructed due 

to a lack of understanding of the underlying processes or when existing models are 

inadequate. Although data-driven models have higher data requirements to calibrate and 

validate the model, with the advent of the Smart Grid and increased use of real-time 

monitoring, there exists a great opportunity to utilize high-resolution data that is 

continuously being collected. Thus, the availability of data which is often cited as a limiting 

factor in the success of data–driven models is no longer a major issue [59, 60]. 

A general drawback of numerical representations of physical systems is uncertainty in 

the input and output data, and in the parameters. Typically, probability-based methods such 

as Bayesian inference, are used to address this uncertainty in data-driven or conceptual 

models [63-66]. The advantages of Bayesian analysis, in general, is that it provides a 

statistical or probabilistic representation of a system, rather than the typical deterministic 

representation, thus providing confidence intervals of the predictions [67, 68].  

Consequently, the uncertainty in a model is represented by including probability 

distributions of various parameters in the model. The use of Bayesian-based methods has 

increased significantly in recent years, due to the fact that computing speed has increased 

significantly [69]. The required numerical solutions (Monte Carlo iterations) required for 

Bayesian problems can now be found quickly when no analytical solutions exist. 

Furthermore, there is no need to make assumptions and build-up a model from governing 

equations that do not really exist in many cases [70]. With this approach, we can naturally 

address issues like regularization, model selection or comparison without the need for a 

separate cross-validation data set. 



 

 

39 

The basic principle of Bayesian applications in uncertainty analysis in numerical models 

is that any prior information (i.e. from previous research, or expert knowledge) can be 

included in the current analysis to estimate or update current model parameters [66], [71, 

72]. This prior is then combined with existing data to calculate the posterior predictive 

probability of parameters [58-60]. In general, in cases where uncertainty in model 

parameters is important, a Bayesian analysis is preferred over a simple deterministic 

analysis [73].  

2. Linear Regression Review 

Regression analysis generates an equation to describe the statistical relationship between 

predictor variables and the response variable. The equation or hypothesis is a linear 

function in terms of predictor variables weights as shown in (1) where X is a matrix of 

independent vector variables and the β are the corresponding regression coefficients. 

ℎ(𝑥) = ∑ 𝛽𝑖𝑥𝑖 =
𝑑
𝑖=0 𝑿𝜷                                                  (1) 

The goal is to minimize the difference between the hypothesis and actual output shown in 

(2), basically, we try to minimize the residual sum of squares (RSS):  

𝐸𝑖𝑛(ℎ) =
1

𝑁
∑(ℎ(𝑥𝑛) − 𝑦𝑛)

2

𝑁

𝑛=1

=
1

𝑁
∑(𝛽𝑇𝑥𝑛 − 𝑦𝑛)

2

𝑁

𝑛=1

=
1

𝑁
‖𝑿𝜷 − 𝒚‖2         (2) 

Equation (2) can be solve using gradient descent algorithm but it also has a close form 

solution by setting the gradient of 𝐸𝑖𝑛(ℎ) to zero. The optimal weight vector is  

𝜷∗ = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒚                                                    (3) 

Equation (3) is called least-square estimates. 

 

To prevent over-fitting one can add a regularization term to the objective function. Two 

possible approaches are: 

 Ridge Regression (a.k.a L2 Regularization) : 𝑅𝑆𝑆(𝑤) + 𝜆‖𝑤‖2
2 

𝜷∗ = (𝑿𝑻𝑿 + 𝝀𝑰)−𝟏𝑿𝑻𝒚                                                (4) 

Coefficient estimates for multiple linear regression models rely on the independence of the 

model terms. When terms are correlated and the columns of the design matrix X have an 

approximate linear dependence, the matrix (𝑿𝑻𝑿)−𝟏 becomes close to singular. As a result, 

the least-squares estimate becomes highly sensitive to random errors in the observed 
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response y, producing a large variance. Ridge regression addresses the problem by 

estimating regression coefficients using 𝜷∗ where  𝜆  is the tuning parameter and I is the 

identity matrix. While biased, the reduced variance of ridge estimates often result in a 

smaller mean square error when compared to least-squares estimates. 

 Lasso Regression (a.k.a L1 Regularization): 𝑅𝑆𝑆(𝑤) + 𝜆‖𝛽‖1 

Same as ridge regression, the solution is governed by the continuous parameter 𝜆. It is a 

convex objective function but the derivative does not exist. Even if we can compute the 

derivative, there is no closed form solution. One can solve the problem using sub-gradient 

descent like coordinate descent algorithm. Lasso identifies and removes the redundant 

predictors and hence leads to a sparse solution. 

3. Bayesian Linear Regression 

Bayesian linear regression is an approach to ordinary linear regression (OLR) within a 

Bayesian framework, which can be represented as a Normal probability model: 

𝒚 ~ 𝑵(𝑿𝜷, 𝝈𝟐𝑰)      (5) 

where X is a matrix of independent vector variables, limited to [x1 x2 x3] for this study with 

x1 = I to allow for an intercept, [x2 x3] are the observations (selected features to model the 

output), the β are the corresponding regression coefficients, 𝝈𝟐 is the variance of the 

dependent variable y given the observations (i.e. 𝒚|𝜷,𝑿), and lastly, I is the identity matrix.  

The posterior distribution, the resulting prediction of variables of interest according to 

Bayes rule, is proportional to the product of a likelihood function and the prior distribution. 

This means that any calculated model parameters are a function of the likelihood function 

(calculated from the current data) and the prior (from any previous data, assumptions, etc.). 

Thus, the regression coefficients can be estimated via: 

𝐩(𝜷, 𝝈𝟐|𝒚, 𝑿)  ∝ 𝐩(𝒚|𝜷, 𝝈𝟐, 𝑿)𝐩(𝜷, 𝝈𝟐)          (6) 

where the term on the left-hand side represents the probability distribution of the posterior, 

and the right-hand side is the product of the likelihood and the prior. In the currently 

proposed Bayesian framework, (𝒚|𝜷, 𝝈𝟐, 𝑿) corresponds to the following likelihood 

function which is a multivariate Normal: 
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𝐩(𝒚|𝜷, 𝝈𝟐, 𝑿)  ∝ ( 𝝈𝟐)−𝑵 𝟐⁄ 𝐞𝐱𝐩 (−
𝟏

𝟐 𝝈𝟐
(𝒚 − 𝑿𝜷)𝑻(𝒚 − 𝑿𝜷))                    (7) 

It is often parameterized as: 

�̂� = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒚        (8) 

𝒔𝟐 = (𝒚 − 𝑿�̂�)𝑻(𝒚 − 𝑿�̂�) 𝝂⁄                      (9) 

where �̂� is the ordinary least squares solution to estimate the coefficient vector using 

the Moore-Penrose pseudo-inverse.  Using this formulation, the predictive distribution of 

𝒚 can be found analytically and is a multivariate function t: 

(𝒚∗|𝒚) = 𝒕(𝑿∗�̂�, 𝒔𝟐[𝑰 + 𝑿∗(𝑿𝑻𝑿)−𝟏𝑿∗𝑻], 𝝂)                                 (10) 

where 𝑿∗ are new observations used for prediction and 𝒚∗are the predicted values. The 

derivation for equations (8) and (9) is not given here, but is available in many textbooks 

(for example [66], [69], [71]). This particular formulation is for the non-informative prior 

case (details below) which means that these values are identical to the least–squares 

estimates of degrees of freedom (𝜈 =  𝑁 –  𝑘) (with 𝑁 the total number of observations 

and 𝑘 is the number of regression coefficients), �̂� and the standard error 𝒔𝟐. This prior 

assumes complete ignorance of prior values of the parameters, essentially a uniform 

distribution with an extremely large variance. This formulation was used to forecast hourly  

baseline loads (Vancouver, BC) and minute aggregated household load (Austin, TX) for 

the first batch of data where no prior information was available (hence the use of a non-

informative prior). The model was validated using subsequent batches of data. 

For these subsequent models, independent and informative priors were used as 

formulated below. For the calibration procedure, the posterior estimates of 𝜷 and 𝝉 

(where 𝜏 = 1
𝜎2⁄ ) from the previous model are used as the priors to estimate 𝜷 and 𝝉 for 

the next model. If the parameters 𝜷 and 𝝉 are assumed to be independent, i.e. 𝑝(𝜷, 𝝉)  =

 𝑝(𝜷) 𝑝(𝝉), then the independent priors can be expressed as:  

                                                       𝜷 ~ 𝑵(𝜷,𝑽)                          (11) 

𝝉 ~ 𝜞(𝒔−𝟐, 𝝂)                                       (12) 
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Multiplying these priors with the likelihood function results in an expression for 

(𝜷, 𝝉|𝒚) that is unfortunately not in the form of a known, analytically defined density 

function. Thus, an analytical solution for the joint distribution for both posterior parameters 

and the predictive distribution for 𝒚∗ is not possible. However, a numerical solution 

procedure using a specialized type of Monte Carlo integration (specifically Gibb’s 

sampling algorithm [69]) is used instead. The conditional posterior distribution for 𝜷 and 

𝝉 can be calculated as:  

(𝜷| 𝝉, 𝒚)~𝑵(�̅�, �̅�)                                                     (13) 

(𝝉| 𝜷, 𝒚)~𝚪(�̅�−𝟐, �̅�)                                                 (14) 

where the hyper–parameters can be calculated as follows: 

�̅� = (𝑽−𝟏 + 𝝉𝑿𝐓𝑿)−𝟏                        (15) 

   �̅� =  �̅�(𝑽−𝟏 + 𝝉𝑿T𝒚)                        (16) 

�̅� = 𝝂 + 𝑁                                        (17) 

�̅� −𝟐 = ((𝒚 − 𝑿𝜷)𝑻 (𝒚 − 𝑿𝜷) + 𝝂𝒔−𝟐)/�̅�  ̅        (18) 

The bar above the parameter denotes the “posterior” value of the hyper–parameters. Gibb’s 

sampling algorithm can be used to sample from the posterior conditionals to find the joint 

posterior distribution (β, τ) numerically (adapted from [70]): 

1) A random value of τ is selected and is used to calculate one realization of �̅� then �̅�.  

2) A value of β is then sampled from (𝜷|𝝉, 𝒚) ~ 𝑁(�̅�, �̅�) 

3) This value is used to sample (𝝉|𝜷, 𝒚) ~ 𝛤 (�̅�−𝟐, �̅�).  

4) The process is repeated until a desired number of samples are achieved and 

typically an initial number of samples considered to be “burn–in” are discarded (10% has 

been used for burn-in). 

Each pair of sampled values of 𝜷 and 𝝉 represents an approximation of the joint 

posterior. The predictive probability of y can be estimated numerically; for each pair of 𝜷 

and 𝝉, a sample for 𝒚∗ can be drawn from the predictive distribution:  

(𝒚∗)~𝑁(𝑿∗𝜷, 𝟏 𝝉⁄ )          (19) 
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where 𝑿∗ are new observations used for prediction and 𝒚∗ are the predicted values. The 

posterior conditional distributions from the Gibb’s sampling routine can then be used as 

the priors for any subsequent models by approximating the numerical posterior results with 

a kernel estimator. Thus, in this way data from each model is used to add information into 

subsequent forms of the model. The hourly (minute) predictions are obtained by averaging 

the samples of the predictive distributions. 

4. Data Collection and Model Implementation 

4.1. Case study I: Vancouver, British Columbia, Canada 

BC Hydro is the third largest utility in Canada and serves 95 percent of British 

Columbia’s population. BC Hydro’s total energy requirements, including losses and sales 

to other utilities and non-integrated areas, were 57,083 GWh in 2012. Hourly control area 

load data can be downloaded from the BC Hydro website [74]. In addition, temperature 

data is publicly available from the Environment Canada website [75]. Figures 15 and 16 

represent the BC load area and temperature variations in 2012 and January 2012 

respectively which shows the strong correlation between load and temperature. 

 

Figure 15. Load and temperature variation in 2012 
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Figure 16. Load and temperature variation during January 2012, Vancouver BC 

 Note that the load data for the whole province is taken. Given the size of the province, 

temperature variation is expected and it is challenging to choose one particular station to 

correlate for the entire province. However, the VANCOUVER HARBOUR CS station was 

chosen for temperature recordings due to a large population in Lower Mainland around 

Vancouver, making it an important site to test this method. 

A preliminary analysis of the hourly power consumption shows that the load is highly 

serially correlated with air temperature and 1-day lag load. This correlation was stronger 

than any other relationship explored (for e.g. 2-day lag load, previous day average load). 

Thus, for this research, a model was sought in the following form: 

𝑃(𝑡) = 𝑓(𝑃(𝑡 − 24), 𝑇(𝑡))                                                   (20) 

where 𝑃(𝑡) is the hourly power consumption at time 𝑡. 𝑃(𝑡 − 24) is the previous day same 

hour load and 𝑇(𝑡) is the temperature at time 𝑡. As mentioned above, the Bayesian 

regression technique was explored to investigate the applicability of updating data–driven 

models for short–term model predictions. The following model was used: 

𝑃 = 𝛽0 + 𝛽1𝑇 + 𝛽2𝑃𝐿                                                        (21) 

where 𝑃 is the observed hourly power consumption, 𝑇 is the hourly air temperature, 𝑃𝐿 is 

the lagged load, and 𝛽0, 𝛽1, 𝛽2 are the regression coefficients.  
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Typically, in a numerical modeling set–up, a portion of the available data is used for model 

training, and the remainder is used for model validation. For this research, a quasi–real–time 

model updating algorithm was used to train and validate the model. First of all, one years’ 

worth of data (2012) was used to calibrate the regression model, while data from the following 

year (2013) was use to validate the model (ℳ1) . Then, two years of data were used to calibrate 

the model (2012 and 2013) and the next year (2014) for validation(ℳ2). Then, three years of 

data were used to calibrate the model (2012, 2013 and 2014) and the first five months of the 

next year (Jan-May 2015) for validation(ℳ3). This structure is used to simulate a real–time 

recursive algorithm, where when more data is available, the model updates its parameters. By 

doing so, any changes in the system are implicitly captured by the data–driven model as each 

subsequent year is added to the dataset. 

4.2. Case study II: Austin, Texas, USA 

For the second case study, power signals recorded from residential houses in Austin, 

Texas by Pecan Street Inc. [76] were collected in which not only the household aggregate 

power but also the individual appliance power demands are monitored at 1-minute 

intervals. The installations began in January 2011. Each house aggregated power signal is 

generally a combination of various appliances in the house, such as EV, AC, furnace, dryer, 

oven, dishwasher, cloth-washer, refrigerator, microwave, bedroom lighting, and bathroom 

lighting, etc. One house was randomly chosen (ID: 22) to test the algorithm’s performance 

in a real-world application. 

Due to the high resolution of recorded signal (1-min), only one month worth of data 

(January 2015) was considered as shown in Figure 17. First of all, the first week was used 

to calibrate the regression model, while data from the second week was use to validate the 

model (ℳ1) using the non-informative prior model. Then, first two weeks of data were 

used to calibrate the model and the third week was used for validation(ℳ2). Finally, the 

first three weeks of data were used to calibrate the model and the last week of January 2015 

was used for validation(ℳ3). These applications use the independent and informative 

priors.  
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Figure 17. Load and temperature variation during January 2015, Austin TX 

 

A model was sought in the following form: 

𝑃(𝑡) = 𝑓(𝑃(𝑡 − 1440), 𝑇(𝑡), 𝑃(𝑡 − 1))                                      (22) 

where 𝑃(𝑡) is the minutely power consumption at time 𝑡. 𝑃(𝑡 − 1440) is the previous day 

same minute load, 𝑇(𝑡) is the temperature at time 𝑡 and 𝑃(𝑡 − 1) is the load consumption 

one minute ago. The following regression model was used: 

𝑃 = 𝛾0 + 𝛾1𝑃𝐿 + 𝛾2𝑇 + 𝛾3𝑃𝐿
′                                              (23) 

where 𝑃 is the observed minutely power consumption, 𝑇 is the minutely air temperature, 

𝑃𝐿 is the previous day same minute load 𝑃𝐿
′ is the previous minute load. 𝛾0, 𝛾1, 𝛾2 , 𝛾3 are 

the regression coefficients.  It is worth mentioning that the sub-hourly (5-minute) outside 

air temperature data are obtained from U.S. Climate Reference Network (USCRN) dataset 

[77]. Linear interpolation was then used to increases the original sampling rate of the 

sequence to a higher rate.   

5. Simulation Results and Discussion 

Three common model evaluation metrics were used to access the adequacy of the results:  
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1. The CC measure between actual and predicted power loads indicates the strength and 

direction of a linear relationship between the forecasted and actual loads and calculated 

by: 

 

𝑐𝑐𝑦𝑦∗ = √1 −
∑ (𝑦𝑖−𝑦𝑖

∗)
2𝑁

𝑖=1

∑ (𝑦𝑖−𝑦)
2𝑁

𝑖=1

                                         (24) 

where 𝑦𝑖 is the ith actual data, 𝑦 is the average of all actual data, 𝑦𝑖
∗ is the ith predicted 

data and 𝑁 is the number of data points. 

2. The Mean Absolute Percentage Error (MAPE) which has been traditionally used to 

measure accuracy in load forecasting. It captures the proportionality between the 

forecast error and the actual load. The MAPE is calculated by: 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑦𝑖−𝑦𝑖
∗

𝑦𝑖
| ×100%𝑁

𝑖=1                                          (25) 

3. The Root Mean Square Error (RMSE) which is used to evaluate the error (differences) 

between the forecasted and actual loads. The general form of the RMSE equation for 

the actual power loads (𝑦𝑖) and the predicted ones (𝑦𝑖
∗) is given by: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−𝑦𝑖

∗)2𝑁
𝑖=1

𝑁
                                                   (26) 

Residual sum of squares (RSS) and RMSE are two common measures of error regression 

and RMSE is simply the square root of the mean RSS. However, RMSE can be more 

intuitive than RSS, since its units are the same as that of the target prediction. In our case, 

the unit is MW or kW and does not grow with the number of data points like the RSS does. 

Figures 18 and 19 depict the histogram of regression coefficients for model ℳ1 for both 

case studies respectively, along with the estimated parameters using Ordinary Least 

Squares (OLS) shown by the red vertical line. Note that the result of OLR method is simply 

the mean value of the Bayesian approach. 
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Figure 18. Histograms of BLR coefficients for BC area baseline for model 𝟏 . Vertical line is the ordinary 

least square results 

 

Figure 19. Histograms of BLR coefficients for Pecan St. household baseline for model 𝓜𝟏. Vertical line is 

the ordinary least square results 

Figure 20. shows the change in the approximate pdf of the three regression coefficients 

and the variance for the  ℳ1,ℳ2,ℳ3 models for BC area baseline.  



 

 

49 

 

Figure 20. Approximate pdf of the variables of three models for BC area baseline 

 

Figure 21. Approximate pdf of the variables of three models for Pecan St. household baseline 
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The value of 𝜎2 (i.e. 1 𝜏⁄ ) decreases with each subsequent year of added data and as 

more data is added the spread of the variance decreases which clearly demonstrates the 

functionality of the Bayesian approach for data analysis. Similar results are shown in 

Figure 21 for Pecan St. Household data.  

Figure 22 shows selected results (first week of January) for the validation data for model 

ℳ1 (2013 data used for validation), ℳ2 (2014 data used for validation) and ℳ3 (2015 

data used for validation). Each subplot shows the trend of the observed and means predicted 

hourly power consumption along with the 10th and 90th percentile of predicted hourly load. 

For all cases, the observed load generally falls within the predicted interval. Note the 

advantage of the Bayesian approach in predicting an interval of the load at a given 

confidence level versus simple standard mean predictions from basic regression models. 

 

Figure 22. Trend plots for validation results of 𝓜𝟏, 𝓜𝟐 and 𝓜𝟑 for the first week of January 2013, 2014 

and 2015 respectively for BC area baseline 

Figure 23 shows selected results of the validation data for a single day for model ℳ1 

(Jan. 8th used for validation), ℳ2 (Jan. 15th used for validation) and ℳ3 (Jan. 22nd used 
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for validation). Each subplot shows the trend of the observed and means predicted hourly 

power consumption along with the 10th and 90th percentile of predicted hourly load. For all 

cases, the observed load falls within the predicted interval. The figure shows that the model 

can capture the observed trend with only one week’s worth of data.  

 

Figure 23. Trend plots for validation results of 𝓜𝟏, 𝓜𝟐 and 𝓜𝟑 for Pecan St. Household 

Generally speaking, the size of the BLR interval is larger for ℳ1, reflecting the relative 

"lack of knowledge" and impact of selecting a non–informative prior for the first model 

while for ℳ2 and ℳ3 this interval decreases as more data is added.  

Recall that the Bayesian approach returns a distribution to describe the unknowns. 

Hence, we can see the uncertainty in our estimates. The histogram of predicted load 

consumption is shown in Figure 24 and Figure 25 for the January 1st, 2013 and 2014 
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respectively along with the actual load. The closer the actual load to the mean value of the 

histogram the better the forecast which is not the case in some hours. It is worth mentioning 

that applying the Bayesian approach does not necessarily improve the forecast for a 

particular time as the regression features are the main drivers for predicted values for each 

model. Specifically, the forecast accuracy improves for the second hour of January 1st in  

ℳ2 compared to ℳ1 while it declines for the 16th hour. However, this result can greatly 

inform and improve a load aggregator’s risk averse bidding strategy.  

 

Figure 24. Histogram for validation results of ℳ1 on Jan. 1st 2013 for each hour of the day. Actual load 

is shown by red line 
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Figure 25. Histogram for validation results of 𝓜𝟐 on Jan. 1st 2014 for each hour of the day. Actual load 

shown by red line 

 

The performance metrics calculated at the mean value of the samples in the BLR interval 

are summarized for each model in Table 9 and 10 for both case studies. As more data is 

added, the performance improves in all cases which confirm the benefits of the Bayesian 

approach in updating the baseline analysis. The MAPE values are consistent with the 

results previously reported in [78] but it does not mean that accuracy improves with the 

larger mean load. It depends on which performance metric is picked to discuss the results. 

For the first case study (total BC Load), the MAPE and RMSE improve 2.7 % and 0.8% 

respectively from ℳ1 to ℳ3 for the validation dataset.  

Note that the results of OLR are simply the same as the result of the non-informative prior 

model; hence, one can see how recursive BLR outperforms OLR technique. 
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Table 9. Performance metrics for BC area aggregate baseline 

BC Area Aggregate 

Baseline 

CC 

measure 

MAPE RMSE[MW] 

Non-informative prior 

Training Result (M1) 

0.956 3.569% 339.25 

Non-informative prior 

Validation Result (M1) 

0.959 3.384% 334.97 

Informative prior 

Training Result (M2) 

0.958 3.476% 337.15 

Informative prior 

Validation Result (M2) 

0.957 3.304% 333.34 

2nd Informative prior 

Training Result (M3) 

0.958 3.42% 335.99 

2nd Informative prior 

Validation Result (M3) 

0.938 3.293% 332.1 

 

For the second case study (Pecan St.), the MAPE and RMSE improve 32 % and 53% 

respectively from ℳ1 to ℳ3 for the validation dataset which means the accuracy improves 

more on lower aggregation level in a Bayesian framework as it is clear from RMSE values.  

Table 10. Performance metrics for Pecan St. Household baseline 

Pecan St. Household 

Baseline 

CC 

measure 

MAPE RMSE[kW] 

Non-informative prior 

Training Result (M1) 

0.93 40.24% 0.25 

Non-informative prior 

Validation Result (M1) 

0.942 43.11% 0.336 

Informative prior 

Training Result (M2) 

0.937 43.22% 0.311 

Informative prior 

Validation Result (M2) 

0.94 34.1% 0.209 

2nd Informative prior 

Training Result (M3) 

0.939 39.18% 0.269 

2nd Informative prior 

Validation Result (M3) 

0.921 29.1% 0.155 
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6. Case Study III 

To further investigate this method, BLR was applied on another case study of 

forecasting water consumption rate of an output storage tank at a municipal water treatment 

facility in U.S.  For confidentiality reasons geographical location and facility name are not 

mentioned. An aggregator regulates the operation of two 700 Hp variable frequency drive 

(VFD) pumps in parallel with three binary pumps at this facility to participate in PJM 

regulation market.  

Following the storage model is shown in Figure 3, for each type of device, there is an 

associated input or output storage, or both.  For example, a pump device may pump water 

out of a reservoir, into a reservoir, or between two reservoirs.  The model is constructed 

such that when the asset is running it will decrease the storage level of the input reservoir, 

and increase the storage level of the output reservoir.  Therefore, varying the electrical 

demand of the device will change storage levels relative to the upper and lower limits of 

storage imposed by the site. For example, upper and lower limits of storage for a pump 

would be reservoir water levels.   

The rate at which the device increases or decreases storage is known as the Asset Rate 

(AR), and varies with the electrical demand of the device.  The asset rate affects both input 

and output storages the same.  Therefore, units of the input and output storage must match 

e.g. two different sized reservoirs could not have storage levels measured by storage tank 

height, but could have storage measured by volume of water.  

There are often external processes or devices that run in parallel with the controlled 

device.  These processes or devices may also cause input or output storage levels to 

change.  The rate at which all external processes and not- controlled devices (combined) 

affect storage levels is known as the Process Rate (PR).  There is a process rate for input 

storage, and a separate process rate for output storage.  Process rates are often not known 

directly and have to be inferred from measurements of storage level and asset rates. 

Aggregator needs to predict when assets will be available to participate in the network, 

and also how much regulation they will be able to provide. It calculates the PR and the 

upper/lower AR for the bid period in four steps: 

1. calculate the PR affecting storage over the last hour 
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2. Average the calculated PR and assumes the averaged PR will remain 

constant until the end of the bid period. This is the forecast that aggregator currently 

uses (persistent model).  

3. Using the averaged PR and the current storage level, calculate upper and 

lower AR that, if held constant, would keep storage levels within storage limits until 

the end of the bid period 

4. The upper and lower calculated AR are compared against the upper and 

lower AR limits for the asset, and the available range of the asset is calculated for 

the bid period (asset rate are proportional to the upper and lower control limits of the 

asset) 

6.1. Data Cleaning and Filtering 

First of all, a reliable historical PR for the output storage tank which basically translates to 

the rate of water consumption and is independent of flow through the pumps is required. 

However, there are some limitations of available data that makes the data preprocessing a 

crucial first step: 

 Uncontrolled Pumps: Asset rate stored in the site Database, exclude the flow through 

the uncontrolled binary pumps, (Aggregator control 2 VFD pumps only. Although the 

information on which Binary pumps operate is obtainable) 

 Changing Storage Limits: The physical storage levels within which we are 

allowed to operate change occasionally. This implies that the process rate needs to be 

calculated in terms of raw values rather than micro %. (Confirm which tank - Input or 

Output Storage tanks or both) 

 Flatlines: Storage levels for output storage tank occasionally appears as a flat line, (a 

constant value appears for a period of time). Attributed to hardware malfunction. The 

longest period with almost acceptable values in 2015 is found to be from May-01-2015 

until the end of August 2015. Data was sampled by average every 5 minutes.  

o •Training set 2015-5-1 00:05:00 --- 2015-08-28 24:00:00 (120 days, 34560 data 

points) 

o •Test set 2015-08-29 00:05:00 --- 2015-08-29   24:00:00   (1 day, 288 data points) 
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Asset rate can be found via appropriate linear transformation from asset electrical 

demand.  

OldRange = (AssetUpperControl-AssetLowerControl); 

NewRange = (AssetUpperRate-AssetLowerRate); 

AR = (((AssetDemand-

AssetLowerControl).*NewRange)./OldRange)+AssetLowerRate; 

The mean of (NewRange./OldRange) array is calculated as 

 3.5×10^5 [𝑙𝑖𝑡/5𝑚𝑖𝑛𝑀𝑊]. The scatter plot of Asset rate vs. Electrical demand shows 

separate straight lines corresponds to different operational status as shown in Figure 

26.  

 

Figure 26. Asset rate vs. asset electrical demand 

 Binary Pumps Switching Transients: When a binary pump switches ON/OFF, a 

momentary high variation in output storage rate of change is observed which directly 

affect the output process rate. For appropriate modeling the data at switching instances 

should be discarded.   

 Unknown spikes in storage: Smoothing is how we discover important patterns in our 

data while leaving out things that are unimportant (i.e. noise). Median filtering 
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(replaces every point of the signal by the median of that point and a specified number 

of neighboring points) is used to perform this smoothing. The goal of smoothing is to 

produce slow changes in value so that it is easier to see trends in our data.  

6.2. Output Process Rate Data Modeling 

The final output PR (after filtering and interpolation) is calculated as the difference 

between output storage tank level rate of change and asset rate and shown in Figure 4. A 

closer look at the dataset reveals a clear diurnal pattern which intuitively makes sense as 

depicted in Figure 27. Same as electricity usage, water consumption follows a similar trend 

each day. It starts decreasing after midnight, as people are sleeping and businesses are 

closed down. After 6-7 AM it starts increasing as people wake up and the business day 

starts until reaches to the maximum around 6-7 PM when people get back home again.  

 

Figure 27. Output process rate at Shire Oaks May-Aug 2015 
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Figure 28. A closer look at the output process rate at Shire Oaks 1-14 May 2015 

 

Note that each day contains 288 data points (every 5-min sample). Moreover, a significant 

difference between weekdays and weekends was not observed. Using a 288-point moving 

average filter, an increase in water consumption is observed as outside air gets warmer 

shown in Figure 29.  

 

Figure 29. Filtered output process rate 
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To have a better understanding of the diurnal variation, we tried to fit different Fourier 

models to the average daily process rate. Figures 30-32 show the average PR along with 

the Fourier fit with one, two and three terms. Clearly, a Fourier model with two terms 

(27) shown in Figure 31 serves the purpose without too much complexity.  

𝑓(𝑥) =   𝑎0 +  𝑎1 ∗ cos (𝑥 ∗
2𝑝𝑖

288
)  +  𝑏1 ∗ sin (𝑥 ∗

2𝑝𝑖

288
)   

+ 𝑎2 ∗ 𝑐𝑜 𝑠 (2 ∗ 𝑥 ∗
2𝑝𝑖

288
)  +  𝑏2 ∗ 𝑠𝑖 𝑛 (2 ∗ 𝑥 ∗

2𝑝𝑖

288
)                                           (27) 

 

Figure 30. Average daily PR and a Fourier fit with one term 

 

Figure 31. Average daily PR and a Fourier fit with two terms 
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Figure 32. Average daily PR and a Fourier fit with three terms 

 

Diurnal variation modeling is necessary but it is not enough as shown in Figure 33 since it 

fails at capturing the trend. Therefore, we need to consider other features to have a decent 

prediction. 

 

Figure 33. Fourier series curve fitting 

6.3. Process Rate Forecast (1-hr ahead) 

For the hour-ahead forecast, the following predictor variables were selected: 
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 Previous hour average process rate 

 Previous hour process rate 

 Previous day process rate 

 Temperature 

 Precipitation 

 

Mathematically the model is expressed as: 

𝑦 ~ 𝑤0 +  𝑤1. 𝑥1 +  𝑤2. 𝑥2 +  𝑤3. 𝑥3 +  𝑤4. 𝑥4 +  𝑤5. 𝑥5 +  𝑤6. 𝑥6 +  𝑤7. 𝑥7 +  𝑤8. 𝑥8 +  𝑤9. 𝑥9 

where 

𝑥1: 𝑃𝑟𝑒𝑣. ℎ𝑜𝑢𝑟 𝑃𝑅  

𝑥2: 𝑃𝑟𝑒𝑣. ℎ𝑜𝑢𝑟 𝑎𝑣𝑔 𝑃𝑅 

𝑥3: 𝑃𝑟𝑒𝑣. 𝑑𝑎𝑦 𝑃𝑅 

𝑥4: 𝑐𝑜𝑠((2 ∗ 𝑝𝑖/288) ∗ 𝑡) 

𝑥5: 𝑠𝑖𝑛((2 ∗ 𝑝𝑖/288) ∗ 𝑡) 

𝑥6: 𝑐𝑜𝑠((4 ∗ 𝑝𝑖/288) ∗ 𝑡) 

𝑥7: 𝑠𝑖𝑛((4 ∗ 𝑝𝑖/288) ∗ 𝑡) 

𝑥8: 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

𝑥9: 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 

 

Initial results show that all variables are statistically significant: 

 

Estimated Coefficients: 

                   Estimate       SE         tStat       pValue    

                   ________    _________    _______    ___________ 

    (Intercept)      6759.4       602.55     11.218     3.8006e-29 

    x1             -0.45672    0.0043328    -105.41              0 

    x2               1.4077    0.0045314     310.66              0 

    x3             0.024583    0.0016336     15.048     5.4389e-51 

    x4              -3037.9       115.99    -26.191    1.5343e-149 

    x5               1108.4       122.57     9.0425     1.6201e-19 

    x6              -3326.8       93.179    -35.703    1.6229e-273 

    x7               435.28       99.477     4.3757     1.2142e-05 

    x8               73.378       15.767     4.6538     3.2719e-06 

    x9              -1583.4       720.47    -2.1978       0.027974 
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However, the Lasso regression result shows that temperature and precipitation do not affect 

the process rate.   

The final forecast of Bayesian Linear Regression model is shown in Figure 34.  

 

Figure 34. Day-ahead output process rate forecast, red line represents the actual value 
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Figure 35. Current process rate calculation vs. Regression (update every 5 min) 

 

Taking the mean value as the output of BLR, the Regression forecast on test set improves 

24% compare to the persistent model as shown in Figure 35. Mean Absolute Error (MAE) 

of regression is 0.019 whereas persistent model MAE is 0.025. (Typically update every 5 

min)

 

Figure 36. Current process rate calculation vs. Regression (1-hr commitment) 
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Aggregator calculates the average PR over the previous hour and assumes it will remain 

constant until the end of the bid period (typically ~ 1-hr commitment). In this case, the 

MAE decreases by 15% as depicted in Figure 36.  

 

Residual analysis on training data highlights that regression outperforms the persistent 

model shown in Figure 37.  

 

Figure 37. Residual probability density function for regression and persistent model 

 

 

7. Summary 

 This paper introduces the idea of using a recursive Bayesian linear regression approach 

for baseline load analysis in a smart grid framework where real-time model prediction is 

of importance for operators and market participants.  

After defining the principle regression equation; for simulation purposes, the available 

data was broken into four smaller data sets. A quasi–real–time Bayesian updating algorithm 

was used to train and validate the model. The first batch of data was used to calibrate the 

regression model, while data from the second batch was use to validate the model (ℳ1) . 

Then, first and second of data were used to calibrate the model and the third batch for 

validation(ℳ2). Then, first, three batches of data were used to calibrate the model and the 
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last batch of data for validation(ℳ3). This structure is used to simulate a real–time 

recursive algorithm, where when more data is available, the model updates its parameters. 

By doing so, any changes in the system are implicitly captured by the data–driven model 

as each subsequent year is added to the dataset. 

The results show that BLR approach provides a very good forecast while including 

forecast uncertainty inherently. As more data is added, the performance improves in all 

cases which illustrate the effectiveness of the Bayesian method and the benefits of 

implementing an online learning algorithm for baseline analysis. 
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Chapter 5: On-line Baseline Load Learning Using Kernel 
Adaptive Filtering 

 

In this chapter, we continue the topic of baseline load forecasting using well-established 

techniques in signal processing. Specifically, due to the advances in Smart Grid 

technologies and other reasons mentioned in the previous chapter, we are interested in 

deploying an online algorithm, i.e., learn from a sequence of signal samples. An adaptive 

filter is a filter that adapts its transfer function to signal property variation over time by 

minimizing an error or loss function that represents how far the filter response deviates 

from ideal behavior and seeks optimal models for the time series. Adaptive filtering is also 

a regression in functional spaces, where the user controls the size of the space by choosing 

the model order. In this context, filtering is the process of sequentially estimating the states 

or parameters of the dynamic system. In contrast with the Bayesian Regression technique, 

the filtering approach does not require definition of a principle equation to start with or 

having historical data to train the model first. Furthermore, Bayesian learning becomes 

complicated due to the sequential Monte Carlo iterations.  The materials in the following 

introductory section summarizing machine learning are informed by the excellent overview 

presented by Liu et al [79].  

1. What is Learning? Why Online Learning? 

Our primary interest is to study a method that facilitates our learning from data. The term 

data is taken to mean measurements that come from the real world. Suppose we observe a 

data set 𝔇, which has an explicit and causal input-output structure. We want to utilize the 

data to learn the “governing law” (some authors refer to this as the underlining process, 

target function, target distribution, target operator, or supervisor’s operator) [80] that is 

responsible for how the data was produced. Such a desire to learn is quite natural, because 

understanding this governing law would greatly facilitate reliable prediction of what will 

occur next or, stated in more formally, facilitate us to infer something outside 𝔇. As a 

matter of fact, to infer what will occur outside 𝔇 is the central goal of every learning 

process. At a glance, learning the governing law from a given set of data appears to be a 

hard, if not impossible mission. 
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Historically, the basic assumption in the machine learning framework is that we have 

collected a set of observations which we called training data, and the purpose of learning 

is to uncover the governing law that is responsible for the production of the data observed. 

It is constructed a priori and learning stops when we fully process the data set. Depending 

on the structure of the training data, machine learning methods may be categorized as 

supervised and unsupervised learning. Despite its wide applicability, there are two issues 

associated with it: 

 Application conditions may be non-stationary, i.e. the model must be continuously 

adapting to track changes in the underlying system.  

 In many important applications, data arrives in real time, one sample at a time, so on-

line learning methods are necessary. This is called sequential learning. 

One famous form of sequential learning is Bayesian learning as introduced in the previous 

chapter. It has a close connection to the Kalman Filter in adaptive filtering theory but is 

complicated for arbitrary data distributions due to the sequential Monte Carlo methods 

required. 

2. Linear Adaptive Filters 

Filtering is a regression in a functional space (time series). The adaptive capability relies 

on error-correction learning. Consider the filtering structure depicted in Figure 38. 

 

Figure 38. Basic structure of a linear adaptive filter (adapted from [79]) 

 

An input signal vector 𝑢(𝑖) applied to the filter at time 𝑖, producing the response 𝑦(𝑖). The 

response is subtracted from the desired response 𝑑(𝑖) to obtain the estimation error 

vector 𝑒(𝑖). The error signal is used to produce an adjustment to the weight vector 𝑤(𝑖) of 
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the filter denoted by ∆𝑤(𝑖) = 𝐺(𝑖)𝑒(𝑖). In another words, the current estimate of 𝑤(𝑖) is 

computed in terms of the previous estimate and an adjustment. The adjustment is the result 

of a minimization operation shown in the bottom block of Figure 38. 𝑒(𝑖) is the model 

prediction error arising from the use of 𝑤(𝑖 − 1) and 𝐺(𝑖) is the gain term.  

𝑤(𝑖) = 𝑤(𝑖 − 1) + ∆𝑤(𝑖)                                               (1) 

Starting with an initial weight 𝑤(0), one possible weight control mechanism can be 

defined as a cost function 𝐽(𝑖):  

𝐽(𝑖) = Ε[𝑒2(𝑖)],    𝑖 = 1,2,3, …                                            (2) 

which also traces the learning curve of the adaptive filtering process. If the learning curve 

(i.e. error progression over time) is convergent, 𝐽(𝑖) reaches to a relatively steady-state 

value with an increasing number of iterations. In this case, the adaptive filter is convergent 

in the mean-square-error sense. The learning curve is a plot of root mean square error 

(RMSE) versus the number of iterations 𝑖. 

3. Least-Mean-Square (LMS) Algorithm  

The LMS algorithm operates by minimizing the instantaneous error term as:  

𝐽(𝑖) =
1

2
𝑒2(𝑖)                                                           (3) 

In this case and following the definitions in the last section we can calculate the optimal 

weight at iteration 𝑖. Prediction Error 𝑒(𝑖) is defined by: 

𝑒(𝑖) = 𝑑(𝑖) − 𝑦(𝑖) = 𝑑(𝑖) − 𝑤(𝑖 − 1)𝑇𝑢(𝑖)                       (4) 

Following a version of the gradient descent method, the instantaneous gradient vector is 

calculated as:  

𝜕 𝐽(𝑖)

𝜕 𝑤(𝑖−1)
= −𝑒(𝑖)𝑢(𝑖)                                                (5) 

Thus, the adjustment ∆𝑤(𝑖) is equal to  𝜂𝑒(𝑖)𝑢(𝑖) where 𝜂 is the step-size parameter. 

𝑤(𝑖) = 𝑤(𝑖 − 1) + 𝜂𝑒(𝑖)𝑢(𝑖)                                         (6) 

At iteration 𝑖, given point 𝒖∗, the output of the system is 𝑓(𝒖∗) = 𝒖∗𝑇𝒘(𝒊) 
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The LMS algorithm is model independent and robust. For best performance, the step-size 

parameter 𝜂 should be relatively small to ensure convergence, but not too small such that 

the algorithm converges very slowly. The overall algorithm is given below: 

 

Algorithm 1. The least-mean-square algorithm 

Initialization 

𝒘(0) = 0, choose 𝜂 

Computation 

while {𝒖(𝑖), 𝑑(𝑖)} available do 

     𝑒(𝑖) = 𝑑(𝑖) − 𝑤(𝑖 − 1)𝑇𝑢(𝑖) 
     𝑤(𝑖) = 𝑤(𝑖 − 1) + 𝜂𝑒(𝑖)𝑢(𝑖) 
end while 

 

4. Recursive Least-Square (RLS) Algorithm 

The RLS algorithm tries to minimize the sum of the squared prediction errors up to the 

current time, whereas the LMS algorithm only minimizes the instantaneous prediction error 

at every iteration.  Mathematically, the cost function of the RLS algorithm can be expressed 

as: 

𝐽(𝑖) = ∑ [𝑑(𝑗) − 𝒘𝑇𝒖(𝑗)]𝑖
𝑗=1                                          (7) 

To derive the RLS algorithm, recall that the prediction error (4) is the new information 

supplied to the algorithm at iteration 𝑖 and the adjustment to the weight vector is denoted 

by ∆𝑤(𝑖) = 𝐺(𝑖)𝑒(𝑖) where 𝐺(𝑖) is the gain vector. In RLS, the gain vector is defined by  

𝑮(𝑖) = 𝑷(𝑖)𝒖(𝑖)                                                     (8) 

where 𝑷(𝑖) is the state - error correlation matrix . In fact, the matrix 𝑷(𝑖) is the inverse 

of the time-averaged correlation matrix 𝑹(𝑖) of the input vector 𝒖(𝑖), as given by: 

𝑃(𝑖) = 𝑅−1(𝑖)                                                         (9) 

𝑅(𝑖) = ∑ 𝑢(𝑗)𝑢𝑇(𝑗)𝑖
𝑗=1                                          (10) 

The convergence rate of the RLS algorithm is typically an order of magnitude faster than 

LMS but is not model independent, i.e., the convergence rate of RLS depends on the order 

of the model. However, LMS is a simpler algorithm compared to RLS, as it propagates the 

prediction error one iteration at the time, while RLS propagates the error covariance matrix. 
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The computational complexity of LMS scales linearly with the dimension of the weight 

vector, whereas RLS scales quadratically. 

5. Nonlinear Adaptive Filters 

To overcome the limited computational power of linear filters, we need to build a nonlinear 

adaptive filter that can model any continuous input-output mapping 𝑦 = 𝑓(𝑢) such that: 

𝑓𝑖 = 𝑓𝑖−1 + 𝐺(𝑖)𝑒(𝑖)                                                 (11) 

Nonlinear solutions either append nonlinearities to the linear filters or require the 

availability of all data (Volterra series, Neural Networks), typically rendering them 

impractical.  

 

Figure 39. Basic structure of a nonlinear adaptive filter (adapted from [79]) 

Provided that the adaption algorithm is written as an inner product, we can take advantage 

of the “kernel trick” detailed below. Kernel adaptive filters also offer a very interesting 

alternative to neural networks, as they are universal approximators with no local minima. 

They also have moderate complexity in terms of computation and memory. The general 

structure of a nonlinear adaptive filter is depicted in Figure 27. 

5.1. The Kernel Trick 

𝐾(𝒙, 𝒙′) is said to be a valid kernel function if it is symmetric and positive semidefinite, 

i.e. 𝐾(𝒙, 𝒙′) = 𝐾(𝒙′, 𝒙), and the matrix: 

[
𝐾(𝑥1, 𝑥1) ⋯ 𝐾(𝑥1, 𝑥𝑁)

⋮ ⋱ ⋮
𝐾(𝑥𝑁 , 𝑥1) ⋯ 𝐾(𝑥𝑁 , 𝑥𝑁)

] 
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is positive semidefinite for any 𝑥1, … , 𝑥𝑁, which is known as Mercer’s condition. 

Commonly used kernels include ‘polynomial’ kernels of the form  𝐾𝑄(𝒙, 𝒙
′) =

(𝒙𝑇𝒙′ + 𝑐)𝑄 with 𝑐 > 0 and 𝑄 a positive integer, and ‘Gaussian’ kernels of the form: 

𝐾𝐺(𝑥, 𝑥
′) = 𝑒−‖𝑥−𝑥

′‖
2
/2𝜎2                                              (12) 

Given a basic feature space 𝜒, a kernel function induces a dilated feature space 𝒵 such that 

computing an inner product in space 𝒵 becomes straightforward.  

For example, consider a kernel 𝐾(𝒙, 𝒙′) = (𝒙𝑇𝒙′ + 1)2 for a two-dimensional feature 

space 𝜒 = ℝ2 with 𝒙 = [𝑥1 𝑥2]
𝑇 and 𝒙′ = [𝑥1′ 𝑥2′]

𝑇. We can write: 

𝐾2(𝒙, 𝒙
′) = (𝒙𝑇𝒙′ + 1)2 = 1 + 2𝑥1𝑥1

′ + 2𝑥2𝑥2
′ + 𝑥1

2𝑥′1
2 + 2𝑥1𝑥1

′𝑥2𝑥2
′ + 𝑥2

2𝑥′2
2   (13) 

If we consider a dilated feature space 𝒵 with: 

𝔃 = Φ2(𝒙) = [1     √2𝑥1     √2𝑥2     𝑥1
2      √2𝑥1𝑥2    𝑥1

2]                    (14) 

then we have 𝔃𝑇𝔃′ = (𝒙𝑇𝒙′ + 1)2 = 𝐾2(𝒙, 𝒙
′). Similarly, a Qth-order polynomial kernel 

𝐾𝑄(𝒙, 𝒙
′) = (𝒙𝑇𝒙′ + 1)𝑄 induces a Qth-order feature space 𝒵 such that 𝔃𝑇𝔃′ =

(𝒙𝑇𝒙′ + 1)𝑄 = 𝐾𝑄(𝒙, 𝒙
′). Furthermore, note that for a scalar feature space 𝜒 we can write 

the Gaussian kernel with 𝜎 = 1/√2 as: 

𝐾𝐺(𝑥, 𝑥
′) = 𝑒−‖𝑥−𝑥

′‖
2

= 𝑒−𝑥
2
𝑒−𝑥

′2
∑

2𝑘𝑥𝑘𝑥′𝑘

𝑘!

∞
𝑘=0                          (15) 

Hence a Gaussian kernel induces an infinite-dimensional feature space 𝒵 such that: 

 𝔃𝑇𝔃′ = 𝑒−‖𝑥−𝑥
′‖
2
/2𝜎2 = 𝐾𝐺(𝒙, 𝒙

′)                                     (16) 

where 𝜎 specifies the width of the Gaussian. In the context of Support Vector Machines 

(SVM) [92], a large 𝜎 encompasses many neighbors and leads to a smooth boundary. As 

𝜎 decreases, the boundary becomes more curved. A small value of  𝜎 usually leads to over-

fitting. An SVM is a classifier defined by a separating hyper-plane. In other words, given 

labeled training data (supervised learning), the algorithm outputs an optimal hyper-plane 

which categorizes new examples. 

In summary, a valid kernel 𝐾(𝒙, 𝒙′) induces a dilated feature space 𝒵 in which  

 𝔃𝑇𝔃′ = 𝐾(𝒙, 𝒙′)                                                      (17) 
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Note that using the kernel trick to compute the inner product in space 𝒵 is quite economical, 

especially when both the dimension of the basic feature space 𝜒 and order of the nonlinear 

transformation Q are not small.  

6. Kernel Adaptive Filtering (KAF) 

When the mapping between input signal vector and desired response is highly nonlinear, 

as in the case of baseline load forecasting, an algorithm capable of learning arbitrary 

nonlinear mapping is of interest. Kernel-based mapping can be used to transform the input 

vector 𝒖(𝑖)  into a high dimensional feature 𝝋(𝒖(𝑖)). Using the “Kernel Trick” as a basic 

building block, many kernel-based versions of popular LMS and RLS algorithms have been 

proposed [81-87]. If we define a kernel expansion as: 

𝑓(𝑥) = ∑ 𝛼𝑖𝐾(𝑥𝑖, 𝑥)
𝑁
𝑖=1                                                 (18) 

Kernel recursive least-squares (KRLS) algorithms calculate the coefficients 𝛼𝑖 by solving 

a least-squares problem which involves the inversion of a kernel matrix whose dimensions 

depend on the amount of stored data M. Therefore, they have quadratic computational and 

memory complexity in terms of M. On the other hand, Kernel least-mean squares (KLMS) 

algorithms use stochastic gradient descent to obtain 𝛼𝑖, and they have linear complexity. 

For these reasons, we focus mainly on this latter type of filter in this chapter. 

KAF methods suffer from increasing complexity as the number of kernels grows with the 

amount of data. To handle this issue, several different fixed-budget approaches can be 

applied to limit the amount of data that will be stored and curtail the growth of the filter 

structure. One can find the following algorithms in the literature: 

• Kernel Least-Mean-Square [83] 

• Fixed-Budget Kernel Recursive Least-Squares [88] 

• Kernel Recursive Least-Squares Tracker [86] 

• Quantized Kernel Least Mean Squares [85] 

• Approximate Linear Dependency Kernel Recursive Least-Squares [82] 

• Sliding-Window Kernel Recursive Least-Squares [89] 

• Naive Online Regularized Risk Minimization Algorithm [81] 

• Random Fourier Feature Kernel Least Mean Square algorithm [90] 
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• Extended Kernel Recursive Least Squares [91] 

• Kernel Affine Projection algorithm with Coherence Criterion [84] 

• Kernel Normalized Least-Mean-Square algorithm with Coherence Criterion [84] 

• Kernel Recursive Least-Squares algorithm with exponential weighting  [92] 

• Multi-kernel Normalized Least Mean Square algorithm with Coherence based 

Sparsification [87] 

• Parallel HYperslab Projection along Affine Sub-Space algorithm [93] 

• Fixed-budget kernel least mean squares algorithm [94] 

• Leaky Kernel Affine Projection Algorithm [95] 

• Normalized Leaky Kernel Affine Projection Algorithm [95] 

• Kernel Affine Projection Subgradient Method [96] 

• Kernel Least Mean Squares algorithm with Coherence-Sparsification criterion and 

L1-norm regularization and with active L1-norm regularization [97] 

• Mixture Kernel Least Mean Square algorithm [98] 

It is worth mentioning that due to the nature of adaptive filter implementation in the sense 

of having an embedded time delay (filter order selection), this approach is useful for very 

short-term baseline forecasting.  

Moreover, Support Vector Machines, KAF and other models employing the kernel trick do 

not scale well due to the number of training samples and large magnitudes or a large 

number of features in the input space. Hence, it is often helpful to normalize the training 

data. 

7. Kernel Least Mean Square Algorithm  

Following the steps mentioned in the LMS algorithm and considering the fact that we have 

transformed the input vector into a high dimensional feature space 𝝋(𝒖(𝑖)), one can write: 

𝜔(0) = 0                                                           (19) 

𝑒(𝑖) = 𝑑(𝑖) − 𝜔(𝑖 − 1)𝑇𝜑(𝑢(𝑖))                                        (20) 

𝜔(𝑖) = 𝜔(𝑖 − 1) + 𝜂𝑒(𝑖)𝜑(𝑢(𝑖))                                        (21) 

𝜔(𝑖) = [𝜔(𝑖 − 2) + 𝜂𝑒(𝑖 − 1)𝜑(𝑢(𝑖 − 1))] + 𝜂𝑒(𝑖)𝜑(𝑢(𝑖))                     (22) 

𝜔(𝑖) = 𝜔(𝑖 − 2) + [𝜂𝑒(𝑖 − 1)𝜑(𝑢(𝑖 − 1)) + 𝜂𝑒(𝑖)𝜑(𝑢(𝑖))]                     (23) 
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𝜔(𝑖) = 𝜂 ∑ 𝑒(𝑗)𝑖
𝑗=1 𝜑(𝑢(𝑗))     (𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝜔(0) = 0)                          (24) 

The weight estimate after i-step of training is expressed as a linear combination of all 

previous and currently transformed input vectors, weighted by the prediction error and 

scaled by step-size. Moreover, given point 𝑢∗ at iteration 𝑖, the output of the system can 

be expressed in terms of inner products between transformed inputs. 

𝜔(𝑖)𝑇𝜑(𝑢∗) = [𝜂 ∑ 𝑒(𝑗)𝑖
𝑗=1 𝜑(𝑢(𝑗))

𝑇
] 𝜑(𝑢∗) = 𝜂 ∑ 𝑒(𝑗)𝑖

𝑗=1 [𝜑(𝑢(𝑗))
𝑇
𝜑(𝑢∗)]     (25) 

Using the Kernel trick we can write the filter output as: 

𝜔(𝑖)𝑇𝜑(𝑢∗) = 𝜂 ∑ 𝑒(𝑗)𝑖
𝑗=1 𝐾(𝑢(𝑗), 𝑢∗)                               (26) 

If we define 𝑓𝑖 as the estimate of the non-linear input-output mapping at iteration 𝑖, we can 

write the following sequential learning rule: 

 𝑓𝑖−1(𝑢(𝑖)) = 𝜂 ∑ 𝑒(𝑗)𝑖−1
𝑗=1 𝐾(𝑢(𝑗), 𝑢(𝑖))                                (27) 

𝑒(𝑖) = 𝑑(𝑖) − 𝑓𝑖−1(𝑢(𝑖))                                           (28) 

𝑓𝑖 = 𝑓𝑖−1 + 𝜂𝑒(𝑖)𝐾(𝑢(𝑖), . )                                          (29) 

which means the KLMS defines a new Kernel for the new training data with input 𝑢(𝑖) as 

the center and 𝜂𝑒(𝑖) as the coefficient.  

Algorithm 2. The Kernel least-mean-square algorithm 

Initialization 

Choose step-size and Kernel 

𝑎1(1) = 𝜂𝑑(1), 𝒞(1) = {𝑢(1)}, 𝑓1 = 𝑎1(1)𝐾(𝑢(1), . ) 
Computation 

while {𝒖(𝑖), 𝑑(𝑖)} available do 

     𝑓𝑖−1(𝑢(𝑖)) = 𝜂 ∑ 𝑎𝑗(𝑖 − 1)
𝑖−1
𝑗=1 𝐾(𝑢(𝑖), 𝑢(𝑗)) %compute the output 

     𝑒(𝑖) = 𝑑(𝑖) − 𝑓𝑖−1(𝑢(𝑖)) %compute the error 

     𝒞(𝑖) = {𝒞(𝑖 − 1), 𝑢(𝑖)} % store the new centre 

     𝑎𝑖(𝑖) = 𝜂𝑒(𝑖) % compute and store the new coefficient 

end while 

 

It has been proven mathematically that KLMS does not need explicit regularization [83]. 

However, Kivinen et al. [81] proposed a similar algorithm called Naive Online Regularized 

Risk Minimization Algorithm (NORMA) by differentiating the regularized function:  

min
𝑓
𝐽(𝑓) = ∑ |𝑑(𝑖) − 𝑓(𝑢(𝑖))|2𝑛

𝑖=1 + 𝜆‖𝑓‖2                             (30) 
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with 𝜆 as the regularization parameter. The result leads to the following update rule: 

𝑓𝑖 = (1 − 𝜂𝜆)𝑓𝑖−1 + 𝜂𝑒(𝑖)𝐾(𝑢(𝑖), . )                                    (31) 

The scaling factor (1 − 𝜂𝜆) compared to the KLMS estimate scales down the training data 

with small coefficients exponentially. Since this algorithm imposes a memory loss 

mechanism; it is also termed a Leaky KLMS. The regularization however introduces a bias 

in the solution which degrades its performance compared to KLMS [99]. 

It is also straightforward to obtain a Normalized KLMS algorithm based on its counterpart 

NLMS. The only difference stems from weight update equation as: 

𝜔(𝑖) = 𝜔(𝑖 − 1) +
𝜂

𝜀+‖𝜑(𝑢(𝑖))‖
2 𝑒(𝑖)𝜑(𝑢(𝑖))                            (32) 

where 𝜀 + ‖𝜑(𝑢(𝑖))‖
2
 is the normalizing term and 𝜀 is the small positive number to 

prevent division by zero. Note that using the definition of the norm in the feature space, we 

have: 

‖𝜑(𝑢(𝑖))‖
2
=< 𝜑(𝑢(𝑖)), 𝜑(𝑢(𝑖)) >= 𝐾(𝑢(𝑖), 𝑢(𝑖))                     (33) 

8. Computer Simulation 

In the following, the aforementioned algorithms were selected to evaluate and compare 

kernel adaptive filtering algorithms in the context of baseline load forecasting. The Kernel 

Adaptive Filtering Toolbox (KAFBOX) [100] was used as a benchmarking tool. The same 

dataset (household aggregate load consumption signal from the Pecan St. project and BC 

aggregate load in 2012) mentioned in previous chapters is used for the case studies.  

First of all, the convergence behavior of the LMS and KLMS algorithms is examined. A 

learning curve is used to compare the performance of these two filters. The 2012 BC 

aggregate load dataset contains 8760 data points. The first 8000 points are the training data 

and the last 760 points are the testing data. The time delay is set to be 10 and the kernel 

parameter is fixed at one. To produce the learning curves, a segment of 800 samples is used 

for training and another 200 samples as the test data. At each iteration, the RMSE is 

computed on the test set as a result of the filter obtained in the training set. As shown in 

Figure 28, the KLMS outperforms the LMS by converging to a smaller RMSE because of 
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its nonlinear structure. Note the declining trend of RMSE for KLMS as it progresses over 

time.   

 

Figure 40. LMS and KLMS learning curves 

Furthermore, different training data sizes are used to investigate how the size of the training 

dataset affects the KLMS performance. As shown in Table. 11, KLMS performs slightly 

better with a larger number of training data points. However, it negatively affects the 

computational time. Theoretical analysis shows that training data set does not have an 

effect on the regularization of KLMS [1]. 

To study the effect of the regularization parameter on the performance of NORMA, one 

needs to plot the RMSE vs. different values of the regularization parameter. Figure 29 

shows that mean and standard deviation of RMSE tends to increase for higher values of 

the regularization parameter.  
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Table 11. RMSE for different testing data sizes for LMS and KLMS 

Algorithm Testing RMSE 

LMS (N=500) 0.062622+/-0.0007284 

LMS (N=800) 0.054538+/-0.00066083 

LMS (N=1000) 0.048098+/-0.00061448 

KLMS (N=500) 0.054555+/-0.0011731 

KLMS (N=800) 0.046518+/-0.00059118 

KLMS (N=1000) 0.041922+/-0.001003 

 

 

Figure 41. Effect of regularization parameter on RMSE mean and standard deviation 

 

KLMS are implemented for different values of step size, kernel parameter, and 

regularization parameter. The RMSE calculated after 1000 data point for both data sets. 

The results are shown in Table 12 along with the Figure 28 for the BC aggregate load 

data (𝜂 = 0.5, 𝑘𝑒𝑟𝑛𝑒𝑙𝑝𝑎𝑟 = 10) and Table 13 along with Figure 29 for Pecan St. data set. 
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Table 12. KLMS comparison for different value of step size and kernel parameter (BC Load) 

Step size (𝜂) Kernel parameter RMSE 

0.1 1 0.06 

0.5 1 0.05 

1 1 0.04 

0.5 5 0.04 

0.5 10 0.04 

 

 

 

 

Figure 42. Prediction vs. actual time series data for BC aggregate load 2012 
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Table 13. KLMS comparison for different value of step size and kernel parameter (Pecan St) 

Step size (𝜂) Kernel parameter RMSE 

0.1 1 0.18 

0.5 1 0.13 

1 1 0.14 

0.5 5 0.13 

0.5 10 0.13 

 

Figure 43. Prediction vs. actual time series data for an aggregate household in Pecan St. 

 

9. Summary 

When the mapping between input signal vector and desired response is highly nonlinear, 

as in the case of baseline load forecasting, an algorithm capable of learning arbitrary 

nonlinear mapping is of interest. Kernel-based mapping can be used to transform the input 

vector into a high dimensional feature. Using the “Kernel Trick” as a basic building block, 

one can reduce the filtering process to an efficient vector multiplication. In this chapter, we 

investigate the potential of Kernel Adaptive Filtering for customer baseline load 
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forecasting using two case studies employed in previous chapters. The computer 

simulations show promising results however some issues need to be considered. Due to the 

nature of adaptive filter implementation in the sense of having an embedded time delay 

(filter order selection), this approach is useful for short term baseline forecasting.  

Moreover, kernel trick does not scale well due to the number of training samples and large 

magnitudes or many features in the input space. Hence, it is often helpful to normalize the 

data first. Tuning of filter parameters is required to achieve the best results. 
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Chapter 6: Conclusions and Future Work 

1. Summary & Discussion 

The research presented in this thesis provides novel ways to address demand response 

scheduling and assessment. In chapter 3, a stochastic optimization model has been used to 

schedule energy and reserve provided by generation and demand-side resources. It is 

necessary to adopt stochastic approaches for decision making under uncertainty, such as in 

the case of clearing electricity markets with high levels of wind generation. This permits 

the scheduling of loads and services in coordination with the system operator, thus 

enhancing the power system’s efficiency and security while reducing its environmental 

impact. The proposed stochastic model is formulated as a two-stage SMIP problem. 

Several case studies are conducted and the results presented demonstrate the benefits of 

customers’ response for ISO. Utilizing a higher share of DR reserve will increase the 

overall system welfare and decrease the wind power spillage. This facilitates a higher share 

of renewable energy integration in the power system. For example, when demand side 

reserve costs are 30 $/MWh, on average 2.3 MW of wind power production is spilled 

compared to 1.46  MW wind power spillage when the LA reserve cost reduced to $5/MWh. 

Moreover, DR improves commitment schedules of generating units and decreases marginal 

cost variations. DR can potentially benefit consumers by offering cheaper electricity while 

facilitating a higher share of renewable energy sources in the power system.  

Chapter 4 introduces the idea of using a recursive Bayesian linear regression approach 

for baseline load analysis in a smart grid framework where real-time model prediction is 

of importance for operators and market participants. After defining the principle regression 

equation; for simulation purposes, the available data was broken into four smaller data sets. 

A quasi–real–time model updating algorithm was used to train and validate the model. The 

first batch of data was used to calibrate the regression model, while data from the second batch 

was use to validate the model (ℳ1) . Then, first and second of data were used to calibrate the 

model and the third batch for validation(ℳ2). Then, first, three batches of data were used to 

calibrate the model and the last batch of data for validation(ℳ3). This structure is used to 

simulate a real–time recursive algorithm, where when more data is available, the model updates 

its parameters. By doing so, any changes in the system are implicitly captured by the data–

driven model as each subsequent year is added to the dataset. 
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 The results show that BLR approach provides a very good forecast of the hourly/minute 

load. Forecasting accuracy as measured by RMSE improves with lower mean load while 

relative error (MAPE) decreases higher levels of aggregation. Additionally, the Bayesian 

approach offers an integrated solution for estimation with uncertainty. As more data is 

added, the performance improves in all cases which illustrate the effectiveness of the 

Bayesian method and the benefits of implementing an online learning algorithm for 

baseline analysis. 

In chapter 5, Kernel adaptive filtering was proposed as an on-line learning algorithm for 

short time baseline load forecasting which can be used by utilities or aggregators. KAF is 

useful because the model can continuously adapt to track changes in the underlying system 

as new data arrives. To evaluate and compare Kernel Least mean Squares vs. Ordinary 

Least Mean Square, different simulation results were performed on two test cases 

introduced in Chapter 4: BC aggregate load and a single house from Pecan St. project. 

KLMS outperforms the LMS by converging to a smaller RMSE because of its nonlinear 

structure. The results are promising, but one needs to consider fixed-budget approaches to 

limit the amount of data that will be stored and curtail the growth of the filter structure. 

Furthermore, for each dataset careful investigation is required for tuning the filter 

parameters to achieve the best result.  

2. Future possibilities for current research work 

Despite various advantages offered by the hourly DR providing reserve shown in chapter 

3, there are several open issues that can be addressed. Stochastic optimization models such 

that Load Aggregator provides frequency regulation can be included. Uncertainty in load 

was not considered. Thus, the total electricity load may not be the same as expected. 

Another interesting venue to investigate is studying optimization platform for DR 

aggregator in terms of various contracts like load curtailment, load shifting, peak demand 

management, etc. It is worth mentioning that due to the power flow constraints in the 

formulation, the computational complexity does not increase linearly as we increase the 

number of nodes (depends on how many cross connections added). Future studies on the 

complexity analysis of the formulation can be pursued.  
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The Bayesian method introduced in chapter 4 can be applied to other models, like support 

vector regression and Neural Networks. It would be interesting to investigate the 

performance of those methods compared to Bayesian Linear Regression. A comparison 

between our proposed approach and day-matching CBL method being employed by 

utilities needs to be done in the presence of real demand response events.   

This topic could also be expanded for peak demand forecasting. For aggregators that 

provide services such as peak demand management for their customers, peak demand value 

and temporal forecasting is of great importance. Moreover, in most markets like Ontario’s 

IESO, large industrial consumers (customers with an average peak demand of greater than 

5 MW annually) pay a $/kWh charge based on a percentage of their contribution to the top 

five Ontario peaks (i.e. peak demand factor) over a 12-month base period. There is a big 

value add if an aggregator is able to predict when peak days occur and manage demand 

during events. 

The purpose of chapter 5 was to lay the groundwork for using online learning methods in 

the context of consumer baseline analysis. Our goal was to introduce the concept of 

employing Kernel Adaptive Filtering in short-term forecasting. In context of DR, one can 

practically deploy this method to predict baseline in services like frequency regulation due 

to short duration of this market. However, Further studies and complete implementation of 

other sequential learning algorithms like Kernel recursive least squares are required to be 

able to conduct a thorough comparison in chapter 5.  

In most cases for baseline estimation utilities are interested to know the baseline for the 

last month to set the financial settlements. An important note is that for baselining case 

studies in this thesis; a data set where DR was dispatched was not available. In practice, 

dispatching DR will change the load profile and cannot be used for future baseline 

calculation. A simple solution is to discard those time stamps where a DR event was 

dispatched.  

As we are seeing larger penetration level of demand dispatch (not only as a contingency 

measure only), new methods are needed to compensate end-use customers. Historical 

baseline estimation to calculate the demand reduction is not the answer since the load 

profile is completely going to change. This thesis was an attempt to tackle this problem 
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using (pseudo) real time methods for baseline calculation. This also addresses one of the 

biggest hesitation of utilities around DR in terms of dispatchability. 
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Appendix A: Customer Baseline Load (CBL) Calculation in 
NYISO 

Following are the steps for calculating the CBL: 

Average day CBL for weekdays: 

Step 1: Establish the CBL window:   Beginning the day (This day not included)  prior to 

the event date, select hourly peak data for last 30 days only for those hours that cover the 

event for which the CBL  is being calculated. Multiply the highest peak load value by 0.25 

to calculate a seed value. For example, if the event has been called on 9 October from 4 

PM to 7 PM then we should consider the peak load of each hour between 4 PM to 7 PM 

for last 30 days starting from 7 October. 

Now within the selected 30 days exclude the data for days when there was an NYISO 

defined holiday or any day and also the day prior when NYISO called an SCR/EDRP event 

or any day and also the day prior when resources DADRP curtailment bid was accepted in 

DAM. 

For the remaining days, calculate the simple average of the resource's actual usage for the 

hours for which the CBL is being calculated. Now if this average value is less than the 

value of step 1 (Highest Peak * 0.25) than exclude that day. 

If the number of days remaining is less than 10 but not less than 5 than continue similar 

calculation starting from step 2 and take beginning the day as the day before the current 

beginning day (so 7-1=6 October as the beginning day) to select last 30 days. The process 

continues till we have 10 days for the CBL window. Please be noted that if in the first 

round of calculation the remaining number of days are less than 5 than call NYISO for 

assistance. 

Step 2: Establish the CBL basis for weekdays: Identify the 5 days from the CBL window 

to be used to develop CBL values for each hour of the event. To select 5 days from the 

CBL window rank the days according to their average daily event period usage level and 

select top 5 days with the highest average.  
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Step 3: Hourly average day CBL values for the event: For the selected 5 days from the 

CBL window, compute the CBL as the simple average of the hourly loads for those hours 

that cover the event for which the CBL is being calculated. 

Average day CBL for weekend days: 

Calculation procedures are very much same like of weekdays except for following changes: 

Step1: Establish the CBL window: CBL window comprises of most recent 3 like 

weekend days and, there are no exclusions for holidays or event days.  

Step 2: Establish the CBL basis for weekends: For each of the selected 3 days, calculate 

daily average of the values of the hours that corresponds to the event hours. Now rank the 

days according to their Average Daily Event Period Usage level. Eliminate the day with 

lowest average value. Thus Weekend CBL basis has only 2 days. 

Step 3: Hourly average day CBL values for event: For each hour of the event, the CBL 

value is average of Load in that hour in the two days that comprise the CBL basis 

Adjusted Customer Base Line Load 

Step 1: Calculate the Average Day CBL values: Calculate the Average Day CBL values 

for each hour of the event period as described in the previous 'Customer Base Line Load' 

section. 

Step 2: Calculation of Final Event Adjustment Factor: The hourly average day CBL 

values are multiplied by this factor. The calculation involves following steps: 

Calculate Adjustment Basis Average CBL  

It is simply the average of the usages of the two hour period beginning with the start of the 

hour that is four hours prior to the commencement of the event through the end of the hour 

three hours prior to the event or in other words the two hours (also termed as adjustment 

period) prior to the notification, over a period of 5 days of selected from the CBL window. 

For example, if the event notification is sent at 10 am than Adjustment Basis Average CBL 

is the average of usages of hours ending 8 and 9, for the 5 days selected out of CBL 

window. 

Calculate Adjustment Basis Average Load 
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The Adjustment Basis Average Load is the simple average of the resource’s load over the 

two-hour adjustment period on the event day 

Calculate Gross Adjustment Factor 

The Gross Adjustment Factor is equal to the Adjustment Basis Average Load divided by 

the Adjustment Basis Average CBL 

Calculate Final Adjustment Factor 

The final adjustment factor will be defined according to following rules: 

If the Gross Adjustment Factor is greater than 1.00, then the Final Adjustment Factor is the 

lesser of the Gross Adjustment Factor or 1.20 

If the Gross Adjustment Factor is less than 1.00, the Final Adjustment Factors is the greater 

of the Gross Adjustment Factor or .80 

If the Gross Adjustment Factor is equal to 1.00, the Final Adjustment Factor is equal to the 

Gross Adjustment Factor 

Calculate the Adjusted CBL values  

The Event Adjusted CBL value for each hour of an event is the product of the Final 

Adjustment Factor and the Average CBL value for that hour 

 


