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ABSTRACT

The increasing reliance on oceans, rivers and waterways in a spectrum of human

activities have demonstrated the large demand for advanced marine technologies that

facilitate multifarious in-water services and tasks. The autonomous underwater vehi-

cle (AUV) is a representative marine technology which has been contributing continu-

ously to many ocean-related fields. An elaborate control system is essential to AUVs.

However, AUVs present difficult control system design problems due to their non-

linear dynamics, the unpredictable environment and the poor knowledge about the

hydrodynamic coupling of the vehicle degrees of freedom. When designing the motion

controller, the practical constraints on the AUV system such as limited perceiving,

computing and actuating capabilities should also be respected.

The model predictive control (MPC) is an advanced control technology that lever-

ages optimization to calculate the control command. Thanks to the optimization

nature, MPC can conveniently handle the complex nonlinearity in system dynamics

as well as the state and control constraints. MPC takes the receding horizon control

paradigm which gains satisfactory robustness against model uncertainties and exter-

nal disturbances. Therefore, MPC is an ideal candidate for solving the AUV motion

control problems. On the other hand, since the optimization is solved by iterative

numerical algorithms, the obtained control signal is an implicit function of the system
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state, which complicates the characterization of the closed-loop properties. Moreover,

the nonlinear system dynamics makes the online optimization nonlinear programming

(NLP) problems. The high computational complexity may cause an issue on the real-

time control for embedded platforms with limited computing resources. In order

to push the advanced MPC technology towards real-world AUV applications, this

PhD dissertation is concerned with fundamental AUV motion control problems and

attempts to address the aforementioned challenges and provide novel solutions.

This dissertation proceeds with Chapter 1 by providing state-of-the-art introduc-

tions to related research areas. The mathematical model used for the AUV motion

control is elaborated in Chapter 2. In Chapter 3, we consider the AUV navigation and

control problem in constrained workspace. A unified receding horizon optimization

framework consisting of the dynamic path planning and the nonlinear model pre-

dictive control (NMPC) tracking control is developed. Although the NMPC tracking

controller well accommodates the practical constraints on the AUV system, it presents

a brand new design philosophy compared with the existing control systems that are

implemented on real AUVs. Since the existing AUV control systems are reliable

controllers, AUV practitioners tend not to fully replace them but to improve the con-

trol performance by adding features. By considering this, in Chapter 4, we develop

the Lyapunov-based model predictive control (LMPC) scheme which builds on the

existing AUV control system and invoke online optimization to improve the control

performance. Chapter 5 focuses on the path following (PF) problem. Unlike the tra-

jectory tracking control which equally emphasizes the spatial and temporal control

objectives, the PF control often prioritizes the path convergence over the speed assign-

ment. To incorporate this objective prioritization into the controller design, a novel

multi-objective model predictive control (MOMPC) scheme is developed. While the

MPC technique provides several salient features (e.g., optimality, constraints han-

dling, objective prioritization, robustness, etc.), those features come at a price: a

computational bottleneck is formed by the heavy burden of solving online optimiza-

tions in real time. To explicitly address this issue, in Chapter 6, the computational

complexity of the MPC algorithms is particularly emphasized. Two novel strategies

which potentially alleviate the computational burden of the MPC-based AUV track-

ing control are proposed. In Chapter 7, some conclusive remarks are provided and a

few avenues for future research are identified.
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Chapter 1

Introduction

This chapter provides some introductory knowledge about the autonomous underwa-

ter vehicle (AUV), a literature review of motion control of AUVs and a brief review

of model predictive control (MPC). It also summarizes the motivations and main

contributions of this dissertation. The organization of the dissertation is presented

at the end of this chapter.

1.1 Autonomous Underwater Vehicle (AUV)

1.1.1 Overview

Oceans cover two thirds of the Earth and have a huge impact on our ecosystem.

Traditionally they act as the source of food, provide warmth and natural resources,

and sustain the ocean ecosystem by maintaining biodiversity. With the development

of ocean science, their ecological, economic and social importance are now better

understood. On the other hand, ocean activities are closely related to some deadly

natural phenomenons such as tsunami, earthquake and hurricane. Hence the constant

monitoring of the ocean state becomes an urgent necessity and will definitely benefit

mankind in terms of minimizing the loss due to natural disasters, maximizing the

harvest from the oceans, and more.

Underwater vehicles present advanced tools that enable the ocean monitoring to go

far beneath the ocean surface, collect diverse first-hand data and see how the oceans

behave. Underwater vehicles can be manned or unmanned. Clearly, the manned

submarine technology was firstly focused. Since 1962 when the first submarine was

constructed [116], dramatic progress has been made in the design and manufacturing
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of manned underwater vehicles. However, the intrinsic weakness of reliance on human

pilots limits its applications. In contrast, advances in navigation, control, computer,

sensor and communication technologies have turned the idea of unmanned underwater

vehicle into reality.

The unmanned underwater vehicles (UUVs) can be categorized into two groups:

• Remotely operated vehicles (ROVs) are tethered underwater robotic vehicles.

ROVs require instructions from human operators who locate in the support

vessel during the execution of tasks. An umbilical cable is therefore needed to

carry power, relay control signals, and transmit sensor data.

• Autonomous underwater vehicles (AUVs) are tether-free underwater robotic

vehicles. AUVs are powered by onboard batteries or fuel cells, equipped with

navigation sensors, and execute preprogrammed missions without being con-

stantly supervised or controlled by humans.

In recent years, UUVs have achieved great success in many ocean-related scientific

fields such as marine geoscience [139, 142, 143, 11], offshore industry [138, 100, 37]

and deep-sea archaeology [16, 117]. Compared to ROVs, AUVs have higher level of

autonomy and demonstrate the following strengths:

• AUVs have much wider reachable scope. AUVs are more mobile platforms and

can execute oceanic missions that need to travel a long distance, e.g., polar

region survey beneath the ice sheet, or that need to be performed in dangerous

areas, e.g., submarine volcanism data acquisition.

• AUVs avoid many technical issues related to the tether cable. The chaotic

drag force induced by the cable makes the vehicle difficult to control. The drag

force will become unmanageable as the tether length increases. Moreover, the

communication latency greatly influences the control of the vehicle. In contrast,

the absence the umbilical cable enables the AUV to achieve real-time control.

• AUVs reduce the operational cost. Unlike ROVs which need human operators

to perform the task, AUVs require the minimum amount of human intervention.

Therefore, it is likely to cut a large portion of the operational cost as the number

of staff needed is reduced.

On the other hand, the absence of tether cable brings challenges in the power supply,

underwater navigation and automatic control aspects. With the developments of new

technologies in these areas, AUVs have extensive application prospect.
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There are two configurations for the shape design of AUVs:

• The conventional slender body AUVs have efficient hydrodynamic properties

and are best suited for oceanic missions that need to travel with a high speed or

a long distance. These conventional AUVs are usually equipped with propellers

to drive in the direction of the principal axis and with control surfaces (rudders)

to perform maneuvers. Therefore, they have lower number of control variables

than the motion DOF (i.e., underactuated). Hence they are easy to control

only along straight lines. Examples of AUVs with this configuration include

REMUS [7] and ODYSSEY [34].

Figure 1.1: The REMUS AUV [7].

• The design of open-frame AUVs was recently borrowed from ROVs in order

to enable the omni-directional mobility. This configuration usually contains

redundant thrusters to provide more control DOF than the motion, hence the

AUV can perform good low-speed maneuvers in cluttered environments. With

the omni-directional mobility and the possible artificial intelligence, AUVs are

potentially capable of performing complicated jobs. Examples of AUVs with

this configuration include Ictineu [114] and Smart-E [91],



4

Figure 1.2: The Ictineu AUV [114].

The control system acts as the brain of the AUV and is responsible for the autonomy

of the vehicle. The term control here actually has a broad sense, including but not

limited to (i) motion control: the low-level system control, focusing on input/output

of the vehicle and the closed-loop properties; (ii) mission control: the high-level be-

havioral control which is usually predefined and triggered by sensor measurement;

(iii) power management: the control that aims at optimally distributing the onboard

power, and even recharging from solar power [63]; (iv) cooperative control of multi-

ple vehicles: the control that emphasizes on coordinated behaviors among a group

of AUVs, e.g. formation control. Among all of these control categories, although it

is hard to distinguish one specific type to be more important than the others, there

exists little controversy over the statement: Motion control is the most fundamental

research study for the control of AUVs. High-level mission controls or cooperative

controls could only be realized through the motion control of each individual AUV.

1.1.2 The Motion Control Problems

The motion of an AUV in the three dimensional workspace can be described in six

degrees of freedom (DOFs). The six independent variables which uniquely determine

the motion of the vehicle are known as ‘surge’, ‘sway’, ‘heave’, ‘roll’, ‘pitch’ and

‘yaw’ (see Figure 1.3). The motion control of the AUV aims to regulate the motion

variables to the desired values, i.e., the set-points which are determined by the high-

level motion planning system. According to different types of set-points the motion
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Figure 1.3: The motion variables of an AUV.

control problems can be classified into three categories:

• When the set-points are time-invariant, it is a point stabilization problem. In

context of AUV motion control, the heading control, depth control and dynamic

positioning control belong to this category. Specifically, the dynamic positioning

refers to the automatic control of AUV to reach and then maintain its position

and orientation at a fixed point, possibly with external disturbances such as

waves and ocean currents.

• When the set-points are time-varying, it is a trajectory tracking problem. The

trajectory tracking controller steers the AUV state (pose and velocity) to con-

verge and then track the desired trajectory which is calculated by the high-level

motion planner.

• When the set-points are time independent but only describe the geometric rela-

tionship among them, it is a path following problem. The path following control

refers to the automatic control that moves the AUV along a specified path in

the workspace, but there is no requirement on when should the AUV be where.

The AUV motion control problems can be solved at two levels:

• The velocity level solution. The velocities of the AUV are viewed as the control

inputs. The motion controller determines the desired linear and angular veloc-

ities that will achieve the control objective, and the control of thrusters that
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generate the desired velocities is assumed to be solved readily. At this level,

only the kinematic equations of the AUV motion are considered.

• The force level solution. The forces and moments that cause the AUV motion

are regarded as the control inputs. The motion controller determines the desired

propulsive force for each thruster according to the AUV state and the control

objective. At this level, both kinematic equations and dynamic equations of the

AUV motion are considered.

The two levels of solutions reflect the design trade-off between precision and com-

plexity. Since the AUV dynamics are not considered, the control algorithm design

for the velocity level solution can be simplified significantly. For the same reason,

however, the velocity level solution is not precise especially for the trajectory track-

ing and path following applications. In contrast, the force level solution has high

precision. However, since it considers the dynamic equations of motion, the modeling

work is required for the AUV. Moreover, the identified AUV dynamic model is highly

nonlinear and possibly time-varying, which makes the control algorithm design very

complicated or even intractable.

1.1.3 Literature review on AUV Motion Control

Motion control of marine vehicles has been an active field of research since 1911 in

which year the first autopilot was constructed by Elmber Sperry [46]. Early automat-

ic control systems employed empirical proportion-derivative (PD) and subsequently

proportion-integral-derivative (PID) control to steer the marine vessel on the desired

course. Not until 1970s, when the underwater navigation technology had become ma-

ture enough such that 1 meter positioning precision and 1 Hz update rate could be

achieved [62], was the closed-loop motion control enabled for the underwater vehicles.

The AUVs present very challenging control system design problems. The technical

challenges mainly come from the following aspects:

• The highly nonlinear system dynamics and the multiple input multiple output

(MIMO) nature of the motion control problem.

• The considerable parametric uncertainties caused by poor knowledge of the

hydrodynamic coefficients.
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• The unpredictable external disturbances in terms of end-effector payloads, waves

and ocean currents.

• The practical constraints on the real AUV system such as underactuation, over-

actuation, finite sensing and actuating capabilities, etc.

Therefore, advanced AUV motion control designs attempt to tackle these issues. Some

of the recent progress are reviewed in the following.

1. Dealing with the nonlinearity

Linear control theory has evolved a variety of powerful tools, and the design challenge

due to the nonlinearity can be circumvented by applying the linear control methods to

a linearized AUV model provided that the conditions for linearization can be satisfied:

the pitch and roll angels are small, and the forward speed is constant.

In 1990s, Healey and Marco [59] proposed a decoupled design paradigm which

claims that the 6 DOF linearized equations of motion can be divided into three weakly-

interacted subsystems for the forward speed, steering and diving control, respectively.

This design paradigm dramatically simplifies the linear control design for the AUV

motion control and inversely directs the AUV mechanical design. The PID control is

universally applied to AUVs due to its good robustness and easy implementation [46].

Acceleration feedback technique which enables the inertia shaping can be incorporated

into the conventional PID control design in an attempt to get better control stability

[81]. The linear quadratic regulator (LQR) control is a common alternative to PID

control and is theoretically optimal in some sense (specifically, with respect to the

performance index). In [99], the LQR controller is designed in combination with the

Kalman filtering technique to solve the line tracking problem for the AUV.

However, the linearized model only approximates well the nonlinear behavior of

the AUV motion around the predefined working point. In applications that involve

tracking of curved trajectories, the linear control methods appear inappropriate as

the curved trajectory itself emphasizes the nonlinearity in the AUV motion. In these

cases, the nonlinear control methods should be applied.

Feedback linearization [127] is a powerful tool to deal with the nonlinearity.

Since the AUV dynamic model can be arranged in the control-affine form, i.e.,

ẋ = f(x) + g(x)u, the feedback linearization technique can be employed by set-

ting u = −f(x)/g(x) + ū/g(x). In [140], the feedback linearization based controller is

designed for the AUV to track the subsea cables. The main problem associated with
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this control method is that it requires a high fidelity dynamic model of the AUV,

however, the hydrodynamic coefficients are rarely accurately estimated. Therefore,

the Lyapunov-based backstepping control (BSC) becomes the mainstream nonlinear

control method for the design of AUV motion controller. The developed BSC control

law exploits the good nonlinearities in the system dynamics, such as the damping

term, to gain additional robustness. Examples include [36] and [113]. In [113], the

velocity level tracking controller is firstly designed for the AUV, and the force level

control law is then derived from it via the backstepping technique. The output feed-

back control variant is presented in [36]. The Lyapunov-based BSC sometimes suffers

from the problem of “explosion of terms” in the derived control law, which motivates

the designs of dynamic surface controllers (DSC) for AUVs [53].

2. Dealing with the parametric uncertainties

The sliding mode control (SMC) is another well-studied nonlinear control method

for AUVs. The charm of SMC lies in its insensitivity to parameter uncertainties

in the system model. By forcing the nonlinear system to slide along a predesigned

reduced-order subspace, the tracking error can be eliminated in finite time. In [58],

the precise diving and steering control is achieved using SMC controllers. However,

SMC controllers apply discontinuous control laws, which results in the main drawback

of SMC: the chattering problem (i.e, control signals switch signs too frequently). The

chattering asks for an infinite communication bandwidth and wears out the actuator

parts. Therefore, this issue must be addressed in real world AUV applications. In

[131] an adaptive term is designed and added to the conventional SMC control law

so that the chattering can be mitigated. The idea of using the higher order sliding

mode to eliminate the chattering is reported in [119]. In [132], the trajectory tracking

control integrates the SMC, PID and robust control techniques, and enhanced tracking

performance is obtained.

Another effective treatment to deal with the model mismatch is to incorporate an

adaptation mechanism which online corrects the parameters. This method has been

successfully applied to the AUV motion control. In [48], the model uncertainty due to

partly known nonlinear thruster dynamics is considered. An adaptive passivity-based

controller and a combined adaptive and sliding mode controller are proposed. The

simulation results demonstrate satisfactory tracking performance. In [85], the depth

and pitch control design using L1 adaptive control is reported, and the improvement
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of the robustness and the adaptation rate are shown. Neural network (NN) based

control schemes integrate the parameter identification with the control and can be

viewed as a special type of adaptive control technique. In [148], Yuh proposed a

multilayered forward network. The position and velocity error signals are used as the

inputs of the NN, and the outputs are the propulsive forces and moments. Simulation

results demonstrate the better tracking performance compared to an adaptive SMC

controller. In [25], a similar approach based on reinforcement learning is exploited for

the motion control of AUV. With the fast development of artificial intelligence, the

deep network and deep learning based control continues to be an appealing option

for the AUV motion control [52]. From a control theoretic point of view, however,

the main drawback of the NN-based control design goes to the difficulty in character-

izing the closed-loop system’s behavior. As the NN does not take the kinematic and

dynamic equations of motion as the AUV model, the validation of control design can

only be demonstrated experimentally, but without a theoretical guarantee.

3. Dealing with the external disturbances

Although the PID, BSC and DSC controllers have moderate robustness margin a-

gainst external disturbances, some specific AUV applications may emphasize the ex-

plicit rejection of external disturbances. In this case, robust control methods can

be applied. The H∞ loop shaping minimizes the sensitivity of a system and ensures

that the closed-loop system will not deviate too much from expected trajectories in

the presence of external disturbances. In [96], the H2 and H∞ design is applied to

the diving and heading control of an AUV. The first- and second-order wave force

disturbances are considered and rejected. The H∞ control design optimizes the distur-

bance rejection assuming that the disturbance is bounded. This is a rather simplified

assumption. The sea disturbances are usually stochastic, and if the probability dis-

tribution can be captured it is expected to have better disturbance rejection in the

motion control. The well-known linear-quadratic-Gaussian (LQG) control deals with

the stochastic disturbances. In [135], the loop transfer recovery (LTR) technique

is applied to enhance the robustness of the LQG control. The effectiveness of the

LQG/LTR design is verified through experiments.

When dealing with the external disturbance, an important alternative to robust

control is to use a disturbance observer (DOB) [26]. The DOB-based control estimates

the external disturbance explicitly and then compensate it in the control design. In
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[97] a nonlinear DOB-based PD controller is proposed for the tracking control of

the AUV. The robust stability under the observer-controller structure is proved. In

principle, the DOB can be incorporated in any of the aforementioned control method

to enhance the robustness. In context of AUV motion control, the examples can be

found in [151] for DOB-based adaptive control, in [83] for DOB-based BSC control,

and in [27] for DOB-based SMC control.

4. Dealing with practical constraints

The conventional slender body AUVs are underactuated. They are subject to non-

holonomic constraints [104], which brings additional challenges to AUV motion con-

trol problems. For underactuated AUVs, the dynamic model cannot be fully feedback

linearized, so the controllers are designed via the Lyapunov direct method and usually

with the backstepping procedure (BSC). The three dimensional trajectory tracking

problem is well studied for underactuated AUVs in [1], and the result has been ex-

tended in [2] by adding an adaptive supervisory control to the BSC controller to tackle

the parameter variation. In [141], the combination of BSC and SMC enhances the ro-

bustness of the AUV tracking control in the presence of parametric uncertainties and

environmental disturbances. For the point stabilization of an underactuated AUV,

a hybrid control law with a logic-based switching is proposed in [4]. Global uniform

stability is obtained. In [3], a non-smooth coordinate transformation is introduced

and followed by backstepping procedure to design a smooth control law in the new

coordinate system. An adaptive control law is then provided to make the controller

robust against parametric uncertainties.

The open-frame AUVs are typically with redundant thruster arrangement which

makes them overactuated. The thrust allocation (TA) has to be considered to deal

with the overactuation. One prominent approach is the 2-norm based optimiza-

tion. The pseudo-inverse method [50] is cheap in computation but barely adequate

to guarantee the feasibility. Therefore, the TA is usually formulated as quadratic

programming (QP) problems which explicitly take into account the individual limit

on each thruster. To alleviate the computational burden, parametric QP solution can

be adopted [65]. When the thrusters are rotatable, the TA optimization is nonlinear.

The direct nonlinear programming (NLP) solution is studied in [107]. In [66], a piece-

wise linear approximation is made for the NLP, and the results obtained in [65] is

extended with the azimuth angle considered as another decision variable. Other ap-
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proaches include the 1-norm minimization [28] and infinity-norm minimization [131].

A noticeable variant can be found in [64] where a dynamic update law is proposed,

instead of static optimization. The asymptotical stability is proved given that an

exponentially stable trajectory tracking control law is working.

Other practical issues such as limited sensing and actuating capability [123], lim-

ited computing resources [121], actuator faults [130], lack of velocity measurements

[112] and communication delay [40] are also addressed in the AUV motion control.

1.2 Model Predictive Control (MPC)

Optimal control is an important research direction in control engineering and applied

mathematics. Early theocratical results mainly include Bellman’s principle of opti-

mality [12], Pontryagin’s minimum principle [21] and linear quadratic regulator [69].

However, these control methods cannot handle system constraints on state and/or

control variables, which evokes the keen interest in studying the model predictive

control (MPC). On the other hand, in many industries such as petrochemical indus-

try, the requirement of optimal process control to chase a maximum profit stimulates

the growth of MPC since the optimum can often be obtained near or on the boundary

of the operational region, and the system constraints have to be considered.

1.2.1 The Receding Horizon Control Strategy

Generally speaking, MPC is a control strategy which determines the control action by

recursively solving finite horizon optimal control problems (OCPs) and respects the

system constraints during the control [88, 87]. Consider a general nonlinear system:

ẋ(t) = f(x(t), u(t)), x(0) = x0 (1.1)

where f : Rn×Rm → Rn represents the underlying nonlinear dynamics. Without loss

of generality, the origin is assumed to be the equilibrium of interest, and the control

objective is to steer the system state to the origin.
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The finite horizon OCP is defined as follows,

min
u
. J(x, u) =

∫ T
0
`(x(s), u(s))ds+ g(x(T ))

s.t. ẋ(s) = f(x(s), u(s))

x(0) = x0

x(s) ∈ X
u(s) ∈ U

(1.2)

where J(x, u) is the cost function consisting of the stage cost `(x, u) and the terminal

cost g(x); T is the prediction horizon and x0 is the current measured system state; X
and U are compact sets, representing the system constraints on the state and on the

control, respectively.

The MPC is implemented in a receding horizon control paradigm which can be

briefly described as follows:

2 At the sampling time instant, the OCP (1.2) is solved, which obtains the solution

curve u∗(s), s ∈ [0, T ].

2 The first portion of the solution curve, u∗(s) for s ∈ [0,∆t], is actually imple-

mented to control the nonlinear system, where ∆t is the sampling period.

2 At the next sampling instant, the OCP (1.2) will be solved again with the

system state measured and used as the new initial condition.

Since MPC is realized using digital computers, the OCPs need to be discretized and

then solved by iterative numerical algorithms.

1.2.2 Stability of MPC

The MPC is implemented by recursively solving finite horizon OCPs. While the finite

time horizon makes the solving of OCPs numerically tractable, it throws the closed-

loop stability into question. Optimality does not necessarily lead to stability. As

shown in [21], even for linear systems with no constraints, the finite horizon LQR can

be destabilizing. Similar situation occurs in MPC as well.

1. A brief review of stability results in general MPC

Early days, however, the closed-loop stability was obtained in most process control

applications, certainly after tuning. This is because the prediction horizon was nor-
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mally sufficiently long. In [108], Primbs et al. showed that for linear systems, the

length of a stabilizing prediction horizon can be pre-computed even in the presence of

state and control constraints. For nonlinear constrained systems, Alamir et al. [5] es-

tablished the asymptotical stability for a given region of attraction with a sufficiently

long prediction horizon and a shorter control horizon.

On the other hand, the computational complexity of the OCP increases exponen-

tially as the prediction horizon increases. In many applications such as AUV motion

control, it is not affordable to use a too long prediction horizon. Since the closed-loop

stability is an overriding requirement, during the past forty years, control theorists

and practitioners have been devoting a significant amount of effort to the development

stable MPC schemes that do not rely on long prediction horizons. Among the existing

results, seeking stabilizing conditions using the terminal cost, terminal constraints,

and an associated terminal controller (known as the terminal triple) is the most pop-

ular approach [88]. Terminal equality constraint was firstly imposed. Keerthi et al.

demonstrated in [72] that the optimal value function of the infinite horizon OCP can

be approached by that of a finite receding horizon approximation with the termi-

nal state constraint x(T ) = 0. Imposing the terminal equality constraint, however,

adversely affects the feasibility of the OCP, and in turn requires a long prediction

horizon, which is undesired. Later, therefore, the dual-mode MPC scheme [29, 120]

were proposed. In the dual-mode MPC scheme a terminal set constraint x(T ) ∈ Xf

is used in place of the former equality constraint. Once the system state x enters the

terminal set Xf , a local feedback controller κf (x) will take over the stabilization task

and steer the system state to the origin. However, the implementation of the dual-

mode MPC is complicated and it also loses some degree of optimality. Therefore, in

the most recent MPC proposals, the terminal triple is used together to establish the

stability condition. In an excellent MPC review paper [88], Mayne et al. summarized

the stabilizing conditions in most MPC proposals and distilled the widely accepted

principle of stability in terms of four mild assumptions. Once the four assumptions

are satisfied, the optimal value function of the OCP can be shown a valid Lyapunov

function for the nonlinear system, hence guarantees the closed-loop stability.

In the new century, with the significant development of stabilizing conditions

without imposing a terminal constraint [87], there emerges an interesting discussion

inside the MPC community: on the one hand, the conservativeness of MPC can be

fairly relaxed [55] if there is no terminal constraints; on the other hand, the necessity

of a terminal constraint is emphasized in [86] for guaranteeing the recursive feasibility.
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Other MPC schemes which do not exploit the terminal triple mainly include variable

horizon MPC [94], contractive MPC [84] and Lyapunov-based MPC [82].

2. Stability results in MPC for AUV Motion Control

While a number of MPC solutions have been proposed for AUV motion control prob-

lems, e.g., [102],[106],[136],[100], none of them include the stability analysis. This is

partly due to the complicated nonlinear dynamic model of the AUV, and partly due to

the fact that the MPC theoretical papers focus exclusively on the point stabilization

problems while for AUV motion control we may be more interested in the trajectory

tracking and path following problems.

In our published work [123], the stability of an MPC based trajectory tracking

controller is explicitly discussed for the first time. By defining an appropriate reference

system, we converted the trajectory tracking control problem to the stabilization

problem of the error dynamics and then followed the principle of MPC stability [88] to

derive the sufficient conditions for guaranteeing the closed-loop stability. In [126], we

took a Lyapunov-based MPC strategy to deal with AUV trajectory tracking control.

The closed-loop stability is guaranteed by imposing a contraction constraint derived

from a Lyapunov-based control law. The design of a stable MPC controller for the

AUV dynamic positioning problem is studied in [124], and the MPC solution to the

AUV path following control problem is discussed in [125].

1.3 Research Motivations and Contributions

Although a significant amount of effort has been devoted to the study of AUV motion

control, due to the complexity of the control problem itself, there still exist many

unsolved issues in this area. One prominent issue is that the practical constraints on

the real AUV system such as limited perceiving, computing and actuating capabilities

are seldom considered in the controller design, because of the inherent limitations of

those conventional control methods.

The model predictive control (MPC) presents a powerful framework for solving a

broad spectrum of control engineering problems and has the capability of handling

practical constraints in a systematic manner. However, due to its heavy computa-

tional burden, for many years, MPC had been applied to process control problems

with slow dynamics only. With the development of computer technology and opti-
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mization theory, now the computational barriers have been largely removed. The

successful real-time implementation of MPC for unmanned aerial vehicles (UAVs)

[10] and mobile robots [61] strongly suggests that the MPC can be applied to AU-

Vs to address the practical constraint issue. Besides, the MPC owns good inherent

robustness against model uncertainties and external disturbances, which makes it a

perfect solution to AUV control problems. On the other hand, due to the implicit

nature of the optimization procedure, the characterization of closed-loop stability for

the MPC-based AUV control is challenging and complicated. There are no existing

control theoretical results on the MPC-based AUV motion control in the literature.

To fill this gap and push forward the application of the advanced model predictive

control technology to AUV control systems, this dissertation focuses on the study of

the MPC-based AUV motion control problems and attempts to lay the theoretical

foundation for the application of MPC to the marine vehicle systems. The main

contributions of this dissertation are summarized as follows.

• Design of nonlinear model predictive control (NMPC) for the inte-

grated path planning and tracking control. A unified receding horizon

optimization (RHO) framework is proposed for solving the integrated path plan-

ning and tracking control problem of an AUV. The RHO framework consists of a

spline-based path planner and an NMPC tracking controller. The path planning

is formulated into receding horizon optimization problems which accommodates

the practically finite perceiving capability of the AUV. Once the reference path

is planned, with a predetermined timing law, it is augmented in order to provide

the reference trajectory for each state of the AUV. Then an NMPC tracking

controller is designed for the vehicle to precisely track the reference trajectory.

Sufficient conditions for closed-loop stability are derived. Finally, an implemen-

tation algorithm which seamlessly integrates the path planning and the NMPC

tracking control is proposed. With the implementation algorithm the obtained

closed-loop stability of the NMPC tracking control can be preserved. To the

best of our knowledge, it is the first time to explicitly conduct the stabilizing

conditions of the MPC-based trajectory tracking control for marine vehicles.

• Design of Lyapunov-based model predictive control (LMPC) for the

dynamic positioning and trajectory tracking control. Firstly, an LMPC-

based dynamic positioning (DP) control algorithm is proposed for an AUV.

A nonlinear proportional-derivative (PD) control law is exploited to construct
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the contraction constraint in optimization problem that is associated with the

LMPC. A quasi-global stability property can be claimed for the closed-loop

LMPC-based DP control system. Secondly, the LMPC is applied to solve the

AUV trajectory tracking control problem. An auxiliary nonlinear tracking con-

trol law is designed using the backstepping technique and then used to construct

the contraction constraint. Conditions for recursive feasibility and closed-loop

stability are derived. In both DP and tracking control, the thrust allocation

(TA) subproblem is solved simultaneously with the LMPC control, which re-

duces the conservativeness brought by conventional (TA) solutions. Essentially,

the proposed LMPC method builds on the existing AUV control system and

incorporates online optimization to improve the control performance. Since the

closed-loop stability does not rely on the exact solution of the optimization,

the LMPC creates a trade-off between computational complexity and control

performance. We can easily control the computational complexity by specifying

the maximum iteration number meanwhile guarantee the control performance

no worse than the existing AUV motion controller.

• Design of multi-objective model predictive control (MOMPC) for the

path following control. A novel MOMPC method is proposed to solve the

path following (PF) control problem of an AUV. Two performance indexes

which reflect the path convergence requirement and the speed assignment are

designed. Then the PF problem can be formulated into the MOMPC frame-

work with the two performance indexes as the objective function. Since the

path convergence is usually more important than the speed assignment, two

methods which handle objective prioritization are proposed to solve the asso-

ciated vector-valued optimization problem. The internal relationship between

the two methods are explored and the conditions for closed-loop stability are

provided. The proposed MOMPC method not only provides a novel scheme to

solve the AUV PF control problem, but also lays a foundation for the study of

AUV motion control problems with multiple control objectives.

• Design of efficient implementation algorithms for the NMPC trajecto-

ry tracking control. Two distinct fast implementation strategies are proposed

for the NMPC-based trajectory tracking control of an AUV. The first strategy

is based on the numerical continuation method. Assuming that the solution

of the associated optimization problem is not obtained at singular points, the
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NMPC control signals can be approximated without undergoing the successive

linearization step which is inevitable in off-the-shelf NLP algorithms, therefore,

the computational complexity can be significantly reduced. The convergence of

the solution is proved. The second strategy exploits the dynamic properties of

the AUV motion, and solves the optimization problems in a distributed fashion.

The recursive feasibility and closed-loop stability of the distributed implemen-

tation are proved. The proposed fast implementation strategies considerably

alleviate the heavy computational burden hence greatly increases the possibil-

ity of implementing NMPC-based motion control on various AUVs including

those with limited onboard computing resources.

1.4 Organizations of the Dissertation

This section provides a map of the dissertation to show the readers where and how

it validates the claims previously made.

Chapter 1 contains the fundamentals and literature reviews of the closely related

research fields. It also presents the research background, motivations and main

contributions of this PhD dissertation.

Chapter 2 develops the mathematical model of AUV that will be used throughout

the dissertation. Several important properties associated with the developed

model are also explored in this chapter.

Chapter 3 studies the path planning and tracking control of an AUV. A unified re-

ceding horizon optimization (RHO) framework is proposed with a novel spline-

based path planning method and the nonlinear model predictive tracking con-

troller design.

Chapter 4 presents a Lyapunov-based model predictive control (LMPC) framework

for the motion control of an AUV. The LMPC controller designs for dynamic

positioning and trajectory tracking are detailed.

Chapter 5 considers the path following control problem of an AUV. A novel multi-

objective model predictive control (MOMPC) framework is proposed to handle

the objective prioritization.
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Chapter 6 focuses on the computational complexity of the nonlinear model pre-

dictive control (NMPC) algorithms. Two numerically efficient implementation

strategies, namely, modified C/GMRES and distributed NMPC, are proposed

for the AUV trajectory tracking control.

Chapter 7 summarizes the work in this dissertation, and discusses some potential

future research directions.
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Chapter 2

AUV Modeling

The study of AUV motion can be split into two groups: Kinematics, which only deals

with geometrical aspects of the motion, and Dynamics, which analyzes the forces

and moments causing the motion. In this chapter, we elaborate the kinematic and

dynamic equations of AUV motion, and based on which we establish the control

system model that is adopted in the study of AUV motion control.

2.1 Kinematics

2.1.1 Reference Frames

The sensors provide their measurements with respect to different reference frames.

When studying the motion control problems, it is convenient to use two reference

frames (see Figure 2.1) to describe the AUV motion state and the control objective:

• The body-fixed reference frame (BRF) is affixed to the vehicle with the origin

selected to be the center of gravity (CG). The body axes are defined such that

they coincide with the principal axes of inertia: The longitude axis which points

from aft to fore is often referred to as the xb axis; the transversal axis which

points from port to starboard is the yb axis; the zb axis is defined orthogonal to

both xb and yb axes and obeys the right-hand rule.

• Then the motion of the AUV can be described as the BRF motion relative to

an inertial reference frame (IRF) which is used to record the footprints of the

vehicle and to specify the control objectives. Usual selections of IRF include
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Figure 2.1: The reference frames for AUV motion control.

the Earth-centered inertial (ECI) frame, the Earth-centered Earth-fixed (ECEF)

reference frame and the North-East-Down (NED) coordinate system [46].

The linear and angular velocities of the vehicle are expressed in the BRF while the

position and orientation are described with respect to the IRF. The vectorial forms

of these expressions are as follows:

η = [x, y, z, φ, θ, ψ]T, the position and orientation vector represented in IRF

v = [u, v, w, p, q, r]T, the velocity vector represented in BRF

Since in many navigation applications, the position vector is decomposed in NED

coordinates, the IRF is selected to be coincident with the North-East-Down coordinate

system in this dissertation.

2.1.2 Transformation between Reference Frames

Rotation matrices are essential in deriving the kinematic equations of motion for an

AUV. The rotation matrix between the BRF and the IRF is denoted as Ri
b which

belongs to the special orthogonal group of order three SO(3):

SO(3) = {R | R ∈ R3×3, RRT = RTR = I, det R = 1} (2.1)
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Let vbo = [u, v, w]T denote the linear velocity vector fixed in BRF and vio denote this

velocity vector decomposed in IRF. Then the relation between them can be expressed

using the following equation:

vio = Ri
b(Θ)vbo (2.2)

where Θ = [φ, θ, ψ]T encloses the Euler angles: roll (φ), pitch (θ) and yaw (ψ).

In navigation, guidance and control applications, the zyx-convention is commonly

adopted to describe the rotation matrix Ri
b(Θ):

Ri
b(Θ) = Rz,ψRy,θRx,φ (2.3)

with

Rx,φ =

 1 0 0

0 cφ −sφ
0 sφ cφ

 , Ry,θ =

 cθ 0 sθ

0 1 0

−sθ 0 cθ

 , Rz,ψ =

 cψ −sψ 0

sψ cψ 0

0 0 1


Here, s·, c· are shorthand for trigonometric functions sin(·), cos(·). The inverse trans-

formation satisfies

Ri
b(Θ)−1 = Rb

i(Θ) = RT
x,φR

T
y,θR

T
z,ψ (2.4)

Expanding (2.3) we have

Ri
b(Θ) =

 cψcθ cψsθsφ− sψcφ cψcθsφ+ sψsφ

sψcθ sψsθcφ+ cψcφ sψsθcφ− cψsφ
−sθ cθsφ cθcφ

 (2.5)

Let ωbib = [p, q, r]T denote the angular velocity of BRF relative to IRF decomposed

in BRF and Θ̇ = [φ̇, θ̇, ψ̇] denote the Euler-angle rate. They are related by the

following equation:

Θ̇ = T(Θ)ωbib (2.6)

The transformation matrix T(Θ) can be derived through the following relation:

ωbib =

 φ̇

0

0

+ RT
x,φ

 0

θ̇

0

+ RT
x,φR

T
y,θ

 0

0

ψ̇

 (2.7)
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Expanding (2.7) we have

T(Θ) =

 1 sφtθ cφtθ

0 cφ −sφ
0 sφ/cθ cφ/cθ

 (2.8)

where s·, c·, t· are shorthand for sin(·), cos(·) and tan(·), respectively. Combining (2.2)

and (2.6), we can have the 6 DOF kinematic equations of motion expressed in the

vectorial form

η̇ =

[
ṗ

Θ̇

]
=

[
Ri
b(Θ) 03×3

03×3 T(Θ)

][
vbo

ωbib

]
= J(η)v (2.9)

where p = [x, y, z]T is the position vector of the vehicle represented in IRF.

2.2 Nonlinear Dynamics of AUVs

2.2.1 Rigid-Body Dynamics

To facilitate the derivation of the dynamic equations of AUV motion, it is common

and reasonable to assume that the vehicle is a rigid body, which eliminates the need

of analyzing the interactions between individual elements of mass.

The rigid-body dynamics of the AUV can be derived by applying the Newtonian

mechanics [46]:

MRBv̇ + CRB(v)v = τRB (2.10)

where τRB = [X, Y, Z,K,M,N ]T is the generalized external force and moment vector

expressed in BRF. Since the origin of BRF is coincident with the CG of AUV, the

rigid-body inertia matrix MRB can be simplified as

MRB =

[
mI3×3 0

0 Io

]
(2.11)

where m is the mass of the vehicle and Io is the inertia tensor defined as

Io =

 Ix −Ixy −Ixz
−Iyx Iy −Iyz
−Izx −Izy Iz

 (2.12)
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and the rigid-body Coriolis and centripetal matrix CRB is

CRB(v) =

[
03×3 −mS(vbo)

−mS(vbo) −S(I0ω
b
ib)

]
(2.13)

where S(·) is the cross product operator.

Definition 1 (Cross Product Operator). The cross product of two vectors a× b

can be expressed using normal matrix multiplication:

a× b = S(a)b (2.14)

and the operator S(·) is defined as

S(a) = −ST(a) =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 , a =

 a1

a2

a3

 (2.15)

2.2.2 Hydrodynamic Forces and Moments

The hydrodynamics should be considered in calculating the total external forces

and moments τRB. Several main contributions of the hydrodynamic forces and mo-

ments include the radiation-induced forces, skin friction damping, wave drift damping,

damping due to vortex shedding and environmental disturbances. They are treated

separately based on the principle of superposition.

The radiation-induced forces and moments include three components, namely,

added mass, potential damping and restoring forces. They can be expressed mathe-

matically as follows:

τR = −MAv̇ −CA(v)v −DP (v)v − g(η) (2.16)

where −MAv̇−CA(v)v is the added mass term, −DP (v)v is the potential damping

term and −g(η) is the restoring force term. The inertia matrix of the added mass is
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defined as

MA =



Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ


(2.17)

where the hydrodynamic coefficients are defined as partial derivative of the added

mass force over the corresponding acceleration. For example, the added mass force

XA along the x-axis due to the acceleration w is XA1 = Xẇẇ, and Xẇ = ∂XA/∂ẇ.

The hydrodynamic Coriolis and centripetal matrix CA can be calculated using

into the following formula [46]:

CA(v) =

[
03×3 −S(A11v

b
o + A12ω

b
ib)

−S(A11v
b
o + A12ω

b
ib) −S(A21v

b
o + A22ω

b
ib)

]
(2.18)

where A = AT defined as

A =
1

2
(MA + MT

A), A =

[
A11 A12

A21 A22

]
, Aij ∈ R3×3 (2.19)

In addition to potential damping the skin friction damping, wave drift damping,

damping due to vortex shedding need to be included, and those damping forces and

moments can be expressed as

τD = −DS(v)v −DW (v)v −DM(v)v (2.20)

Defining the total hydrodynamic damping matrix as

D(v) = DP (v) + DS(v) + DW (v) + DM(v) (2.21)

we have the hydrodynamic force and moment vector τH written as the sum of τR

and τD, i.e.,

τH = −MAv̇ −CA(v)v −D(v)v − g(η) (2.22)

The total hydrodynamic damping forces are composed of linear damping terms and
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quadratic damping terms and can be conveniently expressed as

D(v)v = DLv +



|v|TDn1v

|v|TDn2v

|v|TDn3v

|v|TDn4v

|v|TDn5v

|v|TDn6v


(2.23)

where DL is the linear damping matrix, and Dni, i = 1, 2, ..., 6 are quadratic damping

matrices. The restoring forces and moments are calculated as follows:

g(η) =



(W −B)sθ

−(W −B)cθsφ

−(W −B)cθcφ

yBBcθcφ− zBBcθsφ
−zBBsθ − xBBcθcφ
xBBcθsφ+ yBBsθ


(2.24)

where W = mg is the gravity, B = bg is the buoyancy and [xB, yB, zB] is the coordi-

nates of the center of buoyancy (CB) with respect to BRF.

Let w denote the environmental disturbances which exist due to waves and ocean

currents. The total external forces and moments τRB can be expressed as

τRB = τH + w + τ (2.25)

where τ represents the propulsive forces and moments. Then we can have the 6 DOF

dynamic equations of motion arranged in the following form

Mv̇ + C(v)v + D(v)v + g(η) = τ + w (2.26)

where

M = MRB + MA, C(v) = CRB(v) + CA(v) (2.27)



26

2.3 AUV Model for Motion Control

For our experimental platform, the Saab SeaEye Falcon open-frame ROV/AUV (Fig-

ure 2.1), the thruster layout does not allow active control on roll and pitch. In this

dissertation, therefore, we consider the motion of the Falcon in the local level plane.

Three mild assumptions can be satisfied for the low-speed motion of Falcon: (i) the

vehicle is with three planes of symmetry; (ii) the mass distribution is homogeneous;

(iii) the pitch and roll motions are neglected. As a result, for the motion control in

the local level plane, the system matrices in (2.26) can be simplified. The inertia

matrix becomes

M =

 Mu̇ 0 0

0 Mv̇ 0

0 0 Mṙ

 (2.28)

where Mu̇ = m−Xu̇, Mv̇ = m−Yv̇ and Mṙ = Iz −Nṙ are the inertia terms including

add mass. The restoring force is neglected g(η) = 0, and the damping matrix is

D(v) =

 Xu +Du|u| 0 0

0 Yv +Dv|v| 0

0 0 Nr +Dr|r|

 (2.29)

where Xu, Yv, Nr are linear drag coefficients, and Du, Dv, Dr are the quadratic drag

coefficients. The Coriolis and centripetal matrix becomes

C(v) =

 0 0 −Mv̇v

0 0 Mu̇u

Mv̇v −Mu̇u 0

 (2.30)

In the local level plane, the velocity vector v = [u, v, r]T encloses the surge, sway

and yaw velocities, and the position and orientation vector η = [x, y, ψ]T includes the

position and heading of the vehicle.

In the AUV motion controller design, we assume that the disturbances are small,

i.e., w ≈ 0. Then the dynamic equations of motion under consideration is:

Mv̇ + C(v)v + D(v)v + g(η) = τ (2.31)

where τ = [Fu, Fv, Fr]
T denotes the generalized thrust forces and moments. Further

expanding the dynamic equations (2.31) into the element-wise expression, we have
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the following equations:

u̇ =
Mv̇

Mu̇

vr − Xu

Mu̇

u− Du

Mu̇

u|u|+ Fu
Mu̇

(2.32a)

v̇ = −Mu̇

Mv̇

ur − Yv
Mv̇

v − Dv

Mv̇

v|v|+ Fv
Mv̇

(2.32b)

ṙ =
Mu̇ −Mv̇

Mṙ

uv − Nr

Mṙ

r − Dr

Mṙ

r|r|+ Fr
Mṙ

(2.32c)

The kinematic equations (2.9) can also be simplified as follows:

η̇ =

 cosψ − sinψ 0

sinψ cosψ 0

0 0 1


 u

v

r

 = R(ψ)v (2.33)

Further expanding the kinematic equations (2.33) into the element-wise expression,

we have the following equations:

ẋ = u cosψ − v sinψ (2.34a)

ẏ = u sinψ + v cosψ (2.34b)

ψ̇ = r (2.34c)

Defining the system state x = [ηT,vT]T and view τ as the generalized control input.

From (2.9) and (2.31), we can have the general form of the AUV model

ẋ =

[
R(ψ)v

M−1(τ −C(v)v −D(v)v − g(η))

]
= f̄(x,τ ) (2.35)

The generalized control input τ is the resulting force of the thrusters. For the Falcon,

four thrusters are effective in the local level plane. The relationship between them is

described by the following thrust distribution function:

τ = Bu (2.36)

where u = [u1, u2, u3, u4]T denotes the force provided by each thruster; B is the input

matrix. Then the control system model that is used for the AUV motion control can

be established by simply binding the kinematic equations, dynamics equations and
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the thrust distribution function:

ẋ =

[
R(ψ)v

M−1(Bu−C(v)v −D(v)v − g(η))

]
= f(x,u) (2.37)

The hydrodynamic coefficients for the Falcon model (2.37) are summarized in Table

2.1 which are extracted from the previous modeling experiments based on [109]. The

the input matrix is

B =

 0.7974 0.8643 0.8127 0.8270

0.6032 0.5029 −0.5824 −0.5610

0.2945 −0.3302 −0.2847 0.3505

 (2.38)

Table 2.1: Hydrodynamic coefficient summary.

Inertia Term Linear Drag Quadratic Drag
Mu̇ = 283.6 kg Xu = 26.9 kg/s Du = 241.3 kg/m
Mv̇ = 593.2 kg Yv = 35.8 kg/s Dv = 503.8 kg/m
Mṙ = 29.0 kgm2 Nr = 3.5 kgm2/s Dr = 76.9 kgm2

For the established AUV model (2.37), the following important properties can be

easily explored and will be exploited in the controller design:

2 P-1: The initial matrix is symmetric positive definite and upper bounded: ∞ >

m̄I ≥M = MT > 0

2 P-2: The Coriolis and centripetal matrix is skew-symmetric: C(v) = −CT(v)

2 P-3: The inverse of rotation matrix satisfies: R−1(ψ) = RT(ψ) and it preserves

length ‖RT(ψ)η̇‖2 = ‖η̇‖2.

2 P-4: The damping matrix is positive definite: D(v) > 0

2 P-5: The input matrix satisfies that BTB is non-singular

2 P-6: The restoring force g(η) is bounded: ‖g(η)‖∞ ≤ ḡ
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2.4 Conclusion

In this chapter, we have briefly discussed the kinematics and dynamics of the AUV

motion. The mathematical model for our experimental platform, the Saab SeaEye

Falcon open-frame ROV/AUV, was established based on the kinematic equations of

motion, the dynamic equations of motion and the thrust distribution function. The

hydrodynamic coefficients were provided and several important model properties that

will be exploited in the motion controller design were explored.
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Chapter 3

Receding Horizon Optimization for

Integrated Path Planning and

Tracking Control of an AUV

3.1 Introduction

3.1.1 Research Background and Contributions

Trajectory tracking, being a basic robotic control problem, has been extensively s-

tudied for AUVs in the past several decades. For the tracking of piecewise linear

paths, the line-of-sight (LOS) scheme is often used [47]. To stabilize the cross-track

error in the LOS scheme, conventional PID [46], LQG [60] and nonlinear PID con-

trol techniques [81] have been applied to AUVs. For tracking of time-parameterized

curves, the Lyapunov-based backstepping technique can be applied [113]. Due to its

insensitivity to parametric uncertainty, the sliding mode control [137] is suitable for

the AUV tracking control as well. However, the aforementioned control methods lack

the capability of handling system constraints which are ubiquitous, typically in terms

of actuator limits. This motivates control theorists and practitioners to investigate

the model predictive control (MPC) for the AUV trajectory tracking problem. The

beauty of MPC lies in the fact that it can conveniently handle nonlinear multiple

input multiple output (MIMO) system control problems and explicitly take system

constraints into consideration [88]. Linear MPC formulation of AUV tracking control

has been investigated based on the linearization of the AUV model [100]. Linear MPC

inherits the merit of the convex optimization problem which can be efficiently solved
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by off-the-shelf numerical algorithms [9] to realize real-time control implementation.

On the other hand, demerit of this configuration is obviously drawn from the approx-

imation error of linearization. Naturally, the AUV tracking is extended to nonlinear

MPC formulation [23, 32] with the sacrifice of algorithm efficiency to model accuracy.

Nevertheless, among all of the existing results of MPC tracking control, they either

only take the kinematic equations as the vehicle model, e.g., [56, 23], or consider

both kinematics and dynamics but no rigorous proof of stability is conducted in the

controller design, e.g., [100, 32]. This motivates the main objective of the work in this

chapter: To design an NMPC-based tracking controller considering both dynamics

and kinematics of the AUV, and to provide the stability analysis for the closed-loop

control system.

The path planning plays an important role in the tracking control. The conven-

tional marine vessel guidance system [46] which generates whole-journey way-points

does not work for AUVs, because oftentimes the global oceanic information is not

available a priori. Instead, the fast, reactive, and dynamic path planning methods

are desirable [144, 68]. Recently, a spline-based path planning method is reported in

[14] for autonomous mining vehicle applications. In view of the similar essentials of

autonomous vehicles, the basic principle is probably applicable to AUVs as well. The

global environment information is assumed to be known in [14]. Considering the prac-

tical operation of AUVs with a limited sensing range, the second objective of the work

in this chapter appears: To accommodate the spline-based path planning method to

the limited perceiving capability of AUVs in the tracking control application.

In this chapter, by introducing a virtual reference system, the trajectory tracking

control problem can be transformed to the regulation problem of the error dynamics.

The optimal value function of the associated optimal control problem solved at each

sampling instant can be shown nonincreasing along the trajectory of the closed-loop

system, which guarantees the asymptotic stability of the closed-loop control system.

Furthermore, a dynamic path planning method is developed based on the receding

horizon optimizations, which enables the natural integration of the path planning and

the tracking control.

The main contributions of this chapter are three-fold,

• A novel receding horizon optimization formulation is proposed for the spline-

based path planning method which accommodates to the practically limited

perceiving capability of AUVs.
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• An NMPC-based tracking controller is designed to track the planned reference

path. Sufficient conditions for closed-loop stability are conducted.

• A unified receding horizon optimization scheme, seamlessly integrating the path

planning and the MPC tracking control, is proposed for the AUV application.

3.1.2 Chapter Organization

The remainder of this chapter is organized as follows. In Section 3.2, the problem

statement is presented. In Section 3.3, we develop a receding horizon path planing

method for the vehicle. Section 3.4 provides the formulation of the tracking control

problem into the NMPC scheme as well as the detailed controller design. In Section

3.5, the overall motion control algorithm which combines the NMPC tracking control

and the path planning is depicted. Simulation results are demonstrated in Section

3.6. Section 3.7 provides the concluding remarks.

The notations adopted in this chapter are explained as follows. The symbol ‖ · ‖
refers to the Euclidean norm for vectors and the induced 2-norm for matrices. For a

function f(x), the time derivative is denoted by ḟ(x) while the derivative with respect

to x is denoted by f ′(x). The diagonal operation is abbreviated by diag(·).

3.2 Problem Statement

The combined problem of path planning and tracking control arises in many AUV

applications. For example, in the marine source seeking applications [20] or deep-sea

archaeological exploration applications [16], the workspace is constrained or cluttered

with obstacles. As illustrated in Figure 3.1, the workspace of AUVs is confined by

two polygonal chains c1(x) and c2(x) which reflect the topography of the seafloor or

the structure of an underwater shipwreck. Inevitably, the path planning needs to be

taken into account for safety reasons.

Definitions of reference paths may be diverse for various applications. Basically, a

reference path should be continuous, feasible and maybe with some performance index

optimized, e.g., the way-point straight path for marine vessles [46]. More advanced

path planing requires higher order of smoothness, i.e., the resultant path is continuous

with its derivatives. Now that the second-order derivative of the path is proportional

to the vehicle acceleration, a reference path with continuous second-order derivative

is particularly pursued.
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Figure 3.1: Illustration of the combined AUV motion control problem.

Since the AUV sway velocity is considerably smaller than its surge counterpart,

the following nonholonomic kinematic equations well approximate the vehicle motion

[46] at the velocity level:

ẋ = u cosψ − v sinψ ≈ u0 cosψ

ẏ = u sinψ + v cosψ ≈ u0 sinψ

ψ̇ = r

(3.1)

where [x, y, ψ]T denote the position and orientation; [u, v, r]T stand for the surge, sway

and yaw velocities while u0 denotes the resultant tangential velocity of the vehicle.

To precisely track a desired parameterized path p(s) = [xd(s), yd(s)]
T, the required

open-loop tangential velocity uoc and yaw rate roc can be calculated for the kinematic

model (3.1) in an explicit manner, provided that there is no disturbance or initial

error

uoc(t) =
√
x′2d + y′2d ṡ (3.2a)

roc(t) =
x′dy

′′
d − y′dx′′d

x′2d + y′2d
ṡ = uoc(t)κ(s) (3.2b)

where κ(s) represents the curvature along the path. From (3.2) it is readily seen that
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the smaller curvature will make the steering easier. In this sense, a reference path

with minimum curvature is practically desirable for AUVs.

However, due to large decaying rate of acoustic signals in water, the effective

sensing range is practically short (as described by the dashed circle in Figure. 3.1).

The reference path needs to be dynamically generated as the vehicle moves forward,

i.e., the path planning and tracking control are inherently coupled. Therefore, the

AUV control task contains the following two aspects:

i). Dynamic Path Planning: Based on updated local information dynamically

plan a minimum curvature reference path for the AUV.

ii). Precise Tracking Control: Based on the planned reference path steer the AUV

to converge and precisely track the path.

3.3 Minimum Curvature Receding Horizon Path

Planning

Inspired by [67] and [14], we take advantage of spline functions as the path template.

Spline functions [18] have many desirable properties that make them suitable for path

planning problems in the engineering practice. A spline can be conveniently selected

to provide enough order of smoothness and is parameterized to facilitate the reference

path computation. A spline function represented in b-form is defined as follows:

S(x) =
n∑
i=1

αiSi,k(x) (3.3)

where n is the number of knots, αi are the control parameters and Si,k(x) are kth

order basis splines defined recursively,

Si,1(x) =

{
1, xi ≤ x < xi+1

0, otherwise

and

Si,k(x) =
(x− xi)Si,k−1(x)

xi+k−1 − xi
+

(xi+k − x)Si+1,k−1(x)

xi+k − xi+1
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For a spline S(x), the measure of smoothness is chosen as (3.4), which is the objective

function in the reference path planning calculation.

F (x) =

∫ s(xf )

s(x0)

κ′(s)2ds (3.4)

Considering the relationship between the arc-length s and the Cartesian coordinate

x, the objective function in (3.4) is equivalent to

F (x) =

∫ xf

x0

κ′(x)2√
1 + S ′(x)2

dx (3.5)

where κ(x) represents the curvature of the spline

κ(x) =
S ′′(x)

(1 + S ′(x)2)3/2

For simplicity, we assume that the yaw plane environment is restricted by two polyg-

onal chains (see Figure. 3.1). Then the path planning problem can be formulated as

the following optimization problem.

Problem 1. Given the restriction polygonal chains c1(x) ≤ c2(x), with proper num-

bers of knots n, order o and end multiplicity l, compute the spline function S(α, x)

defined on Ω = [x0, xf ] such that

min
α
. F (α, x)

s.t. c1(x) ≤ S(α, x) ≤ c2(x)

where α = [α1, ..., αn]T. Here, we denote the spline as S(α, x) and objective function

as F (α, x) to explicitly point out the dependence on the control parameters which

are the decision variables in the optimization. In other places, when the spline is

already determined, we simply use the notation S(x) as per established convention

[18]. Also we shall notice that the order of the spline template should be at least

three to guarantee the continuity of the acceleration.

Remark 1. It is worth noting that the number of control parameters has an explicit

relation to the number of knots, thus the selection of knots appears a significant issue.

Extensive study on knot placement can be found in [80]. For the AUV application, the

larger number of knots makes the description of the environment more accurate, but
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it also makes the calculation of reference path S(x) more time-consuming. In view of

the limited computational resource and memory size on chip, usually the number of

knots is required to be as small as possible without losing main characteristics of the

environment. A possible way is to choose the local extrema of the environment and

connect these extrema sequentially. A safe margin concept can be used [14].

Remark 2. Another issue regarding computational complexity is the inequality con-

straints c1(x) ≤ S(α, x) ≤ c2(x). The constraints are enforced numerically, i.e., we

first sample these functions and then impose the inequality constraints at discrete

points. Therefore, to increase the number of samples is to enlarge the size of the

optimization problem. However, b-splines form a stable basis for splines and Runge’s

phenomenon in which oscillation may occur between knots can be avoided. In practice,

a small number of samples are usually sufficient.

Remark 3. Although we simplify the yaw plane environment as the area bounded by

two polygonal chains, more complicated environment can be tackled by transforming

it into constraints of the optimization problem or equivalently feasible regions for the

nonlinear programming (NLP) algorithm. The NLP algorithms such as SQP method

and interior-point method [9] usually require a connected feasible region. However,

complicated environment may be characterized as several disjoint feasible sub-regions.

This will result in more than one time NLP to calculate the reference path.

Because the sensing radius is short in practice, the global optimization cannot be

performed for the AUV path planning. Instead, the receding horizon scheme can help

to approximate the minimum curvature reference path. This idea can be explained

through the following example: Suppose the sensing range is 5-meter (illustrated

as the dashed circle in Figure 3.1), at a specific position, a local reference path

(illustrated as the dashed line segment between x0 and xf ) is generated based on the

current 5-meter data; when the AUV moves 1 meter forward to x1, a new reference

path, between the new start point x̄0 = x1 and new end point x̄f , will be generated

based on the new 5-meter measurement data. In this case, the continuity between

the neighbor splines has to be taken into consideration. Therefore, we impose the

continuity conditions as constraints in the optimization formulation.

Problem 2. Given measured environment information c1(x) ≤ c2(x) only defined on

Ω = [x0, xf ] and the last calculated reference path S0(x), with proper numbers of knots

n, order o and end multiplicity l, compute the spline function S(α, x) defined on Ω
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such that
min
α
. F (α, x)

s.t. c1(x) ≤ S(α, x) ≤ c2(x)

‖ S(α, x0)− S0(x0) ‖≤ ε1

‖ S ′(α, x0)− S ′0(x0) ‖≤ ε2

‖ S ′′(α, x0)− S ′′0 (x0) ‖≤ ε3

where α = [α1, ..., αn]T and εi are the tolerances for discontinuity. We should notice

that the start point of the current spline x0 is coincident with the second knot of the

previous calculated spline.

3.4 Nonlinear Model Predictive Tracking Control

In this section, we propose the design of the NMPC tracking control law so that the

AUV can precisely track the reference trajectory generated in Section 3.3.

The AUV model studied for the tracking control is the Falcon dynamic model

which we have discussed in Chapter 2:

ẋ =

[
R(ψ)v

M−1(Bu−C(v)v −D(v)v − g(η))

]
= f(x,u) (3.6)

where the state vector x = [x, y, ψ, u, v, r]T is consisted of the pose and velocity of the

vehicle, and the control vector u = [u1, u2, u3, u4]T is consisted of the forces generated

by the four thrusters. The detailed expression can be found in (2.32) and (2.34).

From a control point of view, the trajectory tracking control is challenging due

to the nonlinearity and coupled dynamics in the model (3.6). Since the vehicle surge

velocity does not keep constant for the trajectory tracking tasks, the assumptions

for model linearization cannot hold and linear control methods are inappropriate to

apply. In this regard, nonlinear model predictive control, which is capable of dealing

with complex nonlinearity of the dynamics, seems an attractive and practical option.

The reference path S(x) can be viewed as the state trajectory ηd = [xd, yd, ψd]
T

generated by a reference system which owns the same kinematic equations of motion
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as the real vehicle’s:

ẋd = ud cosψd − vd sinψd (3.7a)

ẏd = ud sinψd + vd cosψd (3.7b)

ψ̇d = rd (3.7c)

Decompose the kinematic state error in the vessel parallel reference frame [70, 46]:

ηe =

 xe

ye

ψe

 =

 cosψ sinψ 0

− sinψ cosψ 0

0 0 1


 xd − x
yd − y
ψd − ψ

 (3.8)

We further partition the velocity v = vf+ve, where vf = [ud cosψe−vd sinψe, ud sinψe+

vd cosψe, rd]
T can be regarded as a feedforward control action, and ve = [ue, ve, re]

T

represents the feedback control action. Differentiating both sides of (3.13) and sub-

stituting (2.34) (3.7), we derive the kinematic error equations:

ẋe = yerd − ue + yere (3.9a)

ẏe = −xerd − ve − xere (3.9b)

ψ̇e = −re (3.9c)

Analogously, we view vd = [ud, vd, rd]
T as the state trajectory of the reference system

that is with the same dynamic equations of motion:

u̇d =
Mv̇

Mu̇

vdrd −
Xu

Mu̇

ud −
Du

Mu̇

ud|ud|+
Fud
Mu̇

(3.10a)

v̇d = −Mu̇

Mv̇

udrd −
Yv
Mv̇

vd −
Dv

Mv̇

vd|vd|+
Fvd
Mv̇

(3.10b)

ṙd =
Mu̇ −Mv̇

Mṙ

udvd −
Nr

Mṙ

rd −
Dr

Mṙ

rd|rd|+
Frd
Mṙ

(3.10c)

Differentiating both sides of ve = v − vf yields

u̇e = u̇− u̇d cosψe − ud sinψere + v̇d sinψe − vd cosψere (3.11a)

v̇e = v̇ − u̇d sinψe + ud cosψere − v̇d cosψe − vd sinψere (3.11b)

ṙe = ṙ − ṙd (3.11c)
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Substituting (2.32) into (3.11), we have

u̇e = Mv̇

Mu̇
(ve + ud sinψe + vd cosψe)(re + rd)− Xu

Mu̇
(ue + ud cosψe

−vd sinψe)− Du

Mu̇
(ue + ud cosψe − vd sinψe)|ue + ud cosψe − vd sinψe|

−u̇d cosψe − ud sinψere + v̇d sinψe − vd cosψere + Fu

Mu̇

(3.12a)

v̇e = −Mu̇

Mv̇
(ue + ud cosψe − vd sinψe)(re + rd)− Yv

Mv̇
(ve + ud sinψe

+vd cosψe)− Dv

Mv̇
(ve + ud sinψe + vd cosψe)|ve + ud sinψe + vd cosψe|

−u̇d sinψe + ud cosψere − v̇d cosψe − vd sinψere + Fv

Mv̇

(3.12b)

ṙe = Mu̇−Mv̇

Mṙ
(ue + ud cosψe − vd sinψe)(ve + ud sinψe + vd cosψe)

−Nr

Mṙ
(re + rd)− Dr

Mṙ
(re + rd)|re + rd| − ṙd + Fr

Mṙ

(3.12c)

Design Fu, Fv, and Fr as follows:

Fu = −Mv̇(ve + ud sinψe + vd cosψe)(re + rd) +Xu(ue + ud cosψe

−vd sinψe) +Du(ue + ud cosψe − vd sinψe)|ue + ud cosψe − vd sinψe|
+Mu̇(u̇d cosψe + ud sinψere − v̇d sinψe + vd cosψere) +Mu̇τu

(3.13a)

Fv = Mu̇(ue + ud cosψe − vd sinψe)(re + rd) + Yv(ve + ud sinψe

+vd cosψe) +Dv(ve + ud sinψe + vd cosψe)|ve + ud sinψe + vd cosψe|
+Mv̇(u̇d sinψe − ud cosψere + v̇d cosψe + vd sinψere) +Mv̇τv

(3.13b)

Fr = (Mv̇ −Mu̇)(ue + ud cosψe − vd sinψe)(ve + ud sinψe

+vd cosψe) +Nr(re + rd) +Dr(re + rd)|re + rd|+Mṙṙd +Mṙτr
(3.13c)

By defining τ e = [τu, τv, τr]
T and substituting (3.13) into (3.12), together with
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(3.9) we have the following error dynamics for the AUV tracking control:

ẋe =



ẋe

ẏe

ψ̇e

u̇e

v̇e

ṙe


=



yerd − ue + yere

−xerd − ve − xere
−re
τu

τv

τr


= fe(xe, τ e) (3.14)

Obviously, (0,0) is an equilibrium point of (3.14). Comparing (3.10) and (3.13) at

(0,0), we find that Fu = Fud, Fv = Fvd and Fr = Frd, which means that the tracking

of the reference trajectory is equivalent to the stabilizing the error system (3.14) to

the equilibrium point.

To stabilize the error dynamics, the nonlinear model predictive control technique

is used. The stabilization is realized through the minimization of the cost function:

J(t,xe(t), τ e(t)) = g(xe(t+ T )) +

∫ t+T

t

`(xe(s), τ e(s))ds (3.15)

where the initial time is viewed as 0, g(·) is the terminal state penalty satisfying

g(0) = 0 and g(xe) > 0 for any xe 6= 0; `(xe, τ e) = xT
e Qxe + τT

e Rτ e is the stage cost

with Q > 0, R ≥ 0. Then the optimal control problem to be solved at each sampling

time instant can be formulated as follows.

Problem 3. Given the current error state xe, the weighting matrices Q and R,

compute the optimal control force τ e(t) by solving the following optimization problem:

min
τ e

. J(t,xe(t), τ e(t))

s.t. ẋe(t) = fe(xe(t), τ e(t)), for t ∈ [0, T ]

xe(t) ∈ Xe, for t ∈ [0, T ]

τ e(t) ∈ Te, for t ∈ [0, T ]

xe(T ) ∈ Xf ⊂ Xe

(3.16)

where Xe is a closed set representing the constraints on the error state; Te is a compact

set containing all the allowed control inputs; and Xf the terminal constraint set.

The standard NMPC algorithm for the AUV tracking control problem can be

briefly described as follows:
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2 The optimization problem (3.16) is solved with the current error state xe(t0) as

the initial condition. Let τ̄ e(t) denote the solution.

2 The system uses τ̄ e(t) to calculate τ using (3.13) for only one sampling period:

τ e(t) = τ̄ e(t) for [t0, t0 + δ].

2 At time t0 + δ, the optimization problem (3.16) is solved again using the latest

measured state data xe(t0 + δ).

The above procedure will repeat until accomplishing the AUV tracking task. However,

it is well known that optimality does not automatically guarantee the closed-loop

stability due to the finite prediction horizon. To solve this problem, we need to

appropriately design the local controller τLe , the terminal state penalty h(·) and the

terminal state constraint Xf [88].

Theorem 1. The closed-loop system (3.14) controlled by the NMPC algorithm is

asymptotically stable if the following conditions are satisfied:

C1: 0 ∈ Xf and 0 ∈ Te
C2: There exists a local controller τLe (t) satisfying

(a) τLe (t) ∈ Te, for all xe ∈ Xf

(b) fe(xe, τ
L
e (t)) ∈ Xf , for all xe ∈ Xf

(c) ġ(xe) + `(xe, τ
L
e (t)) ≤ 0 for all xe ∈ Xf .

C3: Let τ̄ e(t|t0) denote the solution of the optimization problem (3.16) at time

t0, the initial guess for the optimization at the next sampling time instant t0 + δ is

chosen as

τ̂ e(t|t0 + δ) =

{
τ̄ e(t|t0) for t0 + δ ≤ t ≤ t0 + T

τLe (t) for t0 + T ≤ t ≤ t0 + T + δ
(3.17)

Proof. To prove the stability of the NMPC algorithm, we need to find a Lyapunov

function such that this function is nonincreasing along the trajectory of (3.14) con-

trolled by the NMPC algorithm. We take the optimal value function V of the per-

formance index (3.15) as a Lyapunov function candidate .

In the following, the value function is denoted as V (t,xe(t0)) implying that the

optimal value function depends on the initial error; the state trajectory determined by

τ̄ e(t) is denoted by x̄e(t); the state trajectory determined by the initial guess (3.17)

is x̂e(t) and the corresponding cost is V̂ (t,xe).
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Case I: For two time instants that are within one sampling period, the optimization

problem (3.16) is solved only once, then for 0 ≤ t1 ≤ t2 < δ, V is nonincreasing since

V (t2,xe(t0)) = V (t1,xe(t0))−
∫ t2
t1
`(xe(s), τ e(s))ds

≤ V (t1,xe(t0))

Case II: For two time instants that locate in two successive sampling instants, the

optimization problem (3.16) is solved twice, then for 0 ≤ t1 < δ, and δ ≤ t2 < 2δ, the

following holds:

V (t2,xe(t0 + δ))− V (t1,xe(t0))

= V (t2, x̄e(t0 + δ))− V (t1,xe(t0))

≤ V̂ (t2, x̄e(t0 + δ))− V (t1,xe(t0))

= g(x̂e(T + δ))− g(x̄e(T )) +
∫ T+δ

t2
`(x̂e(s), τ̂ e(s))ds

−
∫ T
t1
`(x̄e(s), τ̄ e(s))ds

Observing (3.17), we notice that for s ∈ [t2, T ], x̂e(s) = x̄e(s) and τ̂ e(s) = τ̄ e(s), thus

we have
V (t2,xe(t0 + δ))− V (t1,xe(t0))

≤ g(x̂e(T + δ))− g(x̂e(T )) +
∫ T+δ

T
`(x̂e(s), τ̂ e(s))ds

−
∫ t2
t1
`(x̄e(s), τ̄ e(s))ds

From C2-(c), we have ġ(x̂e) + `(x̂e, τ̂ e) ≤ 0, then integrating both sides from T to

T + δ we have

g(x̂e(T + δ))− g(x̂e(T )) +
∫ T+δ

T
`(x̂e(s), τ̂ e(s))ds ≤ 0

Therefore, we have V (t2,xe(t0 + δ)) ≤ V (t1,xe(t0)).

Case III: For two time instants that locate across several sampling instants, the op-

timization problem (3.16) is solved several times, then for k1δ ≤ t1 < (k1 + 1)δ and

k2δ ≤ t2 < (k2 + 1)δ, with k1 < k2, by recursively using the result in Case II we have

the following inequality:

V (t2) ≤ V (k2δ) · · · ≤ V ((k1 + 1)δ) ≤ V (t1)

Furthermore, we have C1, C2-(a) and C2-(b) to guarantee the positively invariance

of the system under NMPC algorithm. Now, we can conclude that the optimal value
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function V is a valid Lyapunov function for the closed-loop system, and the system

(3.14) will be steered to the equilibrium point (0,0) by the NMPC controller.

Now, we design the NMPC tracking controller based on Theorem 1. First,

we construct the initial guess using the way in C3. Second, we select the local

controller to be a linear state feedback τLe (t) = Kxe. Third, we set the terminal state

penalty h(xe) , 1
2
xT
e xe. Specifically, let K , [K1 K2] where K1 = diag(α1, β1, γ1) and

K2 = −diag(α2, β2, γ2) with αi > 0, βi > 0, γi > 0; Q = diag(q11, q22, q33, q44, q55, q66)

and R = diag(r11, r22, r33) with qii > 0, rii ≥ 0, then we calculate the following:

ḣ(xe) = ẋexe + ẏeye + ψ̇eψe + u̇eue + v̇eve + ṙere

= (yerd − ue + yere)xe + (−xerd − ve − xere)ye
−ψere + ueτ

L
u + veτ

L
v + reτ

L
r

= −xeue − yeve − ψere + ueτ
L
u + veτ

L
v + reτ

L
r

and
`(xe, τ

L
e (t)) = q11x

2
e + q22y

2
e + q33ψ

2
e + q44u

2
e

+q55v
2
e + q66r

2
e + r11(τLu )2 + r22(τLv )2 + r33(τLr )2

Substituting τLe (t) = Kxe, we have

ḣ(xe) + `(xe, τ
L
e (t))

= −xeue − veye − ψere + α1xeue − α2u
2
e + β1yeve

−β2v
2
e + γ1ψere − γ2r

2
e + q11x

2
e + q22y

2
e + q33ψ

2
e

+q44u
2
e + q55v

2
e + q66r

2
e + r11(α1xe − α2ue)

2

+r22(β1ye − β2ve)
2 + r33(γ1ψe − γ2re)

2

= (q44 − α2 + r11α
2
2)u2

e + (q55 − β2 + r22β
2
2)v2

e

+(q66 − γ2 + r33γ
2
2)r2

e + (q11 + r11α
2
1)x2

e

+(α1 − 1− 2α1α2r11)xeue + (q22 + r22β
2
1)y2

e

+(β1 − 1− 2β1β2r22)yeve + (q33 + r33γ
2
1)ψ2

e

+(γ1 − 1− 2γ1γ2r33)ψere
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We select these parameters which satisfy the following inequalities

q11 + r11α
2
1 + α1 − 1− 2α1α2r11 ≤ 0

q22 + r22β
2
1 + β1 − 1− 2β1β2r22 ≤ 0

q33 + r33γ
2
1 + γ1 − 1− 2γ1γ2r33 ≤ 0

q44 − α2 + r11α
2
2 ≤ 0

q55 − β2 + r22β
2
2 ≤ 0

q66 − γ2 + r33γ
2
2 ≤ 0

(3.18)

and select the terminal constraint to satisfy

|ue| ≥ |xe|, xeue ≥ 0

|ve| ≥ |ye|, yeve ≥ 0

|re| ≥ |ψe|, ψere ≥ 0

(3.19)

We further choose the terminal constraint set to be the sublevel set of h(·)

Xf1 = {xe ∈ R6 | 1

2
xT
e xe ≤ σ} (3.20)

As a result, the condition C2 is satisfied. Define Xf = Xf1 ∩Xf2, where

Xf2 = {xe ∈ R6 | (3.19)} (3.21)

Here, we assume 0 ∈ Te, then C1 can be satisfied in Xf .

Remark 4. The inequalities in (3.18) are easy to satisfy. In fact, these parameters

can be divided into three independent groups: (q11, q44, r11, α1, α2), (q22, q55, r22, β1, β2)

and (q33, q66, r33, γ1, γ2). The selection among these groups are not coupled. Then for

each group only two inequality conditions need to be satisfied.

Remark 5. Back to (3.7) and (3.10), we shall notice that the reference system plays

a crucial role in the NMPC tracking control. Generally speaking, finding such a ref-

erence system is non-trivial, and it might be even more difficult than the stabilization

problem itself. Fortunately, for the AUV tracking problem the reference pair (xd, τ d)

can be derived directly from the reference path S(x). In particular, one possible choice

can be determined in the following way:

2 Make the calculated spline S(x) a reference trajectory of the kinematic state ηd
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by employing a predetermined timing law:

xd = ρ t

yd = S(xd)

ψd = atan2(ẏd, ẋd)

where ρ > 0 and atan2(·, ·) is the four-quadrant inverse tangent operator.

2 Choose the reference velocity vd to be ud = uoc, vd = 0 and rd = roc.

2 Calculate the reference control input τ d through (3.10).

Remark 6. For the AUV tracking control, the constraints on control inputs are usu-

ally given as follows,

Fu,min ≤ Fu ≤ Fu,max (3.22a)

Fv,min ≤ Fv ≤ Fv,max (3.22b)

Fr,min ≤ Fr ≤ Fr,max (3.22c)

Then we can derive the control error constraints as

Fu,min − F1

Mu̇

≤ τu ≤
Fu,max − F1

Mu̇

(3.23a)

Fv,min − F2

Mv̇

≤ τv ≤
Fv,max − F2

Mv̇

(3.23b)

Fr,min − F3

Mṙ

≤ τr ≤
Fr,max − F3

Mṙ

(3.23c)

Here, F1 = Fu−Mu̇τu, F2 = Fv−Mv̇τv, and F3 = Fr−Mṙτr which can be derived from

(3.13a)-(3.13c). Although (3.23) is time-varying with the reference system, it is not

necessary to explicitly calculate (3.23). The optimization problem (3.16) is defined to

facilitate the description of the stability theorem. In the NMPC implementation, we

can directly use the polyhedral input constraint (3.22) to calculate τ but construct the

cost function (3.15) using the elaborately defined error state xe and control τ e. Then

the equivalent τ e = τ − FF with FF = [F1, F2, F3]T.

Notice that the predetermined timing law can be carefully designed [51, 118] such

that the reference system chosen in Remark 5 fits the actual system. Specifically,

when the AUV is moving along the reference spline S(x), the reference control input
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can be expressed in an explicit manner

Fud = Mu̇u̇d +Xuud +Duud|ud| (3.24a)

Fvd = Mu̇udrd (3.24b)

Frd = Mṙṙd +Nrrd +Drrd|rd| (3.24c)

where u̇d and ṙd can also be explicitly calculated by

u̇d = S ′(xd)S
′′(xd)(1 + S ′(xd)

2)−
1
2 ẋ2

d + (1 + S ′(xd)
2)

1
2 ẍd (3.25a)

ṙd =
(1 + S ′(xd)

2)S ′′′(xd)− 2S ′(xd)S
′′(xd)

2

(1 + S ′(xd)2)2
ẋ2
d +

S ′′(xd)

(1 + S ′(xd)2)
ẍd (3.25b)

Together with the reference state defined in Remark 5, it can be observed that we

can always adjust xd, i.e., the value of ρ to satisfy the input constraints. In the

simulations, we use a fixed ρ as a simple example.

In this chapter, the thrust allocation problem is solved by conventional pseudo-

inverse method, i.e., the calculated generalized generalized thrust forces and moments

τ = [Fu, Fv, Fr]
T will be transformed into real thrusts by u = B+τ , where B+ is the

Moore-Penrose pseudo-inverse.

3.5 Integrated Receding Horizon Path Planning

and Tracking Control: Algorithm Description

In view of the same receding horizon optimization nature, the NMPC tracking control

can be conveniently integrated with the proposed path planning method.

Let Di denote the measured data for local environment information. The dimen-

sion of sampled reference path S(x) between the first and second knot isM. And the

prediction horizon T = N δ with N <M. Based on Problem 1 - 3, the integrated

path planning and tracking control algorithm is summarized in Algorithm 1.

In Algorithm 1 two things need to be clarified. First, within the for iterations,

we simply use ẋ = f(x,u) to denote the control process that to apply the calculated

control signal for one sampling period and to measure the system state at next sam-

pling instant. Second, since the prediction horizon N is fixed and the path planning

is performed by receding horizon optimizations, when the first segment of the cur-

rent spline between the first knot and second knot cannot provide enough samples
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Algorithm 1 : Integrated Path Planning and Tracking Algorithm
1: i = 0.
2: Let x0 denote the initial state of the AUV.
3: Given sensor data Di, calculate the reference path by solving Problem 1. Let
Si(x) be the solution.

4: procedure
5: k = 0.
6: for k ≤M−N do
7: Given Si(x) calculate the reference pair (xd, τ d) according to Remark 5.
8: Solve Problem 3 and use (3.13) to calculate τ̄ (t); u = B+τ̄ .
9: Implement the control: ẋ = f(x,u) for kδ ≤ t ≤ (k + 1)δ.
10: k = k + 1.
11: end for
12: i = i+ 1.
13: Collect another set of sensor data Di.
14: Calculate reference path by solving Problem 2; let Si(x) be the solution.
15: for k ≤M do
16: Given Si−1(x) and Si(x) calculate (xd, τ d) according to Remark 5.
17: Solve Problem 3 and use (3.13) to calculate τ̄ (t); u = B+τ̄ .
18: Implement the control: ẋ = f(x,u) for kδ ≤ t ≤ (k + 1)δ.
19: Let xf denote the system state at time (k + 1)δ.
20: k = k + 1.
21: end for
22: end procedure
23: x0 = xf , repeat procedure.

of reference state xd(k) from k = 1 to N , i.e., M− k < N , another round of path

planning needs to be performed starting from the second knot of the current spline.

The block diagram which represents the integrated control scheme consisting of

the path planner and the NMPC tracking controller, is depicted in Figure. 3.2. With

the aid of block diagram, we can explain the procedure in Algorithm 1 as follows:

2 The local environment Di is detected. The mathematical representation of the

workspace (c1, c2) is calculated according to current state x of the AUV, based

on which the path planner constructs a receding horizon optimization problem,

i.e., Problem 2 to determine the minimum curvature spline path Si(x).

2 The path Si(x) is then augmented and viewed as the trajectory of a virtual ref-

erence system which provides the reference state (xd, τ d) for the NMPC tracking

controller. A feed-forward channel exists to calculate the control effort FF cor-

responding to the compensation of the time-varying portion of the reference
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path. Based on an elaborately defined error dynamics (xe, τ e), the receding

horizon optimization problem, i.e., Problem 3 is constructed and then solved

to obtain the tracking control signal u = B+τ̄ .

2 As the AUV moves, the newly measured data will be collected and used to

generate an updated reference path. Repeat procedure.

u
R
x

e
x x

MPC

Sensor
Data

Path
Planning

Figure 3.2: The closed-loop control block diagram.

For the NMPC tracking control, it is worth noting that at each sampling instant,

only N steps of the reference states are used to construct the optimization problem.

According to Algorithm 1, we haveN <M and every time (except for the first time)

the reference path is planned starting from N steps ahead of the vehicle position. In

this case, the reference path is equivalent to a predefined one although it is actually

generated as the vehicle moves forward. The closed-loop stability of the tracking

control will not be affected by the integration of the receding horizon path planning.

3.6 Simulation Results

3.6.1 Parameter Selection

For the path planning, it is assumed that the vehicle can sense the environment up

to 5 meters ahead; we uniformly distribute 6 knots on the 5-meter range and insert

4 samples between knots; choose o = 4, l = 4 and update the reference path with

current 5-meter data whenever the vehicle moves 1 meter forward in the x-axis. The

tolerances for discontinuity are ε1 = ε2 = ε3 = 10−2 (m).

For NMPC parameters, we use ρ = 1, δ = 0.1sec, the prediction horizon T = 8δ.

The reference system is chosen according to Remark 5. The weighting matrices
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are selected as Q = diag(q11, q22, q33, q44, q55, q66) = 0.4 I6, R = diag(r11, r22, r33) =

0.01I3, K1 = diag(α1, β1, γ1) = 0.5I3 and K2 = −diag(α2, β2, γ2) = −I3. It can be

verified that these parameters satisfy (3.18).

3.6.2 Tracking Performance

In the simulations, the optimization Problem 1 - 3 are solved by the embedded

sequential quadratic programming (SQP) algorithm in the Matlab function fmincon.

The simulation results of the combined path planning and tracking control is

shown in Figure 3.3. It can be observed that the generated reference path is smooth in
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Figure 3.3: Simulation results of the combined AUV problem.

light of small curvature, which facilitates the tracking control of the AUV. The NMPC

controller successfully steers the AUV asymptotically convergent to and then track the

reference path in the presence of initial error. The average solution time per NMPC

step of is 1.9642 second which needs to be improved for real-time implementation.

The computational complexity issue will be further investigated in Chapter 6. Also

one can refer to the excellent review paper [35] for possible solutions.

Figure 3.4 shows the generalized control forces and moments, and Figure 3.5

depicts the transformed real thrust forces. Here, we shall notice that the control

inputs are not optimal in terms of fuel consumption (minimum control force) due
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Figure 3.4: The generalized control signal.

to the selection of the reference system. As mentioned earlier, unlike the mobile

robot whose sway velocity v is eliminated by friction, in water, the AUV will always

slip sideways when taking turns. Therefore, although we are able to conveniently

find the reference system as stated in Remark 5, the AUV has to compensate the

sway velocity v all the time, which increases the control effort. Nevertheless, if we
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Figure 3.5: The real thrust forces.

view this point via another perspective, the compensation of v poses a request for

the minimum curvature reference path, which is consistent with the proposed path
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planning method.

3.7 Conclusion

In this chapter, we have presented a unified receding horizon optimization (RHO)

framework for solving the combined path planning and tracking control problem of

an AUV. Firstly, a novel RHO-based dynamic path planning method was proposed

for the AUV to generate a minimum curvature reference path in the constrained

workspace. With the RHO formulation, the dynamic path planning can well accom-

modate the finite perceiving capability of the vehicle. Then, the nonlinear model

predictive control (NMPC) was employed for the AUV to precisely track the planned

reference path. Sufficient conditions for closed-loop stability were explored and fur-

ther applied to guide the NMPC controller design. Finally, an implementation al-

gorithm inherently combining NMPC and the proposed path planning method was

developed. With the implementation algorithm the obtained closed-loop stability of

the NMPC tracking control can be ensured. Simulation results on the Falcon dynamic

model with the identified model parameters revealed the effectiveness of the proposed

control algorithm.

The main results in this chapter have been published in [123].

[123] C. Shen, Y. Shi and B. Buckham, “Integrated Path Planning and Tracking

Control of an AUV: A Unified Receding Horizon Optimization Approach”,

IEEE/ASME Transactions on Mechatronics, vol.22, no.3, pp.1163-1173, 2017.
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Chapter 4

Lyapunov-based Model Predictive

Control for Dynamic Positioning

and Trajectory Tracking Control of

an AUV

4.1 Introduction

4.1.1 Research Background and Contributions

The dynamic positioning (DP) is an important part of the AUV control system.

Traditionally, the DP functionality refers to the vehicle’s capability of reaching and

maintaining at a desired position with a desired attitude by exclusively means of active

thrusters. In recent studies, it tends to encompass all of the low-speed maneuvering

into the definition of DP [128]. The most widely used DP controllers are of the

proportional-integral-derivative (PID) type since they are model free and easy to

implement. Acceleration feedback can be articulated with the PID controller to get

improved control stability [46]. For model-based control, in [129], the linear-quadratic-

Gaussian (LQG) technique is applied to the DP control design with a linearized model.

An H∞ controller is proposed in [71] which makes trade-off between track keeping

and station keeping. Obviously, the DP controllers based on linear control techniques

only obtain local stability properties. Nonlinear DP control design, therefore, comes

in for better closed-loop properties. The mainstream nonlinear control methods for
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DP include the Lyapunov-based backstepping and sliding mode control. In [134], the

observer-controller structure is investigated for the DP control, and a Lyapunov-based

backstepping nonlinear control law is designed. Global exponential stability can be

claimed. The nonlinear sliding model DP control can be found in [133]. Experiments

are conducted to demonstrate the improved control performance comparing to the

conventional PID controller. Most recent DP control designs begin to consider more

practical issues. The system constraints such as control limit and safe operating

region are inevitable in real applications. Therefore, it would be preferred if these

constraints can be considered in the DP controller design.

Model predictive control (MPC), being an optimization-based time domain con-

trol technique, is known as one of few control methods that can explicitly incorporate

constraints into the controller design phase [88, 87, 79]. In context of DP control, the

MPC solution is reported in [136] where the simulation results indicate that MPC

offers significantly improved control performance. In addition, the thrust allocation

(TA) subproblem, i.e., the coordination of thrusters to generate the matched general-

ized force and moment requested by the DP control law, can be solved simultaneously

with the LMPC-based DP control. Nevertheless, the big question associated with the

MPC control design is how to guarantee the closed-loop stability, especially for non-

linear systems such as AUVs. The optimality is not necessarily bringing stability for

the closed-loop system. To obtain this important closed-loop property, in standard

MPC design precedure we need to employ additional terminal constraints to the for-

mulated optimization problem, and to construct a local stabilizing control law via

local linearization [88]. This essentially introduces considerable conservativeness and

only local stability can be guaranteed. For DP of AUVs, since the system is highly

nonlinear, often the stability obtained by local linearization is not practically useful.

One potential solution is to circumvent this question by means of Lyapunov-based

model predictive control (LMPC) [30, 92]. The LMPC method combines the merits

of both Lyapunov-based control and model predictive control, which makes the MPC

design relatively simple and intuitive. More importantly, the LMPC controller inher-

its the stability property of the Lyapunov-based control, which is attractive for the

AUV DP control since many existing global DP controllers can be exploited.

In this chapter, we address the DP control problem for an AUV in the local level

plane. To handle the highly nonlinear, cross-coupled dynamics as well as system

constraints in terms of thrust limits, the Lyapunov-based nonlinear model predictive

control strategy is proposed. Within the LMPC framework, we do not need to solve
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the TA subproblem separately since the thruster distribution can be formulated into

the optimal control problem directly. Considering that most DP controllers are of

the PID type, the nonlinear PD control is adopted as the auxiliary control law.

The recursive feasibility and closed-loop stability of the LMPC control system are

explicitly analyzed. Since the nonlinear PD control is globally asymptotically stable,

the LMPC DP control obtains a quasi-global closed-loop stability: the region of

attraction (ROA) can be arbitrarily specified by the design parameters.

Furthermore, the obtained LMPC results in DP control are also extended to solve

the trajectory tracking control problem for AUVs. To construct the contraction con-

straint in the LMPC problem formulation, the Lyapunov-based backstepping proce-

dure is exploited. Sufficient conditions that ensure the recursive feasibility and closed-

loop stability are provided analytically. Compared with the NMPC tracking control

explored in Chapter 3, the main advantage of the LMPC method is that it builds

on the existing AUV control system and utilizes onboard computing resources (on-

line optimization) to improve the control performance. Since the closed-loop stability

of LMPC-based control system does not rely on the exact solution of the optimiza-

tion, we can easily control the computational complexity by specifying the maximum

iteration number for the NLP solver. In addition, from the control-theoretic perspec-

tive, another advantage of LMPC is that using LMPC we are able to characterize

an explicit ROA while with the NMPC we can only define the ROA in an implicit

manner.

The main contributions of this chapter are summarized as follows,

• A novel LMPC framework is developed for the AUV motion control problems,

providing a bridge connecting the modern optimization theory and the conven-

tional marine control technology. The control performance and robustness can

be significantly improved by the online optimization.

• Based on the LMPC framework, a dynamic positioning controller (DP) is de-

signed for the AUV. Sufficient conditions for recursive feasibility and closed-loop

stability are explicitly derived. With the nonlinear PD control law adopted as

the auxiliary controller, we show that the region of attraction of the LMPC-

based DP control can be specified arbitrarily large.

• An LMPC-based trajectory tracking controller is also designed. Sufficient con-

ditions for recursive feasibility and closed-loop stability are provided. A guar-

anteed region of attraction is characterized analytically.
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• With the LMPC framework the thrust allocation (TA) subproblem can be solved

simultaneously with the AUV motion control, which reduces the conservative-

ness brought by conventional TA solutions.

4.1.2 Chapter Organization

The remaining part of this chapter is organized as follows: Section 4.2 proposes the

LMPC framework and details the DP controller design. In Section 4.3, the LMPC

method is applied to solve the AUV trajectory tracking problem; controller design

and stability analysis are provided. In Section 4.4, the conclusion is made for this

chapter.

Throughout this chapter, the following notations are used: the column operation

[ρT
1 , ...ρ

T
n ]T is denoted as col(ρ1, ..., ρn); the diagonal operation is denoted by diag(·);

the square of a weighted Euclidean norm ρTAρ is abbreviated by ‖ρ‖2
A; and the infinity

norm and 2 norm are denoted by ‖ · ‖∞ and ‖ · ‖2, respectively. The symbol 1 is used

to represent a column vector with all elements to be 1. The max{·} is a function that

returns the largest element within the brace. The absolute value operator applying

on a vector |ρ| takes the absolute value for each and every element.

4.2 LMPC Design for Dynamic Positioning Con-

trol

4.2.1 Problem Formulation

The AUV model studied for the DP control and the subsequent trajectory tracking

control keeps the same as the one used in Chapter 3 which is established based on

the kinematic equations, the dynamic equations and the thrust distribution:

ẋ =

[
R(ψ)v

M−1(Bu−C(v)v −D(v)v − g(η))

]
= f(x,u) (4.1)

where the state vector x = [x, y, ψ, u, v, r]T is consisted of the pose and velocity of the

vehicle, and the control vector u = [u1, u2, u3, u4]T is consisted of the forces generated

by the four thrusters. The detailed expression can be found in (2.32) and (2.34).

The DP control refers to the feedback control of marine vehicles to reach and
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maintain the desired position at the preferred orientation by exclusively means of

thrusters. Consider the desired position and orientation given by ηd = [xd, yd, ψd]
T.

An intuitive MPC formulation can be established for the DP control

min
û∈S(δ)

J =
∫ T

0
(‖x̃(s)‖2

Q + ‖û(s)‖2
R)ds+ ‖x̃(T )‖2

P

s.t. ˙̂x(s) = f(x̂(s), û(s))

x̂(0) = x(t0)

|û(s)| ≤ umax

(4.2)

where x̂(s) is the predicted state trajectory of the vehicle, evolving using the system

model; x̃ = col(η̃, v̂) denotes the error state in which η̃ = η̂ − ηd; S(δ) denotes

the family of piecewise constant functions characterized by the sampling period δ.

T = Nδ is the prediction horizon and Q, R, P are weighting matrices, positive

definite.

However, even if the global optimal solution curve û∗(s) can be obtained, the

closed-loop stability is not guaranteed due to the finite prediction horizon. Complex

offline design procedure appears to be a necessity. For nonlinear systems, basically,

local linearization with respect to equilibrium point has to take place to facilitate the

choice of weighting matrices as well as the construction of the auxiliary local feedback

control [87]. Therefore, only local stability property can be claimed.

In view of the fact that many existing DP controllers are designed using the

Lyapunov direct method and obtain the global stability property, we can explicitly

take advantage of these existing controllers to formulate the LMPC problem (P0) for

the DP control

min
û∈S(δ)

J =

∫ T

0

(‖x̃(s)‖2
Q + ‖û(s)‖2

R)ds+ ‖x̃(T )‖2
P (4.3a)

s.t. ˙̂x(s) = f(x̂(s), û(s)) (4.3b)

x̂(0) = x(t0) (4.3c)

|û(s)| ≤ umax (4.3d)

∂V
∂x

f(x̂(0), û(0)) ≤ ∂V
∂x

f(x̂(0), h(x̂(0))) (4.3e)

where h(·) is the existing DP controller and V (·) is the corresponding Lyapunov func-

tion. The presence of contraction constraint (4.3e) allows us to show that the LMPC
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inherits the stability properties of the state feedback control h(x) [30]. Therefore, if

h(x) brings the global stability of desired equilibrium point, the system under LMPC

control is also globally stable. Meanwhile, thanks to the online optimization proce-

dure, the LMPC controller can improve the DP control performance considerably.

The LMPC-based DP control algorithm will be implemented in the standard

receding horizon control fashion: (i) at the current sampling instant t0, given the

system state x(t0), the optimal control problem (P0) is solved; let κ(s) denote the

(sub-)optimal solution; (ii) the vehicle implements κ(s) for only one sampling period:

u(t) = κ(s) for s ∈ [0, δ]; (iii) at next sampling instant t0 + δ, new measurement of

system state x(t0 + δ) is fed back, and (P0) will be solved again with the new initial

condition x(t0 + δ). Then repeat from (i).

4.2.2 Main Results

Since the universally used DP controllers are of the PID type, we investigate the

multivariable PD control for the purpose of constructing the contraction constraint

in the LMPC problem (4.3). However, any other Lyapunov-based nonlinear controller

can, in principle, be used.

Consider the following nonlinear PD control law:

τ (x) = g(η)−RT(ψ)τ PD (4.4)

τ PD = Kpη̃ + Kdη̇ (4.5)

where Kp and Kd are the user specified control gain matrices which are diagonal and

positive definite.

The Lyapunov function candidate is suggested as follows:

V =
1

2
vTMv +

1

2
η̃TKpη̃ (4.6)

Taking time derivative of V along the trajectory of the closed-loop system, we

have

V̇ = vTMv̇ + η̇TKpη̃ (4.7)

Substituting (2.31), (2.33), (4.4) and (4.5) into (4.7) yields

V̇ = −vT[C(v) + D(v) + K∗d(η)]v (4.8)
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where K∗d(η) = RT(ψ)KdR(ψ). Considering vTC(v)v = 0 for all v, we have

V̇ = −vT[D(v) + K∗d(η)]v ≤ 0 (4.9)

since it can be easily shown that K∗d(η) > 0. By LaSalle’s theorem [75], the closed-

loop system with the nonlinear PD controller is globally asymptotically stable with

respect to the equilibrium [η̃,v] = [0,0].

Then the detailed expression of the contraction constraint (4.3e) corresponding to

the nonlinear PD control is

v̂(0)T(û(0)−C(v̂(0))v̂(0)−D(v̂(0))v̂(0)− g(η̂(0)) + RT(ψ̂(0))Kpη̃(0))

≤ −v̂(0)T[D(v̂(0)) + K∗d(η̂(0))]v̂(0)
(4.10)

For the recursive feasibility, we notice that the PD controller h(x̂) is always feasible

for the LMPC problem (4.3) provided that |h(x̂)| ≤ umax can be satisfied.

For calculation simplicity, in the following we make several reasonable and prac-

tical assumptions.

Assumption 1. The thrusters have the same maximum capacity, i.e., |ui| ≤ umax.

Note that Assumption 1 is reasonable and often true in practice. Then we have

the following proposition.

Proposition 1. Consider the TA using the Moore - Penrose pseudoinverse imple-

mentation, i.e.,

u = (BBT)−1BTτ = B+τ (4.11)

and denote the maximum possible generalized thrust force by τmax = ‖τmax‖∞ with

τmax = [Fu,max, Fv,max, Fr,max]
T.

If the following relation holds,

τmax ≤
umax

b̄+
(4.12)

where b̄+ = ‖B+‖∞, then the TA is always feasible, i.e., ‖u‖∞ ≤ umax.

Proof. Taking the infinity norm on both sides of (4.11) we have

‖u‖∞ = ‖B+τ‖∞ ≤ b̄+‖τ‖∞ ≤ b̄+τmax (4.13)
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Having (4.12) and Assumption 1, it follows

‖u‖∞ ≤ b̄+τmax ≤ umax (4.14)

Assumption 2. The restoring force g(η) is bounded and relatively small such that

‖g(η)‖∞ ≤ ḡ < τmax (4.15)

where ḡ denotes the bound.

The Assumption 2 is also reasonable. The detailed expression of g(η) can be

found in (2.24) which contains combinations of sine and cosine functions. Therefore,

the boundedness of the restoring force can be guaranteed. Furthermore, the bound

ḡ is relatively small with respect to the maximum allowed thrust force τmax. If not,

from (4.4) we see that there would be no room for the feedback control, which is not

considered in this dissertation. Then we have the following theorem.

Theorem 2. Suppose the control gains Kp = diag{kpi} and Kd = diag{kdi}. Let

k̄p = max{kpi} denote the largest element in Kp and k̄d = max{kdi} denote the

largest element in Kd. Suppose Assumption 1 and Assumption 2 can hold and

define h(x) = B+τ (x). If the following relation holds,

(k̄p +
√

2k̄d)‖x̃(0)‖2 ≤
τmax − ḡ√

2
(4.16)

where x̃(0) is the initial error and τmax follows (4.12), then the LMPC (P0) admits

recursive feasibility, i.e., |h(x̂(t))| ≤ umax for all t ≥ 0 where umax = umax1.

Proof. Taking infinity norm on both sides of (4.4) yields

‖τ‖∞ = ‖g(η)−RT(ψ)τ PD‖∞
≤ ‖g(η)‖∞ + ‖RT(ψ)‖∞‖τ PD‖∞
≤ ḡ +

√
2‖τ PD‖∞

(4.17)

since ‖RT(ψ)‖∞ = max{cosψ − sinψ, sinψ + cosψ, 1} ≤
√

2.
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From (2.33) and (4.5), we have

‖τ PD‖∞ = ‖Kpη̃ + Kdη̇‖∞ = ‖Kpη̃ + KdR(ψ)v‖∞
≤ k̄p‖η̃‖∞ +

√
2k̄d‖v‖∞

≤ (k̄p +
√

2k̄d)‖x̃‖∞
(4.18)

Since (4.3e) is satisfied, it admits V̇ ≤ 0. Therefore, ‖x̃‖2 ≤ ‖x̃(0)‖2. Considering

‖x̃‖∞ ≤ ‖x̃‖2, we have

‖τ PD‖∞ ≤ (k̄p +
√

2k̄d)‖x̃(0)‖2 (4.19)

Together with (4.17), we have

‖τ‖∞ ≤ ḡ +
√

2(k̄p +
√

2k̄d)‖x̃(0)‖2 (4.20)

If (4.16) can be satisfied, then the following relation holds

‖τ‖∞ ≤ ḡ +
√

2(k̄p +
√

2k̄d)‖x̃(0)‖2 ≤ τmax (4.21)

With (4.12), we can guarantee that ‖h(x̂(t))‖∞ ≤ umax is satisfied all the time,

which completes the proof.

We notice that the (4.16) can be easily satisfied since k̄p and k̄d can be specified as

arbitrarily small positive numbers. As the recursive feasibility implies the closed-loop

stability, the region of attraction can be arbitrarily large.

Definition 2 (Class K∞ Function). A continuous function α : [0,∞)→ [0,∞) is

said to belong to K∞ if

• it is strictly increasing

• it is such that α(0) = 0 and lim
r→∞

α(r) =∞

Theorem 3. Suppose Assumption 1 and Assumption 2 can hold, then the LMPC-

based DP control makes the desired equilibrium point [η̃,v] = [0,0] asymptotically

stable. Furthermore, the region of attraction can be arbitrarily large with enough

small control gains k̄p and k̄d.

Proof. The proof first shows that the equilibrium is asymptotically stable, and then

illustrates that the region of attraction can be arbitrarily large.
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Since we have already found a Lyapunov function V (x) in (4.6), continuously dif-

ferentiable and radically unbounded, by converse Lyapunov theorems [75], there exist

functions αi(·), i = 1, 2, 3 belonging to class K∞ such that the following inequalities

can hold:

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) (4.22a)

∂V

∂x
f(x, h(x)) ≤ −α3(‖x‖) (4.22b)

Considering (4.3e) and that only the first element of κ(x) will be implemented for

each sampling period, we have

∂V

∂x
f(x,u(x)) ≤ ∂V

∂x
f(x, h(x)) ≤ −α3(‖x‖) (4.23)

By standard Lyapunov arguments (e.g., Theorem 4.8 in [75]) we claim that the closed-

loop system with the LMPC control u(x) is asymptotically stable with a region of

attraction

X = {x ∈ Rn | (k̄p +
√

2k̄d)‖x̃‖2 ≤
τmax − ḡ√

2
} (4.24)

where x̃ = col(η̃,v) denotes the error state.

Obviously, with arbitrarily large initial error x̃, we choose the control gains Kp > 0

and Kd > 0 satisfying

(k̄p +
√

2k̄d) ≤
τmax − ḡ√

2‖x̃‖2

(4.25)

Then the LMPC problem is feasible and the closed-loop system is stable. Since there

are no other constraints on k̄p and k̄d, the region of attraction can be arbitrarily large

with enough small control gains satisfying (4.25).

Remark 7. Although the asymptotical stability relies only on the positive definiteness

of the control gain matrices Kp and Kd, the control performance of the PD controller

is determined by the magnitude of the control gains. Smaller control gains will result

in slower convergence. However, for the proposed LMPC-based DP control, due to the

optimization procedure, it can automatically make full use of the thrust capability to

generate the best achievable control performance, with respect to the objective function

(4.3a), even though we have selected very small control gains for a large region of

attraction.
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4.2.3 Simulation Results

In this section, the proposed LMPC-based DP control is simulated on the dynamic

model of Falcon which were identified through experimental data [109]. The AUV

model parameters are the same as those in the previous chapter and the details have

been summarized in Table 2.1.

Without loss of generality, the desired position is chosen to be the origin of the

IRF, i.e., ηd = [0, 0, 0]T. The LMPC problem (4.3) is discretized and then solved by

the sequential quadratic programming (SQP) method.

The controller parameters are chosen as follows: The sampling period δ = 0.1sec,

prediction horizon T = 5δ, and the weighting matrices Q = diag(105, 105, 104, 103,

103, 103), R = diag(10-3, 10-3, 10-3, 10-3) and P = diag(103, 103, 102, 10, 10, 10).

The nonlinear PD control gains Kp = Kd = diag(10, 10, 10). The initial condition is

x(0) = [5, 5,−π/2, 0, 0, 0]T.

The simulated AUV trajectories are shown in Figure 4.1 and the state trajectories

with respect to time are illustrated in Figure 4.2.
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Figure 4.1: The AUV trajectory in local level plane.

As we can see, both LMPC and PD controller steer the AUV successfully to the

desired set-point. However, the LMPC-based DP control converges much faster (in

about 20 sec.) than the PD control (in about 40 sec.). This is because we have selected

relatively small control gain matrices Kp and Kd for a large region of attraction. The
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Figure 4.2: The state trajectories.

simulation results demonstrate the superior DP control performance; the resulting

improved performance is mainly due to the online optimization. The thrust forces

generated by each thruster are plotted in Figure 4.3. We shall notice that in the

beginning of the LMPC control, the thrusters are operated with full speed in order

to get fastest possible convergence rate.

The receding horizon mechanism introduces feedback into the closed-loop system.

Therefore, an additional merit of LMPC-based DP control system is the inherent

robustness to model uncertainties and external disturbances [105], which is attractive

especially for marine control systems. The robustness of the LMPC-based DP control

is investigated through simulations. In the following simulations, we assume that

the system model is subject to 20% model error, and there is a disturbance w =

[10(N), 10(N), 0(Nm)]T exerting on the vehicle all the time, caused by an irrotational

ocean current.

From the simulation results illustrated in Figure 4.4 - Figure 4.6, we see that the

LMPC-based DP control still gets converged to the desired position. In contrast, it

can be proved that the PD control only ensures uniform ultimate boundedness (UUB)

of the position error [49]. This has demonstrated that the robustness of DP control

can be improved by the introduced online optimization.
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Figure 4.3: The control input signals.
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Figure 4.4: The AUV trajectory in local level plane (with disturbance).

4.3 LMPC Design for Trajectory Tracking Control

In this section, we extend the main results obtained in Section 4.2 to solve the tra-

jectory tracking control problem of an AUV.
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Figure 4.5: The state trajectories (with disturbance).
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Figure 4.6: The control input signals (with disturbance).

4.3.1 Problem Formulation

Consider a desired trajectory p(t) = [xd(t), yd(t)]
T which defines the position of the

AUV in the local level plane. Here, we assume that the following conditions hold:
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Assumption 3. The desired trajectory p(t) and its derivatives are smooth and bound-

ed, satisfying that: 0 ≤ p ≤ ‖p(t)‖∞ ≤ p̄ < ∞, 0 < p1 ≤ ‖ṗ(t)‖∞ ≤ p̄1 < ∞,

0 ≤ p2 ≤ ‖p̈(t)‖∞ ≤ p̄2 <∞ and 0 ≤ p3 ≤ ‖
...
p (t)‖∞ ≤ p̄3 <∞.

We augment p(t) to a reference system so that each state of the AUV system (4.1)

has a feasible reference. Let xd(t) = [xd(t), yd(t), ψd(t), ud(t), vd(t), rd(t)]
T with

ψd(t) = atan2(ẏd(t), ẋd(t))

ud(t) =
√
ẋ2
d(t) + ẏ2

d(t)

vd(t) = 0

rd(t) = (ẋd(t)ÿd(t)− ẏd(t)ẍd(t))/(ẋ2
d(t) + ẏ2

d(t))

(4.26)

where atan2 is the four-quadrant inverse tangent operator. Then it can be veri-

fied that xd(t) satisfies the kinematic equations (2.33). Similarly, we assume vd =

[ud, vd, rd]
T obeys the dynamic equations (2.31), and the reference control forces

τ d = [Fud, Fvd, Frd]
T can be obtained by

τ d = Mv̇d + C(vd)vd + D(vd)vd + g(ηd) (4.27)

where ηd = [xd, yd, ψd]
T and v̇d can be calculated by taking time derivative of (4.26).

Furthermore, since the model property P-5 is satisfied we take advantage of the

Moore-Penrose pseudoinverse implementation to solve the TA subproblem and we

can get the reference control for each thruster:

ud = (BTB)−1BTτ d = B+τ d (4.28)

Proposition 2. Provided that Assumption 3 holds and the reference signals are

chosen as (4.26) then the desired pose ηd and its derivatives η̇d and η̈d are upper

bounded, i.e., ‖ηd(t)‖∞ ≤ η̄d, ‖η̇d(t)‖∞ ≤ η̄d1 and ‖η̈d(t)‖∞ ≤ η̄d2 for some positive

numbers η̄d, η̄d1 and η̄d2.

Proof. With Assumption 3, we notice that the boundedness of ηd, η̇d and η̈d depend

on the boundedness of ψd, ψ̇d and ψ̈d, respectively.

By definition, we have |ψd| ≤ π. Since ψ̇d = rd, we have |ψ̇d| ≤ p̄1p̄2/p
2
1. We

explicit ψ̈d as follows

ψ̈d =
ẋd

...
y d − ẏd

...
x d

ẋ2
d + ẏ2

d

− 2(ẋdẍd + ẏdÿd)(ẋdÿd − ẏdẍd)
(ẋ2

d + ẏ2
d)

2
(4.29)
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Obviously, we have |ψ̈d| ≤ p̄1p̄3/p
2
1 + 2p̄2

1p̄
2
2/p

2
1. Therefore, the upper bounds can be

calculated by

η̄d = max{p̄, π} (4.30a)

η̄d1 = max{p̄1, p̄1p̄2/p
2
1} (4.30b)

η̄d2 = max{p̄2, p̄1p̄3/p
2
1 + 2p̄2

1p̄
2
2/p

2
1} (4.30c)

Since η̇d = R(ψ)vd, together with (4.27), (4.28) and the model property P-6, it

can be easily shown that the reference state xd and control ud are also finite and

upper bounded.

Then the intuitive MPC formulation for the AUV trajectory tracking control can

be safely established

min
û∈S(δ)

J =
∫ T

0
(‖x̃(s)‖2

Q + ‖ũ(s)‖2
R)ds+ ‖x̃(T )‖2

P

s.t. ˙̂x(s) = f(x̂(s), û(s))

x̂(0) = x(t0)

|û(s)| ≤ umax

(4.31)

where x̂(s) is the predicted state trajectory of the vehicle with respect to the predictive

control û(s), evolving from x(t0) using the system model; x̃ = x̂−xd is the error state

and ũ = û − ud is the control error; S(δ) denotes the family of piecewise constant

functions characterized by the sampling period δ and T = Nδ is the prediction

horizon; The weighting matrices Q, R and P are positive definite.

As usual, the closed-loop stability cannot be automatically guaranteed by the

optimality of the solution due to the finite prediction horizon. To ensure this impor-

tant closed-loop property, complex offline design procedure should take place. For

nonlinear systems such as the AUV, with standard MPC design technique, local lin-

earization needs to be performed in order to select appropriate weighting matrices

and to construct an auxiliary local feedback control law. In this way, the region of

attraction will be defined implicitly [111].

As mentioned in Section 1.1.3, for the AUV tracking of a curved reference trajec-

tory the local linearization appears inappropriate to apply. To circumvent the local

linearizarion while ensuring the closed-loop stability of the MPC tracking control, we

exploit an auxiliary Lyapunov-based nonlinear tracking control law and formulate the



68

LMPC problem by adding a contraction constraint to the original MPC formulation:

min
û∈S(δ)

J =

∫ T

0

(‖x̃(s)‖2
Q + ‖ũ(s)‖2

R)ds+ ‖x̃(T )‖2
P (4.32a)

s.t. ˙̂x(s) = f(x̂(s), û(s)) (4.32b)

x̂(0) = x(t0) (4.32c)

|û(s)| ≤ umax (4.32d)

∂V
∂x

f(x̂(0), û(0)) ≤ ∂V
∂x

f(x̂(0), h(x̂(0))) (4.32e)

where h(·) is the auxiliary Lyapunov-based nonlinear tracking control law and V (·) is

the corresponding Lyapunov function. The presence of contraction constraint (4.32e)

allows us to show that the LMPC controller inherits the stability properties of the

state feedback control h(x) and a guaranteed ROA can be explicitly characterized.

Furthermore, thanks to the online optimization procedure, the LMPC controller will

automatically perform the best achievable tracking control and respect the physical

limitation of the system.

The LMPC-based trajectory tracking control will be implemented in the standard

receding horizon fashion and the control algorithm is summarized in Algorithm 2.

Algorithm 2 : LMPC Algorithm

1: Input the objective function J in (4.32a).
2: Measure the current state x(t).
3: Solve the LMPC problem (4.32) with x(t0) = x(t); let κ(s) denote the optimal

solution.
4: Implement κ(s) for only one sampling period: u(t) = κ(s) for s ∈ [0, δ];
5: At next sampling time instant, set t = t+ δ, then repeat from step 2.

Remark 8. As will be seen shortly in the next section, neither the recursive feasibility

nor the closed-loop stability relies on the exact solution of the optimization. In Al-

gorithm 2 suboptimal solutions are practically acceptable, which is highly desirable

for any nonlinear MPC algorithm by considering the following facts: First, since the

system model (4.1) is nonlinear, using iterative methods, the best guaranteed solution

to (4.32) is a local optimum. More importantly, for the implementation on embedded

systems with limited computational resource, the iteration number may be restricted

for real-time control. In other words, the compatibility with suboptimal solutions in-

troduces the flexibility between numerical efficiency and control performance. We can
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conveniently make the trade-off by specifying the maximum iteration number without

destabilizing the tracking control.

4.3.2 Main Results

In this section, we first construct the auxiliary tracking controller using Lyapunov-

based backstepping technique and then analyze the recursive feasibility and closed-

loop stability of the LMPC under Algorithm 2.

To construct the contraction constraint in (4.32e), we need to find a state feed-

back controller together with the corresponding Lyapunov function. For the AUV

trajectory tracking, the Lyapunov-based nonlinear controller can be designed via the

backstepping technique.

Define the following change of variables:

η̇r = η̇d − η̃ (4.33a)

vr = RT(ψ)η̇r (4.33b)

s = η̇ − η̇r (4.33c)

where η̃ = η−ηd is the position tracking error. Considering the kinematic equations

(2.33), we have

η̇ − η̇d = R(ψ)(v − vd) (4.34)

We view v as a virtual control that stabilizes the trajectory tracking control:

R(ψ)v = s +α1 (4.35)

Choosing α1 = η̇r and substituting it into (4.34) - (4.35) yields

˙̃η = s +α1 −R(ψ)vd = −η̃ + s (4.36)

Consider the following function:

V1 =
1

2
η̃TKpη̃ (4.37)

where Kp = KT
p > 0 is a specified control gain matrix. Then the time derivative of

V1 becomes:

V̇1 = η̃TKp
˙̃η = −η̃TKpη̃ + sTKpη̃ (4.38)
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Further construct the Lyapunov function candidate:

V2 =
1

2
sTM∗(ψ)s + V1 (4.39)

where M∗(ψ) = R(ψ)MRT(ψ).

Taking time derivative of V2 results in:

V̇2 = sTM∗(ψ)ṡ + 1
2
sTṀ∗(ψ)s + V̇1 (4.40)

Substituting the dynamic equations (2.31), we have

V̇2 = −sT[C∗(v, ψ) + D∗(v, ψ)]s

+sTR(ψ)[τ −Mv̇r −C(v)vr −D(v)vr − g(η)]

+1
2
sTṀ∗(ψ)s− η̃TKpη̃ + sTKpη̃

(4.41)

where C∗(v, ψ) = R(ψ)[C(v)−MRT(ψ)Ṙ(ψ)]RT(ψ) and D(v, ψ)∗ = R(ψ)D(v)RT(ψ).

From model property P-2, it can be verified that

sT(Ṁ∗(ψ)− 2C∗(v, ψ))s = 0, ∀ v, ψ, s (4.42)

Therefore, if we choose the following control law:

τ (x) = Mv̇r + Cvr + Dvr + g −RTKpη̃ −RTKds (4.43)

where Kd > 0 is another user specified control gain matrix, Eqn. (4.41) becomes

V̇2 = −sT[D∗(v, ψ) + Kd]s− η̃TKpη̃ (4.44)

From model property P-4, we have V̇2 ≤ 0. Then by standard Lyapunov ar-

guments, the closed-loop system under (4.43) is globally asymptotically stable with

respect to the equilibrium [η̃, s] = [0,0].

Therefore, the detailed expression of the contraction constraint (4.32e) correspond-
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ing to (4.43) is

−ŝ(0)TD∗(v̂(0), ψ̂(0))ŝ(0) + ŝ(0)TR(ψ̂(0))[Bû(0)

−M ˙̂vr(0)−C(v̂(0))v̂r(0)−D(v̂(0))v̂r(0)

−g(η̂(0))]− η̃(0)TKpη̃(0) + ŝ(0)TKpη̃(0)

≤ −ŝ(0)T[D∗(v̂(0), ψ̂(0)) + Kd]ŝ(0)− η̃(0)TKpη̃(0)

(4.45)

Note that, here, we construct the contraction constraint with the help of the aux-

iliary nonlinear backstepping controller. However, in principle, any other Lyapunov-

based tracking controller such as sliding model control and dynamic surface control,

can be employed.

Now we analyze the recursive feasibility of the problem (4.32) and the closed-loop

stability under Algorithm 2.

Lemma 1. For the AUV system (4.1), suppose Assumption 3 is satisfied. If the

backstepping control law (4.43) is applied to the AUV, then the Coriolis and centripetal

matrix C(v) and damping matrix D(v) are such that the following relations hold:

‖C(v)‖∞ ≤ c̄ = 2
√

2m̄η̄d1 + 4
√

2m̄‖γ(0)‖2 (4.46)

‖D(v)‖∞ ≤ d̄ = d̄1 + d̄2(
√

2η̄d1 + 2
√

2‖γ(0)‖2) (4.47)

where γ(t) = col(η̃(t), s(t)), d̄1 = max{|Xu|, |Yv|, |Nr|} and d̄2 = max{Du, Dv, Dr}.

Proof. Define γ′ = col(η̃,RT(ψ)s) and we can reformulate the Lyapunov function

(4.39) as V2 = 1
2
γ′TΠγ′ with Π = diag(Kp,M). Since V̇2 ≤ 0, we have ‖γ′(t)‖2 ≤

‖γ′(0)‖2. Furthermore, from the model property P-3 we have ‖γ′(t)‖2 = ‖γ(t)‖2

followed by

‖γ(t)‖2 ≤ ‖γ(0)‖2 (4.48)

By definition, we have ‖η̃‖∞ ≤ ‖γ‖∞ and ‖s‖∞ ≤ ‖γ‖∞. Then the following holds

‖ ˙̃η‖∞ = ‖s− η̃‖∞ ≤ ‖s‖∞ + ‖η̃‖∞ ≤ 2‖γ‖∞ (4.49)

Considering that ‖γ‖∞ ≤ ‖γ‖2, we have

‖ ˙̃η(t)‖∞ ≤ 2‖γ(0)‖2 (4.50)

Since ‖η̇‖∞ = ‖η̇d + ˙̃η‖∞ ≤ ‖η̇d‖∞ + ‖ ˙̃η‖∞, together with (4.50) and Proposition
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2, it follows that

‖η̇(t)‖∞ ≤ η̄d1 + 2‖γ(0)‖2 (4.51)

By the kinematic equations (2.33) and the model property P-3, we have ‖v‖∞ =

‖RT(ψ)η̇‖∞ ≤
√

2‖η̇‖∞ due to the fact that ‖RT(ψ)‖∞ = max{| cosψ|+| sinψ|, 1} ≤√
2. Therefore, the following holds

‖v(t)‖∞ ≤
√

2η̄d1 + 2
√

2‖γ(0)‖2 (4.52)

Having the model property P-1 and taking infinity norm on (2.30) yields

‖C(v)‖∞ ≤ |Mu̇u|+ |Mv̇v| ≤ m̄(|u|+ |v|) (4.53)

Further considering (4.52), we have

‖C(v)‖∞ ≤ 2
√

2m̄η̄d1 + 4
√

2m̄‖γ(0)‖2 (4.54)

From the detailed damping matrix expression (2.29), by definition, we have ‖D(v)‖∞ =

max{|Xu +Du|u||, |Yv +Dv|v||, |Nr +Dr|r||}. Further considering (4.52), it yields

‖D(v)‖∞ ≤ d̄1 + d̄2(
√

2η̄d1 + 2
√

2‖γ(0)‖2) (4.55)

Theorem 4. Suppose the control gain matrices are chosen as Kp = diag{kpi} and

Kd = diag{kdi}, positive definite. Let k̄p = max{kpi} denote the largest element in

Kp and k̄d = max{kdi} denote the largest element in Kd. Suppose Assumption 1

and Assumption 3 can hold. For h(x) = B+τ (x), if the following relation can be

satisfied

m̄v̄r1 + (c̄+ d̄)v̄r + ḡ +
√

2(k̄p + k̄d)‖γ(0)‖2 ≤ τmax (4.56)

with v̄r1 =
√

2η̄d2 +2η̄2
d1 +(2

√
2+6η̄d1)‖γ(0)‖2 +4‖γ(0)‖2

2 and v̄r =
√

2(η̄d1 +‖γ(0)‖2),

and τmax follows (4.12), then the LMPC (4.32) admits recursive feasibility, i.e.,

|h(x̂(t))| ≤ umax for all t ≥ 0 where umax = umax1.

Proof. We notice that given the current system state x(t), h(x̂) is always feasible for

the LMPC problem (4.32) if |h(x̂)| ≤ umax can be satisfied.

Since we have Proposition 2 and the fact that ‖ˆ̃η‖∞ ≤ ‖γ̂‖∞ ≤ ‖γ(0)‖2, it can

be verified that ‖v̂r‖∞ ≤ v̄r with v̄r =
√

2(η̄d1 + ‖γ(0)‖2) by taking infinity norm on
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both sides of (4.33).

Taking time derivative on (4.33a) and on (4.33b) we have

v̇r = RT(ψ)η̈r − ψ̇Ω(ψ)η̇r

= RT(ψ)(η̈d − ˙̃η)− rΩ(ψ)(η̇d − η̃)
(4.57)

where

Ω(ψ) =

 sinψ − cosψ 0

cosψ sinψ 0

0 0 0

 (4.58)

which admits ‖Ω(ψ)‖∞ ≤
√

2. Then taking infinity norm on (4.57) and combining

(4.50) and (4.52), we have ‖ ˙̂vr‖∞ ≤ v̄r1 with v̄r1 =
√

2η̄d2+2η̄2
d1+(2

√
2+6η̄d1)‖γ(0)‖2+

4‖γ(0)‖2
2.

Then taking infinity norm on both sides of (4.43), together with Lemma 1 and

the model property P-6, we have

‖τ (x̂)‖∞ ≤ m̄v̄r1 + (c̄+ d̄)v̄r + ḡ +
√

2(k̄p + k̄d)‖γ(0)‖2 (4.59)

If (4.56) can be satisfied, then ‖τ (x̂)‖∞ ≤ τmax can hold. With (4.12), we can

guarantee that ‖h(x̂(s))‖∞ ≤ umax will be always satisfied. This completes the proof.

Note that the nonlinear backstepping controller acts as an initial guess for the

optimization problem (4.32) but is never applied to the AUV system. As a result,

the feasibility is guaranteed by the auxiliary controller and the control performance

will be optimized by the LMPC controller.

Theorem 5. Suppose Assumption 1 and Assumption 3 can hold, then the closed-

loop system under Algorithm 2 is asymptotically stable with respect to the equilib-

rium [η̃, s] = [0,0], i.e., the AUV will converge to the desired trajectory p(t) with the

LMPC-based trajectory tracking control.

Proof. According to the Lyapunov function V2(x) in (4.39), continuously differen-

tiable and radically unbounded, by converse Lyapunov theorems [75], there exist

functions βi(·), i = 1, 2, 3 which belong to class K∞ such that the following inequali-

ties hold:

β1(‖x‖) ≤ V2(x) ≤ β2(‖x‖) (4.60a)
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∂V

∂x
f(x, h(x)) ≤ −β3(‖x‖) (4.60b)

Considering the contraction constraint (4.32e) and that the optimal solution κ(s)

will be implemented for one sampling period, we have

∂V

∂x
f(x,u(x)) ≤ ∂V

∂x
f(x, h(x)) ≤ −β3(‖x‖) (4.61)

By standard Lyapunov arguments we claim that the closed-loop system under Algo-

rithm 2 is asymptotically stable with a guaranteed region of attraction

X = {x ∈ Rn | (4.56)} (4.62)

Furthermore, X can be enlarged by shrinking the magnitude of the control gains k̄p

and k̄d.

Remark 9. Although the asymptotical stability relies only on the positive definiteness

of the control gain matrices Kp and Kd, the tracking control performance with the

backstepping controller τ (x) in (4.43) is determined by the magnitude of the control

gains. From (4.44), we can see that smaller values of k̄p and k̄d result in slower con-

vergence. However, for the proposed LMPC-based trajectory tracking control, thanks

to the optimization procedure, the controller can automatically make full use of the

thrust capability to generate the best possible tracking control with respect to the ob-

jective function (4.32a) even if we have selected small control gains for a large region

of attraction.

4.3.3 Simulation Results

In this section, we present simulation results of the AUV tracking control which high-

light the advantages of the proposed LMPC method. All the simulations are based on

the experimentally identified dynamic model of Falcon. The model parameter details

can be found in Table 2.1.

Two desired trajectories are used to test the AUV tracking control. The first one

(Case I) is a sinusoidal trajectory defined as follows,

p(t) =

{
xd = 0.5t

yd = sin(0.5t)
(4.63)
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and the second one (Case II) is an eight-shaped trajectory defined by

p(t) =

{
xd = − sin(0.5t)

yd = sin(0.25t)
(4.64)

For the LMPC tracking controller, the following parameters are used: The sam-

pling period is δ = 0.1 [sec]; the prediction horizon is T = 5δ; the weighting matrices

are chosen as Q = diag(105, 105, 103, 102, 102, 102), R = diag(10-4, 10-4, 10-4, 10-4) and

P = diag(103, 103, 102, 10, 10, 10); and the limit on each thruster is 500 [N]. The con-

trol gains Kp = Kd = diag(1, 1, 1). The initial condition is x(0) = [0.5, 0, 0, 0, 0, 0]T.

To solve the LMPC problem (4.32) numerically, we need to discretize the prob-

lem and then solve the corresponding Karush-Kuhn-Tucker (KKT) conditions by the

sequential quadratic programming (SQP) method [9].

The trajectory tracking results for Case I are shown in Figure 4.7 and Figure 4.8.

The blue curve is the simulated AUV trajectories using backstepping control (BSC),

and the red curve is the AUV trajectories with the proposed LMPC control, while

the black curve is the desired sinusoidal trajectory. It can be observed that both BSC

and LMPC drive the vehicle to the desired trajectory, which verifies the closed-loop

stability. But obviously the LMPC controller generates a much faster convergence

than the BSC controller. This is because we have selected small control gain matrices

Kp and Kd for a large region of attraction. The simulation results demonstrate the

enhanced tracking control performance brought by the online optimization.

The required control forces for each thruster are plotted in Figure 4.9. We observe

that in the beginning of the tracking, the LMPC controller fully uses the onboard

thrust capability in order to generate the fastest possible convergence while respecting

the physical limit of thrusters. The magnitude of control commands stays within the

permitted range as expected.

The simulation results for Case II are provided through Figure 4.10 to Figure 4.12.

Similar observations can be made: The AUV converges faster to the desired trajectory

when adopting the proposed LMPC-based tracking control and the calculated control

commands are always feasible for the real system.

To test the robustness of the BSC and LMPC controllers, we simulate the AUV

tracking control under the following test condition: There exist 30% model parameter

error and an ocean current introduced disturbance w = [100(N), 100(N), 0(Nm)]T.

Note that this is a very strict test condition, and it is more of a test than introducing
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Figure 4.7: The AUV trajectory in local level plane - Case I.
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Figure 4.8: The state trajectories - Case I.

some obscure coupling of vehicle DOFs that may or may not exist on a real AUV.

From the simulation results illustrated in Figure 4.13 - Figure 4.16, we find that

the LMPC-based tracking control still successfully leads the AUV well converged to

the desired trajectory, while the tracking control with BSC suffers from large tracking
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Figure 4.9: The control input signals - Case I.
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Figure 4.10: The AUV trajectory in local level plane - Case II.

errors. The quantitative comparisons for both cases are summarized in Table 4.1 and

4.2, where tremendous improvement in mean square errors (MSEs) can be witnessed.

Roughly speaking, the MSEs are more than 20 times smaller with the LMPC, espe-

cially for Case II. This is because LMPC can leverage online optimization to schedule



78

0 5 10 15 20 25 30
−2

0

2

Time [s]
x 

[m
]

 

 

0 5 10 15 20 25 30
−2

0

2

Time [s]

y 
[m

]

 

 

0 5 10 15 20 25 30
−5

0

5

Time [s]

ψ
 [r

ad
]

 

 

REF
BSC
LMPC

REF
BSC
LMPC

REF
BSC
LMPC

Figure 4.11: The state trajectories - Case II.
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Figure 4.12: The control input signals - Case II.

an appropriate control gain to well compensate the disturbances, whereas BSC is a

fixed gain controller and lacks such flexibility. The LMPC, therefore, is robust to

model uncertainties and external disturbances, which exhibits great potential for the

motion control of general marine vessels.
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Figure 4.13: The AUV trajectory in local level plane (with disturbance) - Case I.
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Figure 4.14: The state trajectories (with disturbance) - Case I.

4.4 Conclusion

In this chapter, we have proposed a novel LMPC framework to solve the AUV motion

control problems. The LMPC presents a convenient and effective tool to allocate on-
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Figure 4.15: The AUV trajectory in local level plane (with disturbance) - Case II.
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Figure 4.16: The state trajectories (with disturbance) - Case II.

board computing resources to improve the performance of the existing motion control

system. Two fundamental AUV motion control problems, namely, the dynamic po-

sitioning and the trajectory tracking, were investigated under the LMPC framework

and ended up with the controller design.
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Table 4.1: Mean square errors for AUV tracking with disturbances - Case I.
MSE Backstepping LMPC Improvement
x [m2] 0.0418 0.0052 87.5%
y [m2] 0.0297 0.0015 94.9%
ψ [rad2] 0.3207 0.0184 94.3%

Table 4.2: Mean square errors for AUV tracking with disturbances - Case II.
MSE Backstepping LMPC Improvement
x [m2] 0.1483 0.0059 96.0%
y [m2] 0.0977 0.0005 99.5%
ψ [rad2] 1.0081 0.2480 75.4%

Using the nonlinear PD control law as the base DP controller, the conditions for

recursive feasibility and closed-loop stability of the LMPC control system were de-

rived. A quasi-global stability property was claimed for the LMPC-based DP control:

The region of attraction can be specified arbitrarily large. Also, built on a nonlinear

backstepping tracking control law, the LMPC-based trajectory tracking controller was

designed with guaranteed feasibility and stability. A guaranteed region of attraction

was characterized explicitly.

Simulation studies on the dynamic model of Falcon suggested that the dynam-

ic positioning and trajectory tracking performance could be dramatically improved

by the online optimization that was incorporated in the LMPC control. Meanwhile,

through the robustness test, the superior robustness of the LMPC control system was

demonstrated, which indicated that the proposed LMPC method was very promis-

ing and could be applied to real AUVs (large model mismatch) under real working

condition (large disturbances).

The main results in this chapter have been published in [124] and [126].

[124] C. Shen, Y. Shi and B. Buckham, “Lyapunov-based Model Predictive Control

for Dynamic Positioning of Autonomous Underwater Vehicles”, in Proceedings

of the 2017 IEEE International Conference on Unmanned Systems (ICUS),

Beijing, China, 2017, pp. 1-6.

[126] C. Shen, Y. Shi and B. Buckham, “Trajectory Tracking Control of an Au-

tonomous Underwater Vehicle using Lyapunov-based Model Predictive Con-

trol”, IEEE Transactions on Industrial Electronics, accepted, 2017, DOI: 10.11

09/TIE.2017.2779442
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Chapter 5

Multi-Objective Model Predictive

Control for Path Following Control

of an AUV

5.1 Introduction

5.1.1 Research Background and Contributions

In the previous chapters, we have studied the trajectory tracking problem of the AUV.

In trajectory tracking problems, the reference trajectory defines the desired footprints

with precise time stamps, i.e., it specifies when should the vehicle be where. However,

in many circumstances, we may be interested in following a specific geometric pattern

in the workspace, and the temporal requirement can be relaxed, i.e., we mainly care

about the footprints but not the exact time the vehicle gets there. If this is the case,

we are considering the path following (PF) problem.

The PF control problem has been extensively studied in the past several decades.

The work reported in [93] presents a powerful PF control structure for land robot-

s. The control structure, however, exploits the kinematic characteristics only. The

techniques therein cannot be directly applied to AUVs. In [38], Encarnacao et al.

took advantage of the backstepping technique and recursively designed the PF con-

troller for the underwater vehicle. In [39], Encarnacao et al. further considered more

practical scenarios and extended the PF controller design to compensate the ocean

currents. However, the controllers in [38, 39] are designed based on that the target

point is selected to be the closest point on the path relative to the vehicle, hence these
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methods share an inherent limitation: There exist singularities for certain initial po-

sitions of the vehicle, located exactly at the centers of path curvature. To solve this

serious problem, in [77] Lapierre et al. proposed a novel PF control strategy. The

target point was changed to a virtual particle moving along the path and possessing

independent dynamic properties. The novel strategy essentially created an extra de-

gree of freedom (DOF) which could be exploited to achieve additional specifications

such as a desired speed assignment. Following this strategy, in [76] Lapierre et al.

further developed the robust PF controller by involving an adaptive law which well

handles the parametric uncertainty in the AUV model. Unfortunately, the preceding

PF controller designs have no capability to incorporate the system constraints. Ac-

commodating such constraints has been the focus of recent studies of model predictive

control (MPC) for PF problems. [43, 42, 17].

The MPC provides a flexible framework that accommodates the complicated sys-

tem dynamics and nonlinear system constraints. These features make MPC desirable

for a variety of control problems [87, 110]. In the context of path following control,

there exist several pioneering works in the literature. In [106], the PF problem was

studied for marine vessels, in which MPC was used to optimize the lookahead distance

in the line-of-sight (LOS) guidance law. In [102], a complete linear MPC structure

was developed for the LOS-based PF control rather than just adding an optimization

of the lookahead parameter. However, the LOS guidance law is only valid for PF of

line segments (waypoint routes). To solve the PF problem with a desired curved path,

Faulwasser et al. [43] provided the standard MPC formulation with an augmented

system consisting of the vehicle dynamics and the path dynamics. Sufficient stabiliz-

ing conditions were derived. An extended work in terms of output MPC version was

presented in [42]. The PF control designs in [43, 42] only guarantee a nonzero forward

motion and cannot easily accommodate a desired speed assignment. Therefore, the

incorporation of the speed assignment into the MPC formulation was studied in [6]

for underactuated vehicles. In [145] Yu et al. took another approach that transforms

the PF problem into a regulation problem where the initial state of the path dynam-

ics was also viewed as a decision variable. The PF task can also be accomplished

with a trajectory tracking controller by explicitly assigning a timing law to the path

dynamics. In this way, however, it loses the flexibility of adjusting the velocity of

the vehicle for possible better path following performance. In [123], the coupled path

planning and tracking control problem was solved with a model predictive trajectory

tracking control formulation. The MPC-based PF control applied to industrial robots
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and tower cranes can be found in [44] and [17], respectively.

In practice, however, the PF control always prioritizes the path convergence re-

quirement over the speed assignment, therefore, the MPC framework proposed in [6]

provides no flexibility to adjust the relative priorities of the path convergence and

speed assignment objectives. To systematically address the practical priority issue

among several expected objectives, it is natural to resort to the multi-objective model

predictive control (MOMPC) method. The MOMPC has been receiving increasing

attentions from the system control community [13, 150, 74], because many practical

applications involve meaningful multiple control objectives. Early results in MOMPC

mainly focus on the problem modeling, i.e., how to formulate the interested control

problem into the MOMPC framework. Examples include the sewer network applica-

tion [101] and the solar cooling plant application [149]. In recent years, the MOMPC

studies begin to emphasize the closed-loop properties such as stability and optimal-

ity. In [13], Bemporad et al. adopted the weighted sum method to solve the multi-

objective optimization problem and ensured the closed-loop stability for a special

class of linear systems by adding an intermediate procedure which determines appro-

priate weights. In [150], the utopia-tracking strategy was employed for the MOMPC

problem. By constructing the partial Lagrange function and under assumptions of

strong duality and Lipschitz continuity, the utopia-tracking cost can be exploited to

establish the non-increasing property, which guarantees the closed-loop stability. The

lexicographic ordering method which is used to solve the multi-objective optimization

was studied for the MOMPC problem in [57]. The optimal value function for the most

important objective can be shown a valid Lyapunov function, and thus guarantees

the closed-loop stability. An interesting variant in terms of switched cost MPC was

proposed in [98]. The average dwell time was imposed between switches so that the

cost function can be monotonically decreasing no matter how arbitrary the switches

will be made.

The MOMPC has an enlarged capacity and exhibits an attractive framework

to solve AUV path following control problem. In this chapter, we propose a novel

MOMPC formulation for the PF problem of an AUV so that the PF requirement

prioritization can be explicitly incorporated. Regarding the competing objectives,

the weighted sum (WS) method and the lexicographic ordering (LO) methods will

be investigated. For the WS-MOMPC method, a logistic function is introduced to

automate the weight selection. To implement the WS-MOMPC PF control, the Pon-

tryagin minimum principle is applied. For the LO-MOMPC method, the controller
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design that guarantees the path convergence is provided.

The main contributions of this chapter include the following:

• A novel MOMPC framework is developed for the AUV PF problem to explicitly

incorporate the objective prioritization in the PF task.

• The WS and LO methods are proposed to solve the MOMPC problem; the

implicit relation between them is explored.

• A novel logistic function is introduced to deal with the weights associated with

the WS-MOMPC method; and with several properly defined barrier functions,

the Pontryagin minimum principle (PMP) is applied to implement the WS-

MOMPC algorithm.

• Sufficient conditions that guarantee the convergence of the MOMPC-based PF

control are derived; and a feasible solution to satisfy the conditions is provided

for the LO-MOMPC implementation.

5.1.2 Chapter Organization

The remaining part of this chapter is organized as follows. In Section 5.2, the detailed

problem formulation is presented. Two methods that solves the MOMPC problem are

proposed in Section 5.3. In Section 5.4, the conditions that guarantees the convergence

of the solution are explicitly derived. Section 5.5 presents the simulation results of

the proposed MOMPC PF control, and some investigation into robustness of the

MOMPC method is provided. Section 5.6 concludes the entire chapter.

The notations are explained as follows. The column operation [ρT
1 , ...ρ

T
n ]T is writ-

ten as col(ρ1, ..., ρn); diagonal operation is abbreviated by diag(·); and the weighted

norm
√
ρTQρ is denoted by ‖ρ‖Q. For a function p(s) the derivative with respect to

s is represented by p′(s) while the time derivative is denoted by ṗ(s).

5.2 Problem Formulation

The AUV model studied for the PF control problem is established using the kinematic

equations and the dynamic equations:

ẋ =

[
R(ψ)v

M−1(u−C(v)v −D(v)v − g(η))

]
= f(x,u) (5.1)
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where the state vector x = [x, y, ψ, u, v, r]T is consisted of the pose and velocity of

the vehicle, and the control vector u = [Fu, Fv, Fr]
T is generalized thrust forces and

moments. The detailed expression can be found in (2.32) and (2.34).

To facilitate the following mathematical derivation, we will directly use the dis-

cretized version of (5.1) in the MOMPC problem formulation

xk+1 = fd(xk,uk) (5.2)

Note that the detailed expression of (5.2) is determined by the detailed discretization

method. For a small sampling period, the Euler method or the Runge - Kutta method

is practically sufficient.

5.2.1 The Path Following Problem

In the following, we define the PF problem. The mapping,

s 7→ p(s) ∈ Rd, s ∈ [s0, s1] ⊂ R (5.3)

describes the geometric path

P = {p̄ ∈ Rd | p̄ = p(s), s ∈ [s0, s1]} (5.4)

in a d-dimensional output space. The scalar variable s is referred to as the path

parameter and the domain should be closed but may be unbounded, i.e., s1 = +∞.

The mapping p is assumed to be smooth and bounded. The path P can be interpreted

as the output of the path dynamics governed by

ṡ = g(s, vs), p̄ = p(s) (5.5)

where vs is the control input for the path dynamics.

Alternatively, the desired path P might also be defined in the n-dimensional state

space by the mapping

s 7→ p̄x(s) ∈ Rn, s ∈ [s0, s1] ⊂ R (5.6)

Usually the components of p̄x(s) are coupled according to the dynamics of the con-

trolled system, hence cannot be freely chosen.
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More precisely, the output path (5.4) defines a zero-path-error (ZPE) manifold

[41] in the state space, described by the following mapping

s 7→ px(s, ṡ, s̈, ...) ∈ Rn, s ∈ [s0, s1] ⊂ R (5.7)

We will particularly exploit the ZPE in the subsequent MOMPC formulation.

Then the PF problem that under study in this chapter can be formulated as

determining the control signal u(t) such that the following requirements are met:

• Path Convergence. The AUV system states converge to the ZPE manifold:

lim
t→∞
‖x(t)− px(s(t), ṡ(t), ...)‖ = 0 (5.8)

• Forward Motion. The AUV follows the path in the direction of ṡ ≥ 0.

• Speed Assignment. When moving along the path, the desired speed profile is

pursued: ṡ→ ṡr.

• Constraint Satisfaction. The AUV system constraints such as thrust limits are

always respected.

Note that the Path Convergence should be identified as the primary task and

need to be guaranteed, and the Speed Assignment is the secondary task which can

be sacrificed at times, in lieu of better performance on the primary one.

5.2.2 Zero-Path-Error Manifold

In general, finding an explicit parametrization of the ZPE manifold (5.7) could be

difficult. Fortunately, for the AUV system, each state has its physical meaning, which

provides a guideline for the parametrization.

Consider a desired path defined in the output space

P = {p̄ ∈ R2 | p̄ = [px(s), py(s)]
T, s ∈ [s0, s1]} (5.9)

Regarding the kinematic equations (2.34), we choose the AUV surge velocity u always

tangent to the desired path, then the ZPE manifold can be explicitly parameterized

in the following way

px(s, ṡ) = [px(s), py(s), pψ(s), pu(s, ṡ), pv(s), pr(s, ṡ)]
T (5.10)
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with

pψ(s) = atan2(p′y, p
′
x) (5.11a)

pu(s, ṡ) =
√
p′2x + p′2y ṡ (5.11b)

pv(s) = 0 (5.11c)

pr(s, ṡ) =
p′xp

′′
y − p′yp′′x

p′2x + p′2y
ṡ (5.11d)

Note that since we have additionally confined the velocity of the AUV, Eqn. (5.10)-

(5.11) do not cover the entire ZPE manifold defined by the output path (5.9) but

define a subset of the manifold which is convenient to parameterize. It specifies the

unique reference for each state of the AUV to track, which facilitates the following

convergence analysis.

For the manifold (5.10)-(5.11), only the first-order time derivative of the path

parameter is needed. Therefore, we can choose the single integrator model to describe

the path dynamics

ṡ = g(s, vs) = vs (5.12)

This choice may facilitate the implementation of the MOMPC algorithm in the sense

that the Forward Motion requirement will be formulated as inequality constraints on

the input variables rather than on the state variables. Then those indirect methods

which are based on solving the Pontryagin minimum principle [35, 54] can be applied.

5.2.3 The MOMPC Formulation

Basically, the AUV PF problem considers two aspects: Path Convergence and Speed

Assignment. The Path Convergence requires the AUV to converge to P as fast

as possible, while the Speed Assignment requires the path parameter to move in a

preferred pace. Since ṡr is known, stringent fulfilment of the Speed Assignment results

in the determined reference states px(sr, ṡr) at each time instant. This substantially

degrades the PF problem to a trajectory tracking problem where the flexibility of

adjusting forward speed may be lost.

To maintain this flexibility, the MOMPC framework is investigated. Consider the

following multi-objective optimization problem:

min
U

J(U, ξ) (5.13a)
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subject to

ξk+1 = h(ξk, ωk), ξ0 = ξ

ξk ∈ Ξ, k = 1, 2, ..., N

ωk ∈ Ω, k = 0, 1, ..., N − 1

(5.13b)

with

ξ =

[
x

s

]
, ω =

[
u

vs

]
, h(ξ, ω) =

[
fd(x,u)

gd(s, vs)

]
(5.14)

Here, (5.14) describes the discretized augmented system; J(U, ξ) = [J1(U, ξ), J2(U, ξ)]T

is a vector-valued objective function constructed for the two PF requirements; U =

col(ω0, ω1, ..., ωN−1) is the sequence of control inputs to be optimized; ξk denotes the

k-step predicted state from initial condition ξ0 = ξ; Ξ and Ω represent the constraints

on state and input, respectively.

Each objective function is in the following form:

Ji(U, ξ) =
N−1∑
k=0

Li(ξk, ωk) + Ei(ξN) (5.15)

where

L1(ξ, ω) = ‖ξ − ξp‖2
Q1

+ ‖ω‖2
R1

(5.16a)

L2(ξ, ω) = ‖ξ − ξt‖2
Q2

+ ‖ω‖2
R2

(5.16b)

E1(ξ) = ‖ξ − ξp‖2
P1

(5.16c)

E2(ξ) = ‖ξ − ξt‖2
P2

(5.16d)

Here, ξp = col(px(s), s) can be viewed as the reference for Path Convergence while ξt =

col(px(sr), sr) is the reference for Speed Assignment with sr generated by integrating

ṡr from s0; Qi, Ri and Pi are weighting matrices, positive definite.

Since Ji(U, ξ) are in general conflicting with each other, we take advantage of

the notion of Pareto optimality to measure the efficiency of a solution in the multi-

objective optimization problem [33]:

Definition 3 (Pareto Optimality). Let Ū be a feasible point for (5.13). Then,

Ū is said to be Pareto optimal (PO) if there is no other feasible point U such that

Ji(U, ξ) ≤ Ji(Ū , ξ) for all i, and Ji(U, ξ) < Ji(Ū , ξ) for at least one i; and Ū is said

to be weakly PO if Ji(U, ξ) < Ji(Ū , ξ) for all i.
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By definition, we shall notice that there usually exist more than one PO points.

More specifically, all of the PO points constitute the so-called Pareto frontier. The

complete solution of (5.13) is to determine the Pareto frontier using evolutionary

methods [33] or classical methods [95]. However, for the PF problem, it is unnecessary

to calculate the entire frontier. What we need is just to find one preferred point on

the Pareto frontier. Even a weakly PO point may be acceptable. In this regard, two

methods which are capable of handling objective prioritization are investigated to

solve the MOMPC PF problem.

5.3 Solve the MOMPC Problem

5.3.1 Weighted Sum Method

The weighted sum (WS) method [95] scalarizes the vector-valued objective function

by assigning a weight to each objective. Instead of solving (5.13) directly, the WS

method solves the following single objective problem:

min
U

JW = aTJ(U, ξ)

s.t. (5.13b)
(5.17)

where a = [α, 1− α]T with 0 ≤ α ≤ 1.

Remark 10. There are some comments on the WS method. First of all, the solution

U∗ of (5.17) is always weakly PO, or PO if 0 < α < 1 for (5.13) without any

further assumptions [95]. This provides a solid theoretical support for use of the WS

method. Second, by scalarizing the original problem, we can choose from a wide class

of optimization algorithms, namely, the gradient descent methods [19], to efficiently

solve the optimization problem. Recent developments of fast MPC implementation

algorithms are exclusively designed for single objective optimizations [35]. Hence the

use of WS method serves as a link between the MOMPC and a vast majority of results

for single objective MPC. Finally, through the use of WS method we can incorporate

some priori knowledge into the MOMPC formulation by selecting preferred weights

for each objective.

To automatically choose the appropriate weight for each objective function, we
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propose the following logistic function:

α(Er) =
1

1 + e−βEr
(5.18)

where Er = ‖η−ηp‖2
K with ηp = [px(s), py(s), pψ(s)]T serves as an indicator of Path

Convergence; β > 0 controls the change rate of the function; K is a positive definite

weighting matrix. The logistic function (5.18) is smooth and monotonic. The range of

(5.18) is [0.5, 1) corresponding to the domain [0,+∞). Since the Path Convergence is

more important than the Speed Assignment, the logistic function (5.18) always puts

more weights on J1.

We have selected the path dynamics to be a single integrator (5.12), therefore,

the Forward Motion requirement can be formulated as constraints on the input of

the augmented system. Further considering AUV thrust limits, we have the input

constraint set Ω polyhedral:

Ω = {ω ∈ R4| ω(j) ≤ ω(j) ≤ ω̄(j), j = 1, ..., 4} (5.19)

where ω(j) and ω̄(j) represent the lower and upper bounds on the jth component.

Suppose s0 = 0 and s1 = +∞, and there is no constraint on the system state,

i.e., Ξ = R4. The scalarized problem (5.17) can be solved by applying Pontryagin

minimum principle (PMP) with the help of barrier functions.

Define the Hamiltonian by

H(ξ, λ, ω) = `(ξ, ω) + λTh(ξ, ω)− γ(b1(ω) + b2(ω)) (5.20)

with

`(ξ, ω) = αL1(ξ, ω) + (1− α)L2(ξ, ω) (5.21)

b1(ω) =
4∑
j=1

log(ω(j)− ω(j)) (5.22)

b2(ω) =
4∑
j=1

log(ω̄(j)− ω(j)) (5.23)

Here, λ is called the costate, and b1(ω), b2(ω) are barriers for the inequality (5.19); α

is the weight determined by (5.18) and γ is a small positive number. Define E(ξ) =

αE1(ξ) + (1 − α)E2(ξ), then PMP claims that for a local optimal control {ω∗i }N−1
i=0 ,
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there exist {λ∗i }Ni=0 satisfying the following optimality conditions:

ξ∗k+1 = h(ξ∗k, ω
∗
k) (5.24a)

λ∗i = λ∗i+1 +HT
ξ (ξ∗i , λ

∗
i+1, ω

∗
i )∆t (5.24b)

λ∗N = ET
ξ (ξ∗N) (5.24c)

ξ∗0 = ξ (5.24d)

Hω(ξ∗i , λ
∗
i+1, ω

∗
i ) = 0 (5.24e)

which sufficiently solves the KKT conditions by imposing N boundary condition-

s (5.24b)-(5.24c). Observe that given the initial state ξ and a control input U =

col(ω0, ..., ωN−1), the states {ξ∗i }Ni=0 and costates {λ∗i }Ni=0 can be determined via re-

currence relations (5.24a)-(5.24b). Therefore, at each sampling instant, we only need

to solve equations (5.24e), which avoids expensive numerical operations in terms of

successive linearizations in solving the KKT conditions [19]. Furthermore, fast MPC

implementation algorithms that are based on solving the PMP system (5.24) such as

C/GMRES [103, 121] and Gradient Projection [54] can, in principle, be used.

The proposed weighted sum based multi-objective model predictive control (WS-

MOMPC) algorithm is summarized in Algorithm 3.

Algorithm 3 : WS-MOMPC PF Algorithm

1: Input the objective functions Ji(U, ξ) in (5.15).
2: Measure current state ξ(t).
3: Evaluate the value of (5.18) using Er(t).
4: Solve the scalarized problem (5.17) with ξ = ξ(t).
5: Let U∗ = col(ω∗0, ..., ω

∗
N−1) denote the solution.

6: Implement ω∗0 to the augmented system for one sampling period.
7: At next sampling time instant, set t = t+ ∆t, then repeat from step 2.

5.3.2 Lexicographic Ordering Method

The WS method is an indirect method which presumes that the value of each objective

function at the solution is negatively correlated to its weight. Solving the nonlinear

problem (5.17), however, only obtains a local minimum, which makes the negative

correlation not strictly monotonic. Therefore, a direct method called lexicographic

ordering (LO) is also studied for the MOMPC PF problem.
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To solve the MOMPC problem (5.13), the LO method creates a procedure which

considers the two objectives, one at a time, ordered by their priority [95, 57]. At each

sampling time instant the following optimization problems are solved sequentially:

J∗1 (ξ) = min
U
{J1(U, ξ) | (5.13b)} (5.25a)

J∗2 (ξ) = min
U
{J2(U, ξ) | (5.13b), J1(U, ξ) = J∗1 (ξ)} (5.25b)

Then we obtain the solution

U∗ = arg min
U
{J2(U, ξ) | (5.13b), J1(U, ξ) = J∗1 (ξ)} (5.26)

To prevent the numerical algorithm from stalling and to improve the computa-

tional efficiency, the equality constraint J1(U, ξ) = J∗1 (ξ) in (5.25b) is often replaced

by the following inequality constraint

J1(U, ξ) ≤ J∗1 (ξ) + ε (5.27)

where ε ≥ 0 is the tolerance.

Remark 11. There are some comments on the LO method. Firstly, the solution

(5.26) of the standard LO procedure is always PO [95]. When the relaxation (5.27)

is included, the solution U∗ becomes weakly PO. However, the weak Pareto optimality

is practically acceptable for the AUV PF control problem. Also, we will see shortly

in the next section that the relaxation is totally compatible with the path convergence

conditions. Secondly, due to the imposed additional constraint (5.27) in the second

layer optimization (5.25b), the PMP conditions can hardly be applied. Instead, we

resort to direct methods which solve the KKT conditions.

The LO method and WS method are closely related. To explore the internal

relationship, we simplify the mathematical expression of (5.17) as follows:

min
U

JW (U) = αJ1(U) + (1− α)J2(U)

s.t. ci(U) = 0, mj(U) ≤ 0
(5.28)

Also simplify the mathematical expression of (5.25b) with the relaxation (5.27) as

min
U

J2(U)

s.t. ci(U) = 0, mj(U) ≤ 0, J1(U) ≤ δ
(5.29)
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where ci(U) are the equality constraints including system dynamics and boundary

conditions; mj(U) represent the inequality constraints including state constraints

and control constraints; and δ = J∗1 (ξ) + ε.

Then we show the relationship between the two methods by explicating the KKT

conditions.

Theorem 6. If the weights for the WS method are selected precisely the same as the

optimal values of dual variables for the LO method, the two methods yield the same

optimal solution.

Proof. Let J̄W (U) = ᾱJ1(U) + J2(U) with ᾱ = α
1−α . Obviously, minimizing JW is

equivalent to minimizing J̄W . Define the Lagrangian for (5.28) as

L̄W = J2(U) + Σλ̄ici(U) + Σµ̄jmj(U) + ᾱJ1(U)

where λ̄i and µ̄j are dual variables.

Define the Lagrangian for (5.29) as

Lδ = J2(U) + Σλici(U) + Σµjmj(U) + ν(J1(U)− δ)

where λi, µj and ν are dual variables. Then we list the detailed KKT conditions for

(5.28) as follows:

∇U L̄W (U∗) = 0, ci(U
∗) = 0, mj(U

∗) ≤ 0 (5.30a)

µ̄∗jmj(U
∗) = 0, µ̄∗j ≥ 0 (5.30b)

where ∇U represents the gradient with respect to U . Let us also list the detailed

KKT conditions for problem (5.29)

∇ULδ(U
∗) = 0, ci(U

∗) = 0, mj(U
∗) ≤ 0 (5.31a)

µ∗jmj(U
∗) = 0, µ∗j ≥ 0 (5.31b)

J1(U∗)− δ ≤ 0 (5.31c)

ν∗(J1(U∗)− δ) = 0, ν∗ ≥ 0 (5.31d)
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Further expanding ∇U L̄W (U∗) and ∇ULδ(U
∗), we have

∇J2(U∗) + Σλ̄∗i∇ci(U∗) + Σµ̄∗j∇mj(U
∗) + ᾱ∇J1(U∗) = 0

∇J2(U∗) + Σλ∗i∇ci(U∗) + Σµ∗j∇mj(U
∗) + ν∗∇J1(U∗) = 0

We notice that the main differences between the above two sets of KKT conditions

are the presence of (5.31c) and (5.31d). If ᾱ = ν∗, (5.30) and (5.31) yield the same

optimal solution U∗ with λ̄∗i = λ∗i and µ̄∗j = µ∗j due to the fact that:

Case 1: The last inequality is active, i.e., J1(U∗) = δ. Then (5.31c) and (5.31d)

become solely ν∗ ≥ 0. By definition we have ᾱ ≥ 0, therefore, in this case the two

sets of KKT conditions are exactly the same.

Case2: The last inequality is inactive, i.e., J1(U∗) < δ. Then (5.31c) and (5.31d)

become ν∗ = 0. So we have ᾱ = ν∗ = 0, which make the two sets of KKT conditions

identical.

Remark 12. As seen from the above proof, the WS method and LO method are

implicitly related by the optimal value of dual variables. Therefore, it is difficult to

find the corresponding ε which generates the same solution as that using WS method

with the change of α obeying (5.18).

The proposed lexicographic ordering based multi-objective model predictive con-

trol (LO-MOMPC) algorithm is summarized in Algorithm 4.

Algorithm 4 : LO-MOMPC PF Algorithm

1: Input the objective functions Ji(U, ξ) in (5.15).
2: Measure current state ξ(t).
3: Sequentially solve the lexicographic ordering subproblems (5.25) with ξ = ξ(t).
4: Let U∗ = col(ω∗0, ..., ω

∗
N−1) be the solution of the second layer problem (5.25b).

5: Implement ω∗0 to the augmented system for one sampling period.
6: At next sampling time instant, set t = t+ ∆t, then repeat from step 2.

5.4 Convergence Analysis

In order to follow the standard analysis procedure used in conventional MPC [111],

the original MOMPC problem (5.13) needs to be modified and reformulated as the



96

regulation problem of a well-defined error dynamics:

min
Ũ

J(Ũ , ξ̃) (5.32a)

subject to

ξ̃k+1 = h̃(ξ̃k, ω̃k), ξ̃0 = ξ̃

ξ̃k ∈ Ξ̃, k = 1, 2, ..., N

ω̃k ∈ Ω̃, k = 0, 1, ..., N − 1

(5.32b)

where h̃ denotes the error dynamics; J(Ũ , ξ̃) = [J1, J2]T with Ji =
∑N−1

k=0 Li(ξ̃k, ω̃k) +

Ei(ξ̃N); Ξ̃ and Ω̃ denote system constraints.

Then the convergence of the MOMPC solution can be analyzed with the following

assumptions.

Assumption 4. The functions h̃(·), Li(·) and Ei(·) are continuous; h̃(0, 0) = 0,

Li(0, 0) = 0 and Ei(0) = 0.

Assumption 5. The sets Ξ̃ and Π̃ are closed, and Ω̃ is compact. Each set contains

the origin in its interior.

Assumption 6. There exists an invariant set Π̃ for the error dynamics h̃, and a

local controller κ(ξ̃) such that

κ(ξ̃) ∈ Ω̃, h̃(ξ̃, κ(ξ̃)) ∈ Π̃, i = 1, 2

Ei(h̃(ξ̃, κ(ξ̃)))− Ei(ξ̃) + Li(ξ̃, κ(ξ̃)) ≤ 0.
(5.33)

for any ξ̃ ∈ Π̃.

For the WS-MOMPC scheme, we need to modify the problem by imposing the

terminal constraints as follows:

J∗W (ξ̃, α) = min
Ũ
{aTJ(Ũ , ξ̃) | (5.32b), ξ̃N ∈ Π̃} (5.34)

Also, before solving (5.34), at each sampling instant (except for the first time t = 0),

a subproblem that determines the appropriate weight α has to be solved:

α∗(ξ̃, αd, Jα) = arg min
α

fα(α− αd) (5.35a)

s.t. J∗W (ξ̃, α) ≤ Jα

0 ≤ α ≤ 1
(5.35b)
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where αd is the target weight calculated by (5.18); fa is a convex function that

measures the distance between α and αd; Let Ũ∗−1 = col(ω̃∗−1,0, ..., ω̃
∗
−1,N−1) and a∗−1 be

the previous time solutions for (5.34) and (5.35), respectively. Then Jα = a∗T−1J(Ũ0, ξ̃)

with Ũ0 = col(ω̃∗−1,1, ..., ω̃
∗
−1,N−1, κ(ξ̃−1,N)).

Then we can have the following results on the convergence of the solution:

Theorem 7. Suppose Assumptions 4 - 6 are satisfied, and the problem (5.34)

is feasible at time t = 0. Then with the WS-MOMPC algorithm, the error state

converges to the origin, i.e., ξ̃ → 0 as t→∞.

Proof. The recursive feasibility can be ensured because the shifted control sequence

Ũ0 is always feasible for (5.34) and a∗T−1 is always feasible for (5.35) at the next time

instant.

Evaluating the optimal value function of J∗W at two successive time instants, we

have
∆JW = JW (Ũ∗, ξ̃)− JW (Ũ∗−1, ξ̃−1,0)

= a∗TJ(Ũ∗, ξ̃)− a∗T−1J(Ũ∗−1, ξ̃−1,0)

≤ a∗T−1J(Ũ0, ξ̃)− a∗T−1J(Ũ∗−1, ξ̃−1,0)

= α∗−1[E1(h̃(ξ̃−1,N , κ(ξ̃−1,N)))− E1(ξ̃−1,N)

+L1(ξ̃−1,N , κ(ξ̃−1,N))− L1(ξ̃−1,0, ω̃
∗
−1,0)]

+(1− α∗−1)[E2(h̃(ξ̃−1,N , κ(ξ̃−1,N)))− E2(ξ̃−1,N)

+L2(ξ̃−1,N , κ(ξ̃−1,N))− L2(ξ̃−1,0, ω̃
∗
−1,0)]

By Assumption 6, ∆JW ≤ −α∗−1L1(ξ̃−1,0, ω̃
∗
−1,0) − (1 − α∗−1)L2(ξ̃−1,0, ω̃

∗
−1,0) ≤ 0.

By construction, we have JW ≥ 0. Therefore, J∗W (t) is a non-increasing sequence

and lower bounded by zero. By contradiction, we have −α∗−1L1(ξ̃−1,0, ω̃
∗
−1,0) − (1 −

α∗−1)L2(ξ̃−1,0, ω̃
∗
−1,0)→ 0 as t→∞. Since Qi > 0 and Ri > 0 the convergence of the

error state can be guaranteed, i.e., ξ̃ → 0 as t→∞.

For the LO-MOMPC PF scheme, the convergence of the MOMPC solution can

be guaranteed with the following assumption.

Assumption 7. There exist an invariant set Π̃ for the error dynamics h̃, containing

the origin in the interior, and a local feedback control κ1(ξ̃) such that

κ1(ξ̃) ∈ Ω̃, h̃(ξ̃, κ1(ξ̃)) ∈ Π̃,

E1(h̃(ξ̃, κ1(ξ̃)))− E1(ξ̃) + L1(ξ̃, κ1(ξ̃)) ≤ 0.
(5.36)

for any ξ̃ ∈ Π̃.
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We modify the LO-MOMPC problem by imposing the terminal constraints:

J∗1 (ξ̃) = min
Ũ
{J1(Ũ , ξ̃) | (5.32b), ξ̃N ∈ Π̃} (5.37a)

J∗2 (ξ̃) = min
Ũ

{
J2(Ũ , ξ̃)

∣∣∣ J1(Ũ , ξ̃) ≤ J∗1 (ξ̃) + ε,

(5.32b), ξ̃N ∈ Π̃

}
(5.37b)

Then we have the following results on the convergence of the solution:

Theorem 8. Suppose Assumptions 4, 5 and 7 are satisfied, and for ε = 0 the

problem (5.37) is feasible at time t = 0. Let ξ̃−1,0 denote the previous system state

and ω̃∗−1,0 denote the first element of the previous time solution. For t > 0, if we

choose ε = L1(ξ̃−1,0, ω̃
∗
−1,0)− ξ̃TQεξ̃ with Q1 > Qε > 0, then the error state converges

to the origin, i.e., ξ̃ → 0 as t→∞.

Proof. Let Ũ∗−1 = col(ω̃∗−1,0, ..., ω̃
∗
−1,N−1) denote the solution for the previous sampling

time instant, and ξ̃−1,i denote the corresponding state prediction for i = 0, 1, ..., N .

An initial guess Ũ0 = col(ω̃∗−1,1, ..., ω̃
∗
−1,N−1, κ1(ξ̃−1,N)) can be constructed for the first

layer subproblem (5.37a), which admits the horizontal feasibility. The hierarchical

feasibility is also preserved since the solution of (5.37a) is always feasible for (5.37b).

Evaluating the optimal value function of J∗1 at these two successive sampling time

instants, we have

∆J1 = J1(Ũ∗, ξ̃)− J1(Ũ∗−1, ξ̃−1,0)

≤ J1(Ũ0, ξ̃)− J1(Ũ∗−1, ξ̃−1,0) + ε

= E1(h̃(ξ̃−1,N , κ1(ξ̃−1,N)))− E1(ξ̃−1,N)

+L1(ξ̃−1,N , κ1(ξ̃−1,N))− ξ̃TQεξ̃

(5.38)

With Assumption 7 we have ∆J1 ≤ −ξ̃TQεξ̃ ≤ 0. By construction, we know that

J1 ≥ 0. Therefore, J∗1 (t) is a non-increasing sequence and lower bounded by zero. By

contradiction, we have −ξ̃TQεξ̃ → 0 as t→∞. Since Qε > 0, the convergence of the

error state trajectory to the origin can be guaranteed, i.e., ξ̃ → 0 as t→∞.

Remark 13. The differences between Assumption 6 and Assumption 7 reflect

the underlying differences between the WS-MOMPC and LO-MOMPC schemes. As-

sumption 6 requires that for each and every objective Ji we need to find the same

local feedback control law κ(ξ̃) and terminal region Π̃ such that the inequalities in
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(5.33) can hold. This will guarantee both path convergence and speed assignment but

complicate the MPC design at the same time. In terms of the path following control

problem, one possible reformulation that satisfies Assumption 6 is the stringent ful-

filment of the speed assignment along the ZPE manifold. In this way, however, the

PF problem is solved as a trajectory tracking problem with two performance indices

that emphasize different error states (position vs. forward speed), and thus the extra

degree of freedom of adjusting s(t) is lost. In contrast, Assumption 7 requires to

find the local feedback control law and terminal region for the most important objective

J1 such that the inequality in (5.36) can hold. This will only rigorously guarantee the

path convergence which is the primary task in the PF problem. However, since the

path convergence and speed assignment are physically achievable and the relaxation

parameter ε is incorporated, the control on speed assignment is often satisfactory.

Adopting LO-MOMPC scheme simplifies the MPC design and retain the flexibility of

adjusting s(t) on the fly.

Remark 14. There are different ways to reformulate the problem as the regulation

of the error dynamics and to satisfy the assumptions. As an example, we can take

advantage of the ZPE manifold. Since the ZPE manifold (5.11) serves as a reference

for the AUV to track, the following relation holds:

ṗx = pu cos pψ − pv sin pψ (5.39a)

ṗy = pu sin pψ + pv cos pψ (5.39b)

ṗψ = pr (5.39c)

Decomposing the kinematic error η̃ in the vessel parallel reference frame, we have

η̃ =

 x̃

ỹ

ψ̃

 =

 − cosψ − sinψ 0

sinψ − cosψ 0

0 0 −1


 x− px
y − py
ψ − pψ

 (5.40)

Define the velocity error ṽ in the following way,

ṽ =

 ũ

ṽ

r̃

 =

 u− pu cos ψ̃ + pv sin ψ̃

v − pu sin ψ̃ − pv cos ψ̃

r − pr

 (5.41)
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Further define τ̃ = col(τ̃1, τ̃2, τ̃3) in which

τ̃1 = Fu

Mu̇
+ Mv̇

Mu̇
(ṽ + pu sin ψ̃ + pv cos ψ̃)(r̃ + pr)

−Xu

Mu̇
(ũ+ pu cos ψ̃ − pv sin ψ̃)− Du

Mu̇
(ũ+ pu cos ψ̃

−pv sin ψ̃)|ũ+ pu cos ψ̃ − pv sin ψ̃| − (ṗu cos ψ̃

+pu sin ψ̃r̃ − ṗv sin ψ̃ + pv cos ψ̃r̃)

(5.42)

τ̃2 = Fv

Mv̇
− Mu̇

Mv̇
(ũ+ pu cos ψ̃ − pv sin ψ̃)(r̃ + pr)

− Yv
Mv̇

(ṽ + pu sin ψ̃ + pv cos ψ̃)− Dv

Mv̇
(ṽ + pu sin ψ̃

+pv cos ψ̃)|ṽ + pu sin ψ̃ + pv cos ψ̃| − (ṗu sin ψ̃

−pu cos ψ̃r̃ + ṗv cos ψ̃ + pv sin ψ̃r̃)

(5.43)

τ̃3 = Fr

Mṙ
− Mv̇−Mu̇

Mṙ
(ũ+ pu cos ψ̃ − pv sin ψ̃)(ṽ + pu sin ψ̃

+pv cos ψ̃)− Nr

Mṙ
(r̃ + pr)− Dr

Mṙ
(r̃ + pr)|r̃ + pr| − ṗr

(5.44)

Then it can be shown that

˙̃x =



˙̃x

˙̃y
˙̃ψ

˙̃u

˙̃v

˙̃r


=



prỹ − ũ+ ỹr̃

−prx̃− ṽ − x̃r̃
−r̃
τ̃1

τ̃2

τ̃3


, f̃(x̃, τ̃ ) (5.45)

and at the origin (0,0), it admits that

ṗu =
Mv̇

Mu̇

pvpr −
Xu

Mu̇

pu −
Du

Mu̇

pu|pu|+
Fu
Mu̇

(5.46a)

ṗv = −Mu̇

Mv̇

pupr −
Yv
Mv̇

pv −
Dv

Mv̇

pv|pv|+
Fv
Mv̇

(5.46b)

ṗr =
Mu̇ −Mv̇

Mṙ

pupv −
Nr

Mṙ

pr −
Dr

Mṙ

pr|pr|+
Fr
Mṙ

(5.46c)

Comparing (5.39) and (5.46) with (2.34) and (2.32), we find that the ZPE manifold

can be viewed as the state trajectory generated by a virtual AUV owning exactly the

same kinematic and dynamic properties as the real AUV. Since (0,0) indicates that

the AUV is already on the manifold, the control input Fu, Fv and Fr will make the

AUV stay on the manifold.

Detailed derivation is similar to (3.7) - (3.14).
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Define ξ̃ = col(η̃, ṽ, 0), ω̃ = col(τ̃ , 0) and the error dynamics h̃ = col(f̃ , g). We

modify J1 with

L1(ξ̃, ω̃) = ‖ξ̃‖2
Q1

+ ‖ω̃‖2
R1
, E1(ξ̃) = ‖ξ̃‖2

P1
(5.47)

Leave L2 and E2 the same as in (5.16). In this way, Assumption 4 can be satisfied.

Notice that the error control signal construction (5.42)-(5.44) needs the values of

ṗu, ṗv and ṗr. By (5.11) we have ṗv = 0 and

ṗu = (p′xp
′′
x + p′yp

′′
y)(p

′2
x + p′2y )−

1
2 ṡ2 + (p′2x + p′2y )

1
2 s̈ (5.48a)

ṗr =
(p′2x + p′2y )(p′xp

′′′
y − p′yp′′′x )− 2(p′xp

′′
y − p′yp′′x)(p′xp′′x + p′yp

′′
y)

(p′2x + p′2y )2
ṡ2 +

p′xp
′′
y − p′yp′′x

p′2x + p′2y
s̈

(5.48b)

Since the above calculations require the information of s̈, the path dynamics need to

be modeled as a second order integrator, i.e.,

ż = Ãz + B̃vs, Ã =

[
0 1

0 0

]
, B̃ =

[
0

1

]
(5.49)

where z = [s, ṡ]T. Accordingly, the Forward Motion requirement will be formulated as

z2 = ṡ ≥ 0. We further employ the manifold (5.11) as the terminal constraint, i.e.,

Π̃ = {0}. Then Assumption 5 and Assumption 7 can be satisfied with κ1(0) = 0.

5.5 Simulation Results

In this section, we present the simulation results of the Falcon AUV to follow a si-

nusoidal path px(s) = s and py(s) = sin(s) with s ≥ 0 in the local level plane. For

the Speed Assignment, instead of directly setting a preferred path velocity ṡr, we set

a desired surge velocity ur = 1 (m/s) for the vehicle. This is a common selection in

engineering practice because for AUVs with control surfaces (fins), the surge veloci-

ty effectively influences the actuation efficiency of the control surface (higher speed

with higher reactivity). Then, according to (5.11b), we have the following explicit

expression

ṡr = ur(p
′2
x + p′2y )−

1
2 (5.50)

to calculate ξt at each sampling instant.

All the simulations are based on the experimentally identified dynamic model
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of Falcon. The model parameter details can be found in Table 2.1. To solve the

PMP equation (5.24e) the Trust-Region-Dogleg algorithm [147] is adopted. To direct

solve the NLP problem with KKT conditions, the embedded sequential quadratic

programming algorithm [19] of Matlab function fmincon is used.

5.5.1 PF Control Using WS-MOMPC

For the WS-MOMPC PF control, we select the parameters as follows: The sampling

period ∆t = 0.1sec, prediction horizon N = 10, γ = 10−4, K = I and the weighting

matricesQ1 = diag([105, 105, 102, 0.1, 0.1, 0.1, 0.1]), Q2 = diag( [1, 1, 1, 103, 0.1, 0.1, 0.1]),

P1 = diag([100, 100, 10, 10−3, 10−3, 10−3, 10−3]), P2 = diag([0.1, 0.1, 0.1, 100, 10−3,

10−3, 10−3]), R1 = R2 = diag([10−3, 10−3, 10−3, 10−3]). The control limits Fu,max =

500 (N), Fv,max = 500 (N) and Fr,max = 500 (Nm), and initial conditions x(0) =

[0.5, 0, 0, 0, 0, 0]T and s(0) = 0.

The AUV path-following results with different β values are shown in Figure 5.1.

It can be observed that (i) for all of the three cases, the AUV trajectory successful-

ly converges to the desired sinusoidal path, which validates the effectiveness of the

proposed WS-MOMPC PF method; (ii) for each case, at the beginning, the AUV
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Figure 5.1: The AUV PF results with WS-MOMPC.

moves in the direction that is almost perpendicular to the path in order to get the

fastest convergence, which is a desirable property; (iii) the larger β value results in
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the faster path convergence as the β value accounts for the sensitivity (slope) of the

logistic function.

Figure 5.2 records the surge velocity of the AUV during the simulation (for the

case of β = 1). As we can see, the surge velocity keeps very well at the desired speed
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Figure 5.2: Surge velocity of the AUV (WS-MOMPC).

after the sacrifice for Path Convergence in the beginning. In Figure 5.3, the general

thrust forces and moments as well as the imaginary path control inputs are plotted.

As expected, they are all within the corresponding ranges of permitted values, which

validates the effectiveness of barrier functions in the PMP-based implementation.

5.5.2 PF Control Using LO-MOMPC

For the LO-MOMPC scheme, we simulate the AUV PF control using the way suggest-

ed in Remark 14. The parameters are chosen as follows: The sampling period ∆t =

0.1sec, prediction horizonN = 10 and weighting matricesQ1 = diag([105, 105, 103, 103,

10−3, 10−3, 10−3]), Q2 = diag( [104, 104, 102, 103, 10−3, 10−3, 103]), P1 = diag([100, 100,

10, 100, 10−3, 10−3, 10−3]), P2 = diag([100, 100, 10, 100, 10−3, 10−3, 102]), R1 = R2 =

diag([10−3, 10−3, 10−3, 10−3]). The control limits Fu,max = 500 (N), Fv,max = 500 (N)

and Fr,max = 500 (Nm), and initial conditions x(0) = [0.5, 0, 0, 0, 0, 0]T and s(0) = 0.

The AUV path-following results are shown in Figure 5.4. Similar observations can

be made: (i) the AUV trajectory successfully converge to the desired sinusoidal path,
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Figure 5.3: Control inputs of the augmented system (WS-MOMPC).

which validates the effectiveness of the proposed LO-MOMPC PF method; (ii) in the
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Figure 5.4: The AUV PF results using LO-MOMPC.

beginning, the AUV moves in the direction almost perpendicular to the desired path

in order to get the fastest convergence, which reflects the different priorities of the

two PF requirements.
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Figure 5.5 records the surge velocity of the AUV during the simulation. The
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Figure 5.5: Surge velocity of the AUV (LO-MOMPC).

surge velocity keeps very well at the desired speed after the initial sacrifice for path

convergence. In Figure 5.6, the general thrust forces and moments as well as the

imaginary path control input are plotted.
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Figure 5.6: Control inputs of the augmented system (LO-MOMPC).
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Also the optimal values for the two objective functions are plotted in Figure

5.7. It can be seen that J∗1 decreases monotonically, which indicates that the path

convergence can be obtained; while J∗2 admits an initial hike, which conforms to the

strict prioritization between the two control objectives.
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Figure 5.7: The optimal value functions.

5.5.3 Robustness Test

The receding horizon control paradigm makes MPC robust to parametric uncertainty

of the system model. This feature is extremely suitable for control of underwater

vehicles whose dynamic model is always with uncertainties due to the poor knowledge

of hydrodynamic coefficients. In Figure 5.8, the path-following control is performed

using a dynamic model with 20% model errors. As we can see, the AUV still closely

follows the desired path, and the control performance is quite satisfactory. The surge

velocity of the vehicle is plotted in Figure 5.9, which well demonstrates the robustness

of the proposed MOMPC method.

In addition, the robustness is also tested through the path following task of non-

differentiable paths since these types of path (e.g., the lawn mower pattern) represent

actual oceanographic survey applications.

Notice that in Section 5.2.1, the desired path is assumed to be smooth. This is

to facilitate the unified expression of parametrization of the ZPE manifold in (5.4) -
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Figure 5.8: The AUV PF results (with parametric uncertainties).
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Figure 5.9: Surge velocity of the AUV (with parametric uncertainties).

(5.10). For a non-differentiable desired path such as the following example:

p(s) =


px(s) = s, py(s) = s s ∈ [0, 1)

px(s) = s, py(s) = 2− s s ∈ [1, 2)

px(s) = 4− s, py(s) = 0 s ∈ [2, 4)
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we need to specify the [pψ(s), pu(s), pv(s), pr(s)] at the non-differentiable points. In

the example, we adopt the following choice:

p(s) =


pψ(s) = π/4, pu(s) =

√
2ṡ, pv(s) = 0, pr(s) = 0 s = 0

pψ(s) = −π/4, pu(s) =
√

2ṡ, pv(s) = 0, pr(s) = 0 s = 1

pψ(s) = −π/2, pu(s) = ṡ, pv(s) = 0, pr(s) = 0 s = 2

In the simulation, the AUV, subject to 20% model error, is expected to follow the

above non-differentiable path; the Speed Assignment to be ur = 0.2 (m/s). As the

simulation results (Figure 5.10 - Figure 5.12) indicate, the proposed MOMPC method

can well handle the non-differentiable path and the parametric uncertainty. Further-

more, we can observe obvious decrease in surge velocity at these non-differentiable

points. The decrease in surge velocity conforms with the objective prioritization we

set for the path following control and also largely increases the control stability.
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Figure 5.10: PF results with non-differentiable path.

5.6 Conclusion

In this chapter, the path following control problem was studied for the autonomous

underwater vehicles. To handle the prioritization between PF requirements, we have
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Figure 5.12: Control inputs of the augmented system (non-differentiable).

proposed a novel MOMPC method supported by two implementation algorithms:

The weighted sum based and the lexicographic ordering based algorithms. An ex-

plicit parametrization of the zero-path-error manifold was constructed facilitating the
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MOMPC formulation for the AUV PF control problem. For the WS-MOMPC scheme,

a logistic function was proposed to automate the weight selection for the objectives.

The Pontryagin minimum principle was applied with several well-defined barrier func-

tions. The sufficient conditions that guarantee the convergence of the closed-loop

trajectory were derived. The internal relationship between the WS-MOMPC and the

LO-MOMPC were explored. Simulation results on the Falcon dynamic model demon-

strated the effectiveness of the proposed method: The objective prioritization could

be well incorporated into the PF control. Furthermore, the robustness test results in-

dicated that the MOMPC method had the inherent robustness to some extent, which

potentially presented a useful and powerful framework for the AUVs to solve a broad

spectrum of motion control problems.

The main results in this chapter have been published in [125].

[125] C. Shen, Y. Shi and B. Buckham, “Path-Following Control of an AUV: A

Multi-Objective Model Predictive Control Approach”, IEEE Transactions on

Control Systems Technology, accepted, 2017, DOI: 10.1109/TCST.2018.2789440
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Chapter 6

Efficient Implementation

Algorithms for NMPC Trajectory

Tracking Control of an AUV

6.1 Introduction

6.1.1 Research Background and Contributions

In Chapters 3 - 5, we have discussed the model predictive control for the trajectory

tracking, dynamic positioning and path following problems for the AUVs. The pur-

pose of the previous chapters is to propose novel and useful frameworks that bring

salient features, such as constraint handling and multiple control objective incorpora-

tion, in solving these AUV motion control problems. The main focus is hence on the

design of the optimization problems such that the closed-loop system is theoretically

stable with respect to the equilibrium of interest. The simulation results indicate that

the MPC solution is very promising for the AUV applications. However, there may

be an issue that potentially prohibits the MPC from being implemented on real AUV

systems: the heavy computational burden.

As a feedback control technique, the MPC realizes the feedback mechanism by

recursively solving open-loop optimal control problems (OCPs) with real-time state

measurement as initial conditions. In theory, the solutions of the OCPs are assumed

to be obtained instantly. In practice, they can only be provided by iterative methods.

The OCPs need to be solved within strict time constraints. Violation of the time

constraints possibly leads to performance degradation or even instability [45]. This
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is exactly the reason why the most successful area for MPC is the chemical industry

[110] where the sampling period is sufficiently long for standard numerical algorithms.

However, the AUV system is with fast dynamics, and the permitted sampling period

may be less than tenth of a second. Computation time is no longer negligible. Linear

MPC, inheriting the good structure of the quadratic problem, might be efficiently

solved by off-the-shelf numerical algorithms, while nonlinear MPC faces an intense

conflict between the comparatively long computation time and the short sampling

period. Due to nonlinear dynamics of the AUV motion, the OCPs are essentially

generic nonlinear programming (NLP) problems. The computational complexity will

raise exponentially as the problem size increases. Consequently, different control s-

trategies such as numerical continuation [103], event-triggered control [78], off-line

precomputation [22] and distributed implementation [24, 31] have been proposed at-

tempting to shorten the computing time. Although the LMPC framework proposed

in Chapter 4 admits the trade-off between computational complexity and control

performance, which partially alleviates the heavy burden by circumventing this tech-

nical issue, it is desired to develop new tools to explicitly tackle the complexity of the

control algorithms.

To move one step further toward real AUV applications, in this chapter, we par-

ticularly focus on the computational issue and propose two distinct implementation

strategies to reduce the computational complexity of the NMPC-based AUV trajecto-

ry tracking control algorithm while maintaining the comparable control performance.

The first strategy is based on Ohtsuka’s C/GMRES algorithm [103]. The C/GMRES

algorithm is appealing since it entertains both merits of the numerical continuation

method [8] and the Krylov subspace method [73]. Applying the numerical contin-

uation method, the NLP needs not to be solved. Instead, an approximate solution

can be traced from the previous value using the solution of a linear equation. The

linear equation is solved by Krylov subspace method which is well-known for its high

efficiency: The solution typically converges in a few iterations. However, the original

C/GMRES algorithm was proposed for the equality constrained NMPC problems. To

incorporate the AUV thrust limits (which are essentially inequality constraints) in the

NMPC formulation, we borrow barrier functions from the interior-point method and

modify the C/GMRES algorithm. The sufficiency of Pontryagin’s minimum principle

(PMP) points to solve the Karush-Kuhn-Tucker (KKT) conditions is exploited. As a

result, under differentiability and constraint qualifications, the validity of the modifi-

cation can be claimed. Since the linear independence constraint qualification (LICQ)
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is satisfied in the AUV tracking control problem, the proposed modified C/GMRES

algorithm provide a viable solution with high efficiency.

The second strategy exploits the dynamic properties of the AUV motion and solves

the OCPs in a distributed fashion. To facilitate the distributed implementation of the

NMPC tracking control, a reference augmentation is performed. With the reference

augmentation the interaction between surge, sway and yaw dynamics is weakened. By

exploiting this property two novel distributed implementation algorithms are devel-

oped in an attempt to relieve the computation burden. By solving three subproblems

with smaller size, the computational complexity drops significantly. The proposed

parallel implementation minimizes the computational complexity while the sequen-

tial implementation sacrifices some efficiency for the guaranteed stability. Recursive

feasibility and closed-loop stability are rigorously proved. The warm start strategy is

used to accelerate the convergence.

The main contributions of this chapter are summarized as follows,

• The modified C/GMRES algorithm is proposed to implement the NMPC for

the AUV trajectory tracking control with significantly improved efficiency.

• The validity of the incorporation of the barrier functions into the numerical con-

tinuation approximations is proved based on the Pontryagin’s minimum princi-

ple and the KKT conditions.

• Two novel distributed implementation algorithms are developed. The compu-

tational complexity of the NMPC tracking control can be dramatically reduced

by adopting the developed distributed implementation while the tracking per-

formance can be well maintained.

• The closed-loop properties are explicitly analyzed for the distributed imple-

mentation. Sufficient conditions to guarantee the recursive feasibility and the

closed-loop stability are provided.

6.1.2 Chapter Organization

The remaining part of this chapter is organized as follows: In Section 6.2 the modified

C/GMRES algorithm is presented with technical details. Section 6.3 introduces the

novel distributed implementation strategy and elaborates the control algorithm design

and stability analysis. In Section 6.4, several conclusive remarks are provided.
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In this chapter, the following notations are used: The column operation [ρT
1 , ...ρ

T
n ]T

is denoted as col(ρ1, ..., ρn); the diagonal operation is abbreviated by diag(·); the

square of a weighted Euclidean norm ρTAρ is denoted by ‖ρ‖2
A. The max{·} function

returns the largest value from the numbers provided in the brace. The absolute value

on a vector |ρ| applies the absolute value operation to each element. For a scalar-

valued function f , ∇f represents the gradient while Fx denotes the Jacobian of the

vector-valued function F with respect to x.

6.2 Modified C/GMRES Algorithm

6.2.1 Problem Formulation

The AUV model studied for the trajectory tracking control is established using the

kinematic equations and the dynamic equations:

ẋ =

[
R(ψ)v

M−1(u−C(v)v −D(v)v − g(η))

]
= f(x,u) (6.1)

where the state vector x = [x, y, ψ, u, v, r]T is consisted of the pose and velocity of

the vehicle, and the control vector u = [Fu, Fv, Fr]
T is generalized thrust forces and

moments. The detailed expression can be found in (2.32) and (2.34).

Consider a reference trajectory p(t) = [xd(t), yd(t)]
T which defines the desired

positions for the vehicle. We assume that the reference trajectory is appropriate by

considering physical limits of a vehicle. We view p(t) as the output trajectory of a

reference system which owns the same kinematic properties

ẋd = ud cosψd − vd sinψd

ẏd = ud sinψd + vd cosψd

ψ̇d = rd

(6.2)

Then the kinematic equations in (6.2) can be used as a guideline to augment p(t).
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A valid reference system for Falcon is xd = [xd, yd, ψd, ud, vd, rd]
T with

ψd = atan2(ẏd, ẋd)

ud =
√
ẋ2
d + ẏ2

d

vd = 0

rd = (ẋdÿd − ẏdẍd)/(ẋ2
d + ẏ2

d)

(6.3)

where atan2 is the four-quadrant inverse tangent function. In this way, potential nu-

merical difficulties associated with positive semi-definite weighting matrices induced

singularity or rank deficiency (when the tracking control is formulated as an output

MPC problem) can be avoided. This is important because in the following we will take

advantage of the numerical continuation to approximate the optimal control signal,

in which the regularity of the solution, or equivalently, local full rank of the Hessian

of the Hamiltonian is required by implicit function theorem [8]. Now we define the

optimal control problem (P0) that needs to be solved online:

(P0) : min
û(s,t0)

. J =
∫ T

0
(‖x̂(s, t0)− xd(t0 + s)‖2

Q

+‖û(s, t0)‖2
R)ds+ ‖x̂(T, t0)− xd(t0 + T )‖2

Qf

s.t. ˙̂x(s, t0) = f(x̂(s, t0), û(s, t0))

x̂(0, t0) = x(t0)

|û(s, t0)| ≤ umax

(6.4)

where x̂(s, t0) denotes the predicted state evolution starting from x(t0) at the origin

of the fictitious time axis s = 0. The optimal control signal û∗(s, t0) is determined

by solving the above optimization. T is the prediction horizon, and Qf , Q, R are

corresponding weighting matrices, positive definite.

The NMPC algorithm for the AUV tracking can be briefly described as follows:

2 At sampling instant t0, the optimization (P0) is performed given the current

system state x(t0), and let û∗(s, t0) denote the solution.

2 The AUV uses û∗(s, t0) for only one sampling period: u(t) = û∗(s, t0) for

s ∈ [0,∆t].

2 At next sampling instant t0 + ∆t, new measurement of system state x(t0 + ∆t)

is fed back, then (P0) is solved again substituting t0 with t0 + ∆t.

The above procedure will repeat until accomplishing the tracking task.
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We notice that in (P0) the objective function J includes an integral operation and

the constraints include the control system dynamics which are essentially derivative

operations. However, in real-world implementation, both the integral and the deriva-

tive have to be performed numerically. Therefore, we solve the discretized version of

(P0) at each sampling instant.

For the convenience of the description of C/GMRES algorithm, let us slightly

abuse the notations. In the following, u represents the control input of a general

nonlinear dynamical system ẋ = f(x, u, p) rather than AUV surge velocity; x repre-

sents the state rather than AUV position; and p is the time-varying parameter. We

generalize (P0), and the discretized version (P) using Euler forward approximation is

defined as follows:

(P) : min
ui

. J =
∑N−1

i=0 `(xi, ui, pi)∆t+ g(xN , pN)

s.t. xi+1 = xi + f(xi, ui, pi)∆t

x0 = x(t0)

c(xi, ui, pi) = 0

h(xi, ui, pi) ≤ 0

(6.5)

Here, we divide the prediction horizon T into N steps with step size ∆t (which is

known as the sampling period). The continuous-time system dynamics ẋ = f(x, u, p)

is also discretized, and the initial condition is given by the current system state x(t0).

c(xi, ui, pi), h(xi, ui, pi) represent vector-valued equality and inequality constraints,

respectively.

6.2.2 Solving the NMPC Problem

Generally, solving the optimization problem (P) is a generic nonlinear programming

(NLP) problem. Under differentiability and constraint qualifications, the Karush-

Kuhn-Tucker (KKT) theorem can be applied. The KKT theorem states the first-

order necessary conditions for a solution {u∗i }N−1
i=0 of (P) to be optimal [9]. Since the

system dynamics and initial condition of (P) are essentially equality constraints, we

combine them with rest of the equalities and denote them by c̄(xi, ui, pi) = 0. We

simplify the notation of (P) as follows:

min
Ū
. J(Ū) s.t. c̄(Ū) = 0, h(Ū) ≤ 0
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where Ū = col(u0, u1, ..., uN−1). The KKT theorem states: For a locally optimal

solution Ū∗, there exist vector-valued multipliers λ∗ and µ∗ such that the following

conditions hold

∇J(Ū∗) +
∑

i λ
∗
i∇c̄i(Ū∗) +

∑
j µ
∗
j∇hj(Ū∗) = 0

c̄i(Ū
∗) = 0

hj(Ū
∗) ≤ 0

µ∗j ≥ 0

µ∗jhj(Ū
∗) = 0

(6.6)

To solve (P) is actually to solve the KKT system (6.6) using Newton’s methods such

as Sequential Quadratic Programming (SQP) methods and Interior-Point (IP) meth-

ods [9]. However, conventional Newton type numerical algorithms basically rely on

successive linearizations, essentially making it computationally expensive in solving

the problem. To alleviate the computational burden, many efficient approximate al-

gorithms for MPC have been developed [35]. For the AUV tracking control, Ohtsuka’s

C/GMRES algorithm [103] is tailored and modified to incorporate the physical limits

of the thrusters.

6.2.3 Modified C/GMRES Algorithm

Instead of solving the generic NMPC problem (P), the original C/GMRES Algorithm

considers the less general problem (P1) in which no inequality constraints exist

(P1) : min
ui

. J =
∑N−1

i=0 `(xi, ui, pi)∆t+ g(xN , pN)

s.t. xi+1 = xi + f(xi, ui, pi)∆t

x0 = x(t0)

c(xi, ui, pi) = 0

The C/GMRES is based on solving the discretized necessary condition for the

optimal control, i.e., the Pontryagin’s Minimum Principle (PMP) [103]. Define the

Hamiltonian by

H(x, λ̄, u, ν, p) = `(x, u, p) + λ̄Tf(x, u, p) + νTc(x, u, p)

Here, we call λ̄ the costate, and ν the Language multiplier. The discretized PMP

claims that for a local optimal control {u∗i }N−1
i=0 , there exist {λ̄∗i }Ni=0 and {ν∗i }N−1

i=0
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satisfying the following conditions:

x∗i+1 = x∗i + f(x∗i , u
∗
i , pi)∆t (6.7a)

λ̄∗i = λ̄∗i+1 +HT
x (x∗i , λ̄

∗
i+1, u

∗
i , ν
∗
i , pi)∆t (6.7b)

λ̄∗N = gT
x (x∗N , pN) (6.7c)

x∗0 = x(t0) (6.7d)

Hu(x
∗
i , λ̄
∗
i+1, u

∗
i , ν
∗
i , pi) = 0 (6.7e)

c(x∗i , u
∗
i , pi) = 0 (6.7f)

Observe that (6.7a)-(6.7b) are recurrence relation on x∗ and λ̄∗, and (6.7c)-(6.7d)

can be viewed as boundary conditions. Define U = col(u∗0, ν
∗
0 , . . . , u

∗
N−1, ν

∗
N−1), then

the state trajectory {x∗i }Ni=0 and the costate trajectory {λ̄∗i }Ni=0 are explicit functions

of U . We substitute (6.7a)-(6.7d) into (6.7e)-(6.7f) and construct the equation system

F (U, x) =



HT
u (x∗0, λ̄

∗
1, u
∗
0, ν
∗
0 , p0)

c(x∗0, u
∗
0, p0)

...

HT
u (x∗N−1, λ̄

∗
N , u

∗
N−1, ν

∗
N−1, pN−1)

c(x∗N−1, u
∗
N−1, pN−1)


= 0 (6.8)

Normally, we need to solve (6.8) at each sampling instant. However, solving (6.8)

using iterative methods is computationally expensive in the sense of evaluating Ja-

cobians, Hessian and inverses. Instead, C/GMRES takes the advantage of numerical

continuation method [8] that views the equation system F (U, x) as a dynamical sys-

tem governed by

Ḟ (U, x, t) = AsF (U, x, t) (6.9)

Here, we explicitly point out the time dependence of the dynamical system (6.9) by

denoting the state as F (U, x, t) rather than solely F (U, x). As is an introduced stable

matrix to stabilize F (U, x, t) at the origin. Hence, if FU is nonsingular, Eqn. (6.9) is

equivalent to

U̇ = F−1
U (AsF − Fxẋ− Ft) (6.10)

The derivative of U can be computed by (6.10) using the derivative of x. Then, if an

initial solution U(0) satisfying F (U(0), x(0), 0) = 0 can be found, the solution curve

U(t) of (6.8) can be traced by integrating (6.10) from U(0).
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To further relieve the computational load, the action of Jacobians on vectors is

approximated by forward difference:

FU(U, x, t)W + Fx(U, x, t)w + Ft(U, x, t)ω

≈ δ−1(F (U + δW, x+ δw, t+ δω)− F (U, x, t))

= DδF (U, x, t : W,w, ω)

where δ is a small positive number. To further avoid the expensive operation of matrix

inverse F−1
U , Generalized Minimal Residual method (GMRES) is applied to solve the

linear equation FU U̇ = AsF − Fxẋ − Ft. The combination of forward difference

approximation and GMRES is called FDGMRES introduced in [73]. To simplify the

description, we can simply view FDGMRES as a function

U̇ = FDGMRES(U, x, ẋ, t, ˆ̇U, δ, kmax)

where ˆ̇U is an initial guess and kmax is the allowed maximum iteration number. Defin-

ing a transformation T0(U) = u∗0, the C/GMRES algorithm can be depicted in Al-

gorithm 5.

Algorithm 5 : C/GMRES Algorithm

1: Initialize t = 0, k = 0, initial state x0 = x(0) and find U0 numerically such that
F (U0, x0, 0) = 0.

2: For s ∈ [t, t+ ∆t), the real control input is computed by u(s) = T0(Uk).
3: At next sampling instant t + ∆t, the system state xk+1 = x(t + ∆t) is fed back.

Compute the state difference ∆xk = xk+1 − xk.
4: U̇k=FDGMRES(Uk, xk,∆xk/∆t, t,

ˆ̇Uk, δ, kmax)
5: Set Uk+1 = Uk + U̇k∆t
6: Update t = t+ ∆t, k = k + 1
7: Go to Step 2.

Since several approximations are made in the C/GMRES algorithm, the approxi-

mation error should be bounded. An error analysis can be found in [103].

The AUV tracking problem (P0), however, is constrained by inequality constraints

in terms of actuator limits. We modify the C/GMRES algorithm appropriately so

that it can incorporate the inequality constraints. By introducing the barrier functions

[19], we approximately solve (P) by actually solving another optimization (P̄) defined
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as follows:

(P̄) : min
Ū
. J(Ū)− γl

∑
j log(−hj(Ū)) s.t. c̄(Ū) = 0 (6.11)

where γl is a positive number. Since the C/GMRES is based on solving PMP system

rather than KKT system, in the following, we first explore the sufficiency of PMP

points to satisfy the KKT conditions, then exploit the convergence of the solution of

(P̄) to that of (P).

Lemma 2. A point that satisfies the PMP of (P1) sufficiently solves the corresponding

KKT conditions.

Proof. The detailed KKT conditions of (P1) are derived in the following:

∇J̄ = 0 (6.12a)

c̄(xi, ui, pi) = 0 (6.12b)

with
J̄ =

∑N−1
i=0 L(xi, ui, pi) + g(xN , pN) +

∑N−1
i=0 λ̄T

j+1(fd(xj, uj, pj)

−xj+1) + λ̃T
0 (x(t0)− x0) +

∑N−1
k=0 ν

T
k c(xk, uk, pk)∆t

where L(xi, ui, pi) = `(xi, ui, pi)∆t and fd(xi, ui, pi) = xi + f(xi, ui, pi)∆t. Define

Hamiltonian sequence by

H i = L(xi, ui, pi) + λ̄T
i+1fd(xi, ui, pi) + νT

i c(xi, ui, pi)∆t

Then we can simplify the notation of J̄

J̄ = g(xN , pN)− λ̄T
NxN +

∑N−1
i=1 (H i − λ̄T

i xi) +H0 + λ̃T
0 (x(t0)− x0)

Since given x0, the system state xi is merely dependent on Ū , the gradient

∇J̄ =
∂J̄

∂X

dX

dŪ
+
∂J̄

∂Ū

where X = col(x0, ...xN), then ∇J̄ = 0 is equivalent to

dJ̄ =
∂J̄

∂X
dX +

∂J̄

∂Ū
dŪ = 0
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By explicitly computing dJ̄ , we have

dJ̄ = ( ∂g
∂xN
− λ̄T

N)dxN +
∑N−1

i=1 {(
∂Hi

∂xi
− λ̄T

i )dxi

+∂Hi

∂ui
dui}+ ∂H0

∂x0
dx0 + ∂H0

∂u0
du0 − λ̃T

0 dx0 = 0
(6.13)

If we select the costate sequence satisfying

λ̄T
i −

∂H i

∂xi
= 0 (6.14a)

∂g

∂xN
− λ̄T

N = 0 (6.14b)

and x0 = x(t0) is given, then dJ̄ = 0 is equivalent to

dJ̄ =
N−1∑
i=0

∂H i

∂ui
dui = 0 (6.15)

We notice that (6.14a)-(6.14b) are identical to (6.7b)-(6.7c) and (6.7e) sufficiently

solves (6.15). Eqn. (6.12b) states the rest of PMP conditions. Now, the sufficiency

of PMP points to solve the KKT conditions has been shown.

Lemma 3. Suppose differentiability and constraint qualifications hold. Let a sequence

{γl} satisfy 0 < γl+1 < γl, and γl → 0 as l → ∞. Suppose the solution of (P) and

(P̄) exist and denoted by Ū∗ and Ū l, then Ū l converge to Ū∗ as γl → 0.

Proof. See [19] ch. 11 sec. 3.3.

Definition 4 (Linear Independence Constraint Qualification). Let Ū be fea-

sible for (P) and I(Ū) = {j|hj(Ū) = 0}, then we say that the linear independence

constraint qualification (LICQ) holds at Ū , if for j ∈ I(Ū)

∇hj(Ū),∇c̄i(Ū)

are linearly independent. Then strong duality gap holds for (P) and KKT theorem is

applicable.

Theorem 9. For the AUV tracking problem (6.4), the modified C/GMRES with log

barriers approximately solves (P0) with a small positive γl.

Proof. Since the system dynamics ẋ(t) = f(x(t),u(t)) imposes constraints on x not

on u, the only constraints on u are |u(t)| ≤ umax. For the discretized version, the
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constraints are |ui| ≤ umax, or equivalently, ui ≤ umax and ui ≥ −umax, which

obviously satisfy LICQ at all feasible points. Therefore, Theorem 9 is followed by

Lemma 2 and Lemma 3.

The modified C/GMRES algorithm can be depicted in Algorithm 6.

Algorithm 6 : mC/GMRES Algorithm

1: Initialize t = 0, k = 0 and l = 0. Given initial state x0 = x(0), γ0, α and lmax,
find U l

0 numerically such that F (U l
0, x0, γl, 0) = 0.

2: Set l = l + 1. If l < lmax, go to Step 3. Otherwise, go to Step 4.
3: Set γl = αγl−1. Then find U l

0 numerically such that F (U l
0, x0, γl, 0) = 0 with

initial guess Û l
0 = U l−1

0 . Go to Step 2.
4: For s ∈ [t, t+ ∆t), the real control input is computed by u(s) = T0(Uk).
5: At next sampling instant t + ∆t, the system state xk+1 = x(t + ∆t) is fed back.

Compute the state difference ∆xk = xk+1 − xk.
6: U̇k=FDGMRES(Uk, xk,∆xk/∆t, t,

ˆ̇Uk, δ, kmax)
7: Set Uk+1 = Uk + U̇k∆t
8: Update t = t+ ∆t, k = k + 1
9: Go to Step 4.

Note that the conventional C/GMRES algorithm only solves the PMP system (6.7)

once at the initialization, and the modified version changes the initialization by solving

F (U0, x0, γl, 0) = 0 several times with a shrinking γl and initial guesses Û l+1
0 = U l

0 in

order to obtain good approximations while circumventing numerical difficulties [19].

Therefore, the modification preserves the efficiency of the fast algorithm.

6.2.4 Simulation Results

In this section, the AUV tracking control with three different reference trajectories

are simulated. We demonstrate the effectiveness and highlight the efficiency of the

modified C/GMRES by comparisons to other numerical algorithms. All the simu-

lations are performed on a personal computer (CPU: Intel(R) Core(TM) i7-3520M:

2.90GHz 2.90GHz; RAM: 4.00GB).

The first reference trajectory (Case I) to be tested is a circle defined as follows,

p(t) =

{
xd = 0.8 cos(0.5t)

yd = 0.8 sin(0.5t)
(6.16)

The circle trajectory is a typical test trajectory for tracking control problems. It is
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relative easier to track because the reference angular and tangential velocities keep

constant values.

The second test reference trajectory (Case II) is a sinusoidal curve defined as

follows,

p(t) =

{
xd = 0.5t

yd = sin(0.5t)
(6.17)

The sinusoidal trajectory is another typical test trajectory for tracking control whose

reference tangential and angular velocities are no longer constant.

The third test reference trajectory (Case III) is an eight-shaped trajectory defined

as follows,

p(t) =

{
xd = sin(0.5t)

yd = sin(0.25t)
(6.18)

The eight-shaped trajectory has sharp changes in its reference velocities, which makes

the tracking task more challenging.

We notice that in the augmented reference system (6.3), the first and second

derivatives of p(t) are needed. It could be tedious to analytically calculate these

functions. Instead, in the implementation, we approximate the discrete values by

forward differences:

ṗ(n∆t) ≈ p((n+ 1)∆t)− p(n∆t)

∆t

p̈(n∆t) ≈ p((n+ 2)∆t)− 2p((n+ 1)∆t) + p(n∆t)

(∆t)2

Note that the above process will introduce some approximation errors, so there

exists a trade-off between computational complexity and solution accuracy.

The AUV system parameters are from the identified dynamic model of Falcon

[109]. The model parameter details are summarized in Table 2.1. Thrust limits

Fu,max = 500 (N), Fv,max = 500 (N) and Fr,max = 500 (Nm) and initial conditions

x(0) = [0.3, 0, 0, 0, 0, 0]T. For the NMPC parameters, sampling period ∆t = 0.1sec,

weighting matrices Q = diag(104, 104, 10, 10, 1, 10), R = diag(10−4, 10−4, 10−2) and

Qf = diag(10, 10, 1, 1, 1, 1). For the modified C/GMRES algorithm, As = −ζI with

ζ = 1/∆t, kmax = 4, δ = 10−5. In the initialization γ0 = 102 and iteratively solve

F (U0, x0, γl, 0) = 0 with γl+1 = αγl = γl/10 and Û l+1
0 = U l

0 until l = lmax = 6.

In all of the cases, at each sampling instant, the optimal control signal of the

NMPC tracking is computed by (i) the proposed modified C/GMRES algorithm (red



124

curves), (ii) the Trust-Region-Dogleg (TRD) algorithm [147] to solve F (U, x, t) = 0

(black curves), and (iii) the embedded SQP [9] of Matlab function fmincon to directly

solve the KKT system of (P0) (blue curves), respectively. The green curves are the

reference trajectories p(t).

−1 −0.5 0 0.5 1
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0

0.5

1
Tracking Results

[m]

[m
]

 

 

Reference
mC/GMRES
TRD
SQP

Figure 6.1: Simulated AUV trajectories - Case I.

The NMPC tracking control results of a circle are shown in Figure 6.1. The

red, black and blue curves are simulated AUV trajectories. The control forces and

moments are recorded in Figure 6.2, and the position errors are plotted in Figure 6.3

with respect to time. Generally speaking, the AUV tracking control are comparably

well with different implementations. Position errors are bounded. Also, as expected,

the control signals are within their intervals of permitted values, which validates the

usefulness of barrier functions.

The simulated AUV trajectories to track a sinusoidal reference are illustrated

in Figure 6.4. The control forces and moments are plotted in Figure 6.5, and the

position errors are recorded in Figure 6.6. The same as Case I, we can observe that

the AUV tracking performance are comparably well with three algorithms, and the

control signals never go beyond their limits.

The simulation results of tracking the eight-shape reference trajectory are demon-

strated in Figure 6.7. The control signals are shown in Figure 6.8, and the position

errors are plotted in Figure 6.9. Similar observations can be made that the NMPC
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Figure 6.2: The control forces and moments - Case I.
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Figure 6.3: The position error - Case I.

tracking control seem comparably well using different numerical algorithms. Position

errors are bounded, and the control signals never transcend the boundary.

Although the tracking control performance are comparably acceptable with dif-

ferent implementation, if we check the average computation time, as listed in Table

6.1 - 6.3, we can easily distinguish the efficiencies of these algorithms. Remember
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Figure 6.4: Simulated AUV trajectories - Case II.
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Figure 6.5: The control forces and moments - Case II.

that, the sampling period ∆t = 0.1sec, which means at each sampling instant the

optimal control signals have to be obtained within 0.1sec. Obviously, the embedded

SQP using conventional Newton failed to solve (6.6) within the time constraint, and

TRD only marginally satisfied the time constraint with small prediction horizons. In
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Figure 6.6: The position error - Case II.
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Figure 6.7: Simulated AUV trajectories - Case III.

contrast, modified C/GMRES efficiently solved the NMPC problem within 10% of

∆t, which is very promising for real-time implementation of the NMPC-based AUV

tracking control.
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Figure 6.8: The control forces and moments - Case III.
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Figure 6.9: The position error - Case III.

6.3 Distributed Implementation Strategy

In the previous section, we have witnessed the dramatically improved numerical ef-

ficiency of the proposed modified C/GMRES algorithm. Due to the numerical con-

tinuation step involved in the algorithm, the optimal solution at each sampling time
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Table 6.1: Average computation time (sec.) per update - Case I.
N mC/GMRES Trust-Region-Dogleg SQP
5 0.0038 0.0274 0.1741
10 0.0058 0.0564 0.5881
20 0.0098 0.2168 2.0969

Table 6.2: Average computation time (sec.) per update - Case II.
N mC/GMRES Trust-Region-Dogleg SQP
5 0.0033 0.0276 0.2395
10 0.0055 0.0927 0.5523
20 0.0097 0.2507 1.8901

Table 6.3: Average computation time (sec.) per update - Case III.
N mC/GMRES Trust-Region-Dogleg SQP
5 0.0040 0.0309 0.1990
10 0.0064 0.0605 0.6167
20 0.0100 0.2218 2.2646

instant can be traced from the previous solution without truly solving the NLP prob-

lem. On one side, this can be extremely efficient in obtaining the optimal control

signal. On the flip side, however, the approximation error will accumulate over time.

The large approximation error may lead to highly degraded control performance or

even instability. Therefore, in this section, we are going to take another fast imple-

mentation strategy which reduces the overall computational complexity but preserves

the closed-loop stability.

6.3.1 Problem Formulation

The AUV model considered in this section is established based on the kinematic

equations, the dynamic equations and the thrust distribution:

ẋ =

[
R(ψ)v

M−1(Bu−C(v)v −D(v)v − g(η))

]
= f(x,u) (6.19)

where the state vector x = [x, y, ψ, u, v, r]T is consisted of the pose and velocity of the

vehicle, and the control vector u = [u1, u2, u3, u4]T is consisted of the forces generated

by the four thrusters. The detailed expression can be found in (2.32) and (2.34).

The trajectory of interest is defined in the output space: p(t) = [xd(t), yd(t)]
T
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which describes the desired position in the IRF. To avoid singularities, we assume

that Assumption 3 can hold. Then taking advantage of Proposition 2, we can

safely formulate the NMPC tracking control problem (P0) as follows,

min
u∈S(δ)

J =

∫ T

0

(‖x̃(s)‖2
Q + ‖u(s)‖2

R)ds+ ‖x̃(T )‖2
P (6.20a)

s.t. ẋ(s) = f(x(s),u(s)) (6.20b)

x(0) = x(t0) (6.20c)

|u(s)| ≤ umax (6.20d)

where x̃ = x − xd with xd = [xd, yd, ψd, ud, vd, rd]
T defined in (6.3) denotes the state

error; S(δ) is the family of piecewise constant functions characterized by the sampling

period δ; T = Nδ is known as the prediction horizon, and Q = diag{qii}, R =

diag{rii}, P = diag{pii} are weighting matrices, positive definite.

To establish a feedback mechanism, the NMPC tracking control needs to be im-

plemented in the receding horizon fashion, i.e., we solve (P0) for the current sampling

time instant, and implement the solution for one sampling period, and then repeat

the procedure at next sampling time. The NMPC tracking control algorithm is sum-

marized in Algorithm 7.

Algorithm 7 : Centralized Implementation Algorithm

1: Initialization: Input the weighting matrices and prediction horizon in (6.20).
2: Fetch the state measurement x(t).
3: Solve the NMPC problem (6.20) with x(t0) = x(t), and let u∗(s) denote the

solution.
4: Use u∗(s) for only one sampling period: u(t) = u∗(s) for s ∈ [0, δ];
5: At next sampling time, set t = t+ δ; Goto step 2.

6.3.2 Solving the NMPC Problem

In the NMPC problem (P0), the performance index J includes an integral operation

and the constraints encompass the system model which are essentially derivative

operations. In engineering practice, both the integral and derivative operations need

to be performed numerically. Equivalently, instead of solving (P0) in continuous-time
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setting, we solve the discretized problem:

min
U

J =
N−1∑
k=0

(‖x̃(k)‖2
Q + ‖u(k)‖2

R) + ‖x̃(N)‖2
P (6.21a)

s.t. x(k + 1) = f(x(k),u(k)) (6.21b)

x(0) = x(t0) (6.21c)

|u(k)| ≤ umax (6.21d)

Here, the system model is discretized and represented by x(k+1) = f(x(k),u(k)) with

x(i) = x(iδ) and u(i) = u(iδ); the sequence of control inputs U = col(u(0),u(1), ...,

u(N − 1)) are the decision variables.

Since f is non-convex and is imposed in the constraints, solving (6.21) is a generic

NLP problem. Solving a non-convex NLP problem is computationally expensive and

unrealistic in real-time control if the problem size is too large. Therefore, it is desirable

to (approximately) inspect the computational complexity. The sequential quadratic

programming (SQP) method represents one of the most widely-used and effective

NLP solvers, and we take SQP for example.

To solve the NLP, SQP generates a sequence of iterates which satisfies the first

order KKT conditions. Each iterate is the solution of a QP subproblem that linearly

approximates the local behavior of the original NLP problem in a neighborhood of the

initial feasible point. Compared to the active-set counterpart which is of exponential

complexity, the interior-point method has the polynomial complexity and is suggested

to solve the QP subproblem. As a benchmark, the Mehrotra’s predictor-corrector

algorithm [90] is investigated.

The worst-case number of floating-point operations (flops) for the QP subproblem

is given by the following formula [115]

#flopsIP = iIP(2/3(Nm)3 + 2(Nm)2) (6.22)

for the condense formulation. Here, N is the prediction horizon and m is the number

of control inputs, hence Nm is the number of decision variables for the optimiza-

tion problem; iIP is the number of interior point iterations which is expected to be

O(
√
Nm log(1/ε)) [89] for the ε-accurate solution, or simply a specified maximum it-

eration number iIP,max. Neglecting minor operations in function evaluations, gradient
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and Hessian updating, and line search in one major SQP iteration, a rough approxi-

mation of the computational complexity for numerically solving (P0) using SQP can

be given as

#flopsSQP ≈ iSQP × (#flopsIP) (6.23)

where iSQP denotes the numbers of SQP iterations which is specified by the maximum

iteration number iSQP,max. From (6.23) we know that shrinking the sizes of m and N

effectively reduces the computational complexity.

6.3.3 Distributed NMPC Implementation

For the model predictive control, it is well known that the prediction horizon affects

not only the control performance but also the stability margin. Usually, we want to

leave the prediction horizon a free parameter for tuning. Decreasing the number of

control inputs, therefore, becomes the realistic option to alleviate the computational

burden. In view of this point, the very first idea is to separate the thrust allocation

(TA) from the tracking control.

Since P-5 is satisfied, the Moore - Penrose pseudoinverse method can be adopted

as the closed-form solution for the TA:

u = (BTB)−1BTτ = B+τ (6.24)

Then we choose τ = [Fu, Fv, Fr]
T as the decision variables in (P0). As a result, the

number of control inputs m reduces from 4 to 3.

To facilitate the following derivations, instead of using |B+τ (s)| ≤ umax in place

of (6.20d), we use |τ (s)| ≤ τmax with τmax = [Fu,max, Fv,max, Fr,max]T, which is a direct

bound constraint on the decision variables. Suppose Assumption 1 can be satisfied.

Then we can take advantage of Proposition 1 to guarantee that the TA is always

feasible for the real AUV system. According to (6.22) the expected number of flops

has already dropped by approximately 1/2 of that of the original problem (6.21).

Remark 15. Although choosing τmax that satisfies (4.12) guarantees the TA will

fit the real system, it introduces some degree of conservativeness. Using |τ (s)| ≤
τmax tightens the constraints in (P0) since (4.12) is just a sufficient condition rather

than the sufficient and necessary condition. However, the constraints tightening is

important for the following distributed implementation because the original constraints

|B+τ (s)| ≤ umax couples the decision variables. With the tightened constraints the
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decision variables τ = [Fu, Fv, Fr]
T are independent.

From (2.32) and (6.3) we find that when the AUV exactly tracks the reference

the dynamic equations of motion are loosely coupled. In fact, the surge dynamics

(2.32a) and yaw dynamics (2.32c) are totally decoupled since v = 0. This observation

inspires the idea of distributed implementation for solving the NMPC problem (6.21)

approximately.

In the distributed control paradigm, the tracking control signals are calculated in

parallel by three subsystems. The surge subsystem only considers the surge dynamics

and the kinematics, and determines the control input Fu by solving the following

subproblem:

min
Fu∈S(δ)

J1 =

∫ T

0

(‖x̃(s)‖2
Q + r11F

2
u (s))ds+ ‖x̃(T )‖2

P (6.25a)

s.t. ξ̇(s) = f1(ξ(s), v̂(s), r̂(s), Fu(s)) (6.25b)

ξ(0) = ξ(t0) (6.25c)

|Fu(s)| ≤ Fu,max (6.25d)

where ξ = [x, y, ψ, u]T is the state of the surge subsystem and the subsystem model

f1 can be elaborated by taking the corresponding columns and rows in (6.19). The f1

also contains the information of v and r but we can view them as known coefficients

for some assumed trajectories v̂(s) and r̂(s).

Similarly, the sway subsystem includes the sway dynamics and the kinematics,

and determines the control input Fv by solving the subproblem:

min
Fv∈S(δ)

J2 =

∫ T

0

(‖x̃(s)‖2
Q + r22F

2
v (s))ds+ ‖x̃(T )‖2

P (6.26a)

s.t. ζ̇(s) = f2(ζ(s), û(s), r̂(s), Fv(s)) (6.26b)

ζ(0) = ζ(t0) (6.26c)

|Fv(s)| ≤ Fv,max (6.26d)

where ζ = [x, y, ψ, v]T is the state of the sway subsystem and the model f2 can be

obtained by taking the corresponding columns and rows in (6.19).

The yaw subsystem encompasses the yaw dynamics and the kinematics, and de-



134

termines the control input Fr by solving the following optimization problem:

min
Fr∈S(δ)

J3 =

∫ T

0

(‖x̃(s)‖2
Q + r33F

2
r (s))ds+ ‖x̃(T )‖2

P (6.27a)

s.t. ω̇(s) = f3(ω(s), û(s), v̂(s), Fr(s)) (6.27b)

ω(0) = ω(t0) (6.27c)

|Fr(s)| ≤ Fr,max (6.27d)

where ω = [x, y, ψ, r]T is the state of the yaw subsystem and the dynamics f3 can be

explicated by picking out the corresponding columns and rows in (6.19).

The assumed state trajectories û, v̂ and r̂ can be determined using the follow-

ing way: Let F∗u = [F ∗u (0), ..., F ∗u (N − 1)]T, F∗v = [F ∗v (0), ..., F ∗v (N − 1)]T, F∗r =

[F ∗r (0), ..., F ∗r (N −1)]T be the optimal solutions of the subproblems (6.25), (6.26) and

(6.27) for the previous time. At current time, construct the assumed control signals

using the previous solution as

F̂u = [F ∗u (1), ..., F ∗u (N − 1), F ∗u (N − 1)]T (6.28a)

F̂v = [F ∗v (1), ..., F ∗v (N − 1), F ∗v (N − 1)]T (6.28b)

F̂r = [F ∗r (1), ..., F ∗r (N − 1), F ∗r (N − 1)]T (6.28c)

Then the assumed state trajectories û, v̂ and r̂ can be obtained via state evolution

through the dynamic equations (2.32) and kinematic equations (2.34) starting from

the updated system state x(t) for the current time.

By solving the subproblems in parallel, the numerical efficiency can be improved

significantly. The worst-case number of flops is down to approximately 1/30 of that

using the centralized implementation.

Remark 16. In general, the optimal control obtained by the above distributed im-

plementation is not a local minimum of the original problem. To converge to a local

minimum the parallel computation needs to iterate [15], which is obviously undesired

for the additional communication and computation burden. Fortunately, for the AUV

tracking control the optimum is usually not a necessity. In MPC applications, it is

well known that using the warm start (6.28), the optimal solutions won’t differ too

much from the initial guess. Therefore, we particularly exploit this property and avoid
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subsystem-wide iterations during the distributed implementation.

An initialization procedure is presented to facilitate the warm start: At the very

first sampling instant, solve the centralized problem (6.20) once to obtain the assumed

control trajectories τ̂ (s) = τ ∗(s) for t = 0. The distributed control algorithm is

summarized in Algorithm 8.

Algorithm 8 : Distributed Implementation Algorithm

1: Initialization: Input the weighting matrices and prediction horizon; solve the
NMPC problem (6.20) at t=0, let u∗(s) denote the solution; set τ̂ (s) = τ ∗(s) =
Bu∗(s).

2: Fetch the state measurement x(t).
3: Calculate the assumed state trajectories by ˙̂x = f(x̂,B+τ̂ ) with x̂(0) = x(t).
4: Solve the subproblems (6.25), (6.26) and (6.27) in parallel; let τ ∗(s) =

[F ∗u (s), F ∗v (s), F ∗r (s)]T denote the solution.
5: Set u∗(s) = B+τ ∗(s); construct τ̂ (s) using (6.28).
6: Use u∗(s) for only one sampling period: u(t) = u∗(s) for s ∈ [0, δ].
7: At next sampling time, set t = t+ δ; Goto step 2.

So far, what we focused was only the computational complexity of the algorithm,

and we had no explicit consideration of the closed-loop stability. Although with

enough long prediction horizon the stability can always be obtained, it is preferable

to provide some analytical means to guarantee this important closed-loop property.

The optimality of the solutions does not indicate the stability for the distributed

implementation in Algorithm 8, not even for the centralized NMPC. To ensure it,

we need to modify the subproblems and solve them sequentially.

Assume that vd = [ud, vd, rd]
T obeys the dynamic equations of motion, then we

can have the reference control forces τ d = [Fud, Fvd, Frd]
T given by

τ d = Mv̇d + C(vd)vd + D(vd)vd + g(ηd) (6.29)

where v̇d can be calculated by taking time derivative of (6.3).

Define F̃u = Fu−Fud, F̃v = Fv−Fvd and F̃r = Fr−Frd and the surge subproblem

is modified as follows:

min
Fu∈S(δ)

J1 =

∫ T

0

(‖x̃(s)‖2
Q + r11F̃

2
u (s))ds+ ‖x̃(T )‖2

P (6.30a)

s.t. ξ̇(s) = f1(ξ(s), v̂(s), r̂(s), Fu(s)) (6.30b)
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ξ(0) = ξ(t0) (6.30c)

|Fu(s)| ≤ Fu,max (6.30d)

∂V
∂x

f(x(0), λ(0)) ≤ ∂V
∂x

f(x(0), h(x(0))) (6.30e)

where h(x) = B+h̄(x) with h̄(x) = [h̄u(x), h̄v(x), h̄r(x)]T is an auxiliary tracking

controller and V (x) is the corresponding Lyapunov function; λ(0) = B+λ̄(0) with

λ̄(0) = [Fu(0), h̄v(x(0)), h̄r(x(0))]T .

The modified subproblem for the sway subsystem is constructed as follows:

min
Fv∈S(δ)

J2 =

∫ T

0

(‖x̃(s)‖2
Q + r22F̃

2
v (s))ds+ ‖x̃(T )‖2

P (6.31a)

s.t. ζ̇(s) = f2(ζ(s), û(s), r̂(s), Fv(s)) (6.31b)

ζ(0) = ζ(t0) (6.31c)

|Fv(s)| ≤ Fv,max (6.31d)

∂V
∂x

f(x(0), π(0)) ≤ ∂V
∂x

f(x(0), h(x(0))) (6.31e)

where π(0) = B+π̄(0) and π̄(0) = [F ∗u (0), Fv(0),h̄r(x(0))]T; F ∗u (s) is the solution for

(6.30) passed from the surge subsystem.

And the optimization problem for the yaw subsystem is modified as follows:

min
Fr∈S(δ)

J3 =

∫ T

0

(‖x̃(s)‖2
Q + r33F̃

2
r (s))ds+ ‖x̃(T )‖2

P (6.32a)

s.t. ω̇(s) = f3(ω(s), û(s), v̂(s), Fr(s)) (6.32b)

ω(0) = ω(t0) (6.32c)

|Fr(s)| ≤ Fr,max (6.32d)

∂V
∂x

f(x(0),u(0)) ≤ ∂V
∂x

f(x(0), h(x(0))) (6.32e)

where u(0) = B+τ (0) and τ (0) = [F ∗u (0), F ∗v (0), Fr(0)]T; F ∗u (s), F ∗v (s) are the solu-

tions for (6.30) and (6.31), respectively.

The modified distributed control algorithm is summarized in Algorithm 9.

Since the subproblems are solved in sequence, the computational complexity for

the modified distributed implementation is about 1/10 of that for the centralized
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Algorithm 9 : Modified Distributed Implementation Algorithm

1: Initialization: Input the weighting matrices and prediction horizon; solve the
NMPC problem (6.20) at t=0, let u∗(s) denote the solution; set τ̂ (s) = τ ∗(s) =
Bu∗(s).

2: Fetch the state measurement x(t).
3: Calculate the assumed state trajectories by ˙̂x = f(x̂,B+τ̂ ) with x̂(0) = x(t).
4: Solve the subproblem (6.30) and send the solution F ∗u (s) to the sway and yaw

subsystems.
5: Solve the subproblem (6.31) and send the solution F ∗v (s) to yaw subsystems.
6: Solve the subproblem (6.32) and let the solution be F ∗r (s).
7: Set u∗(s) = B+τ ∗(s) with τ ∗(s) = [F ∗u (s), F ∗v (s), F ∗r (s)]T ; construct τ̂ (s) using

(6.28).
8: Use u∗(s) for only one sampling period: u(t) = u∗(s) for s ∈ [0, δ].
9: At next sampling time, set t = t+ δ; Goto step 2.

implementation. Although it is not as efficient as Algorithm 8, we can establish the

feasibility theorem and stability theorem for Algorithm 9.

Theorem 10. Choosing Fu,max = Fv,max = Fr,max = τmax which satisfies (4.12), if

‖h̄(x)‖∞ ≤ τmax can hold, then Algorithm 9 admits recursive feasibility, i.e., we

can always find an initial feasible solution for each of the optimizations (6.30)-(6.32)

to start with.

Proof. As ‖h̄(x)‖∞ ≤ τmax, we have |h̄u(x)| ≤ Fu,max. Then the h̄u(x) can be used as

a feasible initial solution for the surge subproblem (6.30).

For the sway subsystem, since |h̄v(x)| ≤ Fv,max and F ∗u (s) satisfies (6.30e), it can

be easily verified that h̄v(x) must be a feasible solution for the subproblem (6.31).

Likewise, we have |h̄r(x)| ≤ Fr,max and F ∗u (s), F ∗v (s) satisfying (6.31e). Therefore,

h̄r(x) is feasible for (6.32).

Theorem 11. Suppose that there exists an auxiliary control law h̄(x) such that x̃ = 0

is asymptotically stable for the closed-loop system controlled by h(x) = B+h̄(x); V (x)

is the corresponding Lyapunov function. Provided that the recursive feasibility can be

guaranteed, then the closed-loop system under Algorithm 9 is asymptotically stable

and the AUV converges to the desired trajectory.

Proof. By converse Lyapunov theorems [75], there must be some functions γi(·), i =

1, 2, 3 which belong to class K∞ such that the following inequalities hold:

γ1(‖x‖) ≤ V (x) ≤ γ2(‖x‖) (6.33a)
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∂V

∂x
f(x, h(x)) ≤ −γ3(‖x‖) (6.33b)

Since we have the contraction constraint (6.32e) and u(t) = u∗(s) only for s ∈
[0, δ], the following condition is true:

∂V

∂x
f(x,u(x)) ≤ ∂V

∂x
f(x, h(x)) ≤ −β3(‖x‖) (6.34)

Then by standard Lyapunov arguments (Theorem 4.8 in [75]) we claim that x̃ = 0 is

asymptotically stable for closed-loop system controlled by Algorithm 9.

Theorem 10 and Theorem 11 depend on the auxiliary control law h̄(x). In

principle, any Lyapunov-based tracking control law can be exploited. As an example,

we can use the following backstepping control law

h̄(x) = Mv̇r + Cvr + Dvr + g −RTKpη̃ −RTKds (6.35)

which is derived in Section 4.3.2 and with the region of attraction (4.62) .

6.3.4 Simulation Results

In this section, we simulate the AUV to track a desired sinusoidal trajectory in order

to demonstrate the effectiveness of the proposed distributed NMPC tracking control

method. The AUV model parameters can be found in Table 2.1. All the simulations

are performed on a personal laptop (CPU: Intel(R) Core(TM) i7-3520M: 2.90GHz

2.90GHz; RAM: 4.00GB).

The desired trajectory represents a sinusoidal path in the local level plane and is

defined as follows:

p(t) =

{
xd = 0.5t

yd = sin(0.5t)
(6.36)

For the NMPC tracking controller we use the following parameters: The sampling

period δ = 0.1sec; the prediction horizon T = 5δ; the weighting matrices Q =

diag(105, 105, 103, 102, 102, 102), R = diag(10-4, 10-4, 10-4, 10-4) and P = diag(103,

103, 102, 10, 10, 10); the limit on each thruster is 500 (N). The control gains Kp =

Kd = diag(1, 1, 1); and the initial condition x(0) = [0.5, 0, 0, 0, 0, 0]T.

To solve the optimization problems, we adopt the SQP method and use the em-

bedded Matlab function fmincon as the NLP solver in the simulations.
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The trajectory tracking results are shown in Figure 6.10 and Figure 6.11. The

blue curve is the simulated AUV trajectory using the auxiliary backstepping control

(BSC); the green curve is the AUV trajectory with the centralized NMPC implemen-

tation; the magenta curve is the vehicle trajectory with the parallel distributed im-

plementation (DMPC); and the red curve is with the modified sequential distributed

implementation (mDMPC) while the black curve is the desired sinusoidal trajectory

(REF). As can be seen, all the tracking controllers can drive the vehicle convergent

to the desired trajectory, which shows the closed-loop stability.
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Figure 6.10: The AUV trajectory in the local level plane.

Comparing the tracking performance, we find that with the NMPC controller the

AUV can converge faster than using the auxiliary BSC controller. This is because

the NMPC automatically invokes online optimization to search for the best possible

solution, while the control gains Kp and Kd for BSC are selected to be relatively

small for a large guaranteed ROA. As discussed in Remark 15, since we introduce

certain conservativeness into the distributed implementation, the centralized NMPC

should outperform the DMPC, which can be observed from Figure 6.10 and Figure

6.11. However, if we compare the average computation time for each implementation,

as listed in Table 6.4, the two distributed implementations demonstrate significan-

t improvement in terms of numerical efficiency. This verifies the effectiveness and

efficiency of the proposed DMPC implementation.
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Figure 6.11: The state trajectories.

Table 6.4: Average computation time (sec.) per update.
N NMPC DMPC mDMPC
3 0.1397 0.0081 0.0361
5 0.3641 0.0194 0.0960
10 1.3172 0.1512 0.5082

The control commands for the thrusters are recorded in Fig. 6.12. As we can see,

in the beginning of the tracking, the NMPC tracking controller fully uses the onboard

thrust capability to generate the fastest possible convergence. The magnitude of

control commands stay within the permitted range as expected.

An extra merit of the NMPC tracking control refers to its inherent robustness

against uncertainties and disturbances. We also test the robustness of the proposed

tracking control in the simulations. It is assumed that there exists 30% model error

in the obtained dynamic model of Falcon, then we simulate the tracking control with

a disturbance w = [20(N), 20(N), 0(Nm)]T exerting on the vehicle.

From the simulation results illustrated in Figure 6.13 - Figure 6.15, it can be

seen that the NMPC tracking control still leads the AUV converging to the desired

trajectory in the presence of parametric uncertainties and external disturbances. The

mean square errors (MSE) are provided in Table 6.5. The MSE with the NMPC

(either centralized implementation or distributed implementation) is much smaller
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Figure 6.12: The control input signals.
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Figure 6.13: The AUV trajectory in the local level plane (with disturbance).

than that with BSC, which demonstrates the good robustness of the proposed method.
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Figure 6.14: The state trajectories (with disturbance).
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Figure 6.15: The control input signals (with disturbance).

6.4 Conclusion

In this chapter, we have investigated the nonlinear model predictive control for the

trajectory tracking application of an autonomous underwater vehicle. To remove the
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Table 6.5: Mean square errors for AUV tracking with disturbances.
MSE BSC NMPC DMPC mDMPC
x [m2] 0.0161 0.0058 0.0054 0.0058
y [m2] 0.0158 0.0019 0.0026 0.0020
ψ [rad2] 0.0711 0.0184 0.0173 0.0161

computational barrier and increase the possibility of applying the NMPC to real-

world AUV systems, we proposed two fast implementation strategies that largely

reduce the computational complexity while maintaining good tracking control per-

formance. Firstly, the modified C/GMRES algorithm was presented. By exploiting

the relationship between Pontryagin minimum principle and KKT conditions, the

barrier functions were successfully incorporated into the numerical continuation ap-

proximation. The convergence of the approximate solution was proved. Extensive

simulation studies revealed the effectiveness and efficiency of the proposed modified

C/GMRES algorithm for the AUV trajectory tracking control. Secondly, a distribut-

ed implementation paradigm was developed to enhance the control stability in the fast

implementation of the NMPC tracking control. By exploiting the dynamic properties

of the AUV motion, the optimal control signals can be determined by solving several

subproblems with smaller size. Since the computational complexity increases expo-

nentially with the problem size, the numerical efficiency can be significantly improved.

A parallel implementation algorithm and a sequential implementation algorithm were

proposed. The parallel implementation can minimize the computational complexity

while the sequential implementation can theoretically guarantee the closed-loop sta-

bility. Simulation results suggested that the distributed implementation method was

not only numerically efficient but also robust against disturbance and uncertainties.

The main results in Section 6.2 have been published in [121], and the main results

in Section 6.3 have been summarized in [122] and submitted for possible publication.

[121] C. Shen, B. Buckham and Y. Shi, “Modified C/GMRES Algorithm for Fast

Nonlinear Model Predictive Tracking Control of an AUV”, IEEE Transactions

on Control Systems Technology, vol.25, no.5, pp.1896-1904, 2017.

[122] C. Shen, Y. Shi and B. Buckham, “Distributed implementation for nonlinear

model predictive tracking control of an AUV”, IEEE/ASME Transactions on

Mechatronics, under review, 2017.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This dissertation studies the MPC controller design problem for the AUVs. Three

fundamental motion control problems, namely, the trajectory tracking, dynamic po-

sitioning and path following control, are investigated and end up with effective and

inspiring MPC solutions.

Chapter 3 was concerned with the combined path planning and tracking con-

trol problem for the AUV to navigate in the constrained workspace. A novel RHO

framework consisting of the spline-based dynamic path planning and the NMPC tra-

jectory tracking control was presented. The dynamic path planning approximated a

minimum curvature reference path by repeatedly solving local optimization problems

with boundary conditions imposed from the previous solution, which accommodated

the practically finite perceiving capability of the AUV. The planned path was then

assigned a timing law and augmented to provide valid reference for each state of the

AUV. The error system was elaborately designed, which facilitated the stability anal-

ysis of the closed-loop tracking control systems. Sufficient conditions that guarantee

the closed-loop stability were derived.

In Chapter 4, the dynamic positioning and the trajectory tracking control prob-

lems were studied for the AUV. An LMPC framework was developed for the AUV

to draw computing power (online optimization) to improve the motion control per-

formance. Based on a nonlinear PD type auxiliary control law, the LMPC-based

dynamic positioning controller was designed. Recursive feasibility of the OCP and

the stability of the closed-loop control system were analyzed. A quasi-global asymp-
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totic stability could be claimed. The theoretical results obtained for the dynamic

positioning control was further extended to solve the trajectory tracking problem.

With the help of a nonlinear backstepping tracking control law, the contraction con-

straint was constructed and imposed in the OCP, which ensured the stability of the

closed-loop LMPC tracking control system. The unique feature of the LMPC frame-

work is that the design procedure is constructive and concise. By exploiting the

existing Lyapunov-based control law, the closed-loop stability can be conveniently

guaranteed. Since the stability is not determined by the quality of the optimal solu-

tion, it essentially creates a trade-off between computational complexity and control

performance for the designers to allocate the computing resources.

Chapter 5 was devoted to the AUV path following control problem. A novel

MOMPC framework was proposed. Within the MOMPC framework, the different

priorities between the Path Convergence and the Speed Assignment could be fully

respected. Taking advantage of an explicit parametrization of the ZPE manifold,

we formulated the path following control problem into vector-valued OCPs. To solve

the OCPs, two solution methods that handle objective prioritization were investigated

and followed by the development of the WS-MOMPC algorithm and the LO-MOMPC

algorithm, respectively. Conditions that guarantee the closed-loop stability under the

two algorithms were provided, and the internal relationship between the two solution

methods were explored. The proposed MOMPC method not only presents a novel

framework to address the AUV path following problem, but more importantly, it lays

a theoretical foundation for the study of AUV motion control problems which involve

multiple control objectives.

Different from the previous chapters which emphasize the closed-loop property of

the proposed MPC solution, in Chapter 6, the computational complexity of the MPC

algorithm was particularly investigated. Two distinct fast implementation strategies,

namely, the modified C/GMRES algorithm and the distributed NMPC implementa-

tion, were proposed in an attempt to remove the potential computational barrier in

applying the MPC to real-world AUV systems. The modified C/GMRES algorith-

m took advantage of the numerical continuation method to approximate the optimal

control signals without solving the NLP problem at each sampling time instant, hence

dramatically reduced the computing time. The barrier function was proposed to han-

dle the inequality constraints in terms of thrust limits. Under differentiability and

LICQ, the validity of the incorporation of the barrier functions into the numerical

continuation approximations could be shown. To further preserve the closed-loop
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stability in the fast implementation, in Chapter 6, another strategy called distributed

NMPC implementation was also proposed for the AUV tracking control. The dis-

tributed implementation exploited the dynamic properties of the AUV motion and

calculated one control command at a time by solving well-defined subproblems with

smaller size. Since the computational complexity increases exponentially with the

problem size, the proposed distributed implementation method can be numerical-

ly efficient. By imposing additional constraints in these subproblems and by solving

them sequentially, the stability of the closed-loop system under the distributed NMPC

implementation could be guaranteed. The work in Chapter 6 reveals the possibility

of eliminating the computational cost of implementing NMPC while guaranteeing the

closed-loop stability theoretically. Thus, it is expected that more novel and efficient

MPC solutions will be inspired for various AUV applications.

7.2 Future Work

The work presented in this dissertation focuses on the design of MPC controllers

to solve the AUV motion control problems and the design of efficient numerical al-

gorithms to implement these MPC controllers. The derived results try to provide

some theoretical insights into the application of MPC to the AUV systems. However,

the results have only been verified through simulation examples; their experimental

validation needs to be carried out in the near future. Furthermore, since the MPC

solution is new to the AUVs, there are many interesting open problems deserving

studies. Specifically, the following closely related research topics are suggested for

possible future work.

• MPC-based motion controller design with incremental input con-

straints. All the MPC controllers designed in this dissertation only consider

the bound input constraint which represents the thrust limits on the real AUV

system. However, this is a rather simplified problem formulation. As we can

see from Figure (4.3), for the LMPC-based DP control, the control signal varies

too rapidly, which is undesired in real control applications. The fast varying

control command is either forbidden by the real thruster dynamics or wearing

out the actuators. In practice, the change rate of the control input should be

considered as well. As shown in [146], despite the assumptions, the incremental

input constraints can also be handled by the NMPC technique. Therefore, it is
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of great interest to extend the results obtained in this dissertation to incorporate

this realistic type of control inputs.

• 6 DOF motion controller design using LMPC. The control problems ad-

dressed in this dissertation are concerned with the AUV motion in the local

level plane. This is partially due to the physical limitation of the experimen-

tal platform Falcon and partially due to the complexity of the motion control

problem itself. When considering the full 6 DOF dynamic model, the cou-

plings among the DOFs may be too complicated for the standard NMPC to

handle. However, as demonstrated in Chapter 4, with the LMPC framework

the closed-loop stability can be conveniently guaranteed with the help of an

auxiliary Lyapunov-based control law. As there are many existing results can

be exploited, it is quite interesting to explore the LMPC-based control struc-

ture, possibly with distributed implementation algorithms, for the AUV motion

control problem in the general 6 DOF settings.

• Distributed MPC for cooperative control of multiple AUVs. The coop-

erative control of multi-agent system has been a hot research topic for decades.

The distributed model predictive control (DMPC) presents an effective and

promising tool to design the coordination control laws among the agents [87].

The distributed implementation proposed in Chapter 6 is essentially part of the

DMPC technique. The surge, sway, yaw subsystems considered in the distribut-

ed implementation algorithm can be analogous to several independent AUVs in

a cooperative control task. The design procedure may be inspiring for the co-

operative control law design. Compared with a single AUV, a fleet of AUVs can

perform more tasks with higher efficiency. Therefore, the DMPC control design

with guaranteed recursive feasibility and closed-loop feasibility is practically

desirable for the AUVs.
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Appendix A

Forward Difference Generalized

Minimal Residual Method

In Section 6.2, the forward difference generalized minimal residual (FDGMRES)

method is applied in Algorithm 6 to numerically solve the linear equation FU U̇ =

AsF − Fxẋ− Ft which is approximated by the following equation:

DδF (U, x+ δẋ, t+ δ : U̇ , 0, 0) = b(U, x, ẋ, t) (A.1)

where

b(U, x, ẋ, t) = AsF (U, x, t)−DδF (U, x, t : 0, ẋ, 1) (A.2)

The detailed FDGMRES is summarized in Algorithm 10. It is worth noting

that the generalized minimal residual method (GMRES) is a kind of Krylov subspace

method to iteratively solve linear equation systems in forms of Ax = b. At kth

iteration, GMRES searches for x ∈ x0 + Kk such that the residual ρ =‖ b − Ax ‖ is

minimized, where Kk = span{r0, Ar0, . . . , A
k−1r0} with r0 = b − Ax0. To facilitate

the residual minimization, Gram-Schmidt process (STEP 5 - STEP 11 in Algorithm

10) is performed, so that the original minimization in Krylov subspace is transformed

into an unconstrained least squares problem (STEP 13 in Algorithm 10). The least

squares problem can be solved efficiently with QR decomposition or singular value

decomposition. One important feature of GMRES is that for a large linear equation

system, usually a small kmax is enough to give an satisfactory approximate solution

with a specified error tolerance.
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Algorithm 10 : U̇ = FDGMRES(U, x, ẋ, t, ˆ̇U, δ, kmax)

1: r̂ = b(U, x, ẋ, t)−DδF (U, x+ δẋ, t+ δ : ˆ̇U, 0, 0).
2: v1 = r̂/ ‖ r̂ ‖, ρ =‖ r̂ ‖, β = ρ, k = 0.
3: for k < kmax do
4: k = k + 1
5: vk+1 = DδF (U, x+ δẋ, t+ δ : vk, 0, 0)
6: for j = 1, . . . , k do
7: hjk = vT

k+1vj
8: vk+1 = vk+1 − hjkvj
9: end for
10: hk+1,k =‖ vk+1 ‖
11: vk+1 = vk+1/ ‖ vk+1 ‖
12: e1 = [1, 0, . . . , 0]T ∈ Rk+1, Hk = {hij} ∈ R(k+1)×k (hij = 0 for i > j + 1)
13: Minimize ‖ βe1 −Hky

k ‖ to determine yk ∈ Rk

14: ρ =‖ βe1 −Hky
k ‖.

15: end for
16: U̇ = ˆ̇U + Vky

k, where Vk = [v1, . . . , vk] ∈ RmN×k.
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Appendix B

Derivation of Jacobians

In Section 6.2, the Jacobian matrices need to be calculated for the execution of

mC/GMRES algorithm. Specifically, for the NMPC tracjectory tracking control

problem (6.4), we have inequality constraints |Fu| ≤ Fu,max, |Fv| ≤ Fv,max and

|Fr| ≤ Fr,max, which are equivalent to

F 2
u − F 2

u,max ≤ 0 (B.1a)

F 2
v − F 2

v,max ≤ 0 (B.1b)

F 2
r − F 2

r,max ≤ 0 (B.1c)

Hence we have the modified Hamiltonian

H = q11(x− xd)2 + q22(y − yd)2 + q33(ψ − ψd)2 + q44(u− ud)2 + q55(v − vd)2

+q66(r − rd)2 + r11F
2
u + r22F

2
v + r33F

2
r − γk log(F 2

u,max − F 2
u )− γk log(F 2

v,max

−F 2
v )− γk log(F 2

r,max − F 2
r ) + λ̄1u cosψ − λ̄1v sinψ + λ̄2u sinψ + λ̄2v cosψ

+λ̄3r + λ̄4
Fu

Mu̇
+ λ̄4

Mv̇

Mu̇
vr − λ̄4

Xu

Mu̇
u− λ̄4

Du

Mu̇
|u|u+ λ̄5

Fv

Mv̇
− λ̄5

Mu̇

Mv̇
ur

−λ̄5
Yv
Mv̇
v − λ̄5

Dv

Mv̇
|v|v + λ̄6

Fr

Mṙ
+ λ̄6

Mu̇−Mv̇

Mṙ
uv − λ̄6

Nr

Mṙ
r − λ̄6

Dr

Mṙ
|r|r

Then we calculate the Jacobians Hx and Hu in the following:

Hx =



2q11(x− xd)
2q22(y − yd)

2q33(ψ − ψd)− λ̄1u sinψ − λ̄1v cosψ + λ̄2u cosψ − λ̄2v sinψ

2q44(u− ud) + λ̄1 cosψ + λ̄2 sinψ − λ̄4
Xu

Mu̇
− λ̄5

Mu̇

Mv̇
r + λ̄6

Mu̇−Mv̇

Mṙ
v − 2λ̄4

Du

Mu̇
|u|

2q55(v − vd)− λ̄1 sinψ + λ̄2 cosψ + λ̄4
Mv̇

Mu̇
r − λ̄5

Yv
Mv̇

+ λ̄6
Mu̇−Mv̇

Mṙ
u− 2λ̄5

Dv

Mv̇
|v|

2q66(r − rd) + λ̄3 + λ̄4
Mv̇

Mu̇
v − λ̄5

Mu̇

Mv̇
u− λ̄6

Nr

Mṙ
− 2λ̄6

Dr

Mṙ
|r|


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Hu =


2r11Fu + λ̄4

Mu̇
+ γk

2Fu

F 2
u,max−F 2

u

2r22Fv + λ̄5
Mv̇

+ γk
2Fv

F 2
v,max−F 2

v

2r33Fr + λ̄6
Mṙ

+ γk
2Fr

F 2
r,max−F 2

r


Also we have gx = [2qf11(x− xd), 2qf22(y− yd), 2qf33(ψ−ψd), 2qf44(u− ud), 2qf55(v−
vd), 2qf66(r − rd)]T, where qii, rii and qfii are the corresponding diagonal elements of

weighting matrices Q, R and Qf .
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Appendix C

Publications

• Refereed journal papers that have been published or accepted

J1. C. Shen, Y. Shi and B. Buckham, “Integrated Path Planning and Tracking

Control of an AUV: A Unified Receding Horizon Optimization Approach”,

IEEE/ASME Transactions on Mechatronics, vol.22, no.3, pp.1163-1173, 2017.

J2. C. Shen, B. Buckham and Y. Shi, “Modified C/GMRES Algorithm for Fast

Nonlinear Model Predictive Tracking Control of an AUV”, IEEE Transactions

on Control Systems Technology, vol.25, no.5, pp.1896-1904, 2017.

J3. Y. Shi, C. Shen, H. Fang and H. Li, “Advanced Control in Marine Mechatron-

ic Systems: A Survey”, IEEE/ASME Transactions on Mechatronics, vol.22,

no.3, pp.1121-1131, 2017.

J4. C. Shen, Y. Shi and B. Buckham, “Trajectory Tracking Control of an Au-

tonomous Underwater Vehicle using Lyapunov-based Model Predictive Con-

trol”, IEEE Transactions on Industrial Electronics, accepted, 2017, DOI: 10.11

09/TIE.2017.2779442

J5. C. Shen, Y. Shi and B. Buckham, “Path-Following Control of an AUV: A

Multi-Objective Model Predictive Control Approach”, IEEE Transactions on

Control Systems Technology, accepted, 2017, DOI: 10.1109/TCST.2018.2789440

• Refereed journal papers that are under review

J6. C. Shen, Y. Shi and B. Buckham, “Distributed implementation for nonlinear

model predictive tracking control of an AUV”, IEEE/ASME Transactions on

Mechatronics, under review, 2017.

• Refereed conference papers that have been published
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C1. C. Shen, Y. Shi and B. Buckham, “Lyapunov-based Model Predictive Control

for Dynamic Positioning of Autonomous Underwater Vehicles”, in Proceedings

of the 2017 IEEE International Conference on Unmanned Systems (ICUS),

Beijing, China, 2017, pp. 1-6. (Best Paper Award)

C2. C. Shen, K. Zhang, Y. Shi and B. Buckham, “Dynamic Positioning of an

AUV: A Lyapunov-based Model Predictive Control Approach”, in Proceedings

of the 26th Canadian Congress of Applied Mechanics, Victoria, BC, Canada,

2017, pp. 1-4.

C3. C. Shen, Y. Shi and B. Buckham, “Nonlinear Model Predictive Control for

Trajectory Tracking of an AUV: A Distributed Implementation”, in Proceeding

of the 55th IEEE Conference on Decision and Control, Las Vegas, NV, USA,

2016, pp. 5998-6003

C4. C. Shen, Y. Shi and B. Buckham, “Path-Following Control of an AUV using

Multi-Objective Model Predictive Control”, in Proceedings of the 2016 Amer-

ican Control Conference, Boston, MA, USA, 2016, pp. 4507-4512.

C5. C. Shen, Y. Shi and B. Buckham, “Model Predictive Control for an AUV with

Dynamic Path Planning”, in Proceedings of the Joint 34th Chinese Control

Conference and SICE Annual Conference 2015, Hangzhou, China, 2015, pp.

475-480.
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