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Abstract

Improvements in performance, reliability and durability as well as reductions in

production costs, remain critical prerequisites for the commercialization of proton

exchange membrane fuel cells. In this thesis, a computational framework for fuel

cell analysis and optimization is presented as an innovative alternative to the time

consuming trial-and-error process currently used for fuel cell design. The framework

is based on a two-dimensional through-the-channel isothermal, isobaric and single

phase membrane electrode assembly (MEA) model. The model input parameters are

the manufacturing parameters used to build the MEA: platinum loading, platinum

to carbon ratio, electrolyte content and gas diffusion layer porosity. The governing

equations of the fuel cell model are solved using Netwon’s algorithm and an adaptive

finite element method in order to achieve quadratic convergence and a mesh inde-

pendent solution respectively. The analysis module is used to solve two optimization

problems: i) maximize performance; and, ii) maximize performance while minimizing



iv

the production cost of the MEA. To solve these problems a gradient-based optimiza-

tion algorithm is used in conjunction with analytical sensitivities. The presented

computational framework is the first attempt in the literature to combine highly ef-

ficient analysis and optimization methods to perform optimization in order to tackle

large-scale problems. The framework presented is capable of solving a complete MEA

optimization problem with state-of-the-art electrode models in approximately 30 min-

utes. The optimization results show that it is possible to achieve Pt-specific power

density for the optimized MEAs of 0.422 gPt/kW . This value is extremely close to the

target of 0.4 gPt/kW for large-scale implementation and demonstrate the potential

of using numerical optimization for fuel cell design.
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Chapter 1

Introduction

1.1 Background and motivation

The success of PEMFC as a competitive energy conversion device will depend upon

the advances made in the next decade in PEMFC design; therefore, much research

in this area is needed. PEMFC design is not an easy task because PEMFC per-

formance depends on a large number of coupled physical phenomena such as fluid

flow, heat, mass and charge transport, and electrochemical processes. These coupled

processes are controlled by a large number of physical parameters that might have

competing effects on the different physical phenomena. For instance, changing a spe-

cific parameter may help the mass transport but reduce reaction kinetics. For this

reason, in order to obtain an optimal PEMFC design, all design parameters must

be varied simultaneously during the design process. This can readily be done using

graphical techniques and parametric studies when the number of design parameters

is one or two at the most. However, when the number of parameters increases, it

becomes practically impossible to obtain an optimal design using these techniques,

and more sophisticated optimization methodologies are required. More sophisticated

techniques for optimal design have been developed in other research areas such as
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aerospace [1–4] and structural and engineering design [5, 6], but they have yet to be

introduced to fuel cell design.

The objective of this thesis is to develop modeling tools and optimization tech-

niques for fuel cell design. In particular, this work is aimed at developing and demon-

strating the suitability of a fuel cell optimization framework. This framework will

enable researchers to achieve optimal fuel cell designs with a large number of design

parameters. In said framework, high-fidelity fuel cell models will be used in conjunc-

tion with numerical optimization techniques in order to manipulate the large design

space, to achieve an optimal design in a reasonable amount of time. The high-fidelity

fuel cell models will provide an accurate prediction of the fuel cell performance, while

the numerical optimization algorithm will allow the framework to effectively vary the

large number of different PEMFC design parameters in order to achieve optimal fuel

cell performance.

1.2 Literature review

In order to develop a fuel cell optimal design framework, it is necessary to couple a

mathematical fuel cell model with an optimization algorithm. The following sections

present a literature review of both fuel cell mathematical modeling and numerical

optimization. If gradient-based optimization algorithms are used, in addition to the

optimization algorithm, it is necessary to obtain the sensitivities of the objective

functions and constraints with respect to the design parameters. Therefore, a litera-

ture review in sensitivity analysis is also included. Finally, a review of the very few

developments in the area of optimization of fuel cells is presented.
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1.2.1 Mathematical modeling of proton exchange membrane

fuel cells

Fuel cell modeling has received a lot of attention in the past two decades and a large

number of fuel cell models have appeared in the literature. All these fuel cell models

aim at predicting the behavior of the fuel cell by examining the phenomena occurring

inside the fuel cell and, in particular, in each one of its regions.

Fuel cell models range from empirical to physical models [7,8]. Empirical models

such as the ones in references [9,10] use an algebraic equation to fit specific polariza-

tion curves by using the coefficients of the algebraic expression as fitting parameters.

These types of models are extremely useful for fuel cell stack design when more com-

plex models become intractable; however they are able to predict only the behavior

of the specific fuel cell used to obtain the empirical relations. Thus, they lack the

predictive power necessary for fuel cell design. Physical or mechanistic models, on the

other hand, account for the key physical processes that occur inside a fuel cell using

basic principles (e.g. conservation) in conjunction with some empirical determined

model constants; therefore, they can be used to design and predict the performance

of new fuel cells.

Physical models can be classified according to several criteria such as dimension-

ality [7,8], number of layers the model takes into account, and if it accounts for single

or two-phase flow. However, in most cases, the main difference between published

models lies in the methodology used to explain the physical phenomena taking place

in a specific region of the fuel cell or in the assumptions made regarding water and

heat management. For this reason, this literature review is divided into four sections

corresponding to each fuel cell region or layer as it is shown in Figure 1.1 and one

final section that discusses heat management.

A PEMFC consists of four main components: the bipolar plate, which contain the

current collectors and gas channels; the gas diffusion layer (GDL); the catalyst layer
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Figure 1.1: Schematic showing the various layers in a PEMFC and the main transport
processes and electrochemical reactions.

(CL) or active gas diffusion layer, and; the proton exchange membrane as shown in

Figure 1.1. The system formed by the two GDLs, the two CLs and the membrane

is known as the membrane electrode assembly (MEA). In the following subsections,

a short description is given of the composition and the physical phenomena taking

place in each layer as well as a brief outline of the most relevant literature. Because

this thesis is focused on optimization of the composition of PEM electrodes (i.e.

GDL and catalyst layer) using high-fidelity steady-state two-dimensional models, only

one or two-dimensional steady-state models and GDL and catalyst layer models are

described in detail. More general fuel cell reviews can be found in references [7,8,11–

13]
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Bipolar plate

The bipolar plates are made of a highly conductive material such as carbon, graphite

or conductive metals and are responsible for

• collecting and transporting electrons from the cell to an external electrical cir-

cuit.

• transporting part of the product heat to the environment and to the cooling

section of a stack.

Bipolar plates are not usually included in fuel cell models because it is usually assumed

that they have very high electronic and thermal conductivities, therefore they usually

enter the model only as boundary conditions.

The gas channels are small grooves made by engraving or milling the surface of

the bipolar plates, and they are responsible for the transport of fuel and reactants

throughout the cell. They also play a key role in water management by controlling

the fuel and reactant pressure drop. A large number of gas channels have been

designed using a variety of shapes and construction techniques [14]. The gas channels

are usually included in three-dimensional models and two-dimensional models that

have their x and y axes across the cell and in the direction of the flow channel

respectively. The latter two-dimensional models are usually referred to as along-the-

channel models and their domain is illustrated in Figure 1.2 as a green rectangle.

On the other hand, gas channels are not considered in one-dimensional and two-

dimensional models that have their axes across the MEA and perpendicular to the

gas channel. The latter two-dimensional models are usually referred to as through or

across-the-channel models. The red rectangle in Figure 1.2 illustrates their domain.

Figure 1.2 also shows a detailed schematic with the layers that are modeled using

a through-the-channel model. In this work, a through-the-channel model is used;

therefore, the gas channels are not included in the computational domain. The red
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rectangle in the two-dimensional schematic in Figure 1.2 represents the computational

domain used in this thesis. Given that the gas channels are not included in the model

used in this thesis, a literature review of this component of the cell is unnecessary.

Gas diffusion layer

The gas channels are in direct contact with the gas diffusion layers (GDLs). Diffusion

layers are made of highly porous materials such as carbon paper or carbon cloth to

allow easy transport of gases. They have a thickness in the range of 100 − 300µm.

These layers are responsible for

• transporting the fuel and reactant from the gas channels to the catalyst or

reaction site.

• transporting product water (vapor or liquid) and heat away from the catalyst

layer.

• transporting electrons from the catalyst site to the bipolar plates or vice versa.

• providing structural support to the membrane electrode assembly (MEA).

The gas diffusion layer transports electrons through the solid phase, i.e. car-

bon fibres. Ohm’s law is used to model electron transport. Almost all models use

Bruggemann’s equation to account for the porosity of the media in determining elec-

tron conductivity [15, 16]. Recently, the anisotropic electronic transport in the GDL

has received some attention and the necessity for new relationship between the GDL

porosity and the GDL effective conductivities has been highlighted [17,18].

Fuel, reactants, water vapor, and liquid water are all transported through the void

phase of the gas diffusion layer. Gas and liquid phase transport are treated separately

and some models neglect the water liquid phase by assuming that all water is in vapor

state; these models are known as single-phase models. Models that account for gas
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putational domain of an along-the-channel model.
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and liquid water are known as two-phase models. An introduction to two-phase flow

in porous electrodes is given by Litster and Djilali [19].

In single-phase models, fuel, reactants and water vapor are assumed to be trans-

ported either by pure diffusion [16,20–23] or by diffusion and pressure driven convec-

tion [24–26]. Pressure driven effects can be considered negligible for one-dimensional

and two-dimensional through-the-channel models that consider only one flow chan-

nel. However, they can be important in two-dimensional along-the-channel models

and are critical in three-dimensional simulations of fuel cells with interdigitated flow

channels, since the pressures between channels can be quite different [27].

When fuel, reactants and water vapor are assumed to be transported only by pure

diffusion, the Maxwell-Stefan equations are typically used to model the transport of

the species. For binary mixtures, Fick’s law and the Maxwell-Stefan equations are

equivalent. For mixtures with three species, under some simplifying assumptions,

Fick’s law can also be used instead of the Maxwell-Stefan equations [20, 21, 23]. In

addition to the Maxwell-Stefan diffusion, some models also take Knudsen diffusion

into account [16,28]. Knudsen diffusion becomes important when the mean-free path

of the diffusing molecules is 10 times greater than the pore radius. This usually does

not occur in the gas diffusion layer, but it might occur in the catalyst layer where

pore sizes are smaller.

On the other hand, if fuel, reactants and water vapor are assumed to be trans-

ported by both diffusion and pressure driven convection, then the Maxwell-Stefan

equations are used in conjunction with Darcy’s law to model convection in a porous

media. Darcy’s law is usually introduced as the momentum equation in the set of

governing equations [24–26].

In two-phase models, the liquid water is also accounted for in the GDL. There are

a large variety of methods used to model the liquid water. The simplest method of

modeling liquid water is to account for its effect by reducing the void fraction available
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for gaseous transport in the GDL. Its transport is not modeled and its volume fraction

is used as a fitting parameter. Then, its only effect is to reduce the ability of fuel and

reactants to reach the reaction site [29,30]. A more sophisticated approach is to treat

gases and liquid water as two different phases with an a priori gas and liquid volume

fraction, using Darcy’s law to model the liquid water transport [26,31,32].

Both these methods account for some of the effects of liquid water, however they

do not take into account that the level of saturation can be different in different

locations in the fuel cell, i.e. saturation levels are likely to be higher under the

current collector. The saturation of the porous medium (i.e. the amount of pore

volume fraction filled with liquid water) depends on the location where it is measured

as well as in the medium properties such as the porous size, the hydrophobicity of

the porous media and the capillarity pressure (i.e. the difference in pressure across

the interface between the gaseous phase and the liquid water). For this reason, a

method must be used to obtain the saturation as a function of the porous media

and the capillarity pressure. In most models, the saturation is usually obtained by

relating saturation to capillarity pressure using an empirical relationship such as the

Leverett J-function. This relationship was obtained for one-dimensional steady-state

transport on packed sand [19]. Gostick et al. showed good agreement between the

Leverett J-function and experimental data from different GDLs [33]. Finally, the

partial pressures of liquid water and water vapor are obtained by using Darcy’s law

for each phase [34,35].

Catalyst layer modeling

The catalyst layers can be viewed as diffuse regions containing both electrolyte and

electron conducting phases. These layers are porous. They are made of carbon black

particles supporting platinum particles that are mixed together with an electrolyte,

usually NafionTM . The thickness of these layers is in the range of 1 − 20µm. It is

in the catalyst layers that the electrochemical reactions take place; therefore, these
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layers are responsible for

• promoting reaction kinetics.

• transporting fuel and reactants.

• transporting electrons and protons.

• transporting water to the GDL or membrane.

Due to the complexity of modeling the catalyst layer, several models have emerged

in the literature in the past decade. These models can be subdivided into three main

categories: interface models, pseudo-homogeneous models and agglomerate models

[11]. The main difference between these three types of models is in the assumed oxygen

transport mechanism. While, there is relative agreement regarding the usage of Ohm’s

law to model electron and proton transport, and on the usage of the Butler-Volmer

equation to model the reaction kinetics, such agreement does not exist regarding the

modeling of oxygen transport.

Interface models, also called zero-thickness models, are commonly used when the

primary interest is in modeling of multidimensional effects of a complete cell, or when

studying water or heat management and the effects of catalyst layer composition are

not of primary interest [26, 36]. In this model, the catalyst layer is assumed to be

infinitely thin, and its composition and structure can be ignored by assuming that all

properties are uniform throughout this layer. The catalyst layer is then regarded as

an interface between the membrane and the gas diffusion layer. A single equation for

the reaction kinetics is used to model the effect of the catalyst layer in the overall cell

performance. The equation is introduced in the cell model as a boundary condition

between the GDL and the membrane. This model is adequate when other effects are

significantly more important than the catalyst layer effects. However, this approach

does not resolve the cathode overpotential adequately [15, 37], and clearly it is not

suitable for catalyst layer optimization.
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Pseudo-homogeneous film models are an improvement over interface models. In a

pseudo-homogeneous film model, the catalyst layer is assumed to be a porous random

structure made of: a solid conductive material (usually carbon); the catalyst (usually

platinum), and; an electrolyte (usually NafionTM). The reaction occurs on the sur-

face of the catalytic particles supported on the solid conductive material; therefore,

protons, electrons and oxygen must travel through the catalyst layer to reach this

reaction site. In the cathode catalyst layer, electrons are transported through the

solid conductive material, protons are transported through the electrolyte and oxy-

gen is transported through the void space. Oxygen is assumed to be transported in

two different ways. Some researchers assume that oxygen is transported by diffusion

through the liquid water that floods the void spaces [31, 32, 38]. Other researchers

assume that oxygen is transported by diffusion as a gas, in gas pores that exist in

the void space [16, 21, 39–41]. Each assumption results in a dramatic change in the

resistance of the catalyst layer to oxygen transport. If the first assumption is used,

oxygen is mostly consumed at the interface between the GDL and the catalyst layer;

however, if the second assumption is used, the oxygen is consumed more uniformly

in the catalyst layer. Regardless of the differences, both assumptions yield a model

that takes into account some of the most important effects occurring at the catalyst

layer. Both assumptions also consider the composition of the catalyst layer by re-

lating catalyst layer properties to the volume fraction of each material. Therefore,

either of these methods can be used for the optimization of the catalyst layer, even

though they will result in very different optimal catalyst layer structures.

Pseudo-homogeneous film models assume that void space, the solid conductive

material and the electrolyte are uniformly distributed in the catalyst layer. Re-

cent studies in catalyst layer composition suggest that the conductive carbon sup-

port and platinum particles group in small agglomerates bounded by electrolyte

[24,42–45]. The agglomerates are assumed to be either spheres of electrolyte -usually

NafionTM - filled with carbon and Pt particles and approximately of one micron in
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radius [15,24,42–44,46] or spheres of carbon particles and platinum of around 50nm

in radius that are void and are filled with liquid water during cell operation [47, 48].

In this thesis, electrolyte filled agglomerates are used. When the cathode transfer co-

efficient is one, the results for either type of agglomerates are similar if the size of the

agglomerates are the same [48]. The optimal catalyst layer structure obtained using

each type of agglomerate however can be quite different. This is because in electrolyte

filled agglomerates, the electrolyte has two functions: to transport oxygen inside the

agglomerate, and to transport protons in the CL. In water filled agglomerates, the

electrolyte is only responsible for proton transport and transport of oxygen inside

the agglomerate is achieved by means of the liquid water filling the agglomerates.

As a result, if a water filled agglomerate model is used, it is expected that a lower

optimal electrolyte content is obtained. According to both agglomerate models, the

reaction inside the agglomerate can be modeled in a similar fashion to the reaction

in a porous catalyst [49]. These models assume that oxygen diffuses through the gas

pores, dissolves into the electrolyte/water around the agglomerate, diffuses through

the electrolyte/water into the agglomerate and thereby reaches the reaction site. The

transport process described is similar to the one suggested in pseudo-homogeneous

film models; however, pseudo-homogeneous film models do not take into account the

characteristics of the agglomerate or the diffusion of oxygen into the agglomerate.

Therefore, the pseudo-homogeneous models are less likely to be accurate. Models

that take into account the agglomerate structure are known as agglomerate mod-

els [15, 24, 50, 51]. Several studies have shown that agglomerate models give a better

prediction of experimental results [42,52]. However, agglomerate models require more

empirically determined parameters, and this could be a reason for the better fit to

experimental data [52].
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Polymer electrolyte membrane

The membrane is made of a solid material that acts simultaneously as a proton con-

ductor, an electric insulator, and a barrier preventing fuel and reactant crossover

between anode and cathode. The most commonly used type of membrane mate-

rial is NafionTM , a member of the perfluorosulfuric acid (PFSA) family of polymer

membranes. The membrane is responsible for

• providing a path for the positive charges (ions) to travel from one reaction to

the other.

• separating the oxidation and reduction reactions.

The importance given to membrane modeling is due mainly to the need for accurate

predictions of the ohmic losses associated with protonic current. These losses depend

on the degree of membrane conductivity, which is in turn a function of water con-

tent. As water content in the membrane is reduced, the protonic conductivity of the

membrane drops, thereby increasing ohmic losses. This conflicts with the necessity

to remove water from the GDL and catalyst layer in order to avoid flooding and to

achieve better fuel and reactant transport. These conflicting goals are known as the

water management problem.

In order to model the polymer electrolyte membrane, most models take into ac-

count that the membrane transports two components: protons, and liquid or sorbed

water. This means that most models assume that fuel and oxygen cannot penetrate

the membrane. Exceptions are those models that take into account fuel or oxygen

cross-over. Cross-over is almost negligible for hydrogen fed PEM fuel cells. Cross-over

effects can also readily be added to any membrane model [53]; therefore, they will

not be further considered.

In most models, proton transport in the membrane is modeled either by Ohm’s

law or by the Nernst-Planck equation where the transport parameters, such as the



CHAPTER 1. INTRODUCTION 14

conductivity of the electrolyte, are dependent on the water content (λ, i.e. moles

of water per mole of sulfonic acid sites). In the simplest models, water transport is

neglected and the membrane is assumed to be fully hydrated, thereby enabling the

protonic conductivity inherent to the fully hydrated electrolyte.

An accurate model of the membrane should take into account water transport

as well as proton transport. There are two different approaches to modeling water

transport: diffusion models [54] and hydraulic models [31, 32]. Diffusion models as-

sume the membrane to be a homogeneous, nonporous matrix into which the dissolved

water molecules move only by diffusion and electro-osmotic drag. Hydraulic models

assume that the membrane system has two phases: the polymer phase and the liq-

uid water filled pores. In this model, it is assumed that the water is driven by a

pressure gradient and also by electro-osmotic drag. The liquid water velocity is ob-

tained using Schlogl’s equation. A membrane with a low water content is expected to

obey a diffusion model. Conversely, when the membrane is saturated, the hydraulic

model provides a better approximation of the water transport [55, 56]. Therefore,

the most accurate model would be one that incorporates both assumptions regarding

the membrane. Such model was described in references [53, 55]. Finally, recently a

more rational framework that couples protonic and water transport has also been

proposed [57].

Heat management

A fuel cell operation involves the generation and transport of heat; therefore, these

effects should, in principle, also be taken into account during the modeling. The

fuel cell reactions generate heat, mainly due to irreversibilities. Furthermore, water

condensation and evaporation are also important sources and sinks of heat. In order to

include heat generation and transport in the model, the energy conservation equation

has to be introduced to the model in order to obtain the temperature distribution

inside the cell [25, 28,34,36].
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Non-isothermal studies such as reference [34] show that temperature variations

are relatively small in the cell sandwich (the across-the-channel section), i.e. around

one degree. Therefore, the isothermal assumption is reasonable for single-phase one-

dimensional and across-the-channel two-dimensional models. Thermal effects become

more important for two-phase models and for complete cells and fuel cell stacks and,

in such cases, they should be modeled.

1.2.2 Numerical optimization

Advances in digital computer technology have spurred spectacular progress in the area

of numerical methods for optimization. Active research has produced an abundance

of methods for unconstrained and constrained optimization [58–60].

Engineering applications for optimization usually involve solving a nonlinear con-

strained optimization problem. Nonlinear constrained optimization problems involve

the search for a minimum of a nonlinear objective function subject to a set of non-

linear constraints, and it is common for this optimization problem to have multiple

extrema. Due to this difficulty, two different approaches have emerged in the area of

nonlinear constraint optimization: local methods and global methods. Local methods

aim to obtain a local minimum, and they cannot guarantee that the minimum ob-

tained is the absolute one. These methods are usually first-order methods, i.e. they

require information about the gradient of the objective function and the constraints.

On the other hand, global methods aim to obtain the absolute or global minimum of

the function. They do not require any information about the gradient, and they are

based primarily on stochastic procedures.

Local constrained methods can be classified into sequential methods and transformation-

based methods. Sequential methods aim to solve the nonlinear constrained problem

by iteratively solving a simpler constrained optimization problem. The most com-

monly used local sequential methods include the method of feasible directions (MFD)
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and the modified method of feasible directions (MMFD) [5, 58, 61]; sequential linear

programming (SLP) [5,58,62]; sequential quadratic programming (SQP) [59,63]; non-

linear interior point methods [59, 64], and; response surface approximation methods

(RSM) [65,66].

The MMFD is based on obtaining a sequence of feasible directions, i.e. directions

that reduce the objective function and satisfy the constraints. Then, the design is

moved in these directions until convergence to the optimum is achieved. The main

drawback of this method is that it performs poorly if the constraints are highly non-

linear or discontinuous. The SLP method solves iteratively a linear programming

subproblem obtained by linearizing the objective function and the constraints. Be-

cause linear approximations are only valid in the neighborhood of the linearization

point, the norm of the search vector used to improve the design needs to be con-

strained. This constraint is achieved by imposing limits to the maximum allowable

change of the design variables. These limits are known as move limits. The main

drawback of SLP methods is the choice of the move limits. If the move limits are

large, the method leads to oscillations in the convergence and the algorithm may not

converge. On the other hand, if the move limits are too small, the SLP presents a

low convergence rate. The main advantages of SLP methods are: they are simple

to implement because they only involve the solution of a linear programming prob-

lem (LP) and, they are proved to yield good results if the move limits are properly

adjusted [67]. Similarly, SQP methods are based on a second-order approximation

of the objective function and a linearization of the constraints [58] or on a second-

order approximation of the Lagrangian of the original problem [59]. SQP methods

are robust, have a fast convergence rate and are the most frequently used local non-

linear constrained optimization method. Interior point methods are based on using

Newton’s method in conjunction with a modified objective function that includes

the optimization constraints as penalties to the objective function. The penalty is

introduced by means of a merit function, the value of which is adaptively increased
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in order to provide joint progress towards the minimization of the original objective

function and the feasible region. Interior point algorithms have been developed to

solve linear, quadratic and nonlinear problems. The modified optimization problem

is solved by solving the equations resulting from the Karush-Kuhn-Tucker optimality

conditions using Netwon’s method. As a result, this method requires information

on the gradients and the Hessian of the objective function and constraints. In most

cases, the Hessian is approximated using the BFGS approximation. Interior point

methods are considered the most efficient optimization algorithms for solving both

linear and nonlinear large-scale optimization problems [59, 64]. The quasi-Newton

interior-point method used in this thesis belongs to this family of optimization al-

gorithms [68,69]. Finally, response surface approximation methods use interpolation

models to model the objective function and constraints of the original problem. The

interpolation model, usually a quadratic model, is then used to optimize the problem.

The problem is solved iteratively and the approximation model is updated with the

last solution.

Local transformation-based methods transform the original nonlinear optimization

problem into an unconstrained optimization problem by adding a penalty function

to the objective function. When the constraints are not satisfied, the penalty func-

tion increases its value thereby increasing the value of the objective function. Once

the constrained problem has been transformed into an unconstrained problem, any

unconstrained optimization algorithm can be used to solve the transformed prob-

lem. For example, a Quasi-Newton method or a conjugate-gradient method can be

used [5,58,59,61]. The most commonly used local transformation-based methods are:

penalty methods [5, 58] and augmented Lagrangian methods [5, 58, 61]. The former

eliminates the constraints by adding a penalty function to the objective function. The

penalty function increases the value of the objective function when the constraints

are violated. The main drawback to these methods is that the penalty functions are

dependent on the problem at hand and are therefore difficult to generalize. On the
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other hand, Lagrangian methods solve the optimization problem by introducing a

set of Lagrange multipliers that control the penalty function and make the Lagrange

multipliers variables in the optimization program. All penalty methods share a com-

mon drawback: due to the introduced penalty, the objective function becomes highly

nonlinear, making it difficult for the unconstrained methods to obtain the minimum.

To conclude this description of local constrained methods, it is important to note

that, although local methods do not aim for the global optima, they can be used

to obtain such global optima. Several approaches can be used to continue searching

once a local minimum has been obtained, thereby enabling the identification of all

local minima and, therefore, also the global minimum. Some of these methods based

on a stochastic approach are: random multi-start methods [70, 71] and ant colony

searches [72]. In the former method, once a minimum has been obtained, it restarts

the optimizer with a new, randomly generated initial point. The second method

uses the information from search agents (ants) in order to find the global minimum.

Some other methods introduce a deterministic approach. For example, in the local-

minimum penalty method [73] the objective function is penalized if the algorithm

tends to go to an already known local minima.

The other group of constrained methods, the global methods, can be classified as

direct or transformation-based. Direct methods solve the problem without transform-

ing it into a simple problem. Transformation-based methods transform the initial

constrained optimization problem into an unconstrained problem. Direct methods

include covering methods and pure random searches. Covering methods follow a de-

terministic approach where regions of the design space are tested and eliminated if

specific design criteria are not met. The most common of these methods are the inter-

val methods [74]. Pure random searches evaluate randomly generated points until a

minimum is obtained. The main drawback of both these methods is that they require

a large number of function evaluations and are therefore computationally expensive.

Global transformation-based methods start by transforming the original problem
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into an unconstrained problem. Then, global unconstrained techniques are used to

obtain the global minima. Popular unconstrained global methods are: genetic algo-

rithms [75], evolutionary algorithms [76] and simulated annealing [77]. These methods

have the same drawback as the global direct methods: the computational cost of the

large number of evaluations of the objective function and constraints is excessive.

1.2.3 Sensitivity analysis

Sensitivity analysis is concerned with obtaining the gradients or sensitivities of a

certain output variable with respect to an input variable. In the case of optimiza-

tion, sensitivity analysis is used to obtain the derivatives of objective function and

constraints with respect to the design variables.

In the literature, several methods have been suggested to compute the gradients

of physical properties with respect to the design variables

• Finite-Difference

• Complex-Step Differentiation

• Automatic Differentiation

• Analytical Differentiation

Forward-difference uses a Taylor series expansion of a function around a point,

x0, to obtain an approximation of the gradient. Forward-difference needs n+ 1 func-

tion evaluations to compute the gradient of a function, with n being the number

of independent variables. First-order forward difference is easy to implement and is

computationally more efficient than complex-step differentiation and automatic dif-

ferentiation methods [78,79]. However, forward-difference is also the most inaccurate

of all the methods described above. This is because the error is proportional to the

step size. Therefore, to reduce the error, the step size must be reduced. However, if



CHAPTER 1. INTRODUCTION 20

the step size becomes too small, the two terms that are substracted on the numerator

become very similar and a numerical error occurs when computing their difference.

Therefore, it is necessary to obtain a step size small enough to reduce the error, but

not so small that substractive errors occur. This is known as the step size dilemma.

This problem is also encountered in higher order methods that use the Taylor series

to approximate the gradients, e.g. the central-difference method [78, 79]. Further-

more, for higher order methods more function evaluations are necessary to compute

the gradients.

Complex-differentiation solves the step size dilemma encountered in the finite-

difference method by using a complex step to compute the gradients [78,80,81]. Fur-

thermore, the approximation is second order instead of first order as it is in forward-

differentiation. The number of function evaluations necessary to obtain the gradient

is still n + 1 where n is the number of independent variables of the function. In

order to obtain the gradients using complex-step differentiation, the source code of

the analysis program has to be changed so that all the real variables become complex

variables. Some intrinsic functions such as max and min must also be redefined. If

the designer is adept at modifying the source code of the analysis solver, the required

changes to the code can be accomplished in a relatively short amount of time. It

is important to note that, because all the variables are complex instead of real, the

complexified code requires twice as much time as of the original code required to solve

the same problem .

Automatic differentiation (AD) - also known as algorithmic differentiation or com-

putational differentiation - is based on successive application of the chain rule to each

operation performed in the analysis computer code [82, 83]. Since the structure of

a computer code is basically composed of a successive set of arithmetic operations

used to compute the value of a function, successive application of the chain rule to

each one of the operations in the code will result in the exact (to machine precision)

desired derivatives. In order to transform a code into a forward or reverse automatic
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differentiation code, there are several programs that, given a list of the dependent

and independent variables, precompile the original code and transform it into an AD

code. Some of the codes that can be used to transform FORTRAN source codes to AD

codes are: ADIFOR, TAMC, DAFOR, GRESS, Odysee, PADRE2, AD01, ADOL-F,

IMAS, Tapenade and OPTIMA90.

Finally, analytical differentiation consists of deriving the analytical expressions for

the sensitivities and introducing them to the original analysis code. These methods

are the most efficient and accurate, however, they are also the most difficult and time

consuming to implement because they require a complete knowledge of the original

analysis code and the physics of the problem. There are basically two methods used

to compute the sensitivities analytically: direct methods and adjoint methods.

Using the direct method to obtain the sensitivities of a function with respect to n

independent variables is computationally equivalent to solving n times a linear system

of equations of the size of the original analysis problem. Therefore, the computational

expense is similar to finite-differences in forward mode for a linear problem, but much

less costly than forward-differences for nonlinear problems. This is because to solve a

nonlinear problem, the original system needs to be solved several times before reaching

the solution while the systems of equations to obtain the sensitivities are only solved

once. Once the gradient of the unknowns of the model are obtained, they can be used

to obtain the gradient of any function with respect to the design variables. Using

this method, the computations necessary to obtain the gradients of m function with

respect to n design variables is the solution of n linear systems of equations of the

size of the original program.

In most cases in design, there are more independent variables, i.e. design variables

in the optimization problem, than functions for which the gradients are necessary. To

eliminate the dependence of the gradient computations on the number of indepen-

dent variables, the adjoint method was created. Introduced in the CFD community

by Jameson [84], the adjoint method differs from the direct method in that the com-
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putations for obtaining the gradient of a function do not depend on the number of

independent variables. Therefore, the cost of computing the gradient of f is similar

to the computational time necessary to obtain the solution to the problem, and it is

independent of the number of independent variables. This is the key to this method’s

recent success in areas such as structural and aerodynamic shape optimization.

1.2.4 Numerical optimization of PEM fuel cells

A literature review in the area of fuel cell design and optimization shows that most of

the work done in fuel cell design is based on parametric studies and graphically aided

design. To this author’s knowledge, only four research groups - Song et al. [20, 29],

Grujicic et al. [85–87], Mawardi et al. [88] and Secanell et al. [89–92] - have attempted

to perform single cell fuel cell optimization using a physical or theoretical model.

Song et al. [20,29] optimized the catalyst layer composition of a PEM fuel cell in

order to achieve maximum current density at a specified voltage of 0.6V. They used

a one-dimensional pseudo-homogeneous catalyst layer model to analyze the cathode

catalyst layer. The design variables that they used are the Nafion volume fraction,

the platinum loading and, in paper [20], the thickness of the catalyst layer. The opti-

mization problem is solved with respect to only one or two of these design variables,

therefore it does not take full advantage of the numerical optimization capabilities.

On the other hand, Grujicic et al. [85–87] concentrated their efforts on the op-

timization of the geometric parameters of the fuel cell cathode without taking into

account the catalyst layer composition. In particular, in reference [85] the authors

used a two-dimensional single-phase model of the fuel cell to optimize the output

current density at a given cell voltage (0.7V). The design variables were the inlet

cathode pressure, the cathode GDL thickness and length of the current collector and

gas channel. The model used to perform the optimization used Fick’s law and Darcy’s

law to account for transport of fuel and reactants and Ohm’s law for the transport
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of electrons through the GDL. A zero-thickness model is used to account for the ac-

tive catalyst layer reactions and Ohm’s law is used to account for proton transport

through the membrane. In reference [86] the same optimization problem is solved but

with respect to only the cathode GDL thickness and length of the current collector

and gas channel. However, the model is expanded to take into account two-phase

flow. In reference [87] the same optimization problem as in [86] is solved. The fuel

cell model used is single-phase, but it has been expanded to three dimensions, the

Maxwell-Stefan equations are used to model diffusion and the transport of the fuel

and reactants through the gas channels are also modeled. In all papers by Grujicic

et al. [85–87], the catalyst layer is modeled using a simple zero-thickness model. This

is done at the expense of accuracy since the resolution of the catalyst layer has a

critical impact on the performance predictions and detailed distributions of current

and potentials. The omission of the catalyst layer is necessary in these cases in order

to reduce the computational expense of the numerical model, because a very fine grid

is necessary in order to properly resolve the active layer.

In Song et al. [20,29] and Grujicic et al. [85–87] gradient-based methods are used,

in particular both groups use the sequential quadratic algorithm in MATLAB [93],

in order to reduce the computational expense incurred by performing optimization.

However, they both use numerical differentiation in order to obtain the gradient of

the objective function and its constraints. Numerical differentiation is inaccurate and

requires one additional problem solution for each design variable in order to obtain

the gradients. Therefore, this method tends to destabilize the optimization algorithm

due to numerical errors, and it becomes prohibitively expensive when the number of

design variables is large. A more sophisticated optimization framework that takes

advantage of new advances in sensitivity analysis and in multiprocessor architecture

would alleviate the computational demands incurred during optimization, and would

allow researchers to use higher fidelity models to perform optimization of fuel cells

with a large number of design variables.
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Mawardi et al. [88] used a one-dimensional, non-isothermal model to model the

complete fuel cell sandwich. In this case, the objective function was the maximum

power density at a given current density and the design variables were nine operating

parameters. In particular, the operating parameters were temperature, anode and

cathode pressure, stoichiometry and relative humidity, nitrogen to oxygen mole frac-

tion and carbon dioxide to hydrogen mole fraction. Instead of using a gradient-based

optimization algorithm, the Nelder-Mead simplex method combined with a simulated

annealing algorithm was used. These algorithms are non-gradient based methods and,

therefore, the gradients are not necessary. In the paper, the number of calls to the

analysis code and the computational time necessary to reach the solution are not

discussed. In general and as discussed in section 1.2.2, non-gradient based methods

require a large number of calls to the fuel cell model. Therefore, the methodology

used in this paper does not allow for the feasible usage of high-fidelity fuel cell models

because each fuel cell model call can take hours. When the analysis program requires

a large amount of computation time, gradient-based optimization algorithms are a

better choice since they can reduce the number of fuel cell model evaluations and

therefore, the computational time necessary to reach the optimal solution.

Finally, Secanell et al. used a one-dimensional [89] and two-dimensional through-

the-channel model [90–92] to maximize the cell current density at a given operating

voltage with respect to either anode or cathode GDL and CL composition. To solve

the optimization problem, a gradient-based interior point optimization algorithm was

used in conjunction with analytical sensitivities (direct method). Since the problem

is nonlinear, using the direct method to obtain the analytical sensitivities resulted

in large computational savings and a good convergence to the optimal solution. Due

to the low computational requirements of this method, an electrode model with a

state-of-the-art catalyst layer model was used to predict fuel cell performance.
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1.3 Contributions

The main contributions of this work are in the areas of fuel cell diagnostics and design.

In the area of fuel cell diagnostics, this work contributes to the field by

• developing a two-dimensional through-the-channel fuel cell model with state-of-

the-art catalyst layer models for both anode and cathode.

• introducing a new set of equations to relate the catalyst ink composition to

effective catalyst layer parameters.

• presenting an OpenSource software for fuel cell design based on adaptive finite

elements and developed using an object-oriented programming language.

In the area of fuel cell design, this work represents one of the first attempts at

trying to apply numerical optimization to fuel cell design. As such, it presents for the

first time in the literature

• a fuel cell simulation toolbox that provides analytical sensitivities of the current

density with respect to design variables.

• a numerical study of the optimal composition of a complete MEA using a de-

tailed two-dimensional model.

• a numerical study of the trade-offs between cost and performance in MEA design

by means of a multi-objective optimization formulation.

The development of a framework to obtain analytical sensitivities with respect to de-

sign parameters is, in the author’s opinion, the key to applying numerical optimization

to large-scale fuel cell optimization problems in a reasonable time frame.
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1.4 Structure of the thesis

This thesis is organized into four chapters. The first chapter presents the motivation

for this work and a literature review of past and present research efforts in: fuel cell

modeling and optimization; numerical optimization, and; sensitivity analysis. Chap-

ter 2 presents the fuel cell analysis part of this thesis. In this chapter, the governing

equations for the anode and cathode electrodes and the membrane are presented as

well as their couplings. Then, the computational model is validated against a recent

experimental study and other numerical results. The transport mechanisms of the

MEA design from the validation study are studied in detail. Chapter 3 presents the

optimization analysis and results. Two optimization formulations for fuel cell design

are suggested and an optimization framework is presented to solve these two prob-

lems. Starting with the design from the previous section as base design, the two

optimization problems are solved and the results from the optimization are analyzed.

Finally, Chapter 4 presents some final conclusions and possible avenues for future

research.
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Chapter 2

PEM fuel cell modeling

In this chapter, the equations implemented in the fuel cell modeling framework known

as Fuel Cell Simulation Toolbox (FCST), developed by the author, are described. The

numerical methodology used to solve these equations is also described. Numerical

results obtained from the modeling framework are presented together with parametric

studies that highlight the main differences between the implemented models. The

chapter is divided into five sections. The first four sections describe the models

used to analyze: the cathode electrode, the proton exchange membrane, the anode

electrode and the complete membrane electrode assembly respectively. The fifth

section presents some validation results, and also a study of the transport processes

occurring in the MEA for the base design at different operating conditions.
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2.1 Cathode electrode modeling

2.1.1 Governing equations

In a proton exchange membrane fuel cell the oxygen reduction reaction occurs in the

cathode

O2 + 4H+ + 4e− → 2H2O (2.1)

The electrochemical reaction is usually described either by a Tafel or a Butler-

Volmer equation. To describe the transport of the different species to the reaction

site two models are presented: the pseudo-homogeneous model, also known as macro-

homogeneous, and the agglomerate model. Both models take into account the physical

structure of the cathode electrode to model the transport of species.

Governing equations for the pseudo-homogeneous model

In the pseudo-homogeneous models, the catalyst layer is taken to be a porous structure

consisting of a catalyst (usually platinum) supported on a solid conductive material

(usually carbon) and an electrolyte (usually NafionTM). The reaction occurs on the

surface of the catalytic particles supported on the solid conductive material, and

therefore, ions, electrons and oxygen must travel through the catalyst layer to reach

the reaction sites. In the cathode catalyst layer, electrons are transported through

the solid conductive material, ions through the electrolyte, and oxygen through the

void spaces. Two approaches are commonly used to represent oxygen transport. In

the first approach, the void spaces are assumed to be flooded with water, and oxygen

is assumed to be transported in the dissolved state by diffusion [20, 31, 32, 38]. In

the second approach, oxygen is present in the gas phase within wet-proofed pores in

the catalyst layer, and transport is considered to take place by gas phase diffusion

[16,21,39–41]. These two approaches result in drastically different levels of resistance
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to oxygen transport thereby resulting in very different results. In the former case,

oxygen is consumed primarily at the interface between the GDL and the catalyst

layer; in the case of gas phase diffusion, oxygen is distributed more homogeneously

throughout the catalyst layer. In reality, both gas and liquid water coexist in the

catalyst layer and two-phase models are necessary. In this thesis, a one-phase model

is used that assumes that oxygen is transported in the gas phase in the wet-proofed

pores in the catalyst layer and that once it reaches the catalyst site, it dissolves into

the electrolyte/water before reaching the reaction site. This last step introduces an

extra transport limitation similar to the dissolution in water.

Following the discussion above, the model is based on the following assumptions

[90]:

• The fuel cell operates at steady state.

• It is at a constant temperature and pressure.

• The gas diffusion layer (GDL) is composed of void space and carbon fibers.

• The catalyst layer (CL) is formed of a mixture of platinum supported on carbon,

ionomer membrane electrolyte (NafionTM) and void space [29,39].

• The transport of reactants from the gas channels to the CL occurs only by

diffusion of oxygen gas in wet-proofed pores and can be modeled by Fick’s first

law [36].

• Once the oxygen arrives at the catalyst site, it has to dissolve into an infinitesi-

mally thin layer of ionomer which covers the catalytic sites. This layer is there-

fore assumed to be infinitesimal, and this process is modeled using Henry’s

law.

• The transport of protons takes place only through the electrolyte, usually the

NafionTM , and it is governed by Ohm’s law.
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• The transport of electrons takes place only through the solid phase, i.e. the

carbon fibers in the GDL and platinum and carbon in the catalyst layer, and it

is governed by Ohm’s law.

The reactant transport to the reaction site must obey the law of conservation

of species. For an infinitesimal control volume, the conservation of species i can be

written as
dci
dt

+∇ ·Ni = Si (2.2)

where ci is the molar concentration of species i, Ni is the molar flux of species i and

Si is the rate of production/consumption of species i. In this case, it is assumed that

the fuel cell is operating at steady state, therefore equation (2.2) reduces to

∇ ·Ni = Si (2.3)

Oxygen and water transport in the cathode electrode are then governed by equa-

tions

∇ ·NO2 = SO2 (2.4)

∇ ·NH2O = SH2O (2.5)

where SO2 represents the consumption of oxygen and SH2O the production of water

in the reaction given by equation (2.1). From the reaction kinetics a relation between

the rate of production/consumption of the different species in the reaction can be

obtained such that

S = −SO2 = −1

4
SH+ = −1

4
Se− =

1

2
SH2O (2.6)

where SH+ and Se− represent the consumption of protons and electrons respectively.

Given these last relations, a relationship between the oxygen flux, proton flux and

the electron current density can be obtained. In order to obtain such relationship, let
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us begin by defining the current density as [94]

i =
∑
i

ziFNi (2.7)

where zi and Ni are the charge and molar flux of the species and F is Faraday’s

constant (96,487C/mol). Using this definition, the current density in the electrolyte

phase is related to the protonic flux by

ip = FNH+ (2.8)

since it is the only charged mobile species. In the solid phase, the current density is

related to the electronic flux by

ie = −FNe− (2.9)

Using the equations above and equation (2.6) relationships between the consump-

tion/production of electrons and protons and their current densities are obtained

S = −1

4
SH+ = − 1

4F
∇ · ip (2.10)

and

S = −1

4
Se− =

1

4F
∇ · ie (2.11)

Because the last two equations are equal, a relationship can be obtained between the

current density in the electrolyte membrane and the solid phase,

∇ · ip = −∇ · ie (2.12)

Substituting equations (2.6) and (2.10) into the conservation law for the oxy-

gen species, equation (2.4), and using equation (2.12) a relationship is also obtained



CHAPTER 2. PEM FUEL CELL MODELING 32

between the oxygen molar flux and the electronic and proton current densities

∇ ·NO2 =
1

4F
∇ · ip = − 1

4F
∇ · ie (2.13)

Using an analogous procedure, the relationship between the water flux and the current

density is

∇ ·NH2O = − 1

2F
∇ · ip =

1

2F
∇ · ie (2.14)

It is assumed that the domain of the model is isobaric and isothermal, and that

the species are transported only by diffusion. Then, oxygen, nitrogen and water vapor

transport is modeled by the Maxwell-Stefan equations [95],

N∑
j=1

xjNi − xiNj

Deff
ij

= c∇xi (2.15)

which substituting indices becomes a system of three equations

xO2NN2 − xN2NO2

Deff
O2N2

+
xwNN2 − xN2Nw

Deff
wN2

= −c∇xN2 (2.16)

xN2NO2 − xO2NN2

Deff
O2N2

+
xwNO2 − xO2Nw

Deff
O2w

= −c∇xO2 (2.17)

xN2Nw − xwNN2

Deff
wN2

+
xO2Nw − xwNO2

Deff
O2w

= −c∇xw (2.18)

where the mole fractions must satisfy that

∑
i

xi = 1 (2.19)

or, in this case, assuming that dry air is mainly composed of nitrogen and oxygen

and considering the mole fraction of the other species in the air negligible,

xw + xN2 + xO2 = 1 (2.20)
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where xw accounts for the air humidification.

Assuming that both oxygen and water vapour are dilute species in nitrogen and

xN2 → 1 xO2 → 0 and xw → 0 (2.21)

and substituting into equations (2.17) and (2.18) turns the Maxwell-Stefan equations

to Fick’s first law of diffusion

NO2 = −cgDeff
O2,N2

∇xO2 (2.22)

Nw = −cgDeff
w,N2
∇xw (2.23)

Note that the assumption of dilute species is a reasonable one taking into account

that the nitrogen molar fraction in air is 0.79 and that, for pure humidified oxygen,

the system reduces to a binary system and therefore, it is also equivalent to Fick’s

first law.

Using equation (2.22) and equation (2.13) and defining Deff
O2,N2

= Deff
O2

a relation-

ship between the oxygen mole fraction and the current density is obtained

∇ ·NO2 = ∇ · (cgDeff
O2
∇xO2) =

1

4F
(∇ · ie) (2.24)

This last equation will be used to obtain the oxygen concentration in the cathode

electrode.

In addition to mass transport, in the fuel cell cathode there is also transport of

protons and electrons. The transport of these two species is modeled using Ohm’s

law. In the electrolyte phase, the transport of protons is modeled by

ip = −σeffm ∇φm (2.25)

where σeffm is the effective protonic conductivity of CL and depends on the electrolyte
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water content, the CL composition and the physical properties of the CL components.

This value will be zero in the gas diffusion layer since this layer does not contain

NafionTM .

The transport of electrons occurs in the solid phase where it is the only mobile

charged specie. The transport of electrons is also governed by Ohm’s law

ie = −σeffS ∇φS (2.26)

where in this case σeffS is the effective conductivity in the solid phase and depends on

the layer composition and physical properties. The methodology to obtain effective

properties of the GDL and CL will be discussed in detail in the following sections.

Taking derivatives of equations (2.25) and (2.26) and using equation (2.12), the

equations can be both written as a function of the electronic current density as

∇ · ie = ∇ · (σeffm ∇φm) (2.27)

∇ · ie = −∇ · (σeffS ∇φS) (2.28)

The transport of mass and charges in the gas diffusion and catalyst layers is thus

governed by the following set of equations

∇ · (cgDeff
O2
∇xO2) = SO2

∇ · (σeffm ∇φm) = SH+

∇ · (σeffS ∇φS) = Se−

 (2.29)

where the effective parameters are different in the GDL and CL and the source term

is

SO2 =

 0 in GDL

1
4F
∇ · i in CL

(2.30)
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SH+ =

 0 in GDL

∇ · i in CL
(2.31)

Se− =

 0 in GDL

−∇ · i in CL
(2.32)

Finally, the term ∇ · i, the current produced per unit volume of catalyst layer,

is given by the electrochemical reaction that occurs inside the layer. Given that the

kinetics of the oxygen reduction reaction that takes place in the cathode are slow, the

Bulter-Volmer equation is not necessary and the reaction rate is given by the Tafel

equation

∇ · i = Avi
ref
0

(
co2,g|l

crefo2

)γ
exp

(
αcF

RT
(φm − φS)

)
(2.33)

where Av is the specific reaction surface area per volume of the catalyst layer, iref0 is

the exchange current density, crefo2 is the reference oxygen concentration, co2,g|l is the

oxygen concentration at the reaction site, αc is the transfer coefficient of the reaction,

T is the cell temperature, φm and φS are the electrolyte and solid potentials and γ

is a reaction dependent constant, R and F are universal constants. The exchange

current density, the reference oxygen concentration, the transfer coefficient and γ are

electrochemical data and are obtained from experiments [96,97].

Given the assumption that oxygen needs to dissolve into the electrolyte before

reaching the reaction site, the oxygen concentration at the reaction site is given by

Henry’s law

cO2,g|l =
cO2,g

ĤO2,N

(2.34)

where cO2,g = cgxO2 is the oxygen concentration in the wet-proofed pores in the CL

and the dimensionless Henry’s law constant is obtained using

ĤO2,N =
HO2,N10−6

RT
(2.35)
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and Ho2,N is 3.1664× 1010 Pa·cm3

mol
[15].

The specific reaction surface area per volume of the catalyst layer, Av, is dependent

on the platinum loading mPt, the thickness of the catalyst layer L, and the catalyst

surface area per unit mass of the catalyst particle, A0, [20, 38]

Av = A0
mPt

L
(2.36)

The catalyst surface area per unit mass of the catalyst particle, A0, depends on the

size of the platinum particles and on the platinum content of the catalytic particles

in the catalyst layer. In this study, an empirical least squares fit to the data provided

by E-TEK [98] is used to estimate this value

A0 = 7.401× 106(Pt|C)4 − 1.811× 107(Pt|C)3 + 1.545× 107(Pt|C)2

− 6.453× 106Pt|C + 2.054× 106 (2.37)

Figure 2.1 shows the data from E-TEK and the curve fit of the catalyst surface area

per unit mass of the catalyst particle at different platinum to carbon ratios. For

comparison with previous papers that used data from an older generation of catalysts

such as [38,91], the data reported by Marr et al. [38] for older catalysts is also shown

in the figure and a curve fit used in previous publications by the authors is also shown.

From this plot, it can be observed that there has been a remarkable improvement in

recent years in increasing the active area of platinum supported catalyst particles.

Governing equations for the agglomerate model

The agglomerate model used in this thesis assumes that the conductive carbon sup-

port and platinum particles are grouped in small spherical agglomerates bonded and

surrounded by electrolyte [15,24,24,42,43,43–45,50]. Water filled agglomerates [47,48]

are not considered. A representation of the cathode electrode according to the ag-
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Figure 2.1: Curve fit used to estimate the catalyst active area per mass of catalyst

glomerate model adopted in this thesis can be seen in Figure 2.2. The reaction inside

the agglomerate is then modeled as a reaction in a porous catalyst [49]. Oxygen is

assumed to diffuse through the gas pores between agglomerates, dissolve into the elec-

trolyte phase and, finally, to diffuse in the electrolyte inside the agglomerate through

to the reaction site.

Even though pseudo-homogeneous and agglomerate models are both in use today,

several studies have shown that agglomerate models provide a better fit to exper-

imental results [42, 52]. A comprehensive comparative study of the three catalyst

layer models was recently presented using three-dimensional numerical solutions [99].

This comparison highlighted the importance of a physically representative model for

the catalyst layer, showing that, at low current densities, the thin film model results

in different current density distributions compared to the pseudo-homogeneous and

agglomerate models. Furthermore, only the agglomerate model was capable of pre-

dicting the performance drop at high currents due to the mass transport limitations
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Figure 2.2: Catalyst layer and gas diffusion layer microstructure, [100]

that are observed in an actual fuel cell.

Following the discussion above, the agglomerate model presented in this thesis is

based on the following assumptions:

• The fuel cell is at steady state.

• The fuel cell is at constant temperature and pressure.

• The gas diffusion layer is composed of void space and carbon fibers.

• The catalyst layer is composed of agglomerates made of a mixture of platinum

supported on carbon and ionomer membrane electrolyte and surrounded by void

space, Figure 2.2.

• The electrochemical reaction occurs inside the agglomerates.
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Figure 2.3: Agglomerate and thin film structure, [100]

• The transport of reactants from the gas channels to the catalyst layer occurs only

by diffusion of oxygen gas to the agglomerate surface, and then by dissolution

and diffusion through the ionomer to the reaction site, Figure 2.3.

• Oxygen gas transport in the GDL and the CL is modeled using Fick’s first

law instead of the Maxwell-Stefan equations to reduce the nonlinearity of the

system of equations under the assumptions in equation (2.21).

Given these assumptions, the system of governing equations remains the same as

in the previous model (2.29) with the exception of the source terms which now take

a different form in order to account for the different oxygen transport mechanisms

and the location of the reaction. This model was recently introduced by Secanell

et al. [91] and it is based on the model presented by Sun et al. [15] with additional

equations used to relate the transport properties to the catalyst layer structure.

In the agglomerate model, oxygen travels by diffusion to the surface of the agglom-

erate, and once the oxygen reaches the surface of the agglomerate, it dissolves into

the electrolyte phase. This process is the same as the one reported in the pseudo-

homogeneous model above and it is described by equation (2.24). However, after
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oxygen has dissolved into the electrolyte, it is transported by diffusion through the

electrolyte film surrounding the agglomerate, Figure 2.3. This transport process is

described by [15]

N̂O2 = DO2,N
∂cO2

∂r
= DO2,N

ragg
ragg + δagg

cO2,g|l − cO2,l|s

δagg
(2.38)

where N̂O2 is the oxygen flux through the agglomerate boundary, cO2,l|s is the concen-

tration of dissolved oxygen inside the agglomerate at the electrolyte solid interface

and DO2,N is the diffusion coefficient of oxygen in NafionTM [15].

The oxygen also diffuses inside the agglomerate as it reacts. This transport process

is given by

Deff 1

r2

∂

∂r

(
r2∂cO2

∂r

)
= −cO2kc (2.39)

where kc is the reaction rate computed using equation (2.45) and the diffusion coef-

ficient inside the agglomerate, Deff , is given by Bruggemann’s relation

Deff = DO2,Nε
1.5
agg (2.40)

where DO2,N is the oxygen diffusion inside the electrolyte, in this case NafionTM . This

value is assumed constant inside the catalyst layer. Analytical integration of equation

(2.39) yields an effectiveness factor, Er, for the reaction inside the agglomerate such

that the oxygen reaction in the catalyst layer can be written as [15]

RO2 = (1− εclV )ErkccO2,l|s (2.41)

where expressions for Er and kc are given in equations (2.46) and (2.45) respectively.

Using this last equation, equations (2.34) and (2.38) and the mass balance of
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oxygen in the catalyst layer equations [15]

∇ · (ctotDeff
O2
∇xO2) = aaggN̂O2 (2.42)

∇ · (ctotDeff
O2
∇xO2) = RO2 (2.43)

the following expression for the volumetric current density is obtained [15]

∇ · i = 4F
ptotxo2
HO2,N

(
1

Erkc(1− εclV )
+

(ragg + δagg)δagg
aaggraggDO2,N

)−1

(2.44)

where

kc =
Avi

ref
0

4F (1− εclV )crefo2
exp

(
−αcF
RT

(φs − φm)

)
(2.45)

The term 1− εclV is used to transform the active area in the catalyst layer, Av, to an

active area inside the agglomerate and the effectiveness factor is given by

Er =
1

φL

(
1

tanh(3φL)
− 1

3φL

)
(2.46)

Thiele’s modulus for a spherical agglomerate, φL, is given by

φL =
ragg

3

√
kc
Deff

(2.47)

where ragg is the radius of the spherical agglomerate and Deff is the effective oxygen

diffusion coefficient inside the agglomerate in equation (2.40). In case of a non-

spherical agglomerate [49]

ragg = 3
Vagg
Sagg

(2.48)

where Sagg and Vagg are the external surface and volume of a single agglomerate

respectively.

In these equations, there are several parameters that need to be obtained: HO2,N ,

aagg, DO2,N , Av, i
ref
0 , crefo2 and Deff . Parameters HO2,N , DO2,N , iref0 and crefo2 are input
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parameters to the model and are obtained from transport and electrochemical data.

Parameters aagg, Av and Deff , however, depend on the composition of the catalyst

layer.

The parameter aagg is defined as the ratio between the effective surface area usable

to dissolve oxygen into the agglomerate to the catalyst layer volume. This value can

be related to the catalyst layer structure by

aagg = n4π(ragg + δagg)
2εclV (2.49)

where n is the number of agglomerates per unit volume, the term 4π(ragg + δagg)
2 is

the surface of a single agglomerate and εclV is the catalyst layer porosity. The catalyst

layer porosity is used to compute the effective surface area. Taking into account

that oxygen gas only exists in the void phase, i.e. the gas pores, only the fraction

of the surface of the agglomerate in contact with the gas pore is able to dissolve

oxygen. Since the agglomerates contain all the solid and electrolyte phase, only the

pores separate the agglomerates. If there is more space available for pores, then there

will also be more exposed surface of the agglomerate. This can be understood by

imagining an increase in the volume of the white space in Figure 2.2. This would

certainly make the surface of the agglomerate more exposed to the pore. In the

extreme case of zero porosity, the catalyst layer would only contain square shaped

agglomerates packed together. Since there would be no space for the pores to reach

the surface, the oxygen dissolution into the agglomerates in this case would be zero.

Similarly, if the porosity were close to unity, the agglomerates would be separated

almost completely from each other by gas pores, connected only by small strings of

electrolyte. In this case, all the surface area of the agglomerate would be available

for the reaction. A more detailed expression for aagg that accounts for the pore size

distribution inside the catalyst layer should be developed in future work.

The parameter Av represents the area utilized for the oxygen reduction reaction
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per unit volume of catalyst layer and is obtained using equations (2.36) and (2.37).

Volume fraction of each phase in the gas diffusion layer and catalyst layer

In the GDL, only two phases exist and they are related by

εgdlV + εgdlS = 1 (2.50)

where εgdlV is the GDL porosity and εgdlS is the volume fraction occupied by electric

conductive material, i.e. carbon fibres. Given the GDL porosity, εgdlV , the solid phase

volume fraction can easily be obtained.

In order to compute the effective properties of the CL, the volume fraction of each

material in the catalyst layer i.e. solid, electrolyte and void space, need to be obtained.

Generally, in previous literature, either the effective properties were assumed directly

or the volume fractions were given independently of the catalyst layer ink composition,

and the effective parameters were estimated using these volume fractions [15, 16].

However, the catalyst layer ink composition must dictate the amount of each one

of these materials in the catalyst layer because the ink is used to create the layer.

The CL ink composition is given by: platinum loading, platinum to carbon ratio and

electrolyte volume fraction.

The solid phase volume fraction is given by the amounts of platinum and carbon

in the catalyst layer. These values can be obtained from the platinum mass loading,

mPt and the mass platinum to carbon ratio, Pt|C. Both these values are known a

priori and therefore, these should be used to compute the volume fraction in the solid

phase. In this model, the solid phase volume fraction, εclS , is computed using [20]

εclS =

(
1

ρPt
+

1− Pt|C
Pt|Cρc

)
mPt

L
(2.51)

where ρPt and ρc are the platinum and carbon densities, Pt|C is the platinum to
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carbon ratio, mPt is the platinum loading and L is the catalyst layer thickness. This

last parameter is not know a priori but it can be controlled during the electrode

preparation [46] or obtained a posteriori.

If the pseudo-homogeneous model is used, assuming that the electrolyte volume

fraction, εclN , is given, the porosity can be obtained readily using

εclV = 1− εclN − εclS (2.52)

If the agglomerate model is used, the model input is the amount of the electrolyte

in the agglomerate and the thickness of the electrolyte thin film surrounding the

agglomerate. Therefore, some extra computations are necessary to obtain the total

electrolyte volume fraction and the porosity. Assuming that the catalyst layer is

made of spherical agglomerates and that the agglomerates are made only of ionomer

and solid phase as shown in figures 2.2 and 2.3, then the total volume occupied by

the solid phase in the catalyst layer can be related to the volume occupied by the

agglomerates by

εclSLH = n̂
4

3
πr3

agg(1− εagg) (2.53)

where L and H are the thickness and width of the catalyst layer, n̂ is the number of

agglomerates in the catalyst layer, ragg is the radius of the agglomerate and εagg is the

volume fraction of ionomer inside the agglomerate. Then, rearranging the expression

above, the number of agglomerates per unit volume, n, can be expressed as

n =
n̂

LH
=

εclS
4
3
πr3

agg(1− εagg)
(2.54)

In this equation, n represents the number of agglomerates per unit volume necessary

to obtain the given volume fraction of solid phase. In this study, it is assumed that the

shape of the agglomerates is spherical on an average basis and that, in reality, they

would change their shape in such a way that they would always fit into the catalyst
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layer’s volume and thickness. That is, the method does not account for the unused

space between spherical agglomerates due to their geometry and it is considered that

all the catalyst layer could conceivably be filled with agglomerates.

Once the number of spherical agglomerates is obtained, and assuming that all

ionomer in the catalyst layer is present either in the bulk of the agglomerate or the

thin film surrounding the agglomerate, as illustrated in Figure 2.3, the electrolyte

volume fraction in the catalyst layer can be obtained using geometrical arguments.

The volume fraction of ionomer in the catalyst layer is

εclN =
4

3
πn[r3

aggεagg + ((ragg + δagg)
3 − r3

agg)] (2.55)

where δagg is the average thickness of the ionomer film surrounding the agglomerates.

This expression is obtained by taking into account both the volume occupied by the

electrolyte film and the volume of the agglomerate sphere occupied by the electrolyte.

Once the volume fraction of solid phase and ionomer are obtained, the porosity

of the catalyst layer is obtained using equation (2.52) as in the previous case for the

pseudo-homogeneous model. Equation (2.52) gives the total porosity, i.e. the space

that is occupied by neither the electrolyte nor the solid phase and that is represented

in Figure 2.2 in white. This value should be interpreted as the volume fraction of the

catalyst layer available for the formation of macro-pores for oxygen transport, and

not as the interstitial space between spheres.

GDL effective parameters

The gas diffusion layer and the catalyst layer are both porous materials. In order

to account for the effects of porosity, and for the tortuous path of the transport of

species, the diffusion coefficients and the conductivities need to be corrected by an

expression that depends on either porosity, or both porosity and tortuousity. These

corrections depend on the structure of the porous media and, therefore, in order to
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obtain an expression for effective coefficients, either experiments or direct numerical

simulations are necessary.

In fuel cells, several expression have been used to compute effective properties.

The most common method used to obtain effective diffusivities and conductivities is

Bruggeman’s relation

P eff = Pε1.5 (2.56)

where P represents the property and ε the volume fraction of the transporting phase.

For example, in the case of gas diffusivities

Deff = Dε1.5V (2.57)

where D represents the gas diffusivity and εV the void volume fraction. Bruggeman’s

equation was obtained from experiments using beds of spherical particles of different

sizes [18, 101]. Therefore, even though this equation is the most commonly used

expression in fuel cell modeling, it is not correct for the GDLs. GDLs are made of

carbon fibers, and their structure is quite different from the porous media used to

obtain Bruggeman’s relation. Bruggeman’s relation is also not the most appropriate

relation for the catalyst layer, because this layer is formed of a bed of carbon particles

of similar size, not of different sizes. Finally, according to Bruggeman’s relation,

transport will occur even if the volume fraction of the transporting phase is very

small. This is in disagreement with percolation theory that suggests that in most

cases there is a minimum volume fraction of transporting phase necessary to form

a percolation network and, as a consequence, transport only occurs past a volume

fraction threshold [102,103].

In order to achieve more realistic effective parameters in the GDL, direct numerical

simulations should be used that take into account the anisotropic nature of the fibrous

media. For randomly oriented fibrous structures, Monte Carlo simulations to predict

effective diffusivities were performed by Tomadakis et al. [104] and they obtained the
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following relation

Deff = DεV

(
εV − εth
1− εth

)µ
Θ(εV − εth) (2.58)

where D is the diffusion coefficient, εV is the void fraction, εth and µ are constants that

depend on the orientation of the fibers and the function Θ(εV − εth) is the Heaviside

unit step function which takes the values

Θ(εV − εth) =

 0 if εV < εth

1 if εV ≥ εth
(2.59)

In the case of in-plane randomly oriented fibers, the in-plane and through-plane effec-

tive diffusivities can be obtained by taking µ = 0.521 and 0.785 respectively and εth =

0.11. This relationship is used in this thesis. These values were also discussed in Nam

et al. [105] and Pharoah et al. [18]. In the latter, numerical results are presented using

both Bruggeman’s relation and this last relation and the differences are highlighted.

For the GDL conductivity, to date, there have been no studies done to obtain

a relationship between the solid phase volume fraction and the anisotropic effective

conductivities. However, as discussed in the previous paragraph, it is clear that, due

to the in-plane orientation of the fibres in the GDL, the effective in-plane and through-

plane conductivities should have different values. This has been shown experimentally.

For example, the Toray TGP-H GDL series has in-plane and through-plane effective

resistivities of 0.08 and 0.0058 Ωcm [106]. Furthermore, it is most likely that a

different relationship with respect to the solid phase volume fraction exists. For this

reason, in this thesis, it is suggested that the GDL conductivity is given by

σeffS = σSε
µ
S (2.60)

where µ is 1.0 and 1.5 for the in-plane and through-plane conductivities respectively.

The difference in the exponent value is due to the nature of the GDL. In-plane, the

electrons are transported on the same fibers for large distances since the fibers are of
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3-12 millimeters in length [107]. On the other hand, in the through-plane direction,

the electrons must continuously jump from fiber to fiber which have diameters in the

order of 7 µm [107], resulting in a much more tortuous path and hence requiring

a larger coefficient to reflect the tortuous path. Notice that in the through-plane

direction, the expression becomes Bruggeman’s relation. The values of σS for the in-

plane and through-plane conductivites are 272.78 and 16.02 S/cm respectively. Due

to the lack of data available, these values are obtained by fitting the Toray TGP-H

series conductivities reported in reference [106], to the expression above.

CL effective parameters

Due to the random structure of the catalyst layer, the author suggests that the

most appropriate method for studying its effective transport properties is by using

percolation theory. This is in agreement with several articles in PEM and SOFC

modeling [39, 102, 108, 109]. Percolation theory tries to study the properties of ran-

domly distributed systems and, in particular, it can be used to study the properties

of random porous media. To begin the study of randomly distributed media using

percolation theory, it is necessary to prescribe a space where the medium is to be dis-

tributed, e.g. in a porous media where pores and solid will exist. To do so, imagine

a large array of place holders that together fill a space, such as small squares that

together form a surface like the one shown in Figure 2.4a. An infinite space divided

into small place holders, most commonly known as sites, is called a lattice. There

can be an infinite number of lattices depending on the space dimension, d, and lattice

structure.

In order to create the randomly distributed media, it is assumed that a site or

holder is either occupied or empty, with a probability p. Going back to the porous

media example, it is assumed that there is a probability p that a site is a solid and a

probability 1− p that is a pore. Then, using this probability and a random number

generator, the holders are fill out such that the result is a lattice such as the one in
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Figure 2.4b. From the figure, it can be observed that even though the distribution

is random, several groups of occupied neighboring sites have appeared. A cluster is

then defined as a group of neighboring sites. Neighboring sites are defined as occupied

sites that share at least one face in common (if they share a vertex they are known as

next nearest neighbors). Figure 2.4c shows the clusters formed in the square lattice.

It is easy to see that as the probability p increases, more and larger clusters will

form. At a specific probability pc, known as the percolation threshold, a cluster will

span from the top plane to the bottom plane of the lattice as in Figure 2.4a. For

probability p = 1, all sites are occupied and the randomly distributed media becomes

a homogeneous media.

Figure 2.4: Definition of a lattice, an occupied site and a cluster. (a) part of a square
lattice, (b) a square lattice with several occupied sites, (c) two clusters of different
sizes on the lattice, represented by the circle. Figure from reference [103]

Percolation theory is used to study, for any given lattice, the geometrical properties

of the clusters formed at a given probability, p; the probability at which a cluster that

spans from side to side of a lattice, known as an infinite cluster (usually for infinite

lattices) or percolating cluster (usually for finite lattices) is formed and, finally; the

effects of the probability p on properties of the distributed media. Analytical studies

exist for simple two dimensional lattices and for the Bethe lattices, but in general,

in order to obtain cluster properties and properties of complex randomly distributed

media Monte Carlo simulations are necessary. References [103, 110] contain a table
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of the most important properties for several lattices of two- and three-dimensions.

Percolation as defined thus far has been known as site percolation. However, there is

another type of percolation known as bond percolation. This case can be studied by

imagining that all sites in the lattice are occupied, and that the lines drawn between

neighboring lattice sites are open, with a probability of p, or closed, with a probability

of p− 1 [103].

Neglecting the effects of the agglomerate structure on effective transport prop-

erties, the catalyst layer can be idealized to be a randomly distributed media. The

catalyst layer can then be studied as a site or bond percolation problem in which

three types of sites of equal size exist: electron conductor sites (carbon black sup-

porting the catalyst), void space sites and electrolyte sites with probabilities xel, xm

and xv and xel + xm + xv = 1. Making the probabilities xel, xm and xv proportional

to the volume fraction of each one of the materials, the catalyst layer composition

is readily related to the probability of a site being occupied. Furthermore, for solid

oxide [102, 109, 111] and PEM [39, 47, 108] fuel cell studies, it is common to assume

that a three-dimensional face-centered cubic (FCC) lattice, which represents a close

packing of sites, can represent the catalyst layer appropriately [109, 111, 112] . Re-

cently, other lattices that account for random particle size have also been studied

for PEM fuel cells [113]. For this thesis, it is assumed that the sites are distributed

in a three-dimensional FCC lattice as illustrated in Figure 2.5. Figure 2.5 is a con-

ceptualization of a SOFC catalyst layer. Percolation theory to model catalyst layers

was first introduced in the solid oxide fuel cell (SOFC) literature because in SOFCs

the electrolyte is made of ceramic particles and the result is an almost ideal random

media. A 3D FCC lattice is formed by using the sites of a face-centred cube. Figure

2.5 is then produced by looking at a (111) plane of the lattice structure. In the figure,

each site is represented by a colored circle. We can see the formation of small clusters

for each type of site. Percolation theory can now be used with this lattice structure

to study the properties of the catalyst layer for a given catalyst layer composition.
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Figure 2.5: Percolation lattice of a SOFC anode catalyst layer. The black, grey
and white circles represent electric conductor or carbon grains, electrolyte and pores
respectively. The two solid lines show the current’s path through the system. The
dashed line is the fuel path to the reaction site. Figure from reference [111]
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In order for electrons to reach the catalytic sites, the catalyst layer needs a cluster

of electron conducting sites that is in contact with the GDL fibers as shown in Figure

2.5 by the black circles. Since electron conductive sites are placed randomly, it is

difficult to evaluate when a cluster will reach the GDL and how deep into the CL it

will go. However, percolation theory can easily be used to evaluate when a cluster is

formed that traverses the catalyst layer. This will happen at the percolation threshold.

In this work, it is assumed that the catalyst layer has zero conductivity if there is

not a percolating or infinite cluster formed, i.e. below the percolation threshold.

Notice that this is a conservative approximation because before a percolating cluster

is formed, small clusters could be formed next to the GDL that would allow partial

electron transport in the CL. When the probability of having an occupied site, in this

case a site that contains electron conductive material, increases above the threshold,

an infinite cluster is formed and conductivity increases following some function of the

probability of occupied sites.

Following the reasoning above, and noticing that εS, the volume fraction of the

solid phase, is equivalent to the probability of a site containing electron conductive

material, the effective electron conductivity can be estimated using [39, 47, 103, 108,

110,114]

σeffS = σS

(
εclS − εth
1− εth

)µ
Θ(εclS − εth) (2.61)

where σS is the electron conductivity of the pure electronic conductor material, usu-

ally carbon black supporting the catalyst, εclS is the volume fraction of the electron

conductive material and, εth and µ are the percolation threshold and, in principle, a

universal exponent respectively [103]. Finally, the term 1− εth in the denominator is

included so that at εS = 1, i.e. when the catalyst layer contains only solid, the effec-

tive electron conductivity is equal to the conductivity of the carbon black. This term

is not included in all references because percolation theory is primarily concerned

with proportionality and not with exact values; however, it is clear that at εS = 1,

σeff has to be equal to σS and therefore in this instance the term is necessary.
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In equation (2.61), all values are known constants but µ and εth. Out of these

two constants, it is well known that µ is a ’universal’ constant that is independent

of the lattice structure, and that it depends only on lattice dimensionality [103,110].

In particular, for two-dimensions, d = 2, it is well established that µ ≈ 1.3 and for

d = 3, µ ≈ 1.7 − 2.0 even though this result is more controversial [103, 110, 114]. In

this study, because the catalyst layer is a three-dimensional lattice, µ is set to 2.0 in

accordance with previously published work [39,108]. In order to obtain a satisfactory

relationship for the effective electron conductivity, it suffices to find a value for εth.

εth is the percolation threshold value, which is strongly dependent upon both the

lattice structure and its dimensionality. Even though the lattice dimensionality is

known, the lattice structure that approximates the catalyst layer is more difficult

to obtain. For a three-dimensional lattice, d = 3, the percolation threshold ranges

from values of 0.425 for site percolation on a diamond lattice to values of 0.119 for

bond percolation on a face-centered cubic (FCC) lattice [110]. Fortunately, Pantea

et al. [115] have published conductivity data for packed Vulcan XC-72 carbon black,

which is the most commonly used carbon for supporting the catalyst particles. This

data can be used to estimate the values of σS and εth. Note that in this case σS is not

taken to be equal to the conductivity of carbon because for εclS = 1 this value needs

to contain the contact resistances between carbon particles. To estimate σS and εth,

a least-square problem is solved to fit the data in reference [115] to equation (2.61).

After curve fitting, σS and εth take the values of 88.84S/cm and 0.118 respectively.

Notice that µ is a universal constant; therefore, it is not used as a fitting parameter.

Figure 2.6 shows the experimental data and a curve fit using the percolation equation

and also Bruggeman’s relation with the conductivity, σS, as a fitting parameter. It

is clear from the figure that there is an advantage to using percolation. The curve

obtained by percolation theory closely approximates the data from Pantea et al. in

the whole range of experimental values. On the other hand, Bruggemann’s equation

is only close to the experimental values for solid phase volume fractions of 0.3.
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Figure 2.6: Curve fit to the experimental data reported by Pantea et al. [115]

The threshold value obtained by curve fitting of 0.118 is very similar to the thresh-

old value of 0.119 for bond percolation in an FFC lattice. This data provides some

evidence that the most appropriate percolation type and lattice structure for mod-

eling the catalyst layer is a bond percolation on a FFC lattice. Since there is some

controversy regarding the value of µ, the curve fit was also performed with µ = 1.7,

i.e. its lowest value. In this case, σS and εth take the values of 67.54S/cm and 0.139.

The threshold value is slightly higher than the one predicted by bond percolation on

a FCC lattice. This value lies in between the threshold value for a bond percolation

of an FFC lattice and a body-centered cubic (BCC) lattice, i.e. 0.178, as shown in

table 2.1. The threshold obtained by curve-fitting the data from Pantea et al. is also

in agreement with recent publications [39, 108] where either site or bond percolation

on a face-centered cubic lattice was used. In reference [39] a value of εth = 0.12 (bond

percolation on a FFC lattice) was used. On the other hand, in reference [108], a

value of εth = 0.19 (site percolation on a FFC lattice) was used instead. Neither of
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Table 2.1: Sample percolation threshold for different three-dimensional, d = 3, lat-
tices. Data from [110]

Lattice Bond Site
Simple Cubic 0.24 0.307
Body-centered cubic 0.178 0.243
Face-centered cubic 0.119 0.195
Diamond 0.388 0.425

these publications provided a justification for the selection of the lattice structure.

Therefore, the present work provides the first study that includes a justification for

the use of a threshold for bond percolation on an FCC lattice.

Applying a similar reasoning to the electron conductive phase, and noticing that

εclN , the volume fraction of the electrolyte, is equivalent to the probability of a site

containing electrolyte, then, the effective proton conductivity of the catalyst layer

can be approximated by [39,47,103,108,110,114]

σeffm = σm

(
εclN − εth
1− εth

)µ
Θ(εclN − εth) (2.62)

where σeffm is the effective proton conductivity, σm is the proton conductivity of the

electrolyte, εth is the percolation threshold, µ is, in principle, a universal constant [103]

and Θ(εN − εth) is the Heaviside unit step function given in equation (2.59). It is

assumed that since both electrolyte and electronic conductor exist on the same lattice

coefficients, εth and µ, take the same values as in equation (2.61). The percolation

value of 0.119 for the proton conductivity can also be supported by its agreement with

the experimental data presented by Gode et al. [46] where for very small values of

electrolyte, a large decline in electrode performance can be observed. Based on their

data, the threshold of 0.119 might be a slightly conservative figure. This difference

is most likely due to the presence of conducting clusters that are in contact with the

membrane prior to the formation of a percolating network.
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Diffusivity in a random network is proportional to the conductivity of a random

resistor network [103]. Therefore, diffusivity will be related to the void or porous

volume fraction by a similar expression to the ones shown in the last two sections. The

reason for this proportionality is that in statistical physics diffusivity and conductivity

are both proportional to mobility; therefore, they must be proportional to each other.

Then, the effective diffusivity of species i, Deff
i , can be written as

Deff
i = Di

(
εclV − εth
1− εth

)µ
Θ(εclV − εth) (2.63)

where Di is the diffusivity constant of the gas i, in this case oxygen, in the absence of

network constraints, εclV = 1− εclN − εclS is the volume fraction of void space, εth and µ

are the percolation threshold and a ’universal’ constant respectively. εth and µ take

the same value as in equation (2.62) since pores, electrolyte and electronic conductor

exist on the same lattice and therefore, these coefficients must be the same. Notice

that in reference [108] the authors wrote that a different value for µ could be used

when estimating the diffusivity and the conductivity, even though in the article they

used the same value for simplicity. Taking into account that µ is, in principle, a

universal constant that depends only on dimensionality, and that conductivity and

diffusivity are proportional, the coefficient µ for diffusivity and conductivity should

always be the same according to percolation theory [103]. Finally, the percolation

threshold value of 0.119 is in accordance with the experimental data presented by

Gode et al. in reference [46] where for electrode porosities in the range of 0.2 - 0.1,

large drops in performance can be observed at high current densities.

2.1.2 Numerical solution

The system of partial differential equations (PDE) that describes the cathode elec-

trode model in equation (2.29) is discretized using the finite element method. In

particular, the Galerkin method is used with a set of second order elements. The
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implementation of the numerical procedure was performed using the linear solvers,

element shape functions and adaptive meshing algorithms given in deal.ii: Finite El-

ement Differential Equations Analysis Library, [116]. In this section, the variational

form of the problem is developed, the discretization of the variational equation is

described and, the algorithms used for the solution of the problem are stated.

Linearization and weak formulation

Each equation in the system of PDEs in (2.29) can be written in matrix notation as

∇ · (A(u)∇u) = f(u) (2.64)

where A is a second order tensor that provides the effective transport values in each

direction and f(u) is a nonlinear source term that could depend on all unknowns of

the system of equation. As an example, for the oxygen transport

A(u) = A =


ctotD

eff
O2,xx

0 0

0 ctotD
eff
O2,yy

0

0 0 ctotD
eff
O2,zz

 (2.65)

u =


xO2

φm

φS

 (2.66)

f(u) = 1
4F
∇ · i and u = xO2 .

Due to the nonlinear source term, f(u), the equations that form the system of

equations in (2.29) are all nonlinear. A nonlinear equation such as the one above can

be solved by means of an iterative procedure where a linearization of the system is

solved. Starting with an initial guess solution u0, a solution increment is obtained, δu

, by solving a linearization of the nonlinear problem. Then, the solution is updated
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un+1 = un+δu. This process is repeated until the solution increment, i.e. the solution

of the linearized system δu, approaches zero. This is known as the Newton-Raphson

method for solving nonlinear systems [117].

In order to be able to solve the nonlinear system of equations using the Newton-

Raphson method, a linearization of the nonlinear equations must be obtained. This is

done prior to obtaining the variational formulation of the equations by linearizing the

equations around un. Using directional derivatives of functional analysis [118, 119],

the left hand side of equation (2.64) becomes

∇ · (A(un+1)∇un+1) ≈ ∇ ·
[
A(un)∇un +

(
∂A(u)

∂uk

∣∣∣∣
u=un

δuk

)
∇uni + A(u)

∣∣∣∣
u=un

∇δu
]

(2.67)

and the right hand side of the equation becomes

f(un+1) ≈ f(un) +
∂f(u)

∂uk

∣∣∣∣
u=un

δuk (2.68)

where ∂
∂uk

represents the derivative with respect to unknown k of the problem and

δuk the increment of the unknown uk. Note that each of these increments, δuk, is

obtained by solving the complete system of discretized equations. Then, the terms

∂A
∂uk

∣∣∣∣
u=un

, f(u) and f(u)
∂uk

∣∣∣∣
u=un

can be understood as the coupling terms between the

different equations. Assuming that the diffusion coefficient and conductivities do not

depend on any of the unknowns, all the governing equations in the system in equation

(2.64) have a constant matrix A and, as a consequence, the term ∂A
∂uk

vanishes. Then,

using (2.67) and (2.68) the linearized form of equation (2.64) around un is

∇ · (A∇un + A∇δu) = f(un) +
∂f(u)

∂uk

∣∣∣∣
u=un

δuk (2.69)

Once the problem has been linearized, the Galerkin method is used in order to

obtain the variational or weak formulation. In order to obtain the weak formulation,

the equation is multiplied by a test function, v, and the equation is integrated over
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the domain. This results in

∫
Ω

v[∇ · (A∇un + A∇δu)]dΩ =

∫
Ω

v

[
f(un) +

∂f(u)

∂uk

∣∣∣∣
u=un

δuk

]
dΩ (2.70)

This last equation can be rearranged using the relation from vectorial calculus [49],

s(∇ · v) = ∇ · sv −∇s · v (2.71)

where s is a scalar quantity and v is a vector into

∫
Ω

∇ · [v(A∇un + A∇δu)] dΩ−
∫

Ω

(∇v) · (A∇un + A∇δu)dΩ =∫
Ω

v

[
f(un) +

∂f(u)

∂uk

∣∣∣∣
u=un

δuk

]
dΩ (2.72)

This equation can be further reduced using the divergence theorem [49]

∫
Ω

(∇ · v)dΩ =

∫
∂Ω

(n · v)d∂Ω (2.73)

where v is a vector function and n is the normal to the domain boundary, ∂Ω. Then,

the system of equations becomes

∫
∂Ω

n · vA∇un+1d∂Ω−
∫

Ω

(∇v) · (A∇un + A∇δu)]dΩ =∫
Ω

v

[
f(un) +

∂f(u)

∂uk

∣∣∣∣
u=un

δuk

]
dΩ (2.74)

where the surface integral is evaluated at the problem boundary, ∂Ω, and ∇un+1 =

∇un + ∇δu. Rearranging to leave on the left hand side only the terms with the
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unknown, δu,

−
∫

Ω

(∇v) · (A∇δu)dΩ−
∫

Ω

v
∂f(u)

∂uk

∣∣∣∣
u=un

δukdΩ =∫
Ω

vf(un)dΩ +

∫
Ω

(∇v) · (A∇un)dΩ−
∫
∂Ω

n · (vA∇un+1)d∂Ω (2.75)

Discretization and solution

Equation (2.75) is the weak formulation of the linearized problem. This equation is

solved in the computational domain by dividing the domain into finite elements and

solving the equations in each domain with the appropriate set of boundary condi-

tions. For elements inside a continuous domain, such as inside the GDL and catalyst

layer, the boundary integral is zero if the solution in continuous. At the interface

between domains and at the boundaries of the computational domain, the boundary

integrals must be evaluated. Fortunately, in this case, since there is continuity in the

solution values across the boundary between the GL and CL, the integral vanishes

and both GDL and catalyst layer can be treated as one single domain. Furthermore,

the boundary conditions that will be discussed in section 2.4.2 translate into a zero

value boundary integral for the system of equations. Therefore, the surface integral

vanishes entirely from the analysis. Finally, the Dirichlet boundary conditions are

imposed directly onto the final algebraic system of equations.

In order to solve the system of equations using the finite element method, the

solution of the system and the test functions are substituted by a linear approxima-

tion in each finite element. Then, the solution and test functions for equation i are

substituted by

δui = φlδi,comp(l)δul ∀l = 1, . . . , N i = 1, 2, 3 (2.76)

ui = φlδi,comp(l)ul ∀l = 1, . . . , N i = 1, 2, 3 (2.77)

vi = φpδi,comp(p)vp ∀p = 1, . . . , N i = 1, 2, 3 (2.78)
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where N is the degrees of freedom of the system, i.e. the number of equations times

the number of nodes, δi,comp(l) is the delta Dirac and comp(l) returns the solution

component i for the system degree of freedom l where i = 1, 2, 3 and l = 1, . . . , N .

For equation i in the system of equations, substituting (2.76), (2.77) and (2.78)

into (2.75), taking u = ui, v = vi and eliminating vi yields

−
∫

Ω

(∇(φpδi,comp(p)))·(A∇(φlδi,comp(l)δul))dΩ−
∫

Ω

φpδi,comp(p)
∂f(u)

∂uk

∣∣∣∣
u=un

φlδk,comp(l)δuldΩ =∫
Ω

φpδi,comp(p)f(un)dΩ +

∫
Ω

(∇(φpδi,comp(p))) · (A∇(φlδi,comp(l)ul))dΩ (2.79)

and taking into account that δui and δ are constant and rearranging

(∫
Ω

(∇φp · (δcomp(p),comp(l)A∇φl)dΩ +

∫
Ω

φpδi,comp(p)
∂f(u)

∂ucomp(l)

∣∣∣∣
u=un

φldΩ

)
(−δul) =∫

Ω

φpδi,comp(p)f(un)dΩ +

∫
Ω

∇φp · (δcomp(p),comp(l)A∇(φlu
n
l ))dΩ (2.80)

The last set of equations describes a system of algebraic linear equations,

Kpl(−δul) = fp (2.81)

where the negative sign is kept with the unknown vector in an attempt to make matrix

Kpl semi-definite positive, Kpl is known as the stiffness matrix, fk as the force vector

of the system and p, l = 1, . . . , N . From equation (2.80) and (2.81), the stiffness

matrix and the force vector are

Kpl =

∫
Ω

∇φp · (δcomp(p),comp(l)A∇φl)dΩ +

∫
Ω

φpδi,comp(p)
∂f(u)

∂ucomp(l)

∣∣∣∣
u=un

φldΩ (2.82)

fp =

∫
Ω

φpδi,comp(p)f(un)dΩ +

∫
Ω

∇φp · (δcomp(p),comp(l)A∇(φlu
n
l ))dΩ (2.83)

To obtain the values of the stiffness matrix and the force vector, the integrals
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are evaluated using a Gauss numerical integration with eight quadrature points. The

Dirichlet boundary conditions are applied to the system by eliminating unnecessary

rows. This results in a system of linear equations with a non-symmetric stiffness

matrix. The non-symmetry of the stiffness matrix is due to the gradient of the

source term. Due to the non-symmetric matrix, iterative linear solvers such as the

conjugate gradient method do not work [120]. In this case, to solve the linear system

of equations, either the direct solver UMFPACK [121,122] or the Generalized Minimal

Residual (GMRES or GMRes) algorithm with an incomplete LU (ILU) preconditioner

are used providing good convergence to the linear solution [116,120]. For the iterative

solver, the stopping criteria is that the residual of the linear system is smaller than

10−14. Even though both options can be used in the code developed by the author,

in this thesis, all the problems are solved using UMFPACK because it provides the

solution to the linear system approximately 20 to 50 times faster. The iterative solver

is implemented for the cases where the amount of memory available does not allow

the use of a direct solver.

The nonlinear system is solved iteratively using the Newton-Raphson algorithm.

Once the linear system in equation (2.81) is solved, the initial solution is updated

using a rudimentary line search to improve robustness of the algorithm such that

un+1 = un + αδu. For the line search, the residual of the updated solution with α

equal to one is computed to verify that the new solution is successful in reducing

the residual. If the updated solution does not yield an improvement, a new updated

solution is obtained by adding only half the solution update vector, α = 1/2, to

the original solution. This process is repeated until an improvement in the residual

is obtained or the solution update has been reduced ten times. Once the solution

update is obtained, the linearization and solution update processes are repeated until

the residual of the nonlinear governing equations is smaller than 10−12.

The nonlinear system is solved in a sequence of adaptively refined grids in order

to achieve a grid independent solution. An adaptive refinement loop is used in order
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to refine the mesh automatically during the solution process where the largest numer-

ical errors are predicted. This allows the solver to always provide a grid independent

solution, even though during optimization or parametric studies the design parame-

ters and, as a consequence, the physics of the problem are changing. Furthermore,

because refinement occurs only where the errors are largest, grid adaptivity reduces

computational cost by refining the grid only where necessary.

In the adaptive refinement loop, the error estimator in each cell used to decide

which areas must be refined is obtained using the a posteriori error estimator devel-

oped by Kelly et al. [123]

η2
K =

h

24

∫
∂K

[
ah(x)

∂uh
∂n

]
dA (2.84)

and implemented in deal.ii [116]. In this case, ∂K is the cell boundary, n is the normal

to the cell, uh is the oxygen and water mole fraction and the solid and membrane

potential components of the solution, and ah is set equal to one. Note that, after

using several error estimators, it was found that this error estimator resulted in a

faster convergence to a grid independent solution than using all components at once.

This is most likely due to the values of the electrolyte phase in the GDL which have

no physical meaning and result in a meaningless error estimator. The error estimator

is computed for each cell at each adaptive refinement and the 30% of cells with the

highest error are refined by dividing them into four cells, while the 3% of cells with the

smallest error estimation are coarsened by merging four neighboring cells. This loop

is terminated after a given number of grid refinements that yield a grid independent

solution.
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2.2 Membrane modeling

2.2.1 Governing equations

There are primarily two species transported in the membrane: water and protons. In

addition to these species, gases are also transported through diffusion; however, this

transport mechanism is not accounted for in the present work. Transport of hydrogen

and oxygen account for the cross-over losses, especially those losses that occur close

to open circuit voltage.

There are several models that predict the transport of water and protons through

the membrane. Of particular interest are the models by Bernardi et al. [32], Springer

et al. [54], Thampan et al. [124], Weber et al. [53,125,126] and Fimrite et al. [56,57].

Of all these models, Springer’s model (a semi-empirical model) is the most widely

used model. For simplicity, Springer’s model is chosen to be implemented in the fuel

cell framework. In the future, a more sophisticated membrane model should also be

implemented such as the binary friction model of Fimrite et al. [56, 57].

Springer et al. model

Inside the membrane, water is transported by two different mechanisms: electro-

osmotic drag and water diffusion. When using a liquid water equilibrated membrane,

convective transport should also be accounted for [125]. Springer et al. model does

not account for the latter transport process and, therefore should only be used for

water vapour equilibrated membranes or membranes with equal pressure in anode

and cathode.

Using the Springer et al. model, water transport by electro-osmotic drag is de-

scribed by

Nw,drag = nd
I

F
(2.85)
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where I is the proton flux. Taking into account that, by definition

ip = FNH+ = IF (2.86)

and that Ohm’s law states that

ip = −σm∇φm (2.87)

we can write the electro-osmotic drag in terms of the membrane potential as

Nw,drag = −nd
σm
F
∇φm (2.88)

where nd is the electro-osmotic drag coefficient, F is Faraday’s constant, σm is the

membrane conductivity and φm is the membrane electrical potential. In this equation,

both the electro-osmotic drag coefficient and the membrane conductivity depend on

the water content. The water content inside the membrane is defined by the variable

λ which is defined as

λ =
moles of sorbed water

moles of SO−3
(2.89)

and the moles of sulfonate heads, SO−3 , in the membrane are given by either its ion

exchange capacity (IEC) or its equivalent weight(EW) defined as

EW =
1

IEC
=

weight of dry polymer electrolyte in grams

moles of SO−3
(2.90)

The electro-osmotic drag coefficient is given by [54]

nd =
2.5λ

22
(2.91)
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The membrane conductivity is

σm(λ) = σm,30(λ) exp

[
1268

(
1

303
− 1

Tcell

)]
(2.92)

where Tcell is the cell temperature and

σm,30(λ) = 0.005139λ− 0.00326 forλ > 1 (2.93)

where σm,30 is in S/cm and Tcell is in Kelvin.

Water transport by diffusion in the membrane is given by [54]

Nw,diffusion = − ρdry
EW

Dλ∇λ (2.94)

where ρdry and EW are the membrane density in its dry state and its equivalent

weight, Dλ is the water diffusion coefficient and, finally, λ is the membrane water

content as defined in equation (2.89). The water diffusion coefficient is a function of

the water content and is given in Springer et al. [54] at λ > 4 by

Dλ = Dλ,3010−6 exp

[
2416

(
1

303
− 1

Tcell

)]
(2.95)

and

Dλ,30 = 2.563− 0.33λ+ 0.0264λ2 − 0.000671λ3 (2.96)

where Dλ,30 is in cm2/s and Tcell is in Kelvin.

More recently, Motupally et al. [127] have reported values for the Fickian diffu-

sion of water in the membrane by measuring the flux of water across NafionTM 115

membranes equilibrated on one side with liquid water and on the other with nitrogen
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Figure 2.7: Diffusion coefficient for different membrane water content at 80◦C.

gas. Motupally et al. suggest the following diffusion coefficients [127]

Dλ =

 3.10× 10−3λ(−1 + exp(0.28λ)) exp
(
−2436
Tcell

)
for 0 < λ ≤ 3

4.17× 10−4λ(1 + 161 exp(−λ)) exp
(
−2436
Tcell

)
for 3 < λ < 17

(2.97)

Figure 2.7 shows the value of the diffusion coefficient at different membrane water

content for a cell temperature of 80◦C. This figure highlights the main differences

between equations (2.94) and (2.97). The largest errors occur at medium water

contents, i.e. at about 50%RH. In this thesis, equation (2.95) is used to compute the

diffusion coefficient unless stated otherwise.

Finally, since water is neither produced nor consumed inside the membrane, a

water mass balance in the membrane leads to the following governing equation,

∇ ·Nw = ∇(Nw,drag +Nw,diffusion) = 0 (2.98)

Using equations (2.88) and (2.94) in the mass balance equation above, the gov-
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erning equation for water transport inside the membrane is obtained

∇ ·
[
−nd

σm
F
∇φm −

ρdry
EW

Dλ∇λ
]

= 0 (2.99)

where nd is the electro-osmotic drag coefficient, σm and φm are the membrane con-

ductivity and potential respectively, F is Faraday’s constant, ρdry and EW are the

membrane density in its dry state and its equivalent weight, Dλ is the water diffusion

coefficient.

The other species that is transported through the membrane are the protons. As-

suming that the only transport mechanism for proton motion is a potential gradient,

proton transport inside the membrane is given by Ohm’s law

NH+ =
i

F
=
σm
F
∇φm (2.100)

where σm is given by equation (2.92) and φm is the membrane potential. Finally,

since protons are neither produced nor consumed inside the membrane

∇ ·NH+ =
1

F
∇ · i = ∇ · i = 0 (2.101)

and substituting equation (2.100) into the previous equation the governing equation

for the proton transport is

∇ · [σm∇φm] = 0 (2.102)

Coupling of the membrane and the catalyst layer

Water content in the membrane is given by λ as defined in equation (2.89). In

the catalyst layer, three types of waters co-exist: water vapor in the wet-proofed

pores in the CL, liquid water in the CL and sorbed water in the membrane. These

three types of water must be in equilibrium at steady state. The value of λ at

equilibrium for any value of liquid and water vapor mole fraction is given by an
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empirical relation known as the sorption isotherm [53, 128]. The equilibrium λ value

for a liquid equilibrated membrane depends on the water temperature, the membrane

type and the pre-treatment, i.e. boiling water (E-form), drying at 80◦C (N-form) or

drying at 105◦C (S-form) [128]. In this thesis, it is assumed that water only exist

inside the membrane or as water vapour in the pores inside the CL. In the case of

a vapour equilibrated membrane, the equilibrium λ is independent of the membrane

form and only depends on the equivalent weight (EW) of the membrane, temperature

and water vapour mole fraction or water vapour activity [128]. At the temperatures

typical of a operating cell, i.e. at 353K, Hinatsu et al. [128] obtained the following

relationship between water activity and water sorbed in the membrane,

λ = 0.3 + 10.8aw − 16a2
w + 14.1a3

w for aw > 0.05 (2.103)

where aw is the water activity and is given by

aw =
pH2O

psat(Tcell)
, (2.104)

where pH2O = ptotxw is the partial pressure of water vapor at the membrane—gas

interface, Tcell is the cell temperature in degrees Celsius and psat(T ) is given by [54]

log10(psat(Tcell)) = −2.1794 + 0.02953Tcell − 9.1837× 10−5T 2.0
cell + 1.4454× 10−7T 3.0

cell

(2.105)

Figure 2.8 illustrates the shape of the sorption isotherm. At low water activity, the

amount of water in the membrane is low. Then, as the water activity increases,

membrane water content also increases slowly up to water activity values of around

0.75. At high water activities, the membrane water content raises rapidly up to a

value of 9.2 for a water activity of 1. Membrane water content at high temperatures

are much lower than water uptakes reported at lower temperatures, i.e. λ = 12

at 30◦C [54]. These values are in agreement with theoretical studies based on the
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Figure 2.8: Sorption isotherm for water uptake from water vapour by NafionTM ,
AciplexTM or FlemionTM membranes with similar EW of any form at 80◦C.

equilibrium of electrochemical potentials [53].

During steady state operation of the catalyst layer, the water vapour molar frac-

tion and the amount of water in the membrane should be in equilibrium; therefore,

a coupling term needs to be introduced to the equations that describe water vapour

and membrane water content transport. This term will guarantee that the membrane

water content and the water vapour are in equilibrium: it will guarantee that equation

(2.103) is satisfied everywhere in the catalyst layer. In order to do so, the following

source term is added to the membrane and water vapour transport equations

Sλ = k
ρdry
EW

(λeq − λ) in CL (2.106)

where k is a time constant and the term
ρdry

EW
is used in order to yield the same units as

the other terms in the equation. λ is in terms of number of moles of water per mole of

sulfuric acid heads, the term k
ρdry

EW
transforms these units into moles of H2O ·cm−3 ·s−1

in accordance with the other terms in the equations. Finally, the term λeq − λ where

λeq is given by equation (2.103) provides the driving force for λ. If the water vapor
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mole fraction is too high, then λeq will be larger than λ and Sλ will be positive. If Sλ

is a source term for the water vapor transport equation, this is equivalent to a water

sink (Note: Due to the negative sign of Fick’s law, a positive source term is a sink

and a negative source term is a source). This represents the water that is sorbed by

the membrane in order to achieve equilibrium. On the other hand, if there is a lack

of water vapor, then, λeq < λ and Sλ becomes a water source, modeling the release

of water by the membrane.

Taking into account the water transport and proton transport equations in the

previous sections, as well as the coupling function, the membrane, gas diffusion and

catalyst layer governing equations can be written, for the case of the Springer et al.

model, as

∇ · (cgDeff
O2
∇xO2) = SO2

∇ · (cgDeff
w ∇xw) = Sw + Sλ

∇ · (σeffm ∇φm) = SH+

∇ · (σeffS ∇φS) = Se−

∇
(
nd

σm

F
∇φm +

ρdry

EW
Dλ∇λ

)
= −Sλ


(2.107)

where the effective parameters are different in the membrane, GDL and CL and the

source term is

SO2 =

 0 in GDL and membrane

1
4F
∇ · i in CL

(2.108)

Sw =

 0 in GDL and membrane

− 1
2F
∇ · i in CL

(2.109)

SH+ =

 0 in GDL and membrane

∇ · i in CL
(2.110)

Se− =

 0 in GDL and membrane

−∇ · i in CL
(2.111)
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and, finally

Sλ =

 0 in GDL and membrane

k
ρdry

EW
(λeq − λ) in CL

(2.112)

where k is a time constant and λeq is given by equation (2.103). The source term Sλ

couples the water vapor activity to the membrane water content. The value of the

time constant k is of extreme importance in order to guarantee the coupling. For

k < 10−2, the coupling source term, Sλ becomes neglegible compared to the reaction

rate source term, Sw, and the coupling of the water vapor and the membrane water

content is very weak. Several authors have suggested that the transfer of water from

the vapor phase to the membrane is in the order of 100-1000s [129,130]. In this thesis,

the constant k is set to 10000 in order to guarantee the coupling between the CL and

the membrane.

2.2.2 Numerical solution

In this case, the governing equations for oxygen, water vapor and electron transport

remain the same. However, for the sorbed water and proton transport equations, the

coefficients of the governing equation are nonlinear; therefore, the assumption made

in order to obtain equation (2.70) in the previous section is no longer valid. In this

case, the governing equations need to be written in the following form

∇ · (Ai(u)∇ui) = f(u) (2.113)

where Ai is a matrix of coefficients that provides the effective transport values for

each unknown, i, of the equation and f(u) is a nonlinear source term that could

depend on all unknowns of the system of equation as in the previous case. Notice

that due to the isotropic properties of the membrane, Ai can be replaced by ai, a

scalar coefficient. This replacement is applicable to the transport of water inside the
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membrane. For example, for the water transport

aφm(u) = a3(u) = nd
σm
F

(2.114)

aλ(u) = a5(u) =
ρdry
EW

Dλ (2.115)

f(u) =

 0 in the GDL and membrane

Sλ in the CL
(2.116)

u =



xO2

xw

φm

φS

λ


(2.117)

To solve this equation, we follow the same process outlined in section 2.1.2; how-

ever, in this case, the term ∂A
∂uk

from the linerarization of equation (2.113) does not

vanish and an extra term appears in the equations. Furthermore, in the previous

cases, the only coupling between equations was due to the source term. In this case,

the right hand side contains additional couplings due to the existence of several un-

knowns inside the equation. Nevertheless, the linearization and discretization process

is similar to the one described in section 2.1.2 and therefore, it is not repeated here.
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2.3 Anode electrode modeling

2.3.1 Governing equations

In a proton exchange membrane fuel cell, the anode reaction is described by the

hydrogen oxidation reaction (HOR)

2H2 → 4H+ + 4e− (2.118)

The electrochemical reaction can be described either by a Butler-Volmer equation

[32, 131] or by the dual-path reaction [132]. Notice that Tafel’s equation cannot be

used due to the fast kinetics of the HOR. To describe the transport of hydrogen inside

the electrode, the same models are used as those for the cathode.

Governing equations for the pseudo-homogeneous model

Under the same assumptions and using a similar approach to the cathode electrode

model in section 2.1, the anode GDL and CL are governed by the following set of

equations

∇ · (cgDeff
H2
∇xH2) = SH2

∇ · (σeffm ∇φm) = SH+

∇ · (σeffS ∇φS) = Se−

 (2.119)

where the effective parameters are different in the GDL and CL and are obtained as

described in section 2.1 and the source term is

SH2 =

 0 in GDL

1
2F
∇ · i in CL

(2.120)

SH+ =

 0 in GDL

−∇ · i in CL
(2.121)



CHAPTER 2. PEM FUEL CELL MODELING 75

Se− =

 0 in GDL

∇ · i in CL
(2.122)

where in SH2 the number two in the denominator occurs because two electrons are

produced per hydrogen molecule consumed.

The anode mixture is a binary one. Therefore, having assumed that the electrode

mixture is at constant pressure and that convective transport is negligible [23, 54,

126,130,133–137], the species transport can be modeled using Fick’s law without the

necessary assumptions used the cathode, see equation (2.21). Once the mole fraction

of one of the two species is known, the mole fraction of the other specie needs to be

obtained using

xH2O + xH2 = 1 (2.123)

to guarantee mole conservation of the mixture.

In this model, the Bulter-Volmer equation is used to model the hydrogen reaction

∇ · i = Avi
ref
0

(
cH2,g|l

crefH2

)γ [
exp

(
αaF

RT
(φS − φm)

)
− exp

(
−αcF
RT

(φS − φm)

)]
(2.124)

where the specific reaction surface area per volume of catalyst layer, Av, is computed

using the expressions in equations (2.36) and (2.37). The electrochemical data is

obtained from the literature and is described in the following sections. The hydrogen

concentration at the surface of the infinitesimally thin film of electrolyte surrounding

the catalyst, cH2,g|l, is given by

cH2,g|l =
ctotalxH2

ĤH2,N

(2.125)

and the dimensionless Henry’s law constant is obtained using

ĤH2,N =
HH2,N10−6

RT
(2.126)
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In the latter equation, ĤH2,N is taken to be 6.94 × 1010 Pa·cm3

mol
[100]. This value it

taken as a constant in this work, but it is reported to change with cell temperature

and membrane hydration [138–143]. However, the data in the literature is scattered.

For example, Henry’s law values for hydrogen in NafionTM in reference [143] is more

than one order of magnitude smaller than the values reported by Gode et al. [142].

Also, some research, such as that of Broka et al. [138], only obtained gas permeation

properties instead of diffusion and solubility. Finally, some of the experiments have

only been performed at one temperature or relative humidity. Due to the lack of

a consistent expression for the hydrogen Henry constant and diffusivity, a constant

value is used in this thesis.

Governing equations for the agglomerate model

Under the same assumptions and using a similar approach to the cathode agglomerate

electrode model in section 2.1, the anode agglomerate governing equations are the

same as those in equation (2.119).

As in the cathode electrode, the main differences between the pseudo-homogenous

model and the agglomerate model are its effective transport properties and the source

term. The effective transport properties in the anode are obtained as discussed in

the cathode agglomerate model in section 2.1 with appropriate values for hydrogen

diffusivity. The source term is obtained using

∇ · i = 2F
ptotxH2

HH2,N

(
1

Erkc(1− εclV )
+

(ragg + δagg)δagg
aaggraggDH2,N

)−1

(2.127)

where the effectiveness factor and all the agglomerate parameters are computed simi-

larly to the cathode case and the physical parameters such as diffusivity and Henry’s

law are input data. The reaction rate, kc, is obtained using either the Butler-Volmer

equation (2.124) or the dual-pathway kinetic equations. They are both implemented

into the program. Unless otherwise stated, in this thesis, the dual-pathway kinetics
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are used to describe the hydrogen oxidation reaction (HOR) kinetics [132]. Using the

dual-pathway kinetics the reaction rate is given by

kc =
Av

2F (1− εV )crefH2

[
jOT

(
1− exp

(
− 2F

γRT
η

))
+

jOH

(
exp

(
F

2RT
η

)
− exp

(
− F

γRT
η

)
exp

(
− F

2RT
η

))]
(2.128)

where jOT = 0.47A/cm2, jOH = 0.01A/cm2, γ = 1.2 and crefH2
= 0.59× 10−6mol/cm3

[100] OR crefH2
= 0.4089× 10−4mol/cm3 [132] for pH2 = 1atm and T = 25◦C

2.4 Membrane electrode assembly (MEA) model-

ing

2.4.1 Governing equations

The governing equations for the complete MEA are obtained by combining the last

set of equations to obtain

∇ · (cgDeff
O2
∇xO2) = SO2

∇ · (cgDeff
w ∇xw) = Sw + Sλ

∇ · (σeffm ∇φm) = SH+

∇ · (σeffS ∇φS) = Se−

∇
(
nd

σm

F
∇φm +

ρdry

EW
Dλ∇λ

)
= −Sλ


(2.129)

where the effective parameters are different in the membrane, GDL and CL. Due

to the solution methodology, all equations need to be solved in all the domains, i.e.

GDL, CL and membrane. However, some equations are not necessary in some of the

cell domains. This is addressed by making the transport parameters almost zero.

In order to account for the impermeability of the membrane to water and oxygen
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transport, the diffusion coefficient of the membrane to water and oxygen are set to

10−10 and 10−7, respectively. The smaller value for oxygen is used because a larger

value did not affect the solution and made the algorithm converge quickly. The anode

diffusion coefficient to oxygen was also set to 10−7, because oxygen is not expected to

be in the anode. To prevent proton transport into both anode and cathode GDLs, the

proton conductivity in the GDL is set to 10−8. To prevent the transport of electrons

through the membrane, the membrane electron conductivity is set to 10−10. Finally,

in the GDLs the electro-osmotic drag coefficient is set to zero and the water diffusion

in the membrane, Dλ is set to 10−10. It should be noted that even though this method

gives appropriate results, a methodology to separate the domains is recommended for

future work, because it could reduce the number of degrees of freedom of the system

and therefore result in additional computational savings.

The source terms in the system of equations are given by

SO2 =

 0 in anode CL, GDL and membrane

1
4F
∇ · i in cathode CL

(2.130)

Sw =

 0 in anode CL, GDL and membrane

− 1
2F
∇ · i in cathode CL

(2.131)

SH+ =


0 in GDL and membrane

∇ · i in cathode CL

−∇ · i in anode CL

(2.132)

Se− =


0 in GDL and membrane

−∇ · i in cathode CL

∇ · i in anode CL

(2.133)

and

Sλ =

 0 in GDL and membrane

k
ρdry

EW
(λeq − λ) in both CLs

(2.134)
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Finally, note that the transport equation for the hydrogen mole fraction in equa-

tion (2.119) is not included in the system of equations. This is because the anode

contains a binary mixture. Since water transport is modeled in both anode and

cathode, the hydrogen mole fraction is obtained in the anode electrode using

xH2 = 1− xw (2.135)

This guarantees that the sum of the mole fractions is unity and removes an additional

equation from the system thereby increasing computational efficiency.

2.4.2 Computational domain and boundary conditions

The two-dimensional cross-section representation of the membrane electrode assembly

should include both CLs and GDLs, and the membrane with appropriate boundary

conditions for the gas channel-GDL and current collector-GDL interfaces. It is as-

sumed here that the solution is continuous on the interfaces between layers. Taking

advantage of geometric symmetry, the computational domain includes only half of

the gas channel and half of the current collector, as shown in Figure 2.9. There are

five types of boundaries

• Anode current collector at (x, y) = {x = 0, y = [0, Wcc

2
]}.

• Anode gas channel at (x, y) = {x = 0, y = [Wcc

2
, Wcc

2
+ Wch

2
]}.

• Symmetric boundaries at (x, y) = {∀x, y = 0 and Wcc

2
+ Wch

2
}.

• Cathode current collector at (x, y) = {x = Lgdla + Lcla + Lm + Lclc + Lgdlc , y =

[0, Wcc

2
]}.

• Cathode gas channel at (x, y) = {x = Lgdla +Lcla +Lm+Lclc +Lgdlc , y = [Wcc

2
, Wcc

2
+

Wch

2
]}.
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Figure 2.9: Computational domain and initial grid used to solve the equations of the
MEA model

where Lgdla , Lcla , Lm, Lclc , Lgdlc represent the anode GDL and CL, membrane and

cathode CL and GDL thicknesses respectively. Wcc and Wch represent the current

collector and channel width.
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The boundary conditions at the anode current collector (segment A-F in Figure

2.9) are set to

NO2 = n · (ctotDeff∇xo2) = 0 (2.136)

Nw = n · (ctotDeff∇xw) = 0 (2.137)

φS = dV (2.138)

NH+ = n · (σm∇φm) = 0 (2.139)

n · ∇λ = 0 (2.140)

where n is the surface normal and dV , is the potential across the cell.

The boundary conditions at the anode gas channel/electrode interface (segment

F-E) are set to

NO2 = n · (ctotDeff∇xo2) = 0 (2.141)

xw = x0
w,a (2.142)

Ne− = n · (σS∇φS) = 0 (2.143)

NH+ = n · (σm∇φm) = 0 (2.144)

n · ∇λ = 0 (2.145)

where the water mole fraction inside the pores at the GDL/gas channel interface is

assumed to be equal to that of the mixture inside the gas channel.
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The boundary conditions along the symmetry boundaries (segments A-B and D-E

in Figure 2.9) are set to

NO2 = n · (ctotDeff∇xo2) = 0 (2.146)

Nw = n · (ctotDeff∇xw) = 0 (2.147)

Ne− = n · (σS∇φS) = 0 (2.148)

NH+ = n · (σm∇φm) = 0 (2.149)

n · ∇λ = 0 (2.150)

The boundary conditions at the cathode current collector/electrode interface (seg-

ment B-C) reflect the fact that the cathode is taken as the reference potential and

are set to

NO2 = n · (ctotDeff∇xo2) = 0 (2.151)

Nw = n · (ctotDeff∇xw) = 0 (2.152)

φS = 0 (2.153)

NH+ = n · (σm∇φm) = 0 (2.154)

n · ∇λ = 0 (2.155)

Finally, the boundary conditions at the cathode gas channel/electrode interface

(segment C-D) are set to

xo2 = x0
o2

(2.156)

xw = x0
w,c (2.157)

Ne− = n · (σS∇φS) = 0 (2.158)

NH+ = n · (σm∇φm) = 0 (2.159)

n · ∇λ = 0 (2.160)
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where the oxygen concentration inside the pores at the GDL/gas channel interface is

taken as equal to the concentration of oxygen in the mixture inside the gas channel.

2.4.3 Input parameters

The input parameters to the membrane electrode assembly model are specified in Ta-

bles 2.2, 2.3, 2.4 and 2.5 for the operating conditions and geometry, anode electrode,

membrane and cathode electrode respectively. The data presented here is obtained

from the literature and the source of the data is specified next to the value. Further-

more, if no reference is given, the values were obtained as described in the previous

sections by curve fitting to experiments.

The geometrical values in Table 2.2 are standard values for GDL and CL. The

thickness of the membrane are given according to type of membrane. For NafionTM

membranes, the first two digits refer to the equivalent weight and the last one or two

digits refer to the thickness of the membrane in mils or ”milli-inches”. For example,

a NafionTM 117 membrane has an equivalent weight of 1100 g/mol and a thickness of

7mils, i.e. 178µm. In this case, a NafionTM 1135 membrane is used. The operating

conditions are the same as for Bender et al. [144]. These operating conditions have

been chosen in order to be able to readily validate the computational model with the

results in [144] in section 2.5.2. Note that the relative humidity (RH) is chosen to be

75% because authors do not report RH, and only acknowledge that humidification

levels are below 100%RH.

The physical, structural and electrochemical parameters for the anode electrode

are given in Table 2.3. Again, these values are obtained from the literature. The

diffusion coefficients and Henry’s law constant are reported for the given operating

conditions. When the operating conditions change, these values are computed for the

new conditions. The values for conductivities are obtained as described in section 2.1.

The structural parameters are given by the MEA information provided in reference
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Table 2.2: Membrane electrode assembly geometry and operating conditions

Geometry
Anode GDL thickness, Lgdla , [cm] 2.5× 10−2, [15]
Anode CL thickness, Lcla , [cm] 1.0× 10−3, [15]
Membrane thickness, Lm, [cm] 0.89× 10−2, NafionTM 1135
Cathode CL thickness, Lclc , [cm] 1.0× 10−3, [15]
Cathode GDL thickness, Lgdlc , [cm] 2.5× 10−2, [15]
Channel width, [cm] 0.1, [15]
Current collector width, [cm] 0.1, [15]
Cell operating conditions
T [K] 353, [15]
Anode operating conditions
p, [atm] 3, [15]
xH2 0.88326 (75%RH)
xw 0.11674 (75%RH)
Cathode operating conditions
p, [atm] 3, [15]
xO2 0.18549 (75%RH)
xN2 0.69777 (75%RH)
xw 0.11674 (75%RH)
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[144] or are obtained from other sources. Finally, the amount of electrolyte inside the

agglomerate is used to obtain a reasonable volume fraction of each material in the CL

and also as a fitting parameter. The structural parameters in Table 2.3 result in solid

phase, electrolyte and porosity values of 0.409, 0.384 and 0.207 respectively. There

is great uncertainty regarding the agglomerate radius and thin film surrounding the

agglomerate. Experimental studies and TEM and SEM images suggest values ranging

from 0.1 to 3 µm and 0 to 80 nm respectively [42,43,45,46,145]. In this case, values

of 1µm and 80nm are used since they are inside the range of values reported in

the literature and they provide a good fit to the experimental polarization curve in

reference [144]. The two sets of electrochemical data are for the pseudo-homogeneous

model using the Butler-Volmer equation, and for the agglomerate model using the

recently published [132] dual-path kinetics.

The membrane properties are given in Table 2.4. Of these parameters, the con-

stant k is the most important and it is used to couple the membrane water content

to the water content in the catalyst layer. A large value is needed for this constant

in order to guarantee that the sorption isotherm is followed closely.

The physical, structural and electrochemical parameters for the cathode electrode

are given in Table 2.5. The diffusion coefficients are obtained either from other

references or computed using the Chapman-Enskog theory at the given operating

conditions. The structural parameters have been chosen to be the same as the anode

electrode parameters because in most MEAs, both electrodes have the same structure.

The electrochemical data is obtained from the data reported by Parthasarathy et

al. [96, 97]. The kinetics for the oxygen reduction reaction reported in that article

are divided between two regimes at high and low voltages. However, Neyerlin et

al. suggest that the second regime was due to mass transport limitations [148].

Therefore, in this thesis, low voltage kinetics are used. For the low oxygen kinetics,

Parthasarathy et al. suggest that the oxygen reaction is first order and the current
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Table 2.3: Anode gas diffusion layer and catalyst layer physical and electrochemical
properties

Constants
ρPt, [g · cm−3] 21.5, [20]
ρc, [g · cm−3] 2.0, [20]
ρN , [g · cm−3] 2.0, [20]
Anode GDL and CL physical properties
DH2,w, [cm2 · s−1] 0.34952, [146]

HH2,N , [Pa·cm
3

mol
] 6.69× 1010, [100]

DH2,N , [cm2 · s−1] 12.8× 10−6, [100]

σgdlS,XX , [S · cm−1] 16.03

σgdlS,Y Y , [S · cm−1] 272.78
σclS , [S · cm−1] 88.84
Anode GDL and CL structural properties

εgdlV 0.6
mPt, [mg/cm2] 0.2, [144]
Pt|C, [-] 0.2, [144]
ragg, [µm] 1.0, [15]
εagg, [-] 0.35, this work
δagg, [nm] 80, [15]
Anode CL electrochemical properties -
Dual path kinetics, eq. (2.128)
jOT ,[A · cm−2] 0.47, [132]
jOH ,[A · cm−2] 0.01, [132]
γ,[-] 1.2, [132]

crefH2
, [mol/cm3] 0.59× 10−6, [100,147]

Anode CL electrochemical properties -
Butler-Volmer kinetics, eq. (2.124)
αa,[-] 0.5, [32]
αc,[-] 0.5, [32]
γ,[-] 0.25, [32]

crefH2
, [mol/cm3] 5.64× 10−5, [32]

iref0 , [A · cm−2] 1 [32]
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Table 2.4: Membrane physical and electrochemical properties

Membrane properties
EW , [g/mol] 1100, [54]
ρdry, [g/cm3] 2.0, [54]
k, [1/s] 10000, this work

density and pressure are related by

log10(i0) = log10(pO2)− 7.89685 (2.161)

at 323K where i0 is in A/cm2, pO2 is in atm and the value 7.89685 is given by

interpolating the data in reference [97] to an oxygen partial pressure of 1atm. Using

this equation, the exchange current density for dry air (pO2=0.21) at 323K is i0 =

2.663× 10−9A/cm2. Then, using the activation energy for the current density given

in reference [96], 73269J/mol, the current density for the ORR at any temperature

can be obtained using

i0 = 103.271−3826 1
T (2.162)

This expression can be used as the exchange current density with an oxygen reference

concentration of 0.725 × 10−5mol · cm−3. For dry air (pO2=0.21) and 353K, i0 =

2.707× 10−8A/cm2.

2.5 Validation of the numerical code

In the following section, the computational program developed in the thesis is val-

idated both numerically and experimentally. Both numerical and experimental val-

idations involve the comparison of polarization or I-V curves. Such curves plot the

cell potential vs. the current density of the cell. In this thesis, the cell voltage is not

specified; instead, a voltage across the MEA, dV , is used for the boundary conditions
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Table 2.5: Cathode gas diffusion layer and catalyst layer physical and electrochemical
properties

Constants
ρPt, [g · cm−3] 21.5, [20]
ρc, [g · cm−3] 2.0, [20]
ρN , [g · cm−3] 2.0, [20]
Cathode GDL and CL physical properties
DO2,N2 , [cm2 · s−1] 0.091368, [146]
Dw,N2 , [cm2 · s−1] 0.098919, [146]

HO2,N , [Pa·cm
3

mol
] 3.1664× 1010, [15]

DO2,N , [cm2 · s−1] 8.45× 10−6, [15]

σgdlS,XX , [S · cm−1] 16.03

σgdlS,Y Y , [S · cm−1] 272.78
σclS , [S · cm−1] 88.84
Anode GDL and CL structural properties

εgdlV 0.6
mPt, [mg/cm2] 0.2, [144]
Pt|C, [-] 0.2, [144]
ragg, [µm] 1, [15]
εagg, [-] 0.35, [15]
δagg, [nm] 80, [15,145]
Cathode CL electrochemical properties
α 1, [96, 97,148]
n 4, [15, 96,97]
γ 1.0, [15, 96,97]

iref0 , [A · cm−2] 2.707× 10−8, [96, 97]

crefO2
, [mol · cm−3] 0.725× 10−5, [96, 97]
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(2.151) and (2.136). Given the MEA voltage drop, dV , the cell potential is

Vcell = Eth − dV (2.163)

where Eth is the theoretical cell voltage or potential in Volts and is given by [15]

Eth = 1.229− 8.456× 10−4(T − 298.15)

+ 4.31× 10−5T (ln(pH2) +
1

2
ln(pO2)) (2.164)

In this case, assuming a pressure and relative humidity at both anode and cathode of

3 atm and 75%, the partial pressures for hydrogen and oxygen are pH2 = 2.6498atm

and pO2 = 0.5565atm. Therefore, Eth is 1.2123V.

The current density is obtained during post-processing. The cell current density

per unit area can be obtained by integrating the volumetric current density over the

volume of either the anode or cathode CL,

f(u,p) = i(xo2 , φS, φm;mPt, εagg, P t|C, εgddV ) =
1

H

∫ H

0

∫ L

0

∇ · idxdy (2.165)

where ∇ · i is given in equation (2.33), H is the height of the domain and L is the

width of the domain, i.e. the thickness of the CL.

2.5.1 Grid study

Before any simulations are performed, a grid study is conducted to establish the

number of adaptive refinements that produce a grid independent solution. The current

density produced by the MEA is used as the indicator of a grid independent solution.

When the current density does not change significantly between grid levels, the grid

will be assumed to produce solution independent results. Figures 2.10 and 2.11 show

a grid study at medium and high current densities. In both cases, the evolution of
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the current density is plotted against both a globally (dashed line) and an adaptively

(solid line) refined grid. These figures show that after the first global refinement, the

current density changes very slightly, i.e. less than 1%; therefore, a grid independent

solution can be quickly achieved with approximately 8,000 degrees of freedom (DOF).

Figures 2.10 and 2.11 show the advantage of using adaptive refinement. In both cases,

the adaptively refined grid converges faster to a grid independent solution. This can

be easily observed in Figure 2.11 where the adaptive grid with 28,000 DOFs gives

the same solution as the globally refined grid with 115,000 DOFs. The reason for

the faster convergence is that the adaptive grid takes into account the physics of the

problem by means of an error estimator that indicates where the grid needs to be

refined. For the reminder of this thesis, an adaptive grid with approximately 28,000

DOFs will be used.
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Figure 2.10: Grid study at medium current densities. The solid and dashed lines
show the evolution of the current density as the grid is both adaptively and globally
refined, respectively.



CHAPTER 2. PEM FUEL CELL MODELING 91

103 104 105 1060.9

0.901

0.902

0.903

0.904

0.905

0.906

0.907

0.908

0.909
Grid study for dV = 0.7V

Degrees of freedom

Cu
rre

nt
 d

en
sit

y 
[A

/c
m

2 ]

 

 
Adaptive refinement
Global refinement

Grid used in this thesis

Figure 2.11: Grid study at high current densities. The solid and dashed lines show
the evolution of the current density as the grid is both adaptively and globally refined,
respectively.

2.5.2 Experimental validation

In order to validate the proposed two-dimensional MEA model, polarization curves

obtained using the numerical code and obtained from experimental studies are com-

pared using the same input parameters. In this thesis, a two-dimensional through-the-

channel model has been developed. As a result, the numerical model does not account

for the consumption of reactants as they travel through the gas channel inside the cell

and it assumes a constant mole fraction of reactants in the MEA-channel interface.

For this reason, only experiments performed at very high stoichiometric values for

both oxygen and hydrogen can be used for validation. This means that commonly

used data for validation such as the experimental polarization curves obtained at low

stoichiometries for a complete cell such as that reported by Lin Wang et al. cannot be

used [149, 150]. Because polarization curves at high stoichiometries are seldom pub-

lished, data from a segmented cell study is used for validation in this thesis. Several

research groups have developed segmented cells in the past few years [144, 151–157].
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In this thesis, the data from Bender et al. [144] is used to perform the validation of

our numerical model, because it provides the most detailed explanation of the MEA

used, and also of the experimental set up. Tables 2.2, 2.3, 2.4 and 2.5, provide the

input data for the simulations. All the data used for the validation is either from the

experimental setup given in reference [144] or other sources as described in section

2.4.3.

Figure 2.12 shows the polarization curve reported by Bender et al. for the first

segment of the cell, and the polarization curve obtained from the numerical code.

The experimental curve is obtained for the first segment of the cell because it is

in this segment alone that the oxygen and water vapour concentrations are known.

Regarding water concentration, the humidifier temperature is equal to the cell tem-

perature and therefore, the inlet air should to be fully saturated. However, Bender

et al. report that, even in this case, it was observed that the air was not fully hu-

midified. Therefore, polarization curves for 75% and 100% relative humidities are

given. It can be observed that the experimental curve falls between the two curves

obtained experimentally, demonstrating good agreement between numerical and ex-

perimental data in the whole range of operating conditions. Of special importance is

the agreement at high current densities, which is only made possible by the use of the

agglomerate model. The agglomerate radius used is 1µm. This is quite a large radius

when compared with those reported by catalyst layer analyses using SEM and TEM

imaging, but it is of the same order as those reported by fitting polarization curves

to experimental data. This suggests that the agglomerate radius might be used as

a numerical tool to account for transport losses due to the structure of the catalyst

layer, and that it could be interpreted as the mean path that the oxygen needs to

travel inside the electrolyte phase before it can react. This value might not be easy

to quantify experimentally.

A more thorough experimental validation of the computational model is not pre-

sented here due to the lack of experimental data at high stoichiometric values and
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Figure 2.12: Polarization curves from experimental data and numerical data at 75%
and 100% RH

for different MEAs. In order to perform a more thorough validation, polarization

curves of several fuel cells with different MEAs operating at high stoichiometric val-

ues should be obtained and compared to the results from the numerical program.

Also, local current distributions should be obtained since it is well known that cells

under different regimes can produce similar polarization curves [37].

2.5.3 Numerical validation and performance evaluation

The model presented in this thesis has been developed entirely by the author in C++

using the deal.ii finite element libraries [116]. Therefore, in addition to the previous

experimental validation, it is also desirable to validate the code numerically. Such

validation serves a dual purpose: a) to guarantee that the developed program is free

of any programming errors; and b) to compare its computational speed with respect

to another commercial software. In this case, the test case solved above is solved
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Figure 2.13: Polarization curves obtained with the code developed (FCST) in this
thesis and COMSOL

using both the developed code (FCST) and the commercial code COMSOL [158].

The linear solver used is the same for both programs, namely UMFPACK. The final

grid in both cases has approximately 25,000 DOF. The COMSOL model contains the

same equations and input parameters as the model presented in this thesis, except

that uses a pseudo-homogeneous anode model because the dual-path kinetics model

did not converge. In order to validate the results, both codes are run with a pseudo-

homogenous anode model. The COMSOL model was developed by Ron Songprakorp

[159]. The polarization curves are shown in Figure 2.13.

Figure 2.13 shows that identical results are achieved using both software programs.

In a comparison of computational speed when solving a single point on the polariza-

tion curve, COMSOL was approximately 3 to 4 times slower than FCST. Because the
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same linear solver was used, this slow-down was most likely caused by a combination

of the Newton loop and by the matrix assembly procedure.

2.6 Numerical results and parametric studies

In this section, the numerical code developed and validated in previous sections is

used to study the transport processes occurring inside the fuel cell and the effects of

GDL and CL structure.

2.6.1 Transport processes inside the MEA

The transport processes occurring inside the fuel cell are studied in detail here for the

base case. In particular, the anode and cathode transport processes and reactions and

water transport inside the MEA are investigated for low, medium and high current

densities.

MEA operation at low current densities

Figures 2.14, 2.15 and 2.16 show the transport processes occurring inside the anode

and cathode of the fuel cell and the water transport inside the membrane and CL

when a 0.4V voltage is imposed across the MEA. The corresponding current density

is 0.1627A/cm2.

Figure 2.14 shows the hydrogen mole fraction, electrolyte phase water content,

overpotential, and volumetric current density in the anode catalyst layer. The hy-

drogen mole fraction varies only slightly inside the CL, and it is higher than the gas

channel mole fraction, 0.8833, in the area under the gas channel, and lower in the

area under the current collector. The increase in hydrogen mole fraction in the area

under the gas channel may appear counter-intuitive when considering that hydrogen
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is being consumed in the CL. However, this phenomenon can readily be explained by

examining the water vapor mole fraction or, since they are coupled, the electrolyte

water content in Figure 2.14. In the area under the channel, membrane water con-

tent, and, therefore, water mole fraction in the anode mixture, is low because water is

transported from anode to cathode via electro-osmotic drag. Since the anode mixture

is a binary mixture, this reduction in water vapor results in an increase of the hydro-

gen mole fraction. On the other hand, the water content in the CL is highest under

the land area. In this region, water is being transported from cathode to anode by

back-diffusion and the water vapor mole fraction increases. As a result, the hydrogen

mole fraction has to decrease. Water transport is the dominant transport process in

the anode that while only a half mole of hydrogen is necessary in the electrochemical

reaction to produce a proton, each proton is able to drag up to one water molecule,

as shown in equation (2.91). This means that water is evacuated from the anode very

rapidly. This causes that the hydrogen mole fraction increases inside the anode CL

(2.135). This suggests that in order to account for the reduction in the hydrogen con-

centration due to its consumption in the electrochemical reaction, the assumption of

a constant concentration of the mixture of hydrogen and water needs to be revisited.

However, given that the hydrogen mole fraction changes by less than 2%, even at

high current densities, we follow the practice adopted in previous work and neglect

convection in the anode [23,54,126,130,133–137].

Figure 2.14 also shows the overpotential and the volumetric current density gen-

erated in the anode. Both volumetric density and overpotential are almost zero in

most of the catalyst layer. They then increase near the CL-membrane interface, but

even there, the overpotential remains very small given the extremely fast hydrogen

kinetics.

Figure 2.15 shows the oxygen mole fraction, electrolyte phase water content, over-

potential and volumetric current density in the cathode CL. Oxygen is well distributed

throughout the catalyst layer with slightly higher concentrations under the gas chan-
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Figure 2.14: Contour plots of the hydrogen mole fraction, electrolyte phase water
content, overpotential and volumetric current density in the anode catalyst layer at
a voltage across the MEA of 0.4V
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Figure 2.15: Contour plots of the oxygen mole fraction, electrolyte phase water con-
tent, overpotential and volumetric current density in the cathode catalyst layer at a
voltage across the MEA of 0.4V
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Figure 2.16: Contour plots of the relative humidity in the anode and cathode GDL
and CL, and membrane and CL electrolyte water content at a voltage across the MEA
of 0.4V

nel at the GDL-CL interface. The electrolyte water content is quite uniform with

higher values in the middle of the CL, under the land area. The electrolyte water

content distribution highlights the different mechanisms for water transport. Near

the membrane, water is diffusing back to the anode due to membrane water content

concentration gradients. Near the CL-GDL interface, water is also diffusing toward

the gas channel since the water mole fraction in the channel is lower. The net re-

sult is that higher water concentrations are observed inside the CL where the water

that is produced by the reaction is able to remain. Similarly, water content is higher

under the land area because diffusion of water to the gas channels is more difficult.

The distribution of the overpotential and volumetric current density is quasi one-

dimensional through most of the cathode, with higher values near the CL-membrane

interface. The overpotential is of the order of 0.36, i.e. 90% of the voltage drop across

the MEA is due to the ORR kinetics.
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Finally, Figure 2.16 shows the water transport inside the MEA. In the anode,

under the channel water is dragged to the cathode, and under the land, water is

transported by back diffusion. The membrane water content, λ, is between 5 and 7,

with higher water content on the cathode side. Finally, the cathode relative humidity

reaches 88% under the land due to water produced by the ORR.

MEA operation at medium current densities

Figures 2.17, 2.18 and 2.19 show the transport processes inside the MEA at a voltage

across the MEA of 0.6V, i.e. a cell voltage of 0.593V. At this cell voltage, the cell’s

current density is 0.6810A/cm2.

Figure 2.17 shows the hydrogen mole fraction, electrolyte phase water content,

overpotential and volumetric current density in the anode catalyst layer. The contour

plots exhibit similar features to the ones at low current density in Figure 2.14. Again,

due to water transport from anode to cathode the hydrogen mole fraction increases

with respect to the channel mole fraction; however, this increase is less than 2%.

In this case, the hydrogen mole fraction increases everywhere in the CL indicating

that water is being removed everywhere in the anode by electro-osmotic drag. The

reaction kinetics are again concentrated at the CL-membrane interface.

Figure 2.18 shows the contour plot of the different species in the cathode CL and

the ORR. The figure shows that the oxygen mole fraction is significantly reduced

at the CL-membrane interface near the land area. This causes the ORR to become

less uniform and the reaction under the land area starts to be slightly lower. In

Figure 2.15 the volumetric current density contour lines are almost vertical. This

is not the case in Figure 2.18, where the contour lines exhibit a more pronounced

arching, indicating a reduction of the reaction under the land area. The catalyst

layer electrolyte water content is essentially uniform with λ ≈ 9.2. This value of λ

corresponds to a membrane equilibrated with fully saturated air. The value of 9.2
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Figure 2.17: Contour plots of the hydrogen mole fraction, electrolyte phase water
content, overpotential and volumetric current density in the anode catalyst layer at
a voltage across the MEA of 0.6V
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Figure 2.18: Contour plots of the oxygen mole fraction, electrolyte phase water con-
tent, overpotential and volumetric current density in the cathode catalyst layer at a
voltage across the MEA of 0.6V
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Figure 2.19: Contour plots of the relative humidity in the anode and cathode GDL
and CL, and membrane and CL electrolyte water content at a voltage across the MEA
of 0.6V

is the maximum allowed because the model is single-phase and therefore, only water

vapor is accounted for. Finally, the overpotential in the cathode is in the order of

0.425V, this is less than 75% of the total MEA losses. This shows that ohmic losses

in the membrane become proportionally larger with increasing current density.

Water content in the anode GDL and CL, membrane and cathode CL and GDL

is shown in Figure 2.19. The relative humidity in the anode GDL and CL is shown in

the left figure with the CL represented by the dashed rectangle. The relative humidity

in the anode decreases near the membrane. This is due to the dominant effect of the

electro-osmotic drag compared to back-diffusion. This can also be observed by exam-

ining the membrane water content which varies significantly from anode to cathode

reaching a maximum value of 9.2 at the cathode CL. The relative humidity in the

cathode is close to 100%, thereby demonstrating that the air in the cathode is fully

saturated. Since the model is single-phase, the water condensation that might occur
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in the CL and GDL is not accounted for. The results of the model are therefore only

valid when saturation of the media by liquid water is small and the effect of liquid

water on reactant transport is negligible. This assumption is justified by the results

published by You et al. [160] and Berning et al. [34] showing that even at high current

densities, e.g. 1.2 A/cm2, saturation of the porous media is less than 10%. Several

recent results disagree with the previous data showing high values of saturation in

both CL and GDL [130, 136, 137]. Two-phase water transport is still a very active

area of research and new data is necessary in order to understand: a) the phases of

the water produced in the cathode; b) the water condensation and evaporation rates;

c) the water transport mechanisms in GDL and CL. Two-phase flow is outside the

scope of this thesis and will not be discussed further. In this thesis, it is assumed that

water is only transported as water vapor. Notice also that this assumption does not

affect oxygen concentration because oxygen and water transport are only dependent

on their respective gradient in the context of Fick’s law.

MEA operation at high current densities

Figures 2.20, 2.21 and 2.22 show the transport processes inside the MEA at a voltage

across the MEA of 0.8V, i.e. a cell voltage of 0.393V. The corresponding cell current

density is 1.0962A/cm2.

Figure 2.20 shows the hydrogen mole fraction, electrolyte phase water content,

overpotential and volumetric current density in the anode catalyst layer. The contour

plots are similar to the ones at low and medium current densities in Figures 2.14 and

2.17. Comparing the volumetric current density contour plot to those at low and

medium current densities, it can be observed that a larger section of the catalyst

layer is utilized in this case. Also, the effect of electro-osmotic drag becomes more

important as the current density increases. In this case, lambda values of less than 4

are observed under the land area, leading to an increase in ohmic losses in the anode

CL.
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Figure 2.20: Contour plots of the hydrogen mole fraction, electrolyte phase water
content, overpotential and volumetric current density in the anode catalyst layer at
a voltage across the MEA of 0.8V
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Figure 2.21: Contour plots of the oxygen mole fraction, electrolyte phase water con-
tent, overpotential and volumetric current density in the cathode catalyst layer at a
voltage across the MEA of 0.8V
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Figure 2.22: Contour plots of the relative humidity in the anode and cathode GDL
and CL, and membrane and CL electrolyte water content at a voltage across the MEA
of 0.8V

Figure 2.21 shows the contour plot of the various species, overpotential and the

ORR in the cathode CL. A significant reduction of the oxygen mole fraction can be

observed at the CL-membrane interface near the land area compared to the contour

plots for low and medium current density conditions. This results in a non-uniform

volumetric current density with highest currents under the gas channel, near the

membrane. The overpotential in this case is around 0.49V, similar to the value at

medium current densities. Given that the anode overpotential is at most 40mV and

that GDL ohmic losses are less than 10mV, the ohmic losses due to the membrane

are of the order of 0.3V. The different potential losses in the GDL and the membrane

are shown in Figure 2.23. The ohmic losses at the membrane for a current density of

≈ 1A/cm2 represent a substantial contribution to the cell voltage losses. The highest

gradient in the electrolyte potential is observed near the anode consistent with the

lower water content due to dry-out via electro-osmotic drag.
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Figure 2.23: Contour plots of the solid phase potential in the anode and cathode
GDL and CL, the CL and membrane electrolyte phase potential at a voltage across
the MEA of 0.8V

Water content in the anode GDL and CL, membrane, and cathode CL and GDL

are shown in Figure 2.22. These contours are very similar to those at medium current

densities; however, the anode’s relative humidity is lower. This effect results in slightly

lower membrane conductivity near the anode electrode, and therefore, in increased

ohmic losses. Again, the cathode CL and GDL are saturated and the results of the

single-phase model need therefore to be interpreted with caution.

2.6.2 Effect of catalyst layer structure: agglomerate vs. pseudo-

homogeneous models

Two models have been presented to represent the processes occurring inside the fuel

cell electrodes. In this section, the pseudo-homogeneous and agglomerate models

are compared. Since the anode kinetics model used by the pseudo-homogeneous and

agglomerate models are different, in this section we will compare the following MEA
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models:

• Case 1: Anode and cathode modeled using the pseudo-homogeneous model.

• Case 2: Anode modeled using the pseudo-homogeneous and cathode using the

agglomerate models.

This permits to assess the models predictive capabilities of mass transport limitations

at the cathode without accounting for the different anode kinetics and hydrogen

mass transport. The agglomerate model depends on two parameters that define the

structure of the catalyst layer, namely, the radius of the agglomerate, ragg, and the

thickness of the electrolyte thin film surrounding the agglomerates, δagg. Four catalyst

layer structures are compared to the pseudo-homogeneous models:

• ragg = 1µm and δagg = 80nm.

• ragg = 0.5µm and δagg = 40nm.

• ragg = 0.25µm and δagg = 20nm.

• ragg = 0.125µm and δagg = 10nm

These structural parameters are chosen in order to keep the volume fraction of solid,

electrolyte and void space the same for all cases, namely, 0.409, 0.384 and 0.207

respectively. To solve the pseudo-homogenous model, these volume fractions are also

used and the structural parameters are ignored. The input data for both agglomerate

and pseudo-homogenous models are given in the Tables in section 2.4.3.

Figure 2.24 shows the polarization curves for the pseudo-homogeneous (Case 1)

and the agglomerate (Case 2) models, illustrating the effect of the agglomerate struc-

ture on the fuel cell performance. When the agglomerate structural parameters are

large, i.e. ragg = 1µm and δagg = 80nm, the polarization curve obtained using the
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Figure 2.24: Polarization curves obtained using a pseudo-homogeneous (Case1) model
and an agglomerate model (Case 2)

agglomerate model shows substantial mass transport limitations and differs signif-

icantly from the curve obtained using the pseudo-homogeneous model. A steeper

slope is observed in the agglomerate model polarization curves due to a combination

of proton and oxygen transport losses.

As the agglomerate structural parameters are reduced, the polarization curves

obtained from the two models become almost identical. This occurs for structural

parameters ragg ≤ 0.25µm and δagg ≤ 20nm. These results suggest that even though

the catalyst layer is known to be heterogeneous, if the agglomerates are small the cata-

lyst layer can be considered homogeneous and modeled using the pseudo-homogeneous

model.

Interestingly, most fuel cell performance curves show mass transport limitations

that are not well captured by the pseudo-homogeneous models. On the other hand,

values of the order of ragg ≤ 0.25µm and δagg ≤ 20nm have been reported in the liter-
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ature as good estimates of the agglomerate sizes by BET and TEM observation [46].

These apparently conflicting data suggest that the agglomerate’s size is not represen-

tative of the actual CL structure, but it should instead be interpreted as representing

the mean path that dissolved oxygen must travel before reaching a reaction site. The

larger size of the agglomerates with respect to the physical CL structure might be

due to the flooding of small hydrophilic pores inside the CL. Given that flooding of

the CL is likely to occur at medium and high currents as shown in Figures 2.19 and

2.22, and that the mass transport limitations due to the agglomerate structure are

only important at the same current densities, the author believes that this might be

a reasonable interpretation.

2.6.3 Effect of the gas diffusion layer anisotropy

The gas diffusion layer anisotropy affects both gas and electron transport. In this

section, anode and cathode GDLs are modeled as isotropic media and the results are

compared to the anisotropic predictions. To account for the isotropy of the medium,

Bruggeman’s equation, eq. (2.56), is used to model both gas and electron transport.

To compute the effective diffusion coefficients, the diffusion coefficients in Tables 2.3

and 2.5 are used. To compute the effective conductivity, the average of the in-plane

and through-plane conductivites is used, i.e. 144.41S/cm.

Figure 2.25 shows the polarization curve for the isotropic and anisotropic GDL. In

this case, both diffusivity and electron conductivites are assumed to be either isotropic

or anisotropic. The figure presents negligible differences between the two curves. In

order to better understand the effects of diffusivity and electron conductivity, Figures

2.26 and 2.27 show the polarization curves for the cases when either diffusivity or

conductivity are made isotropic. The latter two figures show reasonable differences

between the isotropic and anisotropic polarization curves. In particular, when the

effective diffusion in the GDL is considered anisotropic, the current density predicted
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by the model is higher. The reverse effect is observed for the conductivity. As a

result, when anisotropic properties in the GDL, conductivity and diffusivity, are all

taken into account, their effects cancel each other out and the result is a similar

performance curve to the isotropic case.

Anisotropy does have an effect on fuel cell performance; however, conductivity and

diffusivity demonstrate opposite effects, which globally cancel each other out. Even

though the effect of anisotropy cannot be seen by comparing the polarization curves,

differences can be observed in the spacial distribution of the current. Comparing

the reactant and volumetric current density distributions in the base case and in

the isotropic case in Figure 2.28, it can observed that the hydrogen mole fraction in

the anode is higher in the isotropic case, resulting in lower anode water content and

therefore, a drier membrane. The anode volumetric current density distribution is

similar in both cases. In the cathode, the volumetric current density distribution in

the isotropic case shows a more non-uniform, U-shaped, distribution with the highest

current densities occurring between the gas channel and the current collector instead

of under the gas channel, as in the anisotropic case. Oxygen in the cathode is also

better and more evenly distributed in the isotropic case. This comparison highlights

once more the need to perform model assessment and validation based on detailed

spatial distribution data as opposed to global polarization curves only [18,161].
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Figure 2.25: Polarization curves for the base case model with anisotropic and isotropic
GDL
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Figure 2.26: Polarization curves for the base case model with anisotropic and isotropic
GDL diffusivities
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Figure 2.27: Polarization curves for the base case model with an anisotropic and
isotropic GDL conductivities
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Figure 2.28: Reactant concentrations and volumetric current densities in anode (left)
and cathode (right) when the GDL is considered anisotropic (top) and isotropic (bot-
tom).
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Chapter 3

Membrane electrode assembly

optimization

3.1 Problem formulation

Improvements in performance, reliability and durability as well as reductions in pro-

duction costs, remain critical prerequisites for the commercialization of polymer elec-

trolyte membrane fuel cells. Past investigations of electrode design for optimal perfor-

mance [46,162–165] and low platinum loading [166–168] have been primarily based on

trial-and-error or parametric studies. When the number of design variables becomes

large, the need for a more systematic and rational approach to optimization of the

electrode structure and composition becomes apparent. One such case is the design

of a complete membrane electrode assembly (MEA). In this section, a mathematical

programming formulation is presented to optimize either MEA performance or MEA

performance and cost simultaneously.
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3.1.1 Objective function

In order to optimize either performance or cost, a measure for these objectives is nec-

essary. This is called the objective function. The objective function is a mathematical

representation of the design targets.

The initial design target is to improve performance. Fuel cell performance is

commonly described in terms of its polarization behavior, i.e. voltage versus current

density. Performance can be improved either at a single operating voltage (single-

point optimization) or for a specific range of operating conditions (multi-point or

robust optimization). If the goal is to optimize the performance of current MEA

designs at a given operating point, e.g. at a fixed cell voltage, the objective function

can be expressed simply as the current density at the given voltage. On the other

hand, if the goal is to maximize performance for a given operating range, the design

objective is more difficult to express mathematically. Possible representations of the

objective would be either the optimization of a weighted sum of current densities

at several points in the operating range or the optimization of the integral of the

polarization curve in the given range. Multi-point optimization is an active area of

research and there are several issues regarding the choice of the objective [169, 170].

This work deals with single-point optimization problems where the objective function

that quantifies performance is given by the current density at the desired voltage.

Future work could include multi-point optimization of the MEA.

Cost reduction is the second objective of the optimization. A recent study by Gen-

eral Motors researchers identifies polymer electrolyte membrane and platinum (Pt)

costs as the key barriers to achieving the US$30/kW target for large scale commer-

cialization [171, 172]. Whereas the cost of the platinum is not expected to decrease,

the cost of the polymer electrolyte could potentially be reduced by a factor of ten,

according to electrolyte manufacturers such as DuPont and Asahi Chemical [173].

Consequently, in this thesis it is assumed that platinum loading is a good indicator of
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a PEMFC cost and; therefore, the total platinum loading will be used as the objective

function representing cost. More sophisticated cost estimators could also be used that

take into account other materials and manufacturing; however, this is left for future

work.

3.1.2 Design variables

In terms of design variables, in the model described in Chapter 2, the anode and cath-

ode catalyst layer compositions are given by five parameters: the platinum loading,

mPt; the mass percentage of platinum catalyst on the support carbon black, Pt|C;

the agglomerate radius, ragg; the agglomerate thin film thickness, δagg, and; the elec-

trolyte volume fraction inside the agglomerate, εagg. Three of these parameters are

used as design variables because it is assumed that they can be controlled: the plat-

inum loading, the mass percentage of platinum catalyst on the support carbon black

and, the electrolyte volume fraction inside the agglomerate. The GDL porosity is also

included as a design variable.

The platinum loading can be controlled by controlling the amount of catalyst in the

ink used to create the CL. By increasing the platinum per unit weight of catalyst ink,

the platinum loading can easily be increased. The platinum to carbon ratio can also

be controlled by selecting the appropriate catalytic particles. Manufacturers usually

provide customers with a selection of catalytic particles with different platinum to

carbon ratios ranging from 0.05%wt. platinum on carbon to platinum black [38,174].

The ionomer film and the amount of ionomer inside the agglomerate provide the total

amount of electrolyte in the catalyst layer. It is difficult to discern how much of the

electrolyte will become part of the agglomerate and how much it will be used to create

an electrolyte film. A study performed by Lee et al. [145] suggests that the thickness of

the electrolyte film surrounding the agglomerate increases rapidly when the electrolyte

content in the catalyst layer increases from zero to 10%wt.; then it remains almost
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constant. Following Lee et al., in this work it is assumed that the electrolyte film

surrounding the agglomerate is constant and equal to 80nm. This film value should

be adjusted depending on the method of preparation of the catalyst layer. The radius

of the agglomerate is also considered constant, even though Song et al. [51] suggest

that this value can also be controlled by using different manufacturing processes

and ink preparations. The effect of the agglomerate radius and the thin film was

already discussed in the previous chapter. The effect of the agglomerate radius and

the thickness of the film surrounding the agglomerate on the optimum catalyst layer

design was studied by the author and his co-workers in reference [91]. In their work,

it is shown that these two parameters should not be included as design variables in

the optimization problem because they do not offer any trade-offs. These parameters

only represent mass transport resistances due to current CL manufacturing methods

and, therefore, its trivial optimal value is zero.

3.1.3 Optimization of the MEA performance

In this thesis, two optimization problems are formulated and solved. The first case

is to optimize the MEA for maximum performance without taking into account cost

constraints. The second case is to optimize the MEA for maximum performance and

minimum cost. In the first case, the optimization problem can be specified as

maximize i(φ0 = dV )

w.r.t.: mPt,c, εagg,c, P t|Cc, εgdlV,c,

mPt,a, εagg,a, P t|Ca, εgdlV,a

subject to: 0 < εclV,c ≤ 1; 0 < εclS,c ≤ 1; 0 < εclN,c ≤ 1

0 < εclV,a ≤ 1; 0 < εclS,a ≤ 1; 0 < εclN,a < 1

(3.1)

The total number of design variables is eight. The constraints guarantee that the

volume fraction of each one of the three phases of the anode and cathode CL are not
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Table 3.1: Initial upper and lower bounds for the design parameters used to optimize
the MEA

Design variable Upper bound Lower bound
mPt, [mg/cm

2] 1.0 0.0
εagg, [−] 0.9 0.1
Pt|C[−] 1.0 0.05

εgdlV [−] 0.9 0.1

negative or larger than one which would be unphysical. In addition to the constraints

shown above, the design variables are also constrained to be inside a given range, i.e.

bounded. The bounds for each one of the design variables are shown in Table 3.1.

The most important bound is the upper bound for the platinum loading, which can

be viewed as a cost constrained. In this case, this value is set to 1.0mg/cm2 which

is more than twice that of currently used platinum loadings [175]. The lower bound

for the platinum to carbon ratio is set to 0.05 because this is the lowest amount of

platinum per catalyst that exists commercially [174].

3.1.4 Optimization of the MEA cost and performance

The second problem that is solved in this thesis is that of maximizing performance

while minimizing cost. In this case, the optimization problem has two objectives that

need to be minimized/maximized simultaneously. When there are multiple objectives

to be considered, the optimization problem is known as multiobjective. For multiob-

jective problems, methods to optimize scalar objectives cannot be used directly.

Multiobjective or multicriteria optimization has its roots in late-nineteenth-century

welfare economics in the works of Edgeworth and Pareto [176,177]. A mathematical
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formulation of such problem is given by

minimize F(x) = [J1J2 · · · Jn]T

w.r.t.: x

subject to: G(x) ≤ 0

M(x) = 0

xL ≤ x ≤ xU

(3.2)

where Ji is one of the objectives to be minimized, F(x) is the vector of objectives,

G(x) and M(x) are the vector of inequality and equality constraints respectively and,

the last inequality represents the bounds for each design variable.

The scalar concept of optimality does not apply directly to the multiobjective

problem because there are more than one optimal solutions depending on the impor-

tance of each objective. A useful notion is that of the Pareto optimality. A design, x,

is a Pareto optimal solution for the problem (3.2), if all other feasible designs have a

higher value for at least one of the objective functions Ji, or else have the same value

for all objectives [178]. Stadler applied the notion of Pareto optimality to the fields

of engineering and science in the 1970s [176,179].

Given the definition of Pareto optimality, Pareto optimality solutions, x∗, are

nonunique. The Pareto optimal set is defined as the set that contains all Pareto opti-

mal solutions. Furthermore, the Pareto front is the set that contains the objectives of

all optimal solutions. Since all Pareto optimal solutions are good solutions, the most

appropriate solution will depend only upon the trade-offs between objectives; there-

fore, it is the responsibility of the designer to choose the most appropriate solution.

It is sometimes desirable to obtain the complete set of Pareto optimal solutions, from

which the designer may then choose the most appropriate design.

There is a large array of methods for solving multiobjective problems and for

obtaining the set of Pareto optimal solutions [176–178, 180–182]. One of the most
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widely used methods for multiobjective optimization is the weighted sum method

[180]. In this method, the multiple objectives are transformed into a single objective

function by multiplying each objective by a weighting factor and summing up all

contributions such that the final objective is:

Jweighted sum = w1J1 + w2J2 + · · ·+ wnJn (3.3)

where wi are the weighting factors. If the sum of all weights is equal to one, then the

weighted sum is said to be a convex combination of objectives; if all objectives are

convex, the weighted sum objective will also be convex. Each single set of weights

determines one particular Pareto optimal solution. Then, a Pareto front can be ob-

tained by systematically changing the weights and solving the given optimization

problem. The weighted sum method is easy to implement and it can easily be un-

derstood; however it has two drawbacks: 1) a uniform spread of weight parameters

rarely produces a uniform spread of points on the Pareto set; 2) non-convex parts of

the Pareto set cannot be obtained [183].

In this thesis, the weighted sum method is used because we are primarily inter-

ested in a small number of solutions in the Pareto set, and the physical meaning of

the weights is easily interpreted. Furthermore, the method has been shown to pro-

vide good results for most engineering applications, and it is readily implemented in

DAKOTA [69], the OpenSource optimization program used in this thesis.

The MEA multiobjective optimization problem is formulated using a simple weighted

sum method as

minimize −w1i(φ0 = dV ) + w2(mPt,c +mPt,a)

w.r.t.: mPt,c, εagg,c, P t|Cc, εgdlV,c,

mPt,a, εagg,a, P t|Ca, εgdlV,a

subject to: 0 < εclV,c ≤ 1; 0 < εclS,c ≤ 1; 0 < εclN,c ≤ 1

0 < εclV,a ≤ 1; 0 < εclS,a ≤ 1; 0 < εclN,a < 1

(3.4)
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where w1 + w2 = 1 and where a negative sign has been added in front of the perfor-

mance objective, i.e. the current density, in order for the two objectives to be made

into minimization problems. In order for the weighted sum method to search the

Pareto set effectively, objectives need to be scaled to similar values [5]. In this case,

both current density and total platinum loading are of the same order of magnitude

and therefore scaling is not required.

3.2 Sensitivity analysis

In the optimization problems in the previous section, one of the objective functions

is the fuel cell current density at a given MEA voltage. Current density is obtained

during postprocessing. The current density per unit area of a fuel cell can be obtained

by integrating the volumetric current density over the volume of either the anode or

the cathode CL,

f(u,p) = i(xO2 , φS, φm;mPt,c, εagg,c, P t|Cc, εgdlV,c,mPt,a, εagg,a, P t|Ca, εgdlV,a)

=
1

H

∫ H

0

∫ L

0

∇ · idxdy (3.5)

where ∇ · i is given in equation (2.33), H is the height of the domain and L is the

width of the domain, i.e. the thickness of the CL. The second objective, i.e. the total

platinum loading, is given by the design variables. The constraint equations in the

optimization problem in (3.4) are given directly by the analysis model. Hence, no

extra computations are required in order to determine the second objective and the

constraints.

The analytic sensitivities of the objective function f , with respect to any of the
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design variables pi, can be obtained using functional analysis as

df(u,p)

dpi
=
∂f(u,p)

∂uj

∂uj
∂pi

+
∂f(u,p)

∂pi

=
1

H

∫ H

0

∫ L

0

(
∂(∇ · i)
∂uj

∂uj
∂pi

+
∂(∇ · i)
∂pi

)
dxdy (3.6)

where u is the vector of unknowns solved for by the analysis program, p is the vector

of design parameters, i = 1, . . . , 8, j = 1, . . . , 5, ∂(∇·i)
∂uj

and ∂(∇·i)
∂pi

are obtained by

analytical differentiation of either equation (2.33) or equation (2.44) with respect to

the solution vector and the design variables respectively and, finally, the term
∂uj

∂pi
is

unknown and represents the change of the solution vector with respect to the design

variables. This vector can be obtained by noticing that any perturbation in the

parameters of the system should result in no variation of the residual if the governing

equation is to continue to be satisfied. Therefore, at the solution, the total derivative

of the residual has to be zero. Then,
∂uj

∂pi
is computed by solving the system of partial

differential equations given by

∂R(u,p)

∂uj

∂uj
∂pi

= −∂R(u,p)

∂pi
(3.7)

where ∂R(u,p)
∂uj

∂uj

∂pi
and ∂R(u,p)

∂pi
represent the derivatives of the governing equations in

(2.129) with respect to the solution vector and the design variables respectively. These

are obtained using functional analysis. Note that ∂R(u,p)
∂uj

∂uj

∂pi
is a directional derivative

and therefore results in a differential equation with the vector
∂uj

∂pi
as the unknown

[118,119]. For example, for design variable pi, from the first term of equation (2.29),

∂R1(u,p)

∂uj

∂uj
∂pi

= ∇ ·
(
cgDO2∇

(
∂xO2

∂pi

))
− 1

4F

∂(∇ · i)
∂uj

∣∣∣
u=un

∂uj
∂pi

(3.8)

where R1(u,p) = ∇ · (cgDO2∇xO2)− SO2 = 0. Once an analytic expression for these

terms is obtained, the system of PDEs is discretized using the finite element method
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and the deal.ii finite element libraries [116] with appropriate boundary conditions. In

this case, the boundary conditions for the unknown vector
∂uj

∂pi
are Newmann boundary

conditions with the value set to zero. After discretization and application of the

boundary conditions, the resulting linear system is solved using UMFPACK [121,122],

an efficient direct solver for nonsymmetric linear systems. The terms ∂R(u,p)
∂uj

and

∂R(u,p)
∂pi

depend on the solution of the governing equations; therefore, this system of

equations can only be solved after solving the governing equations as shown in Figure

3.1. Finally, note that this system is of the same size as the original linearized system

of governing equations, and that it must be solved for each design variable pi.

This method of obtaining the analytic sensitivities is called the direct formulation.

It was chosen here instead of the adjoint formulation because of its ease of implemen-

tation. A similar approach for computing sensitivities was also used in reference [134]

when solving a least squares problem to estimate fuel cell model parameters from ex-

perimental data. As the number of design variables increases, the adjoint formulation

is proven to be more efficient [184].

Once the analytic sensitivities were implemented in the code, they were validated

by comparing them to the numerical sensitivities computed using forward differences.

Table 3.2 shows the results from the validations, performed using the data for the base

case analyzed in Chapter 2 and with dV = 0.6V . Table 3.2 shows good agreement

between analytic and numeric sensitivities.

3.3 Design and optimization numerical framework

The MEA finite element model together with the analytic sensitivities of the objective

function and constraints are coupled to the optimization package DAKOTA [69], as

shown in Figure 3.1. In this figure, the three main iterative loops can be identified.

The inner or analysis loop, is used to solve the nonlinear governing equations. The

middle or adaptive refinement loop, is used to check the accuracy of the solution and
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Table 3.2: Analytic vs. numeric sensitivities of the current density with respect to
the different design variables

Design Analytic Numeric Numeric Numeric
variable (δh = 10−3) (δh = 10−6) (δh = 10−9)
mPt,c -0.142372 -0.0687236 -0.142464 -0.142537
εagg,c -0.402701 -0.395109 -0.403485 -0.403496
Pt|Cc -0.133119 0.0199059 -0.13348 -0.133586

εgdlV,c -0.0372749 -0.0370176 -0.0373775 -0.0373783
mPt,a 0.22157 0.243804 0.217927 0.217901
εagg,a -0.116418 -0.1146 -0.117929 -0.117933
Pt|Ca -0.288358 -0.246353 -0.283881 -0.283923

εgdlV,a 0.0199154 0.2042 0.0202678 0.0202678

to adapt the computational mesh as necessary using an a posteriori error estimator.

The outer, or, optimization loop, is used to change the design parameters in order to

obtain an improved design.

The analysis loops solves the nonlinear system of PDEs using Newton’s method in

conjunction with a line search for added robustness, see section 2.1.2 for details. The

adaptive loop is used in order to refine the mesh automatically during the solution

process, where the largest numerical errors are predicted using an error estimator,

see also section 2.1.2. This allows the solver to provide a grid independent solution

even though the design parameters and, as a consequence, the transport and elec-

trochemical parameters of the problem are constantly changing during the design

process.

During the optimization loop, after the objective function, constraints and their

analytic sensitivities have been computed, these values are passed on to an interior-

point quasi-Newton algorithm implemented in DAKOTA [69]. This optimization al-

gorithm is based on the interior-point method, which is a gradient-based optimization

algorithm as discussed in the literature review in Chapter 1. DAKOTA is an Open-

Souce optimization software developed at Sandia National Labs. The optimization
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Figure 3.1: Implementation of the multivariable optimization framework with
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algorithm uses the objective function, constraints and their gradients or sensitivities

to change the design parameters in order to achieve a new design with better per-

formance. These parameters are then passed back to the model and the process is

repeated starting at the analysis loop. Convergence of the optimization algorithm is

achieved when
f(u,pk+1)− f(u,pk)

f(u,pk)
≤ 10−3 (3.9)

or the L2 norm of the gradient of the objective function is less than 10−3.

3.4 Optimization results

In this section, the membrane electrode assembly model developed in Chapter 2 is

used to obtain the optimal MEA composition for

• Maximum performance

• Maximum possible performance at a reasonable cost

3.4.1 Optimization of the MEA performance

The MEA performance optimization problem formulated in section 3.1.3 will be solved

under three different operating conditions: 0.4, 0.6 and 0.8V across the MEA and for

the geometry and operating conditions in Table 2.2. These three operating points rep-

resent the cell operating at low, medium and high current densities. At low current

densities, the MEA losses are mainly due to the cathode overpotential. At medium

current densities, the MEA losses are due to both cathode overpotential and mem-

brane resistance. At high current densities, membrane resistance and cathode mass

transport losses are the main contributors to the loss in performance.
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Optimization of the MEA performance at low current densities (dV =

0.4V)

The initial design described in Chapter 2 provides a current density of 0.1627A/cm2

at an MEA voltage of 0.4V, i.e. a cell voltage of 0.793V. Starting with this elec-

trode design, the optimization problem outlined in equation (3.1) is solved using

the quasi-Newton interior-point method in DAKOTA [69]. After 24 iterations and

approximately 30 minutes on a 2 GHz Power Mac G5, the optimization algorithm

converged to a new design that provides a current density of 0.2789A/cm2. Figure

3.2 shows the evolution of the objective function and design variables during the op-

timization process. During the optimization process, all design variables are changed

simultaneously. The optimal design variables are {mPt,c, εagg,c, Pt|Cc, εgdlV,c,mPt,a,

εagg,a, Pt|Ca, εgdlV,a} = {1.0, 0.5430, 0.6719, 0.4036, 0.6558, 0.6839, 0.6358, 0.1003}.

For these values, the volume fractions of void, electrolyte and solid phase are 0.1986,

0.5106, 0.2907 and 0.1296, 0.6520, 0.2184 for cathode and anode respectively. Note

that the platinum loading reaches its maximum value. This is not always the case

and depends on the activity of the catalytic particles. For example, using previous

E-TEK catalytic data, the optimal platinum loading had two optimal values one of

which was not its upper bound [185].

Figure 3.3 shows the performance of the optimized MEA with respect to the

base design. Performance is clearly enhanced at low current densities; however, at

medium and high current densities, the performance improvements are less signifi-

cant. Through comparison of the optimal and base designs, these results could have

been expected. Due to the substantial increase in platinum loading in the cathode

and anode, the overpotential losses are reduced, thereby considerably moving the

polarization curve upwards. Both anode and cathode GDL and CL porosities are

reduced substantially during the optimization. The reduced porosity reduces ohmic

losses, which, at low current densities, represent a larger contribution to the MEA
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losses than mass transport limitations. The low porosity also helps the cathode to

retain the water that is produced during the reaction. Therefore, the low porosity

results in improvements in performance at low current densities. Unfortunately, low

porosity becomes a drawback at high currents and hence the similar performance of

the optimal design even with higher platinum loading.

Figure 3.4 shows the volumetric current density in the anode and cathode CL

as well as the electrolyte potential in the membrane and the CLs. Comparing the

volumetric current densities for this design and the base design in Figures 2.14 and

2.15, the contour plot in the anode remains the same. In the cathode however,

the volumetric current density distribution is very different. The highest values of

volumetric current density are now located under the current collector area, near the

membrane, instead of uniformly distributed near the membrane. This phenomenon is

most likely due to the higher electrolyte conductivity in the cathode under the current



CHAPTER 3. MEMBRANE ELECTRODE ASSEMBLY OPTIMIZATION 129

collector. Due to the higher conductivity in this area, the membrane potential and,

thereby the overpotential, are higher causing the electrochemical reaction to occur

more rapidly.

Optimization of the MEA performance at medium current densities (dV

= 0.6V)

The initial design described in Chapter 2 provides a current density of 0.6810A/cm2

at an MEA voltage of 0.6V, i.e. a cell voltage of 0.593V. The optimization problem is

solved using this MEA as a starting point. After 14 iterations and approximately 19

minutes on a 2 GHz Power Mac G5, the optimization algorithm converged to a new

design that provides a current density of 0.8852A/cm2. Figure 3.2 shows the evolution

of the objective function and design variables during the optimization process. The

design variables at this new design are {mPt,c, εagg,c, Pt|Cc, εgdlV,c,mPt,a, εagg,a, Pt|Ca,

εgdlV,a} = {0.9998, 0.6866, 0.7766, 0.6461, 0.5764, 0.6858, 0.6461, 0.5856}. For these

values, the volume fractions of void, electrolyte and solid phase are 0.2406, 0.5691,

0.1846 and 0.2596, 0.5557, 0.1902 for cathode and anode respectively.

Figure 3.6 shows the performance of the optimized MEA with respect to the base

design. Performance is clearly enhanced at low, medium and high current densities.

The increase in performance in this case is due to the substantial increase in platinum

loading in the cathode and anode and an increase in the electrolyte volume fraction.

Furthermore, in this case, since the objective was to optimize performance at medium

current densities, both anode and cathode GDL and CL porosities are increased with

respect to the design at low current densities and are also slightly higher than the

base design. Therefore, the current design minimizes ohmic losses in the electrolyte by

increasing its volume fraction in the CL and at the same time reduces mass transport

limitation by increasing the porosities of GDL and CL.

Figure 3.7 shows the volumetric current density in the anode and cathode CL as
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Figure 3.5: Evolution of the objective function and design variables during the opti-
mization process for a voltage across the electrode of 0.6V, i.e. a cell voltage of 0.593
V.
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Figure 3.6: Polarization curve for the base case and for the optimal design for a
voltage across the electrode of 0.6V, i.e. a cell voltage of 0.593 V.
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Figure 3.7: Contour lines for the optimized electrode design at dV = 0.6V of of
anode CL volumetric current density [A/cm3] (left), CL and membrane potential
in the electrolyte [V] (center) and cathode CL volumetric current density [A/cm3]
(right).
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well as the electrolyte potential in the membrane and the CLs for the optimum design

at dV = 0.6V. Comparing the volumetric current densities for this design and the base

design in Figures 2.17 and 2.18, the contour plot in the anode remains quite similar

even though the current produced is increased. In the cathode, it can be observed

that the reaction increases everywhere in the CL. The highest increases occur under

the gas channel. In comparison with the design at low current densities, Figure

3.4, the area with the highest reaction rates have shifted from the area under the

current collector to the area under the gas channel. This shows that, at this current

density, mass transport limitations are relatively more important than membrane

conductivity. Furthermore, in this case, enough water is generated in the cathode to

have a fully humidified electrolyte everywhere in the CL. This effect can be observed

by the uniformity of the electrolyte membrane potential that only changes in the

x-direction.

Optimization of the MEA performance at high current densities (dV =

0.8V)

The initial design described in Chapter 2 provides a current density of 1.0962A/cm2

at an MEA voltage of 0.8V, i.e. a cell voltage of 0.393V. After 28 iterations and

approximately 35 minutes on a 2 GHz Power Mac G5, the optimization algorithm

converged to a new design that provides a current density of 1.3996A/cm2. The

design variables at this new design are {mPt,c, εagg,c, Pt|Cc, εgdlV,c,mPt,a, εagg,a, Pt|Ca,

εgdlV,a} = {1.0, 0.7104, 0.8063, 0.6919, 0.4589, 0.7003, 0.6039, 0.6774}. For these values,

the volume fractions of void, electrolyte and solid phase are 0.2752, 0.5581, 0.1718

and 0.2777, 0.5505, 0.1666 for cathode and anode respectively.

Figure 3.8 shows the performance of the optimized MEA with respect to the base

design and the design at medium current densities. The designs at medium and high

current densities show very similar performance. Comparing the value of the design

parameters between these two designs, it is easy to observe that only small changes
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Figure 3.8: Polarization curve for the base case and for the optimal design for a
voltage across the electrode of 0.6V and 0.8V, i.e. a cell voltage of 0.593 and 0.393
V.
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in the design variables exist. The main changes are slight increases in GDL and CL

porosities and in the amount of electrolyte in the CL. These increases are possible

due to a reduction in the amount of carbon in the CL. These small changes result

in decreased performance at low current densities due to higher electric ohmic losses,

and an increase in performance at high current densities due to a reduction in the

effective electrolyte conductivity as well as further reductions in the mass transport

limitations.
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Figure 3.9: Contour lines for the optimized electrode design at dV = 0.8V of anode
CL volumetric current density [A/cm3] (left), CL and membrane potential in the
electrolyte [V] (center) and cathode CL volumetric current density [A/cm3] (right).

Figure 3.9 shows the volumetric current density in the anode and cathode CL as

well as the electrolyte potential in the membrane and the CLs for the optimum design

at dV = 0.8V. Both anode and cathode volumetric current density distributions are

almost identical to the ones shown in Figure 3.7, therefore showing that even at

high current density, mass transport limitations are not dominant factors. Compared

to the anode volumetric current density distribution in the base design in Figure
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2.20, a larger part of the CL is being utilized for the reaction, and the values of

the volumetric current density are also higher. In the cathode, the volumetric current

density distribution is also higher everywhere in the CL, and the distribution is slightly

more non-uniform compared with the base case in 2.21.

Globality of the solution

Table 3.3: Base and optimal design at different voltages

Design variables Case 1 Case 2 Case 3 Case 4
mPt,c 0.5 0.2 0.2 0.5
εagg,c 0.35 0.1 0.35 0.35
Pt|Cc 0.5 0.2 0.2 0.5

εgdlV,c 0.6 0.6 0.2 0.2
mPt,a 0.5 0.2 0.2 0.2
εagg,a 0.35 0.1 0.35 0.35
Pt|Ca 0.5 0.2 0.2 0.2

εgdlV,a 0.6 0.6 0.6 0.6

In order to obtain an optimal solution in a reasonable amount of time, the op-

timization algorithm used is a gradient-based method. Gradient-based methods can

only guarantee that the solution obtained is a local optimum unless the objective

function and constraints are convex. In order to check that the solution is indeed a

global one, in this section the optimization problem of optimizing performance at an

MEA voltage of 0.6V is solved from four different starting points and the results are

compared. The initial starting points are shown in Table 3.3. In Case 1, the effect

of the initial value of the platinum loading and the platinum to carbon ratio in both

anode and cathode is analyzed by increasing their values from 0.2 to 0.5. In Case 2,

the effect of the initial value of the electrolyte volume fraction inside the agglomerate

in both anode and cathode is analyzed by reducing its value from 0.35 to 0.1. In Case

3, the effect of the GDL porosity is analyzed by decreasing its value to 0.2. In Case
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4, the effect of starting with a different design for anode and cathode is analyzed. If

all initial designs reach the same solution, then it is likely that the solution is global

one. Furthermore, it is also reasonable to assume that the optimization problem is

convex.

The optimization problem in equation (3.1) was successfully solved with each one

of the initial designs. For some initial designs such as Case 1 and Case 4, the optimiza-

tion algorithm took several additional iterations; however, it eventually converged to

the solution. Table 3.4 shows the optimal design obtained starting from the various

initial designs in Table 3.3 as well as the design obtained in the previous section

(Case 0). The table also shows the maximum current density obtained for each de-

sign. Comparing the value of the objective function, i, this value is almost identical

for all designs. In particular, taking into account that the convergence criteria is

(f−f0)
f
≤ 10−3, the difference between the five designs is less than the convergence cri-

teria and; therefore, the value of the objective can be considered to be the same. The

designs are also very similar. The cathode design parameters are almost identical for

all five cases. The anode parameters for the various designs are slightly different. The

agglomerate electrolyte volume fraction and GDL porosity in the anode are, again,

almost identical. However, the platinum to carbon ratio and the platinum loading in

the anode are different by as much as 15% between cases 1 and 4. Electrode kinetics

in the anode are extremely fast; therefore, the sensitivity of the current density to

these design parameters is negligible. Because all designs yield the same value for

the objective function, and all designs yield a similar design, it is assumed that the

solution obtained is a global solution. Notice that if the convergence criteria was

more stringent, the optimal design would be even more similar because the small

sensitivities of the objective function to changes in the anode platinum loading would

also be taken into account. Since a global solution is achieved using a gradient-based

method, it is assumed that the objective function and the constraint set are convex.
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Table 3.4: Base and optimal design starting from different initial designs

Design Case 0 Case 1 Case 2 Case 3 Case 4
i 0.8852 0.8849 0.8851 0.8850 0.8852
mPt,c 0.9998 1.0 0.9999 1.0 0.9999
εagg,c 0.6866 0.6835 0.6840 0.6824 0.6841
Pt|Cc 0.7766 0.7760 0.7764 0.7752 0.7763

εgdlV,c 0.6461 0.6460 0.6448 0.6478 0.6488
mPt,a 0.5764 0.4916 0.5523 0.5430 0.5817
εagg,a 0.6858 0.6860 0.6865 0.6856 0.6864
Pt|Ca 0.6461 0.6033 0.6352 0.6298 0.6492

εgdlV,a 0.5856 0.5846 0.5891 0.5882 0.5840

Final remarks and experimental comparison

Table 3.5 shows the design variables for the base design and the three optimal designs

discussed in the previous sections. The base design has the same structure for both

anode and cathode. Each optimal design results in a different design for the anode

and cathode electrodes thereby highlighting the varying relative importance of the

physical phenomena that affect the reaction on the anode and the cathode. In all

cases, the cathode CL reaches the maximum platinum loading allowed. The amount

of electrolyte inside the agglomerate increases when the current density increases.

The platinum to carbon ratio of the catalyst also increases. Because carbon has a

lower density than platinum, this results in a CL with a reduced solid phase volume

fraction, as shown in Table 3.6. The GDL porosity also increases with increasing

operating current density. At low currents, mass transport limitations are negligible

and porosity is low. As the required current density increases, the GDL porosity in-

creases in both cathode and anode. In the anode, the platinum loading does not reach

its upper bound as a result of the fast HOR kinetics. The agglomerate electrolyte

content is similar in all designs to a value of around 0.7. Platinum to carbon ratio is

reduced as current density requirements increase.
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Table 3.6 shows the void, electrolyte and solid phase volume fractions in the

cathode and anode CL for the base design and the previously discussed optimal

designs. This table clearly shows the effect of optimizing at higher voltages across

the MEA, i.e. at higher currents. As the optimization operating conditions move

right on the polarization curve, the porosity of the CL is increased, showing the

increased importance of mass transport. In the anode, the maximum electrolyte

volume fraction occurs at low current densities; this could possibly occur because

proton transport is the limiting mechanism in this regime, since most of the reaction

occurs near the membrane-CL interface. In the cathode, the maximum electrolyte

volume fraction occurs at medium current densities where ohmic losses are the most

important. At low currents, kinetic limitations are more important; at high currents,

mass transport becomes the dominant effect. Finally, solid phase volume fraction

decreases monotonically along with design operating conditions. In the table, it is

easy to see the interplay between the void and the solid phase volume fractions. As

void fraction increases, solid phase volume fraction decreases leaving space for the

pores to be formed.

Table 3.5: Base and optimal design at different voltages

Design Base Optimal design Optimal design Optimal design
variable @ dV = 0.4V @ dV = 0.6 V @ dV = 0.8V
mPt,c 0.2 1.0 (upper bd.) 0.9998 (≈ upper bd.) 1.0 (upper bd.)
εagg,c 0.35 0.5430 0.6866 0.7104
Pt|Cc 0.2 0.6719 0.7766 0.8063

εgdlV,c 0.6 0.4036 0.6461 0.6919
mPt,a 0.2 0.6558 0.5764 0.4589
εagg,a 0.35 0.6839 0.6858 0.7003
Pt|Ca 0.2 0.6358 0.6461 0.6039

εgdlV,a 0.6 0.1003 (lower bd.) 0.5856 0.6774

To conclude this discussion, the results obtained in this thesis are compared with

experimental data. In the past decade, several studies have been performed to opti-
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Table 3.6: Catalyst layer volume fractions for base and optimal design. Obtained
from equations (2.50), (2.51), (2.52); and, (2.55)

Volume Base Optimal design Optimal design Optimal design
Fraction @ dV = 0.4V @ dV = 0.6 V @ dV = 0.8V
εV,c 0.2067 0.1986 0.2406 0.2752
εN,c 0.4093 0.5106 0.5691 0.5581
εS,c 0.3839 0.2907 0.1846 0.1718
εV,a 0.2067 0.1296 0.2596 0.2777
εN,a 0.4093 0.6520 0.5557 0.5505
εS,a 0.3839 0.2184 0.1902 0.1666

mize the cathode electrode [46, 145, 163–165, 186, 187]. These studies have suggested

that an ionomer content in the the range of 30 to 40%wt. in the catalyst layer pro-

vides the best polarization curves for oxygen as well as air fed fuel cells over a large

range of operating conditions. Transforming the optimal ionomer volume fraction

in Table 3.6 to a weight fraction using the equations in reference [188], the optimal

ionomer weight fractions in the cathode catalyst layer are 40.69%wt., 46.92% wt. and

47.37 % wt. respectively.

These results are slightly higher than those obtained experimentally. However, the

author believes that this difference is due to the optimization algorithm being able

to search the design space more effectively. In the experimental studies presented in

the literature [46, 145, 163–165, 186, 187], to obtain the maximum electrolyte volume

fraction the electrolyte volume fraction is changed while maintaining the platinum

content and the platinum to carbon ratio constant. Assuming that the catalyst layer

thickness is fixed, the solid volume fraction also remains constant, as shown by equa-

tion (2.51). Gode et al. [46] reported minimal changes in catalyst layer thickness with

changes in ionomer content. Gode et al. [46] and Xie et al. [165] both reported the

solid phase volume fraction for catalyst layer with different ionomer contents. The

solid volume fraction in these cases is almost constant with values in the range of 35

to 50%. As a result of the constant solid phase, increasing the ionomer content results
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in a reduction in porosity. This is not the case in the optimization process since both

platinum loading and platinum to carbon ratio are able to change and therefore, an

increase in electrolyte does not necessarily reduce porosity. For this reason, electrolyte

volume fraction can be further increased by the optimization algorithm.

To validate this assumption, two optimization problems are solved where the

platinum loading and the platinum to carbon ratio are maintained constant at: a) 0.2

and 0.2 (εS = 0.38); and, b) 0.25 and 0.2 respectively (εS = 0.51). In this manner,

only the electrolyte content inside the agglomerate in the CL and; the GDL porosity

in both anode and cathode, are allowed to change. The optimizations are performed

at 0.6V. For the first case, the optimal solution is obtained after 11 iterations and

15 minutes. The new design provides a current density of 0.6877A/cm2, the design

variables are {εagg,c, εgdlV,c, εagg,a, ε
gdl
V,a} = {0.3661, 0.6599, 0.3678, 0.5001} and the

optimal ionomer content for a CL is 44.67%wt. and 44.82%wt. for the cathode

and anode respectively. In the second case, the optimal solution is obtained after 13

iterations and 18 minutes. The new design provides a current density of 0.5782A/cm2,

the design variables are {εagg,c, εgdlV,c, εagg,a, ε
gdl
V,a} = {0.2236, 0.5806, 0.2323, 0.4714} and

the optimal ionomer content for a CL is 33.76%wt. and 34.41%wt. for the cathode

and anode respectively.

The optimization results show that, as the solid phase volume fraction is reduced,

the electrolyte volume fraction is also reduced. Furthermore, for a solid phase volume

fraction in the range of 35% to 50%, the electrolyte volume fractions are in the range

of 35 to 45%wt., close to the experimental range. By looking at the current densities

of the optimal designs, it is interesting to note that the second design with the higher

platinum loading results in lower performance. This highlights the importance of

taking into account the solid phase volume fraction in the design process and therefore,

the importance of taking into account all four parameters at once.

Revisiting Table 3.6, in the numerical optimization procedure, the solid phase is

not constrained to remain constant and is in fact reduced from about 40% (similar
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to those in experimental studies) in the initial design to values of around 20% for

the optimum designs. This reduction in solid phase creates additional space in the

catalyst layer which is then used to increase both the ionomer content and the overall

catalyst layer porosity. Therefore, the apparent discrepancies between experimental

results and the optimization results are due to the differences in solid phase volume

fractions.

These results are also consistent with data presented by Sasinkumar et al. [162]

who reported that the optimum NafionTM content increases with decreasing platinum

loading, which, assuming the catalyst layer thickness to be constant, results in a

reduction of the solid phase volume fraction. Furthermore, upon examination of the

polarization curves reported by Sasinkumar et al., we observed that there is better

fuel cell performance at high current densities with platinum loadings of 0.1mg/cm2

(optimal ionomer content of 50% wt) and 0.25 mg/cm2 (optimal ionomer content of

40% wt) than at platinum loadings of 0.5mg/cm2 where mass-transport limitations

are evident. This again confirms our findings.

The results from this study and the above discussion suggest that the optimal

ionomer content is dependent upon the solid phase volume fraction. It would thus

be most useful in future experimental studies to simultaneously document the thick-

ness of the catalyst layer and the volume fractions of solid, ionomer and void space.

The present findings also suggest that the experimentally identified optimal ionomer

content of 30-40%wt. is only optimal for a given solid phase volume fraction of 30

to 50%. Future experimental studies should be performed in order to investigate the

effect of reducing the solid phase volume fraction and increasing the ionomer content

to confirm if further increase in ionomer content would indeed result in further im-

provements in performance at high current densities, as suggested by the agglomerate

model predictions. Remarkably, if such performance gains are realized, they would

have no associated cost penalty. Instead, they would most likely reduce the amount

of platinum required in the catalyst layer.
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Table 3.7: Weights used to obtain Pareto optimal solutions

w1 w2

Set 1 1.0 0.0
Set 2 0.9 0.1
Set 3 0.75 0.25
Set 4 0.5 0.5
Set 5 0.25 0.75
Set 6 0.1 0.9

3.4.2 Optimization of the MEA performance and cost

The previous section has shown how, in order to increase performance, platinum

loading, i.e. cost, also increases. This increase is most noticeable in the cathode where

platinum loading reaches its upper bound at all operating conditions. These results

show that there is a trade-off between cost and performance. Therefore, these two

values should both belong to the objective of the optimization problem as discussed

in section 3.1.

In this section, Pareto optimal solutions are obtained for six sets of weights. Table

3.7 shows the values for the weights. w1 is the current density weight and w2 is the

cost weight. The weights are selected to assign differing importance to each objective.

Set 1 is equivalent to solving the performance optimization problem in the preceding

section. Sets 2 and 3 give higher importance to performance; however they also

penalize cost. Set 4 gives similar importance to performance and cost. Note however,

that equal weights does not signify exactly equal levels of importance because these

will also depend upon the values of both objectives. Set 5 and 6 give more importance

to cost than to performance. Notice that a set with w2 equal to one is not included

because it would result in a trivial solution. If we only minimize cost, the optimum

amount of catalyst is zero. In this case there would be no reaction, and therefore, the

optimum solution would yield zero cost and produce zero current density.



CHAPTER 3. MEMBRANE ELECTRODE ASSEMBLY OPTIMIZATION 143

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Platinum loading [mg/cm2]

Cu
rre

nt
 d

en
sit

y,
 [A

/c
m

2 ]

 

 
dVMEA = 0.8V
dVMEA = 0.6V
dVMEA = 0.4V

Figure 3.10: Pareto front at three different operating conditions.

Figure 3.10 shows an approximation of the Pareto fronts obtained for optimal

cells operating at the three operating voltages studied in the previous section. The

three Pareto fronts are obtained by solving the optimization problem in equation (3.4)

with the weights in Table 3.7 at the three operating voltages. Note that each Pareto

front represent the set of optimal designs at each operating voltage. All optimization

problems converged, except for set 6 at high current densities. Figure 3.11 shows the

evolution of the two objectives and the combined objective (left) and the evolution of

the design variables for Set 3 at 0.6V voltage across the MEA. The lack of convergence

for set 6 at dV = 0.8V was due to convergence problems in the analysis code at high

currents and low platinum contents. The results obtained using the varying weights

are well-spaced and produce a good approximation of the Pareto front. Only when

cost is weighted heavily does the weight sum method start to cause cluster points

in the Pareto front. At those values however, performance is already too low for

any application. Therefore, in this case the sum weighted residuals is an appropriate
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Figure 3.11: Evolution of the objectives (left) and the design variables (right) dur-
ing the multiobjective optimization problem with w1 = 0.75 and w2 = 0.25 at an
operating voltage of dV = 0.60.8V.

method to obtain the Pareto.

To further demonstrate the validity of the weight sum method in this study, Figure

3.12 shows a well-populated Pareto front and the weights used to obtain the Pareto

front for a voltage across the MEA of 0.6V. The figure also shows the convexity of

the Pareto front, and no discontinuities are observed. The front is well populated

everywhere except at very high performance. The latter is due to the large impact

of introducing cost as an objective. The blue points in Figure 3.12 are selected to

show that a well distributed set of weights results in a well distributed Pareto front.

Comparing the Pareto fronts in Figures 3.10 and 3.12, the Pareto front if Figure 3.10

seems a good approximation of the true Pareto front.

In Figure 3.10, the points that are on the right of each Pareto front, for each

operating voltage, represent the designs obtained from solving the multiobjective

optimization problem with the weight set 1, i.e. maximum performance regardless of

cost. This point is obtained on each Pareto front by solving the same optimization

problem for three operating voltages. As the points move towards the left, the design
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Figure 3.12: Pareto front (left) and the set of weights used to obtain the Pareto front
(right) at operating condition of dV = 0.60.8V.

obtained from solving the optimization problem with weight sets 2 to 6 are shown.

Again, by solving the optimization problem at three operating conditions, the three

Pareto fronts are created. The trivial solution of zero current density for zero catalyst

is also shown. By looking at the Pareto fronts, the trade-off between performance and

cost can be clearly observed. The highest values of current density at any operating

voltage are obtained when the platinum loadings are high, in the order of 2mg/cm2.

Once cost is included as an objective, the platinum loading is reduced at the expense

of performance following a similar trend at all operating voltages.

Figure 3.10 shows three very distinct areas. At the far right, the slope of the

Pareto fronts is small. This means that a large increase in cost is necessary for a

small increase in performance. Similarly, at the far left, the slope is very steep. In

this area, a small reduction in cost produces a very large drop in performance. In the

middle of the graph, with platinum loadings between 0.1 and 0.6mg/cm2, is where the

most suitable designs can be achieved. Looking at the Pareto fronts, it is clear that

the designs obtained in the previous section shown on the right of Figure 3.10 are not

good designs because they offer a very poor trade-off between cost and performance.
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These designs are extremely expensive when compared with the design obtained from

weight set 2 which provides current densities well above 0.8A/cm2 at 0.6V across

the MEA, at one third of the price. This result highlights the advantages of using

multiobjective optimization. Inside the range of platinum loadings between 0.1 and

0.6mg/cm2, all designs offer some advantages and it is up to the designer to select

the most appropriate design depending on the application. For example, if the fuel

cell is to be used for a mass-produced automobile, maybe a design with a platinum

loading of 0.2mg/cm2 provides the necessary performance. However, for a one-of-a-

kind high performance automobile, a design with higher platinum loadings of around

0.6mg/cm2 might be more appropriate. Platinum loadings above 0.6mg/cm2 are

likely not to be used since the performance increase achieved by increasing platinum

loading do not justify the extra cost.

Figures 3.13 and 3.14 show the values of the cathode design variables and the CL

volume fraction for all designs in the Pareto curve at different operating conditions.

Looking at the figures from right to left, they show the evolution of the design variables

and the volume fraction as cost is given greater importance. The most interesting

parameters from these curves are the platinum loading and the platinum to carbon

ratio. For all operating conditions, for the optimal Pareto design with set 1, platinum

loading reaches its upper bound of 1mg/cm2. As the cost objective is increased in

importance, both the platinum loading and platinum to carbon ratio start to decrease.

Furthermore, both curves follow a very similar trend. The reason for the similar

trends can be observed by looking at the evolution of the solid phase volume fraction

in Figure 3.14. Even though the platinum loading drops sharply, the solid phase

volume fraction remains quite similar with a slight decrease as cost becomes more

and more important. The slight decrease is mainly due to the decrease in current

density that needs to be transported for the latter designs and therefore a decrease for

the need for electrical conductive material in the CL. From these figures, it is clear

that there is a strong connection between these two parameters so that electrical
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Figure 3.13: Cathode design variable values for the design given by weight sets 1 to
4 at operating conditions of dV = 0.4, 0.6 and 0.8V.
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Figure 3.14: Cathode CL solid, void and electrolyte phase volume fractions for the
design given by weight sets 1 to 4 at operating conditions of dV = 0.4, 0.6 and 0.8V.
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conductivity in the CL is maintained. The electrolyte volume fraction inside the

agglomerate and the GDL porosity remain almost constant regardless of the Pareto

optimal solution. At medium and high currents, a slight increase in electrolyte volume

fraction is observed as the cost objective weights are increased. On the other hand,

GDL porosity decreases steadily as cost reduction becomes the main objective. The

latter might simply be due to a decrease in current density and therefore, a reduction

in the oxygen consumption. When examining the effects of operating voltage on the

different designs, similar trends to the ones observed for the optimal performance

case are noted, i.e. as the voltage across the MEA increases there is an increase in

electrolyte volume fraction and GDL and CL porosity.

Figures 3.15 and 3.16 show the value of the anode design variables and the CL

volume fraction for all designs in the Pareto curve at different operating conditions.

Looking at Figure 3.15, the platinum loading is reduced by almost one order of mag-

nitude almost immediately after cost is added to the objective. For set 1 (maximum

performance at any cost) the platinum loading was of the order of 0.5mg/cm2. This

value drops to almost 0.05mg/cm2 in set 2 and then remains almost constant for sets

3 to 6. In a manner similar to the cathode, the platinum to carbon ratio follows the

platinum loading behaviour due to their close coupling. The large reduction in plat-

inum loading from set 1 to set 2 comes at a small expense to performance. This result

is in agreement with the results in the previous section when discussing the results

from the multistart strategy to test the globality of the solution. When optimizing

for maximum performance, the sensitivity of the current density to anode platinum

loading is very small compared to the other sensitivities; therefore, unless the conver-

gence criteria for the optimization algorithm is very strict, the algorithm stops before

reaching its optimum values which is most likely 1.0mg/cm2. The results are also in

agreement with those published recently by Karan [100] and Secanell et al. [92] where

an anode model was used to minimize platinum loading at a given current density.

It was also shown by the authors that reducing the anode CL thickness could result
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Figure 3.15: Anode design variable values for the design given by weight sets 1 to 4
at operating conditions of dV = 0.4, 0.6 and 0.8V.
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Figure 3.16: Anode CL solid, void and electrolyte phase volume fractions for the
design given by weight sets 1 to 4 at operating conditions of dV = 0.4, 0.6 and 0.8V.
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in further platinum loading reductions. Compared to the cathode, the electrolyte

volume fraction inside the agglomerate and the GDL porosity also vary substantially

depending on the set of weights. In particular, at medium and high current densities,

as the cost weights increase, electrolyte volume fraction increases and GDL porosity

decreases.

Final remarks

Optimization results from the multiobjective optimization problem show that the

anode and the cathode must be designed differently. Using the same composition

for both the cathode and the anode will most likely yield a very expensive anode or

a cathode with bad performance. These results further reinforce the importance of

using optimization for fuel cell design.

Comparing the results obtained from the previous optimization formulation and

the multiobjective optimization formulation, it is clear that cost must be included in

the optimization objective. Otherwise, the optimal design is unnecessarily expensive

and it is only optimal from a performance stand point. These results highlight the

importance of a well-posed optimization problem formulation in order to obtain a

good design. In this case, two optimization formulations are studied. Other possible

formulations are possible such as the minimization of cost under a performance con-

straint [92]. The optimal design will be as good as the problem that is formulated to

solve it.

Finally, it is important to note that multiobjective optimization problems provide

a range of optimum designs from which to choose. This means that even though

optimization can help automate a large part of the design process, design engineers

will still be necessary in order to select the most appropriate design for any given

application.
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Chapter 4

Conclusions and outlook

4.1 Conclusions

A fuel cell analysis and design tool has been presented, namely the Fuel Cell Simula-

tion Toolbox (FCST). This analysis and design tool is composed of a two-dimensional,

through-the-channel, single-phase, isobaric and isothermal fuel cell model and a gradient-

based optimization algorithm. The design tool developed has four main features: a)

it uses manufacturing and structural parameters as input parameters; b) it features

state-of-the-art anode and cathode electrode models; c) it is coupled to a gradient-

based optimization algorithm through analytical sensitivities, and; d) it is developed

using the most appropriate algorithms to reduce computational costs. This design

tool has been used to obtain the optimal MEA composition for maximum perfor-

mance and to study the trade-offs between performance and cost. The solution of the

two optimization problems has shown the importance of designing fuel cells using a

holistic approach where all design parameters are modified simultaneously.

Solving the MEA composition problem for optimal performance, it has been shown

that not only the electrolyte volume fraction but also the solid phase volume fraction

in the CL are paramount parameters when optimizing the CL composition. In the
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past, most experimental parameters kept the solid phase volume fraction fixed. This

made the designs incapable of achieving optimum performance. Once all design pa-

rameters were included in the design problem, the interdependence of the electrolyte

and solid phase volume fraction could be clearly observed. Given these results, the

author suggests a reduction in the solid phase volume fraction in order to achieve bet-

ter CL performance. The optimization results were also compared with experimental

data presented in the literature by solving a new optimization algorithm with fixed

solid phase volume fraction. The optimal electrolyte content in these cases was very

similar to the ones reported in the literature, thereby further validating the results.

A multiobjective optimization problem has been formulated and solved to show

the trade-offs between cost and performance. These studies suggest that platinum

reductions in the anode to values of less than 0.05mg/cm2 would result in very small

reductions in performance. Furthermore, competitive performances at any operating

condition can be obtained with total platinum loadings in the order of 0.2 to 0.1

mg/cm2. Looking at Figure 3.10, for a cell voltage of 0.593V, a current density of

0.7 and 0.8 A/cm2 can be achieved with platinum loadings of 0.1 and 0.2 mg/cm2.

These values represent a Pt-specific power density of the cell with an optimized MEA

of 0.482 and 0.422 gPt/kW respectively. These values are extremely close to the

target of 0.4 gPt/kW for large-scale implementation [172]. Therefore, the results

show that, by optimizing current PEMFC cells, targets can be met for future fuel

cell commercialization. These results are even more encouraging taking into account

that the optimization done in this thesis did not include optimization of geometrical

or operating conditions parameters which could improve Pt utilization even further.

This thesis presented, for the first time, a design framework for fuel cells that

has the potential to solve large-scale problems, i.e. three-dimensional models with

thousands of design variables. In order to develop such a design framework, the

algorithms in both the analysis and programs were carefully selected. Analysis and

design programs were developed in-house in order to have full control of the solution
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process. To speed up convergence of the analysis module Newton’s algorithm is used

to solve the nonlinear governing equations. This approach resulted in a reduction of

computational time of almost four times with respect to other commercial software

such as COMSOL. To increase computational speed and, at the same time, increase

the accuracy of the results, the fuel cell governing equations are solved using adaptive

finite elements. The use of adaptive finite elements provides the design tool with

the ability to adapt the computational mesh to the physics of the design during the

optimization program and guarantees a grid independent solution.

To decrease the computational time to solve the optimization problem a gradient-

based optimization algorithm is used. Such algorithms require the gradients of the

objective function and constraints with respect to the design variables. To date, in

the fuel cell community, gradients were usually obtained using forward differences.

This method required the solution of the analysis program as many times as design

variables. In this thesis, this would have meant solving the analysis program nine

times. In order to reduce computational demands, the current analysis program is

modified to be able to obtain the sensitivities of the design objective and constraints

using analytical sensitivities. In this way, all analytical sensitivities can be computed

in less than half the time it takes to solve the analysis problem.

The combination of all computational improvements results in more than a one

order of magnitude reduction in computational time when solving an optimization

program with respect to the most efficient method used in the literature thus far.

The most common method used in the literature is to use COMSOL as a black

box together with one of MATLAB’s gradient-based optimization algorithms and

to obtain the sensitivities using forward differences. To analyze the difference in

computational time, let us look at the performance optimization problem at an MEA

voltage of 0.6V. Using the design framework presented, the optimization problem is

solved in approximately 30 min and 21 iterations. Had this problem been solved

using COMSOL and numerical sensitivities, it would have taken approximately 8h
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24min = 21 · (8 + 1) · (40 · 4), i.e. almost than half a day. In the last equation, 21 is

the number of optimization iterations performed; (8 + 1) accounts for the number

of analyses necessary to compute the numerical gradients of all design variables;

and, 40 · 4 accounts for each analysis run where 40 sec is an estimate of the time

it takes to solve the problem using the code developed (an optimistic one), and 4

accounts for the increase in speed using this program. Therefore, the optimization

program developed here is approximately 17 times faster than coupling an analysis

program and a gradient-based optimization algorithm using a black box approach.

Taking into account that a full three-dimensional simulation might take several hours,

optimization for such systems is only feasible by using an approach similar to the one

shown in this thesis.

In summary, this thesis presents a first of its kind, in-depth study of the potential

of using numerical optimization for fuel cell design and optimization. The results

are encouraging and show that numerical optimization can help designers to achieve

designs that could meet current targets for commercialization. However, much work

remains to be done in the areas of fuel cell analysis and design before numerical tools

can achieve their full potential.

4.2 Outlook

This thesis has focused only on the optimization of the MEA composition under

single phase conditions, with a high pressure hydrogen feed and at high stoichiometric

ratios so that reactant depletion in the channel had a negligible effect. However,

optimization can be applied to any range of operating conditions and for any set of

design parameters. With this in mind, the outlook of this work is vast and full of

challenges and opportunities in the areas of fuel cell analysis and fuel cell design.

In order to increase the range of applicability of the design process, more accurate

fuel cell models need to be developed. In this work, a set of equations has been
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introduced to relate ink composition parameters to the catalyst layer structure and

composition. These have then been related to the CL effective properties. The

relations developed do not take into account the manufacturing process and are mainly

based on geometric arguments. These relations should be further developed in order

to also be able to optimize the manufacturing process.

The physics governing the model could also be improved in order to increase the

range of applicability of the model. The single-phase assumption should be removed

in order to account for the flooding effects in the CL and for the GDL transport. To

do so, a two-phase flow model needs to be developed. It has been shown in this thesis

that, due to electro-osmotic drag, both hydrogen and water are being consumed

in the anode, resulting in a net flux of the mixture driven by a pressure gradient.

Therefore, at low pressures, anode transport is dominated by convection, and this

phenomenon should be accounted for. Finally, degradation and start-up effects cannot

be accounted for in this model. A transient model needs to be developed to study

these phenomena.

Computational fuel cell models such as the one presented in this thesis have to

be thoroughly validated against experimental data. In this thesis, the MEA model

was only validated against one experimental polarization curve due to the lack of

experimental data. Future work should involve the design of a straight channel fuel

cell that minimizes edge effects. Using this cell operating at high stochiometric values

the cell performance for several MEAs could be obtained. The experimental data

would then be compared with the computationally predicted MEA performances in

order to validate the model presented in this thesis. Finally, MEAs with the proposed

optimal electrode compositions should be manufactured and tested in order to validate

the optimization results.

In terms of computational complexity, the model used in this thesis is two-

dimensional and through-the-channel. In order to account for the channel effects

and depletion of reactants as they travel along the channel a three-dimensional model
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is necessary. This can be achieved using the deal.ii templates. The computational

framework currently solves all governing equations with different transport coeffi-

cients in all the fuel cell domains. However, when solving the complete MEA, this

leads to numerical instabilities at regions where transport properties should be zero,

such as the proton conductivity in the GDL or the oxygen or water vapor diffu-

sion coefficient in the membrane. This should be improved upon by developing a

methodology to solve the domains separately and by transferring information at the

boundaries as is done to solve fluid-structure interaction problems [189]. Finally, in

order to solve three-dimensional problems in a reasonable amount of computational

time, parallelization of the analysis program is desirable.

A summary of possible avenues of research in fuel cell analysis and computational

mechanics include

• Development of relationships that relate the manufacturing process parameters

to the CL structure and composition.

• Introduction of a two-phase model to the current modeling and design frame-

work.

• Introduction of convection to model anode transport.

• Extension of the current two-dimensional model to three-dimensions.

• Transient modeling.

• Experimental validation.

• Solution of the fuel cell in different domains and efficient information transfer

between domains.

• Parallelization of the program.
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In terms of computational design of fuel cells, the number of possible avenues of

research is even larger than those of fuel cell modeling. In this work, two optimiza-

tion formulations have been presented. However, new formulations are necessary to

solve multi-point optimization problems, i.e. optimizing fuel cell performance for a

whole range of operating voltages. Similarly, in order to optimize the cell for degra-

dation or start-up requirements, new optimization formulations need to be presented.

The objective function for the optimization problem is not clear in this case. Fur-

thermore, minimization of degradation or improvement of start-up capabilities would

represent two additional objectives in addition to performance and cost, resulting in

a total of four conflicting objectives, two of which require transient data. Certainly,

a formulation for this problem would be a challenge.

The CL and GDL thickness are not introduced as design variables in this work.

Obtaining analytical sensitivities of shape design variables represents another chal-

lenge [190]. To obtain such derivatives, several methods exist such as a semi-analytical

approach, non-dimensionalization of the governing equations or a complete analytical

approach which requires a mesh-deformation algorithm. Similarly, operating parame-

ters such as oxygen partial pressure in the channel are not included in the optimization

in this thesis because obtaining the analytical sensitivities of such parameters required

further investigation.

In this thesis, it is assumed that design parameters such as the platinum loading

are constant throughout the CL and GDL. Topology optimization allows transport

parameters in each cell of the computational mesh to be treated as design variables

[191]. Using this method, an optimal platinum loading distribution map could be

obtained. This could be extremely interesting when performing optimization in three-

dimensions. Will the largest amount of platinum be placed at the beginning of the

channels where more oxygen is available? Or, will it be placed at the end in order

to increase oxygen kinetics where oxygen partial pressures are lower? The answer

is not clear, and it is most likely dependent upon the optimization objective and
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formulation.

The manifold and the fuel cell channel layout are key components to the effective

distribution of the gases. Shape and topology optimization could be applied to the

design of these components in order to achieve better reactant distribution and smaller

pressure drops which reduce the demands on auxiliary systems.

Finally, the optimization problems solved in this thesis did not account for the

uncertainties associated with either the design parameters or the model. This could

be accounted for in both the analysis and the design.

A summary of possible avenues of research in design and optimization of fuel cells

include

• Multi-point optimization.

• Optimization formulations for transient objectives such as degradation mini-

mization.

• Sensitivity analysis of geometric and operating parameters.

• Topology optimization of the electrodes.

• Topology and shape optimization of the channel layout.

• Reliability-based design optimization.
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of gas permeability in fuel cell membranes using a cylindrical microelectrode.

Journal of Electroanalytical Chemistry, 518:115–122, 2002.

[143] R. F. Mann, J.C. Amphlett, B. A. Peppley, and C.P. Thurgood. Henry’s law

and the solubilities of reactant gases in the modeling of PEM fuel cells. Journal

of Power Sources, 161:768–774, 2006.

[144] Guido Bender, Mahlon S. Wilson, and Thomas A. Zawodzinski. Further refine-

ments in the segmented cell approach to diagnosing performance in polymer

electrolyte fuel cells. Journal of Power Sources, 123(2):163–171, September

2003.

[145] S.J. Lee, S. Mukerjee, J. McBreen, Y.W. Rho, Y.T. Kho, and T.H.Lee. Effects

of nafion impregnation on performances of pemfc electrodes. Electrochimica

Acta, 43(24):3693–3701, 1998.

[146] E. L. Cussler. Diffusion : Mass Transfer in Fluid Systems. Cambridge Univer-

sity Press, 2nd edition, 1997.



REFERENCES 176

[147] S. Chen and A.Kucernak. Electrocatalysis under conditions of high mass trans-

port rate: Oxygen reduction on single submicrometer-sized pt particles sup-

ported on carbon. Journal of Physical Chemistry B, 108(10):3262–3276, 2004.

[148] K. C. Neyerlin, Wenbin Gu, Jacob Jorne, and Hubert A. Gasteiger. Deter-

mination of catalyst unique parameters for the oxygen reduction reaction in a

PEMFC. Journal of the Electrochemical Society, 154(10):A1955–A1963, 2006.

[149] Lin Wang, Attila Husar, Tianhong Zhou, and Hongtan Liu. A parametric

study of pem fuel cell performances. International Journal of Hydrogen Energy,

28(11):1263–1272, November 2003.

[150] Lin Wang and Hongtan Liu. Performance studies of pem fuel cells with inter-

digitated flow fields. Journal of Power Sources, 134(2):185–196, August 2004.

[151] Jürgen Stumper, Stephen A. Campbell, David P. Wilkinson, Mark C. Johnson,

and Mike Davis. In-situ methods for the determination of current distributions

in pem fuel cells. Electochimica Acta, 43(24):3773–3783, 1998.
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