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ABSTRACT

While most propulsion systems which drive aquatic and aerial vehicles today are

based on rotating blades or foils, there has recently been renewed interest in the use of

oscillating foils for this purpose, similar to the fins or wings of biological swimmers and

flyers. These propulsion systems offer the potential to achieve a much higher degree

of manoeuvrability than what is possible with current man-made propulsion systems.

There has been extensive research both on the theoretical aspects of oscillating-foil

propulsion and the implementation of oscillating foils in practical vehicles, but the

current understanding of the physics of oscillating foils is incomplete. In particular,

questions remain about the selection of the appropriate structural properties for the

use of flexible oscillating foils which, under suitable conditions, have been demon-

strated to achieve better propulsive performance than rigid foils.

This thesis investigates the effect of the foil inertia, stiffness, resonant frequency

and oscillation kinematics on the thrust generation and efficiency of a flexible oscillating-

foil propulsion system. The study is based on experimental measurements made by

recording the applied forces while driving foil models submerged in a water tunnel in

an oscillating motion using servo-motors. The design of the models allowed for the

construction of foils with various levels of stiffness and inertia. High-speed photogra-

phy was also used to observe the dynamic deformation of the flexible foils.

The results show that the frequency ratio, or ratio of oscillation frequency to

resonant frequency, is one of the main parameters which determines the propulsive

efficiency since the phase of the deformation and overall amplitude of the motion of

the bending foil depend on this ratio. When comparing foils of equivalent resonant
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frequency, heavier and stiffer foils were found to achieve greater thrust production

than lighter and more flexible foils but the efficiency of each design was compara-

ble. Through the development of a semi-empirical model of the foil structure, it was

shown that the heavier foils have a lower damping ratio which allows for greater am-

plification of the input motion by the foil deformation. It is expected that the greater

motion amplitude in turn leads to the improved propulsive performance. Changing

the Reynolds number of the flow over the foils was found to have little effect on

the relation between structural properties and propulsive performance. Conversely,

increasing the amplitude of the driven oscillating motion was found to reduce the

differences in performance between the various structural designs and also caused the

peak efficiency to be achieved at lower frequency ratios. The semi-empirical model

predicted a corresponding shift in the frequency ratio which results in the maximum

amplification of the input motion and also predicted more rapid development of a

phase lag between the deformation and the actuating motion at low frequency ratios.

The shift in the location of the peak efficiency was attributed to these changes in

the structural dynamics. When considering the form of the oscillating motion, foils

driven in combined active rotation and translation motions were found to achieve

greater efficiency but lower thrust production than foils which were driven in trans-

lation only. The peak efficiencies achieved by the different structural designs relative

to each other also changed considerably when comparing the results of the combined

motion trials to the translation-only cases. To complete the discussion of the results,

the implications of all of these findings for the design of practical propulsion systems

are examined.
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Chapter 1

Introduction

Flying and swimming animals such as insects, birds and fish have long served as

inspiration for human inventors seeking to create aircraft or watercraft. While the

mechanical systems which propel the airplanes and ships of today differ distinctly from

this original biological inspiration by the use of rotating rather than oscillating blades,

in recent years there has been renewed interest in the development of mechanical

propulsion systems based on oscillating blades or foils. These novel designs offer the

potential to achieve the very high degree of manoeuvrability observed in natural flyers

and swimmers which is yet unmatched by any man-made vehicles [1]. The ability to

perform station keeping operations, rapid starts and stops, and sudden direction

changes would be invaluable for such bioinspired vehicles which are envisioned to

find applications in the inspection of underwater structures [2], military or civilian

reconnaissance [3] and extraterrestrial exploration [4].

Various researchers have successfully implemented oscillating foils in proof-of-

concept prototype vehicles. Notable examples include the RoboTuna [5] and the

more recent DelFly project [6]. Alongside these efforts to develop practical vehicles,

there has been a large body of research which examined the operation of oscillating

foils from a more theoretical standpoint with the aim to improve thrust production

and efficiency. One topic within this field which has received considerable attention

is the effects of using flexible oscillating foils. While the results of these works have

demonstrated the potential to improve thrust production and efficiency by introduc-

ing flexibility into the the foil structure, the selection of the appropriate structural

properties to improve performance under a given set of oscillation and forward travel

kinematics remains to a large extent an open question. The work described in this
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thesis uses experimental measurements to further develop the knowledge towards

a more complete understanding of the combined effect of structural properties and

kinematic parameters on the performance an oscillating-foil propulsion mechanism.

The design of an oscillating-foil propulsion system requires the selection of param-

eters which can be grouped into two general categories:

1. the kinematics of the oscillating motion, and

2. the shape and structure of the foils.

The primary objective in the selection of these parameters is to have the system

develop sufficient thrust forces such that the vehicle is able to hold its position or move

forward against resisting forces such as fluid drag or the vehicle weight. As a secondary

objective, it is desirable to produce with this thrust force with the minimum power

input to the system or, in other words, to have high propulsive efficiency. Typically,

the parameters must be chosen from within ranges set by various constraints such

as the vehicle size, material properties and the limitations of the drive mechanism

actuating the flapping motion.

To meet the performance objectives in the design of a propulsion system, it is

necessary for engineers to understand the effect of the various design parameters on

the thrust generation and efficiency. For this reason, the performance of oscillating

foils throughout a wide range of operating conditions has been studied extensively.

Since the findings of these works have led to the questions which are addressed by

the research conducted for this thesis, it is worthwhile to begin by examining the

present understanding of the fluid flow and physics of flexible oscillating foils. This

synopsis of the current theory comprises the first four subsections of this chapter

which begin with an overview of the basic definitions and important parameters in

Section 1.1 followed by discussions of unsteady force generation, wake structure, and

the effects of flexibility in Sections 1.2, 1.3 and 1.4 respectively. Following this review

of the knowledge provided by existing works, Section 1.5, poses the central research

questions addressed by this thesis and explains how the answers will contribute to

the design of future propulsion systems with improved performance. Section 1.6 then

identifies the specific objectives of the present experimental work and Section 1.7

outlines the content in the remaining chapters of the thesis.
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1.1 Overview of Oscillating-foil Propulsion

Typically, an oscillating foil used for propulsion will undergo a heaving motion in

which the foil translates perpendicular to the direction of travel, a pitching motion

in which the foil rotates about a spanwise axis, or a combination of pitching and

heaving [7]. A sequence of images showing the typical positioning with respect to

time of a foil undergoing combined pitching and heaving motions for locomotion is

shown in Figure 1.1.

TRAVEL

HEAVING

PITCHING

Figure 1.1: Movement of an oscillating foil undergoing combined heaving and pitch-
ing motions.

Fundamentally, the relative motion of the foil and the fluid generates a pressure

on the surface of the foil resulting in a force which is directed to either support a

weight or overcome drag forces in forward propulsion [8]. The method of generating

this force can be classified as lift-based or drag-based [7]. In drag-based propulsion,

the foil moves in a rowing motion, pushing the surrounding fluid away in a direction

opposite to the desired force. This method of force generation allows for the most

precise control of the force direction which is useful for the low-speed, high-precision

manoeuvring of a vehicle [7]. However, lift-based propulsion is generally more efficient

than drag-based force generation and is thus more suitable for travel over long dis-

tances or at high speeds or prolonged hovering flight [7]. Because of its suitability for

the majority of vehicle operating conditions, the lift-based mechanism is likely to play

a larger role in most propulsion systems. For this reason, the research conducted for

this thesis and the remainder of the discussion in this chapter will consider lift-based

propulsion.

In lift-based propulsion, the foil acts as a lifting surface to produce a force which is

orthogonal to, rather than aligned with, the direction of the relative velocity between

the foil and the surrounding fluid. The motion of the foil directs the fluid flow in such
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a way as to establish a bound circulation around the foil. This bound circulation

results in a pressure difference across the foil and generates a lift force according to the

Kutta-Jukowski theorem [9], similar to the function of a wing in steady flight. When

generating forces in this way, the pitching and heaving motions are timed to orient

the foil such that one component of the lift force is directed along the travel path. If

this force component is sufficiently large, it will act to provide a net forward thrust by

overcoming the drag resisting the forward travel. This explanation for the generation

of forces by an oscillating foil is referred to as the Knoller-Betz effect, after researchers

who independently developed the theory in the early twentieth century [10,11]. The

foil also produces forces which oppose the oscillating motion, requiring a power input

to drive the system. A diagram showing the relevant force and velocity vectors at one

instant during the oscillation cycle of a lift-based propulsor is given in Figure 1.2.

FLUID

FREESTREAM

FOIL

HEAVING 

VELOCITY

RELATIVE 

VELOCITY

LIFT

THRUST DRAG

RESISTANCE

TO HEAVING 

MOTION

Figure 1.2: Relevant velocity and force vectors for an oscillating foil used in lift-
based propulsion.

Having made the decision to use an oscillating-foil propulsion system, vehicle

designers are then presented with task of selecting the specific motion kinematics

and foil structure. These choices will in turn set a number of parameters which

have been shown in the literature to affect the thrust generation and efficiency. The

proper selection of these parameters is therefore necessary in order to meet the design

objectives. With respect to the foil itself, the geometric shape of the foil, both in

profile and planform as well as the ratio of span to chord length, or aspect ratio, are

known to be relevant [7]. Pertinent kinematic parameters include the motion profiles

used for the heaving and pitching motions, the timing between the two motions, the
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average and maximum angles of attack, and the ratio of the heaving amplitude to

the foil chord length, h0/c [7]. To account for the influence of the surrounding fluid,

the dimensionless Reynolds number and Strouhal number are also important [7]. The

Reynolds number quantifies the ratio of viscous and inertial forces, and is given by

the expression:

Re =
Uc

ν
(1.1)

where U is the forward velocity, c is the foil chord length and and ν is the kine-

matic viscosity . The significance of the Strouhal number arises due to the dynamic

behaviour of the flow in the foil wake. This quantity is given by

St =
fA

U
(1.2)

where f is the flapping velocity and A the width of the wake.

To quantify the performance of an oscillating-foil propulsion system and to make

comparisons between design alternatives, it is useful to define a further set of three

dimensionless groupings: the thrust coefficient, the power coefficient, and the effi-

ciency [12]. The thrust coefficient, which is given by

CT =
Q

ρU2a
(1.3)

where Q is the thrust, ρ is the fluid density, and a is the planform area, expresses the

thrust production normalized by the flow speed and foil size . The power coefficient

is a similar grouping to express the input power, P , and is defined

CP =
P

ρU3a
(1.4)

The efficiency is given by the ratio of these two coefficients,

η =
CT
CP

(1.5)

and relates the output power in direction of travel to the input power required to

generate the motion. Because the thrust generation and required power input vary

with the foil velocity and orientation throughout the oscillation cycle, it is generally

necessary to take time averages of these quantities over the oscillation period in order

to understand the effectiveness of a given propulsion system design [12]. Therefore,
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throughout this thesis the terms thrust coefficient, power coefficient and efficiency

will refer to the cycle averages unless the qualifier instantaneous is applied.

The discussion in this section has explained the fundamental operation of an

oscillating-foil propulsion systems and identified a number of relevant geometric, kine-

matic and fluid mechanical parameters. The subsequent subsections will examine in

more detail the underlying physical mechanisms of thrust generation and how the

design of the propulsion system enables or impedes these phenomena.

1.2 Mechanisms of Unsteady Force Generation

While the production of a lift force by an oscillating foil is similar to the action of

other foils such as the wings of an aircraft undergoing steady translation, there are a

number of interesting phenomena which arise due to the unsteady oscillating motion.

Considering one instant of the oscillation cycle, these phenomena may act to increase

the lift force beyond what would be generated by a foil with the same geometry

undergoing a steady motion with the same velocity and angle of attack. Three main

mechanisms which enhance the unsteady lift generation of oscillating foils have been

identified as delayed stall, rotational circulation and wake capture [7,9]. Added mass

effects, which are caused by the fluid inertia, also contribute to the forces on oscillating

foils [9].

When the delayed stall phenomenon occurs, the flow on the upper surface of a

foil translating at a high angle of attack separates from the foil at the leading edge.

The separated flow will initially reattach to the foil surface at some location back

towards the trailing edge. The fluid between the separation and reattachment points

circulates in what is termed a leading edge vortex. The fluid in the leading edge

vortex is at low pressure, and thus gives rise to suction which serves to augment

the lift force [13]. The leading edge vortex can also be understood to be increasing

the circulation on the foil, and thus also increases the lift by the Kutta-Jukowski

theorem [13]. In steady operation, the leading edge vortex will grow in size, forcing

the reattachment point back along the chord, until passing the trailing edge and

causing the flow to become completely detached. In the case of a detached flow, the

foil no longer serves to direct the flow properly to generate a lift force, resulting in

a stall condition [9]. In an oscillating foil, the stall can be avoided by setting the

phase between the pitching and heaving motions such that the leading edge vortex

is shed at the correct time during the oscillation cycle when it will not interfere with
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lift generation [12]. Alternatively, in the case of a three-dimensional foil, certain

kinematics of the oscillating motion can establish a spanwise flow which convects

momentum out of the leading edge vortex and thus limits its growth. For example,

in many insects the heaving motion is generated by rotating the wings about a pivot

point on the insect’s body. In these cases, it is speculated that a spanwise flow can be

attributed to the pressure gradient associated with changing cordwise velocity along

the length of the wing or to a centrifugal effect [13].

In cases where oscillating foils take advantage of rotational circulation, the pitching

motion serves to enhance the lift forces, especially near the stroke reversals when the

rotation is generally fastest [9]. For an airfoil undergoing steady translation, there

is a stagnation point at the trailing edge where the local relative velocity between

the fluid and foil is zero. If the foil rotates about a spanwise axis, the stagnation

point moves away from the trailing edge. This repositioning of the stagnation point

forces the fluid flow to turn sharply as it goes around the trailing edge, resulting in

a strong velocity gradient at this point. The velocity gradient in turn gives rise to

strong viscous forces which act to restore the stagnation point to the trailing edge

and in doing so increase the bound circulation on the foil [9]. Since lift is proportional

to bound circulation, the lift forces also increase. This effect is alternately termed

the Kramer effect or rotational circulation [9]. The amount of additional lift provided

by rotational circulation is affected by both the relative timing of the pitching and

heaving motion, and also by the chordwise position of the pitching axis [14].

Wake capture refers to interaction between an oscillating foil and the velocity field

induced in the surrounding fluid by its motion. At the stroke reversals, the bound

circulation is transferred from the foil to the surrounding fluid in the form of shed

vortices. These vortices can increase the relative velocity between the fluid and the

foil at the beginning of the subsequent stroke [9]. With the correct timing of the

pitching and heaving motions, this increase in relative velocity can also lead to an

increase in the lift force [9, 14].

Added mass is an inertial effect associated with the accelerations of an oscillating

foil. As the foil accelerates, some of the surrounding fluid is displaced and also

undergoes acceleration. Additional force will be imposed on the foil to accelerate the

inertia of this fluid [9]. This resulting force is in phase with the foil acceleration, and

the inertia of the accelerated fluid appears to be added to the mass of the foil, hence

the term added mass.

The extent to which each of the lift-enhancing unsteady flow phenomena play a
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role in the force generation for any given foil will depend on the parameters govern-

ing the foil performance mentioned in Section 1.1. Depending on the design goal of

the propulsion system, these parameters may be tailored to use the various unsteady

effects to a greater or lesser extent. For example, while delayed stall and the accom-

panying leading edge vortices may give rise to very substantial lift forces, drag is also

increased, lowering the propulsive efficiency. Therefore, for short-term hovering flight

when supporting the vehicle weight is critical, it is reasonable to operate a foil at high

angles of attack to cause leading edge separation which leads the formation of leading

edge vortices and enhances lift generation. However, for long distance swimming,

where efficiency is the primary goal, the average angle of attack of the foil should be

reduced to achieve lower drag [7].

1.3 Wake Dynamics

Because of the unsteady flow phenomena discussed in Section 1.2 the forces on an

oscillating foil will generally be different from what is predicted by lift and drag

coefficients which are measured at steady state. For this reason, it is often more

effective to gain a high-level understanding of the thrust production by oscillating

foils by considering the dynamics of the foil wake, rather than trying to relate the foil

motion to the force generation using basic aerodynamic theory.

The foil wake refers to the region of fluid around the foil where the flow has

been disturbed by the foil presence. Because the flow velocity is different in this

region, the foil wake constitutes a shear layer. This shear layer can be shown to be

unstable, meaning that when disturbances act to alter the direction of the flow in this

region, the shear layer flow does not act to correct these changes [15]. Instead, the

disturbances are amplified, causing the flow to further deviate from the original path.

This amplification of disturbances is said to be convective, meaning that its effect

does not propagate throughout the entire flow field. Rather, the changes to the flow

caused by the disturbance are observed to grow in time but are convected downstream

from the point where the disturbance was originally applied [15]. Due to saturation

effects, the disturbances cannot be amplified indefinitely to infinite amplitude, but

rather causes the flow to form circulating vortices in the foil wake [15].

Fundamentally, any object which is acting to generate thrust in a fluid must

produce a jet-like wake profile where the momentum flux within the wake exceeds

that of the surrounding free-stream flow [15]. The formation of this wake can be
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attributed to the conservation of momentum which requires that the thrust force on

the object be balanced by momentum imparted to the fluid in the opposite direction.

In a time-averaged sense, an unstable shear layer will develop this jet-like profile when

the vortices resulting from the amplification of disturbances are arranged as shown

in Figure 1.3. In this case, the velocity fields of the vortices in each row will add

together in the direction of the flow along the wake centerline. This arrangement of

vortices is referred to as a reverse Kármán vortex street and has been experimentally

observed in the wake of thrust-producing oscillating foils [11,12,16].

FLOW DIRECTION

TIME-AVERAGED

MOMENTUM 

PROFILE

Figure 1.3: Vortex arrangement in a reverse Kármán street wake structure.

The amplification of disturbances by an unstable shear layer is frequency selective,

meaning that disturbances applied at certain frequencies will more rapidly lead to the

development of stronger vortices [15]. Since the development of the development of a

reverse Kármán vortex street through the amplification of disturbances in turn leads

to the formation of a distinct thrust-producing jet, it is desirable for an oscillating foil

to apply disturbances at the frequency of maximum amplification in order to achieve

the optimal propulsive efficiency [15].

The frequency response of an unstable shear layer is related to its width and the

flow velocity. In the operation of an oscillating foil, the shear layer width is related to

the motion amplitude, and disturbances are applied at the oscillation frequency. The

Strouhal number given by Equation 1.2), which relates all three of the parameters

affecting the stability of the shear layer, is therefore a key dimensionless parameter

governing the thrust production and efficiency of an oscillating foil. Analysis of a
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typical jet velocity profiles observed in experimental studies indicates that the fre-

quency of maximum amplification corresponds to Strouhal numbers in the range of

0.25 < St < 0.35, with the specific value dependent on the ratio of the jet centerline

velocity to the mean flow velocity [15]. Observation of the swimming behaviour of

several species of fish shows that natural swimmers typically operate in this relatively

narrow range of Strouhal numbers that provide high efficiency, even over range of

Reynolds numbers of several orders of magnitude [15].

Equipped with an understanding of the importance of operating oscillating foils

in the correct range of Strouhal numbers, Anderson et al. [12] undertook an extensive

parametric study to identify the conditions for maximum propulsive efficiency. This

study employed a combination of direct force measurement and flow visualisation.

The force measurements indicated that high efficiency is achieved when the ratio of

heave amplitude to chord length is large, the maximum angle of attack is in the range

of 15°-25°, and Strouhal number based on trailing edge excursion is in the range of

0.3 < St < 0.4. A thrust-producing reverse Kármán vortex street was observed for

Strouhal numbers between 0.2 and 0.5 and maximum angles of attack between 7°and

50°. In this flapping regime, the foil shed two vortices into the wake during each

oscillation cycle. Leading edge separation was observed, but the associated leading

edge vortex was found to amalgamate with the trailing edge vortex before shedding

into the wake.

1.3.1 Three-dimensional Foil Wakes

In many of the existing studies using flow visualisation to demonstrate the formation

of a reverse Kármán vortex street in the wake of an oscillating foil such as [12, 16],

the authors used measures such as high-aspect-ratio foils and end plates to create an

approximately two-dimensional flow in the imaging plane at the foil mid-span location.

In general, if these measures are not put in place the wake of a three-dimensional foil

may be considerably different from a reverse Kármán street [17]. Vortex lines do not

terminate in the fluid [18], and consequently all of the vortices surrounding a three-

dimensional foil must be interconnected or form ring-like structures [7]. Such patterns

of interconnected vortex loops in the wakes of three-dimensional foils been observed

experimentally [19,20] as well as in the results of numerical simulations [17,21]. Under

some conditions, Dong et al. [17] observed that the vortices in the wake separate into

discrete rings. Generally in all of these studies, the specific geometry of the vortex
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loops was found to depend on the foil aspect ratio as well as the Strouhal number.

For example, [17] reports that the vortex rings and loops travel at some angle relative

to the freestream flow and that this angle becomes smaller as the aspect ratio is

increased, while von Ellenrieder et al. [20] identify a trend where the vortex loops

expand in the spanwise direction and contract in the streamwise direction as the

Strouhal number is increased. As the aspect ratio of a three-dimensional foil increases,

the wake pattern within planes perpendicular to the foil span begins to more closely

resemble a reverse Kármán street, especially in the near wake and when the foil is

operating at the Strouhal number of peak efficiency [17,19].

Given the substantial differences between the wakes of two-dimensional and three-

dimensional oscillating foils, it is unclear whether the trends relating the propulsive

efficiency to Strouhal number described in Section 1.3 can simply be extended to

design the operation of physical propulsion systems [20, 22]. These trends have been

identified based on the stability two-dimensional shear layers. In the examinations

of the propulsive efficiency of finite-aspect-ratio foils which are available in the lit-

erature [17, 19, 22], the Strouhal number reported for optimal efficiency is generally

outside of the theoretical optimal range identified for two-dimensional foils identified

by Triantafyllou et al. [15]. However, in these cases a number of factors includ-

ing a low Reynolds number and the associated high viscous drag [17], variation of

Reynolds number between trials [19], and the interaction among two foils and a rigid

body upstream [22] complicate the trends in the results. In contrast to these findings,

Barannyk et al. [23] report that the Strouhal number of peak efficiency did fall in the

range of 0.25 < St < 0.35 when conducting experiments with foils having a very low

aspect ratio of A = 0.5. In spite of these quantitative discrepancies, in all of these

cases [17,19,22,23], the efficiency was observed to change as the Strouhal number was

varied, indicating that this parameter is relevant in the design of all oscillating-foil

propulsion systems, even when the aspect ratio is small.

The data available in the literature relating the efficiency of oscillating foils to

aspect ratio is limited. From observation of the studies that are available, it appears

that the effect the aspect ratio on the efficiency of oscillating foils is small above a

certain threshold level. However, quantifying this threshold is difficult because it is

likely influenced by other parameters such as the Strouhal number and foil geometry.

Buchholz and Smits [19] report that the peak efficiencies achieved in their experiments

were similar for foils with an aspect ratio above A = 0.83, while the efficiency of

the lowest aspect ratio panel (A = 0.54) was considerably lower. In the numerical
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simulations of [17], the relation between efficiency and Strouhal number collapses onto

the same trend line at high Strouhal numbers (St > 0.85) for foils with an aspect ratio

greater than A = 2.55, while the efficiency of a smaller aspect ratio foil (A = 1.27)

was well below this trend line.

The trends relating the thrust production of three-dimensional oscillating foils to

aspect ratio and Strouhal number are somewhat more clear than those for propulsive

efficiency. The thrust coefficient is found to increase with Strouhal number as is the

case for two-dimensional foils [17,19,23]. When comparing foils operating at the same

Strouhal number, higher-aspect-ratio foils achieve a higher thrust coefficient [17, 19].

However, the relationship between the thrust coefficient and the aspect ratio is not

linear and the effect of aspect ratio is less significant when the aspect ratio is high

and the flow structure approaches two-dimensional conditions [17].

The uncertainty in the current understanding of the wake dynamics and the rela-

tion between the Strouhal number and efficiency of three-dimensional foils contrasts

with the case of two-dimensional foils where the development of a reverse Kármán

street leading to efficient thrust production is well known from both theoretical anal-

ysis and practical demonstrations. For this reason, further research is required to

develop the knowledge which will allow engineers to design with confidence efficient

practical propulsion systems using finite aspect ratio foils. In this work described

in this thesis, the foils used in the experiments were of relatively low aspect ratio

(A = 0.7). However, the aspect ratio was not explicitly considered in the exper-

imental parameter space, and owing to the lack of clear design guidelines for the

selection of the appropriate kinematics for this foil geometry, the theory developed

for two-dimensional foils was applied in the selection of the operating Strouhal number

range.

1.4 Effects of Foil Flexibility

Much of the recent research on oscillating-foil propulsion has focused on the use of

flexible foils. These studies have been inspired in part by the observation that many

natural oscillating foils incorporate some degree of flexibility. Indeed, it is speculated

that the passive deformation of fish fins [24], insect wings [25] and the feathers on bird

wings [26] plays an important role in the thrust generation of these appendages and

improves the biomechanical efficiency of the animals in question. As an additional

benefit to using flexible foils, the bending of the foil can act to generate a pitching
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motion when a heaving motion is applied near the leading edge. By removing the

need for separate actuator to drive the pitching motion, the use of flexible foils in a

man-made propulsion system can simplify the design of the drive mechanism which

in turn makes the vehicle lighter and more reliable [27,28]. With these advantages in

mind, numerous experimental and numerical studies have been undertaken examining

the effect of flexibility on the thrust generation and efficiency of oscillating foils.

One early effort to understand the role of foil flexibility in propulsion was con-

ducted by Katz and Weihs [29]. The results of these simulations showed that a flexible

oscillating foil was able to achieve higher efficiency than a rigid foil with the same

flapping kinematics. While the deformed shape of the flexible foil generated smaller

lift forces, the deformation redirected the lift force vector, which acts normal to the

foil surface, towards the direction of propulsion. Similar results were found experi-

mentally by Barannyk et al. [23]. This study considered flapping plates comprised

of rigid and flexible sections of the chord length. Both the efficiency and thrust gen-

eration were found to improve as the fraction of the plate chord comprised by the

flexible section increased. However, for high Strouhal numbers, beyond the range of

the peak efficiency, all of the plates with varying lengths of rigid and flexible sections

reached the same asymptotic efficiency.

While the works of [29] and [23] have demonstrated the possibility to improve

the propulsive performance of an oscillating foil by reducing the chordwise bending

stiffness, it has also been demonstrated that under certain conditions such as high

forward velocities and flapping frequencies a more rigid foil may actually outperform

a more flexible one [10, 28, 30]. Heathcote and Gursul [10] measured the propulsive

performance of chordwise-flexible foils assembled from flexible steel sheets attached to

a rigid aluminum leading edge section. The foils were driven in a flapping motion while

immersed in a water flow. The stiffness of the foils was modulated by using sheets of

different thickness while the Strouhal number was varied by changing the oscillation

frequency. Tests were conducted at three different Reynolds numbers by changing the

flow speed. It was found that at low Reynolds numbers, the foils with the thinnest

sheets, and highest flexibility, achieved the highest efficiency, while at higher Reynolds

numbers, the foils of intermediate flexibility operated more efficiently. Considering the

thrust coefficients, the required stiffness for maximum thrust generation was found to

increase at higher Strouhal numbers. Similar results were observed by Wu et al. [28]

who tested membrane wings reinforced with carbon fibre strips flapping in air. In

this work, it was found that at low flapping frequencies the most flexible wings, with
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the fewest number of reinforcing strips, produced the highest thrust. As the flapping

frequency increased, the wings of intermediate flexibility and then finally the most

rigid wings were observed to generate highest thrust.

The deformation of a flexible oscillating foil is a dynamic process, meaning that

the deformed foil shape will vary in time throughout the oscillation cycle as the di-

rection and magnitude of the applied forces change. This time-varying deformation

requires that parts of the foil to accelerate with respect to one another. For this

reason, the behaviour of flexible oscillating foils is likely to be influenced not only by

the stiffness, which is the resistance to deformation under static loads, but also by the

inertia which refers to the tendency of matter to resist changes in velocity. Together,

the stiffness and inertia of a structure set its resonant or natural frequency, fn which

characterizes the behaviour in time as the structure recovers from an imposed defor-

mation. If the resonant frequency is included into the characterization of a propulsion

system, the frequency ratio f/fn where f is the flapping frequency, becomes a second

important non-dimensional frequency in addition to the Strouhal number. This ratio

is important because a structure may either amplify or attenuate the deformations

caused by a dynamically applied force depending on the ratio of forcing frequency to

resonant frequency. To date, there have been a number of studies which considered

the relation among the foil resonant frequency, flapping kinematics, and propulsive

efficiency [28,31–33].

It has been observed in numerical simulations by Michelin and Smith [32] and

experiments by Wu et al. [28] that optimal thrust generation can be achieved when

the flapping motion is close to the resonant frequency so that the foil deformation

amplifies the input motion. However, in the experiments of Ramananarivo et al.

[31], no resonant-like peak in the deformation amplitude is observed when the foil is

actuated near the resonant frequency and this combination of structural properties

and flapping kinematics was actually found to yield sub-optimal thrust and efficiency.

The foils were found to perform better when the flapping frequency was lower which

resulted in a more appropriate phase difference between the deformation cycle and

the input motion. The importance of this proper phasing was also discussed by Wu

et al. [28].

Despite the wide breadth of studies which have examined flexible foils in general,

and even explicitly considered the resonant frequency, the availability of parametric

investigations into the effects of both inertia and stiffness is limited. The work which

has examined the effects of inertia is generally restricted to numerical simulations
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[32–34] because it is difficult to change the mass of a physical structure without also

affecting the stiffness or geometry. However, the simulations have shown that the foil

mass is indeed an important parameter. When comparing foils of the same resonant

frequency in the results of Yin and Luo [33], the lighter and more flexible foils generally

achieve higher performance. Similar findings are included in the results of Zhu [34]

where it was shown that in the case of chordwise bending, increasing the relative

mass between the foil and the surrounding fluid results in a poor phase between the

deformation and the input motion which is not conducive to thrust generation.

Considering the work which has been reviewed here, the results of previous works

indicate that the incorporation of the correct degree of flexibility into the design of

an oscillating foil can lead to improved propulsive performance. However, further

research is required to assist engineers in the selection of the appropriate stiffness and

inertia for a given propulsion system. The study described in this thesis is expected

to further develop the understanding of this field by addressing the research questions

described in the next section.

1.5 The Problem of Tuning the Foil Structure for

Improved Thrust Generation and Efficiency

The knowledge contained in the existing literature provides engineers working on

oscillating-foil propulsion systems with a set of design guidelines. The studies re-

viewed in Sections 1.1-1.4 have identified a range of parameters in both the flapping

kinematics and foil structure which affect the thrust and efficiency by influencing the

unsteady flow around the foil and in the wake. In particular, the research which was

examined in Section 1.3 has found that the Strouhal number is a key dimensionless

grouping which governs the wake dynamics. Considering the discussion in Section

1.4, it is known that a certain degree of flexibility in the foil structure is beneficial in

order to set the frequency ratio which results in either the appropriate phase between

the deformation and the actuated oscillating motion or the maximum amplification of

this input motion by the deformation. These findings relating the wake and structural

dynamics to the propulsive performance raise the issue of “tuning” the foil properties

for a given set of flow conditions. More precisely, while both the Strouhal number and

frequency ratio have been shown to be important non-dimensional frequencies, the

current understanding does not offer specific and quantitative advice regarding the
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selection of an appropriate combination of stiffness, inertia, and oscillation amplitude

and frequency to meet constraints such as forward speed and thrust requirements

while also achieving a high efficiency. For this reason, engineers working through the

design process of a propulsion system are therefore apt to ask the following logical

questions:

1. Can the propulsive efficiency be improved by choosing the stiffness and inertia

of a foil such that the optimal Strouhal number and the optimal frequency ratio

coincide at the same oscillation frequency?

2. What is the effect on the thrust generation and efficiency if the frequency ratio

is set by changing the foil stiffness or inertia?

3. How does the optimal frequency ratio change as the kinematic parameters such

as the heaving or pitching amplitude are varied?

In the study described by this thesis, a series of experiments was conducted in

attempt to answer these questions. While it is unlikely that the results obtained here

will provide engineers with a set of specific rules that can applied ubiquitously in

the design of propulsion systems, the findings of this work are expected to demon-

strate trends which will be useful in the initial high-level design stages and when

planning the testing of a new propulsion system. For instance, it was not possible

to answer Question 1 affirmatively indicating that the relation among the structural

dynamics, oscillation kinematics and propulsive performance is complicated and the

effects of structural changes and variations in the wake structure cannot be isolated

from each other. Essentially, the effective kinematics of the motion change due to the

deformation of the foil and engineers must account for these changes when planning

the operation of an oscillating foil. To answer Question 2, it is demonstrated that

heavier foils achieve higher peak thrust when compared to lighter and more flexible

foils with the same resonant frequency, but the efficiency of both designs is approx-

imately equivalent. Finally, in an attempt to answer Question 3, it was found that

peak efficiency is achieved at a lower frequency ratio as the heaving amplitude is

increased. The addition of an active pitch motion was found to reduce thrust pro-

duction while improving efficiency. These findings concerning the effect of the heave

amplitude and active pitching motions will help engineers anticipate the ranges of

structural parameters which lead to optimal efficiency once the oscillation kinematics

have been established. At the very least, the results of all of the experiments which
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were undertaken for this thesis will help to guide further research in the field of flexible

oscillating-foil propulsion by accentuating the importance of the questions identified

here.

1.6 Objectives

With an overall goal to further the understanding of the relationship between the

kinematics, structural properties and propulsive performance of oscillating foils, the

study described in this thesis has used experimental measurements of thrust produc-

tion and efficiency to satisfy the following specific objectives:

1. Assess the feasibility of improving efficiency by appropriately matching the foil

resonant frequency to the oscillation frequency and amplitude and the forward

travel speed.

2. Compare the thrust production and propulsive efficiency of foils with equivalent

resonant frequency but different mass and stiffness.

3. Examine the changes in the trends relating the structural properties to propul-

sive performance as the oscillation amplitude and forward travel speed are var-

ied and an active rotation is added in combination with the translation to the

oscillating motion.

4. Develop a theoretical model which describes the structural dynamics of an os-

cillating foil to explain the observed trends in the experimental measurements.

1.7 Thesis Overview

Chapter 2 describes the experimental method and apparatus used in the study. The

set up and operation of the flow facility, motion control system, force measurement

apparatus and photographic equipment are all discussed. The procedure for the

calculation of the thrust coefficient and efficiency from the force and position mea-

surements is explained. The uncertainty in the measurements and derived quantities

is also examined.

Chapter 3 discusses the design and construction of the foils used in the propulsion

testing experiments. The foils are characterized in terms of resonant frequency and
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bending stiffness. In the final section of the chapter, a theoretical model is developed

to represent the structure of the foils and describe the dynamic deformation of this

structure in response to inputs of varying frequencies.

Chapter 4 presents the results of the experiments. The chapter begins by dis-

cussing how the foil deformation can be observed indirectly from torque measure-

ments. The parameters of the theoretical model developed in Chapter 3 are then

determined empirically by fitting the model predictions to the observed deformation

behaviour. Subsequent sections of the chapter use this model to explain the observed

trends in propulsive performance as the oscillation kinematics and foil structure are

varied. Finally, the last section of the chapter discusses the implications of the findings

for the design of practical propulsion systems.

Chapter 5 summarizes the work described in the thesis and identifies potential

future investigations which build on the present results.
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Chapter 2

Experimental Propulsion Testing

Apparatus and Procedure

The main focus of the work described in this thesis was a series of experiments con-

ducted to assess the effect of the foil structural design and the oscillation kinematics

on the propulsive performance as measured by the thrust generation and efficiency.

Conceptually, the procedure for these experiments was simple; flexible foils with a

range of bending stiffness and inertia were immersed in water channel and driven in a

oscillating motion using servo motors while the forces and torque applied to the foils

were measured using a load cell and recorded. The thrust, power and efficiency were

then calculated from the recorded force measurements and motion profiles to enable

quantitative comparisons of the propulsive performance among the various trials. A

sketch of the experimental set-up is shown in Figure 2.1. In addition to the force

measurements, the foil deformation was observed by high-speed photography.

This chapter describes in detail the equipment and methods used in the propulsive

performance trials. The first two sections describe the equipment and methods used

to establish the kinematic conditions of the relative flow equivalent to forward travel

and the oscillating motion. Sections 2.3 and 2.4 present the measurement of the

applied forces on the foil and the foil deformation respectively. Section 2.5 examines

the calculation of the thrust coefficient, power coefficient and efficiency from the

experimental measurements. While the error in the individual position and force

measurements are discussed along with the descriptions of the relevant equipment in

Sections 2.2 and 2.3, the uncertainty in the calculated quantities is assessed separately

in Section 2.6.
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Figure 2.1: Sketch of the experimental set-up used to measure the propulsive per-
formance of the oscillating foils.

2.1 Flow System

The experiments described in this thesis were conducted in the flow visualization wa-

ter tunnel in the Department of Mechanical Engineering’s Fluid Dynamics Laboratory

at the University of Victoria. This water tunnel is a commercially available model

produced by Engineering Laboratory Design Inc. The tunnel is of a re-circulating

design, generating a continuous flow in the test section by drawing fluid from the

outlet and reintroducing it at the inlet. The flow is driven by a pump powered by

a large 25 HP motor. The flow speed in the test section can be adjusted using a

variable frequency drive which controls the rotational speed of the pump.

The tunnel test section is constructed of transparent acrylic panels making up the

sidewalls and bottom. During the experiments in this study, the upper surface of the

test section was left uncovered, creating a free-surface flow. The test section has a

length of 2.5 m and width of 45 cm. The tunnel was filled to its maximum depth

of 45 cm to create a flow with a square cross-section. A large converging nozzle and
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a tank filled with honeycombs are situated upstream of the test section between the

pump and the test section inlet. At the outlet, a vaned diffuser guides the fluid into

the pipe which returns it to the pump. The nozzle, honeycombs and diffuser act to

establish a uniform flow in the test section.

2.2 Control and Actuation of the Oscillating

Motion

The flapping motions required for the study were generated using a servo motor mo-

tion system supplied by Parker Hannifin Corporation (Electromechanical Automa-

tion Division). A timing belt-driven linear actuator (Parker OSPE32-600L2-00680-

PM2A6C) powered by a 1.756 kW motor was used to generate the heaving motion.

A smaller motor (Parker SM233AE-NPSN) mounted on the carriage of the actuator

was used to rotate the foils through a gear drive (Parker RX60-010-S2), generating

a pitching motion. Both motors were powered using Parker Aries series digital servo

drives (Parker AR-XXAE). The motors and actuators were mounted above the water

tunnel, supported by an aluminum frame. The load cell used for force and torque

measurements was mounted on the output shaft of the pitching gear drive. The foils

were in turn connected to the load cell by a stainless steel mast.

The motion was controlled using a Parker ACR9000 controller. The motion pro-

files were prescribed using the cam table feature of the AcroBASIC programming

language employed by the controller. This feature allows the user to input a table

containing an arbitrary set of position points to which the controller will command

the actuators to move at regular intervals in time. The motion is repeated by cycling

through all of the points on the table for a prescribed number of times. For the exper-

iments in this study, the motion profiles were sinusoidal so the cam tables consisted

of one period of a sine wave discretized into one hundred points. The frequency of

the motion was varied by changing the time period required to complete one cycle of

the table. The sine waves were set to start at the negative peak where the velocity

is zero so that infinite acceleration would not be required when the motion started

from rest. To reduce the jerk when starting and stopping the motion, the amplitude

of the motion was ramped up or down linearly over twenty cycles at the start or end

of the trials. In addition to the ramping, twenty cycles were performed at the full

amplitude before any data was taken to allow the flow conditions and the forces on
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the foil to arrive at a state of periodic oscillations.

The controller operated in servo mode, using a feedback control strategy to adjust

the motor torque as necessary such that the actuators would accurately follow the

commanded motion profile. During the operation of the system, the actual positions

of each axis were measured using incremental optical encoders mounted on the motor

shafts. The control signals were generated by multiplying the error between the

commanded and measured positions by a gain factor. A component proportional

to the derivative of this error was also added to the signal. The drives adjusted the

current powering the motors based on this control signal. The appropriate servo gains

were determined empirically using a step tuning procedure. In this process, the motor

is commanded to move instantaneously through a small step of 400 encoder counts.

The response of the motor is not instant, and the actual position of the actuator

approaches the commanded position over time. The proportional and derivative gains

are adjusted until the actuator is observed to move to the commanded position as

rapidly as possible with no oscillations. With the chosen gains, peak following errors

between the commanded and actual positions during trials with combined heaving

and pitching motion were found to be on the order of 0.396 mm on the heave axis

and 0.144°on the pitch axis. The following error was found to generally increase with

the frequency of the motion but was relatively insensitive to the inertia of the foil.

The controller was also used to log the actual position of the linear actuator

carriage and pitching gearbox shaft based on the encoder feedback during the exper-

iments. This data was used in combination with the force measurements to calculate

the power input (see Section 2.5). The controller was set to record the position every

3 ms which resulted in a minimum of 111 data points per cycle throughout the range

of frequencies considered in the propulsion trials.

2.2.1 Uncertainty in the Position Measurements

The position records are subject to some uncertainty due to the limitations of the

actuator mechanics and measurement hardware. Errors in these measurements arise

due to the repeatability limitation of the linear actuator, backlash in the gear drives

and the finite resolution of the encoders. The repeatability specification of the linear

actuator refers to the ability of the device to repeat motions to within a certain

precision limit. It is believed that the error arises due to factors such as non-uniformity

in the timing belt and sprocket teeth, eccentricity of the drive pulleys and shafts, and
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play or looseness in the rotary and linear bearings. Backlash refers to the ability of the

output shaft of a gearbox to rotate through some small angle without any movement

of the input shaft. This relative motion is possible due to clearance between the gear

teeth and a small amount of deformation of the internal components. The resolution of

the optical encoders is finite because these measurement devices operate by counting

pulses of light which pass through a grating that rotates with the motor shaft. The

smallest movement of the motor shafts which can be detected therefore corresponds to

the angular increment between successive openings in the grating. The error expected

from each of these sources for both axes has been tabulated in Table 2.1. The errors

from each source have been combined using a root-sum-square (RSS) method [35] to

estimate the overall uncertainty in the position measurements. It is expected that

there is an additional small amount of error due to flexing of the frame supporting the

motion system and bending of the mast and couplings which connect it to the foils.

However, this error is likely small because the framework and mast were constructed

to be rigid considering the loads and forcing frequencies in the experiments.

Error Source Linear Axis Rotary Axis

Repeatability ±0.05mm not applicable
Backlash ±0.111mm ±0.333°
Encoder resolution ±0.006mm ±0.009°
Overall error ±0.122mm ±0.333°

Table 2.1: Contributions from relevant error sources and overall uncertainty in the
measurement of linear and angular positions.

2.3 Dynamic Force Measurement

A three-axis load cell supplied by Novatech Measurements Ltd. (Novatech F233-

Z3712) was used to measure the force and torque applied to flexible foils during the

trials. In general, load cells are force transducers consisting of foil strain gauges

bonded to the surface of a metallic structure. When loads are applied to the struc-

ture, it deforms and stretches or compresses the strain gauges, causing a change in

their electrical resistance. A Wheatstone bridge circuit is used to output a voltage

proportional to this change in resistance which is in turn proportional to the applied

load [36]. In this particular load cell, the metallic structure is an arrangement of can-
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tilevered beams which bend in different directions depending on the applied loading.

The bridge circuit for each force direction or torque uses an active strain gauge in

each arm to compensate for temperature effects [37] and the resistance of the leads

connecting the load cell to the supply voltage and measurement hardware [36].

The load cell was positioned to measure the torque about the pitching axis and

forces in two orthogonal directions perpendicular to the foil span. One of the force

axes was oriented to be aligned with the foil chord when the foil was in its undeformed

shape. The foils were positioned such that the mid-span location along the pitching

axis coincided with the factory-calibrated force center. Because this force center is

situated 335 mm from the attachment point on the load cell, the foils were connected

to the load cell using a stainless steel mast of 19.1 mm (0.75 inch) diameter. With

the foils positioned in the water tunnel with the mid-span plane at the mid-depth of

the test section, the mast protruded above the free surface allowing the load cell to

remain above the water where it would not disturb the flow.

In the chosen experimental configuration, manufacturing errors resulting in asym-

metry of the foil structure or imperfect alignment of the set-up had the potential to

introduce a bias into the force measurements. This error would arise if the foils were

positioned to direct a component of the weight or buoyant forces along one of the

force axes of the load cell or generate a moment about the torque axis. To correct

for this possibility, an initial load cell reading was taken for each foil when it was

mounted motionlessly in the water tunnel under no-flow conditions. This reading

was subtracted from all of the measurements during the propulsion trials to tare the

load cell for the given foil design.

A set of Mantracourt Electronics SGA/A load cell amplifiers also supplied by

Novatech Measurements Ltd. were used to boost the output of the load cell from

a signal on the order of millivolts to a ±10 V scale. This amplification served to

increase the signal-to-noise ratio in the measurements. These amplifiers also supplied

the excitation voltage for the load cell. The load cell was factory calibrated about

three months before the completion of the propulsion trials and the amplifier gains

were also set during this procedure.

A National Instruments NI-PXI4472 analog-to-digital converter (ADC) was used

to record the amplifier outputs at a sample rate of 10 kHz. This device is a delta-sigma

converter which incorporates analog and digital low-pass filters to avoid aliasing in

the digital records [38]. In this design, the conversion is performed in two stages.

In the first stage, the signal input to the converter passes through a low-pass analog
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filter with a cutoff frequency of 400 kHz to remove high-frequency components which

could cause aliasing in the conversion. A low-resolution one bit conversion is then

performed on the filtered signal at a high sampling rate of 1.28 MHz. In the second

stage, the output of the one bit conversion is passed through a digital filter which

removes signal components above the Nyquist frequency for the sampling rate of the

final output. This second low-pass filtering also removes the quantization noise added

in the first conversion, which is uncorrelated with the original signal and restricted

to frequencies well above the Nyquist frequency. The digital filtering calculations are

performed to 24-bit precision to give the final conversion.

In order to use the force measurements for the calculation of the propulsive per-

formance metrics (see Section 2.5), it was necessary to synchronize the sampling with

the position records stored in the controller (see Section 2.2). To achieve this syn-

chronization, the controller was programmed to send a triggering signal from one of

its general purpose outputs at the correct time during the trial to begin recording

data. Because of the relatively long (2 ms) turn-on time for these opto-isolated out-

puts [39], the triggering signal was treated as an analog rather than digital output.

The trigger signal was connected to one of the input channels of the ADC which was

dedicated for analog edge triggering. The trigger signal was also routed back to the

trigger inputs on the controller which have a turn-on time of 400 ns [39] to initiate

the position recording. By adjusting the threshold voltage for the analog trigger of

the ADC to the appropriate level, it was possible to reliably synchronize the force

and position recording to within 0.5 ms. At the maximum oscillation frequency con-

sidered in the trials, this difference corresponds to 0.15% of an oscillation period.

The relatively high sampling rate for the force measurements was chosen in order to

precisely identify the time when the analog triggering signal crossed the threshold

level.

The sampling rates of the ADC as well as the triggering parameters are software

configurable. A program was developed using National Instruments Corporation’s

Labview software to set the appropriate options and control the instrument during

the experiments.

2.3.1 Post-processing of the Force Measurement Signals

Because the forces were recorded at a much higher sampling rate than the foil posi-

tion, it was necessary to decimate the force records to have the same interval between
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samples for both quantities. This process reduced the effective sampling rate of the

force signals from 10 kHz to 333 Hz. To avoid aliasing in the decimated force records,

digital low-pass filtering was performed on the complete records before extracting

data points in the decimation process. It was decided to implement this filtering digi-

tally after taking the measurements rather than incorporating an analog filter into the

measurement system because of the greater flexibility in terms of cutoff frequencies

and filter topologies available with digital filters. Second-order Butterworth filters

were eventually chosen because this topology does not have any ripple in the ampli-

fication or attenuation of the signal in the passband [40]. Because it is important to

maintain the synchronization of the force and position measurements, it was decided

to implement a zero-phase filtering strategy which allows the features of the filtered

signal to remain at the same location in time as in the original measurements. In this

approach, the software performing the filtering calculations applies the filter once,

reverses the ordering of the data points, and then applies the filter to the reversed

sequence [41]. The original ordering is then restored to the data points. Because the

ordering of the data points is reversed between the two filtering operations, the phase

shifts caused by each filter are in opposite directions and cancel each other. Because

the filter is applied two times in total, the attenuation factors applied to the amplitude

of the signal are squared and the order of the filter is doubled. The filtering applied

in this study was therefore in fact effectively fourth-order. The filtering routines were

implemented using built-in functions in The Mathworks’s Matlab software.

The digital filtering process was also used to remove high-frequency fluctuations in

the signals. These components of the force and torque recordings were not believed to

be related to any interesting physical phenomena in the fluid flow or foil deformation.

Instead this noise was attributed in part to electromagnetic and thermal effects on the

equipment. The servo-loop control strategy employed for the motion equipment was

also believed to cause fluctuations in the torque of the motors which would in turn

introduce additional oscillations into the measurements. Setting the cutoff frequencies

of the digital filters a factor of ten times above the oscillation frequency for each trial

was found to be generally effective at removing this noise and is believed to have had

a minimal effect on the relevant low-frequency components.

Examples of filtered and unfiltered force signals acquired during trials at oscillation

frequencies of 0.59 Hz and 1.17 Hz are shown in Figures 2.2 and 2.3 respectively. These

trials did not include an active pitching motion and the x- and y-axes of the load cell

remained aligned with the streamwise and transverse directions respectively. In the
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case of the low-frequency oscillations at 0.59 Hz, the streamwise force is small and the

signal-to-noise ratio is very poor. This inability to precisely resolve the streamwise

force limits the accuracy of the calculated thrust and efficiency data for the low-

frequency trials. However, a periodic signal can be discerned more clearly from the

measurements in the trial with a 1.17 Hz oscillation frequency, and also at higher

frequencies where the interesting performance trends occur. The transverse force and

torque are also subject to some noise but can be measured more clearly in both trials.

2.3.2 Uncertainty in the Force Measurements

The load cell measurements are subject to errors arising from non-linearity, cross

talk, hysteresis and repeatability [42–44]. The contribution of each of these error

sources can be estimated based on the data obtained during calibration when known

loads were applied. Non-linearity errors arise due to the fact that the output voltage

of the load cell in response to applied loads is not strictly linear, while the scaling

from voltage to force or torque is made based on linear interpolations between the

calibration data points. One of the most significant error sources for multi-axis load

cells is cross talk. This error is defined as the offset between the measurement and

the true load on one axis which occurs when load is applied on one of the other

axes. Ideally, the axes would operate completely independently by either designing

the structure such that no loads can be transmitted from one axis to another, or

constructing the bridge circuits such that resistance changes in the strain gauges

used for one axis would cancel each other when an off-axis load is applied. Such

perfect operation can never be achieved in practice due to manufacturing errors such

as the gauge alignment or asymmetry of the structure. In addition to these two bias

errors, further errors will limit the precision of measurements made when applying

the same load repeatedly. The load cell has a specified repeatability limit which is

obtained by observing the difference in output between consecutive applications of

the full rated load. Strain gauge load cells are also known to be subject to a hysteresis

error, defined as the difference between the output voltages obtained when the same

force or torque is applied under conditions of increasing or decreasing load.

The estimated errors for each axis due to the sources identified here are tabulated

in Table 2.2. The individual error sources have been combined using an RSS method

[35] to give an overall uncertainty in the measurements. In each case, it is observed

that cross talk is the dominant error source.
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Figure 2.2: Signals recorded from the load cell (a) x-axis, (b) y-axis and (c) torque
axis during a propulsion trial with an oscillation frequency of 0.59 Hz and heave
amplitude of 25 mm.
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Figure 2.3: Signals recorded from the load cell (a) x-axis, (b) y-axis and (c) torque
axis during a propulsion trial with an oscillation frequency of 1.17 Hz and heave
amplitude of 25 mm.
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Error Source x-axis y-axis torque axis

Non-linearity ±0.19 N ±0.60 N ±0.0036 Nm
Cross talk ±2.6 N ±4.6 N ±0.36 Nm
Repeatability ±0.07 N ±0.05 N ±0.007 Nm
Hysteresis ±0.16 N ±0.27 N ±0.012 Nm
Overall error ±2.6 N ±4.6 N ±0.36 Nm

Table 2.2: Contributions of relevant error sources and overall uncertainty in the
load cell measurements on each axis.

The uncertainties listed for each axis in Table 2.2 likely represent a very conser-

vative estimate. The non-linearity and hysteresis errors were obtained by comparing

the measured outputs at half of the rated load to the output predicted by a linear in-

terpolation over the full load range. In the actual trials, the interpolations were made

between all three of these calibrated load points. When interpolating over a smaller

range, the linear trends will more accurately represent the actual response of the load

cell. Additionally, it is reasonable to expect that non-linearity and hysteresis errors

will be greater near the midpoints of the load range. Small forces near the zero load

point will likely be subject to smaller errors from these sources. It is assumed that

the cross talk specifications for the load cell were obtained by applying the maximum

rated load on one axis and observing the output on the other two. Since the forces

and torques applied during the propulsion trials were considerably smaller than the

rated loads, it is reasonable to expect that the cross talk errors would also be pro-

portionally smaller. Based on this discussion, it may be more reasonable to remove

the non-linearity, hysteresis and cross talk errors and consider only the repeatabil-

ity specification for the relatively low forces and torque which were measured in the

propulsion trials. In this case, the overall uncertainty is much lower.

Errors in the force and torque measurements arising from the quantization in

the ADC and from the dynamic response of the load cell are not believed to be

significant and have been omitted from the discussion here. The high bit count of the

ADC makes quantization errors small relative to the other sources identified in Table

2.2. The error due to the dynamic response of the load cell is also minor because the

frequencies of the applied forces were less than one tenth of the resonant frequencies

of the force measurement system [45]. An estimate of these resonant frequencies is

included in Appendix A.
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2.4 Photographic Observation of the Foil

Deformation

During some propulsion trials, digital photographs were recorded to directly observe

the degree of chordwise bending of the foils and the phase of this deformation with

respect to the input motion. A Photron APX-RS high-speed digital camera fitted

with a Nikon Nikorr AF-series 28 mm lens was positioned below the test section of

the water tunnel looking up at the flexible foil through the transparent acrylic floor.

The lens focal ratio was set to f/2.8 and the camera was configured to record at 500

frames per second. The frame rate was chosen to be much higher than the oscillation

frequencies to avoid aliasing in the observed deformation patterns and to reduce the

blurring of the moving foil in recorded images. The camera shutter speed was left

to be selected automatically by the Photron FastCam Viewer software which was

used to control and configure the camera. The lens was focused on the plane at the

lower end of the foil span, approximately 0.4 m above the front surface of the lens.

The camera was mounted on a Manfrotto three-axis tripod head which was used to

rotate the camera such that the edges of the field of view were aligned to be parallel

and perpendicular to the streamwise direction. With the chosen camera position and

the viewing angle provided by the 28 mm lens, the chord length of the foil occupied

almost the entire length of the field of view, allowing the movement and deformation

of the foil to be observed with the maximum possible resolution on the 1024 × 1024

pixel sensor of the camera.

Sheets of corrugated cardboard with a black paper covering were placed spanning

the water tunnel test section above the water free surface to create a dark background

in the photographs. The overhead lighting in the laboratory was switched off during

these trials. Illumination for the photographs was provided by a standard 60 W incan-

descent light bulb mounted in a small desk lamp placed beside the test section at the

approximate height of the mid-span of the foil. The lamp was located approximately

0.06 m from the outside wall of the tunnel and oriented to direct the light at an angle

slightly downstream. The precise positioning of the light was adjusted separately for

each trial to establish a high contrast between the foil and the dark background in the

photographs. The arrangement of photographic and lighting equipment is illustrated

in Figure 2.4.
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Figure 2.4: Set-up of photographic and lighting equipment for observation of the
foil deformation.

Since the silicone rubber material from which foils were constructed is of a translu-

cent white or light gray colour, the chosen combination of lighting and photographic

settings resulted in a distinct contrast in the light intensity between the foil and the

dark background in the recorded images. This contrast is desirable since it makes

it possible to determine the foil position using computerized edge-detection methods

such as the Canny algorithm included with Matlab. This algorithm first calculates

the intensity gradient throughout the image using the derivative of a Gaussian filter.

Pixels with local maxima in the intensity gradient are designated as edge pixels. Two

threshold operations of different levels are then applied to trace object contours. In

the first operation, edge pixels with an intensity gradient above the upper thresh-

old are marked as “strong” edges and form an initial set of contours. In the second

operation, “weak” edge pixels with an intensity gradient between the low and high

threshold levels are added to the contours if connected by a continuous line to the

strong edges. By using the two thresholds, the algorithm is better able to produce

continuous contours while rejecting false edges than other edge detection algorithms

which only apply a single threshold [41]. In the selection of the Canny algorithm

settings, the Gaussian filter standard deviation was set to
√

2, the default value used

by Matlab. The high threshold value corresponding to strong edges was set to 0.25
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and the low threshold value 0.025. Both thresholds are measured on a normalized

scale from 0 to 1, where 1 is the highest intensity gradient in the image [41]. The

chosen low and high threshold values allowed the algorithm to trace a distinct contour

around the foil while largely rejecting other potential edges which arise due to dust

or roughness on the foil surface or any shadows and reflections creating non-uniform

lighting in the background of the image. A typical photograph of a foil and the

resulting contours from the edge detection algorithm are shown in Figure 2.5.

(a) (b)

Figure 2.5: Examples of (a) a typical photograph of a dynamically deforming foil
and (b) the result after processing the photograph using the Canny edge detection
algorithm.

After outlining the foil with the edge detection algorithm, it was necessary track

specific points on the contour between acquired images in order to observe the move-

ment and deformation. The chosen points for this purpose were the trailing edge

and the pitching axis, where the foil does not bend appreciably and remains aligned

with the measured heaving position. The identification of the trailing edge position

was straightforward since this point could be located by simply selecting the furthest

downstream point on the foil contour. The trailing edge was therefore located by

searching from left to right and moving down the rows of pixels until an edge pixel

was found. In the cases where the furthest downstream row with valid edges con-

tained more than one edge pixel, the average of the minimum and maximum index

of the edge pixels was chosen as the transverse location of the trailing edge. The

identification of the pitching axis position was somewhat more complicated. The foil
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designs incorporated an embedded aluminum rod running the length of the foil span,

centred on the pitching axis. A sheet of stainless steel used to reinforce the leading

edge area extended ahead of this rod (see Section 3.1). With the foils illuminated

from the side, the rod appeared as a dark spot within the lighter foil region in the

photographs, and the shadow of the stainless steel sheet darkened one side of the foil.

The edge detection algorithm therefore traced the edge of the rod and the stainless

steel sheet since the image intensity abruptly changed from light to dark along these

contours. Since the videos were only recorded during trials with no active pitching

motion in which the rod did not rotate, the furthest upstream point on the rod could

be identified by selecting the point where the detected edge changed from the curved

contour around the rod to a straight contour aligned with the streamwise direction

defined by the stainless steel sheet. Because the rod was not rotating, this point also

remained aligned at the same transverse position as the rod center which coincided

with the pitching axis and the measured heaving position.

The repeatability of the observation of the foil position was tested by acquiring

sets of ten images with the foil held in a constant position. In addition to the trailing

edge and heave position, the leading edge of the foil was also tracked during these

tests. Image sets were acquired for five different transverse positions. In all but one

of the image sets, the pixel indices identified to represent the leading edge, trailing

edge and heave position were consistent to within one pixel, suggesting that the

precision of these observations is limited by the camera resolution rather than by

random fluctuations such as vibrations resulting in relative movement between the

camera and the foil or digital noise in the images. In one image set, the trailing edge

transverse position was found to fluctuate by 1.5 pixels between images.

To calibrate the image scaling, the pixel displacement of the relevant points on the

foil was observed from one image set to the next in the same five different positions

used in the repeatability tests. The movement of the foil through these positions

was actuated using the motion system described in Section 2.2, and the physical

displacement of the foil between positions was therefore measurable using the motion

system heaving encoder. Figure 2.6 shows the measured physical displacement plotted

against the observed pixel shift of the heave position. The relation between the

physical displacement and the observed pixel shift is apparently linear indicating

that effects of optical distortion, non-uniform lighting, and non-uniform sensitivity

of the camera sensor are minimal. A least-squares regression line was fit between

the measured displacement and the observed pixel shifts to give scalings of 0.2036
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mm/pixel for the trailing edge and 0.2052 mm/pixel for the heave position. The

slight difference occurs because the end of the aluminum rod lies in a plane 5 mm

above the lower end of the foil span.
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Figure 2.6: Measured displacement vs. observed pixel shift of the rod through the
foil pitching axis.

When collecting photographic records of the propulsion trials, the foil motion and

deformation were recorded over four complete cycles of the actuating motion. When

processing these recordings to track the heave position and trailing edge, the algo-

rithm occasionally detected incorrect edges resulting from reflections of entrapped air

bubbles or waves on the free surface creating bright spots in the images. To reject

these outlying data points, a sine wave was fitted to the recorded motion by selecting

the dominant frequency component obtained from a Fourier transform of the records.

Any data points outside of a band of ±10% of the amplitude of the fitted wave were

rejected and replaced with the point on the wave at the corresponding time. After

rejecting the outliers, second-order Butterworth filters were applied to the records

using the same zero-phase filtering strategy as for the load cell measurements (see

Section 2.3). These filters removed the remaining small-amplitude, high-frequency os-

cillations resulting from vibrations caused by the motion system and the repeatability

limitations of the photographic observation. The foil deflection was then determined
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by subtracting the recorded trailing edge and heave positions. Examples of photo-

graphically recorded motions of the heave position and trailing edge are shown in

Figure 2.7. The bands outside of which the data points were rejected are illustrated

with dashed lines.
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Figure 2.7: Recorded heaving and trailing edge positions throughout four motion
cycles at 2.94 Hz. Any points outside of the dashed lines around the traces were
rejected as outliers.

2.5 Calculation of Performance Parameters

In order to make comparisons between the propulsive performance of different foils

and evaluate the potential use of a given foil design as a propulsion mechanism, it is

useful to define dimensionless measures based on the time-averaged thrust generation

and power requirements. These groupings are the thrust coefficient, power coefficient,

and efficiency which have been defined in Section 1.1. The calculation of these quan-

tities from the position and force measurements recorded during the propulsion trials

is discussed here.
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Because the load cell rotated with the foil during the trials which included an active

pitching motion, the first step in the calculation of the dimensionless performance

measures was to project the measured forces from a foil-based coordinate system onto

the axes aligned with the flow and heaving motion in a fixed laboratory coordinate

system. The directions defined for the forces and torque in each coordinate system

are illustrated in Figure 2.8.

FLOW 

DIRECTION

Figure 2.8: Defined directions of the load cell measurements, Fx(t), Fy(t) and τ(t);
measured positions, h(t) and θ(t); and projected forces and torque, Q(t), R(t) and
M(t) required for the thrust, power and efficiency calculation.

Inspection of Figure 2.8 shows that the relevant forces and torque in the fixed

coordinate system are obtained from the load cell measurements using the geometric

transformations given by Equations 2.1-2.3.

Q(t) = −Fx(t) cos θ(t)− Fy(t) sin θ(t) (2.1)

R(t) = Fx(t) sin θ(t)− Fy(t) cos θ(t) (2.2)
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M(t) = −τ(t) (2.3)

Recalling the definition of the thrust coefficient, CT = Q
ρU2a

, from Section 1.1,

it is apparent that the only quantity in this expression which varies in time in the

experimental configuration considered here is the thrust, Q. The time-averaged thrust

coefficient is therefore obtained from

CT =
1

ρU2a

1

nT

∫ nT

0

Q(t)dt (2.4)

where T is the oscillation period and n is the number of periods over which the time-

average is computed [12]. In theory, the forces are expected to vary periodically with

the oscillating motion and averaging the thrust over one cycle should be sufficient.

However, to account for the repeatability of measurements in these experimental trials

it was decided to take the averages over multiple periods (see Section 2.6).

To calculate the power coefficient, it is first necessary to obtain an expression for

the instantaneous power input required to drive the foil in its oscillating motion:

P (t) = −R(t)
dh

dt
−M(t)

dθ

dt
(2.5)

To obtain the time-averaged power coefficient, Equation 2.5 is integrated over a

number of cycles and then normalized in a manner similar to the thrust coefficient [12]:

CP =
1

ρU3a

1

nT

[
−
∫ nT

0

R(t)
dh

dt
dt−

∫ nT

0

M(t)
dθ

dt
dt

]
(2.6)

It can be noted that the differentiation with respect to time of the heave and pitch

positions in the calculation of the instantaneous power (Equation 2.5) is cancelled

by integration with respect to time in the calculation of the time-averaged power

coefficient in Equation 2.6. The time-averaged power coefficient is therefore effectively

obtained by integration of the lateral force and the pitch axis torque with respect to

distance and angle respectively. This approach was adopted here in the calculation of

power coefficient from the experimental data because the linear and angular positions

were measured at each data point while the velocities were not. Evaluating the

integral in this way removes the need to obtain the velocities by discrete differentiation

of the measured positions.

In the experimental measurements, the forces, torque and positions are known as
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discrete data points rather than continuous functions of time. To use this data to ap-

proximate the integrals in Equations 2.4 and 2.6, trapezoidal quadrature was applied.

Using this scheme, and recalling that the integration with respect to time in Equation

2.6 has been replaced with the equivalent integration in space, the expressions for the

thrust and power coefficient become

CT ∼=
1

ρU2a

1

nN∆t

nN−1∑
i=1

Qi +Qi+1

2
∆t (2.7)

and

CP ∼=
1

ρU3a

1

nN∆t

[
−

nN−1∑
i=1

Ri +Ri+1

2
(hi+1 − hi)−

nN−1∑
i=1

Mi +Mi+1

2
(θi+1 − θi)

] (2.8)

respectively, where i is an index of the data points, N is the number of measurements

taken during each cycle and ∆t is the time interval between measurements.

Once the thrust and power coefficients have been calculated, it is straightforward

to find the efficiency by recalling the definition from Section 1.1, η = CT/CP .

2.6 Uncertainty in the Derived Quantities

Because of the uncertainty in the measurements of position, force and torque, the

calculated parameters are also subject to some error. Although the uncertainties as-

sociated with the measurements made using the motion system encoders and load cell

have been quantified in Sections 2.2 and 2.3, it is difficult to relate these uncertainties

to the resulting overall error in the derived quantities of thrust coefficient, power coef-

ficient and efficiency. The approach suggested by Coleman and Steele [35] to combine

the uncertainties from individual measurements using an RSS method is difficult to

apply here because the sensitivity of the results to the measurements at each recorded

point in the oscillation cycle would have to be calculated. The calculation is further

complicated by the fact that in some cases the errors of multiple measurements are

correlated. For example, if one of the motors on the motion system rotates in the

same direction throughout the time interval between two position measurements, the

bias error in each measurement resulting from backlash in the gearbox will be the
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same and the two errors will cancel when considering the incremental distance be-

tween these points. However, if the motor reverses the direction of the applied torque

between measurement points, the incremental distance will be subject to this error

so the effect of backlash can neither be included nor ignored consistently throughout

the cyclic motion.

Because of the inherent difficulties in determining the overall uncertainties by

combining the errors from individual measurements, it is more practical to instead

estimate the uncertainty in the calculated quantities by comparing results obtained

from measurements taken during different cycles. This approach has been used by

Buchholz and Smits [19]. An estimate of the uncertainty obtained in this way will

include the effect of precision errors, such as those that arise from the repeatability

limitations of the actuators and instruments or random changes in the environmental

conditions including turbulent fluctuations in the water tunnel flow. However, errors

which result in a consistent bias in the results will not be reflected by the estimate.

This bias may arise, for example, due to improper alignment of the foil in the tunnel

resulting in a non-zero mean pitch angle, or a combined load which occurs period-

ically and produces a consistent cross talk error in the load cell measurements at

some point during the oscillation cycle. To a certain extent, the bias error in the

results is expected to be similar among the various propulsion trials with different

foils and kinematic conditions since the same equipment is used in each case. Since

the objective of these experiments is to compare the relative performance of the foils

rather than to make predictions of the performance of a specific design in the field, a

consistent bias error across the trials will have a limited effect on the interpretation

of the results. For this reason, the estimate of the uncertainty in the results obtained

by comparing the calculated performance over successive cycles is still useful even

though the bias is not included.

Figure 2.9 shows the thrust coefficient, power coefficient and efficiency calculated

over successive cycles for a single foil at one particular oscillation frequency. Although

the values change from one cycle to the next, there is no apparent trend in the results

with respect to time. This result indicates that a sufficient period of time has passed

between the start of the motion and the recording such that the effects of initial

conditions are not included.



41

0.55

0.56

0.57

0.58

1 2 3 4 5 6 7 8 9 10

T
h
ru

st
C

o
effi

ci
en

t

Cycle Number

(a)

3.74

3.75

3.76

3.77

3.78

1 2 3 4 5 6 7 8 9 10

P
ow

er
C

o
effi

ci
en

t

Cycle Number

(b)

0.146

0.148

0.15

0.152

0.154

1 2 3 4 5 6 7 8 9 10

E
ffi

ci
en

cy

Cycle Number

(c)

Figure 2.9: Cycle-averaged (a) thrust coefficient, (b) power coefficient and (c) effi-
ciency calculated for ten consecutive oscillation cycles.
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Since the differences in the performance parameters calculated during different

cycles arise due to what are essentially random fluctuations, it is expected that in the

limit of an infinite number of cycles, the quantities calculated from the measurements

during individual cycles would fit a Gaussian distribution [35]. For the finite number

of cycles considered here, it is therefore appropriate determine the uncertainty in

the measured mean values of thrust coefficient, power coefficient and efficiency with

respect to the true mean by assuming a t-distribution. In this case, the interval

around the measured mean, ±Px, within which the true mean is expected is given

by [35]

Px = z
Sx√
n

(2.9)

where Sx is the standard deviation within the sampled cycles and n is the number of

cycles. The parameter z depends on the number of degrees of freedom in the sample,

n − 1, and the confidence level or probability with which it is expected to find the

true mean within the interval. The specific value of z for a given number of degrees of

freedom and confidence level can be obtained from published tables [35] or software

such as Matlab.
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Figure 2.10: Variation in the relative uncertainty at the 95% confidence level with
the number of cycles considered in the averaging of the thrust coefficient, power
coefficient and efficiency.
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In Figure 2.10, the relative uncertainties at 95% confidence in the estimates of the

mean thrust coefficient, power coefficient and efficiency are plotted with respect to

the number of cycles considered in the averaging. It is observed that the uncertainty

in the thrust coefficient is much higher than that of the power coefficient, likely due

to the relatively poor signal-to-noise ratio in the measurement of streamwise forces

compared to transverse forces. This same error is also dominant in the calculation

of the efficiency and the uncertainty of both quantities is approximately the same.

It is found that by averaging over ten cycles, the relative uncertainty in the thrust

coefficient and efficiency approach a level of approximately ±1% while the uncertainty

in the power coefficient is lower. Based on this analysis, it was decided to compute the

averages in the calculation of the performance parameters over ten cycles since the

uncertainty apparently decreases rather slowly with respect to the number of cycles

considered at this point.
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Chapter 3

Construction and Characterisation

of the Flexible Foils

The flexible foils tested in the propulsion trials allowed the parameters of foil stiffness

and inertia to be varied between trials. A set of six foils was constructed, each

having the same external geometry but different structural properties. The novel

composite design of the foils included an internal stainless steel reinforcement to set

the bending stiffness, a lead mass to set the resonant frequency and a silicone rubber

encapsulant to form the external shape. This design is similar to models used by

Heathcote et al. [30], but in that case the foils did not include an embedded mass and

were constructed to have spanwise rather than chordwise flexibility. The foils used

in this study are grouped into two categories, “A” and “B”, based on the design of

the internal reinforcement. Each category included three foils with different amounts

of embedded mass. The designs and structural properties of each of these foils are

described in Table 3.1.

While the foil properties pertinent to this study have been summarized in Table

3.1, the foil design and the measurement of the structural properties are explained in

more detail in the sections of this chapter. Section 3.1 describes the geometry of both

the external shape and the internal structure. Section 3.2 discusses the fabrication

process used to encapsulate the metal structure within the silicone rubber body.

Sections 3.3 and 3.4 examine the characterization of the foils by the measurement

of resonant frequency and bending stiffness respectively. In Section 3.5 a theoretical

model is developed to relate the dynamic bending behaviour to the mass, stiffness

and damping of the foil structures.
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Foil Reinforcement Embedded Stiffness Resonant
Name Mass (g) (N/m) Frequency (Hz)

A1 stainless steel sheet -
full chord length

0 142 3.08

A2 stainless steel sheet -
full chord length

140 168 2.77

A3 stainless steel sheet -
full chord length

383 171 2.57

B1 stainless steel sheet -
leading edge area only

0 125 2.81

B2 stainless steel sheet -
leading edge area only

147 131 2.57

B3 stainless steel sheet -
leading edge area only

384 105 2.26

Table 3.1: Nomenclature and design summary for the foils used in the experimental
propulsion testing.

3.1 Structure and Geometry

The foils used in this study were composite structures made up of internal metal

components to give the desired stiffness and mass properties encapsulated in a flexible

rubber body to give the final shape. The foil chord length was 200 mm and the

span was 140 mm. In profile, the foils had a rectangular cross-section 20 mm thick

occupying 110 mm of the chord length. The foils tapered in circular arcs at the

leading and trailing edges. The leading edge had a semi-circular profile and tapered

in an arc with a radius of 10 mm. The radius of the arc at the trailing edge was 325

mm so that the arc began tangent to the side of the rectangular portion of the profile

and ended in a sharp point at the trailing edge. The foil profile geometry is illustrated

in Figure 3.1. This rather unusual profile was chosen over standard designs such as

symmetric NACA 00XX profiles to allow for a greater thickness close to the trailing

edge where the weight was embedded.

The internal metal structure of the foils served to modulate properties of bending

stiffness and resonant frequency and also provided an attachment point for the foils to

the drive system. The structures generally consisted of an aluminum rod, a reinforcing

stainless steel sheet and a lead weight. With the exception of the weights, all of the

internal metal components described here were fabricated in the UVic Mechanical
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Figure 3.1: Foil half-profile showing the dimensions and placement of the circular
arcs which taper the leading and trailing edges.

Engineering machine shop.

The aluminum rods served to transfer the force and torque from the drive system

onto the foil and prevent flexing the spanwise direction. The 12.7 mm (0.5 inch)

diameter rod ran along the foil span centered at location 33.7 mm back from the

leading edge. Placing the rod in this position left 160 mm of the foil chord extending

behind the rod in a cantilevered arrangement. The rod was assembled from two semi-

circular sections which were placed on either side of the reinforcing stainless steel

sheet and screwed together through clearance holes in the sheet to clamp it in place.

Half of the sheet thickness was cut away from the inside flat face of each semi-circular

section to ensure that the outside diameter of the assembled rod would be exactly

12.7 mm when clamped in place around the sheet. The rods extended approximately

30 mm beyond one end of the foil span to form a stem which fit into the mast which

connected the foils to the load cell and drive system as described in Section 2.3. The

rods were terminated within the foil 5 mm before the opposite end to ensure that the

structure was securely embedded within the rubber.

The reinforcing stainless steel sheets were used to set the chordwise bending stiff-

ness of the foils. The sheets were rectangular pieces, cut from 0.254 mm (0.010 inch)

shim stock. To build foils with different bending stiffness, two different reinforcement

designs were used. In the first design, the length of the sheet was 185 mm and it was

placed in the foil to extend from 5 mm behind the leading edge to 10 mm ahead of

the trailing edge, reinforcing almost the entire chord length of the foil. In the second

design, length of the sheet was 35 mm and it was again placed in the foil 5 mm

behind the leading edge but terminated where it was clamped by the aluminum rod.

In this design, the sheet only reinforced the section of the chord ahead of the rod. In

both designs, the width of the sheet was 130 mm and it was placed centered in the
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foil along the spanwise direction terminating 5 mm from either end. This placement

ensured that the sheet was completely embedded within the rubber which prevented

the metal and rubber components from separating during the experiments.

The lead weights were used to set the resonant frequency of the foils, effectively

allowing this parameter to be changed without influencing the stiffness or geometry.

The weights were constructed by gluing together strips of lead cut from 1.2 mm (3/64

inch) sheet. A cyanoacrylate adhesive, commercially available as “Original Instant

Krazy Glue” was used to bond the strips together. Two different sizes of weights were

constructed. The first design, having a mass of approximately 145 g, was comprised

of six plies of lead strips with a maximum width of 20 mm. The second design, having

a mass of about 384 g was assembled from ten plies of lead strips with a maximum

width of 30 mm. The strips were cut to be 130 mm long, again to allow the weight to

be completely embedded within the foil with 5 mm of rubber around each end. The

weights were located in the foil such that the center of mass of the weights was 160

mm behind the leading edge. The strips were glued together such that the weights

were symmetrical on either side of centerline of the foil profile. For the foils with a

reinforcing stainless steel sheet running behind the aluminum rod, the weights were

glued in place onto the sheet. For the foils which were only reinforced ahead of the

rod, small tabs cut from the same 0.254 mm stainless shim stock were included in

the center of the weight. Since the rubber shape was formed by a replica molding

process, these tabs were necessary to hold the weight in place while the rubber resin

cured.

In total, six foils were constructed, each with a different internal structure but

with the same external geometry. Three foils had large reinforcements, stiffening the

foil along its chord both ahead and behind the aluminum rod, and three foils had

reinforcement only in the section ahead of the rod. For each reinforcement design,

one foil had no embedded mass, one foil had a small (approximately 145 g) embedded

mass and one foil had a large (approximately 384 g) embedded mass. The general

foil design showing the layout of the internal components is illustrated in Figure 3.2.
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Figure 3.2: Cross-sections of the foil structure from the (a) profile and (b) plan
views showing the dimensions of the internal metal components.
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3.2 Fabrication Process

The flexible foils used in this study were constructed by replica molding in Dow-

Corning Sylgard 186 polydimethylsiloxane (PDMS), a flexible silicone rubber mate-

rial. The PDMS was supplied as two components which where mixed together and

degassed in a vacuum oven to form a resin. The mixed resin was then poured into

a mold containing the internal metal structure. The mold cavity was a negative of

the foil shape. The PDMS resin was very viscous and could only be poured into the

mold slowly. Inevitably a substantial amount of air was entrapped during the pour-

ing process. Because of the need to pour the PDMS resin into the mold and remove

entrapped air from the poured mixture before it solidified, it was necessary to mix

and pour the PDMS in four separate batches and to apply vacuum to degas the mold

after each pouring.

The mold used in the fabrication process was constructed from Dupont Delrin

acetal plastic in the UVic Mechanical Engineering machine shop. A shape of half

the foil profile was cut out of 20 mm high Delrin blocks. Seven tiers of these blocks

were then stacked together to form each of the two sides of the mold. Steel dowels

were inserted through the blocks to maintain alignment and the blocks were clamped

together using threaded rods. The two mold halves were then bolted together. The

top and bottom of the mold were formed by single pieces spanning both halves. These

pieces were also machined from Delrin blocks. A track protruded from one surface

of both pieces to hold the internal metal reinforcements and weights in place while

the PDMS solidified. When assembling the mold, the bottom piece was put place

with the track facing inward and the internal metal components were inserted into

the track. The top was then put into position, again with the track facing inward to

secure the upper end of the metal components. Both the top and bottom pieces were

aligned and clamped in place using the same steel dowels and threaded rods which

protruded from the upper and lower surfaces of the mold halves. The arrangement of

the mold and the internal metal components of the foil structure during the molding

process is illustrated in Figure 3.3.

After filling the mold cavity with the mixed and degassed PDMS resin, the mold

was baked in a low-temperature (70°C) oven for approximately ninety minutes to

cure the PDMS resin into a solid rubber. After the initial curing, the mold top

was removed and any flash which formed due to PDMS resin seeping into the space

between the mold top and upper surfaces of the sides was scraped away. The track
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Figure 3.3: Arrangement for the replica-molding process to encapsulate the metal
structure within a silicone rubber body of the foil shape.

on the mold top piece which held the metal pieces in place during the casting process

left a void in top surface of the foil. After the initial casting, this void was filled with

more PDMS resin and the mold top was then secured in place a second time but with

the track facing outward. The mold was then baked again to cure the PDMS filling

the void. The process of filling the void left by the track was then repeated on the

bottom surface to complete the casting. To remove the completed foil from the mold,

the top and bottom pieces were removed and the two sides were unbolted from each

other. The sides were then pried apart by pulling on the alignment dowels.

3.3 Resonant Frequency Measurement

As discussed in Section 1.4, the resonant frequency is a governing parameter in the

dynamic deformation behaviour of any structure. It was therefore important to be

able to measure the resonant frequency of the foils constructed for this study. The

measurement was performed with the foil immersed in water to account for added
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mass effects which are relevant to the conditions in the propulsive performance trials.

The foil was placed in the water tunnel using the same set-up and positioning as in the

propulsion trials (see Sections 2.1-2.3). The heaving axis position was set such that

the foil was centered across the width of the test section. A sudden rotation of the foil

was actuated using the pitching motor of the motion system. The rotation followed a

trapezoidal motion profile accelerating and decelerating at 2000°/s2 with a maximum

velocity of 200°/s through a total angular distance of 45°. The rotation terminated

with the foil chord parallel to the test section walls when in the undeformed shape.

The torque applied to the load cell was recorded after the rotation completed. In

general, the objective of experiments which apply a sudden force or motion to a

structure and record the response is to measure the impulse response which is made

up of components oscillating at the natural frequencies [46].

The spectrum of the recorded torque was calculated and the maximum peak was

taken as the resonant frequency of the foil. Approximately four periods of the response

were extracted for analysis, beginning at the first zero-crossing following the comple-

tion of the actuated rotation. At the time of recording, second-order (-12 dB/octave)

analog low-pass filters included in the measurement system removed frequency com-

ponents which could cause aliasing in the calculated spectrum. Digital filtering of

the recordings was therefore unnecessary. The data points from the extracted periods

were multiplied by a Hanning window function to reduce leakage errors which may

arrise due to sampling over a non-integer number of oscillation periods. These errors

may occur without proper windowing because the discrete, finite-time Fourier trans-

form used to calculate the spectrum is applied with the assumption that the signal

is periodic within the recorded time. The Hanning window is a bell-shaped function

which has a zero value outside of the recorded time period and is a popular window-

ing function in experimental vibration analysis [46]. Figure 3.4 shows examples of

the recorded signal, windowed signal, and calculated spectrum for the foil B3. The

extraction of the oscillation periods, multiplication by the windowing function and

calculation of the spectrum using a fast Fourier transform (FFT) were all performed

using built-in algorithms in Matlab.
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Figure 3.4: Examples of a (a) recorded torque signal, (b) windowed signal and (c)
computed spectrum from the tests to measure the resonant frequency of the foils.
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The tests to measure the resonant frequency were repeated using two different

analog low-pass filter cutoff frequencies of 10 Hz and 50 Hz. These filters produced

attenuations of -68 dB and -28 dB respectively at the Nyquist frequency of 500 Hz

for the 1 kHz sampling rate of the load cell torque signal. The calculated frequencies

obtained from the measurements with each filter are presented in Table 3.2. The

results in each case are similar, indicating that the cut off frequency of 10 Hz is high

enough to avoid distorting the relevant low-frequency components of the signal, while

the cutoff frequency of 50 Hz is low enough to avoid aliasing in the spectrum. Since

the filter with a 50 Hz cutoff frequency would produce less distortion in the signal

components around the resonant frequencies of the foils, the values calculated from

these measurements were accepted and will be used in the discussion of the results

obtained from the propulsion trials.

Foil Resonant frequency (Hz) Resonant frequency (Hz)
Name with 50 Hz Analog Filter with 10 Hz Analog Filter

A1 3.08 3.08
A2 2.77 2.76
A3 2.57 2.58
B1 2.81 2.82
B2 2.57 2.55
B3 2.26 2.27

Table 3.2: Measured resonant frequencies of the foil designs.

3.4 Bending Stiffness Measurement

One of the aims of this study is to be able to compare the propulsive performance of

foils with equivalent resonant frequency but different levels of static bending stiffness

and inertia. To make these comparisons, it is useful to be able to measure the bending

stiffness of the foils and determine whether there is any substantial difference between

designs of the same resonant frequency but with different internal structures. Since

the stiffness is quantified by the magnitude of force required to effect a given defor-

mation under static loading conditions, the stiffness measurement was performed by

bending the foils and measuring the applied force.

Figure 3.5 shows the arrangement used in the stiffness measurement. The foils

were connected from the aluminum rods to the same load cell and force measurement
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equipment used in the propulsion trials (see Section 2.3). This equipment was used

to measure and record the force Fx. The load cell was in turn mounted on a single

axis camera stage which allowed for translation to the left and right by a distance ∆x

as shown in the figure. At each data point, the distance was measured using a ruler.

Near to the trailing edge of the foil, a 12 mm diameter post blocked the foil from

moving and forced it to bend. The post was positioned to be behind the embedded

lead weights so that the effect of these weights on the stiffness would be reflected

in the measurement. During the tests, the attachment point of the foil to the mast

and load cell was translated to the left or right to a defined position and the applied

force was recorded for one second at 10 kHz. These recordings were averaged to give

the applied force at the given position. The measurements were taken in order of

increasing displacements at intervals of 10 mm up to a maximum of 40 mm. The post

was then moved to the other side of the foil and the measurements were repeated

with the foil bent in the opposite direction. A tare measurement was also taken for

each foil with no deformation applied and subtracted from the applied force at each

displacement.

145 mm

POST

Figure 3.5: Set-up for the measurement of the foil bending stiffness.

Figure 3.6 shows the applied force plotted against the displacement for all six foils.

In each case, a linear regression line through the origin was fit to the measurements.
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The slope of this regression line is an indication of the foil bending stiffness (see Table

3.1). The regression line was forced to fit through the origin because the deformation

behaviour should be in theory symmetrical.
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Figure 3.6: Applied forces and deflections during the bending stiffness measurement
of the foils. The markers represent measured points and the lines represent the fitted
linear regression.

All of the “A” category foils which have a stainless steel sheet reinforcing the

entire chord length are at least 5% stiffer than the “B” category foils which are

only reinforced ahead of the aluminum rod. However, the stiffness is not completely

uniform within each group. The lead weights embedded within the “A” category foils
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were found to increase the stiffness by approximately 20%. In the case of the “B”

category foils, the trend is not clear because the embedded weight appears to increase

the stiffness in one case and reduce it in another. The foil B1 which has no weight is

found to be about 19% stiffer than the foil with largest weight, B3. The foil B2, which

has an intermediately sized weight, has a bending stiffness that is 5% greater than

B1. One possible explanation for this unexpected result is that the thin coating of

silicone rubber around the weight in the foil B3 was able to detach from the weight,

slipping over its surface and taking most of the loading during the bending. The

relatively high stress on the rubber would then cause the foil to bend more sharply

at this location and allow the foil to achieve greater deflections at the tip with less

applied force.

The bending stiffness measurements indicate that the foil design has allowed for

the construction of foils with equivalent resonant frequency but with substantially

different stiffness. Considering the pair of foils A2-B1, the resonant frequencies differ

by 1.4% while the bending stiffness of foil A2 is 34% greater than that of foil B1.

Since the resonant frequency is related to both the stiffness and inertia, the effective

inertia of the foil A2 must also be greater by approximately the same factor due to

the embedded mass. The results are similar when comparing the results within the

pair of foils A3-B2. In this case, the resonant frequencies are essentially the same,

while the stiffness of the foil A3 is approximately 30% greater.

The results of the stiffness measurement have also demonstrated that, to a limited

extent, the foil design which was used here allows for the construction of foils with

equivalent bending stiffness but different resonant frequencies. When comparing the

foils A2 and A3, the stiffness is found to differ by 1.8% but the resonant frequencies

differ by 7.2%. Similarly, the foil B1 has a stiffness which is 4.6% lower than B2,

but a resonant frequency which is 9.3% greater. In both of these cases, the difference

in resonant frequency is more substantial than the difference in bending stiffness.

However, in both cases there is also found to be some variation in the stiffness within

the pairs. Constructing foils of equivalent stiffness but with an even greater difference

in resonant frequency than what was observed here would likely be difficult because

the embedded lead weights which are necessary to increase the inertia also have some

effect on the stiffness. To increase the difference in resonant frequency, a larger

weight would be required which would stiffen a longer portion of the chord length

and consequently have a greater effect on the overall stiffness of the foil.

The results shown in Figure 3.6 indicate some asymmetry and nonlinearity in the
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bending behaviour of the foils. In particular, the force measurements for the “A”

category foils at displacements of -20 mm lie somewhat above the regression line,

indicating that a smaller force was required to cause these deflections than what is

predicted by the linear trend. The same discrepancy is not observed when bending the

foils in the opposite direction or in the case of the “B” category of foils. It is expected

that this asymmetry arises due to warping of the stainless steel sheet which reinforces

the entire chord length of the “A” category foils. This sheet is rolled metal product

and has internal stresses remaining from the manufacturing process which can cause

the finished parts to bow. This error in flatness was manifested in the completed

foils where the chord axis was found to be not perfectly perpendicular to the axis

of travel in the bending stiffness measurements. In addition to the asymmetrical

bending behaviour, this geometry would also cause a pitch bias in the propulsion

trials. However, these errors in the structure and geometry are not believed to have

had a dominant effect on the propulsive performance because it is observed that the

bending behaviour of these foils is generally symmetrical with the execption of a few

outlying data points. In the propulsion trials, the oncoming flow would also help to

straighten the foil and align the chord with the streamwise direction.

Bends in the lead weights introduced additional errors in flatness and straightness

to the completed foils. The lead sheet is a very malleable material and inevitably some

small bends or twists were introduced into the weights during the foil manufactur-

ing. These bends in the weights resulted in trailing edges which were not completely

straight or aligned with the foil spanwise direction. In the bending stiffness measure-

ments, this error resulted in a small gap between some points on the foil and the post

when the two were first brought into contact. In spite of this gap, the location where

any point on the foil first contacted the post always served as the datum from which

all of the applied deflections were measured. Similar to the errors in flatness caused

by warping of the stainless steel sheets, the imperfections in the geometry resulting

from bends in the lead weights are not believed to have significantly impacted the

results of the propulsion trials.

3.5 Theoretical Modelling of the Foil Structure

It is useful to develop a predictive model which would allow the dynamic deformation

behaviour of the foils to be related to the structural properties such as mass and stiff-

ness. Such a model can be used to explain why particular trends in the deformation
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are observed and to explain differences in propulsive performance between the foil

designs. To this end, the damped-oscillator model shown in Figure 3.7 is considered.

In this model, the block at the left side of the figure represents the aluminum rod near

the leading edge of the foil which is driven in the heaving motion h(t). In discussions

of structural vibrations, this component of a model is commonly referred to as the

base of the structure. The stiffness k represents the bending stiffness of the foil. The

damping elements cint and cabs simulate the actions of internal structural damping

and fluid drag respectively. The mass m is the effective mass of the foil including

added fluid mass, and the motion γ(t) is analogous to the movement of the flexible

section of the foil chord behind the rod.

Figure 3.7: Schematic of the damped-oscillator model considered to calculate the
phase of the bending of the foil with respect to the heaving motion and predict the
amplitude of the motion of the flexible foil chord.

One challenge in the development of a damped-oscillator model is the selection

of an appropriate damping law. Linear or viscous damping, where the damping

elements exert a force opposing the motion and directly proportional to the velocity,

is the most mathematically convenient approach. However, this damping law may

not be a physically accurate description and consequently models based on linear

damping may fail to accurately predict the dynamic response of the structure. In the

case of the damping element cabs, which acts on the absolute motion of the mass m,

quadratic damping is likely a reasonable model since forces arising from fluid drag are

proportional to the square of velocity. In this case, the force exerted by the damping

element is given by the expression [46]:

fquad = cabs

∣∣∣∣dγdt
∣∣∣∣ dγdt (3.1)
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The use of this damping model will result in a non-linear differential equation

describing the motion of the mass. In the case at hand, the main interest is to

determine the response of the foil to a sinusoidal input motion, h(t) = h0 cosωt.

For this purpose, one possible approach to simplify the quadratic damping model

is to replace the quadratic damping element with a linear damping element which

dissipates equivalent energy during each cycle of the motion [46]. When sinusoidal

input motions are applied, the mass is also expected to move in a sinusoidal motion

profile:

γ(t) = γ0 cos (ωt+ φabs) (3.2)

Integrating the force applied by the damping element with respect to distance gives

the energy dissipated during one cycle of the motion [46]:

Equad =
8

3
cabsγ

3
0ω

2 (3.3)

The energy dissipated by a linear damping element during one cycle of a sinusoidal

motion is given by [46]

Elin = πclinωγ
2
0 (3.4)

Equating the two energies and solving for the linear damping coefficient gives an

expression for an equivalent linear damping coefficient to represent the quadratic

damping [46]:

cabs,eq =
8

3π
cabsωγ0 (3.5)

To represent the internal damping cint, it is reasonable to expect that the damping

action may result from stress-strain hysteresis loops which dissipate energy as the

materials stretch and contract. In this case, the energy lost per cycle of the motion is

proportional to the square of the amplitude but independent of the frequency of the

motion [46]. Again, by equating the energy lost in the hysteresis loop to the energy

dissipated by a linear damping element, it is possible to derive an expression for an

equivalent viscous damping coefficient to represent the hysteretic damping [46]:

cint,eq =
β

ω
(3.6)

where β is the hysteretic damping constant. It is important to note that this equivalent

damping element will act to produce a force proportional to the relative velocity
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between the mass and the base, d(γ − h)/dt, rather than the velocity of the mass in

an absolute reference frame.

When the damping elements in the oscillator model are replaced with equivalent

linear damping coefficients, it is possible to formulate a linear ordinary differential

equation describing the dynamics of the system:

m
d2γ

dt2
+ (cint,eq + cabs,eq)

dγ

dt
+ ky = kh+ cint,eq

dh

dt
(3.7)

where the (t) have been omitted from γ(t) and h(t) since these quantities are implied

to be time-varying. Substituting the forcing term from the right-hand side of Equa-

tion 3.7 into the well-known solution for a second-order oscillator system subject to

sinusoidal input [46] gives the expression for the amplitude ratio:

γ0
h0

=

√
1 + (2ζintr)

2

(1− r2)2 + (2ζtotalr)
2 (3.8)

where

ζtotal =
cint,eq + cabs,eq

2
√
km

, (3.9)

ζint =
cint,eq

2
√
km

(3.10)

and

r = ω

√
m

k
(3.11)

It can be noted that the equivalent damping coefficient which represents quadratic

damping (Equation 3.5) is itself dependent on the amplitude, γ0, of the motion of the

mass. When this damping coefficient is substituted into Equation 3.8, the amplitude

ratio becomes implicitly defined and it is necessary to solve a quartic polynomial (see

Appendix B).

Once the amplitude ratio of the resulting motion for a given input frequency has

been determined from Equation 3.8, the phase of the relative motion between the

mass and the base can be calculated. The phase of the forcing term with respect to

the input motion is determined from trigonometry:

φforce = − tan−1 (−2ζintr) (3.12)

The phase of the absolute motion with respect to the applied force can be found from
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known solutions to the differential equations describing second-order oscillators [46]:

φabs−force = − tan−1

(
2ζtotalr

1− r2

)
(3.13)

The phase of the absolute motion with respect to the input motion is then given by

φabs = φabs−force + φforce (3.14)

The absolute motion of the mass has thus been completely defined in terms of its

amplitude and phase with respect to the input motion. The phasing of the relative

motion or deformation of the structure can then be found by subtracting the input

motion waveform and again applying trigonometric identities:

φrel = − tan−1

(
−

γ0
h0

sinφabs
γ0
h0

cosφabs − 1

)
(3.15)

When quadratic or hysteretic damping models are used, it is useful to define the

quadratic damping frequency

ωqd =
3π
√
km

8h0cabs
(3.16)

and the hysteretic damping frequency

ωhd =
β√
km

(3.17)

These parameters remained fixed for a given foil structure and input motion ampli-

tude as the frequency of the applied motion is changed. By determining these two

frequencies and substituting into Equations 3.5 and 3.6, the equivalent damping co-

efficients can be expressed as functions of the input motion frequency and amplitude

ratio. The resulting expressions are in turn substituted into Equation 3.8, so that

the amplitude ratio can be determined for any given frequency of the input motion.

The third important frequency which is required to completely define the structural

properties of the foil design is the natural or resonant frequency,

ωn =

√
k

m
(3.18)

which sets the frequency ratio, r. For the foils constructed for this study, the resonant
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frequencies were determined using the tests described in Section 3.3. The quadratic

damping frequencies and hysteretic damping frequencies were determined empirically

by fitting the deformation behaviour predicted by the model to match the deformation

behaviour observed in the propulsion trials. This fitting is described in Section 4.2.
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Chapter 4

Analysis and Discussion of the

Propulsive Performance

Measurements

This chapter presents the experimental results of this study and develops explanations

for the observed trends relating the propulsive performance to the foil structure and

the oscillation kinematics. Because the dynamic deformation behaviour of the foils

was found to be one of the main physical phenomena which governs the propulsive

performance, it is useful to be able to observe the deformation, at least indirectly

as the foil structure and oscillation kinematics are varied. This observation method

is explained in Section 4.1. In Section 4.2, the parameters in the damped-oscillator

model developed in Chapter 3 are determined empirically for the various foil designs.

The trends in the deformation behaviour predicted by this model are used in the

subsequent sections to explain the observed effects of the foil stiffness and mass and

the oscillation amplitude and frequency on the propulsive performance. Section 4.3

examines the trends in thrust generation and efficiency for the different foil designs

at various Reynolds numbers. Similarly, Section 4.4 examines changes in propulsive

performance at various heave amplitudes. For the results presented in Sections 4.3

and 4.4, the foils were driven in a heaving motion and the pitching was provided

only by the passive deformation of the foils. In Section 4.5, the effects of combining

active heave and pitch motions are examined. Finally, Section 4.6 discusses how the

results obtained from these experiments can be used to guide the design of practical

propulsion systems.
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4.1 Indirect Observation of the Foil Deformation

An understanding of the foil deformation behaviour is essential to explain the ob-

served performance trends in the results, both when comparing the thrust generation

and efficiency of foils with different structures and when considering the changes in

performance which occur when the kinematic conditions are varied for given struc-

ture. The relative timing or phase between the foil deformation and the actuating

motion is one important aspect of the dynamic deformation of a foil. The deforma-

tion phase acts to set the orientation of the foil with respect to the relative fluid flow

throughout the motion cycle, particularly when there is no active pitching motion

applied as in the results discussed in Sections 4.3 and 4.4. For efficient propulsion, it

is useful to have the greatest deflection occur at some time when the foil is near the

midpoint of its motion cycle when the transverse velocity is highest [27,31,47]. A foil

which is operating with this phasing will generally present a smaller frontal area to

the oncoming flow which reduces drag, and also direct a larger component of the lift

force along the travel direction which increases the thrust as compared to a foil which

undergoes the maximum deflection near the endpoints of its oscillation cycle. This

concept is illustrated schematically in Figure 4.1 where the foil in the center frame

with a deformation phase of −π/2 is shown to have smaller force components resisting

the transverse and forward motions and larger force components in the direction of

travel.

RELATIVE FLUID VEILOCITY RESULTANT  FORCEMOTIONFOIL

Figure 4.1: Conceptual illustration of a chordwise-flexible oscillating foil operating
with the bending occurring (a) in phase, (b) at a phase of −π/2 and (c) anti-phase
with respect to the input heaving motion.
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In a limited number of trials, photographic recordings were made and in these

cases the phase of the bending motion, as well as the amplitude, can be observed

directly. However, it would have been impractical to make photographic recordings

of all of the experiments conducted for this study because collecting these recordings

is time-consuming and the images require a large volume of digital storage space. It

is therefore useful to be able to correlate the deformation with the load cell mea-

surements during trials for which photographic recordings are unavailable. To this

end, it is useful to consider the foils as cantilevered beam structures. This model is

reasonable since the foils are held at a set angle and position at the aluminum rod

and the section of the chord length behind this rod is allowed to bend freely with

no constraints at the trailing edge. For many vibrating beams, the deflections and

bending moments can be assumed to be proportional as long as the applied forces

or motions project onto a single vibration mode shape. For the foils considered in

this study, the frequencies of the actuated motions are near to the lowest resonant

frequencies and thus are expected to primarily excite the first vibration mode. The

assumed proportionality between bending moments and deflections is valid provided

that the materials have a linear stress-strain relationship and the shear deformations

and rotational inertia are negligible [46].

The cantilevered beam model is useful here because in cases where the foils were

not actively rotated, the bending moment at the aluminum rod is the main action

which produces the load cell torque signal. If the model is valid, it is then reasonable

to expect the measured torque and the observed deflection to be proportional in the

trials for which photographic recordings are available. This expectation is shown to be

realized in Figure 4.2 which shows the heave position, deflection and torque signal for

three different foils operating at the same oscillation frequency. All three quantities

have been normalized by the maximum recorded value during the trials. It is observed

that the torque and deflection are proportional and occur at the same phase with

respect to the heaving motion. It should be noted that the load cell torque and

photographs were in fact recorded during separate trials and were synchronized for

the purpose of this figure by matching the encoder positions with the photographically

observed heaving position. The validity of the model is further demonstrated by

Figure 4.3 which shows the phase of the deformation with respect to the heaving

motion observed from the photographic recordings and torque signals for three foil

designs over a range of oscillation frequencies. It is found that the phases determined

from each method are generally consistent with each other.
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Figure 4.2: Normalized heave position, trailing edge deflection and pitch axis torque
over four oscillation cycles for foils (a) A2, (b) B1 and (c) B3. The kinematic condi-
tions during these trials are St = 0.3, h0/c = 0.125 and Re = 58 700.
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Figure 4.3: Phase lag between the foil deformation and the heaving motion as
observed from the photographic records and the load cell torque signal over a range
of frequency ratios for foils (a) A2, (b) B1 and (c) B3. The kinematic conditions
during these trials are h0/c = 0.125 and Re = 58 700.
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4.2 Determination of Damping Parameters

While it has been demonstrated that the phasing of the foil deformation can be

reliably observed from the load cell torque signal in Section 4.1, based on the cantilever

beam model, a more complete understanding of the deformation behaviour and its

relation to the structural properties is developed by considering a predictive model

such as the damped-oscillator model discussed in Section 3.5. To assess the suitability

of this model and the applicability of various damping laws, the model was tested

with six different combinations of elements to represent the structural damping and

fluid drag. When discussing the dynamic behaviour of a structure over a range of

vibration frequencies, the term phase response can be used to refer to the evolution

of the phase lag between the deformation and the input motion as the frequency is

varied. The ability of a model with a particular combination of damping elements

to accurately predict the phase response was taken as indication of its suitability to

describe the structural dynamics of the foil. The damping elements considered in

each of the models are summarized in Table 4.1.

Model Internal Damping Absolute Damping

1 none linear
2 linear linear
3 none quadratic
4 linear quadratic
5 hysteretic quadratic
6 hysteretic linear

Table 4.1: Summary of the damping elements used in each of the oscillator models
which were tested as possible representations of the structure of the foils.

For each model, the predicted phase response was fitted to the measured phase

response as observed from the load cell torque signal for each foil. To specify the

model parameters, the resonant frequencies were taken from the measured values

discussed in Section 3.3. The damping frequencies given by Equations 3.16 and 3.17

or the linear damping ratios as appropriate were adjusted to minimize the sum of

the squared error between the predicted phase and the measured phase over a set of

measurement points taken from a propulsion trial conducted with a flow speed Re =

58 700 and heave amplitude h0/c = 0.125. For each foil, the measured phase at the
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lowest frequency ratio was omitted from the fitting because, as observed in Figure

4.3a, there is some discrepancy between the photographic and torque measurements

at this point. The calculations to find the damping parameters which yielded the

minimum squared error were performed using the multi-variable optimisation routine

in Matlab implemented by the function “fmincon” with the interior-point algorithm

selected.

In the cases of Models 1 and 2 which contain only linear damping elements, the

value of the linear damping ratio was restricted such that ζtotal ≤ 0.01. Similar restric-

tions were placed on Models 4 and 6 which also contain linear damping elements, but

in these cases, the restriction was placed only on the contribution of the linear damp-

ing element. For example, for Model 4 it was required that cint/
(

2
√
km
)
≤ 0.01.

This maximum value was imposed based on examinations of the signals recorded dur-

ing the tests to measure the foil resonant frequencies described in Section 3.3. The

motion of a structure with linear damping undergoing free vibrations will take the

form of an exponentially decaying sinusoid [46]:

γ(t) = Ce−2ζtotalωdt sin(ωdt+ φ) (4.1)

where ωd = ωn
√

1− ζ2total. This function was fitted to the load cell torque signal

recorded for each foil by dividing out the dominant frequency component, taking

the natural logarithm and using a least-squares linear regression to determine the

constant C and the exponent 2ζtotalωd. An example of a recorded signal and the

corresponding fitted decaying sinusoidal function are illustrated in Figure 4.4. The

maximum damping ratio calculated from the exponent of the fitted function for all

of the foils was ζtotal = 0.00882. Consequently, it was decided to restrict the range

of linear damping coefficients used in the damped-oscillator models to prevent the

optimisation algorithm from calculating an unrealistically large value in order to

better match the measured phase response.

For four of the foils, Model 5 was able to fit the phase measurements with the least

error, while for the other two, Model 4 was found to achieve a better fit. The fact that

Models 4 and 5 achieve the best agreement with the measurements is unsurprising

because these models include quadratic damping due to fluid drag along with some

form of internal damping and thus likely best represent the physical damping actions

affecting the foils. These two models also offer the most flexibility to the optimisation

algorithm when fitting the model to the measurements since there are two parameters
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Figure 4.4: Example of a recorded torque signal from the tests to measure the res-
onant frequencies of the foils and a fitted exponentially-decaying sinusoidal function.

which can be adjusted independently, one of which allows for a damping coefficient

that varies with both frequency and amplitude. The phase responses predicted by the

fitted models for foil B3 are compared with the measured phase response in Figure 4.5.

The results are similar for the other foils. Although Models 4 and 5 achieved the best

fit to the measurements, inspection of Figure 4.5c reveals that the agreement between

measurements and the predictions of Model 3 is also good. This model includes

only quadratic damping acting on the absolute motion of the mass. Conversely,

Figures 4.5b and 4.5f show that Models 2 and 6 which include internal damping as

in Models 4 and 5, but replace the quadratic damping with linear damping, are not

able to accurately predict the phase response. This finding suggests that quadratic

damping which results from fluid drag is one of the principal physical phenomena

governing the dynamic deformation of the foils. Results emphasizing the importance

of quadratic damping governing the dynamics of chordwise flexible oscillating foils

have also been reported by Ramananarivo et al. [31]. Since Model 3, which omits any

internal damping element, is mathematically simpler than Models 4 and 5 but is still

able to represent the dominant physical phenomena and accurately predict the phase

response, further discussions of the structural dynamics will refer to this model.
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Figure 4.5: Comparison of the phase responses predicted by the various damped-
oscillator models with the deformation phase as observed from the torque signal for
the foil B3 at Re=58 700 and h0/c = 0.125.
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The variation with respect to frequency ratio of the equivalent damping ratio

calculated by the fitted damped-oscillator model for each foil is shown in Figure

4.6. By comparing the different foil designs, it is observed that the damping ratios

generally decrease with increasing inertia or stiffness of the foil. In other words,

the vibration of the stiffer and heavier “A” group foils is relatively less damped

compared to “B” group foils of the same resonant frequency. This difference in

damping produces corresponding changes in the phase response and the amplitude of

the motion of the bending foil. The implications of these changes for the propulsive

performance will be examined in Sections 4.3 and 4.4. The decrease in damping ratio

with increasing inertia or stiffness is expected since these quantities appear in the

denominator of the expression for the equivalent damping ratio (Equation 3.9). One

exception to this trend is the foil B3 which has a larger embedded mass than the foil

B2, but is observed to also have a larger damping ratio. However, the foil B3 was

also measured to have a smaller bending stiffness than B2 in spite of the fact that

both foils have the same internal reinforcement design. It is possible that this smaller

bending stiffness has lead to the greater damping ratio of the foil B3.

As well as predicting the phase responses of the foils, the damped-oscillator model

also offers a qualitative description of the amplitude response, or variation of the

amplitude of the foil motion in response to input motions of varying frequencies. For

propulsion applications, it is most relevant to examine the amplitude of the absolute

motion of the bending section the foil since this amplitude will determine the wake

width and relative velocity between the foil and the fluid. The discussion of amplitude

in this way contrasts the discussion of phasing where the relative motion rather than

the absolute motion is considered more relevant. It is not reasonable to expect to

be able to observe quantitative agreement between the amplitude ratios predicted

by the model and the measured motions. The model has simplified the foil to a

single-degree-of-freedom system and no solution in space by which the time-varying

solution can be scaled has been determined. However, it is possible to compare the

trends in amplitude ratio predicted by the model with the photographically observed

motions. This comparison is shown in Figure 4.7 where the measured amplitude of

the trailing edge motion and the calculated amplitude ratios are plotted together for

three different foil designs. It is observed that the measured motion and predicted

amplitude ratio follow a similar curve in variation with the frequency ratio. It is

also found that the maximum observed motion occurs at approximately the same

frequency ratio as the maximum calculated amplitude ratio.
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Figure 4.6: Variation of the equivalent damping ratio with frequency ratio as pre-
dicted by the damped-oscillator model for each foil design.

The damped-oscillator model which has been considered here provides some in-

sight into the physical phenomena which govern the deformation of the foils which

in turn influences the propulsive performance. The mathematics have been greatly

simplified by first replacing the partial differential equation problem describing the

motion of the foil in time and space with a single-degree-of-freedom system described

by an ordinary differential equation. Further simplifications have been made by re-

placing the non-linear damping mechanisms with equivalent linear elements. In spite

of these simplifications, the model is able to accurately predict the evolution of the

phase of the relative motion and the amplitude of the absolute motion of the bending

foil as the input heaving frequency is varied. The simplified model can therefore serve

to assist in the development of explanations for the propulsive performance trends

which are observed as the foil design or oscillation kinematics are varied. These

explanations are developed in the following sections.
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Figure 4.7: Comparison of the photographically observed trailing edge excursion
with the amplitude ratios predicted by the damped-oscillator model for foils (a) A2,
(b) B1 and (c) B3.
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4.3 Effect of the Foil Structure on Propulsive

Performance at Various Reynolds Numbers

The forward travel speed, or Reynolds number in dimensionless form, is one parameter

which is known to affect the thrust production and efficiency of an oscillating foil [7].

For a fixed motion amplitude, the oscillation frequency associated with any particular

Strouhal number will change as the Reynolds number is varied. For efficient and

effective propulsion, it is necessary to operate an oscillating foil within a certain

range of Strouhal numbers so that the disturbances applied to the flow by the foil

are amplified into a thrust-producing wake [12]. Therefore, the shift in the Strouhal

number with respect to the oscillation frequency caused by a change in Reynolds

number has implications for the use of flexible foil designs because the frequency

ratios within the range of optimal Strouhal numbers will also change.

In the present work, it was expected that the foils would operate with greater

propulsive efficiency if the resonant frequency were chosen such that the structural

response which provides a beneficial phase and amplitude of the deformation occurred

at an oscillation frequency within the optimal range of Strouhal numbers. To test this

hypothesis, trials were conducted with each of the foil designs at three different flow

speeds. The heave amplitude was set at a constant value of h0/c=0.125 throughout

these trials and no active pitching motion was applied. The measured thrust coeffi-

cients and efficiencies are shown in Figures 4.8 and 4.9 respectively. It was anticipated

that the foils with lower resonant frequencies would achieve higher efficiencies at the

lowest Reynolds number. For this flow speed, the deformation behaviour of these foils

which occurs at oscillation frequencies around the expected optimal Strouhal is also

believed to be conducive to efficient propulsion. The performance of foils with higher

resonant frequencies was expected to improve as the the Reynolds number was in-

creased. However, this trend is not observed and the performance trends and relative

differences in the thrust and efficiency among the foil designs are largely unchanged

as the Reynolds number is varied.
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Figure 4.8: Variation of efficiency with respect to Strouhal number compared for
various foil designs at (a) Re=58 700, (b) Re=73 140 and (c) Re=81 060.
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Figure 4.9: Variation of thrust coefficient with respect to Strouhal number compared
for various foil designs at (a) Re=58 700, (b) Re=73 140 and (c) Re=81 060.
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Due to the effects of the three-dimensional flow around the foils, it is possible

that operation at the optimal Strouhal number for the effective development of a

thrust-producing wake was never achieved during these trials. The heave amplitude

and flow speeds were chosen such that the Strouhal number St = 0.3 would occur at

the same oscillation frequency as the expected optimal frequency ratio of f/fn = 0.8

for at least one of the foil designs at each Reynolds number. This Strouhal number

was targeted because it was identified to lead to efficient propulsion by Anderson et

al. [12]. However, this study considered high-aspect-ratio foils. For low-aspect-ratio

foils, which are more similar to the design considered in the present work, various

authors [17,19,22] have reported values for the optimal Strouhal number which vary

considerably from this optimum for two-dimensional foils.

The foil deformation may have also interfered with the ability of the foils to achieve

high propulsive efficiency by operating in the correct range of Strouhal numbers. The

oscillation kinematics were designed to set the Strouhal number during operation

based on the amplitude of the heaving motion. However, the Strouhal number based

on the the total distance swept by the trailing edge is likely more relevant since the

width of the wake will be more similar to this amplitude. Because of the relatively

low heave-to-chord ratio of the current design, any bending of the foils would result

in a substantial change in the amplitude of the motion of the trailing edge. In fact,

during some the trials which were observed by high-speed photography, the trailing

edge amplitude was more than twice the heave amplitude. Therefore, even if the

Strouhal number St = 0.3 would in fact produce an optimal response by the wake,

the foil motion may have never actually achieved this effective Strouhal number.

Although a demonstration of improved propulsive efficiency by appropriately match-

ing the structural design and Reynolds number was not possible, the results do in-

dicate that the efficiency is affected by the frequency ratio. Figure 4.10 shows the

measured efficiencies of all of the foils at all of the Reynolds numbers plotted against

the frequency ratio. For each foil at each Reynolds number, the measured efficiencies

have been normalized by dividing by the maximum efficiency observed for that par-

ticular combination of foil design and Reynolds number. The maximum efficiencies

are generally achieved at a frequency ratio around f/fn = 0.8, indicating that the fre-

quency ratio was properly targeted in the design of the foil structures and oscillation

kinematics.

In contrast to the relation between efficiency and frequency ratio, the effect of

the Strouhal number on efficiency is less clear. When the same normalized efficiency
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Figure 4.10: Normalized efficiency as a function of frequency ratio for all foil designs
and Reynolds numbers considered.

considered in Figure 4.10 is instead plotted against the Strouhal number as in Figure

4.11, there is no particular value which appears to be optimal. At any particular

Strouhal number, the normalized efficiency falls somewhere within a relatively wide

band depending on the foil structural design and the Reynolds number. This result

suggest that the measured efficiencies are more strongly dependent on the frequency

ratio than Strouhal number, possibly because the foils were operating outside of

the band of optimal Strouhal numbers throughout the entire range of oscillation

frequencies.

In order to understand why operation at a particular frequency ratio leads to

improved efficiency, it is necessary to consider the structural dynamics of the foils.

As discussed in Section 1.4, the optimal frequency ratio may lead to either a beneficial

phase between the input motion and the deformation, or a resonant amplification of

the input motion. In fact, there is some debate in the literature [31] as to whether

it is the phasing or amplification which is more important. In the case at hand, the

deformation phase can be observed from the load cell torque signal as discussed in

Section 4.1. The phase of the torque signal for all of the foil designs and Reynolds

numbers considered in the trials is plotted against frequency ratio in Figure 4.12. It
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designs and Reynolds numbers considered.

is observed that the evolution of the phase with respect to frequency ratio is fairly

consistent in all cases. The deformation phasing may therefore be in part responsible

for the consistent relation which is also observed between the efficiency and frequency

ratio for all of the foils.

The torque phase which occurs around the observed optimal frequency ratio is

approximately −π/2. As discussed in Section 4.1, this phase is theoretical conducive

to efficient propulsion since the maximum deflection occurs when the relative velocity

between the foil and the fluid is high, and the deformed shape directs the lift forces

to produce forward thrust. Indeed, when the normalized efficiency is plotted against

the torque phase in Figure 4.13, the efficiency is generally found to be high at this

phase. However, these results do not necessarily indicate that the relatively high

efficiency observed for each foil near the frequency ratio which results in this phasing

can be attributed to the beneficial phase lag. When the amplitude ratios predicted by

the damped-oscillator models fitted for each foil in Section 4.2 are plotted in Figure

4.14, it is found that the peak amplitude ratio is also achieved at a approximately

the same frequency ratio which was observed to produce the peak efficiency. The

results presented here therefore do not favour either argument as to whether the peak
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Figure 4.12: Evolution of the deformation phase with frequency ratio for all foil
designs and Reynolds numbers considered.

efficiency is achieved through optimal phasing or by resonant amplification of the

motion. Instead, it is likely a combination of these factors which lead to the relatively

high propulsive efficiency at a particular frequency ratio for the foils considered here.

While the foil resonant frequency has been demonstrated to be a governing pa-

rameter in the propulsive performance, it is well known that this structural parameter

is in fact a ratio of two quantities: the stiffness and the inertia. It is therefore inter-

esting to be able to examine the relative performance of foils with the same resonant

frequency but proportionally different stiffness and inertia. To this end, we extract

and compare the results for the foil pairs A2-B1 and A3-B2. The foils within each of

these pairs have approximately the same resonant frequency but significantly different

stiffness and inertia due to the different reinforcements and embedded masses used

in each case. Examining the traces associated with these foil designs in Figures 4.8

and 4.9, it is observed that the heavier and stiffer foils, A2 and A3, achieve higher

efficiency and produce greater thrust than their lighter and more flexible counter-

parts, B1 and B2. The difference in efficiency is small, but the thrust production

is substantially higher, indicating that the heavier and stiffer design is much more

effective as a propulsion mechanism.
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Figure 4.13: Normalized efficiency as a function of deformation phase as observed
from the load cell torque signal.

The relatively better performance of the heavier and stiffer foils can be attributed,

at least in part, to the smaller damping ratios for these designs. As shown in Figure

4.14, the damped-oscillator models predict that the foils A2 and A3 have higher

amplitude ratios than foils B1 and B2 when operating at the same frequency ratio.

The greater amplitude of motion results in higher relative velocity between the foil and

the fluid and a larger swept area which in turn leads to greater thrust production.

In the case of the foil pair A2-B1, the greater motion amplitude of foil A2 is also

confirmed by the photographic observation of the trials at Re = 58 700 as shown in

Figure 4.15.

One could also propose the argument that the stiffer and heavier foils achieve

better performance by deforming into a more hydrodynamically suitable shape than

the lighter and more flexible foils. For example, it could be suggested that the curva-

ture along the chord of the stiffer foils somehow introduces a camber which increases

the strength of the bound circulation and thus increases the lift forces. However, an

examination of the photographic records does not support this explanation. Instead

it is found that when the deflection at the trailing edge of two foils is the same, the

foil profiles also follow the same curve along the chord length. As an example, two
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Figure 4.14: Amplitude ratios predicted by the damped-oscillator model for all foil
designs over a range of frequency ratios.

frames showing the foils A2 and B1 with the same deflection at the trailing edge were

extracted from the recordings taken during the trial at Re = 58 700 and St = 0.4.

The detected edges tracing the foil profiles from these frames have been superimposed

for comparison in Figure 4.16 and it is shown that the deformed shape of each foil is

essentially the same. This result is expected because the theoretical vibration mode

shapes for cantilevered beams with and without concentrated mass near the tip are

also similar [48]. It is therefore more likely that the discrepancies in propulsive perfor-

mance between the foils of the same resonant frequency but with different mass and

stiffness are attributable to differences in the amplitude of the trailing edge motion

rather than any changes in the deformed profile.
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Figure 4.15: Trailing edge excursion determined from the photographic observation
of foils A2 and B1 during trials at Re = 58 700.

Figure 4.16: Comparison of the photographically observed deformed profiles of foils
A2 and B1 with the same deflection at the trailing edge.
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4.4 Effect of the Foil Structure on Propulsive

Performance at Various Heave Amplitudes

In addition to the propulsion trials at various Reynolds numbers, trials were also

conducted with varying dimensionless heave amplitude, h0/c. All of these trials were

conducted at the same Reynolds number Re = 80 060, and without an active pitch-

ing motion. The measured efficiencies and thrust coefficients are plotted in Figures

4.17 and 4.18 respectively. Unlike the case of varying Reynolds number, where the

results were similar in each trial, changing the heave amplitude was observed to have

a marked effect on the relation between the foil structural properties and efficiency.

When comparing the propulsive performance of different structural designs, it is ob-

served that in the lowest amplitude case (h0/c = 0.125), the stiffer “A” group foils

develop significantly greater thrust forces and also operate more efficiently. The same

result was found in all of the trials at various Reynolds numbers. As the heave ampli-

tude is increased, however, the foils are all observed to approach approximately the

same level of efficiency with neither group achieving substantially better performance.

In the low-amplitude trials, and all of the trials at various Reynolds numbers, the

greater thrust production of the heavier and stiffer group “A” foils was attributed to

greater resonant amplification of the input motion due to lower equivalent damping

ratios in the stiffer design. While the resonant amplification of the input motion ap-

parently leads to greater thrust production, the required power input is also increased

in order to drive the larger amplitude motion. At low heave amplitudes, the increased

output power resulting from the greater thrust apparently exceeds the corresponding

increase in input power and the efficiency of the heavier foils is somewhat greater. At

higher heave amplitudes the two power increases appear to cancel each other and the

efficiency is comparable for both the heavier and lighter designs.

In addition to changing the efficiencies achieved by the different foil designs rel-

ative to each other, varying the heave amplitude was also found to affect the trends

relating the propulsive efficiency to frequency ratio. When the efficiencies achieved

by each combination of structural design and heave amplitude are normalized by the

maximum value and plotted against frequency ratio as in Figure 4.19, the peak effi-

ciencies are generally found at approximately the same location as long as the same

heave amplitude is considered. When the heave amplitude is increased, however,

there is observed to be a shift in the peak efficiency towards lower frequency ratios.
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Figure 4.17: Variation of efficiency with respect to Strouhal number compared for
various foil designs at (a) h0/c = 0.125, (b) h0/c = 0.1875 and (c) h0/c = 0.25.
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Figure 4.18: Variation of thrust coefficient with respect to Strouhal number com-
pared for various foil designs at (a) h0/c = 0.125, (b) h0/c = 0.1875 and (c)
h0/c = 0.25.
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Figure 4.19: Normalized efficiency as a function of frequency ratio for all foil designs
at three different heave amplitudes.

It is possible that the shift of the point of peak efficiency towards lower frequency

ratios as the heave amplitude is increased can be attributed to a corresponding shift

in the band of optimal Strouhal numbers towards lower oscillation frequencies. How-

ever, it was observed from the results presented in Section 4.3 that the correlation

between the Strouhal number and efficiency is poor and it was speculated that the

optimal Strouhal band has been missed entirely by the foil designs and oscillation

kinematics considered here. It is therefore reasonable to expect that there are some

changes in the dynamic deformation behaviour of the foils which occur when the

heave amplitude is varied and that these changes in turn lead to different trends

in the propulsive performance. To investigate this possibility, we first examine the

trends in the variation of the deformation phase lag with frequency ratio as the heave

amplitude is increased. Again, the phase lag has been observed indirectly based on

the torque signal from the load cell as discussed in Section 4.1. The results plotted

in Figure 4.20 show when the heave amplitude is increased, the phase lag develops

more quickly at low frequencies, but the measurements approach the same trend at

higher frequency ratios.
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Figure 4.20: Evolution of the deformation phase as a function of frequency ratio
for all foil designs at three different heave amplitudes.

The damped-oscillator model developed in Section 3.5 predicts a trend in the

deformation phase similar to what was observed from the measurements in Figure 4.20

when the amplitude of the input motion is increased. This amplitude appears in the

denominator of Equation 3.16 for the quadratic damping frequency. Therefore, if the

heave amplitude is scaled by some factor, this fitted frequency for any given foil design

should be multiplied by the reciprocal factor. In Figure 4.21, the predicted damping

ratios, deformation phases and amplitude ratios predicted by the model fitted for the

foil B3 are plotted for three different input motion amplitudes. Essentially, it is found

that because the velocity of the motion increases when the amplitude is increased,

the damping forces also become greater and the equivalent damping ratio increases.

The increased damping ratio leads to faster development of the phase lag at low input

motion frequencies. The higher damping ratio also reduces the peak amplitude ratio

and causes the location of the peak to shift towards lower frequency ratios. Since both

the peak amplitude ratio and the development of a suitable deformation phase lag

are observed to shift towards lower frequency ratios as the heave amplitude increases,
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it is difficult to attribute the corresponding shift in the peak efficiency to either of

these two changes. Again, similar to the findings from the trials at various Reynolds

numbers, it is likely a combination of beneficial deformation phasing and resonant

amplification of the input motion which leads to the relatively high efficiency at a

given frequency ratio.

While the difference in efficiency between the foils with equivalent resonant fre-

quency within the pairs A2-B1 and A3-B2 was found to diminish as the heave am-

plitude was increased, the heavier and stiffer group “A” foils still produced greater

thrust and thus achieved higher overall propulsive performance. However, a slight

decrease in the discrepancy in thrust production was also observed. As a measure

of the difference in thrust production between the two foils A3 and B2, the relative

difference in thrust coefficient given by

CT,rel =
CT,A3 − CT,B2

CT,B2

(4.2)

can be considered. This relative difference has been plotted against the frequency

ratio in Figure 4.22 and is found to be generally smaller as the heave amplitude is

increased. For example, at frequency ratios around f/fn = 0.8, the foil A3 produces

approximately 37% greater thrust than B2 when the heave amplitude is set to h0/c =

0.125, but when the amplitude is h0/c = 0.25 the difference is only 26% at the same

frequency ratio. The findings are similar when comparing the thrust production of the

foils A2 and B1. Although these results indicate that the increased thrust production

associated with use of stiffer and heavier foils is reduced when the heave amplitude

is increased, further experiments over a wider range of amplitudes are necessary to

confirm this trend. In the cases considered here, the changes in the relative thrust

coefficient with varying heave amplitude are subtle and the thrust coefficients at the

low amplitude are subject to considerable uncertainty due to the relatively small

streamwise forces.
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Figure 4.21: Predicted changes by the damped-oscillator model in the trends of (a)
equivalent damping ratio, (b) deformation phase and (c) amplitude ratio with respect
to frequency ratio when the quadratic damping frequency is scaled due to scaling of
the input motion amplitude by a reciprocal factor.
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Figure 4.22: Variation with respect to frequency ratio in the relative difference
between the thrust coefficients of the foils A3 and B2 at three different heave ampli-
tudes.

4.5 Propulsive Performance of Foils with

Combined Active Pitch and Heave Motions

In addition to the heave-only trials conducted at various Reynolds numbers and heave

amplitudes, a set of trials was conducted where the foil was actively rotated in a

pitching motion. In these trials, the heave amplitude was set to h0/c = 0.125 and

the flow speed was set to establish a Reynolds number of Re=80 060. The pitching

amplitude was set to a constant θ0 = 10◦ for all frequencies considered. The phase

of the pitching motion with respect to the heaving motion was set to φpitch = −π/2.

These kinematics were chosen to establish the same trailing edge excursion for a

hypothectical inflexible foil as the mid-amplitude (h0/c = 0.1875) case considered

during the trials at various heave amplitudes.

Although the chosen combined pitching and heaving kinematics were expected to
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result in a similar wake width to the mid-amplitude heave-only trial, the propulsive

performance measured in each case is considerably different. The measured efficiencies

and thrust coefficients for all of the foils in the active pitch trials are plotted in Figures

4.23 and 4.24 respectively. In these figures, the Strouhal number against which the

results are plotted is based on the trailing edge excursion of a theoretical rigid foil

rather than the heave amplitude.

0

0.05

0.1

0.15

0.2

0.25

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

E
ffi

ci
en

cy

Strouhal Number

A1
A2
A3

B1
B2
B3

Figure 4.23: Variation of efficiency with respect to Strouhal number compared for
various foil designs during a propulsion trial with an active pitching motion.

One of the most striking differences between the results obtained from the trials

with an active pitching motion presented in Figures 4.23 and 4.24 and those for the

heave-only trial with an equivalent trailing edge amplitude shown in Figures 4.17b

and 4.18b is that the efficiency is considerably higher in the active pitch case while the

thrust production is much lower. The change in performance in particularly marked

for the foils A3, B2 and B3. This change is observed because the angle of attack

between the foil and the fluid is smaller in the active pitch case. For both the heave-

only and combined heave and pitch motions, the foil deflection will act to reduce

the angle of attack during some portion of the oscillation cycle, depending on the
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Figure 4.24: Variation of thrust coefficient with respect to Strouhal number com-
pared for various foil designs during a propulsion trial with an active pitching motion.

deformation phasing. When an active pitching motion is applied, however, there is

an additive effect of the active rotation and the deflection which both act to reduce the

angle of attack making it lower as compared to the heave-only case. For the foil design

considered here, there is also portion of the foil chord ahead of the pitching axis which

is relatively short and stiff and is not expected to have deflected appreciably during

the propulsion trials. In the heave-only trials, this section of the foil chord therefore

remained roughly perpendicular to the heaving motion, establishing a very high angle

of attack at the leading edge. In the case of the trials with an active pitching motion,

this section of the chord would have been rotated to reduce the angle of attack at

the leading edge. When the angle of attack is lowered, the drag coefficient and the

projected area of the foil to the oncoming flow are reduced which results in smaller

drag forces resisting the heaving motion. The corresponding decrease in the power

required to drive this motion is apparently more than sufficient to compensate for the

added energy input required to actively rotate the foils. The reduced power input

in turn leads to improved efficiency. However, when the angle of attack is reduced,
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the strength of the bound circulation established on the foil is lower and the lift

forces decrease. The smaller lift forces in turn lead to the reduced thrust production

observed during the experiments.

Developing an understanding of the relationship between the foil structural dy-

namics and the propulsive performance becomes somewhat more complicated for the

propulsion trials with combined heave and pitch motions as compared to the case

of a heave-only motion. The difficulties arise for three reasons. First, when the foil

is actively rotated, the motion of the foil chord relative to the heaving motion is

established by the rotation in combination with the foil deformation rather than by

the amplitude and phase responses of the foil structure alone. Consequently, a more

complicated motion profile is expected. Second, the deformation behaviour will be

excited to varying extents by both the heave and pitch motions which act out of

phase with each other. It is therefore more difficult to predict of the response of

the deformation to the input motion. Finally, in addition to the added complexity

in predicting the motion of the bending foil chord, it also becomes more difficult to

observe the deformation behaviour because the load cell torque signal is generated by

both the bending moment which deforms the foils and also by the torque required to

accelerate the rotational inertia as the foils are actively moved in a pitching motion.

The phase of the torque signal with respect to heaving motion is therefore no longer

necessarily indicative of the phase of the deformation with respect to this motion as

it was in the heave-only case. Because of these complications in predicting and ob-

serving the deformation of the foil, the discussion presented here regarding the effect

of the foil structure on propulsive performance is speculative rather than presenting

definite conclusions.

It is observed in the results presented in Figure 4.24 that the heavier and stiffer “A”

group foils produce greater thrust forces, similar to the heave-only cases. The trends

in the efficiency shown in Figure 4.23 however, are considerably different. It is found

that the three foils with the lowest resonant frequencies achieve higher efficiency than

the other three foils which all achieve approximately the same lower level of efficiency.

This result may suggest that for the foil designs with lower resonant frequencies, the

foil deformation and the dynamics of the wake somehow act together constructively

to improve the propulsive efficiency. For example, it is possible that these foil designs

amplify the input motion to a greater extent at low frequencies near to the optimal

Strouhal where the disturbances applied by the foil to the flow lead to the effective

development of a thrust-producing jet. However, the amplification must not have
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been so large as to move the effective Strouhal number beyond the optimal range for

efficient propulsion as in the heave-only trials. While this explanation is possible,

it cannot be verified conclusively from the experimental results because there is no

observation of the foil deformation or flow structures available to demonstrate that

the foils with lower resonant frequency are in fact producing a beneficial amplification

of the input motion or that the development of a jet-like wake structure occurs most

effectively at the same Strouhal number where the peak efficiency is observed.

4.6 Implications of the Performance Trends for

the Design of Practical Propulsion Systems

The foil design considered in the experiments for this study was chosen to fit within

the dimensions and capabilities of the water tunnel and motion system used for the

propulsion testing rather than to emulate the design of any kind of practical propul-

sion system, either biological or mechanical. The results obtained from these trials

however, do demonstrate four performance trends which may be useful to consider in

the design of a practical propulsion system, even if the actual geometry or structure

of the prototype is substantially different than the design considered here.

First, it was found that quadratic damping action due to fluid drag is one of the

governing phenomena in the structural deformation of a flexible foil. This result in-

dicates that it is important to account for this action in design-stage calculations to

predict the structural dynamics of flexible foil. Although the model which was devel-

oped in this study includes a quadratic damping element, it will likely not be useful for

design calculations because the damping parameters must be fitted based on experi-

mental measurements which would not be available at the design stage. Additionally,

the model has not considered the spatial variation of the forces and motions of the

foil by replacing the continuous distribution of mass, stiffness and damping with a

single-degree-of-freedom system. This approximation makes the model unsuitable for

quantitative predictions of the amplitude of the deflection.

Second, the performance of massive and stiff foils was found to be different than

that of less massive and more flexible foils of the same resonant frequency. These dif-

ferences arise because the forces resulting from the quadratic damping action become

smaller relative to the inertial and elastic forces as the mass and stiffness increase.

Although the frequency ratio and Strouhal number are the same for any given input
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motion frequency, the difference in damping ratio for heavier and lighter foils makes

the structural response and of these foils different. A lighter foil, which is more heavily

damped, will have a greater deformation phase lag, but smaller absolute amplitude

of the motion. It was found that the greater amplitude of the motion for the heavier

foils leads higher thrust production, and for small heaving amplitudes the heavier

foils also achieved higher efficiency.

The improved thrust generation and efficiency of the heavier foils was unexpected

considering the results reported previously by Yin and Luo [33] who also tested foils

with equivalent resonant frequencies but varying levels of inertia. In this work, it

was found that the thrust production of the lighter foils was higher up to a frequency

ratio of approximately f/fn = 0.5 and that the lighter foils achieved higher efficiency

at all frequency ratios considered. However, this study approached the problem using

numerical simulations. Consequently, the authors were not limited by the limitations

of physical materials and were able simulate the operation of foils with much larger

differences in inertia than what was possible in the current experimental work. It is

therefore possible that the heavier foils in the work of [33] had much lower equivalent

damping ratios than the lighter ones and did not develop the appropriate deformation

phase lag for efficient or effective propulsion until reaching relatively high frequency

ratios. The work of [33] also used a much higher heave amplitude of h0/c = 1.25, than

the maximum heave amplitude of h0/c = 0.25 considered in the present work. In the

present work, it was found that the performance benefits associated with heavier foils

diminished to some extent as the heave amplitude increased. The difference between

the heave amplitudes considered in the two studies may therefore further explain the

discrepancy between the observed effects of the foil inertia on thrust generation and

efficiency.

The use of embedded masses within a foil to adjust the damping ratio and resonant

frequency is a peculiar design which was contrived for the current experimental tests

and it is unlikely to find application in practical propulsion systems. Even though

the heavier foils were observed to be more effective for propulsion by achieving com-

parable or higher efficiency than the lighter foils while also producing more thrust,

contradictory findings have been reported in other works [33,34]. The effect of inertia

on performance is therefore variable and designers should consider cautiously whether

added inertia would be useful in any particular design. Furthermore, in most practi-

cal cases it is desirable to minimize the mass of the vehicle to improve the payload

capacity and reduce the energy input required for acceleration. The addition of em-
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bedded masses within a vehicle’s propulsion system would counterproductive towards

achieving this objective. If it is expected that increasing the inertia of any particular

foil design is necessary to lower the resonant frequency or reduce the damping ratio, it

is suggested that this design change be accommodated by repositioning structural el-

ements such as reinforcing battens rather than deliberately adding embedded masses

for that purpose.

As a third principal finding, the relation between efficiency and frequency ratio

was reasonably consistent for all of the foil designs. Conversely, the efficiency achieved

at any given Strouhal number relative to the maximum measured value for a given

combination of foil structure and Reynolds number was found to vary substantially

depending on the foil design. This result indicates that appropriately matching the

foil resonant frequency to the operating conditions should be one of the main con-

siderations at the design stage of a propulsion system. It is unclear whether the

relatively high efficiency observed at a given frequency ratio arises due to the reso-

nant amplification of the input motion at this frequency, or due to a beneficial phase

between the foil deformation and the input motion which establishes the appropriate

angle of attack. However, it is clear that the structural dynamics play an important

role in the propulsive performance of the foils. The frequency ratio which resulted in

the peak efficiency was found to be remain roughly constant as the Reynolds number

varied but was observed to shift to a lower value as the heave amplitude increased.

The change in the optimal frequency ratio was attributed to a corresponding shift in

the frequency ratio which produced the greatest resonant amplification of the input

motion and also to the development of a beneficial deformation phase lag at lower

frequency ratios in the high-amplitude case.

Since the foils achieve peak efficiency when operating at a certain frequency ratio,

and it is known from previous works [12] that a certain range of Strouhal numbers

leads to efficient propulsion through the rapid amplification of disturbances in the

flow to form a jet-like wake, it was expected a distinct improvement in efficiency

would be observed if the motion amplitude, flow speed and foil resonant frequency

were chosen such that the optimal Strouhal number and frequency ratio occur for the

same oscillation frequency. However in the results obtained here, the peak efficiencies

achieved by the foils of different resonant frequencies relative to each other remained

essentially unchanged as the flow speed was varied. Even though it was not demon-

strated to be possible to adjust the foil designs for improved efficiency in the present

work, it is still reasonable to expect that such adjustments are possible. When the
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efficient operation at a given flow speed is considered as a design goal, it is important

that the wake dynamics be properly understood. In the current study, the correct

optimal Strouhal number, considering the particular kinematics and geometry of the

foils, was not known and the Strouhal number was targeted based on theoretical and

experimental results obtained for two-dimensional foils. The effective width of the

wake was also likely larger than what was assumed at the design stage due to the

foil deformation. To properly design foils for operation at a given flow speed, the

wake dynamics and effective wake velocity profile should have been considered more

carefully.

Finally, as a fourth observation, it was found that combining active pitching and

heaving motions leads to improved propulsive efficiency as compared to the cases

which used a heaving motion alone and relied on the passive deformation of the foil

to orient it at a proper angle of attack with respect to the fluid flow. However,

the active pitching motion lowered the thrust production. Even in the presence of

an active rotation to establish the proper angle of attack, the dynamic deformation

of the foil was still found influence the propulsive performance. Given that a drive

mechanism which can produce a combined rotation and translation with the proper

phasing between the two motions will be more complicated and likely heavier than a

mechanism which produces a heaving motion alone, designers should consider whether

the addition of the combined motion is consistent with the design goals for the vehicle.

If it is necessary to develop high thrust forces, then addition of an active pitching

motion may not be beneficial. If high efficiency for long distance travel is required,

an active pitching mechanism combined with a foil structure of the appropriate mass

and stiffness will be useful to achieve this objective.
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Chapter 5

Conclusion

An experimental study has been conducted to examine the effect of the structural

properties and oscillation kinematics of an oscillating-foil propulsion mechanism on

its thrust generation and efficiency. Model foils with the same external geometry

but varying mass and stiffness were constructed by embedding an internal metal

structure within a silicone rubber encapsulant. The foils were then driven in an

oscillating motion in a water tunnel by a computer-controlled servo-motor motion

system while the forces and torque acting on the foils were measured using a three-axis

load cell. The oscillation frequencies and amplitudes were adjustable by changing the

program controlling the motion system, while the Reynolds number could be adjusted

by changing the flow speed in the tunnel. The thrust coefficient and propulsive

efficiency of the foils was calculated based on the measurements recorded in each

trial. In a limited number of cases, photographic recordings were made to observe

the deformation of the flexible foils directly. It was found that in other cases, the

deformation could be observed indirectly by measurement of the bending moments.

Based on the experimental results, it was possible to draw four main conclusions.

First, in agreement with previous works, it was found that the quadratic damping

action due to fluid drag is one of the main physical phenomena which governs the

foil deformation. This result was determined by comparing the measured phase lag

between the foil deformation and the input motion with the phase lag predicted by

single-degree-of-freedom oscillator models with various forms of damping. The agree-

ment between the model predictions and the measurements improved considerably

when a quadratic damping element was included compared to models which only

included linear or hysteretic damping. The single-degree-of-freedom oscillator model
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was also able to predict the amplitude response of the foil motion in a qualitative

sense.

Secondly, the performance of heavier and stiffer foils was found to be different

compared to lighter and more flexible foils of the same resonant frequency. The dif-

ference in performance is attributed to the lower effective damping ratio in the case

of the heavier foils. The lower damping ratio allowed for greater resonant amplifi-

cation of the input motion which in turn resulted in higher thrust production with

similar efficiency as compared to the lighter foils with greater effective damping. This

result essentially indicates that the more massive foils are more effective propulsion

mechanisms. Previous studies have produced contradictory findings, demonstrating

improved propulsive performance by lighter and more flexible foils. Both results

should therefore be interpreted with some caution if applied to the design of practical

propulsion systems. It is likely important that designers of such systems consider the

changes to both the amplitude and phase responses of a given foil design as its inertia

is changed in order to find an optimal combination of mass and stiffness which will

lead to effective thrust production and high efficiency.

As a third finding, a consistent trend relating the propulsive efficiency to the

frequency ratio was observed for all of the foil designs. For any particular design at

a given frequency ratio, the efficiency relative to the peak efficiency achieved by that

particular design was found to be similar. While the same trend was observed at each

Reynolds number considered, the frequency ratio which lead to the peak efficiency

was found to shift towards a lower value as the heave amplitude was increased.

Finally, it was found that by using an active rotation or pitching motion, the

propulsive efficiency was improved considerably compared to the cases where the foils

were moved in a heaving only motion and the system relied on the passive bending

of the foils to establish the relative orientation between the foil chord and the flow.

However, the thrust production in the cases with active pitching motion was found

to be lower.

5.1 Recommendations for Future Work

The findings reported in this work raise additional research questions in the field of

oscillating-foil propulsion which are interesting to investigate both from the stand-

point of improving the theoretical understanding of the fluid-structure interaction

associated with these propulsion systems and also as a means to develop more ef-
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fective practical propulsion systems. Some of these questions and suggestions for

possible approaches to resolve them are discussed here.

It was observed that the propulsive efficiency follows a consistent trend with re-

spect to the frequency ratio for all of the foil designs considered here. It is expected

that the relatively higher efficiency at a given frequency ratio results from a combina-

tion of the development of the appropriate phase lag between the actuating motion

the passive deformation along with resonant amplification of the input motion by the

deformation. It would also be interesting assess the effect of the deformation phase

and motion amplitude on the wake structure to determine whether optimal phasing

or larger amplitude motions encourage the development of a thrust-producing jet,

similar to what has been observed by operation at the appropriate Strouhal number

for rigid foils. To address this question, quantitative flow visualisation methods such

as particle image velocimetry could be used to record the wake structure for a foil

operating at various frequency ratios where relatively higher and lower efficiencies

were observed. It would also be worthwhile to compare the wake structures of two

foils of the same resonant frequency but different mass and stiffness to help explain

the greater thrust development in the case of the more massive foil. Because the flow

over the foils considered for this study likely includes significant three-dimensional

components, the analysis by particle image velocimetry should likely be accompanied

by some other technique such as dye visualisation, or conducted at multiple parallel

planes in order to develop some understanding of the spanwise variation in the flow

structure. Alternatively, models with a higher aspect ratio and end plates could be

constructed to reduce the spanwise flow, although this approach would complicate

the experimental apparatus.

The single-degree-of-freedom damped-oscillator model developed in this work was

useful to understand the structural dynamics of the foils and therefore to interpret

the observed trends in propulsive performance but is not expected to be effective for

design work and predicting the performance of a prototype foil. For this model, it

was necessary to the determine damping parameters empirically by fitting the pre-

dicted phase response to experimental measurements for a foil with a known resonant

frequency. With the objective of developing a design tool, it would be worthwhile

to examine how to adapt this model such that the dimensionless parameters could

be predicted in advance. Since the damping forces are developed primarily due to

fluid drag, it may be possible to relate the damping parameters used in the model

to a drag coefficient and the material properties of the fluid, all of which could be
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estimated from tabulated values in engineering textbooks. If the quadratic damping

frequency and the foil resonant frequency could be estimated before constructing a

prototype, the model could be used to predict the amplitude and phase responses

and make adjustments to the design which would improve the efficiency or thrust

production during operation at a particular oscillation frequency.

The Strouhal number is a second dimensionless frequency along with the frequency

ratio which is known to affect the propulsive efficiency. In this study it was expected

that performance could be improved by designing the foil and the oscillation kine-

matics such that optimal Strouhal number and frequency ratio occur at the same

input motion frequency. This improvement in efficiency was not demonstrated in

the results. It is expected that the effective width of the wake in the trials based

on the trailing edge motion was significantly different from the width considered at

the design stage based on the heave amplitude. To further investigate whether the

propulsive efficiency can be improved by this matching of the optimal dimensionless

frequencies, the trials could be repeated but with the flow speeds adjusted such that

the expected optimal Strouhal number based on the trailing edge excursion occurs

for the same frequency as the optimal frequency ratio. Flow visualisation techniques

could also be used to examine the effect of the Strouhal number on the wake structure

for the low-aspect-ratio design considered in this study so that the optimal Strouhal

number could be properly identified with certainty rather than by assuming that the

same trends identified for two-dimensional foils are also applicable in this case.
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Appendix A

Resonant Frequencies of the Force

Measurement System

If the load cell and the attached components are approximated as a second-order

dynamic system, it is found that when oscillating forces are applied at up to one

tenth of the lowest natural frequency, the error in the load cell readings due to the

dynamic response of the system will be less than one percent [45]. In the set-up

for the experiments in this study, the resonant frequencies were estimated to be 175

Hz for the force axes and 49 Hz for the torque axis which are both more than ten

times the maximum oscillation frequency of 3 Hz. The details of calculation of these

estimated resonant frequencies are included in this appendix.

The relevant resonant frequency, fn, is given by

fn =
1

2π

√
k

I
(A.1)

where k is the stiffness of the load cell and I is the mass or inertia of the system

including the load cell itself as well as the attached components [45].

The manufacturer estimates the stiffness of the load cell used in this study to be

5.8E6 N/m for the force axes and 5000 Nm/rad. for the torque axis.

For the force axes, the inertia of the relevant components of the experimental

set-up have been measured and are listed in Table A.1.
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Component Inertia

Load cell 0.9 kg
Mast and Couplings 0.7 kg
Foil 1.0 kg

Table A.1: Relevant inertias for the estimate of the resonant frequencies of the load
cell force axes.

In addition to the masses of the components, added mass effects from the water

will make a significant contribution to the inertia. For a rectangular submerged plate,

similar to the geometry of the foils, the added mass is given by [48]

α
π

4
ρl21l2 (A.2)

where ρ is the fluid density, l1 is the short dimension of the rectangle and l2 is

the long dimension of the rectangle. The coefficient α depends on the aspect ratio

of the rectangle and in the case of the foils considered here, the value α = 0.7 is

reasonable [48]. For a submerged circular cylinder such as the mast connecting the

foils to the load cell, the added mass is given by [48]

δπρb2l2 (A.3)

where b is the radius of the cylinder and l is the length. The coefficient δ depends on

the ratio of the length to the radius. For the mast used in the experiments, a value

of δ = 0.96 is reasonable [48]. The relevant parameters for use the the formulas given

by Equations A.2 and A.3 are given in Table A.2

Parameter Value

Water density, ρ 1000 kg/m3

Foil dimension, l1 0.14 m
Foil dimension, l2 0.20 m
Submerged length of mast, l 0.15 m
Radius of mast, b 9.5 mm

Table A.2: Values of parameters necessary for the calculation of added mass effects.

Using the values in Table A.2, the effective inertia created by added mass effects

is found to be 2.16 kg on the foil and 0.0413 kg on the mast. Combining these inertias
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with the measured values in Table A.1, the total relevant inertia for the force axes is

approximately 4.8 kg. Substituting this value along with the stiffness into Equation

A.1 gives a resonant frequency of 175 Hz.

To estimate the resonant frequency of the torque axis, it is necessary to determine

the rotational inertia of the components from the mass and diameter or eccentricity.

For circular cylinders, which can be used to represent the load cell and the mast, the

inertia about an axis through the center is given by [48]

I =
mB2

2
(A.4)

where m is the mass and B is the radius. The distributed mass of the foil and its

added mass effects are represented as a thin rod. For this geometry, the inertia about

an axis which passes through the point at one end of the rod is given by [48]

I =
mL2

3
(A.5)

where L is the length of the rod. The embedded weights within the foils can be

treated as if all of the mass is concentrated at a set distance, ε, from the axis of

rotation. In this case the inertia is given by [48]

I = mε2 (A.6)

The geometric parameters and mass of the components for the use in Equations

A.4-A.6 are tabulated along with the calculated rotational inertias in Table A.3. The

inertia due to the added mass effects on the mast is not included since it is likely

small and a convenient formula is not available for its calculation. The inertias of the

foil, its added mass and the embedded weight were calculated about an axis through

the leading edge rather than the pitching axis to make a more conservative estimate

while also simplifying the calculations.
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Parameter Value

Load cell mass 0.9 kg
Load cell radius 0.045 m
Load cell inertia 9.11E-4 kg ·m2

Mast mass 0.7 kg
Mast radius 9.5 mm
Mast inertia 3.18E-5 kg ·m2

Foil distributed mass 0.62 kg
Foil length 0.2 m
Foil inertia 8.23E-3 kg ·m2

Added mass 2.2 kg
Added mass length 0.2 m
Added mass inertia 2.93E-2 kg ·m2

Embedded mass 0.38 kg
Eccentricity 0.2 m
Embedded mass inertia 1.53E-2 kg ·m2

Table A.3: Rotational inertias of the force measurement system components.

The rotational inertias listed in Table A.3 are summed to give a total inertia of

5.4E-2 kg · m2. Substituting this inertia along with the stiffness into Equation A.1

gives a natural frequency of 49 Hz.
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Appendix B

Solution of the Damped-oscillator

Models for Amplitude Ratio

When solving to find the amplitude ratios predicted by Models 3, 4 and 5 described

in Section 4.2 it is necessary to determine the solutions of quartic polynomials.

In the case of Model 3, which contains only quadratic damping proportional to

the absolute velocity of the mass, the total equivalent damping ratio, ζtotal can be

expressed in terms of the quadratic damping frequency as

ζtotal =
ω

2ωqd

γ0
h0

(B.1)

Substituting Equation B.1 into Equation 3.8 gives the implicit expression for the

amplitude ratio:
γ0
h0

=
1√

(1− r2)2 +
(
r ω
ωqd

γ0
h0

)2 (B.2)

which can be rearranged to give the quartic polynomial:(
r
ω

ωqd

)2(
γ0
h0

)4

+
(
1− r2

)2(γ0
h0

)2

− 1 = 0 (B.3)

Equation B.3 does not contain any cubic or linear terms and can therefore be

solved by considering it as a quadratic polynomial in (γ0/h0)
2. Applying the quadratic
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formula [49] and considering only the positive root gives

(
γ0
h0

)2

=
− (1− r2)2 +

√
(1− r2)4 + 4

(
r ω
ωqd

)2
2
(
r ω
ωqd

)2 (B.4)

After evaluating the right side of Equation B.4, the amplitude ratio is easily deter-

mined by taking the square root and and again considering only the positive value.

When the oscillator is driven at its resonant frequency such that r = 1, Equation

B.3 can be simplified and it is advisable to do so in order to reduce the numerical

error in the evaluation of the solution. In this case, the amplitude ratio is given by

γ0
h0

=

√
ωqd
ω

(B.5)

When solving for the amplitude ratio predicted by Model 5, the quadratic damp-

ing frequency and hysteretic damping frequency can be used to express the relevant

damping ratios as

ζtotal =
ω

2ωqd

γ0
h0

+
ωhd
2ω

(B.6)

and

ζint =
ωhd
2ω

(B.7)

Again, by substituting the damping ratios given by Equations B.6 and B.7 into

Equation 3.8, we find that the amplitude ratio is given implicitly by

γ0
h0

=

√√√√√ 1 +
(
rωhd

ω

)2
(1− r2)2 +

[
r
(
ωhd

ω
+ ω

ωqd

γ0
h0

)]2 (B.8)

In a manner similar to the solution of Model 3, we rearrange the implicit expression

given by Equation B.8 into a quartic polynomial but in this case a cubic term is

present due to the component of the total damping ratio in Equation B.6 which does

not depend on the amplitude. The resulting expression for the amplitude ratio is(
r
ω

ωqd

)2(
γ0
h0

)4

+ 2r2
ωhd
ωqd

(
γ0
h0

)3

+
[(

1− r2
)2

+(
r
ωhd
ω

)2](γ0
h0

)2

−
[
1 +

(
r
ωhd
ω

)2]
= 0

(B.9)
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The amplitude ratio is then found by substituting the coefficients of Equation B.9 into

the published formulae for the solution of quartic polynomials [49] and selecting the

real, positive root. The solution of Model 4 is identical to that of Model 5 except that

the internal damping ratio given by Equation B.7 and the second term of Equation B.6

are constant rather than varying with the reciprocal of the frequency of the applied

motion.
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