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ABSTRACT

A high-order macroscopic model for the accurate description of rarefied polyatomic

gas flows is introduced based on a simplified kinetic equation. The different energy

exchange processes are accounted for with a two term collision model. The order of

magnitude method is applied to the primary moment equations to acquire the opti-

mized moment definitions and the final scaled set of Grad’s 36 moment equations for

polyatomic gases. The proposed kinetic model, which is an extension of the S-model,

predicts correct relaxation of higher moments and delivers the accurate Prandtl (Pr)

number. Also, the model has a proven H-theorem. At the first order, a modification

of the Navier-Stokes-Fourier (NSF) equations is obtained, which shows considerable

extended range of validity in comparison to the classical NSF equations in modeling

sound waves. At third order of accuracy, a set of 19 regularized PDEs (R19) is ob-

tained. Furthermore, the terms associated with the internal degrees of freedom yield

various intermediate orders of accuracy, a total of 13 different orders. Attenuation and

speed of linear waves are studied as the first application of the many sets of equations.

For frequencies were the internal degrees of freedom are effectively frozen, the equa-

tions reproduce the behavior of monatomic gases. Thereafter, boundary conditions

for the proposed macroscopic model are introduced. The unsteady heat conduction

of a gas at rest and steady Couette flow are studied numerically and analytically
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as examples of boundary value problems. The results for different gases are given

and effects of Knudsen numbers, degrees of freedom, accommodation coefficients and

temperature dependent properties are investigated. For some cases, the higher order

effects are very dominant and the widely used first order set of the Navier Stokes

Fourier equations fails to accurately capture the gas behavior and should be replaced

by a higher order set of equations.
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Chapter 1

Introduction

Find something that you love to do, and find a place that you really like to do it in.

I found something I loved to do. I’m a mechanical engineer by training, and I loved

it. I still do. My son is a nuclear engineer at MIT, a junior, and I get the same vibe

from him. Your work has to be compelling. You spend a lot of time doing it.

Ursula Burns

Conventional hydrodynamics fails in the description of rarefied gas flows, where

the Knudsen number is not too small. The Knudsen number is a measure illustrating

the degree of non-equilibrium rarefaction in a gas and is used to characterize the

processes in kinetic theory. In this thesis, we shall introduce models of extended

hydrodynamics for polyatomic gases that extend the validity of the macroscopic de-

scription towards larger Knudsen numbers. These models close the gap between

classical fluid dynamics, as described by the Navier-Stokes-Fourier (NSF) equations,

and kinetic theory, that is, they aim at a good description in the transition regime.

The contemporary kinetic theory of gases starts to form when Maxwell proposed

a general transport equation, which gives the changes of macroscopic quantities (den-

sity, temperature, velocity) over time as a function of microscopic quantities, and

obtained the transport coefficients for a certain type of molecular interaction poten-

tial [1], known as Maxwellian potential. In 1872 Boltzmann [2] proposed a transport

equation which models the evolution of velocity distribution function over time and

space. This equation, known as Boltzmann equation, was a breakthrough in kinetic

theory and created a big motivation in the field. Another great achievement in the ki-

netic theory was established by S. Chapman [3][4] and D. Enskog [5] independently as

they studied closing the transport equations of hydrodynamics for the first time. They
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derived formulations for the stress tensor and energy flux as functions of gradients

of hydrodynamic quantities and thus closed the system of hydrodynamic equations.

First attempts into considering the effects of internal degrees of freedom on molecules

behavior was made by Eucken [6] in 1913. Afterward, Wang Chang and Uhlenbeck

[7][8] considered excitation of internal degrees of freedom and proposed a generalized

Boltzmann equation, known as the Wang Chang and Uhlenbeck equation. Successful

attempts for solving this equation using the Chapman-Enskog method in order to

obtain the relations for shear and bulk viscosity and heat conductivity as functions

of the relaxation times were made by Monchick et al. [9, 10, 11, 12, 13] and Morse et

al. [14][15]. A modified quantum-mechanical Boltzmann equation for gases consisting

of molecules with degenerate internal states was proposed by Snider [16] and solved

using the Chapman-Enskog method to obtain an expression for the thermal conduc-

tivity [17]. Later, solving the Wang Chang and Uhlenbeck equation using the moment

equations was considered [18][15]. A. M. Kogan [19] used the entropy maximization

to obtain the generalized Grad’s 13 moment equations for rough sphere polyatomic

gases. The generalized 17-moment equations for polyatomic gases were derived by

Zhdanov [20] and McCormack [21] to cover a wider range of physical problem. They

also introduced expressions for slip velocity and temperature jump.

More recently, Bourgat et al. [22] introduced a model which uses just one addi-

tional continuous internal parameter to represent the internal degrees of freedom of

the polyatomic gas and derived the corresponding equilibrium distribution function.

Mallinger [23] generalized the Grad’s method and derived the 14 moments equations

based on Bourgat’s model. Desvillettes et al. [24] developed a model for a mixture

of reactive polyatomic gases based on Bourgat’s model. Kustova, Nagnibeda and

co-workers studied the strong vibrational nonequilibrium in diatomic gases [25] and

reacting mixture of polyatomic gases for different cases with regards to the charac-

teristic time of the microscopic processes [26, 27, 28, 29] using the Chapman-Enskog

method, and derived the first order distribution function and the corresponding gov-

erning equations [30]. Andries et al. [31] introduced the ellipsoidal Gaussian BGK

model for polyatomic gases considering the additional internal parameter and proved

the H-theorem. Brull et al. [32] used the maximization of entropy and obtained

the same BGK type model as Andries et al. [31]. Cai and Li [33] extended the

NRxx model, introduced in [34][35], to polyatomic gases using the ES-BGK model of

Andries et al. [31] and Brull et al. [32].

In the past four years, Ruggeri, Sugiyama and co-workers developed a generalized
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14 field theory for polyatomic gases in the context of rational extended thermody-

namics [36]. They adopted 14 field variables to construct the theory for the dense

gases [37] and showed that the rarefied gas limit of their theory is inconsistent with

Mallinger’s model [23] of kinetic theory. They studied [38] the dispersion relation for

sound and showed that their results have a good consistency with experimental data

up to the non-dimensional frequency of 0.1. Also, the equivalency between extended

thermodynamics and maximization of entropy was shown in [39] for polyatomic gases.

Furthermore, recovering the monatomic gas model as a singular limit of the extended

thermodynamics model of the polyatomic gases was studied in [40]. We will show

that this 14 field theory is not fully at second order of accuracy. Our proposed third

order accurate model is valid at higher Knudsen numbers, where the second order

models loose accuracy.

The macroscopic models at higher order in Knudsen number were shown to work

well for monatomic gases in the transition regime [41]. One of the newly developed

macroscopic models which was shown to work well without being unstable is called

the regularized 13 moment (R13) [42][43][44]. This model has third order accuracy

in the Kn number, and unlike the super-Burnett equations which are unstable, gives

physically meaningful results [45]. The damping and phase speed of ultra sound

waves obtained by this method proofed to be accurate [44]. This model gives, even

at high Mach numbers, smooth shocks [46] and is linearly stable [42][44]. After the

set of R13 equations was completed by boundary conditions [47], several engineering

problems were solved successfully both analytically and numerically. Couette and

Poiseuille flow were solved for flat [48], cylindrical [49][50] and annular channels [51]

geometries. Also, the transpiration flow was solved for both linear and non-linear

cases [52]. Furthermore, this model captures Knudsen boundary layers [53]. The

set of R26 were derived by Gu and Emerson [54] and solved for similar problems

[55][56]. The numerical results of the R13 equations are obtained for heat transfer in

partial vacuum in a micro cavity and the lid driven cavity [57][58]. Recently, the R13

equations for monatomic gases consists of hard sphere molecules are studied in [59].

All these good results are obtained for monatomic gases. However, realistic gases

are polyatomic, and having the same results for polyatomic gases is a perfect tool to

incorporate in design processes.

The present thesis aims at introducing a rigorous macroscopic models for rarefied

polyatomic gases which is obtained from our introduced kinetic model. In order to

obtain such a model we developed a model based on meeting the following require-
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ments:

1. be stable,

2. ability to capture Knudsen boundary layers and predict correct relaxation of

higher moments,

3. clearly obtained definition of moments which could construct the model’s field

of variables at it’s minimized number,

4. explicitly shown number of the field variables need to be considered for different

levels of accuracy based on power of the Knudsen number,

5. have high order of accuracy. Specifically, higher than existing first, NSF, and

second order, G14, theories,

6. model the different exchange processes between particles based on their char-

acteristics microscopic time scale and at the same time, have a nice, firm and

simple mathematical structure.

The Chapman-Enskog method at higher order expansions, second or higher, usu-

ally yields unstable equations [60][61]. Therefore, the first item in the list eliminates

the use of Chapman-Enskog method and bring the stable Grad’s moment method

[62][63] into attention. However, the items 2 and 3 imply the need of a more gen-

uine model which satisfies all the requirements. This means that the regularization

method [42][43][44] should be applied and generalized to cover the polyatomic gasses.

The regularization method have another advantage over the Grad’s moment method,

the Knudsen number is related to the model and the moment set needs to be con-

sidered for a given order is clear which is the item 4 in the list. In the procedure of

regularization, as shortly will be described, the minimal number of the moments is

assured and item 3 is satisfied. Regarding item 6 in the list, our introduced kinetic

equation models the exchange processes under two different time scales, using a two

term collision operator. Furthermore, we use a continuous internal energy parameter

to model the internal degrees of freedom, instead of having discrete internal energy

levels. This is also used by other researchers too [22, 24, 31, 32]. Also, a generalized

BGK type collision model [64] [65] is introduced in the kinetic model for having a nice

and simple structure of the Boltzmann collision term to enable us to investigate the
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model reduction at high orders. These considerations would satisfy the requirements

in item 6.

Our proposed kinetic model, which is an extension of the Rykov and Shakov

models [65, 66], predicts correct relaxation of heat fluxes and delivers the accurate

Prandtl number. Compared to the BGK, Shakov and Rykov model, in the model

proposed here the number of free relaxation parameters is increased to 4 to allow

proper higher moment relaxation times. The proposed model has a proven H-theorem.

Also, we incorporated the temperature variation of internal degrees of freedom into

the model. Furthermore, based on experimental data of shear and bulk viscosities,

the relaxation times in the proposed model are temperature dependent too.

Our proposed macroscopic models are derived from this kinetic model. The order

of magnitude method [43][67][68][59] is used to obtain macroscopic models and derive

the regularized set of equations. The procedure of this method is as follows,

1. Construct infinite moments hierarchy: A system of moment equations using the

Grad’s method with arbitrary choice of definition and number of moments is

constructed.

2. Reconstructing moments: Apply the Chapman-Enskog method on the moments

and determine their leading order terms. Define new moment definitions, using

linear combination, based on the goal of having minimal number of moments in

each order of magnitude.

3. Full set of equations: Using the equations of old moments definition, the set

of new moments equations is constructed. Apply the Chapman-Enskog on the

new moments and determine their leading order.

4. Model reduction: The full set of equations is rescaled considering the obtained

order of the new moments. Then, the model could be reduce to any wanted

order of accuracy.

The proposed kinetic model and macroscopic models, and results obtained from

the models are all original contributions. Our proposed macroscopic model, extends

the level of accuracy of common macroscopic models, e.g. first order and second order

models mentioned above, for polyatomic gases. We will show that results obtained

from our models are valid in transition regime, where the first order models, e.g.

Navier Stokes Fourier equations, and second order equations loose validity.
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We lay out the foundation of the kinetic theory of polyatomic gases in the next

chapter. The two term collision operator is discussed and the generalized S-BGK

type model is introduced along with derivation of equilibrium distribution functions

and H-theorem. From introduced general moments equation for polyatomic gases,

the system of Grad’s 36 moments equations is constructed in chapter 3, which is item

1 in the above list. The Chapman-Enskog procedure is applied, leading order terms

are determined and the new set of moments is reconstructed in chapter 4, which

is item 2 in the list. The full set of new moments equation, item 3 in the list, is

obtained in chapter 5. Model reduction, item 4 in the list, performed in the chapter

5 leads to the regularized equations for different order of accuracy. The linear wave

analysis for different sets of regularized equations is discussed in chapter 6. The

dispersion and damping coefficients of high frequency sound waves for different sets

of equations are compared. The theory of microscopic boundary condition is given

in Chapter 7 and the corresponding macroscopic boundary conditions are given in

subsequent chapters. Chapters 8 and 9 are dedicated to solving boundary value

problems and analyzing different effects on the flow field, e.g. Knudsen numbers and

degrees of freedom. Chapter 8 presents stationary heat conduction analysis. The

unsteady heat conduction problem is solved numerically and the linear steady case

is solved analytically. The obtained results from the proposed model are compared

with DSMC simulations to show the good accuracy of the proposed model. Also, it

is shown that Navier–Stokes–Fourier equations could not produce accurate results.

Analysis of Couette flow is done in Chapter 9. The linear system of equations is solved

analytically and the effect of Kn numbers, internal degrees of freedom, Pr number,

and accommodation coefficients on the behavior of the Couette flow is investigated.

Final conclusions and recommendations are given in Chapter 10.
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Chapter 2

Kinetic model

There are those who work all day. Those who dream all day. And those who spend

an hour dreaming before setting to work to fulfill those dreams. Go into the third

category because theres virtually no competition.

Steven J Ross

In this chapter, we present the kinetic theory of polyatomic gases and will in-

troduce our kinetic model for modeling polyatomic gases and explore some of its

properties.

2.1 Kinetic theory of polyatomic gases

The number of independent variables which are required to specify the full state of a

system is called the degree of freedom of that system. A particle in space can move

independently in three directions. Therefore, there are three translational degrees

of freedom associated with any gas molecule in free flight. Besides the translational

degrees of freedom, there are other degrees of freedom due to internal energy of

molecules. These degrees of freedom may be divided into two categories based on

rotational and vibrational movements of the molecules. For example, a diatomic gas

could have rotational movements around two axes, the ones perpendicular to the

connecting line between two atoms [69] and a vibrational degree of freedom in the

direction of the connecting line. Therefore, a diatomic gas has six degrees of freedom.

However, one should keep in mind that based on quantum mechanic analysis, spaces

between the energy levels of vibration and other kinds of molecular energy are big

and usually at room temperature the vibrational levels of internal energy are frozen
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[69].

State of molecules changes due to interaction between molecules (collisions). En-

ergy and momentum are conserved, but exchange between different energy forms and

particles. Different exchange processes occur on different characteristic time scales.

In all collisions, the translational energy is exchanged between particles. However,

only in some of the collisions the internal energy is exchanged as well. These differ-

ences and their relation to the reference or macroscopic time scale is a key feature

for defining the state of a gas as being in non-equilibrium or equilibrium. In cases

when there are two different characteristic time scales, one smaller than and the

other one comparable to the macroscopic time scale, both rapid equilibrium and slow

non-equilibrium processes would be present in the gas. The rapid processes are in

equilibrium state at the macroscopic time scale, due to the fact that lots of collisions

with rapid processes occur in the time needed for any changes in the dynamics of the

gas. Also, all the processes with characteristics time much larger than macroscopic

time scale would be assumed to be frozen during the macroscopic time scale.

A collection of numerous interacting particles is called gas in kinetic theory. One

mole of gas at reference temperature and pressure of 273.15 K and 1 atmosphere

will have numer of molecules equal to Avogadro number (NA = 6.022 × 1023) and

occupies a volume of 2.2× 10−2 m3. These particles are described by their position,

xi, velocity, ci, and their internal energy, eint, at any given time. Each molecule could

be described by this 7-dimensional space known as phase space at time, t. Using

continuos spectrum internal energy, which is a simplified model where all degrees are

fully developed or frozen, the internal energy is defined as

eint = I
2
δ , (2.1)

I is internal energy parameter which is non-negative; δ is the number of non-translational

degrees of freedom of the gas. By introducing the particle or velocity distribution func-

tion f(x, c, eint, t), the number of molecules in a phase space element dx1dx2dx3dc1dc2dc3deint

is computed as

dN = f(x, c, eint, t)dxdcdeint . (2.2)

The evolution of particle distribution functions is determined by the Boltzmann equa-

tion, which is a nonlinear integro-differential equation written in the absence of ex-
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ternal forces, as
∂f

∂t
+ ck

∂f

∂xk
= S . (2.3)

The left and right-hand sides take into account the effects of the particles free flight

and particles collisions, respectively. The quadratic collision term,

S =
∑

α1,α′,α′
1

∫ (
fα′fα′

1
− fαfα1

)
σα′α′

1
αα1

g dΩ dc1 ,

would take different complex forms which is difficult to work with and costly in

computing resources [70, 30]. Here, α and α1 denotes the incoming particles before

collision, α′ and α′
1 are denotes particles after collision, σ is the differential cross

section, g is relative velocity of the incoming particles, and dΩ is the element of solid

angle. Therefore, having simpler models to replace the Boltzmann collision term

which could preserve the basic relaxation properties and give the correct transport

coefficients is more of our interest.

2.2 Kn number

Processes in kinetic theory are characterized by a dimensionless parameter called the

Knudsen number,

Kn =
λ

L
=

τ

τ0
, (2.4)

L is the characteristic length scale of the process and λ is the mean-free path of gas

particles. τ is the relaxation time of the microscopic exchange processes. In dimen-

sionless form of the Boltzmann equation, relaxation time (microscopic time scale)

is non-dimensionalized by dividing by a typical reference or macroscopic time of the

process τ0. This dimensionless time presents the Knudsen number. When Kn number

is small, we are at hydrodynamic regime and continuum assumption is valid. As the

mean-free path becomes comparable with the characteristic length, which means less

collisions, we are in the transition regime and the continuum assumption starts to

break down and particle-based methods need to be employed. In this situation, the

flow is in rarefied state and one has either to solve the Boltzmann equation, or develop

advanced macroscopic models that include rarefaction effects. When the mean-free

path becomes longer than the characteristic length, we are in the free molecular flow,

which means very rare or none collisions.
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There are several applications that illustrate comparable mean-free path and the

characteristic length [71, 72, 73, 74]. At the small scale devices, e.g. MEMS, the

characteristics length becomes comparable to the mean free length, which for air at

standard condition is around 0.1 µm. Vacuum devices have large mean free path

due to low density, e.g. mean free path is around 1 mm at pressure of 10−4 Pa.

Also, at high altitude applications we have large mean free path as the air becomes

dilute. Decrease of density and increase of mean free path with increasing altitude is

a exponential function, the mean free path gain the values around 0.1 and 100 m at

100 and 200 km elevations.

2.3 Macroscopic quantities

The macroscopic properties such as mass density, momentum, energy, and pressure

are moments of phase density. Other than that, there are other moments that have

physical interpretations, e.g., pressure tensor and heat flux vector. Based on the

definition of the trace free part of the central moments,

uς,Ai1...in
= m

∫ ∫
(eint)

AC2ςC<i1Ci2 ...Cin>fedcdeint

= m

∫ ∫
(I

2
δ )AC2ςC<i1Ci2 ...Cin>fdcdI , (2.5)

where {
A = 0, 1, 2, 3, ...

ς = 0, 1, 2, 3, ...
,

and due to substitution eint → I,

f =
2

δ
I

2
δ
−1fe .
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The basic and most important moments are:

Density ρ = m

∫ ∫
fdcdI =

∫
ρIdI = u0,0 , (2.6a)

Velocity ρvi = m

∫ ∫
cifdcdI or 0 = m

∫ ∫
CifdcdI = u0,0i ,

(2.6b)

Stress σij = m

∫ ∫
C<iCj>fdcdI = u0,0ij , (2.6c)

Translational energy ρutr =
3

2
p = m

∫ ∫
C2

2
fdcdI =

1

2
u1,0 , (2.6d)

Internal energy ρuint = m

∫ ∫
I2/δfdcdI =

∫
I2/δρIdI = u0,1 , (2.6e)

Translational heat flux qi,tr = m

∫ ∫
Ci
C2

2
fdcdI =

1

2
u1,0i , (2.6f)

Internal heat flux qi,int = m

∫ ∫
CiI

2/δfdcdI = u0,1i . (2.6g)

Here, ci is the microscopic velocity, Ci = ci − vi, is the peculiar particle velocity,

and ρI = m

∫
fdc is the density of molecules with the same internal energy eint.

Moreover, utr and uint are the translational energy and the energy of the internal

degrees of freedom, respectively, while qi,tr and qi,int are the translational and internal

heat flux vectors.

The classical equipartition theorem states that in thermal equilibrium, each degree

of freedom contributes an energy of 1
2
θ to the energy of particle, where θ = kb

m
T is

temperature in specific energy units [44]. Thus in equilibrium, the translational and

internal energies are

utr|E =
3

2
θ and uint|E =

δ

2
θ . (2.7)

We extend the definition of temperatures to non-equilibrium, by defining the trans-

lational temperature θtr and the internal temperature θint through the energies as

utr =
3

2
θtr and uint =

δ

2
θint . (2.8)

With these definitions, the ideal gas law in non-equilibrium reads p = ρθtr. The total

thermal energy, u = uint + utr, is defined as the sum of the internal and translational
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energies, and we use the equipartition theorem to define the overall temperature θ as

u =
3

2
θtr +

δ

2
θint =

(
3

2
+
δ

2

)
θ . (2.9)

In equilibrium the three temperatures agree, θtr|E = θint|E = θ, while in non-equilibrium

they will differ.

2.4 BGK model

One of the models to replace Boltzmann equation’s quadratic collision term is the

BGK model [64] which was introduced by Bhatnagar, Gross and Krook for monatomic

gases. This model is based on relaxation towards Maxwellian distribution and is

written as

S =
1

τ
(M− f) . (2.10)

Here, the Maxwellian M is the distribution function at equilibrium state and τ is the

characteristic time (mean free time).

As discussed earlier, there are many different processes with distinct time scales

for polyatomic gases [30]. While translational energy is exchanged in all collisions,

internal energy is exchanged only in some collisions, due to details of molecular in-

teraction, and leads to different time scales. Our model considers continuous internal

states, and all the internal exchange processes are modeled to relax by only a single

characteristic relaxation time, τint. This implies restriction on our model, specially

at higher temperatures where distance of the energy levels between internal states

are considerable and the assumption of one continuous internal state is not feasible.

For description of these exchanges we use a two term BGK-type collision operator

following [75]. The first term, indicated by subscript tr, represents the translational

energy exchange during the collisions. The second one, indicated by subscript int,

models the exchange of the internal energy between colliding molecules. Therefore,
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σij qi u2,0 u1,0ij

τ 1
Pr
τ 2

3
τ 7

6
τ

Table 2.1: Maxwell molecules’s relaxation times.

Gas H2 N2 CO2 CO CH4

Pr 0.69 0.72 0.76 0.74 0.72

Table 2.2: Prandtl number of different gases at temperature of 300 K.

the Boltzmann equation can be written as,

∂f

∂t
+ ck

∂f

∂xk
= Str + Sint , (2.11a)

Str = − 1

τtr
(f − ftr) , (2.11b)

Sint = − 1

τint
(f − fint) . (2.11c)

Here, τtr and τint are the corresponding mean free times that we assume to depend

only on the macroscopic equilibrium variables (ρ, θ). Also, ftr and fint are equilibrium

distribution functions that describe the different equilibria to which the distribution

function will relax due to the collisions; they depend on the collisional invariants.

The maximum entropy principle will be used to obtain these equilibrium distribution

functions in section 2.7.

2.5 General moment equation

The moment equations are obtained by taking weighted averages of the Boltzmann

equation. Multiplying the Boltzmann equation with m(I2/δ)AC2ςC<i1Ci2 ...Cin>, and

subsequent integration over velocity space and internal energy parameter gives the
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general moment equation as

Duς,Ai1...in

Dt
+ 2ςuς−1,A

i1...ink

Dvk
Dt

+ 2ςuς−1,A
i1...inkj

∂vj
∂xk

+
n

2n+ 1
2ςuς,Aj<i1...in−1

∂vj
∂xin>

+
∂uς,Ai1...ink

∂xk
+ 2ς

n+ 1

2n+ 3
uς,A<i1...in

∂vk>
∂xk

+
n

2n+ 1

∂uς+1,A
<i1...in−1

∂xin>

+ 2ς
n

2n+ 1
uς,A<i1...in−1

Dvin>
Dt

+
n− 1

2n− 1
nuς+1,A

<i1...in−2

∂vin−1

∂xin>
+ nuς,A<i1...in−1

Dvin>
Dt

+ uς,Ai1...in

∂vk
∂xk

+
n

2n+ 1

n− 1

2n− 1
2ςuς+1,A

<i1...in−2

∂vin−1

∂xin>
+ nuς,Ak<i1...in−1

∂vin>
∂xk

=
1

τtr

[
uς,Ai1...in|E,tr − uς,Ai1...in

]
+

1

τint

[
uς,Ai1...in|E,int − uς,Ai1...in

]
(2.12)

Here, the relation uς,A<i1...in>k = uς,Ai1...ink
+ n

2n+1
uς+1,A
<i1...in−1

δin>k is used [44], and D
Dt

=
∂
∂t
+ vi

∂
∂xi

.

2.6 S-model

In the original BGK model ftr0 and fint0 are the Maxwellian equilibrium distribution

functions corresponding to different collision types which could not predict correct

relaxation of the higher moments, Eq. 2.12, and the Prandtl number [76, 77]. Shakhov

[65] proposed a modified BGK model for monatomic gases to obtain the correct Pr

number and Rykov [66] extended this model to molecules with rotational movements.

In order to overcome these defects we introduce a generalized and modified S-model

for polyatomic gases.

The relaxation times of the Boltzmann collision term for Maxwell molecules in

the case of monatomic gases for some higher moments are presented in table 2.1 [44]

[78]. The relaxation time for all higher moments in the original BGK model are the

same as stress tensor. The relaxation time of u1,0ij is close to the relaxation time of

σij, but for other moments the differences are considerable and should not be ignored.

Therefore, we introduce a model which correctly predicts the relaxation of these higher

moments and their internal moment counterparts {qi,tr, qi,int, σij, u2,0, u1,1}. Prandtl
numbers of some polyatomic and diatomic gases are given in table 2.2 [79, 80]. Based

on the definition of these higher moments, we introduce translational and internal

distribution functions by expansion about the equilibrium Maxwellian functions, ftr0

and fint0 , in corresponding polynomials in specular velocity and particle’s internal
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σij qi,tr qi,int u2,0 u1,1

1
τtr

+ 1
τint

Rqtr

[
1
τtr

+ 1
τint

]
Rqint

[
1
τtr

+ 1
τint

]
Ru2,0

[
1
τtr

+ 1
τint

]
Ru1,1

[
1
τtr

+ 1
τint

]
Table 2.3: Correct relaxation times for higher moments based on four new free pa-
rameters.

energy as

ftr = ftr0
[
1 +

(
a0,0 + a0,0i Ci + a1,0C2 + a0,0ij C<iCj>

+a1,0i CiC
2 + a0,1i Cieint + a1,1C2eint + a2,0C2C2

)]
, (2.13)

fint = fint0
[
1 +

(
b0,0 + b0,0i Ci + b1+1

(
C2 + eint

)
+b0,0ij C<iCj> + b1,0i CiC

2 + b0,1i Cieint + b1,1C2eint + b2,0C2C2
)]

. (2.14)

The unknown coefficients in ftr and fint are obtained based on the conditions that

the proposed two term collision model predicts correct relaxation for higher moments

by introducing four free relaxation parameters Rqtr , Rqint
, Ru2,0 , Ru1,1 as shown in

Table 2.3. The relaxation parameters will be obtained using fitting to experimental

and simulation data. These conditions along with the collision invariants result in

coefficients for the translational distribution function as,

a0,0ij = 0 , a0,0 =
(1−Ru2,0) (u2,0 − 15ρθ2tr)

8ρθ2tr
, (2.15a)

a0,0i = −

[
(1−Rqtr) qi,tr + 2δ (1−Rqint

) qi,int
ρθtrθint

4u0,2−δ2ρθ2int

ρθ2tr

]
, (2.15b)

a1,0 =
−5 (1−Ru2,0) (u2,0 − 15ρθ2tr)− 8δρθtrθint (1−Ru1,1)

u1,1− 3
2
δρθtrθint

4u0,2−δ2ρθ2int

60ρθ3tr
, (2.15c)

a1,0i =
(1−Rqtr) qi,tr

5ρθ3tr
, a0,1i =

4 (1−Rqint
) qi,int

4u0,2θtr − δ2ρθ2intθtr
, (2.15d)

a1,1 =
4 (1−Ru1,1)

(
u1,1 − 3

2
δρθtrθint

)
15θ2tr [4u

0,2 − δ2ρθ2int]
, (2.15e)

a2,0 =
(1−Ru2,0) (u2,0 − 15ρθ2tr)

120ρθ4tr
, (2.15f)
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and internal distribution function as,

b0,0 = (6 + δ)
28 (1−Ru1,1)

[
u1,1 − 3

2
δρθ2

]
+ (5− δ) (1−Ru2,0) [u2,0 − 15ρθ2]

8ρθ2 (30 + δ (3 + δ))
,

(2.16a)

b0,0i = −
[
(1−Rqtr) qi,tr + (1−Rqint

) qi,int
ρθ2

]
, (2.16b)

b1+1 =
−28 (1−Ru1,1)

[
u1,1 − 3

2
δρθ2

]
− (5− δ) (1−Ru2,0) [u2,0 − 15ρθ2]

2ρθ3 (30 + δ (3 + δ))
, (2.16c)

b0,0ij = 0 , b1,0i =
(1−Rqtr) qi,tr

5ρθ3
, b0,1i =

2 (1−Rqint
) qi,int

δρθ3
, (2.16d)

b2,0 =
20 (6− δ) (1−Ru1,1)

[
u1,1 − 3

2
δρθ2

]
+ (30− δ (7− δ)) (1−Ru2,0) [u2,0 − 15ρθ2]

120ρθ4 (30 + δ (3 + δ))
,

(2.16e)

b1,1 =
24 (1 + δ) (1−Ru1,1)

[
u1,1 − 3

2
δρθ2

]
+ δ (3− δ) (1−Ru2,0) [u2,0 − 15ρθ2]

6δρθ4 (30 + δ (3 + δ))
.

(2.16f)

2.7 Equilibrium distributions

A gas which is isolated and there is no disturbance or force acting on it, will have

an entropy elevation until its entropy reaches its maximum value. This maximum

value is limited by the conserved quantities during the collisions. In 1987, Dreyer

[81] proposed the maximum entropy principle in non-equilibrium state motivated by

the work of Kogan [82]. We obtain the equilibrium distributions using the maximum

entropy principle here.

The energy of internal states of molecules does not change during translational

collisions. So, the number of molecules with the same internal energy level is an

invariant for this type of collisions. However, in internal processes due to exchange of

the internal energy, the total number of the molecules is an invariant. Also, momen-

tum is conserved in all the collisions. Conservation of the energy for the translational

processes results in conserved translational and internal energies, separately. Total

energy is conserved for the internal processes.

The problem of finding the equilibrium distribution function which maximizes the

entropy,

ρs = −kb
∫ ∫

f ln
f

y
dcdI , (2.17)



17

under the collision invariants constraints is solved using the method of Lagrange

multipliers [44]. Here, kb is the Boltzmann’s constant and y is volume of inverse of

phase space element. This method is based on the fact that finding the extremum

of a function, L, under constraints Gi = 0, is the same as finding the extremum of

L−
∑

i λiGi, where λi is the vector of Lagrange multipliers. The unknown multipliers

are obtained using the constraints. Therefore, the function that should be maximized

for the translational processes is

Φ = −kb
∫ ∫

f ln
f

y
dcdI +

∫
ΛρI

(
ρI −m

∫
fdc

)
dI

+Λρvk

(
0−m

∫ ∫
CifdcdI

)
+Λρutr

(
3

2
ρθtr −m

∫ ∫
C2

2
fdcdI

)
. (2.18)

This is a variational calculus problem with the solution

f = y exp[−1− m

kb
(ΛρI +Λρvk

Ck +Λρutr

C2

2
)] . (2.19)

The unknown multipliers are obtained using the constraints (prescribed values of

number of molecules, translational energy and momentum balance) to be

Λρutr =
kb
mθtr

,

Λρvk
= 0 , (2.20)

exp[−1− m

kb
(ΛρI )] =

ρI
my

(
1

2πθtr
)
3
2 .

Substituting the multipliers back into the distribution function, the equilibrium dis-

tribution function of the translational processes is obtained to be a Maxwellian dis-

tribution function,

ftr0 =
ρI
m

(
1

2πθtr

) 3
2

exp

[
− 1

2θtr
C2

]
. (2.21)

Also, the function that is maximized for the internal processes is

Φ = −kb
∫ ∫

f ln
f

y
dcdI +Λρ

(
ρ−m

∫ ∫
fdcdI

)
+Λρvk2

(
0−m

∫ ∫
CifdcdI

)
+Λρu

(
3 + δ

2
ρθtr −m

∫ ∫ (
C2

2
+ eint

)
fdcdI

)
, (2.22)
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Similarly, this is a variational calculus problem with the solution

f = y exp

[
−1− m

kb

(
Λρ +Λρvk2Ck +Λρu

[
C2

2
+ eint

])]
, (2.23)

using the collision invariants of the internal processes (prescribed values of total num-

ber of molecules, total energy and momentum balance), we have,

Λρu =
kb
mθ

, (2.24)

Λρvk2 = 0 ,

exp[−1− m

k
(ΛρI )] =

ρ

m

1

(2π)
3
2 θ(δ+3)/2

1

Γ
(
1 + δ

2

) .
Accordingly, the equilibrium distribution function of the internal processes is

fint0 =
ρ

m

1

(2π)
3
2 θ(δ+3)/2

1

Γ
(
1 + δ

2

) exp [−1

θ

(
C2

2
+ I2/δ

)]
. (2.25)

These obtained equilibrium distribution functions are first derived as Maxwellian

distribution function by Bourgat et al. [22] and Andries et al. [31].

Moments of the two equilibrium distributions are

uς,A|E,int =
(2ς + 1)!!

Γ
(
δ
2

) ρθς+AΓ

(
A+

δ

2

)
, (2.26a)

uς,A|E,tr = (2ς + 1)!!θςtr

∫
(I2/δ)AρIdI , (2.26b)

uς,Ai1...in|E = 0 n ̸= 0 , (2.26c)

where (2ς + 1)!! =
ς∏

s=1

(2s+ 1) and ρI = m

∫
fdc.
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2.8 Important properties of the proposed model

Now we examine some important properties of our proposed model. First, we consider

equilibrium. Using the Maxwellian distribution functions, we get

u1,1|E,tr = m

∫ ∫
C2eintftr0tdcdeint =

3

2
δρθintθtr ,

u2,0|E,tr = m

∫ ∫
C4ftr0dcdeint = 15ρθ2tr , and

u1,1|E,int = m

∫ ∫
C2eintfint0dcdeint =

3

2
δρθ2 , (2.27)

u2,0|E,int = m

∫ ∫
C4fint0dcdeint = 15ρθ2 .

In equilibrium we have zero collision term and all moments of the collision term must

vanish, e.g., qi,tr = qi,int = 0. Therefore based on Eqs. (2.13,2.14), all the expanding

coefficients become zero and we will get f = ftr = ftr0 when we have equilibrium in

translational processes only, and f = fint = fint0 when we have equilibrium in both

internal and translational processes.

Next we consider conservation of moments: For the translational exchange pro-

cesses the number of particles with the same internal energy level should be conserved.

Internal exchange processes conserves the total mass and number of particles. Both

internal and translational exchange processes conserve the momentum. The total en-

ergy is conserved in the internal exchange processes, where the translational processes

conserves the translational and internal energies separately. The above conditions im-

ply that the two phase densities , ftr and fint, should have the moments related to

mass, momentum and energy in common with f as,

ρI = m

∫
ftrdc = m

∫
fdc ,

0 = m

∫ ∫
CiftrdcdI = m

∫ ∫
CifdcdI , (2.28a)

3

2
ρθtr =

m

2

∫ ∫
C2ftrdcdI =

m

2

∫ ∫
C2fdcdI .
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ρ = m

∫ ∫
fintdcdI = m

∫ ∫
fdcdI ,

0 = m

∫ ∫
CifintdcdI = m

∫ ∫
CifdcdI , (2.28b)(

3

2
+
δ

2

)
ρθ = m

∫ ∫ (
C2

2
+ eint

)
fintdcdI = m

∫ ∫ (
C2

2
+ eint

)
fdcdI .

These equalities are satisfied, and the conservation of mass, momentum and energy

is guaranteed by using the proposed model.

The remainder of this section is dedicated to prove the H-theorem for the proposed

model. Multiplication of the kinetic equation (2.11a) with −k ln f and subsequent

integration over velocities and internal energy give the transport equation for the

entropy density. Consequently, the entropy generation is obtained as

∑
= −k

∫
ln f SdcdI

=
k

τint

∫ ∫
ln f(f − fint)dcdI +

k

τtr

∫ ∫
ln f(f − ftr)dcdI> 0 , (2.29)

non-equality shows that the entropy generation ought to be non-negative. Right hand

side of Eq. 2.29 have two terms, first we consider the first term.

We write the first term associated with the internal exchange processes as

k

τint

∫ ∫
ln f(f − fint)dcdI =

k

τint

∫ ∫
ln f

ln fint
(f − fint)dcdI

+
k

τint

∫ ∫
ln fint(f − fint)dcdI . (2.30)

Here, the first term in the right hand side is always positive by structure. Now, we

focus on the second term. Considering near equilibrium situation with small non-

equilibrium variables qi,tr, qi,int,
[
u1,1 − 3

2
δρθ2

]
, [u2,0 − 15ρθ2], we write ln fint as,

ln fint = ln fint0 +
(
b0,0 + b0,0i Ci + b1+1

(
C2 + eint

)
+ b0,0ij C<iCj>

+b1,0i CiC
2 + b0,1i Cieint + b1,1C2eint + b2,0C2C2

)
; (2.31)

here, we used the relation ln[1 + x] = x with x being small. Due to the conservation
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of energy, momentum and mass, we have∫ ∫
ln fint0(f − fint)dcdI =∫ ∫ [

ln

[
ρ

m

1

(2π)
3
2 θ3/2

1

Γ
(
1 + δ

2

)]− 1

θ

(
C2

2
+ eint

)]
(f − fint)dcdI = 0 ,

∫
b0,0(f − fint)dcdI = 0 ,

∫
b0,0i Ci(f − fint)dcdI = 0 , (2.32)

and

∫
b1+1

(
C2 + eint

)
(f − fint)dcdI = 0 .

Therefore, remaining terms of first term of Eq. 2.29 are∫ ∫
b1,0i CiC

2(f − fint)dcdeint = b1,0i 2Rqtrqi,tr =
2Rqtr (1−Rqtr)

5ρθ3
q2i,tr , (2.33a)∫ ∫

b0,1i CiI
2/δ(f − fint)dcdeint = b0,1i Rqint

qi,int =
2Rqint

(1−Rqint
)

δρθ3
q2i,int , (2.33b)

which are always positive for {Rqtr , Rqint
} ≤ 1 and

A1 =

∫ ∫
b2,0C2C2(f − fint)dcdeint = b2,0

[
Ru2,0

(
u2,0 − 15ρθ2

)]
=

20δ (6− δ)Ru2,0 (1−Ru1,1)
[
u1,1 − 3

2
δρθ2

]
120δρθ4 (30 + δ (3 + δ))

[
u2,0 − 15ρθ2

]
+
δ (30− δ (7− δ))Ru2,0 (1−Ru2,0)

120δρθ4 (30 + δ (3 + δ))

[
u2,0 − 15ρθ2

]2
,

A2 =

∫ ∫
b1,1C2I2/δ(f − fint)dcdeint = b1,1

[
Ru1,1

(
u1,1 − 3

2
δρθ2

)]
=

=
480 (1 + δ)Ru1,1 (1−Ru1,1)

120δρθ4 (30 + δ (3 + δ))

[
u1,1 − 3

2
δρθ2

]2
+

20δ (3− δ)Ru1,1 (1−Ru2,0)

120δρθ4 (30 + δ (3 + δ))

[
u2,0 − 15ρθ2

](
u1,1 − 3

2
δρθ2

)
.

It should be pointed out here that two relaxation parameters, Rqtr and Rqint
, are

analogies to the Pr number and their typical values are around 0.6− 0.8. We use the
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Onsager relation due to the coupling between these last two equations as

A1 + A2 = LABXB.XA , (2.34a)

with Onsager phenomenological matrix,

LAB =

 δ(30−δ(7−δ))Ru2,0(1−Ru2,0)
120δρθ4(30+δ(3+δ))

20δ(6−δ)Ru2,0(1−Ru1,1)
120δρθ4(30+δ(3+δ))

20δ(3−δ)Ru1,1(1−Ru2,0)
120δρθ4(30+δ(3+δ))

480(1+δ)Ru1,1(1−Ru1,1)
120δρθ4(30+δ(3+δ))

 , (2.34b)

and forces,

X1 = u2,0 − 15ρθ2 and X2 = u1,1 − 3

2
δρθ2 . (2.34c)

The coefficients matrix has proportional non-diagonal terms, non-negative diagonal

terms and determinant for {Ru1,1 , Ru2,0} ≤ 1. Therefore, we conclude that

b2,0
[
Ru2,0

(
u2,0 − 15ρθ2

)]
+ b1,1

[
Ru1,1

(
u1,1 − 3

2
δρθ2

)]
> 0 . (2.34d)

The relaxation parameter, Ru2,0 , have values around 0.7 for monatomic gas as men-

tioned in table 2.1. Now that we proved that the first term in the right hand side of

entropy production, Eq. 2.29, is non-negative, the second term is analyzed next.

We re-write the second term in the entropy production equation (2.29) which is

related to translational exchange processes as,∫
ln f(f − ftr)dcdI =

∫
ln f

ln ftr
(f − ftr)dcdI +

∫
ln ftr(f − ftr)dcdI . (2.35)

The first term is always positive by structure. Therefore, we now focus on the second

term here. Applying the same technique as we did for ln fint, we will have the ln ftr

as,

ln ftr = ln ftr0 +
(
a0,0 + a0,0i Ci + a1,0C2

+a1,0i CiC
2 + a0,1i Cieint + a2,0C2C2 + a1,1C2eint

)
(2.36a)

ln ftr0 = ln

[
ρI
m

(
1

2πθtr

) 3
2

]
− 1

2θtr
C2 (2.36b)
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Due to the conservation of the translational energy, momentum and mass, we have

∫ ∫
ln ftr0(f − ftr)dcdI =

∫ ∫ [
ln

[
ρI
m

(
1

2πθtr

) 3
2

]
− 1

2θtr
C2

]
(f − ftr)dcdI = 0 ,∫

a0,0(f − ftr)dcdI = 0 ,

∫
a0,0i Ci(f − ftr)dcdI = 0 (2.37)

and

∫
a1,0C2(f − ftr)dcdI = 0 .

Therefore the remaining parts are,∫
a1,0i CiC

2(f − ftr)dcdI =
2Rqtr (1−Rqtr)

5ρθ3tr
q2i,tr , (2.38a)∫

a0,1i CiI
2/δ(f − ftr)dcdI =

4Rqint
(1−Rqint

)

θtr [4u0,2 − δ2ρθ2int]
q2i,int , (2.38b)∫

a2,0C2C2(f − ftr)dcdI =
Ru2,0 (1−Ru2,0)

120ρθ4tr

(
u2,0 − 15ρθ2tr

)2
, (2.38c)∫

a1,1C2I2/δ(f − ftr)dcdI =
4Ru1,1 (1−Ru1,1)

15θ2tr [4u
0,2 − δ2ρθ2int]

(
u1,1 − 3

2
δρθtrθint

)2

, (2.38d)

which are always positive for {Rqtr , Rqint
, Ru2,0 , Ru1,1} ≤ 1. Here, based on the ob-

tained G36 distribution function (3.9) we calculate the moment u0,2 to be

u0,2pG36 =
1

4
(2 + δ) ρθ [(6 + δ) θ − 6θtr] , (2.39a)[

4u0,2pG36 − δ2ρθ2int
]
= ρ

[
2δθ2 + 3∆θ (4θ − 3∆θ)

]
. (2.39b)

Therefore, both terms in entropy production inequality are non-negative. It follows

from Eq. 2.29 that the H-theorem is fulfilled as,

∑
= −k

∫
ln f SdcdI > 0 for {Rqtr , Rqint

, Ru2,0 , Ru1,1} ≤ 1 . (2.40)

Therefore, H-theorem demands that the values of relaxation parameters be less

than or equal to 1. Also, this agrees with our obtained values of relaxation parameters

from fitting to experimental and DSMC simulation data, as will be shown in Chapter

8.
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Chapter 3

Moment equations

Do not fear to be eccentric in opinion, for every opinion now accepted was once

eccentric.

Bertrand Russell

Moment methods replace the kinetic equation by a finite set of differential equa-

tions for the moments of the distribution function. Some of moments are interesting

and we have physical meaning of them, e.g. heat flux and velocity. Therefore, the

moment equations can be used to approximately describe an ideal gas flow. Also,

increasing the number of moments typically leads to a better approximation [36].

3.1 Conservation laws

Conservation laws for mass (ς = A = n = 0), momentum (ς = A = 0, n = 1), and

the balance laws for translational (ς = 1, A = n = 0) and internal (ς = 0, A = 1,

n = 0) energies are obtained from the general moment equation (2.12) as

Dρ

Dt
+ ρ

∂vi
∂xi

= 0 , (3.1a)

Dvi
Dt

+
1

ρ

∂σij
∂xj

+
∂θtr
∂xi

+
θtr
ρ

∂ρ

∂xi
= 0 , (3.1b)

3

2
ρ
Dθtr
Dt

+
∂qi,tr
∂xi

+ σij
∂vj
∂xi

+ ρθtr
∂vi
∂xi

=
3ρ

τint

(θ − θtr)

2
, (3.1c)

ρ
D δ

2
θint

Dt
+
∂qi,int
∂xi

= − 3ρ

τint

(θ − θtr)

2
. (3.1d)
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The time derivative and spatial derivative of internal heat capacity are

D δ
2

Dt
=
∂ δ

2

∂t
+ vi

∂ δ
2

∂xi
=
d δ
2

dθ

[
∂θ

∂t
+ vi

∂θ

∂xi

]
=

1

2

dδ

dθ

Dθ

Dt
, (3.2a)

∂ δ
2

∂xi
=

1

2

dδ

dθ

∂θ

∂xi
. (3.2b)

The conservation of the total energy results from summation of the balance laws for

translational and internal energies as

ρ
3 + δ + θ dδ

dθ

2

Dθ

Dt
+
∂qi,int
∂xi

+
∂qi,tr
∂xi

+ σij
∂vj
∂xi

+ ρ (θ −∆θ)
∂vi
∂xi

= 0 . (3.3)

Here and later, we replace the translational temperature θtr as variable by its nonequi-

librium part ∆θ = θ − θtr, named dynamic temperature,

ρ
D∆θ

Dt
+

2

3 + δ + θ dδ
dθ

∂qi,int
∂xi

−
2
(
δ + θ dδ

dθ

)
3
(
3 + δ + θ dδ

dθ

) ∂qi,tr
∂xi

−
2
(
δ + θ dδ

dθ

)
3
(
3 + δ + θ dδ

dθ

)σij ∂vj
∂xi

−
2
(
δ + θ dδ

dθ

)
3
(
3 + δ + θ dδ

dθ

)ρ (θ −∆θ)
∂vi
∂xi

= − ρ

τint
∆θ . (3.4)

The originally derived conservation laws above are coincide with the conservation

laws obtained in References [70, 30].

3.2 Balance laws

Moment equations for stress tensor, σij = u0,0ij , translational heat flux, qi,tr = 1
2
u1,0i ,

and internal heat flux, u0,1i = qi,int, which are present in the conservation laws, are

obtained from the general moment equation (2.12), as

Dσij
Dt

+
∂u0,0ijk

∂xk
+

4

5

∂q<i,tr

∂xj>
+ 2σk<i

∂vj>
∂xk

+ σij
∂vk
∂xk

+ 2ρ [θ −∆θ]
∂v<i

∂xj>
= −

[
1

τtr
+

1

τint

]
σij , (3.5)



26

Dqi,tr
Dt

− 5

2
[θ −∆θ]

[
∂σij
∂xj

+ ρ
∂θ

∂xi
− ρ

∂∆θ

∂xi

]
+ σik

[
∂∆θ

∂xk
− ∂θ

∂xk
− [θ −∆θ]

∂ ln ρ

∂xk
− 1

ρ

∂σkj
∂xj

]
+

1

2

∂u1,0ik

∂xk
+

1

6

∂u2,0

∂xi
+ u0,0ijk

∂vj
∂xk

+
7

5
qi,tr

∂vk
∂xk

+
7

5
qk,tr

∂vi
∂xk

+
2

5
qj,tr

∂vj
∂xi

− 5

2

[
θ2 − 2θ∆θ +∆θ2

] ∂ρ
∂xi

= −Rqtr

[
1

τtr
+

1

τint

]
qi,tr , (3.6)

Dqi,int
Dt

− δθ + 3∆θ

2

[
∂σij
∂xj

+ ρ
∂θ

∂xi
− ρ

∂∆θ

∂xi
+ ρ [θ −∆θ]

∂ ln ρ

∂xi

]
+
∂u0,1ik

∂xk

+
1

3

∂u1,1

∂xi
+ qk,int

∂vi
∂xk

+ qi,int
∂vk
∂xk

= −Rqint

[
1

τtr
+

1

τint

]
qi,int . (3.7)

These equations contain higher moments u1,0ij , u
2,0, u0,0ijk, u

0,1
ij and u1,1 for which full

moment equations can be obtained from Eq. (2.12) with the appropriate choices for

ς and A. Choosing all moments mentioned so far as variables will construct a 36

moments set,

{
ρ, vi, θ,∆θ, σij, qi,tr, qi,int, u

1,0
ij , u

2,0, u0,1ij , u
1,1, u0,0ijk

}
. (3.8)

The obtained equations for these 36 moments contain higher moments in the fluxes

which we have to obtain constitutive equations for
{
u1,0ijk, u

2,0
i , u0,0ijkl, u

0,1
ijk, u

1,1
i

}
, to close

the set of equations. Grad’s distribution function will be used to obtain constitutive

equations for these higher moments as functions of the 36 variables and close the

system of 36 equations.

3.3 Grad closure: 36 moments

Grad [62, 63] proposed a distribution function based on the expansion of the Maxwellian

into a series of Hermite polynomials. It is convenient to consider the expansion with

the trace free moments instead of regular moments, so that the generalized Grad
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distribution function based on the 36 variables is written as

f|36 = fint0
(
λ0,0 + λ0,0i Ci + λ1,0C2 + λ0,0<ij>C<iCj> + λ0,1eint

+λ1,0i CiC
2 + λ0,1i Cieint + λ1,0<ij>C

2C<iCj> + λ2,0C4

+λ0,0<ijk>C<iCjCk> + λ0,1<ij>C<iCj>eint + λ1,1C2eint
)
, (3.9)

where, λς,A⟨i1i2...in⟩ are expansion coefficients. Grad 36 distribution function should

reproduce the set of 36 moments. This is done by choosing the coefficients λ based

on the definition of 36 moments as,

uA = m

∫ ∫
ΨAf|36dcdI , (3.10a)

with

uA = {ρ, ρθtr, ρθint, σij, qi,tr, qi,int, u1,0ij , u
2,0, u0,0ijk, u

0,1
ij , u

1,1} , (3.10b)

ΨA =

{
1, Ci,

C2

3
,
2

δ
eint, C<iCj>,

CiC
2

2
, Cieint,

C<iCj>C
2, C4, C<iCjCk>, C<iCj>eint, C

2eint
}
. (3.10c)
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The obtained coefficients are

λ0,0 =
4u1,1 + u2,0

8ρθ2
+

5

8
− 3 (2 + δ) θtr

4θ
, (3.11a)

λ0,1 = − u1,1

δρθ3
+

15

2δθ
− 3 (5− δ) θtr

2δθ2
, (3.11b)

λ1,0 = −2u1,1 + u2,0

12ρθ3
− 1

θ
+

(9 + δ) θtr
4θ2

, (3.11c)

λ2,0 =
u2,0

120ρθ4
+

1

8θ2
− θtr

4θ3
, (3.11d)

λ1,1 =
u1,1

3δρθ4
− 3

2δθ2
+

(9− δ) θtr
6δθ3

, (3.11e)

λ0,0i = −qi,tr + qi,int
ρθ2

, λ1,0<ij> =
u1,0ij

28ρθ4
− σij

4ρθ3
, (3.11f)

λ1,0i =
qi,tr
5ρθ3

, λ0,1i =
2qi,int
δρθ3

, (3.11g)

λ0,0<ij> = −
2u0,1ij + u1,0ij

4ρθ3
+

(9 + δ) σij
4ρθ2

, (3.11h)

λ0,0<ijk> =
u0,0ijk

6ρθ3
, λ0,1<ij> =

u0,1ij

δρθ4
− σij

2ρθ3
. (3.11i)

Using the Grad distribution function (3.9), the constitutive equations are obtained

as

u1,0ijk = 9θu0,0ijk , u2,0i = 28θqi,tr , u0,0ijkl = 0 ,

u0,1ijk =
δ

2
θu0,0ijk , u1,1i = (5qi,int + δqi,tr) θ . (3.12)
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Substituting these equations into the 36 balance laws gives the closed set of equations.

Therefore the balance laws for the moments u1,0ij , u
2,0, u0,0ijk, u

0,1
ij and u1,1 are

Du1,0ij

Dt
− u0,0ijk2 [θ −∆θ]

∂ ln ρ

∂xk
− 28

5
[θ −∆θ] q<i,tr

∂ ln ρ

∂xj>

+ 7u0,0ijk

∂θ

∂xk
+ 2u0,0ijk

∂∆θ

∂xk
+

28

5
q<i,tr

∂θ

∂xj>

+
28

5
q<i,tr

∂∆θ

∂xj>
+ 9θ

∂u0,0ijk

∂xk
+

2

5
28θ

∂q<i,tr

∂xj>
+

6

7
u1,0<ij

∂vk>
∂xk

+
4

5
u1,0j<i

∂vj
∂xj>

+ 2u1,0k<i

∂vj>
∂xk

+ u1,0ij

∂vk
∂xk

+
14

15
u2,0

∂v<i

∂xj>

− 2
1

ρ
u0,0ijk

∂σkl
∂xl

− 28

5

1

ρ
q<i,tr

∂σj>l

∂xl
= −

[
1

τtr
+

1

τint

]
u1,0ij , (3.13a)

Du2,0

Dt
− 8qk,tr [θ −∆θ]

∂ ln ρ

∂xk
+ 28θ

∂qk,tr
∂xk

− 8
qk,tr
ρ

∂σkj
∂xj

+ 20qk,tr
∂θ

∂xk
+ 8qk,tr

∂∆θ

∂xk
+ 4u1,0kj

∂vj
∂xk

+
7

3
u2,0

∂vk
∂xk

=
Ru2,0

τtr

[(
15ρ

[
θ2 − 2θ∆θ +∆θ2

])
− u2,0

]
+
Ru2,0

τint

[(
15ρθ2

)
− u2,0

]
, (3.13b)

Du0,0ijk

Dt
− 3

σ<ij

ρ

∂σk>l

∂xl
+

3

7

∂u1,0<ij

∂xk>
− 3σ<ij

∂θ

∂xk>

− 3 [θ −∆θ]σ<ij
∂ ln ρ

∂xk>
+ 3σ<ij

∂∆θ

∂xk>
+ 3u0,0l<ij

∂vk>
∂xl

+ u0,0ijk

∂vl
∂xl

+
12

5
q<i,tr

∂vj
∂xk>

= −
[
1

τtr
+

1

τint

]
u0,0ijk , (3.13c)
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Du0,1ij

Dt
− 2q<i,int

1

ρ

∂σj>k

∂xk
− 2

[θ −∆θ]

ρ
q<i,int

∂ρ

∂xij>
+
δ

2
θ
∂u0,0ijk

∂xk

+ u0,0ijk

θ

2

∂δ

∂xk
+
δ

2
u0,0ijk

∂θ

∂xk
+

2δ

5
q<i,tr

∂θ

∂xj>
+ 2q<i,int

∂∆θ

∂xj>

+ 2θ
∂q<i,int

∂xj>
+

2δ

5
θ
∂q<i,tr

∂xj>
+

2

5
θq<i,tr

∂δ

∂xj>
+ 2u0,1k<i

∂vj>
∂xk

+ u0,1ij

∂vk
∂xk

+
2

3
u1,1

∂v<i

∂xj>
= −

[
1

τtr
+

1

τint

]
u0,1ij , (3.13d)

Du1,1

Dt
− 2

qk,int
ρ

∂σkj
∂xj

− 2qk,int [θ −∆θ]
∂ ln ρ

∂xk
+ 2qk,int

∂∆θ

∂xk

+ (3qk,int + δqk,tr)
∂θ

∂xk
+ 5θ

∂qk,int
∂xk

+ δθ
∂qk,tr
∂xk

+ θqk,tr
∂δ

∂xk
+ 2u0,1kj

∂vj
∂xk

+
5

3
u1,1

∂vk
∂xk

=
Ru1,1

τtr

[
3ρ

[
δ

2
θ +

3

2
∆θ

]
[θ −∆θ]− u1,1

]
+
Ru1,1

τint

[(
3
δ

2
ρθ2
)
− u1,1

]
. (3.13e)

Grad distribution function implies a relation between the internal state density,

ρI , total density, ρ, and the temperatures, θ and ∆θ = θ − θtr, viz.

ρI =
ρ

θ1+δ/2Γ
(
1 + δ

2

) [I2/δ
δ

θδ − (δ − 3)∆θ

θ
+

2θ − 3∆θ

2

]
exp

(
−1

θ
I2/δ

)
. (3.14)



31

Chapter 4

Reconstructing Moments

Do not go where the path may lead, go instead where there is no path and leave a

trail.

Waldo Emerson

Closed system of 36 moments is used in this chapter to optimize the moment def-

initions. The relation betwen two Kn numbers are explored at the beginning. Then,

ordering in two Kn numbers by applying Chapman-Enskog expansion on system of

raw moment equations, are used to obtain the first order of all 36 moments. Consid-

ering moments with linear dependent first order, new moment definitions are defined

in a way that all the optimized moments are linearly independent at the first order.

This ensures that at each order of accuracy we have least moment numbers possible.

At the end, using the obtained optimized moment definitions, set of new moment

equations are presented. It should be mentioned that all the work presented here are

new and original, and to the best knowledge of the author there are no similar work

done before for polyatomic gases.

4.1 Mean free times and Knudsen numbers

In the definition of Knudsen number, Eq. 2.4, the typical reference time scale τ0 is

defined as L0/
√
θ0. For the proposed polyatomic model (2.11a) we have two different

relaxation times, corresponding to two different mean free paths, and two distinct

Knudsen numbers, Kntr =
τtr
τ0

and Knint =
τint

τ0
. The Knudsen numbers measure the

degree of rarefaction, and will be used for model reduction. The expansion parameter

in the Chapman-Enskog method is the Knudsen number, of which we have two, Kntr
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Gas T0(K) µ (Pa · s)× 107 v (Pa · s)× 106 τtr (s) τint (s) τtr/τint
H2 77.3 35.0 98 3.50× 10−9 3.30× 10−6 1.06× 10−3

293 88.2 326 8.82× 10−9 1.26× 10−6 7× 10−3

D2 77.3 48.2 174 4.82× 10−9 6.37× 10−7 7.57× 10−3

293 123 271 1.23× 10−8 1.01× 10−6 0.012

Table 4.1: Shear and bulk viscosity values of Hydrogen and Deuterium for two tem-
perature values and reference pressure of 103 Pa. Corresponding additional degrees
of freedom and obtained values of relaxation times and their ratios.

and Knint, to account for translational and internal energy exchange. We rescale the

microscopic time scales as

τtr = Kntrτ̃tr and τint = Knintτ̃int . (4.1)

Here, τ̃tr and τ̃int are of the order of the macroscopic time scale τ0. The notation used

is chosen since it always indicates the type of collision (translational or internal) that

gives rise to a term occurring in the equations below. After the expansion is done,

the Knudsen numbers will be substituted back to microscopic time scales and the

original equations will be recovered.

Kntr should be less than Knint, because internal energies are exchanged only in a

smaller portion of collisions and τint > τtr. Considering both Knudsen numbers to be

less than unity, we define the internal smallness parameter ε as

Kntr = ϵ and Knint = ϵα . (4.2)

With this, the two Knudsen numbers are replaced by a single smallness parameter,

ϵ, and a magnifying parameter, α, with 0 < α < 1. The lower limit of the internal

smallness parameter is α = 1 and the upper limit is α = 0. From the above we find

α = 1−
ln τtr

τint

lnKntr

=

(
1 +

ln τtr
τint

lnKnint

)−1

. (4.3)

While the ratio of relaxation times τtr
τint

depends on the state of the gas, the ratio
τtr
τ0

= ϵ = Kntr depends on the relevant macroscopic time scale τ0. Accordingly, the

value of both α and ϵ = Kntr depend on the chosen scale. To show some examples of

the translational and internal relaxation times and their ratios, we used the experi-

mental data on shear viscosity [83] and fitting data on bulk viscosity [38] of normal
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Figure 4.1: Knudsen number and four relaxation times ratio, τtr/τint = 0.5 (gray solid
line), τtr/τint = 10−1 (blue dots), τtr/τint = 10−2 (green dashed line) and τtr/τint =
10−7 (red dot-dashed line). The limit of α = 0.5 is shown with black dashed line.

Hydrogen and Deuterium. As will be shown later, shear and bulk viscosity (5.16)

becomes,

µ = τtrρ0θ0 = τtrp0 , (4.4a)

v = τint
2
(
δ + θ0

dδ
dθ

|0
)

3
(
3 + δ + θ0

dδ
dθ

|0
) p0. (4.4b)

Values for the translational and internal relaxation times of normal Hydrogen and

Deuterium for reference pressure of 103 Pa and reference temperature of 77.3 and 293

(K) are listed in the table 4.1 [83, 38]. Bulk viscosity values are obtained by assuming

different values for specific heat based on the temperature, which are converted to

corresponding values of δ, Eq. 5.78. The obtained relaxation times and their ratio,

τtr/τint = Kntr/Knint, is at order of 10
−2 and 10−3.

Different values of α correspond to different values of internal or translational

Knudsen number and ratios of the relaxation times, τtr/τint = Kntr/Knint, as shown

in figure 4.1. For higher Knudsen numbers Knint, particularly near unity, mostly

values of α less than 0.5 are relevant. The ratio of the relaxation times considered here

covers both extreme cases, τtr ≈ τint (τtr/τint = 0.5) and τtr ≪ τint (τtr/τint = 10−7),
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and the values in between.

Different problems may encounter different relaxation times and different Knudsen

numbers. A vacuum system with pressure of 20 Pa, temperature of 293 K, and

macroscopic length scale of 5 cm with Deuterium has the following characteristics:

Kntr = 0.00956, Knint = 0.797, α = 0.0488. However, if the pressure and length scale

increase to 100 Pa and 8 cm, the values become: Kntr = 0.00119, Knint = 0.0996,

α = 0.343. As another example, a microsystem at atmospheric pressure, temperature

of 293 K, and macroscopic length scale of 20 µm with hydrogen has the following

characteristics: Kntr = 0.0067, Knint = 0.954, α = 0.0094. If the characteristic

length increases to 150 µm, we have: Kntr = 0.00089, Knint = 0.1272, α = 0.294.

4.2 Optimizing moment definitions

Applying the order of magnitude method to the set of 36 moment equations will

ensure that the minimum number of moments with optimized definitions are used

for any wanted order of accuracy in terms of power of the Knudsen numbers. This

method first applies the Chapman-Enskog expansion on the moments to find their

leading order terms. Then, new moments are constructed such that only those which

are linearly independent have the same order of accuracy. This will give the minimum

number of moments at a certain order of accuracy.

Order of magnitude method is performed in several steps. First step is applying

Chapman-Enskog expansion on the moment equations which is done by expanding

all the variables in smallness parameters, substituting these expansions back into

set of equations and obtaining the first non-vanishing term of each variable. Next

step is defining new linearly independent moment definition to substitute variables

with linearly dependent first order terms. These two steps repeats until we have

full optimized moments with linearly independent first order terms at all orders of

accuracy. Model reduction which is the last step of order of magnitude method is

presented in next chapter. The Chapman-Enskog expansion on the moment equations

must be performed for both Knudsen numbers, that is for all powers of ϵ and ϵα. Due

to the large ratio possible between the Knudsen numbers, the underlying multiscale

problem might require more than a simple accounting of terms with the same order

only. For instance, when Kn2
int ≃ Kntr, proper accounting to first order in Kntr

might require consideration of different orders in the CE expansion: expansion to

first order in Kntr, but to second order in Knint. The conserved variables, density,
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velocity and total temperature, have equilibrium values and hence are at zero order.

The remaining variables are expanded in the smallness parameter as

ψ = ϵ0α
[
ϵ0ψ(0,0) + ϵ1ψ(0,1) + ϵ2ψ(0,2) + ϵ3ψ(0,3) + · · ·

]
+ ϵ1α

[
ϵ0ψ(1,0) + ϵ1ψ(1,1) + ϵ2ψ(1,2) + · · ·

]
+ ϵ2α

[
ϵ0ψ(2,0) + ϵ1ψ(2,1) + · · ·

]
+ · · · ,

(4.5)

where for the 36 moment system, ψ =
{
∆θ, σij, qi,tr, qi,int, u

1,0
ij , u

2,0, u0,1ij , u
1,1, u0,0ijk

}
.

The leading order terms of the moments are found as the first non vanishing term

in their expansion; one finds

O
(
ϵ0
)
: u2,0(0,0) = 15ρθ2 , (4.6a)

O
(
ϵ0
)
: u1,1(0,0) =

3δ

2
ρθ2 , (4.6b)

O (ϵα) : ∆θ(1,0) = τ̃int
2
(
δ + θ dδ

dθ

)
3
(
3 + δ + θ dδ

dθ

)θ ∂vi
∂xi

, (4.6c)

O
(
ϵ1
)
: q

(0,1)
i,tr = − τ̃tr

Rqtr

5

2
ρθ
∂θ

∂xi
, (4.6d)

O
(
ϵ1
)
: u

1,0(0,1)
ij = −τ̃tr14ρθ2

∂v<i

∂xj>
, (4.6e)

O
(
ϵ1
)
: u

0,1(0,1)
ij = −τ̃trδρθ2

∂v<i

∂xj>
, (4.6f)

O
(
ϵ1
)
: σ

(0,1)
ij = −τ̃tr2ρθ

∂v<i

∂xj>
, (4.6g)

O
(
ϵ1
)
: q

(0,1)
i,int = − τ̃tr

Rqint

(
δ + θ dδ

dθ

)
2

ρθ
∂θ

∂xi
, (4.6h)

O
(
ϵ2
)
: u

0,0(0,2)
ijk = −τ̃tr

(
3

7

∂u1,0<ij

∂xk>
− 3σ<ij

∂θ

∂xk>
− 3θσ<ij

∂ ln ρ

∂xk>
+

12

5
q<i,tr

∂vj
∂xk>

)
.

(4.6i)

To leading order, the two scalar moments, u2,0(0,0) and u1,1(0,0), are proportional to

the total temperature and density. The heat fluxes, q
(0,1)
i,tr and q

(0,1)
i,int , are proportional

to each other, and also the three tensorial moments, σ
(0,1)
ij , u

0,1(0,1)
ij and u

1,0(0,1)
ij , are

proportional to each other.

We aim at having the smallest number of moments at each order. Higher order

replacements for the scalars u2,0 and u1,1 are obtained by subtracting their leading
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order terms to define new variables as

w2,0 = u2,0 − 15ρθ2 , (4.7a)

w1,1 = u1,1 − 3

2
δρθ2 . (4.7b)

The dynamic temperature, ∆θ = θ − θtr, is the only variable at order α.

The linear dependent vectors qi,tr and qi,int, which are of first order, can be com-

bined into one first order vector, the total heat flux,

qi = qi,tr + qi,int , (4.8a)

and one unique higher order variable, heat flux difference,

∆qi = qi,tr −
5Rqint(

δ + θ dδ
dθ

)
Rqtr

qi,int . (4.8b)

Similarly, the 2-tensors can be combined such that only the stress tensor σij is of

first order, while the moments u1,0ij and u0,1ij are replaced by higher order moments as,

u−ij = u1,0ij − 14

δ
u0,1ij , (4.9a)

u+ij = u1,0ij + u0,1ij − (14 + δ)

2
θσij . (4.9b)

The second order moment u0,0ijk is the only 3-tensor in the equations and thus

remains unchanged. After this first round of the reconstructing moments, we replaced

the original 36 variables by the alternative set

{
ρ, vi, θ,∆θ, σij, qi,∆qi, w

2,0, w1,1, u−ij, u
+
ij, u

0,0
ijk

}
.

The new moment equations are obtained from original moment equations, based on
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the definition of the new moments. The equations for w2,0 and w1,1 read

Dw1,1

Dt
+

(
δ + θ dδ

dθ

)
Rqtr

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

[qk −∆qk]

[
3
∂θ

∂xk
+ 2

∂∆θ

∂xk
− 2 [θ −∆θ]

∂ ln ρ

∂xk
− 2

ρ

∂σkj
∂xj

]
+

5 (5− δ)RqtrRqint(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2 (2dδdθ + θ
d2δ

dθ2

)
θ (qk −∆qk)

∂θ

∂xk

+

(
δ − 3

2δ + θ dδ
dθ

3 + δ + θ dδ
dθ

)
θσij

∂vj
∂xi

−
(5− δ)

(
δ + θ dδ

dθ

)
Rqtr

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

θ
∂∆qk
∂xk

+
5Rqint

qk +
(
δ + θ dδ

dθ

)
Rqtr∆qk

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

[
δ + θ

dδ

dθ

]
∂θ

∂xk

+

(
2− 5 (5− δ)Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

+
3 (3− δ)

3 + δ + θ dδ
dθ

)
θ
∂qk
∂xk

+

[(
δ − 3

2δ + θ dδ
dθ

3 + δ + θ dδ
dθ

)
θ + 3

2δ + θ dδ
dθ

3 + δ + θ dδ
dθ

∆θ

]
ρθ
∂vi
∂xi

− 2

(
δ

14 + δ

)[
u−ij − u+ij

] ∂vj
∂xi

+
5

3
w1,1 ∂vk

∂xk

=
Ru1,1

τtr

[
3ρ

[
3− δ

2
θ∆θ − 3

2
∆θ2

]
− w1,1

]
− Ru1,1

τint
w1,1 . (4.10)
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Dw2,0

Dt
+

(
140Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

− 60

3 + δ + θ dδ
dθ

)
θ
∂qi
∂xi

+
28
(
δ + θ dδ

dθ

)
Rqtr

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

θ
∂∆qk
∂xk

+
4

14 + δ

[
δu−ij + 14u+ij

] ∂vj
∂xi

+ 4
5Rqint

qk +
(
δ + θ dδ

dθ

)
Rqtr∆qk

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

[
5
∂θ

∂xk
+ 2

∂∆θ

∂xk
− 2 [θ −∆θ]

∂ ln ρ

∂xk
− 2

ρ

∂σkj
∂xj

]
− 140RqtrRqint(

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

)2 (2dδdθ + θ
d2δ

dθ2

)
θ (qk −∆qk)

∂θ

∂xk

+
60

3 + δ + θ dδ
dθ

ρθ∆θ
∂vk
∂xk

+ 20
δ + θ dδ

dθ

3 + δ + θ dδ
dθ

ρθ2
∂vk
∂xk

+

(
28− 60

3 + δ + θ dδ
dθ

)
θσij

∂vj
∂xi

+
7

3
w2,0 ∂vk

∂xk

=
Ru2,0

τtr

[(
15ρ

[
−2θ∆θ +∆θ2

])
− w2,0

]
− Ru2,0

τint
w2,0 , (4.11)

The equations for total heat flux and heat flux difference are

Dqi
Dt

+ ρ

[
5 + δ

2
θ −∆θ

]
∂∆θ

∂xi
− σik [θ −∆θ]

∂ ln ρ

∂xk

+

[
7 + δ

2
θ∆θ −∆θ2

]
∂ρ

∂xi
+

1

3

∂w1,1

∂xi
+

1

6

∂w2,0

∂xi
+ u0,0ijk

∂vj
∂xk

− 1

ρ
σik

∂σkj
∂xj

+ [θ +∆θ]
∂σij
∂xj

+

[
θ
dδ

dθ
+ 5 + δ

]
σij
2

∂θ

∂xj

− 7

(14 + δ)2
dδ

dθ

[
u−ij − u+ij

] ∂θ
∂xj

+ ρ

[
5 + δ

2
θ +

θ2

2

dδ

dθ
+∆θ

]
∂θ

∂xi

− δ

2 (14 + δ)

∂u−ij
∂xj

+
7 + δ

14 + δ

∂u+ij
∂xj

+
2Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

qk
∂vk
∂xi

+ σik
∂∆θ

∂xk
+

(
1 +

2Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

)[
qk
∂vi
∂xk

+ qi
∂vk
∂xk

]
+

2
(
δ + θ dδ

dθ

)
Rqtr

5
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

) [∆qk ∂vi
∂xk

+∆qi
∂vk
∂xk

+∆qk
∂vk
∂xi

]
= −

[
1

τtr
+

1

τint

] [
Rqint

Rqtr

(
5 + δ + θ dδ

dθ

)
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

qi +

(
δ + θ dδ

dθ

)
Rqtr (Rqtr −Rqint

)

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

∆qi

]
,

(4.12)



39

D∆qi
Dt

− 5

2
[θ −∆θ]

[
∂σij
∂xj

+ ρ
∂θ

∂xi
− ρ

∂∆θ

∂xi

]
+ σik

[
∂∆θ

∂xk
− ∂θ

∂xk
− [θ −∆θ]

∂ ln ρ

∂xk
− 1

ρ

∂σkj
∂xj

]
+

5Rqint(
δ + θ dδ

dθ

)
Rqtr

δθ + 3∆θ

2

[
∂σij
∂xj

+ ρ
∂θ

∂xi
− ρ

∂∆θ

∂xi
+ ρ [θ −∆θ]

∂ ln ρ

∂xi

]

+
5Rqint

(
2dδ
dθ

+ θ d2δ
dθ2

)
[qi −∆qi](

δ + θ dδ
dθ

) (
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

) [( 2

3 + δ + θ dδ
dθ

)
σij
ρ

∂vj
∂xi

+

(
2

3 + δ + θ dδ
dθ

)
(θ −∆θ)

∂vi
∂xi

]
+

1

2

∂u1,0ik

∂xk
+ u0,0ijk

∂vj
∂xk

− 5Rqint(
δ + θ dδ

dθ

)
Rqtr

∂u0,1ik

∂xk
+

1

6

∂u2,0

∂xi
− 5Rqint(

δ + θ dδ
dθ

)
Rqtr

1

3

∂u1,1

∂xi

− 5

2

[
θ2 − 2θ∆θ +∆θ2

] ∂ρ
∂xi

+
2
(
δ + θ dδ

dθ

)
Rqtr

5
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)∆qj ∂vj
∂xi

+
10Rqint

(
2dδ
dθ

+ θ d2δ
dθ2

)
(
δ + θ dδ

dθ

) (
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

) (
3 + δ + θ dδ

dθ

) [qi
ρ
− ∆qi

ρ

]
∂qi
∂xi

+

(
25Rqint

+ 7
(
δ + θ dδ

dθ

)
Rqtr

5
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

))(∆qi ∂vk
∂xk

+∆qk
∂vi
∂xk

)
+

2Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

[
qj
∂vj
∂xi

+ qi
∂vk
∂xk

+ qk
∂vi
∂xk

]
= −

[
1

τtr
+

1

τint

] [
5Rqint

(Rqtr −Rqint
)

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

qi +
5R2

qint
+
(
δ + θ dδ

dθ

)
R2

qtr

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

∆qi

]
, (4.13)
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Finally equations for u+ij and u
−
ij are obtained as

Du+ij
Dt

+ 2θ
∂u0,0ijk

∂xk
+

14 + δ + θ dδ
dθ

2
u0,0ijk

∂θ

∂xk
+ 2u0,0ijk

∂∆θ

∂xk

+

[
6

7

δ

14 + δ
u−<ij +

12

14 + δ
u+<ij + 6θσ<ij

]
∂vk>
∂xk

− 2 [θ −∆θ]u0,0ijk

∂ ln ρ

∂xk

+ u+ij
∂vk
∂xk

− 2
u0,0ijk

ρ

∂σkl
∂xl

+
4

5

[
δ

14 + δ
u−k<i +

14

14 + δ
u+k<i + 7θσk<i

]
∂vk
∂xj>

+

 2Rqint

[
14 + δ + θ dδ

dθ

]
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

−
18Rqint

Rqtrθ
(
2dδ
dθ

+ θ d2δ
dθ2

)
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2
 q<i

∂θ

∂xj>

−

(
1 +

11

3 + δ + θ dδ
dθ

)
σij

[
1

ρ

∂qk
∂xk

+
σkl
ρ

∂vl
∂xk

+ (θ −∆θ)
∂vk
∂xk

]

+ 2

(δ + θ dδ
dθ

)
Rqtr

[
14 + δ + θ dδ

dθ

]
5
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

) +
9Rqint

Rqtrθ
(
2dδ
dθ

+ θ d2δ
dθ2

)
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2
∆q<i

∂θ

∂xj>

+

(
2

[
1 +

9Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

]
q<i +

2

5

[
9− 45Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

]
∆q<i

)
[
∂∆θ

∂xj>
− [θ −∆θ]

ρ

∂ρ

∂xj>
− 1

ρ

∂σj>k

∂xk

]
+ 2u+k<i

∂vj>
∂xk

+ 2
14Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

θ
∂q<i

∂xj>
+

18
(
δ + θ dδ

dθ

)
Rqtr

5
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)θ∂∆q<i

∂xj>

+

[
2

3
w1,1 +

14

15
w2,0 + (14 + δ) ρθ∆θ

]
∂v<i

∂xj>
= −

[
1

τtr
+

1

τint

]
u+ij (4.14)
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Du−ij
Dt

− 2u0,0ijk

[
[θ −∆θ]

∂ ln ρ

∂xk
− ∂∆θ

∂xk
+

1

ρ

∂σkl
∂xl

]
+ 28

( (
δ + θ dδ

dθ

)
Rqtr − δRqint

δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)q<i −
(5 + δ)

(
δ + θ dδ

dθ

)
Rqtr

5δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)∆q<i

)
[
[θ −∆θ]

∂ ln ρ

∂xj>
− ∂∆θ

∂xj>
+

1

ρ

∂σj>l

∂xl

]
− 7θ

δ

dδ

dθ
u0,0ijk

∂θ

∂xk

+ 28
δRqint

−
(
δ + θ dδ

dθ

)
Rqtr

δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)θ ∂q<i

∂xj>
+ 2θ

∂u0,0ijk

∂xk

+
28 (5 + δ)

(
δ + θ dδ

dθ

)
Rqtr

5δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)θ∂∆q<i

∂xj>
+ 2u−k<i

∂vj>
∂xk

+

 2Rqint

[
14 + δ + θ dδ

dθ

]
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

−
18δRqint

Rqtrθ
(
2dδ
dθ

+ θ d2δ
dθ2

)
δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2
−28Rqint

θ dδ
dθ
(5Rqint

+ δRqtr) + θ
(
θ
(
dδ
dθ

)2
+ (5 + δ)

(
2dδ
dθ

+ θ d2δ
dθ2

))
Rqtr

δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2
 q<i

∂θ

∂xj>

+ 28θRqtr

 (5 + δ)
(
2dδ
dθ

+ θ d2δ
dθ2

)
Rqint

δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2 −
dδ
dθ

(
δ + θ dδ

dθ

)
5δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)
∆q<i

∂θ

∂xj>

+

[
6

7

δ

14 + δ
u−<ij +

12

14 + δ
u+<ij + 6θσ<ij

]
∂vk>
∂xk

+
4

5

[
δ

14 + δ
u−k<i +

14

14 + δ
u+k<i + 7θσk<i

]
∂vk
∂xj>

+
28
δ

dδ
dθ

3 + δ + θ dδ
dθ

[
θσij
2

+
u+ij − u−ij
14 + δ

] [
1

ρ

∂qi
∂xi

+
σij
ρ

∂vj
∂xi

+ (θ −∆θ)
∂vi
∂xi

]
+ u−ij

∂vk
∂xk

+
14

15

(
w2,0 − 10

δ
w1,1

)
∂v<i

∂xj>
= −

[
1

τtr
+

1

τint

]
u−ij , (4.15)

The leading order terms of the new moments are found as the first non vanishing

term in their expansion (4.5). Here,
{
ρ, vi, θ, qi,∆qi, σij, u

0,0
ijk

}
have linear independent

leading order terms, thus, there will be no further change for these variables. The

other variables have linearly dependent leading orders as

O (ϵα) : w2,0(1,0) = −30ρθ∆θ , w1,1(1,0) =
3

2
[3− δ] ρθ∆θ , (4.16a)

O
(
ϵ1+α

)
: u

−(1,1)
ij = τ̃tr14

[3 + δ]

δ
ρθ∆θ

∂v<i

∂xj>
, u

+(1,1)
ij = τ̃tr11ρθ∆θ

∂v<i

∂xj>
. (4.16b)
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Now the leading order terms of the scalars {∆θ, w2,0, w1,1} are linearly dependent, also

the leading order terms of the 2-tensors
{
u−ij, u

+
ij

}
are linearly dependent. Therefore,

we construct new moments to have linearly independent moments in all the orders;

the results are four new moments which substitute
{
w2,0, w1,1, u+ij, u

−
ij

}
as

z2,0 = w2,0 + 30ρθ∆θ , (4.17a)

z1,1 = w1,1 − 3

2
[3− δ] ρθ∆θ , (4.17b)

B−
ij = u+ij −

11

14

δ

δ + 3
u−ij , (4.17c)

B+
ij = u+ij + u−ij . (4.17d)

The new moment equations for B+
ij and B−

ij are written using linear combination of
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u−ij and u
+
ij equations as

DB+
ij

Dt
+

[
28

15
z2,0 − 2 (14− δ)

3δ
z1,1 − (42 + 25δ)

δ
ρθ∆θ

]
∂v<i

∂xj>

+ 2

(
(70 + 23δ)Rqint

δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

) − (14− δ)

δ

)
θ
∂q<i

∂xj>
+ 4θ

∂u0,0ijk

∂xk

+
2 (70 + 23δ)Rqtr

(
δ + θ dδ

dθ

)
5δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)θ∂∆q<i

∂xj>
+B+

ij

∂vk
∂xk

+ 2Rqtr

[
δ
[
14 + δ + θ dδ

dθ

]
− 14dδ

dθ

5δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

) (δ + θ
dδ

dθ

)

+
2RqtrRqint

(
2dδ
dθ

+ θ d2δ
dθ2

)
(70 + δ [14 + 9θ])

δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2
∆q<i

∂θ

∂xj>
+2Rqint

[ [
14 + δ + θ dδ

dθ

]
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

−θ
10 (7Rqint

+ 2 (7 + 3δ)Rqtr)
dδ
dθ

+ 14Rqtrθ
(
dδ
dθ

)2
+ (70 + 23δ)Rqtrθ

d2δ
dθ2

δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2
]
q<i

∂θ

∂xj>

+2

(
(70 + 23δ)Rqint

δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

) − (14− δ)

δ

)
q<i

[
∂∆θ

∂xj>
− [θ −∆θ]

ρ

∂ρ

∂xj>
− 1

ρ

∂σj>k

∂xk

]
+

2 (70 + 23δ)Rqtr

(
δ + θ dδ

dθ

)
5δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)∆q<i

[
∂∆θ

∂xj>
− [θ −∆θ]

ρ

∂ρ

∂xj>
− 1

ρ

∂σj>k

∂xk

]
− 4u0,0ijk

[
[θ −∆θ]

∂ ln ρ

∂xk
− ∂∆θ

∂xk
+

1

ρ

∂σkl
∂xl

]
+

14 + δ + δ−14
δ
θ dδ
dθ

2
u0,0ijk

∂θ

∂xk

+ 2B+
k<i

∂vj>
∂xk

+
8 (14− δ) (3 + δ)

(14 + δ) (42 + 25δ)

[
14

5
B−

k<i

∂vk
∂xj>

+ 3B−
<ij

∂vk>
∂xk

]
+

8δ

(42 + 25δ)

[
14

5
B+

k<i

∂vk
∂xj>

+ 3B+
<ij

∂vk>
∂xk

]
+ 4θ

[
14

5
σk<i

∂vk
∂xj>

+ 3σ<ij
∂vk>
∂xk

]
+

28dδ
dθ

δ
(
3 + δ + θ dδ

dθ

) 28 (3 + δ)B−
ij − 3 (14 + δ)B+

ij

(14 + δ) (42 + 25δ)

[
1

ρ

∂qk
∂xk

+
σkl
ρ

∂vl
∂xk

+ (θ −∆θ)
∂vk
∂xk

]
+
(14− δ) θ dδ

dθ
− δ (14 + δ)

δ
(
3 + δ + θ dδ

dθ

) σij

[
1

ρ

∂qk
∂xk

+
σkl
ρ

∂vl
∂xk

+ (θ −∆θ)
∂vk
∂xk

]
= −

[
1

τtr
+

1

τint

]
B+

ij ,

(4.18)
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DB−
ij

Dt
− 14 + δ

3 + δ
σij

[
1

ρ

∂qk
∂xk

+
σkl
ρ

∂vl
∂xk

+ (θ −∆θ)
∂vk
∂xk

]
−

22dδ
dθ

(3 + δ) (14 + δ)
(
3 + δ + θ dδ

dθ

)B−
ij

[
1

ρ

∂qk
∂xk

+
σlk
ρ

∂vk
∂xl

+ (θ −∆θ)
∂vk
∂xk

]
+ 2B−

k<i

∂vj>
∂xk

+B−
ij

∂vk
∂xk

+
14 + δ + 14+δ

3+δ
θ dδ
dθ

2
u0,0ijk

∂θ

∂xk

+
3 (14 + δ)

14 (3 + δ)

[
12 (14− δ) (3 + δ)

(14 + δ) (42 + 25δ)
B−

<ij +
12δ

(42 + 25δ)
B+

<ij + 6θσ<ij

]
∂vk>
∂xk

+
6 (14 + δ)

35 (3 + δ)

[
14 (14− δ) (3 + δ)

(14 + δ) (42 + 25δ)
B−

k<i +
14δ

(42 + 25δ)
B+

k<i + 7θσk<i

]
∂vk
∂xj>

+
14 + δ

3 + δ

[
2

3
z1,1 +

1

5
z2,0
]
∂v<i

∂xj>
+ 2

(14 + δ)Rqtr

(3 + δ)
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)(δ + θ dδ
dθ

)
5

(
3 + δ + θ

dδ

dθ

)
−

2θ
(
2dδ
dθ

+ θ d2δ
dθ2

)
Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

∆q<i
∂θ

∂xj>

+
2 (14 + δ)Rqint

(3 + δ)
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2 (5Rqint

[
3 + δ + θ

dδ

dθ

]

+Rqtr

[
(3 + δ) δ + (7 + 2δ) θ

dδ

dθ
+

((
dδ

dθ

)2

+ 2
d2δ

dθ2

)
θ2

])
q<i

∂θ

∂xj>

+
2 (14 + δ)

[(
3Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)
q<i − 2

5

(
δ + θ dδ

dθ

)
Rqtr∆q<i

]
(3 + δ)

(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)[
∂∆θ

∂xj>
− [θ −∆θ]

ρ

∂ρ

∂xj>
− 1

ρ

∂σj>k

∂xk

]
+

3 (14 + δ)

7 (3 + δ)
θ
∂u0,0ijk

∂xk

− 3 (14 + δ)

7 (3 + δ)
u0,0ijk

[
[θ −∆θ]

∂ ln ρ

∂xk
− ∂∆θ

∂xk
+

1

ρ

∂σkl
∂xl

]
+ 2

(14 + δ)
(
3Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)
(3 + δ)

(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

) θ ∂q<i

∂xj>

+
2 (70 + 23δ)

(
δ + θ dδ

dθ

)
Rqtr

5δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)θ∂∆q<i

∂xj>
= −

[
1

τtr
+

1

τint

]
B−

ij . (4.19)

There will be no further change in definition of moments B−
ij and B

+
ij , since they have

linearly independent leading order terms. Furthermore, equations for z2,0 and z1,1 are
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obtained as

Dz2,0

Dt
+

8
(
δ + θ dδ

dθ

)
Rqtr

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

θ
∂∆qk
∂xk

+ 8
5Rqint

qk +
(
δ + θ dδ

dθ

)
Rqtr∆qk

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

[
∂∆θ

∂xk
− [θ −∆θ]

∂ ln ρ

∂xk
− 1

ρ

∂σkj
∂xj

]
+

40Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

θ
∂qi
∂xi

+
60

3 + δ + θ dδ
dθ

∆θ
∂qi
∂xi

+ 8θσij
∂vj
∂xi

+ 20Rqtr

2Rqint
θ
(
2dδ
dθ

+ θ d2δ
dθ2

)
+
(
δ + θ dδ

dθ

) (
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2 ∆qk
∂θ

∂xk

+ 20Rqint

(
25Rqint

+ 5δRqtr +Rqtrθ
(

dδ
dθ

− 2θ d2δ
dθ2

))
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2 qk
∂θ

∂xk
+

7

3
z2,0

∂vk
∂xk

+

[
60

3 + δ + θ dδ
dθ

− 20

]
ρθ∆θ

∂vk
∂xk

− 30

(
2

3 + δ + θ dδ
dθ

)
ρ∆θ2

∂vk
∂xk

+

[
56 (14− δ) (3 + δ)

(14 + δ) (42 + 25δ)
B−

ij +
56δ

(42 + 25δ)
B+

ij

]
∂vj
∂xi

+
60

3 + δ + θ dδ
dθ

∆θσij
∂vj
∂xi

=
Ru2,0

τtr

[(
15ρ∆θ2

)
− z2,0

]
− 1

τint

[
Ru2,0z2,0 + (1−Ru2,0) 30ρθ∆θ

]
, (4.20)
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Dz1,1

Dt
+

6
(
δ + θ dδ

dθ

)
3 + δ + θ dδ

dθ

ρθ∆θ
∂vi
∂xi

+

10RqtrRqint
θ
(
2dδ
dθ

+ θ d2δ
dθ2

)
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2 +
(5Rqint

+ 3Rqtr)
(
δ + θ dδ

dθ

)
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

 qk ∂θ
∂xk

+

(−3 + δ + θ dδ
dθ

)
Rqtr

(
δ + θ dδ

dθ

)
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

−
10RqtrRqint

θ
(
2dδ
dθ

+ θ d2δ
dθ2

)
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2
∆qk

∂θ

∂xk

+
2
(
δ + θ dδ

dθ

)
Rqtr

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

θ
∂qk
∂xk

+ 3
−3 + δ + θ dδ

dθ

3 + δ + θ dδ
dθ

∆θ
∂qk
∂xk

−
2
(
δ + θ dδ

dθ

)
Rqtr(

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

)θ∂∆qk
∂xk

− 6δ

(42 + 25δ)
B+

ij

∂vj
∂xi

+
2
(
δ + θ dδ

dθ

)
Rqtr

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

[qk −∆qk]

[
∂∆θ

∂xk
− [θ −∆θ]

∂ ln ρ

∂xk
− 1

ρ

∂σkj
∂xj

]
+

[
3− δ − θ

dδ

dθ

]
3

3 + δ + θ dδ
dθ

ρ∆θ2
∂vi
∂xi

+ 3
−3 + δ + θ dδ

dθ

3 + δ + θ dδ
dθ

∆θσij
∂vj
∂xi

+
56δ (3 + δ)

(14 + δ) (42 + 25δ)
B−

ij

∂vj
∂xi

+
5

3
z1,1

∂vk
∂xk

= −Ru1,1

τtr

[
9

2
ρ∆θ2 + z1,1

]
− 1

τint

(
Ru1,1z1,1 + (Ru1,1 − 1)

3 [3− δ]

2
ρθ∆θ

)
, (4.21)

The leading order terms of z2,0 and z1,1 are linearly dependent as

O
(
ϵ2α
)
: z1,1(2,0) = −9

2
ρ∆θ2 , z2,0(2,0) = 15ρ∆θ2 . (4.22)

Therefore, we construct new moments to have linearly independent leading orders

which substitute {z2,0, z1,1} as

B+ = z1,1 − z2,0 , (4.23a)

B− = z1,1 +
3

10
z2,0 . (4.23b)
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Using linear combination, the equations for new moments obtained as,

DB−

Dt
+

2

5

(
δ + θ dδ

dθ

)
Rqtr

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

θ
∂∆qk
∂xk

+

[
196 (6 + δ) (3 + δ)

5 (14 + δ) (42 + 25δ)
B−

ij +
54δ

5 (42 + 25δ)
B+

ij

]
∂vj
∂xi

+
71

39
B− ∂vk

∂xk

+ 2

(
1 +

Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

)
qk

[
∂∆θ

∂xk
− [θ −∆θ]

∂ ln ρ

∂xk
− 1

ρ

∂σkj
∂xj

]

+
2

5

(
1− 5Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

)
∆qk

[
∂∆θ

∂xk
− [θ −∆θ]

∂ ln ρ

∂xk
− 1

ρ

∂σkj
∂xj

]

+

(3 + δ + θ dδ
dθ

)
Rqtr

(
δ + θ dδ

dθ

)
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

+
2RqtrRqint

θ
(
2dδ
dθ

+ θ d2δ
dθ2

)
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2
∆qk

∂θ

∂xk

+
12Rqint

+ 2
(
δ + θ dδ

dθ

)
Rqtr

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

θ
∂qk
∂xk

+ 3∆θ
∂qk
∂xk

+

(5Rqint
+ 3Rqtr)

(
δ + θ dδ

dθ

)
+ 30Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

−
2RqtrRqint

θ
(
2dδ
dθ

+ θ d2δ
dθ2

)
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2
 qk ∂θ

∂xk

− 2

13
B+ ∂vk

∂xk
− 3ρ∆θ2

∂vi
∂xi

+
12

5
θσij

∂vj
∂xi

+ 3∆θσij
∂vj
∂xi

= − 1

τtr

[
10Ru1,1 + 3Ru2,0

13
B− +

3 (Ru1,1 −Ru2,0)

13
B+ +

9 (Ru1,1 −Ru2,0)

2
ρ∆θ2

]
− 1

τint

[
10Ru1,1 + 3Ru2,0

13
B− +

3 (Ru1,1 −Ru2,0)

13
B+ +

3

2
(3 + δ + [3− δ]Ru1,1 − 6Ru2,0) ρθ∆θ

]
,

(4.24)
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DB+

Dt
+

2
(
δ + θ dδ

dθ

)
Rqtr − 40Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

θ
∂qk
∂xk

+

(−23 + δ + θ dδ
dθ

)
Rqtr

(
δ + θ dδ

dθ

)
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

−
50RqtrRqint

θ
(
2dδ
dθ

+ θ d2δ
dθ2

)
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2
∆qk

∂θ

∂xk

+
5

39

(
17B+ − 4B−) ∂vk

∂xk
+

(
26− 78

3 + δ + θ dδ
dθ

)
ρθ∆θ

∂vi
∂xi

+ 3
−23 + δ + θ dδ

dθ

3 + δ + θ dδ
dθ

∆θ
∂qk
∂xk

−
10
(
δ + θ dδ

dθ

)
Rqtr

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

θ
∂∆qk
∂xk

+

50Rqint
Rqtrθ

(
2dδ
dθ

+ θ d2δ
dθ2

)
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2 +
(5Rqint

+ 3Rqtr)
(
δ + θ dδ

dθ

)
− 100Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

 qk ∂θ
∂xk

−
[
112 (7− δ) (3 + δ)

(14 + δ) (42 + 25δ)
B−

ij +
62δ

(42 + 25δ)
B+

ij

]
∂vj
∂xi

+

[(
2− 50Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

)
qk −

10
(
δ + θ dδ

dθ

)
Rqtr

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

∆qk

]
[
∂∆θ

∂xk
− [θ −∆θ]

∂ ln ρ

∂xk
− 1

ρ

∂σkj
∂xj

]
+

3
(
23− δ − θ dδ

dθ

)
3 + δ + θ dδ

dθ

ρ∆θ2
∂vi
∂xi

−
3
(
23− δ − θ dδ

dθ

)
3 + δ + θ dδ

dθ

∆θσij
∂vj
∂xi

− 8θσij
∂vj
∂xi

= − 1

τtr

[
1

13

(
10 [Ru1,1 −Ru2,0 ]B− + [3Ru1,1 + 10Ru2,0 ]B+

)
+

(
9

2
Ru1,1 + 15Ru2,0

)
ρ∆θ2

]
− 1

τint

[
1

13

(
10 [Ru1,1 −Ru2,0 ]B− + [3Ru1,1 + 10Ru2,0 ]B+

)
+
3

2
((3− δ)Ru1,1 + 20Ru2,0 − (23− δ)) ρθ∆θ

]
. (4.25)

After this set of operations, we have the final set of 36 moments,

{
ρ, vi, θ,∆θ, σij, qi,∆qi, B

+
ij , B

+, B−
ij , B

−, u0,0ijk

}
.

By construction, these variables are linearly independent in their leading orders. This

give us the least number of variables at each order of accuracy.
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4.3 Orders and leading terms of optimized mo-

ments

The leading order contributions of all non-equilibrium variables are obtained from

Chapman-Enskog expansion as described in previous section for proper accounting of

the magnitude and later use of the expressions. The leading order terms of dynamic

temperature and stress tensor are

∆θ = τint
2
(
δ + θ dδ

dθ

)
3
(
3 + δ + θ dδ

dθ

)θ ∂vi
∂xi

, (4.26)

σij = −τtr2ρθ
∂v<i

∂xj>
. (4.27)

The leading order terms of heat fluxes are obtained by decoupling the equations for

total heat flux and heat flux difference. At the leading order we have, RqintRqtr(5+δ+θ dδ
dθ )

5Rqint+(δ+θ dδ
dθ )Rqtr

(δ+θ dδ
dθ )Rqtr(Rqtr−Rqint)

5Rqint+(δ+θ dδ
dθ )Rqtr

5Rqint(Rqtr−Rqint)
5Rqint+(δ+θ dδ

dθ )Rqtr

5R2
qint

+(δ+θ dδ
dθ )R2

qtr

5Rqint+(δ+θ dδ
dθ )Rqtr

[ qi

∆qi

]
=

 −τtr
5+δ+θ dδ

dθ

2
ρθ ∂θ

∂xi

−τtr 52
[
1− Rqint

Rqtr

]
ρθ ∂θ

∂xi


(4.28)

which give us the first order contributions as

O
(
ϵ1
)
: qi = τtr

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

2Rqint
Rqtr

ρθ
∂θ

∂xi
and ∆qi = 0 . (4.29)

Therefore, the total heat flux is at first order and the heat flux difference is atO (ϵ1+α).

The leading order terms of ∆qi is obtained by decoupling the equations at order ϵ1+α

as

O
(
ϵ1+α

)
: ∆qi = τtr

5
(
3 + δ + θ dδ

dθ

)
2
(
δ + θ dδ

dθ

)
Rqtr

ρθ
∂∆θ

∂xi
. (4.30)

The leading order terms of scalar moments B+ and B− are obtained by decoupling

their equations. At the O (ϵ2α) we have[
3Ru1,1+10Ru2,0

13

10Ru1,1−10Ru2,0

13
3Ru1,1−3Ru2,0

13

10Ru1,1+3Ru2,0

13

][
B+

B−

]
=

[ (
9
2
Ru1,1 + 15Ru2,0

)
ρ∆θ2

−9
2
(Ru1,1 −Ru2,0) ρ∆θ2

]
, (4.31)
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which give us the leading order term of B+ as,

O
(
ϵ2α
)
: B+ = −39

2
ρ∆θ2 and B− = 0 . (4.32)

The leading order term of B− is obtained by decoupling the equations at O (ϵ1) as

O
(
ϵ1
)
: B− = −3τtr

τint

[
3

Ru2,0

− 3− δ

2Ru1,1

− 3 + δ

2

]
ρθ∆θ . (4.33)

The leading order terms for the remaining optimized moments B+
ij , B

−
ij and u0,0ijk are

obtained by applying the Chapman-Enskog expansion on their equations as

O
(
ϵ1+α

)
: B+

ij = τtr
42 + 25δ

δ
ρθ∆θ

∂v<i

∂xj>
, (4.34)

O
(
ϵ2
)
: B−

ij = −τtr
(
6 (14 + δ)

7 (3 + δ)
θ

[
σk<j

∂vj>
∂xk

+ σk<i
∂vk
∂xj>

− 2

3
σij

∂vk
∂xk

]
+

2 (14 + δ)Rqint

(3 + δ)
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2 (5Rqint

[
3 + δ + θ

dδ

dθ

]

+Rqtr

[
(3 + δ) δ + (7 + 2δ) θ

dδ

dθ
+

((
dδ

dθ

)2

+ 2
d2δ

dθ2

)
θ2

])
q<i

∂θ

∂xj>

−
2 (14 + δ)

(
3Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)
(3 + δ)

(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

) θq<i
∂ ln ρ

∂xj>

+2
(14 + δ)

(
3Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)
(3 + δ)

(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

) θ ∂q<i

∂xj>

)
, (4.35)

O
(
ϵ2
)
: u0,0ijk = −τtr

[
3θ
∂σ<ij

∂xk>
− 3θσ<ij

∂ ln ρ

∂xk>
+

12Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

q<i
∂vj
∂xk>

]
.

(4.36)
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Chapter 5

Model reduction

So many of our dreams at first seems impossible, then they seem improbable, and

then, when we summon the will, they soon become inevitable.

Christopher Reeve

The last stage of order of magnitude method is model reduction which is discussed

in this chapter. In this stage, the obtained orders of different moments are used to

eliminate higher order terms and equations at different levels of accuracy. We presents

set of equations at different orders up to order ϵ3.

The explicit orders can be used for model reduction such that in each order under

consideration only terms up to the corresponding power ϵx are kept, while all other

higher terms can be ignored. We require the explicit order of all terms be clearly

visible in the equations, so the orders are made explicit by ϵx. By the next section, ϵ

will be substituted back to unity so that the original form of the equations is recovered.

The introduced notation allows us to arrange all terms by their explicit ϵ-orders. In

particular we have:

The conservation laws for mass, momentum and energy,

Dρ

Dt
+ ρ

∂vi
∂xi

= 0 , (5.1a)

Dvi
Dt

+ θ
∂ ln ρ

∂xi
+
∂θ

∂xi
− ϵα

[
∂∆θ

∂xi
+∆θ

∂ ln ρ

∂xi

]
+ ϵ1

[
1

ρ

∂σij
∂xj

]
= 0 , (5.1b)

3 + δ + θ dδ
dθ

2
ρ
Dθ

Dt
+ ρθ

∂vi
∂xi

− ϵα
[
ρ∆θ

∂vi
∂xi

]
+ ϵ1

[
∂qi
∂xi

+ σij
∂vj
∂xi

]
= 0 ; (5.1c)
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and the balance laws for dynamic temperature ∆θ, stress tensor σij, overall heat flux

qi, heat flux difference ∆qi:

ϵα

[
ρ
D∆θ

Dt
+

2
(
δ + θ dδ

dθ

)
3
(
3 + δ + θ dδ

dθ

)ρ∆θ ∂vi
∂xi

]

+ ϵ1

[(
2

3 + δ + θ dδ
dθ

− 10Rqint

3
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)) ∂qi
∂xi

]

+ ϵ1

 10Rqint
Rqtr

(
2dδ
dθ

+ θ d2δ
dθ2

)
3
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2 qi ∂θ∂xi − 2
(
δ + θ dδ

dθ

)
3
(
3 + δ + θ dδ

dθ

)σij ∂vj
∂xi


− ϵ1+α

 10Rqint
Rqtr

(
2dδ
dθ

+ θ d2δ
dθ2

)
3
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2∆qi ∂θ∂xi + 2
(
δ + θ dδ

dθ

)
Rqtr

3
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

) ∂∆qi
∂xi


−

2
(
δ + θ dδ

dθ

)
3
(
3 + δ + θ dδ

dθ

)ρθ ∂vi
∂xi

= − ρ

τint
∆θ , (5.2)

ϵ1

Dσij
Dt

−
4Rqint

Rqtr

(
2dδ
dθ

+ θ d2δ
dθ2

)
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2 q<i
∂θ

∂xj>


+ ϵ1

[
4Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

∂q<i

∂xj>
+ 2σk<i

∂vj>
∂xk

+ σij
∂vk
∂xk

]

− ϵα
[
2ρ∆θ

∂v<i

∂xj>

]
+ ϵ1+α

[
4
(
δ + θ dδ

dθ

)
Rqtr

5
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

) ∂∆q<i

∂xj>

]

+ ϵ1+α

[
4Rqint

Rqtr(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2 (2dδdθ + θ
d2δ

dθ2

)
∆q<i

∂θ

∂xj>

]

+ ϵ2

[
∂u0,0ijk

∂xk

]
+ 2ρθ

∂v<i

∂xj>
= −

[
1

τtr
+
ϵ1−α

τint

]
σij , (5.3)



53

ϵ1

[
Dqi
Dt

+ θ
∂σik
∂xk

+ σik

(
5 + δ + θ dδ

dθ

2

∂θ

∂xk
− θ

∂ ln ρ

∂xk

)]

+ ϵ1

[(
1 +

2Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

)[
qk
∂vi
∂xk

+ qi
∂vk
∂xk

]]

+ ϵ1

[
2Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

qk
∂vk
∂xi

+
5

13

∂B−

∂xi

]

− ϵα

[
ρθ
∂∆θ

∂xi
+

5 + δ + θ dδ
dθ

2
ρ∆θ

∂θ

∂xi

]

− ϵ2α
[
ρ∆θ

∂∆θ

∂xi
+∆θ2

∂ρ

∂xi
+

2

39

∂B+

∂xi

]
+ ϵ1+α

[
2
(
δ + θ dδ

dθ

)
Rqtr

5
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

) (∆qk ∂vi
∂xk

+∆qi
∂vk
∂xk

+∆qk
∂vk
∂xi

)]

+ ϵ1+α

[
168

(42 + 25δ)2
B+

ij

dδ

dθ

∂θ

∂xj
+

4δ

(42 + 25δ)

∂B+
ij

∂xj
+∆θ

∂σij
∂xj

]

+ ϵ1+α

[
σik

(
∂∆θ

∂xk
+∆θ

∂ ln ρ

∂xk

)]
+

5 + δ + θ dδ
dθ

2
ρθ
∂θ

∂xi

+ ϵ2
[
7

(
1

(14 + δ)2
− 24

(42 + 25δ)2

)
B−

ij

dδ

dθ

∂θ

∂xj
− 1

ρ
σik

∂σkj
∂xj

]
+ ϵ2

[
7 (3 + δ) (14 + 3δ)

(14 + δ) (42 + 25δ)

∂B−
ij

∂xj
+ u0,0ijk

∂vj
∂xk

]
= −

[
1

τtr
+
ϵ1−α

τint

]
(
Rqint

Rqtr

(
5 + δ + θ dδ

dθ

)
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

qi + ϵα

[(
δ + θ dδ

dθ

)
Rqtr (Rqtr −Rqint

)

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

∆qi

])
, (5.4)



54

ϵ1
[
D∆qi
Dt

+ σik

[
∂∆θ

∂xk
+∆θ

∂ ln ρ

∂xk

]
− ς2∆θqi

∂vk
∂xk

+
δ

(42 + 25δ)
ς4
∂B+

ij

∂xj
+

42

(42 + 25δ)2
ς4
dδ

dθ
B+

ij

∂θ

∂xj

− ς2θ∆qi
∂vk
∂xk

+
2
(
δ + θ dδ

dθ

)
Rqtr

5
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)∆qj ∂vj
∂xi

+
5

2
ς3∆θ

∂σij
∂xj

+

(
25Rqint

+ 7
(
δ + θ dδ

dθ

)
Rqtr

5
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

))(∆qi ∂vk
∂xk

+∆qk
∂vi
∂xk

)]

− ϵα
[
5

2
ς3∆θ

2 ∂ρ

∂xi
+

5

2
ς3ρ∆θ

∂∆θ

∂xi
+

5

39
ς3
∂B+

∂xi

]
+ ϵ1−α

[
5

39

(
1− 10Rqint(

δ + θ dδ
dθ

)
Rqtr

)
∂B−

∂xi
+ ς2θqi

∂vk
∂xk

+ θ
∂σik
∂xk

+
2Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

[
qj
∂vj
∂xi

+ qi
∂vk
∂xk

+ qk
∂vi
∂xk

]
+σik

(
5

2

[
1− Rqint

Rqtr

]
∂θ

∂xk
− θ

∂ ln ρ

∂xk

)
+ς2∆θ∆qi

∂vk
∂xk

]
−ϵ2

[
ς2

(
∆qi
ρ

∂qk
∂xk

+∆qi
σkl
ρ

∂vl
∂xk

)]
+ϵ2−α

[
ς2
qi
ρ

∂qk
∂xk

+ u0,0ijk

∂vj
∂xk

− σik
ρ

∂σkj
∂xj

+
7 (3 + δ)

(14 + δ) (42 + 25δ)

(
14− δ − 20δRqint(

δ + θ dδ
dθ

)
Rqtr

)
∂B−

ij

∂xj
+ ς2

qiσkl
ρ

∂vl
∂xk

− ς1
dδ

dθ
B−

ij

∂θ

∂xj

]

− 5

2
ρ

(
ς3θ

∂∆θ

∂xi
− [Rqint

−Rqtr ]

Rqtr

∆θ
∂θ

∂xi

)
− ϵ−α

[
5 [Rqint

−Rqtr ]

2Rqtr

ρθ
∂θ

∂xi

]
= −

[
1

τtr
+
ϵ1−α

τint

](
ϵ−α

[
5Rqint

(Rqtr −Rqint
)

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

qi

]
+

(
δ + θ dδ

dθ

)
R2

qtr + 5R2
qint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

∆qi

)
,

(5.5a)
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where,

ς1 = 7

(
1

(14 + δ)2
+

42

(42 + 25δ)2
+

10Rqint(
δ + θ dδ

dθ

)
Rqtr

[
1

(14 + δ)2
+

9

(42 + 25δ)2

])
,

(5.5b)

ς2 =
10Rqint

(
2dδ
dθ

+ θ d2δ
dθ2

)
(
δ + θ dδ

dθ

) (
3 + δ + θ dδ

dθ

) (
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

) , (5.5c)

ς3 =

(
1 +

3Rqint(
δ + θ dδ

dθ

)
Rqtr

)
, (5.5d)

ς4 =

(
7 +

15Rqint(
δ + θ dδ

dθ

)
Rqtr

)
; (5.5e)

Balance laws for higher moments B− and B+,

ϵ1
[
DB−

Dt
+

71

39
B− ∂vk

∂xk
+

12

5
θσij

∂vj
∂xi

]
+ ϵ1

[
ς5qk

∂θ

∂xk
+

12Rqint
+ 2

(
δ + θ dδ

dθ

)
Rqtr

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

θ
∂qk
∂xk

− 2ς6θqk
∂ ln ρ

∂xk

]

− ϵ2α
[
2

13
B+ ∂vk

∂xk
+ 3ρ∆θ2

∂vi
∂xi

]
+ ϵ1+α

[
54δ

5 (42 + 25δ)
B+

ij

∂vj
∂xi

]
+ ϵ1+α

[
2ς6qk

(
∂∆θ

∂xk
+∆θ

∂ ln ρ

∂xk

)
+ ς7∆qk

∂θ

∂xk

]
+ ϵ1+α

[
3∆θ

(
∂qk
∂xk

+ σij
∂vj
∂xi

)
+

2

5

(
δ + θ dδ

dθ

)
Rqtr

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

θ
∂∆qk
∂xk

]

− ϵ1+α

[
ς8θ∆qk

∂ ln ρ

∂xk

]
+ ϵ1+2α

[
ς8∆qk

(
∂∆θ

∂xk
+∆θ

∂ ln ρ

∂xk

)]
+ ϵ2

[
196 (6 + δ) (3 + δ)

5 (14 + δ) (42 + 25δ)
B−

ij

∂vj
∂xi

− 2ς6
qk
ρ

∂σkj
∂xj

]
− ϵ2+α

[
ς8
∆qk
ρ

∂σkj
∂xj

]
= −

[
1

τtr
+
ϵ1−α

τint

](
10Ru1,1 + 3Ru2,0

13
B− + ϵ2α−1

[
3 (Ru1,1 −Ru2,0)

13
B+

])
−ϵ2α−1

[
1

τtr

9 (Ru1,1 −Ru2,0)

2
ρ∆θ2

]
− 1

τint

(
3

2
(3 + δ + [3− δ]Ru1,1 − 6Ru2,0) ρθ∆θ

)
.

(5.6a)
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ϵ1
[
DB+

Dt
+

85

39
B+ ∂vk

∂xk
+ ς13ρ∆θ

2 ∂vi
∂xi

]
+ ϵ1−α

[(
26− 78

3 + δ + θ dδ
dθ

)
ρθ∆θ

∂vi
∂xi

]

+ ϵ2−2α

[
ς9qk

∂θ

∂xk
− 8θσij

∂vj
∂xi

+ ς14θ
∂qk
∂xk

− ς10θqk
∂ ln ρ

∂xk
− 20

39
B− ∂vk

∂xk

]
+ ϵ2−α

[
ς10qk

[
∂∆θ

∂xk
+∆θ

∂ ln ρ

∂xk

]
− 62δ

(42 + 25δ)
B+

ij

∂vj
∂xi

+ ς12∆qk
∂θ

∂xk

]
+ ϵ2−α

[
ς11θ

(
∆qk

∂ ln ρ

∂xk
− ∂∆qk

∂xk

)
− ς13∆θ

(
∂qk
∂xk

+ σij
∂vj
∂xi

)]
− ϵ2

[
ς11∆qk

(
∂∆θ

∂xk
+∆θ

∂ ln ρ

∂xk

)]
+ ϵ3−α

[
ς11

∆qk
ρ

∂σkj
∂xj

]
− ϵ3−2α

[
112 (7− δ) (3 + δ)

(14 + δ) (42 + 25δ)
B−

ij

∂vj
∂xi

+ ς10
qk
ρ

∂σkj
∂xj

]
= −

[
1

τtr
+
ϵ1−α

τint

](
3Ru1,1 + 10Ru2,0

13
B+ + ϵ1−2α

[
10

13
(Ru1,1 −Ru2,0)B−

])
− 1

τtr

(
9

2
Ru1,1 + 15Ru2,0

)
ρ∆θ2−ϵ1−2α

[
1

τint

3

2
((3− δ)Ru1,1 + 20Ru2,0 − (23− δ)) ρθ∆θ

]
,

(5.6b)
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where,

ς5 =

(5Rqint
+ 3Rqtr)

(
δ + θ dδ

dθ

)
+ 30Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

−
2RqtrRqint

θ
(
2dδ
dθ

+ θ d2δ
dθ2

)
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2
 , (5.6c)

ς6 = 1 +
Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

, (5.6d)

ς7 =

(
3 + δ + θ dδ

dθ

)
Rqtr

(
δ + θ dδ

dθ

)
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

+
2RqtrRqint

θ
(
2dδ
dθ

+ θ d2δ
dθ2

)
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2 , (5.6e)

ς8 =
2

5

(
1− 5Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

)
, (5.6f)

ς9 =

50Rqint
Rqtrθ

(
2dδ
dθ

+ θ d2δ
dθ2

)
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2 +
(5Rqint

+ 3Rqtr)
(
δ + θ dδ

dθ

)
− 100Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

 ,

(5.6g)

ς10 =

(
2− 50Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

)
, (5.6h)

ς11 =
10
(
δ + θ dδ

dθ

)
Rqtr

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

, (5.6i)

ς12 =

(−23 + δ + θ dδ
dθ

)
Rqtr

(
δ + θ dδ

dθ

)
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

−
50RqtrRqint

θ
(
2dδ
dθ

+ θ d2δ
dθ2

)
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2
 , (5.6j)

ς13 =
3
(
23− δ − θ dδ

dθ

)
3 + δ + θ dδ

dθ

(5.6k)

ς14 =
2
(
δ + θ dδ

dθ

)
Rqtr − 40Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

; (5.6l)
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The equations for higher moments B+
ij , B

−
ij and u0,0ijk,

ϵ1

[
DB+

ij

Dt
+

2 (70 + 23δ)Rqtr

(
δ + θ dδ

dθ

)
5δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)θ∂∆q<i

∂xj>
+ Γ3∆q<i

∂θ

∂xj>
+ 2B+

k<i

∂vj>
∂xk

]

+ϵ1

[
8δ

(42 + 25δ)

(
14

5
B+

k<i

∂vk
∂xj>

+ 3B+
<ij

∂vk>
∂xk

)
−

(14− δ) θ dδ
dθ

− δ (14 + δ)

δ
(
3 + δ + θ dδ

dθ

) ∆θσij
∂vk
∂xk

]

− ϵ1

[
(Γ1 − 1)B+

ij

∂vk
∂xk

+
2 (70 + 23δ)Rqtr

(
δ + θ dδ

dθ

)
5δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)θ∆q<i
∂ ln ρ

∂xj>

]

+ ϵ1

[
2

(
(70 + 23δ)Rqint

δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

) − (14− δ)

δ

)
q<i

(
∂∆θ

∂xj>
+∆θ

∂ ln ρ

∂xj>

)]

+ ϵ1+α

[
2 (70 + 23δ)Rqtr

(
δ + θ dδ

dθ

)
5δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)∆q<i

(
∂∆θ

∂xj>
+∆θ

∂ ln ρ

∂xj>

)
+ Γ1B

+
ij∆θ

∂vk
∂xk

]

+ ϵ1−α

[
2

(
(70 + 23δ)Rqint

δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

) − (14− δ)

δ

)
θ
∂q<i

∂xj>
+ Γ2q<i

∂θ

∂xj>

]

+ ϵ1−α

[
4θ

(
2σk<i

∂vk
∂xj>

+ 2σk<i
∂vj>
∂xk

+ σij
∂vk
∂xk

)
+

(14− δ) θ dδ
dθ

− δ (14 + δ)

δ
(
3 + δ + θ dδ

dθ

) θσij
∂vk
∂xk

]

−ϵ1−α

[
2

(
(70 + 23δ)Rqint

δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

) − (14− δ)

δ

)
θq<i

∂ ln ρ

∂xj>
− 4 (70− 19δ)

39δ
B− ∂v<i

∂xj>

]

+ ϵ2−α

[
u0,0ijk

(
14 + δ + δ−14

δ
θ dδ
dθ

2

∂θ

∂xk
− 4θ

∂ ln ρ

∂xk

)
+

(14− δ) θ dδ
dθ

− δ (14 + δ)

δ
(
3 + δ + θ dδ

dθ

) σij
ρ

∂qk
∂xk

]

+ ϵ2−α

[
(14− δ) θ dδ

dθ
− δ (14 + δ)

δ
(
3 + δ + θ dδ

dθ

) σijσkl
ρ

∂vl
∂xk

+
784 (3 + δ) Γ1

84 (14 + δ)
B−

ij

∂vk
∂xk

]

− ϵ2−α

[
2

(
(70 + 23δ)Rqint

δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

) − (14− δ)

δ

)
q<i

ρ

∂σj>k

∂xk

]

+ ϵ2−α

[
8 (14− δ) (3 + δ)

(14 + δ) (42 + 25δ)

(
14

5
B−

k<i

∂vk
∂xj>

+ 3B−
<ij

∂vk>
∂xk

)]
− ϵ2

[
Γ1

3 (14 + δ) θ

(
3 (14 + δ)

B+
ij

ρ

[
∂qk
∂xk

− σkl
∂vl
∂xk

]
+ 28 (3 + δ)B−

ij∆θ
∂vk
∂xk

)]

+ ϵ2

[
4u0,0ijk

[
∆θ

∂ ln ρ

∂xk
+
∂∆θ

∂xk

]
−

2 (70 + 23δ)Rqtr

(
δ + θ dδ

dθ

)
5δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)∆q<i

ρ

∂σj>k

∂xk

]

+ ϵ3−α

[
784 (3 + δ) Γ1

84 (14 + δ)

B−
ij

ρθ

(
σkl

∂vl
∂xk

+
∂qk
∂xk

)
− 4

u0,0ijk

ρ

∂σkl
∂xl

]

− ϵα
[
2 (42 + 25δ)

39δ
B+ ∂v<i

∂xj>

]
− (42 + 25δ)

δ
ρθ∆θ

∂v<i

∂xj>
= −

[
1

τtr
+
ϵ1−α

τint

]
B+

ij , (5.7a)
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ϵ1

[
DB−

ij

Dt
− 14 + δ

3 + δ

σij
ρ

[
∂qk
∂xk

+ σkl
∂vl
∂xk

]]

− ϵ1

[
22θ dδ

dθ

(3 + δ) (14 + δ)
(
3 + δ + θ dδ

dθ

)B−
ij

∂vk
∂xk

−
14 + δ + 14+δ

3+δ
θ dδ
dθ

2
+ 2B−

k<i

∂vj>
∂xk

]

+ ϵ1
[
6 (14− δ)

(42 + 25δ)

[
3

7
B−

<ij

∂vk>
∂xk

+
2

5
B−

k<i

∂vk
∂xj>

]
u0,0ijk

∂θ

∂xk

]
+ ϵ1

[
B−

ij

∂vk
∂xk

+
3 (14 + δ)

7 (3 + δ)
θ
∂u0,0ijk

∂xk
− 3 (14 + δ)

7 (3 + δ)
θu0,0ijk

∂ ln ρ

∂xk
− Γ5

q<i

ρ

∂σj>k

∂xk

]

+ ϵα

[
14 + δ

3 + δ
∆θσij

∂vk
∂xk

+
2 (70 + 23δ)

(
δ + θ dδ

dθ

)
Rqtr

5δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)θ∂∆q<i

∂xj>
+ 4Γ4θ∆q<i

∂ ln ρ

∂xj>

]

+ϵα

 10(
δ + θ dδ

dθ

)Γ4

(δ + θ dδ
dθ

)
5

(
3 + δ + θ

dδ

dθ

)
−

2θ
(
2dδ
dθ

+ θ d2δ
dθ2

)
Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

∆q<i
∂θ

∂xj>


+ ϵα

[
6δ (14 + δ)

(3 + δ) (42 + 25δ)

(
3

7
B+

<ij

∂vk>
∂xk

+
2

5
B+

k<i

∂vk
∂xj>

)]
+ ϵα

[
Γ5q<i

(
∂∆θ

∂xj>
+∆θ

∂ ln ρ

∂xj>

)]
− ϵ2α

[
4Γ4∆q<i

(
∂∆θ

∂xj>
+∆θ

∂ ln ρ

∂xj>

)]
+ ϵ1+α

[
3 (14 + δ)

7 (3 + δ)
u0,0ijk

(
∆θ

∂ ln ρ

∂xk
+
∂∆θ

∂xk

)
+ 4Γ4

∆q<i

ρ

∂σj>k

∂xk

]
+ ϵ1+α

[
22dδ

dθ

(3 + δ) (14 + δ)
(
3 + δ + θ dδ

dθ

)∆θB−
ij

∂vk
∂xk

]
− ϵ2

[
3 (14 + δ)

7 (3 + δ)

u0,0ijk

ρ

∂σkl
∂xl

]

− ϵ2

[
22dδ

dθ

(3 + δ) (14 + δ)
(
3 + δ + θ dδ

dθ

)B−
ij

ρ

(
∂qk
∂xk

+ σlk
∂vk
∂xl

)]

+
2 (14 + δ)Rqint

(3 + δ)
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2 (5Rqint

[
3 + δ + θ

dδ

dθ

]

+Rqtr

[
(3 + δ) δ + (7 + 2δ) θ

dδ

dθ
+

((
dδ

dθ

)2

+ 2
d2δ

dθ2

)
θ2

])
q<i

∂θ

∂xj>

+
6 (14 + δ)

7 (3 + δ)
θ

(
σk<i

∂vj>
∂xk

+ σk<i
∂vk
∂xj>

− 2

3
σij

∂vk
∂xk

)
+ Γ5θ

(
∂q<i

∂xj>
− q<i

∂ ln ρ

∂xj>

)
+

2 (14 + δ)

3 (3 + δ)
B− ∂v<i

∂xj>
= −

[
1

τtr
+
ϵ1−α

τint

]
B−

ij , (5.7b)
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ϵ1

[
Du0,0ijk

Dt
− 3

σ<ij

ρ

∂σk>l

∂xl
+

6 (14− δ) (3 + δ)

(14 + δ) (42 + 25δ)

∂B−
<ij

∂xk>

]

− ϵ1
[(

6

(14 + δ)2
+

252

(42 + 25δ)2

)
dδ

dθ
B−

<ij

∂θ

∂xk>

]
+ ϵ1

[
u0,0ijk

∂vl
∂xl

+ 3u0,0l<ij

∂vk>
∂xl

]
+ ϵα

[
6δ

42 + 25δ

∂B+
,<ij

∂xk>

]

+ ϵα

[
252dδ

dθ

(42 + 25δ)2
B+

,<ij

∂θ

∂xk>
+ 3σ<ij

(
∂∆θ

∂xk>
+∆θ

∂ ln ρ

∂xk>

)]

+ ϵα

[
12
(
δ + θ dδ

dθ

)
Rqtr

5
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)∆q<i
∂vj
∂xk>

]
+ 3θ

(
∂σ<ij

∂xk>
− σ<ij

∂ ln ρ

∂xk>

)
+

12Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

q<i
∂vj
∂xk>

= −
[
1

τtr
+
ϵ1−α

τint

]
u0,0ijk . (5.7c)

where,

Γ1 =
84 (14 + δ) θ dδ

dθ

δ (14 + δ)
(
3 + δ + θ dδ

dθ

)
(42 + 25δ)

, (5.7d)

Γ2 = 2Rqint

( [
14 + δ + θ dδ

dθ

]
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

− θ

10 (7Rqint
+ 2 (7 + 3δ)Rqtr)

dδ
dθ

+ 14Rqtrθ
(
dδ
dθ

)2
+ (70 + 23δ)Rqtrθ

d2δ
dθ2

δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2
)

, (5.7e)

Γ3 = 2Rqtr

((
δ
[
14 + δ + θ dδ

dθ

]
− 14dδ

dθ

) (
δ + θ dδ

dθ

)
5δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)
+
2RqtrRqint

(
2dδ
dθ

+ θ d2δ
dθ2

)
(70 + δ [14 + 9θ])

δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2
 , (5.7f)

Γ4 =
(14 + δ)

(
δ + θ dδ

dθ

)
Rqtr

5 (3 + δ)
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

) , (5.7g)

Γ5 =
2 (14 + δ)

(
3Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)
(3 + δ)

(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

) . (5.7h)
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As it was discussed earlier, values of α less than 0.5 are relevant and will be considered

from now on, unless stated otherwise. While the expansion series (4.5) contains

all mixed powers of ϵ and ϵα, the final equations only contain some terms. In the

following, we are interested in terms up to ϵ3, and find only the following powers:

{
ϵ0, ϵα, ϵ2α, ϵ1, ϵ1+α, ϵ1+2α, ϵ1+3α, ϵ2−α, ϵ2, ϵ2+α, ϵ2+2α, ϵ2+3α, ϵ2+4α, ϵ3

}
Their order depends on the value of α. For values of α below 0.5 the different sequence

of orders are (up to ϵ3)

0 < α < 0.25 :
{
ϵ0, ϵα, ϵ2α, ϵ1, ϵ1+α, ϵ1+2α, ϵ1+3α, ϵ2−α, ϵ2, ϵ2+α, ϵ2+2α, ϵ2+3α, ϵ3

}
0.25 < α < 0.33 :

{
ϵ0, ϵα, ϵ2α, ϵ1, ϵ1+α, ϵ1+2α, ϵ2−α, ϵ1+3α, ϵ2, ϵ2+α, ϵ2+2α, ϵ2+3α, ϵ3

}
(5.8)

0.33 < α < 0.5 :
{
ϵ0, ϵα, ϵ2α, ϵ1, ϵ1+α, ϵ2−α, ϵ1+2α, ϵ2, ϵ1+3α, ϵ2+α, ϵ2+2α, ϵ3

}
Here, only the underlined terms are changing location between different values of α.

The following sections will discuss different sets of equations based on the desired

order of accuracy in the powers of ϵ, and the different values of the exponent α, which

determines the relative importance of contributions. For this, we will consider the

increasing orders as laid out in (5.8) up to third order.

5.1 Zeroth order, ϵ0: Euler equations

We begin the reduction process with considering the zeroth order terms in conserva-

tion laws,

Dρ

Dt
+ ρ

∂vi
∂xi

= 0 , (5.9a)

Dvi
Dt

+ θ
∂ ln ρ

∂xi
+
∂θ

∂xi
= 0 , (5.9b)

3 + δ + θ dδ
dθ

2
ρ
Dθ

Dt
+ ρθ

∂vi
∂xi

= 0 . (5.9c)

These equations form a closed set of equations for the variables {ρ, vi, θ} these are

the the Euler equations for polyatomic gases [84].
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5.2 Order ϵα: Dynamic temperature

The first non-equilibrium correction appears for α order, where the momentum and

total energy balance equations in the conservation laws are corrected as

Dvi
Dt

+ θ
∂ ln ρ

∂xi
+
∂θ

∂xi
− ϵα

[
∂∆θ

∂xi
+∆θ

∂ ln ρ

∂xi

]
= 0 , (5.10)

3 + δ + θ dδ
dθ

2
ρ
Dθ

Dt
+ ρθ

∂vi
∂xi

− ϵα
[
ρ∆θ

∂vi
∂xi

]
= 0 . (5.11)

Hence, an additional equation for the dynamic temperature ∆θ is required, which at

this order is simply the leading term of Eq. 5.2,

∆θ = τint
2
(
δ + θ dδ

dθ

)
3
(
3 + δ + θ dδ

dθ

)θ ∂vi
∂xi

. (5.12)

From the conservation laws, we recognize that in a moving gas the pressure is not just

the equilibrium ideal gas pressure ρθ, but p = ρθ − ρ∆θ. For this reason, one often

denotes the second term as the dynamic pressure, Π = −ρ∆θ, and obtain similar

relation as Eq. 5.12 [37, 70].

5.3 Order ϵ2α: Refined dynamic temperature

For all α < 0.5, the next order appearing in (5.8) is ϵ2α. The conservation laws

do not contain terms of order 2α, hence they are unchanged from the previous case

(order εα). While the next higher order terms of ∆θ, Eq. 5.2, which are of order εα

and give overall contributions of order ϵ2α, must be considered. This gives the closure

by a full balance equation for ∆θ, while stress and heat flux can still be ignored,

ϵα

[
ρ
D∆θ

Dt
+

2
(
δ + θ dδ

dθ

)
3
(
3 + δ + θ dδ

dθ

)ρ∆θ ∂vi
∂xi

]
−

2
(
δ + θ dδ

dθ

)
3
(
3 + δ + θ dδ

dθ

)ρθ ∂vi
∂xi

= − ρ

τint
∆θ . (5.13)

This is a set of 6 field equations with variables {ρ, vi, θ,∆θ}.
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5.4 Order ϵ1: Refined Navier-Stokes-Fourier equa-

tions

For the first order, terms up to ϵ1 order are considered in the conservation laws, for

which now all terms are relevant, Eqs. 5.1,

Dρ

Dt
+ ρ

∂vi
∂xi

= 0 ,

ρ
Dvi
Dt

+
∂ρ (θ −∆θ)

∂xi
+
∂σij
∂xj

= 0 , (5.14)

3 + δ + θ dδ
dθ

2
ρ
Dθ

Dt
+
∂qi
∂xi

+ ρ (θ −∆θ)
∂vi
∂xi

+ σij
∂vj
∂xi

= 0 ;

In addition to the balance law for ∆θ (5.13)in order to close the set of equations, the

leading terms of the stress tensor, Eq. 5.3, and total heat flux, Eq. 5.4, are required

as well,

σij = −τtr2ρθ
∂v<i

∂xj>
, (5.15)

qi = −τtr
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

2Rqint
Rqtr

ρθ
∂θ

∂xi
.

These first order equations for σij and qi are the classical Navier–Stokes-Fourier (NSF)

equations, which relate the stress deviator and heat flux to the gradients of velocity

and temperature. The factors between them are the shear viscosity µ and the heat

conductivity κ which we identify as

µ = τtrρθ and κ = τtr
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

2Rqint
Rqtr

ρθ . (5.16)

The obtained relation for the shear viscosity is identical to that of the monatomic

gas. Internal degrees of freedom affect the heat conductivity, which differs from the

monatomic gas as extra means of energy transport are present in the polyatomic

gases. In the classical Navier-Stokes equations, the dynamic pressure has the form

Π = −ν ∂vi
∂xi

where ν is the bulk viscosity. Comparing with the above, we identify a

relation between relaxation time τint and the bulk viscosity,

υ = τint
2
(
δ + θ dδ

dθ

)
3
(
3 + δ + θ dδ

dθ

)ρ (θ −∆θ) . (5.17)
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The bulk viscosity is a function of the internal relaxation time, hence it will vanish

in the monatomic gas where no internal energy exchange occurs (δ = 0).

However, what we have obtained here at first order are not the classical NSF equa-

tions, since we have to use the full balance law (5.13) for ∆θ (or dynamic pressure).

The classical NSF equations is a five variables model for {ρ, vi, θ}. However, the

refined Navier-Stokes-Fourier (RNSF) equations obtained have six independent field

variables, {ρ, vi, θ,∆θ}. This is a result of the scaling, where we assumed α < 0.5.

The classical Navier-Stokes-Fourier equations only arise for 0.5 < α < 1.

5.5 Order ϵ1+α: RNSF equations with first internal

DoF corrections

The next order of accuracy (for all α < 0.5) is obtained by considering the next higher

terms in the equations for ∆θ, σij and qi, Eqs. 5.2,5.3,5.4,which are the contributions

with factor ϵ1 for the dynamic temperature, and contributions with factor ϵα for stress

and total heat flux (which are themselves at order ϵ1), so that at order 1 + α, the

conservation laws (5.14) must be closed by

ρ
D∆θ

Dt
+

10Rqint
Rqtr

(
2dδ
dθ

+ θ d2δ
dθ2

)
3
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2 qi ∂θ∂xi
+

(
2

3 + δ + θ dδ
dθ

− 10Rqint

3
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)) ∂qi
∂xi

+
2
(
δ + θ dδ

dθ

)
3
(
3 + δ + θ dδ

dθ

)ρ (∆θ − θ)
∂vi
∂xi

−
2
(
δ + θ dδ

dθ

)
3
(
3 + δ + θ dδ

dθ

)σij ∂vj
∂xi

= − ρ

τint
∆θ , (5.18a)

σij = −τtr2ρ [θ −∆θ]
∂v<i

∂xj>
, (5.18b)

qi = −τtrρ

(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

2Rqint
Rqtr

(θ −∆θ)
∂θ

∂xi
− 5Rqint

− 3Rqtr

2Rqint
Rqtr

θ
∂∆θ

∂xi

)
. (5.18c)

Additional corrections to the NSF equations occur due to the internal degrees of

freedom. If we consider this correction to the NSF equations, shear viscosity and
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heat conductivity will be of the form,

µ = τtrρ (θ −∆θ) and κ = τtr
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

2Rqint
Rqtr

ρ (θ −∆θ) . (5.19)

5.6 Cases with 0 < α < 0.25

To proceed to the next order, we now have to distinguish further among the possible

values of α; we begin with the window 0 < α < 0.25.

5.6.1 Order ϵ1+2α: RNSF equations with second internal DoF

corrections

Close inspection shows that, the next higher terms in the balance for ∆θ, Eq. 5.2, add

contributions to order 1 + 2α. Indeed, at this order the full balance law for dynamic

temperature must be considered,

ρ
D∆θ

Dt
+

2
(
δ + θ dδ

dθ

)
3
(
3 + δ + θ dδ

dθ

)ρ∆θ ∂vi
∂xi

+
2

3 + δ + θ dδ
dθ

∂qi
∂xi

−
2
(
δ + θ dδ

dθ

)
3
(
3 + δ + θ dδ

dθ

)ρθ ∂vi
∂xi

−
2
(
δ + θ dδ

dθ

)
3
(
3 + δ + θ dδ

dθ

)σij ∂vj
∂xi

− 10Rqint

3
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)
 ∂qi
∂xi

+
Rqtr

(
2dδ
dθ

+ θ d2δ
dθ2

)
3
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

) (∆qi ∂θ
∂xi

− qi
∂θ

∂xi

)
−

2
(
δ + θ dδ

dθ

)
Rqtr

3
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

) ∂∆qi
∂xi

= − ρ

τint
∆θ . (5.20)

This equation now has a contribution with the heat flux difference ∆qi, which here

must be considered to leading order,

∆qi = τtr
5
(
3 + δ + θ dδ

dθ

)
2
(
δ + θ dδ

dθ

)
Rqtr

ρθ
∂∆θ

∂xi
. (5.21)

This relates the heat flux difference at leading order to the gradients of dynamic

temperature. We name the factors between them the dynamic heat conductivity κ∆

which we identify as,

κ∆ = τtr
5
(
3 + δ + θ dδ

dθ

)
2
(
δ + θ dδ

dθ

)
Rqtr

ρθ . (5.22)



66

At this order, the equation for stress remains unchanged, but the equation for heat

flux now has also the terms with the factor ϵ2α so that

qi =
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

Rqint
Rqtr

(
5 + δ + θ dδ

dθ

)τtr [5 + δ + θ dδ
dθ

2
ρ (∆θ − θ)

∂θ

∂xi

+ρ (θ +∆θ)
∂∆θ

∂xi
+∆θ2

∂ρ

∂xi
+

2

39

∂B+

∂xi

]
−
(
δ + θ dδ

dθ

)
(Rqtr −Rqint

)

Rqint

(
5 + δ + θ dδ

dθ

) ∆qi . (5.23)

For closing the set of equations, the leading order term of B+ is required,

B+ = −39

2
ρ∆θ2 . (5.24)

Also at this order, all corrections to the NSF equations are due to the internal degrees

of freedom.

5.6.2 Order ϵ1+3α: RNSF equations with third internal DoF

corrections

The next order of accuracy is obtained by considering the conservation laws (5.14),

the dynamic temperature equation (5.2), the constitutive equations for the heat flux

(5.23) and stress (5.18b), and terms up to α order in the heat flux difference, Eq.

5.5a,as

∆qi =
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

5R2
qint

+
(
δ + θ dδ

dθ

)
R2

qtr

5

2
τtr

[(
1 +

3Rqint(
δ + θ dδ

dθ

)
Rqtr

)
(
ρ (θ +∆θ)

∂∆θ

∂xi
+∆θ2

∂ρ

∂xi
+

2

39

∂B+

∂xi

)
+
(Rqint

−Rqtr)

Rqtr

ρ (θ +∆θ)
∂θ

∂xi

]
− 5Rqint

(Rqtr −Rqint
)

5R2
qint

+
(
δ + θ dδ

dθ

)
R2

qtr

qi , (5.25)

5.6.3 Order ϵ2−α: RNSF equations with full corrections

The equations at order 2 − α are the full conservation laws (5.14), the full dynamic

temperature equation (5.2), and the following constitutive equations for heat flux and
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stress (considering terms up to ϵ1−α order in Eqs. 5.3 and 5.4),

σij = − 1[
1
τtr

+ 1
τint

]2ρ [θ −∆θ]
∂v<i

∂xj>
, (5.26a)

qi = −
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

Rqint
Rqtr

(
5 + δ + θ dδ

dθ

) [
1
τtr

+ 1
τint

] (5 + δ + θ dδ
dθ

2
ρ (θ −∆θ)

∂θ

∂xi
− 2

39

∂B+

∂xi

−ρ (θ +∆θ)
∂∆θ

∂xi
−∆θ2

∂ρ

∂xi

)
−
(
δ + θ dδ

dθ

)
(Rqtr −Rqint

)

Rqint

(
5 + δ + θ dδ

dθ

) ∆qi . (5.26b)

The equations for the heat flux difference ∆qi and for B+ remain the same as for the

previous case, i.e., (5.25, 5.24).

5.6.4 Order ϵ2: Refined Grad’s 14 moment equations

Starting with the second order of accuracy, balance laws for stress σij and heat flux

qi must be considered as it can be seen from Eqs. 5.3 and 5.4. At the second order

of accuracy, they should be expressed with terms up to order ϵ1 as

Dσij
Dt

+
4Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

∂q<i

∂xj>
−

4Rqint
Rqtr

(
2dδ
dθ

+ θ d2δ
dθ2

)
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2 q<i
∂θ

∂xj>

+ 2σk<i
∂vj>
∂xk

+ σij
∂vk
∂xk

+ 2ρ (θ −∆θ)
∂v<i

∂xj>
= −

[
1

τtr
+

1

τint

]
σij , (5.27)
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Dqi
Dt

+ σik

[
5 + δ + θ dδ

dθ

2

∂θ

∂xk
− θ

∂ ln ρ

∂xk

]
− 2

39

∂B+

∂xi
+

5

13

∂B−

∂xi

+

(
1 +

2Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

)[
qk
∂vi
∂xk

+ qi
∂vk
∂xk

]
+

2Rqint
qk

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

∂vk
∂xi

−∆θ2
∂ρ

∂xi
+ θ

∂σik
∂xk

− ρ (θ +∆θ)
∂∆θ

∂xi
+

5 + δ + θ dδ
dθ

2
ρ (θ −∆θ)

∂θ

∂xi

= −
[
1

τtr
+

1

τint

](
Rqint

Rqtr

(
5 + δ + θ dδ

dθ

)
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

qi+

(
δ + θ dδ

dθ

)
Rqtr (Rqtr −Rqint

)

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

∆qi

)
.

(5.28)

The other relevant equations are the conservation laws (5.14), and the dynamic

temperature equation (5.20). For closing the set of equations we need constitutive

equations for B+ and ∆qi up to order ϵ1−2α from Eqs. 5.6b and 5.5a, as

B+ = −39

2
ρ∆θ2 +

3τtr
τint

[
10

Ru2,0

+
3− δ

2Ru1,1

− 23− δ

2

]
ρθ∆θ , (5.29)

∆qi =
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

5R2
qint

+
(
δ + θ dδ

dθ

)
R2

qtr

5

2
τtr

[(
1 +

3Rqint(
δ + θ dδ

dθ

)
Rqtr

)
(
ρ (θ +∆θ)

∂∆θ

∂xi
+∆θ2

∂ρ

∂xi
+

2

39

∂B+

∂xi

)

+
(Rqint

−Rqtr)

Rqtr

ρ (θ +∆θ)
∂θ

∂xi

]
−

[
1 + τtr

τint

]
5Rqint

(Rqtr −Rqint
)

5R2
qint

+
(
δ + θ dδ

dθ

)
R2

qtr

qi , (5.30)

and for B− at leading order from Eq. 5.6a as,

B− = −3τtr
τint

[
3

Ru2,0

− 3− δ

2Ru1,1

− 3 + δ

2

]
ρθ∆θ . (5.31)

With balance laws for stress and heat flux, the second order equations form a

set of PDEs for the 14 variables {ρ, vi, θ,∆θ, σij, qi}. Other authors discuss a 14

moment set for polyatomic gases, [23, 37, 39] where the equations agree with ours

when letting relaxation parameters Ru2,0 and Ru1,1 to be 1 and considering constant δ,

but with some differences due to the ordering of terms for α < 0.5. Indeed, our refined
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Grad’s 14 moment (RG14) equations contain additional terms of order ϵ1+2α, which

are the terms underlined here in the equations for overall heat flux and the dynamic

temperature containing B+, ∆qi and B
− along with their constitutive equations. The

terms involved with B+ and ∆qi would not appear for α > 0.5, where they would give

contributions of higher than second order in ϵ. Hence we can say that the mentioned

14 field theory are more relevant for the cases that α > 0.5, but still not at second

order accuracy.

The mentioned 14 field theory [23, 37, 39] contains three nonlinear terms in (5.4),

which according to our analysis are of orders ϵ2+α and ϵ3, respectively, and will be

considered below in the appropriate accuracy with other corresponding terms at the

considered order of accuracy. As will be seen below, if one wishes to have a theory

at ϵ2+α and ϵ3 orders, there will be additional terms that must be included too. It

should be mentioned that no other theories presents at accuracy higher than second

order. Therefore, different set of equations presented in the coming sections are

derived here for the first time and there are no alternative macroscopic models at

these orders of accuracy.

5.6.5 Order ϵ2+α: RG14 equations with internal DoF correc-

tions

In the next order of accuracy, the terms up to order ϵ1+α should be added to the

equations for heat flux (5.28) and stress (5.27) as

Dσij
Dt

+
4Rqint
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+
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Rqtr
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1
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+
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]
σij , (5.32)
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(5.33)

Together with the conservation laws (5.14) and the full balance law for dynamic

temperature (5.2), we still have a set of PDEs for 14 variables, which is closed by the

constitutive equations for ∆qi and B
+ up to ϵ1−α order from Eqs. 5.5a and 5.6b,
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B+ = − 13
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B+ = − 1[
1
τtr

+ 1
τint

] (39
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3 + δ
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∂vk
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)
, (5.36)

and the leading order contributions to B−(5.31) and B+
ij , Eq. ,

B+
ij = τtr

42 + 25δ

δ
ρθ∆θ

∂v<i

∂xj>
. (5.37)

B+
ij = τtr

42 + 25δ

δ
ρθ∆θ

∂v<i

∂xj>
. (5.38)

5.6.6 Order ϵ2+2α: Refined Grad’s 18 moment equations

Increasing the accuracy to 2 + 2α, require the following equations: the conservation

laws (5.14), the full equation for dynamic temperature (5.2), the equations for stress

and heat flux (5.32, 5.33), and balance laws for ∆qi and B
+ with terms up to order
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ϵ1 from Eqs. 5.5a and 5.6b,
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2dδ
dθ

+ θ d2δ
dθ2

)
(
δ + θ dδ

dθ

) (
3 + δ + θ dδ

dθ

) (
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)θ∆qi ∂vk
∂xk

+
10Rqint

(
2dδ
dθ

+ θ d2δ
dθ2

)
(
δ + θ dδ

dθ

) (
3 + δ + θ dδ

dθ

) (
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)θqi ∂vk
∂xk

+
5

39

(
1− 10Rqint(

δ + θ dδ
dθ

)
Rqtr

)
∂B−

∂xi
− 5 [Rqint

−Rqtr ]

2Rqtr

ρθ
∂θ

∂xi

− 5

39

(
1 +

3Rqint(
δ + θ dδ

dθ

)
Rqtr

)
∂B+

∂xi
+ σik

(
5

2

[
1− Rqint

Rqtr

]
∂θ

∂xk
− θ

∂ ln ρ

∂xk

)
+

2Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

[
qj
∂vj
∂xi

+ qi
∂vk
∂xk

+ qk
∂vi
∂xk

]
− 5

2
ρ

([
1 +

3Rqint(
δ + θ dδ

dθ

)
Rqtr

]
θ
∂∆θ

∂xi
+

[Rqint
−Rqtr ]

Rqtr

∆θ
∂θ

∂xi

)

= −
[
1

τtr
+

1

τint

](
5Rqint

(Rqtr −Rqint
)

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

qi +

(
δ + θ dδ

dθ

)
R2

qtr + 5R2
qint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

∆qi

)
, (5.39)



73

DB+

Dt
+

85

39
B+ ∂vk

∂xk
+

3
(
23− δ − θ dδ

dθ

)
3 + δ + θ dδ

dθ

ρ∆θ2
∂vi
∂xi

+

(
26− 78

3 + δ + θ dδ
dθ

)
ρθ∆θ

∂vi
∂xi

= − 1

τtr

(
9

2
Ru1,1 + 15Ru2,0

)
ρ∆θ2− 1

τint

[
3

2
((3− δ)Ru1,1 + 20Ru2,0 − (23− δ)) ρθ∆θ

]
−
[
1

τtr
+

1

τint

](
3Ru1,1 + 10Ru2,0

13
B+ +

10

13
(Ru1,1 −Ru2,0)B−

)
. (5.40)

Closure of this set of equations requires constitutive equations for B+
ij (up to α order

from Eq. 5.7a) and B− (up to 2α order from Eq. 5.6a), which read,

B+
ij = τtr

[
42 + 25δ

δ

(
ρθ∆θ +

2

39
B+

)
∂v<i

∂xj>

]
, (5.41)

B− =
13

10Ru1,1 + 3Ru2,0

[
9 (Ru2,0 −Ru1,1)

2
ρ∆θ2

+ τtr

(
−
[
1

τtr
+

1

τint

]
3 (Ru1,1 −Ru2,0)

13
B+ +

2

13
B+ ∂vk

∂xk

+3ρ∆θ2
∂vi
∂xi

− 1

τint

3

2
[3 + δ + [3− δ]Ru1,1 − 6Ru2,0 ] ρθ∆θ

)]
. (5.42)

At this order, we have PDEs for the 18 variables {ρ, vi, θ,∆θ, σij, qi,∆qi, B+}, which
are the refined Grad’s 18 moment (RG18) equations based on the proper ordering.

5.6.7 Order ϵ2+3α: RG18 equations with internal DoF correc-

tions

At the next order, 2 + 3α, the equations are the same as for 2 + 2α, only that now

terms up to order ϵ1+α must be added to equation (5.39),

D∆qi
Dt

+ ...+
10Rqint

(
2dδ
dθ

+ θ d2δ
dθ2

)
(
δ + θ dδ

dθ

) (
3 + δ + θ dδ

dθ

) (
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)∆θ∆qi ∂vk
∂xk

+ ...

= −
[
1

τtr
+

1

τint

](
5Rqint

(Rqtr −Rqint
)

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

qi +

(
δ + θ dδ

dθ

)
R2

qtr + 5R2
qint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

∆qi

)
(5.43)
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5.6.8 Order ϵ3: Regularized 19 (R19) equations

Finally, we present the equations at third order of accuracy, which are: the conserva-

tion laws (5.14); the full equation for the dynamic temperature (5.2); The equation

for heat flux difference (5.43), the equations (5.32, 5.33, 5.40) for stress, heat flux,

and B+ with added terms as

Dσij
Dt

+
4Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

∂q<i

∂xj>
−

4Rqint
Rqtr

(
2dδ
dθ

+ θ d2δ
dθ2

)
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2 q<i
∂θ

∂xj>

+
4
(
δ + θ dδ

dθ

)
Rqtr

5
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

) ∂∆q<i

∂xj>
+ 2σk<i

∂vj>
∂xk

+ σij
∂vk
∂xk

+
4Rqint

Rqtr(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2 (2dδdθ + θ
d2δ

dθ2

)
∆q<i

∂θ

∂xj>
+
∂u0,0ijk

∂xk

+ 2ρ (θ −∆θ)
∂v<i

∂xj>
= −

[
1

τtr
+

1

τint

]
σij , (5.44)

Dqi
Dt

+ ...+ 7

(
1

(14 + δ)2
− 24

(42 + 25δ)2

)
dδ

dθ
B−

ij

∂θ

∂xj

+
7 (3 + δ) (14 + 3δ)

(14 + δ) (42 + 25δ)

∂B−
ij

∂xj
+ u0,0ijk

∂vj
∂xk

− σik
ρ

∂σkj
∂xj

= −
[
1

τtr
+

1

τint

](
Rqint

Rqtr

(
5 + δ + θ dδ

dθ

)
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

qi +

(
δ + θ dδ

dθ

)
Rqtr (Rqtr −Rqint

)

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

∆qi

)
,

(5.45)
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DB+

Dt
− 8θσij

∂vj
∂xi

+
2
(
δ + θ dδ

dθ

)
Rqtr − 40Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

θ
∂qk
∂xk

+

50Rqint
Rqtrθ

(
2dδ
dθ

+ θ d2δ
dθ2

)
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2 +
(5Rqint

+ 3Rqtr)
(
δ + θ dδ

dθ

)
− 100Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

 qk
∂θ

∂xk

−

(
2− 50Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

)
θqk

∂ ln ρ

∂xk
− 20

39
B− ∂vk

∂xk

+
85

39
B+ ∂vk

∂xk
+

3
(
23− δ − θ dδ

dθ

)
3 + δ + θ dδ

dθ

ρ∆θ2
∂vi
∂xi

+

(
26− 78

3 + δ + θ dδ
dθ

)
ρθ∆θ

∂vi
∂xi

= − 1

τtr

(
9

2
Ru1,1 + 15Ru2,0

)
ρ∆θ2− 1

τint

[
3

2
((3− δ)Ru1,1 + 20Ru2,0 − (23− δ)) ρθ∆θ

]
−
[
1

τtr
+

1

τint

](
3Ru1,1 + 10Ru2,0

13
B+ +

10

13
(Ru1,1 −Ru2,0)B−

)
, (5.46)

and the balance law for B−

DB−

Dt
+

12

5
θσij

∂vj
∂xi

+
12Rqint

+ 2
(
δ + θ dδ

dθ

)
Rqtr

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

θ
∂qk
∂xk

− 2

13
B+ ∂vk

∂xk

+

(5Rqint
+ 3Rqtr)

(
δ + θ dδ

dθ

)
+ 30Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

−
2RqtrRqint

θ
(
2dδ
dθ

+ θ d2δ
dθ2

)
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2
 qk

∂θ

∂xk

− 2

(
1 +

Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

)
θqk

∂ ln ρ

∂xk
− 3ρ∆θ2

∂vi
∂xi

+
71

39
B− ∂vk

∂xk

= − 1

τtr

9 (Ru1,1 −Ru2,0)

2
ρ∆θ2 − 1

τint

(
3

2
(3 + δ + [3− δ]Ru1,1 − 6Ru2,0) ρθ∆θ

)
−
[
1

τtr
+

1

τint

](
10Ru1,1 + 3Ru2,0

13
B− +

[
3 (Ru1,1 −Ru2,0)

13
B+

])
. (5.47)
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These 19 PDEs are closed with the constitutive equations for B+
ij up to 1− α order,

B+
ij = − 1[

1
τtr

+ 1
τint

] [2( (70 + 23δ)Rqint

δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

) − 14− δ

δ

)
θ
∂q<i

∂xj>

− 4 (70− 19δ)

39δ
B− ∂v<i

∂xj>
+

(14− δ) θ dδ
dθ

− δ (14 + δ)

δ
(
3 + δ + θ dδ

dθ

) θσij
∂vk
∂xk

− 2

(
(70 + 23δ)Rqint

δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

) − 14− δ

δ

)
θq<i

∂ ln ρ

∂xj>

− 2 (42 + 25δ)

39δ
B+ ∂v<i

∂xj>
+ 2Rqint

(
14 + δ + θ dδ

dθ

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

−θ
10 (7Rqint

+ 2 (7 + 3δ)Rqtr)
dδ
dθ

+ 14Rqtrθ
(
dδ
dθ

)2
+ (70 + 23δ)Rqtrθ

d2δ
dθ2

δ
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2
)
q<i

∂θ

∂xj>

+4θ

(
2σk<i

∂vk
∂xj>

+ 2σk<i
∂vj>
∂xk

+ σij
∂vk
∂xk

)
− (42 + 25δ)

δ
ρθ∆θ

∂v<i

∂xj>

]
, (5.48)

and for u0,0ijk and B−
ij at their leading orders,

u0,0ijk = −τtr

[
3θ
∂σ<ij

∂xk>
− 3θσ<ij

∂ ln ρ

∂xk>
+

12Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

q<i
∂vj
∂xk>

]
, (5.49)

B−
ij = −τtr

[
6 (14 + δ)

7 (3 + δ)
θ

(
σk<i

∂vj>
∂xk

+ σk<i
∂vk
∂xj>

− 2

3
σij

∂vk
∂xk

)
+

2 (14 + δ)Rqint

(3 + δ)
(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)2 (5Rqint

[
3 + δ + θ

dδ

dθ

]

+Rqtr

[
(3 + δ) δ + (7 + 2δ) θ

dδ

dθ
+

((
dδ

dθ

)2

+ 2
d2δ

dθ2

)
θ2

])
q<i

∂θ

∂xj>

+
2 (14 + δ)

3 (3 + δ)
B− ∂v<i

∂xj>
−

2 (14 + δ)
(
3Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)
(3 + δ)

(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

) θq<i
∂ ln ρ

∂xj>

+2
(14 + δ)

(
3Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)
(3 + δ)

(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

) θ ∂q<i

∂xj>

]
. (5.50)

This is the set of original regularized 19 (R19) equations corresponding to the third

order of accuracy. Next, we will introduce new forms of the constitutive equations to

replace Eqs. (5.48,5.49,5.50) in the set of R19 equations. New forms eliminates some
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derivatives with stress tensor, heat flux and dynamic temperature and makes the set

of equations more suitable to solve while keeping the order of accuracy.

Transformation of equations The balance laws of B+ and B−, and constitutive

equations in the set of R19 equations could be rewritten using the leading order heat

flux difference, Navier-Stokes-Fourier stress, and viscosities as

σNSF
ij = −2µ

∂v<i

∂xj>
= σij +O

(
ϵ1+α

)
+ ... , (5.51a)

qNSF
i = −κ ∂θ

∂xi
= qi +O

(
ϵ1+α

)
+ ... , (5.51b)

κ∆
∂∆θ

∂xi
= ∆qi +O

(
ϵ1+2α

)
+ ... , (5.51c)

∆θNSF =
υ

ρ

∂vi
∂xi

= ∆θ +O
(
ϵ2α
)
+ ... , (5.51d)

and still keep the proper order of accuracy. The balance laws take the form of

DB+

Dt
− 2

20Rqint
−
(
δ + θ dδ

dθ

)
Rqtr

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

θ

[
∂qk
∂xk

− qk
∂ ln ρ (θ −∆θ)
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]
+
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3 + δ + θ dδ
dθ

)
ρθ∆θ +

3
(
23− δ − θ dδ

dθ

)
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dθ

ρ∆θ2 +
85

39
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39
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−
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(
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dθ

)
Rqtr
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+
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dθ

)
Rqtr

θ

θ −∆θ

[
qkqk
κ

+
qk∆qk
κ∆

]
+ 4θ

σijσij
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= − 1

τtr

(
9
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Ru1,1 + 15Ru2,0

)
ρ∆θ2− 1

τint

[
3

2
((3− δ)Ru1,1 + 20Ru2,0 − (23− δ)) ρθ∆θ

]
−
[
1

τtr
+

1

τint

](
3Ru1,1 + 10Ru2,0

13
B+ +

10

13
(Ru1,1 −Ru2,0)B−

)
, (5.52)
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DB−

Dt
− 2
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+
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dθ
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Rqtr
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3
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13
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[
3 (Ru1,1 −Ru2,0)

13
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. (5.53)

The new constitutive equations for B+
ij , B

−
ij and u

0,0
ijk in the set of R19 equations after

some manipulations become

B+
ij = − 1[

1 +
2(δ+θ dδ

dθ )µ
3(3+δ+θ dδ

dθ )v

]
ρθ

(
2 (70− 19δ)B− + (42 + 25δ)B+
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κ

+
∆qj>
κ∆

]

− 2

1
µ
+

2(δ+θ dδ
dθ )

3(3+δ+θ dδ
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5Rqint

+
(
δ + θ dδ
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)
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δ

)
1
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∂ ln ρ (θ −∆θ)
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]
,

(5.54)
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B−
ij = − 1

ρθ

[
−6 (14 + δ)
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+
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, (5.55)

u0,0ijk =
6Rqint

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

q<iσjk>
ρθ

+ 3µ
σ<ij

ρ (θ −∆θ)

[
qk>
κ

+
∆qk>
κ∆

]
− 3

µ

ρ

(
∂σ<ij

∂xk>
− σ<ij

∂ ln ρ (θ −∆θ)

∂xk>

)
, (5.56)

where the microscopic time scales are substituted by

τint =
3
(
3 + δ + θ dδ

dθ

)
2
(
δ + θ dδ

dθ

) υ

ρθ
and τtr =

µ

ρθ
. (5.57)

The following relations were used for more compact notation:

σk<i
∂v<j>

∂xk>
=

1

2
σk<i

∂vk
∂xj>

+
1

2
σk<i

∂vj>
∂xk

− 1

3
σij

∂vl
∂xl

, (5.58a)

σ<ij
∂vk>
∂xk

=
1

3
σij

∂vk
∂xk

+
1

3
σik

∂vj
∂xk

+
1

3
σkj

∂vi
∂xk

− 2

15
σlj

∂vl
∂xi

− 2

15
σil
∂vl
∂xj

− 2

15
σkl

∂vl
∂xk

δij ,

(5.58b)

σk<i
∂vj>
∂xk

=
1

2
σki

∂vj
∂xk

+
1

2
σkj

∂vi
∂xk

− 1

3
σkl

∂vl
∂xk

δij , (5.58c)

σk<i
∂vk
∂xj>

=
1

2
σki

∂vk
∂xj

+
1

2
σkj

∂vk
∂xi

− 1

3
σkl

∂vl
∂xk

δij , (5.58d)
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14

5
σk<i

∂vk
∂xj>

+ 3σ<ij
∂vk>
∂xk

= σki
∂vk
∂xj

+ σkj
∂vk
∂xi

− 2

3
σkl

∂vl
∂xk

δij

+ σik
∂vj
∂xk

+ σkj
∂vi
∂xk

− 2

3
σkl

∂vl
∂xk

δij + σij
∂vk
∂xk

, (5.58e)

2σk<i
∂vk
∂xj>

+ 2σk<i
∂vj>
∂xk

+ σij
∂vk
∂xk

= 4σk<i
∂v<j>

∂xk>
+

7

3
σij

∂vk
∂xk

. (5.58f)

5.7 Cases with 0.25 < α < 0.33

The ordering of terms depends on the value of α, as outlined in Eq. (5.8). Above,

we considered the model reduction for α < 0.25, which gave a hierarchical sequence

of equations. When we consider slightly larger values of α, those in the interval

0.25 < α < 0.33, the ordering of contributions changes. Specifically, only two orders

change position in the ordering sequence (5.8), namely ϵ2−α and ϵ1+3α. The difference

is relatively small: all set of equations corresponding to orders

{
ϵ0, ϵα, ϵ2α, ϵ1, ϵ1+α, ϵ1+2α, ϵ2, ϵ2+α, ϵ2+2α, ϵ2+3α, ϵ3

}
are the same as those in previous section. The two changed sets of equations are

discussed below.

5.7.1 Order ϵ2−α

The 2 − α order of accuracy requires the full conservation laws (5.14), the dynamic

temperature equation (5.2), the constitutive equations for the heat flux and stress

(5.26b), the heat flux difference (5.21), and the leading term of B+ (5.24). To save

space, we will not show the equations in detail.

5.7.2 Order ϵ1+3α

At order 1 + 3α one must consider the full conservation laws (5.14), the dynamic

temperature equation (5.2), the constitutive equations for the heat flux and stress

(5.26b), the leading order of B+ (5.24), and the equation for heat flux difference

(5.25).
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5.8 Cases with 0.33 < α < 0.5

At even larger values of α, in the range of 0.33 < α < 0.5, four orders change position

in the ordering sequence (5.8), viz. ϵ2−α, ϵ1+2α, ϵ2 and ϵ1+3α. Moreover, the 2 + 3α

order is greater than third order and is not further considered. The changed sets of

equations are presented below, the equations at all other orders remain same as those

of previous Section.

5.8.1 Order ϵ2−α

The 2−α order of accuracy is gained by considering the full conservation laws (5.14),

the dynamic temperature equation with terms up to order 2− 2α (5.18a), and terms

up to 1− α order in the heat flux and stress tensor,

σij = − 1[
1
τtr

+ 1
τint

]2ρ [θ −∆θ]
∂v<i

∂xj>
, (5.59a)

qi =
1[

1
τtr

+ 1
τint

]ρ( −10Rqint
Rqtr

(
δ + θ dδ

dθ

)
2Rqint

Rqtr

(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

)∆θ ∂θ
∂xi

+

(
δ + θ dδ

dθ

)
R2

qtr

(
10 + δ + θ dδ

dθ

)
+ 5R2

qint

(
5 + 2δ + 2θ dδ

dθ

)
2Rqint

Rqtr

(
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

) ∆θ
∂θ

∂xi

−
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

2Rqint
Rqtr

θ
∂θ

∂xi
+

5Rqint
− 3Rqtr

2Rqint
Rqtr

θ
∂∆θ

∂xi

)
. (5.59b)

5.8.2 Order ϵ1+2α

At order 1+2α the polyatomic gas must be described by the conservation laws (5.14),

the dynamic temperature equation (5.2), the constitutive equations for the heat flux

difference (5.21), and the following equations for stress (5.59a) and heat flux:

qi =
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

Rqint
Rqtr

(
5 + δ + θ dδ

dθ

) [
1
τtr

+ 1
τint

] [5 + δ + θ dδ
dθ

2
ρ (∆θ − θ)

∂θ

∂xi

+ρ (θ +∆θ)
∂∆θ

∂xi
+∆θ2

∂ρ

∂xi
+

2

39

∂B+

∂xi

]
−
(
δ + θ dδ

dθ

)
(Rqtr −Rqint

)

Rqint

(
5 + δ + θ dδ

dθ

) ∆qi . (5.60)
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For closing the set of equations, the leading order term of B+ (5.24) is required.

5.8.3 Order ϵ2

The second order of accuracy requires all terms in the stress and heat flux balance

up to factors ϵ1, which are Eqs. (5.27, 5.28), as well as the conservation laws (5.14),

the dynamic temperature equation (5.2), and the constitutive equations for B+ (5.24)

and the equation for heat flux difference as

∆qi = τtr
5

2

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr(

δ + θ dδ
dθ

)
R2

qtr + 5R2
qint

ρ

([
1 +

3Rqint(
δ + θ dδ

dθ

)
Rqtr

]
θ
∂∆θ

∂xi

+
[Rqint

−Rqtr ]

Rqtr

(θ +∆θ)
∂θ

∂xi

)
−

[
1 + τtr

τint

]
5Rqint

(Rqtr −Rqint
)

5R2
qint

+
(
δ + θ dδ

dθ

)
R2

qtr

qi . (5.61)

The second order equations form a set of PDEs for the 14 variables {ρ, vi, θ,∆θ, σij, qi}.

5.8.4 Order ϵ1+3α

In 1+3α order of accuracy, almost all equations are the same as at second order, only

that, in order to include the proper higher order terms, the constitutive equation for

heat flux difference must be replaced by (5.30).

5.8.5 Order ϵ3

In the third order of accuracy corresponds to the 0.33 < α < 0.5, the only change

from the set of R19 equations at lower α (0 < α < 0.33) is the balance law for the

heat flux difference, which now takes the form of Eq. (5.39).

5.9 Classical Navier-Stokes-Fourier equations, 0.5 <

α < 1

The classical Navier-Stokes-Fourier equations arise only for cases with 0.5 < α < 1,

where they are the appropriate system at order ε1. Here, the powers ε0, εα and ε1

are required, while the corrections to dynamic temperature of order ϵ2α and higher

must be discarded. Accordingly, the proper first order set are the conservation laws
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(5.14), together with the stress and heat flux as given in (5.15), while the equation

for dynamic temperature is (5.12),

∆θ =
2
(
δ + θ dδ

dθ

)
3
(
3 + δ + θ dδ

dθ

)τintθ ∂vi
∂xi

. (5.62)

The classical NSF equations give a five variables model for {ρ, vi, θ}. As discussed

before, α will assume values below 0.5 for rarefied flows. Thus, the classical Navier-

Stokes-Fourier equations have rather limited applicability in the rarefied regime. As

was shown earlier, for 0 < α < 0.5, the refined NSF equations are the appropriate

model at first order in ε. These use the full balance law for dynamic temperature

(5.13) instead of (5.12), and have the six independent field variables, {ρ, vi, θ,∆θ}.

5.10 The Prandtl number

The Prandtl number is defined as the dimensionless ratio of specific heat and shear

viscosity over heat conductivity [76],

Pr =
5 + δ + θ dδ

dθ

2

µ

k
. (5.63)

This is a measure of the importance of momentum over thermal diffusivity. Based

on the obtained shear viscosity and heat conductivity definitions (5.16), the Prandtl

number is

Pr =

(
5 + δ + θ dδ

dθ

)
Rqint

Rqtr

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

. (5.64)

Rqint
=

Pr
(
δ + θ dδ

dθ

)
Rqtr(

5 + δ + θ dδ
dθ

)
Rqtr − 5Pr

(5.65)

The values of the modelling parameters Rqint
and Rqtr are restricted by the Prandtl

number and one of them depends on the other one through Pr number. Viscosity and

heat conductivity values could be used to determine heat fluxes relaxation parameters.

Therefore the model provides the freedom to fit two parameters (Ru2,0 and Ru1,1).

These values can be found from fitting to experimental or numerical data for rarefied

flows, such as damping of ultrasound, light scattering experiments, or shockwave

structure.
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5.11 Intermediate Summary

The relaxation of the internal degrees of freedom leads to various ordering sequences

for different values of α, which differ in particular in the terms associated with the

dynamic temperature ∆θ. The accounting of these terms, which depends on the value

of α and the accuracy under consideration, needs great care.

At the first order of accuracy, a refined version of the classical Navier-Stokes-

Fourier equations is obtained, which includes the balance law for the dynamic tem-

perature (Sec. 5.4).

At the second order, a refined variant of Grad’s 14 moment equations is obtained,

which includes some corrections and three extra constitutive equations for ∆qi, B
−

and B+. We note that the higher order terms in the dynamic temperature introduce

higher space derivatives into these equations, which are not present in the typical

Grad 14 moment system. [23, 37]

At order 2 + 2α, a refined variant of Grad’s 18 moment equations is obtained

which consists of 18 PDEs and two constitutive equations.

Finally at the third order, the regularized 19 moment equations (R19) are ob-

tained which consists of 19 PDEs and three constitutive equations, and contribute

regularizing terms similar to what appears in the R13 equations for monatomic gases

[44].

In order to decide which set of equations we need to consider for a particular

problem, the relaxation times, their ratios and characteristic time or length scale

must be known. Therefore, the particular problem under consideration determines

which set of equations should be used. This choice depends on the values of both

Knudsen numbers: If the value of Kntr is rather small while Knint is relatively large,

one will choose a model with high power in ϵα and low power in ϵ; these are models

with corrections to the NSF equations, i.e., the set of 1 + 3α order equations, Sec.

5.8.4. On the other hand, if both Knudsen numbers are small, one can use a lower

accuracy model, like the refined NSF equations. In problems when both Knudsen

numbers are large, particularly order unity values of Kntr, a higher order of accuracy

is an essential choice, e.g., one would choose the third order R19 equations, Sec. 5.6.8.
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5.12 BGK model equations

The resulting set of 36 Grad’s equations from the BGK kinetic equation can be

obtained from above equations by setting all relaxation parameters (Rqint
, Rqtr , Ru2,0

and Ru1,1) to unity. The final form of the closed set of 36 optimized moment equations

from BGK kinetic equation is

Dρ

Dt
+ ρ

∂vi
∂xi

= 0 , (5.66)

Dvi
Dt

+
1

ρ

∂σij
∂xj

+
1

ρ

∂ρ (θ −∆θ)

∂xi
= 0 , (5.67)

3 + δ + θ dδ
dθ

2
ρ
Dθ

Dt
+
∂qi
∂xi

+ σij
∂vj
∂xi

+ ρ (θ −∆θ)
∂vi
∂xi

= 0 , (5.68)

ρ
D∆θ

Dt
+

10

3
(
5 + δ + θ dδ

dθ

)2 (qi −∆qi)

(
2
dδ

dθ
+ θ

d2δ

dθ2

)
∂θ

∂xi

−
2
(
δ + θ dδ

dθ

)
3
(
3 + δ + θ dδ

dθ

)ρ (θ −∆θ)
∂vi
∂xi

−
2
(
δ + θ dδ

dθ

)
3
(
5 +

(
δ + θ dδ

dθ

)) ∂∆qi
∂xi

−
2
(
δ + θ dδ

dθ

)
3
(
3 + δ + θ dδ

dθ

)σij ∂vj
∂xi

+

(
2

3 + δ + θ dδ
dθ

− 10

3
(
5 + δ + θ dδ

dθ

)) ∂qi
∂xi

= − ρ

τint
∆θ .

(5.69)

Dσij
Dt

+
4

5 +
(
δ + θ dδ

dθ

) ∂q<i

∂xj>
+

4

5

δ + θ dδ
dθ

5 + δ + θ dδ
dθ

∂∆q<i

∂xj>

+
∂u0,0ijk

∂xk
+ 2σk<i

∂vj>
∂xk

+ σij
∂vk
∂xk

+ 2ρ [θ −∆θ]
∂v<i

∂xj>

+
4(

5 + δ + θ dδ
dθ

)2 (2dδdθ + θ
d2δ

dθ2

)
[∆q<i − q<i]

∂θ

∂xj>
= −

[
1

τtr
+

1

τint

]
σij , (5.70)
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Dqi
Dt

+ σik
∂∆θ

∂xk
− σik [θ −∆θ]

∂ ln ρ

∂xk
−∆θ2

∂ρ

∂xi
+

5

13

∂B−

∂xi
− 2

39

∂B+

∂xi

− ρ [θ +∆θ]
∂∆θ

∂xi
+ [θ +∆θ]
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dθ
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σij
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∂xj
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ij
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dθ

∂θ

∂xj
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1
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ij
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∂θ

∂xj
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∂vj
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4δ
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∂B+
ij

∂xj
+
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ij

∂xj
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1 +

2

5 +
(
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∂xk

+ qi
∂vk
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ρ
σik

∂σkj
∂xj
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2
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dθ
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∂vk
∂xi

+
2
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δ + θ dδ

dθ

)
5
(
5 + δ + θ dδ

dθ

) [∆qk ∂vi
∂xk

+∆qi
∂vk
∂xk
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5 + δ + θ dδ
dθ

2
ρ (θ −∆θ)

∂θ

∂xi
= −
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1

τtr
+

1

τint

] (
5 + δ + θ dδ

dθ

)
5 +

(
δ + θ dδ

dθ

)qi , (5.71)
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D∆qi
Dt

+ σik
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DB+
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∆qk

∂θ
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∂ ln ρ

∂xk>
+ 3u0,0l<ij

∂vk>
∂xl

+
12

5

[
5

5 + δ + θ dδ
dθ

q<i +
δ + θ dδ

dθ

5 + δ + θ dδ
dθ

∆q<i

]
∂vj
∂xk>

= −
[
1

τtr
+

1

τint

]
u0,0ijk , (5.75)

DB+
ij

Dt
−
[
4 (70− 19δ)

39δ
B− +

2 (42 + 25δ)

39δ
B+ +

(42 + 25δ)

δ
ρθ∆θ

]
∂v<i

∂xj>

+
2

δ

(
70 + 23δ

5 + δ + θ dδ
dθ

− 14 + δ

)
θ
∂q<i

∂xj>
+

2 (70 + 23δ)
(
δ + θ dδ

dθ

)
5δ
(
5 + δ + θ dδ

dθ

) θ
∂∆q<i

∂xj>

+
2

δ

δ [14 + δ + θ dδ
dθ

]
− 14dδ

dθ

5
(
5 + δ + θ dδ

dθ

) (
δ + θ

dδ

dθ

)
+

2
(
2dδ
dθ

+ θ d2δ
dθ2

)
(70 + δ [14 + 9θ])(

5 + δ + θ dδ
dθ

)2
∆q<i

∂θ

∂xj>

+ 2

[
14 + δ + θ dδ

dθ

5 + δ + θ dδ
dθ

− θ
30 (7 + 2δ) dδ

dθ
+ 14θ

(
dδ
dθ

)2
+ (70 + 23δ) θ d2δ

dθ2

δ
(
5 + δ + θ dδ

dθ

)2
]
q<i

∂θ

∂xj>

+

[
2

δ

(
(70 + 23δ)

5 + δ + θ dδ
dθ

− 14 + δ

)
q<i +

2 (70 + 23δ)
(
δ + θ dδ

dθ

)
5δ
(
5 + δ + θ dδ

dθ

) ∆q<i

]
[
∂∆θ

∂xj>
− [θ −∆θ]

ρ

∂ρ

∂xj>
− 1

ρ

∂σj>k

∂xk

]
+ 4θ

∂u0,0ijk

∂xk
+B+

ij

∂vk
∂xk

− 4u0,0ijk

[
[θ −∆θ]

∂ ln ρ

∂xk
− ∂∆θ

∂xk
+

1

ρ

∂σkl
∂xl

]
+

14 + δ + δ−14
δ
θ dδ
dθ

2
u0,0ijk

∂θ

∂xk

+ 2B+
k<i

∂vj>
∂xk

+
8 (14− δ) (3 + δ)

(14 + δ) (42 + 25δ)

[
14

5
B−

k<i

∂vk
∂xj>

+ 3B−
<ij

∂vk>
∂xk

]
+

8δ

(42 + 25δ)

[
14

5
B+

k<i

∂vk
∂xj>

+ 3B+
<ij

∂vk>
∂xk

]
+ 4θ

[
14

5
σk<i

∂vk
∂xj>

+ 3σ<ij
∂vk>
∂xk

]
+

28dδ
dθ

[
28 (3 + δ)B−

ij − 3 (14 + δ)B+
ij

]
δ
(
3 + δ + θ dδ

dθ

)
(14 + δ) (42 + 25δ)

[
1

ρ

∂qk
∂xk

+
σkl
ρ

∂vl
∂xk

+ (θ −∆θ)
∂vk
∂xk

]
+
(14− δ) θ dδ

dθ
− δ (14 + δ)

δ
(
3 + δ + θ dδ

dθ

) σij

[
1

ρ

∂qk
∂xk

+
σkl
ρ

∂vl
∂xk

+ (θ −∆θ)
∂vk
∂xk

]
= −

[
1

τtr
+

1

τint

]
B+

ij ,

(5.76)
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DB−
ij

Dt
− 14 + δ

3 + δ
σij

[
1

ρ

∂qk
∂xk

+
σkl
ρ

∂vl
∂xk

+ (θ −∆θ)
∂vk
∂xk

]
−

22dδ
dθ

(3 + δ) (14 + δ)
(
3 + δ + θ dδ

dθ

)B−
ij

[
1

ρ

∂qk
∂xk

+
σlk
ρ

∂vk
∂xl

+ (θ −∆θ)
∂vk
∂xk

]
+

3 (14 + δ)

14 (3 + δ)

[
12 (14− δ) (3 + δ)

(14 + δ) (42 + 25δ)
B−

<ij +
12δ

(42 + 25δ)
B+

<ij + 6θσ<ij

]
∂vk>
∂xk

+
6 (14 + δ)

35 (3 + δ)

[
14 (14− δ) (3 + δ)

(14 + δ) (42 + 25δ)
B−

k<i +
14δ

(42 + 25δ)
B+

k<i + 7θσk<i

]
∂vk
∂xj>

+B−
ij

∂vk
∂xk

+ 2
14 + δ

3 + δ

δ + θ dδ
dθ

5

3 + δ + θ dδ
dθ

5 + δ + θ dδ
dθ

−
2θ
(
2dδ
dθ

+ θ d2δ
dθ2

)
(
5 + δ + θ dδ

dθ

)2
∆q<i

∂θ

∂xj>

+
2 (14 + δ)

(
5
[
3 + δ + θ dδ

dθ

]
+
[
(3 + δ) δ + (7 + 2δ) θ dδ

dθ
+
((

dδ
dθ

)2
+ 2d2δ

dθ2

)
θ2
])

(3 + δ)
(
5 + δ + θ dδ

dθ

)2 q<i
∂θ

∂xj>

− 3 (14 + δ)

7 (3 + δ)
u0,0ijk

[
[θ −∆θ]

∂ ln ρ

∂xk
− ∂∆θ

∂xk
+

1

ρ

∂σkl
∂xl

]
+

14 + δ + 14+δ
3+δ

θ dδ
dθ

2
u0,0ijk

∂θ

∂xk

+
2 (14 + δ)

[(
3 + δ + θ dδ

dθ

)
q<i − 2

5

(
δ + θ dδ

dθ

)
∆q<i

]
(3 + δ)

(
5 + δ + θ dδ

dθ

) [
∂∆θ

∂xj>
− [θ −∆θ]

ρ

∂ρ

∂xj>
− 1

ρ

∂σj>k

∂xk

]
+ 2B−

k<i

∂vj>
∂xk

+
2 (14 + δ)

3 (3 + δ)
B− ∂v<i

∂xj>
+ 2

(14 + δ)
(
3 + δ + θ dδ

dθ

)
(3 + δ)

(
5 + δ + θ dδ

dθ

) θ ∂q<i

∂xj>

+
2 (70 + 23δ)

(
δ + θ dδ

dθ

)
5δ
(
5 + δ + θ dδ

dθ

) θ
∂∆q<i

∂xj>
+

3 (14 + δ)

7 (3 + δ)
θ
∂u0,0ijk

∂xk
= −

[
1

τtr
+

1

τint

]
B−

ij . (5.77)

Applying order of magnitude on these set of equations produce different results than

the results showed above for our proposed S-model. This is due to the fact that the

leading order term of B− from BGK theory is at order ϵ1+2α, while it is at order ϵ1

from proposed S-model. Due to this difference in leading order of B−, terms and

equations that are presented at different orders of accuracy will change. This will

reduce the number of full balance laws required at third order from R19 of S-model

to R18 of BGK model. Full discussion and different set of equations obtained from

BGK model are given in Ref. [77, 85] and they are not shown here due to lack of

space.
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Gas C0 C1 × 106 C2 × 1011 C3 × 1017

N2 2.7399 −5.4490 3.6718 −5.4125
H2 2.2638 0.27047 −0.00977 0.0013103
CO 2.7037 −5.2149 3.8171 −5.8349
CO2 1.3822 46.8007 −18.8412 30.6293
CH4 1.3153 12.0982 0.53867 −0.98386

Table 5.1: Constants of specific heats for various gases.

5.13 Properties of different diatomic and polyatomic

gases

In this section we present data for temperature dependent specific heat, and transla-

tional and internal relaxation times for CO2, CO, H2, N2 and CH4.

Total specific heat is the sum of translational and internal DoF contributions. A

third order formula gives us a valid approximation of specific heat in the temperature

range between 250 to 1200 ◦K [86] as,

Cv =
3 + δ + θ dδ

dθ

2
= C0 + C1θ + C2θ

2 + C3θ
3 , (5.78)

the four constants for different gases are given in table 5.1. Based on the obtained

formula for specific heat we have

dCv

dθ
=

1

2

(
2
dδ

dθ
+ θ

d2δ

dθ2

)
= C1 + 2C2θ + 3C3θ

2 , (5.79a)

θ2
d2δ

dθ2
= 2

(
θ
dCv

dθ
− θ

dδ

dθ

)
, (5.79b)

δ + θ
dδ

dθ
= 2Cv − 3 . (5.79c)

We use measured data of bulk and shear viscosity of non-rarefied flows obtained

based on classical hydrodynamics and apply them to identify the relaxation times, τtr

and τint, in our kinetic model, Eq. 2.11. The relaxation times present in our model

have direct relation at N-S-F level to the measured viscosities, and translational and

internal relaxation times are calculated based on them. This is done through the

shear and bulk viscosity definitions, Eqs. 5.16 and 5.17 as,
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Gas nυ
µ0

υ0

N2 1.376 1.3038
H2 1 0.0346
CO2 −1.353 2.5974× 10−4

CH4 1.295 0.7874

Table 5.2: Bulk viscosity temperature exponent and ratio of reference viscosities at
295 K for various gases.

τtr =
µ

ρ (θ −∆θ)
, (5.80a)

τint =
3
(
3 + δ + θ dδ

dθ

)
2
(
δ + θ dδ

dθ

) υ

ρ (θ −∆θ)
. (5.80b)

For power law potentials with temperature exponent 0.5 ≤ nµ ≤ 1, the viscosity is

given by [87]

µ = µ0

(
p/ρ

p0/ρ0

)nµ

; (5.81a)

bulk viscosity can also be represented by power law formula as,

υ = υ0

(
p/ρ

p0/ρ0

)nυ

, (5.81b)

where, pressure is p = ρ (θ −∆θ), and temperature exponents are given in table 5.2

for different gases [79]. CH4 gas bulk viscosity is best fitted to power law formula

at temperature range between 77 − 293 K. At higher temperatures, bulk viscosity

experimental data is best fitted with exponential function through internal relaxation

time, Eq. 5.80b, as [79]

τint =
429.3× 10−5

ρ (θ −∆θ) m
k

Exp[
21.07(
m
k
θ
) 1

3

] , (5.82)

m and k are mass of molecule and Boltzmann constant.
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Using the dimensionless parameters,

τ̄int =
τint
τint0

, τ̄tr =
τtr
τint0

, ρ̄ =
ρ

ρ0
− 1 ,

θ̄ =
θ

θ0
− 1 , ∆θ̄ =

∆θ

θ0
, (5.83)

the dimensionless relaxation times becomes,

τtr =
µ0

υ0

2Cv − 3

3Cv

(1 + θ −∆θ)nµ−1

1 + ρ
, (5.84a)

τint =
3Cv

2Cv − 3

2Cv0 − 3

3Cv0

(1 + θ −∆θ)nυ−1

1 + ρ
, (5.84b)

and for CH4 gas at high temperatures,

τint =
1

(1 + ρ) (1 + θ −∆θ)

Exp[ 21.07

(m
k
θ0(1+θ))

1
3
]

Exp[ 21.07

(m
k
θ0)

1
3
]

, (5.84c)

where the bars are dropped for simplicity. Therefore, the values of dimensionless

relaxation times or Kn numbers as discussed in Sec. 4.1 are obtained based on

experimental data of viscosities and specific heat.
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Chapter 6

Linear wave analysis

There is nothing more genuine than breaking away from the chorus to learn the

sound of your own voice.

Po Bronson

As a first application of the above models, we study the phase speed and damping

of one-dimensional linear waves as forecasted in the obtained different orders of equa-

tions. We compare the predictions of the various equations in the hierarchies among

each other as well as to those of the classical Navier-Stokes-Fourier equations, and

its modification containing the balance law for the dynamic temperature. Moreover,

we study the influence of excitations of the internal degrees of freedom by comparing

with results for monatomic gases, where we will highlight the influence of the ratio of

collision times, τtr/τint. For simplicity, all relaxation parameters (Ru1,1 , Ru2,0 , Rqint

and Rqtr) are considered to be 1 and specific heat is constant with δ = 2.

6.1 Linearized equations

Sound waves are small disturbances of an equilibrium ground state {ρ0, v0i = 0, θ0},
and hence it suffices to study the linearized equations. For this, we write all variables

in terms of their ground state values plus a small deviation, denoted by a hat, as

ρ = ρ0 + ρ̂, θ = θ0 + θ̂, vi = v̂i, ∆θ = ∆θ̂, σij = σ̂ij, qi = q̂i,

∆qi = ∆q̂i, B
+
ij = B̂+

ij , B
− = B̂−, B−

ij = B̂−
ij , B

− = B̂−, u0,0ijk = û0,0ijk . (6.1)
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All deviations are considered to be very small, and the systems of equations are being

linearized by keeping only linear terms in the deviations.

The equilibrium rest state {ρ0, θ0} is used to non-dimensionalize all quantities and

equations. Specifically, we set

x̄i =
xi

τ0
√
θ0

, t̄ =
t

τ0
, τ̄int =

τint
τ0

, τ̄tr =
τtr
τ0

, ρ̄ =
ρ

ρ0
− 1 ,

θ̄ =
θ

θ0
− 1 , ∆θ̄ =

∆θ

θ0
, v̄i =

vi√
θ0

, σ̄ij =
σij
ρ0θ0

, q̄i =
qi

ρ0
√
θ0

3 , ∆q̄i =
∆qi

ρ0
√
θ0

3 ,

(6.2)

ū0,0ijk =
u0,0ijk

ρ0
√
θ0

3 , B̄
+
ij =

B+
ij

ρ0θ20
, B̄−

ij =
B−

ij

ρ0θ20
, B̄+ =

B+

ρ0θ20
, B̄− =

B−

ρ0θ20
.

Here, τ0 and L are characteristics time and length scales. Note that the dimensionless

relaxation times , τ̄int and τ̄tr, are the Knudsen numbers. In order to do the one-

dimensional wave analysis, all variables should depend only on time and x-direction.

For simplicity we use the following notation for the relevant elements of vectors and

tensors:

v1 = v, σ11 = σ, q1 = q, ∆q1 = ∆q, u0,0111 = u0,0 . (6.3)

To avoid complexity, the over bars and hats are dropped from now on, wherever

applicable. For deriving the trace free tensors in the 1-D equations, care must be

taken. For instance, the trace free parts of derivatives of stress and velocity are
∂σ<11

∂x1>
= 3

5
∂σ
∂x

and ∂v<1

∂x1>
= 2

3
∂v
∂x
. The final set of one-dimensional linear dimensionless

equations are presented next.

6.2 One-dimensional linear dimensionless equations

In the below set of G36 equations, first, second and third order set of equations are

obtained by zeroing the corresponding underlined terms, e.g. zeroing the double and

triple underlined terms reproduce the second order set of equations. For having the
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Grad’s 36 moment equations, the linearized, dimensionless conservation laws read,

∂ρ

∂t
+
∂v

∂x
= 0 , (6.4a)

∂v

∂t
+
∂ρ

∂x
+
∂θ

∂x
+
∂σ

∂x
− ∂∆θ

∂x
= 0 , (6.4b)

∂θ

∂t
+

2

3 + δ

∂v

∂x
+

2

3 + δ

∂q

∂x
= 0 , (6.4c)

full balance laws for the dynamic temperature, heat flux and stress,

∂∆θ

∂t
− 2δ

3 (3 + δ)

∂v

∂x
− 4δ

3 (3 + δ) (5 + δ)

∂q

∂x
− 2δ

3 (5 + δ)

∂∆q

∂x
= −∆θ

τint
, (6.4d)

∂σ

∂t
+

4

3

∂v

∂x
+

8

3 (5 + δ)

∂q

∂x
+

8δ

15 (5 + δ)

∂∆q

∂x
+
∂u0,0

∂xk
= −

[
1

τint
+

1

τtr

]
σ , (6.4e)

∂q

∂t
+

5 + δ

2

∂θ

∂x
+
∂σ

∂x
− ∂∆θ

∂x
+

4δ

25δ + 42

∂B+
11

∂x
− 2

39

∂B+

∂x

+
7 (14 + 3δ) (3 + δ)

(14 + δ) (42 + 25δ)

∂B−
11

∂x
+

5

13

∂B−

∂x
= −

[
1

τint
+

1

τtr

]
q , (6.4f)

must be considered along with balance laws,

∂∆q

∂t
− 5 (3 + δ)

2δ

∂∆θ

∂x
+
∂σ

∂x
+

15 + 7δ

42 + 25δ

∂B+
11

∂x
− 5 (3 + δ)

39δ

∂B+

∂xi

+
5 (δ − 10)

39δ

∂B−

∂x
− 7

3 + δ

14 + δ

δ + 6

42 + 25δ

∂B−
11

∂x
= −

[
1

τint
+

1

τtr

]
∆q , (6.4g)

∂B+

∂t
− 240− δ (47− δ)

2 (3 + δ) (5 + δ)

∂q

∂x
− 10δ

5 + δ

∂∆q

∂x
= −

[
1

τint
+

1

τtr

]
B+ , (6.4h)

∂B+
11

∂t
+

4 (14 + δ)

3 (5 + δ)

∂q

∂x
+ 4

∂u0,0

∂x
+

4 (70 + 23δ)

15 (5 + δ)

∂∆q

∂x
= −

[
1

τint
+

1

τtr

]
B+

11 , (6.4i)



97

∂u0,0

∂t
+

9

5

∂σ

∂x
+

18δ

5 (25δ + 42)

∂B+
11

∂x
+

18 (14− δ) (3 + δ)

5 (14 + δ) (42 + 25δ)

∂B−
11

∂x

= −

 1

τint
+

1

τtr

u0,0 , (6.4j)

∂B−

∂t
+

2 (6 + δ)

5 + δ

∂q

∂x
+

2δ

5 (5 + δ)

∂∆q

∂x
= −

 1

τint
+

1

τtr

B− , (6.4k)

∂B−
11

∂t
+

4 (14 + δ)

3 (5 + δ)

∂q

∂x
+

3 (14 + δ)

7 (3 + δ)

∂u0,0

∂x
− 8δ (14 + δ)

15 (3 + δ) (5 + δ)

∂∆q

∂x

= −

 1

τint
+

1

τtr

B−
11 . (6.4l)

6.3 Plane harmonic waves

All sets of linearized one-dimensional equations can be written in the general form

AAB
∂uB
∂t

+ CAB
∂uB
∂x

= LABuB , (6.5)

with the coefficients matrices AAB, CAB and LAB corresponding to the equations and

variables vector defined as

u[14] = {ρ, vi, θ, σij,∆θ, qi} first and second order,

(6.6a)

u[36] = {ρ, vi, θ, σij,∆θ, qi,∆qi, B+, B−, u0,0ijk, B
+
ij , B

−
ij} third order and G36. (6.6b)

Making the harmonic wave ansatz,

uA(x, t) = ŭA exp[i(ωt− kx)] , (6.7)

with the complex amplitude ŭA, frequency ω and wave number k, and inserting the

harmonic wave into the general form of the equations results in an algebraic equation,

[iωAAB − ikCAB − LAB] ŭB = 0 . (6.8)
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Non-trivial solutions for this equation are obtained when the determinant of the com-

plex matrix inside the bracket becomes zero, which gives the dispersion relation. For

different set of equations, the dispersion relation has different numbers of branches,

hence several solutions.

6.4 Phase velocity and damping factor

The phase velocity and damping factor are defined as

vph =
ω

kr
and ϕ = −ki . (6.9)

We found 2, 3, 4 and 4 pairs of branches for first, second and third order set of

equations, and G36, respectively. Each of these pairs consist of two waves with the

same damping and velocity magnitude moving in opposite direction.

The frequency is made dimensionless such that it can be considered as a Knudsen

number, [88]

ω̄ = ωτ0 = Kn . (6.10)

For convenience, the internal Knudsen number is set to unity, Knint = 1, so that the

reference time scale is the internal mean free time, τ0 = τint. This means frequency

is a measure of the internal Knudsen number.

Figure 6.1 shows the branches associated with the lowest damping, this is the

sound wave [88], for the different sets of equations, where only one branch is plotted.

The dimensionless inverse phase velocity and the reduced damping factor ϕ/ω for a

wide range of dimensionless frequency and two different ratios of Knudsen numbers,

10−2 and 10−3, are shown as functions of inverse frequency.

All sets of equations agree for low frequency (i.e., small Knudsen number). How-

ever, as the Knudsen number rises (i.e., for smaller inverse frequency), first the refined

NSF equations starts to deviate, followed by the second order set of equations. The

third order equations, R19, have agreement with the full set of 36 equations up to

higher Knudsen numbers. Therefore, the range of validity for the set of R19 equations

is near 1/ωτint = Kntr/Knint; this value of dimensionless frequency corresponds to

the case of Kntr = 1. Based on the Fig. 6.1, the expected validity of the R19 is up

to Kntr = 0.6.

A comparison between the refined and classical NSF equations is made in Fig.
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Figure 6.1: Inverse dimensionless phase velocity
√

(5 + δ) / (3 + δ)/vph (left) and re-
duced damping α/ω (right) as functions of inverse frequency 1/ω for various Knudsen
number ratios and different sets of equations: refined NSF (blue dashed), second order
(green dotted), R19 (black continuous), G36 (black dash-dotted).
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Figure 6.2: Inverse dimensionless phase velocity
√

(5 + δ) / (3 + δ)/vph (left) and re-
duced damping α/ω (right) as functions of inverse frequency 1/ω for two Knudsen
number ratios and different sets of equations: R19 (black continuous), classical NSF
(red dash-dotted), refined NSF (orange dashed).
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Figure 6.3: Inverse dimensionless phase velocity
√

(5 + δ) / (3 + δ)/vph (left) and re-
duced damping α/ω (right) as functions of inverse frequency 1/ω for set of R19
equations for Knudsen number ratios, 0.5 (black dotted), 0.05 (black dash-dotted),
10−5 (red dashed), and for the set of R13 equations corresponds to the monatomic
gas (green continuous).
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6.2. The difference between the two sets is simply the time derivative ∂∆θ
∂t

in Eq.

(6.4d), which is there for the refined case, but not for the classical NSF equations.

Original NSF deviates from R19 for almost all frequencies plotted, while refined NSF

agrees to R19 for dimensionless inverse frequencies 1/ (ωτint) down to the values of

Kntr/Knint. Considering the proposed refined version of the NSF equations, Sec. 5.4,

instead of the classical one, will extend the range of validity of the NSF equations

considerably.

6.5 Monatomic limit

The cases with very low relaxation time ratio, so that τtr < τ0 ≪ τint, correspond to

frozen internal exchange processes. Therefore, if the internal mean free time becomes

much larger than the macroscopic time and translational mean free time, the internal

degrees of freedom are frozen and the polyatomic gas acts like a monatomic gas.

For convenience, now the translational Knudsen number is set to unity, Kntr = 1,

so that the reference time scale is the translational mean free time, τ0 = τtr. This

means frequency is a measure of the translational Knudsen number. In Fig. 6.3

results from the R19 equations for three different relaxation times ratios are compared

with the result from monatomic counterpart, which are the R13 equations [44]. The

three relaxation times considered here corresponds to two extreme cases, excited

(τtr ≈ τint) and frozen (τint ≫ τtr) internal degrees of freedom, and one case in

between: τtr/τint = 0.5, 0.05, 10−5. The case with τtr/τint = 10−5 corresponds to

the frozen internal state and exhibits a good agreement with the monatomic results

from the R13 equations. A polyatomic gas with δ = 2 behaves like a monatomic gas

with δ = 0, if the internal degrees of freedom are frozen. This behavior is seen for

polyatomic gases with higher internal degrees of freedom too. For intermediate values

of τtr/τint, the speed of sound is strongly dependent on frequency. If the frequency is

small (large 1/ωτ), the internal degrees of freedom have time to relax, and the speed

of sound is that for δ = 2, but for larger frequency, the internal degree of freedom

does not have sufficient time to relax, which results in an increased speed of sound.

Here, we reproduce the monatomic gas behavior as an asymptotic solution of the

equations, without setting the internal degrees of freedom to zero, as was done in Ref.

[40].
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Chapter 7

Theory of boundary condition

One sign that you are pushing boundaries is a lot of failures.

Ben Silbermann

In this chapter, we introduce a microscopic boundary condition using same idea

that we used to model two distinguished exchanged processes, internal and transla-

tional. In next two chapters, we use this microscopic boundary condition to obtain

the corresponding macroscopic boundary conditions. Having the macroscopic bound-

ary condition enable us to solve different boundary value problems, e.g. stationary

heat transfer and Couette flow, using proposed macroscopic models above.

Microscopic wall boundary condition prescribes the distribution function of the

particles reflected from the wall when the distribution function of the incoming par-

ticles towards the wall is known. The most common used condition for boundary is

the Maxwell’s accommodation model [89]. Maxwell proposed that the gas particles

are reflected from the wall specularly or diffusivity. A portion of the particles hit the

wall and accommodate at the wall so that they being reflected with the equilibrium

distribution of the wall. The other portion is reflected specularly. In this case the

normal component of the velocity changes sign and the distribution function describ-

ing the reflected particles is akin to the incoming particles distribution function with

corresponding transformed velocities, f ∗ (c) = f (c− 2 (n.c)n).

For polyatomic particles that are diffusively reflected, we have two Maxwellian

type equilibrium distribution functions, Eqs. (2.21, 2.25) corresponding to only trans-

lational energy equilibrium and total energy equilibrium. We adopt the generalized

Grad’s 36 distribution function (3.9) and its corresponding form as the phase density

(f ∗) for incoming and specularly reflected particles. Therefore we introduce the wall
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boundary condition as the velocity distribution function in the infinitesimal precinct

of the wall,

f̃ (c) =

{
χ [(1− ζ) ftr,w (c) + ζfint,w (c)] + (1− χ) f ∗

|36 (c) n. (c− vw) ≻ 0 ,

f|36 (c) n. (c− vw) ≺ 0 ,

(7.1)

where the two wall accommodation coefficients, ζ and χ, are specifying the level of

accommodation of the particle on the wall. Full accommodation is specified by ζ = 1

and χ = 1, partial accommodation for particles only accommodated translationally

identified by ζ = 0 and χ = 1, and the pure specularly reflected particles are described

by ζ = 0 and χ = 0. Moreover, n is the wall normal pointing towards the gas.

Wall boundary conditions for gases must obey a number of requirements, most im-

portantly proper normalization and reciprocity [90].The above is a variant of Maxwell

boundary conditions, and obeys these requirements. Normalization implies that the

number of particles conserved, and this is ensured here by adjusting the densities for

the wall Maxwellians, ftr,w and fint,w, accordingly, see Eq. 8.17 in Sec. 8.2. The

distribution used on the wall are Maxwellian distribution which are normalized and

the Grad’s distribution is an expansion on the Maxwellian distribution, which are

designed to ensure conserved particles number as will be seen in Eq. 8.17. This

means the kernel is normalized and number of particles hitting the wall are same as

reflecting particles and the normalization condition is satisfied [90].

For obtaining boundary conditions for our field of macroscopic equations, we do

the similar procedure as we did to obtain the balance law for moments: we multiply

the wall distribution function
(
f̃
)
by corresponding velocity and internal parameter

function, Ψ, and take the integral of it over velocity and internal parameter space.

This will give us the relations between the macroscopic properties at the wall to the

wall properties given in the wall equilibrium distribution functions, ftr,w and fint,w.

We define two peculiar velocities based on average velocity, C = c−Vgas, and based

on the wall velocity, Cw= c−Vw. This will give us the integral of the weighted wall

distribution function as,
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∫
Ψ(C, I) f̃ (C) dCdI =∫ ∫

C.n≺0

[Ψ (C, I) + (1− χ)Ψ (C− 2 (n.C)n, I)] f|36 (C, I) dCdI

+χ

[∫ ∫
C.n≻0

Ψ(Cw − Vs, I) [(1− ζ) ftr,w (Cw, I) + ζfint,w (Cw, I)] dCwdI

]
, (7.2)

where the slip velocity is Vs = Vgas −Vw.

The choice of the velocity and internal parameter function Ψ (C, I) is restricted by

Grad’s finding based on the argument of specular reflection that the velocity function

should be odd in the normal component of the particle velocity [62]. This is due

to the fact that the even polynomials at the wall boundary condition will produce

identity and are uncontrollable. Also, we only prescribe fluxes and not the variables

based on the theory of balance laws which states that at the boundary we need to

prescribe fluxes, not variables [47].

In next two chapters, we model and solve two boundary value problems, heat

conduction and Couette flow, using above proposed models. Based on the model

formulation of each problem, corresponding velocity and internal parameter function

Ψ (C, I) is obtained and macroscopic boundary conditions are derived using Eq. 7.2.
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Chapter 8

One dimensional stationary heat

conduction

But heat can also be produced by the friction of liquids, in which there could be no

question of changes in structure, or of the liberation of latent heat.

Hermann von Helmholtz

As the first boundary value problem, one dimensional heat transfer within the

stationary polyatomic gas is studied, using numerical and analytical methods to solve

non-linear and linear systems. Two sets of equations are used in this chapter, the

R19 and the refined NSF equations. We consider an unsteady heat conduction which

is homogeneous in y and z directions. The gas is confined between two infinite plates

and is stationary, as shown in Fig. 8.1. The walls are at different temperatures and

the flow properties and variables depend only on x-direction. We study different gases

and different test case scenarios.

The equilibrium rest state {ρ0, θ0} is used to non-dimensionalize all quantities and

equations. Specifically, we set

x̄i =
xi

τ0
√
θ0

=
xi
L
, t̄ =

t

τ0
, τ̄int =

τint
τ0

, τ̄tr =
τtr
τ0

, ρ̄ =
ρ

ρ0
− 1 ,

θ̄ =
θ

θ0
− 1 , ∆θ̄ =

∆θ

θ0
, σ̄ij =

σij
ρ0θ0

, q̄i =
qi

ρ0
√
θ0

3 , ∆q̄i =
∆qi

ρ0
√
θ0

3 , (8.1)

ū0,0ijk =
u0,0ijk

ρ0
√
θ0

3 , B̄
+
ij =

B+
ij

ρ0θ20
, B̄−

ij =
B−

ij

ρ0θ20
, B̄+ =

B+

ρ0θ20
, B̄− =

B−

ρ0θ20
.

Note that the dimensionless relaxation times , τ̄int and τ̄tr, are the Knudsen num-
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Figure 8.1: General stationary heat conduction schematic. Top and bottom walls are
at different temperatures.

bers. To avoid complexity, the over bars and hats are dropped in the following

dimensionless set of R19 equations describing the considered problem:

energy and momentum conservations and the balance laws for dynamic tempera-

ture ∆θ, stress tensor σij,

∂ρ

∂x
+
∂ (θ −∆θ)

∂x
+
∂σ11
∂x

= 0 , (8.2)

3 + δ + (1 + θ) dδ
dθ

2
(1 + ρ)

∂θ

∂t
+
∂q

∂x
= 0 ; (8.3)

(1 + ρ)
∂∆θ

∂t
+

(
2

3 + δ + (1 + θ) dδ
dθ

− 10Rqint

3
(
5Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

)) ∂q

∂x

−
2
(
δ + (1 + θ) dδ

dθ

)
Rqtr

3
(
5Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

) ∂∆q
∂x

+
10Rqint

Rqtr

(
2dδ
dθ

+ (1 + θ) d2δ
dθ2

)
3
(
5Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

)2 (q −∆q)
∂θ

∂x
= −(1 + ρ)

τint
∆θ , (8.4)

∂σ11
∂t

+
2

3

4Rqint

5Rqint
+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

∂q

∂x
+

2

3

4
(
δ + (1 + θ) dδ

dθ

)
Rqtr

5
(
5Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

) ∂∆q
∂x

+
2

3

4Rqint
Rqtr

(
2dδ
dθ

+ (1 + θ) d2δ
dθ2

)
(
5Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

)2 (∆q − q)
∂θ

∂x
+
∂u0,0111

∂x
= −

[
1

τtr
+

1

τint

]
σ11 ,

(8.5)
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overall heat flux q, heat flux difference ∆q,

∂q

∂t
+

(
1 + θ +∆θ − 1

ρ
σ11

)
∂σ11
∂x

+
5 + δ + (1 + θ) dδ

dθ

2
[(1 + ρ) [1 + θ −∆θ] + σ11]

∂θ

∂x

+
168

(42 + 25δ)2
B+

11

dδ

dθ

∂θ

∂x
+

4δ

(42 + 25δ)

∂B+
11

∂x
− 2

39

∂B+

∂x
+

5

13

∂B−

∂x

+
7 (3 + δ) (14 + 3δ)

(14 + δ) (42 + 25δ)

∂B−
11

∂x
+ [σ11 − (1 + ρ) [1 + θ +∆θ]]

∂∆θ

∂x

−
[
(1 + θ −∆θ)σ11

(1 + ρ)
+ ∆θ2

]
∂ρ

∂x
+ 7

(
1

(14 + δ)2
− 24

(42 + 25δ)2

)
B−

11

dδ

dθ

∂θ

∂x

= −
[
1

τtr
+

1

τint

](
Rqint

Rqtr

(
5 + δ + (1 + θ) dδ

dθ

)
5Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

q +

(
δ + (1 + θ) dδ

dθ

)
Rqtr (Rqtr −Rqint

)

5Rqint
+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

∆q

)
,

(8.6)

∂∆q

∂t
+

[
σ11 −

5

2

(
1 +

3Rqint(
δ + (1 + θ) dδ

dθ

)
Rqtr

)
(1 + ρ) (1 + θ +∆θ)

]
∂∆θ

∂x

+

[
(∆θ − 1− θ)

1 + ρ
σ11 −

5

2

(
1 +

3Rqint(
δ + (1 + θ) dδ

dθ

)
Rqtr

)
∆θ2

]
∂ρ

∂x

+

[
1 + θ +

5

2

(
1 +

3Rqint

Rqtr

(
δ + (1 + θ) dδ

dθ

))∆θ

]
∂σ11
∂x

− 5

39

(
1 +

3Rqint(
δ + (1 + θ) dδ

dθ

)
Rqtr

)
∂B+

∂x

+
5

39

(
1− 10Rqint(

δ + (1 + θ) dδ
dθ

)
Rqtr

)
∂B−

∂x
+

δ

(42 + 25δ)

(
7 +

15Rqint(
δ + (1 + θ) dδ

dθ

)
Rqtr

)
∂B+

11

∂x

+

5

2

[
1− Rqint

Rqtr

]
[σ11 + (1 + ρ) (1 + θ +∆θ)] +

42

(
7 +

15Rqint

(δ+(1+θ) dδ
dθ )Rqtr

)
(42 + 25δ)2

dδ

dθ
B+

11

 ∂θ

∂x

= −
[
1

τtr
+

1

τint

](
5Rqint

(Rqtr −Rqint
)

5Rqint
+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

q +

(
δ + (1 + θ) dδ

dθ

)
R2

qtr + 5R2
qint

5Rqint
+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

∆q

)
,

(8.7)
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and higher moments B+ and B−,

∂B+

∂t
− 2 (1 + θ)

[
∂q

∂x
− q

(1 + ρ) (1 + θ −∆θ)

∂ρ (θ −∆θ)

∂x

]
=

5Rqint
+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

20Rqint
−
(
δ + (1 + θ) dδ

dθ

)
Rqtr

[
− 1

τtr

(
9

2
Ru1,1 + 15Ru2,0

)
(1 + ρ)∆θ2

− 1

τint

(
3

2
((3− δ)Ru1,1 + 20Ru2,0 − (23− δ)) (1 + ρ) (1 + θ)∆θ

)
− 6 (1 + θ)

σ11σ11
µ

+

50Rqint
Rqtr (1 + θ)

(
2dδ
dθ

+ (1 + θ) d2δ
dθ2

)
(
5Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

)2 +
(5Rqint

+ 3Rqtr)
(
δ + (1 + θ) dδ

dθ

)
− 100Rqint

5Rqint
+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

 qq

κ

−
[
1

τtr
+

1

τint

](
3Ru1,1 + 10Ru2,0

13
B+ +

10

13
(Ru1,1 −Ru2,0)B−

)]
− 2 (1 + θ)

1 + θ −∆θ

[
qq

κ
+
q∆q

κ∆

]
,

(8.8)

∂B−

∂t
+ 2 (1 + θ)

[
∂q

∂x
− q

(1 + ρ) (1 + θ −∆θ)

∂ρ (θ −∆θ)

∂x

]
=

5Rqint
+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

6Rqint
+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

[
− 1

τtr

9 (Ru1,1 −Ru2,0)

2
(1 + ρ)∆θ2

− 1

τint

(
3

2
(3 + δ + [3− δ]Ru1,1 − 6Ru2,0) (1 + ρ) (1 + θ)∆θ

)
+

9

5
(1 + θ)

σ11σ11
µ

+

(5Rqint
+ 3Rqtr)

(
δ + (1 + θ) dδ

dθ

)
+ 30Rqint

5Rqint
+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

−
2RqtrRqint

(1 + θ)
(
2dδ
dθ

+ (1 + θ) d2δ
dθ2

)
(
5Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

)2
 qq

κ

−
[
1

τtr
+

1

τint

](
10Ru1,1 + 3Ru2,0

13
B− +

3 (Ru1,1 −Ru2,0)

13
B+

)]
+ 2

(1 + θ)

(1 + θ −∆θ)

[
qq

κ
+
q∆q

κ∆

]
, (8.9)
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the constitutive equations for the higher moments B+
ij , B

−
ij and u0,0ijk,

(1 + ρ) (1 + θ)
(70+23δ)Rqint

δ(5Rqint+(δ+(1+θ) dδ
dθ )Rqtr)

− 14−δ
δ

[
1

τtr
+

1

τint

]
B+

11 =
4

3

(1 + θ) q

(1 + θ −∆θ)

[
q

κ
+

∆q

κ∆

]

− 4

3
(1 + θ)

[
∂q

∂x
− q

(1 + ρ) (1 + θ −∆θ)

∂ρ (θ −∆θ)

∂x

]
− 1(

(70+23δ)Rqint

δ(5Rqint+(δ+(1+θ) dδ
dθ )Rqtr)

− 14−δ
δ

) (2 (70− 19δ)B− + (42 + 25δ)B+

µ39δ
σ11

+
(42 + 25δ)

µ2δ
(1 + ρ) (1 + θ)∆θσ11−

4σ11σ11
(1 + ρ) τtr

−4

3
Rqint

qq

κ

[
14 + δ + (1 + θ) dδ

dθ

5Rqint
+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

−
10 (7Rqint

+ 2 (7 + 3δ)Rqtr) (1 + θ) dδ
dθ

+ 14Rqtr

(
(1 + θ) dδ

dθ
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+ (70 + 23δ)R2

qtr (1 + θ) d2δ
dθ2

δ
(
5Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

)2
]

+

[
(14− δ) (1 + θ) dδ

dθ
− δ (14 + δ)

δ
(
3 + δ + (1 + θ) dδ

dθ

) +
28

3

]
3
(
3 + δ + (1 + θ) dδ

dθ

)
2
(
δ + (1 + θ) dδ

dθ

)
τint

∆θσ11

)
, (8.10)

(3 + δ)
(
5Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

)
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(
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q

κ
+
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3
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∂q
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−
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5Rqint
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5Rqint

+
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qq
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, (8.11)
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u0,0111

τtr
=

9

5

(1 + θ) σ11
(1 + θ −∆θ)

[
q

κ
+

∆q

κ∆

]
+

18Rqint

5
(
5Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

) qσ11
(1 + ρ) (1 + θ) τtr

− 9

5
(1 + θ)

(
∂σ11
∂x

− σ11
(1 + ρ) (1 + θ −∆θ)

∂ρ (θ −∆θ)

∂x

)
. (8.12)

8.1 Refined NSF equations

The corresponding first order equations, refined Navier Stokes Fourier (RNSF), to

the stationary heat conduction problem under consideration are,

∂ρ

∂x
+
∂θ

∂x
= 0 , (8.13a)

3 + δ + (1 + θ) dδ
dθ

2
(1 + ρ)

∂θ

∂t
+
∂q

∂x
= 0 , (8.13b)

q = −τtr
5Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

2Rqint
Rqtr

(1 + ρ) (1 + θ)
∂θ

∂x
. (8.13c)

Where, the stress tensor and dynamic temperature are obtained to be zero at this

order, for the problem under consideration.

8.2 Boundary conditions

For obtaining the boundary conditions, we consider the steady state condition with

11 independent variables,

Φ =
{
θ,∆θ, q,∆q, B+, B−, B+

11, B
−
11, ρ, σ11, u

0,0
111

}
,

and write the system of equations as

B (Φ)
∂Φ

∂y
= P (Φ)Φ . (8.14)

The number of boundary conditions which must be described is the number of vari-

ables of the system (11) minus the number of multiplicity of the zero eigenvalues of

the matrix A (Φ) [47]. This is due to the fact that the left zero eigenvectors associated

with the zero eigenvalues in Eq.(8.14) are acting like constraint on the variable vector
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Φ and reduces the dimension of the system by the number of zero eigenvalues. Cal-

culation of the eigenvalues shows that the matrix A (Φ) possesses a zero eigenvalue

with multiplicity of 4. Therefore, we need to prescribe a total number of 7 boundary

conditions for regularized 19 equations. Using the eigenvectors associated with the

zero eigenvalues, we obtain relations for

{
B+, B−, B+

11, B
−
11

}
. (8.15)

These relations are used to eliminate the depending variables and reduce the system

from 11 independent variables to a system of 7 independent variables. Based on this

reduced 7 field of variables of Φ, we have the velocity and internal energy parameter

function corresponding to the odd fluxes of the variables as,

Ψ =

{
C1, C1

(
C2

2
+ I2/δ

)
, C1

(
C2

2
− 5Prqint(

δ + θ dδ
dθ

)
Prqtr

I2/δ

)
, C1

(
C1C1 −

3

5
C2

)}
.

(8.16)

The microscopic boundary condition along with Ψ function, Eq. 7.2, are used to

obtain macroscopic boundary conditions. We obtained from the first term in Ψ,

ρw
√
θw = − (14− δ) (3 + δ)

2 (14 + δ) (42 + 25δ) θ
3
2

B−
11 +

1

156

B+ −B−

θ
3
2

− δ

2 (42 + 25δ) θ
3
2

B+
11

+
1

2

σ11√
θ
+

1

2
√
θ
ρ (2θ −∆θ) = Υ . (8.17)

The boundary condition for total heat flux is obtained by second term in Ψ as,

q = −ny
χ

(2− χ)

√
2

πθ

[
(56− δ (1− ζ))

312
B− + (3 + δ)

(140 + δ (32 + δ) + (14− δ) δζ)

4 (14 + δ) (42 + 25δ)
B−

11

+
[(1− ζ) δ − 4]

312
B+ +

δ (4− δ (1− ζ))

4 (42 + 25δ)
B+

11 −
(2 + δ (1− ζ))

4
θ (ρ∆θ − σ11)

+
δ (1− ζ)

2
ρθ2 +

Υ

2

√
θ [(4 + δζ) (θ − θw)− (1− ζ) (δθ + 3∆θ)]

]
. (8.18)
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From third term in Ψ, boundary condition for heat flux difference is obtained as,

∆q = ny
χ

(2− χ) Prqtr
(
δ + θ dδ

dθ

)√ 2

πθ

[
5 (40− δ) Prqint

−12
(
δ + θ dδ

dθ

)
Prqtr

312
B−

+
5 (12 + δ) Prqint

+12
(
δ + θ dδ

dθ

)
Prqtr

312
B+ +

10δ Prqint
−8
(
δ + θ dδ

dθ

)
Prqtr

4
ρθ2

+ [3 + δ]
5δ (42 + δ) Prqint

−6 (14− δ)
(
δ + θ dδ

dθ

)
Prqtr

4 (14 + δ) (42 + 25δ)
B−

11

+
5δ Prqint

−6
(
δ + θ dδ

dθ

)
Prqtr

4
θσyy +

5 (6− δ) Prqint
+12

(
δ + θ dδ

dθ

)
Prqtr

4
ρθ∆θ

−δ
5 (6 + δ) Prqint

+6
(
δ + θ dδ

dθ

)
Prqtr

4 (42 + 25δ)
B+

11+
Υ

2

√
θ

[(
δ + θ

dδ

dθ

)
Pr
qtr
V 2
s − 15 Pr

qint

(1− ζ)∆θ

−
(
5δ Pr

qint

−4

(
δ + θ

dδ

dθ

)
Pr
qtr

)
θ +

(
5δζ Pr

qint

−4

(
δ + θ

dδ

dθ

)
Pr
qtr

)
(θ − θW )

]]
, (8.19)

Finally, last term in Ψ give us boundary condition for u0,0yyy as,

u0,0111 = ny
χ

(2− χ)

√
2

πθ

[
(−14 + δ) (3 + δ)

(14 + δ) (42 + 25δ)
B−

11 −
δB+

11

42 + 25δ
− 2 (B+ −B−)

195

−7σ11 + 2ρ∆θ

5
θ +Υ

2

5

√
θ [θ − θW ]

]
. (8.20)

These boundary conditions have to hold on both walls with ny = ±1 for lower and

upper wall, respectively. Last boundary condition is the prescribe mass condition,

∫ L
2

−L
2

ρdx = ρ0L . (8.21)

If the gas was not stationary and velocity component towards the wall was non-zero,

the balance of mass would replace this condition.

Also, the boundary condition for the RNSF equations along with the prescribe

mass condition is the temperature jump condition obtained from Eq. 8.18 at order

ε1as,

θ − θw = nyτtr
(2− χ)

χ

√
πθ

2

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

(4 + δζ)Rqint
Rqtr

∂θ

∂x
. (8.22)
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8.3 Numerical scheme

The finite difference method is used to discretize our system of equations

A (Φn)
∂Φ

∂t
+B (Φn)

∂Φn

∂y
= P (Φn) Φn . (8.23)

with second order accuracy in spatial discretization as,

∂Φ

∂y
=

Φi+1 − Φi−1

2∆x
, (8.24)

and first order discretization in time as,

∂Φ

∂t
=

Φn+1
i − Φn

i

∆t
. (8.25)

Where, superscript n+1 denotes next time step values while variables with superscript

n are at current time step. Spatial nodes are shown by subscript i with 0 ≤ i ≤ m,

where m is number of grid nodes.

The above set of equations along with the boundary conditions are solved at each

time step to obtain the next time step values, starting from the initial conditions.

This procedure continuous until we reach steady state and the steady state condition

is satisfied, ∣∣∣θn+1
m/2 − θnm/2

∣∣∣∣∣∣θnm/2

∣∣∣ ≤ 10−6 . (8.26)

The initial conditions are the reference equilibrium state {ρ0, θ0} with all non-equilibrium

values are equal to zero. The dimensionless boundary conditions are as follows:

boundary condition for total heat flux,

q = −ny
χ

(2− χ)

√
2

π (1 + θ)

[
(56− δ (1− ζ))

312
B− + (3 + δ)

(140 + δ (32 + δ) + (14− δ) δζ)

4 (14 + δ) (42 + 25δ)
B−

11

+
[(1− ζ) δ − 4]

312
B++

δ (4− δ (1− ζ))

4 (42 + 25δ)
B+

11−
(2 + δ (1− ζ))

4
(1 + θ) ((1 + ρ)∆θ − σ11)

+
δ (1− ζ)

2
(1 + ρ) (1 + θ)2 +

Υ

2

√
(1 + θ) [(4 + δζ) (θ − θw)− (1− ζ) (δ (1 + θ) + 3∆θ)]

]
,

(8.27)
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for heat flux difference,

∆q = ny
χ

(2− χ) Prqtr
(
δ + (1 + θ) dδ

dθ

)√ 2

π (1 + θ)[
5 (40− δ) Prqint

−12
(
δ + (1 + θ) dδ

dθ

)
Prqtr

312
B−

+
5 (12 + δ) Prqint

+12
(
δ + (1 + θ) dδ

dθ

)
Prqtr

312
B+

− δ
5 (6 + δ) Prqint

+6
(
δ + (1 + θ) dδ

dθ

)
Prqtr

4 (42 + 25δ)
B+

11

+ [3 + δ]
5δ (42 + δ) Prqint

−6 (14− δ)
(
δ + (1 + θ) dδ

dθ

)
Prqtr

4 (14 + δ) (42 + 25δ)
B−

11

+
5 (6− δ) Prqint

+12
(
δ + (1 + θ) dδ

dθ

)
Prqtr

4
(1 + ρ) (1 + θ)∆θ

+
10δ Prqint

−8
(
δ + (1 + θ) dδ

dθ

)
Prqtr

4
(1 + ρ) (1 + θ)2

+
5δ Prqint

−6
(
δ + (1 + θ) dδ

dθ

)
Prqtr

4
(1 + θ)σyy +

Υ

2

√
(1 + θ)[

−15 Pr
qint

(1− ζ)∆θ −
(
5δ Pr

qint

−4

(
δ + (1 + θ)

dδ

dθ

)
Pr
qtr

)
(1 + θ)

+

(
5δζ Pr

qint

−4

(
δ + (1 + θ)

dδ

dθ

)
Pr
qtr

)
(θ − θW )

]]
, (8.28)

and for u0,0yyy,

u0,0111 = ny
χ

(2− χ)

√
2

π (1 + θ)

[
(−14 + δ) (3 + δ)

(14 + δ) (42 + 25δ)
B−

11 −
δB+

11

42 + 25δ
− 2 (B+ −B−)

195

−7σ11 + 2 (1 + ρ)∆θ

5
(1 + θ) + Υ

2

5

√
(1 + θ) [θ − θW ]

]
. (8.29)

The prescribed mass condition along with Eq. 8.2,∫ 1
2

− 1
2

ρdx = 0 , (8.30)

is solved by trapezoidal rule to obtain the density. Here we are interested in only sta-

tionary heat conduction, therefore all the velocities are set to zero. And the prescribed

mass condition along with conservation of momentum is solved to gain distribution
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of mass at each time step. If we were to allow gas movements and convection to be

a part of the problem, the conservation of mass and normal velocity of gas on wall

would replace the prescribed mass condition.

For RNSF’s temperature jump boundary condition, Eq. 8.22, the second order

backward and forward finite difference discretization are used, e.g. for lower wall we

have

θn+1
i − θw = τtr

(2− χ)

χ

√
π (1 + θni )

2

5Rqint
+
(
δni + 1 + θni

dδni
dθni

)
Rqtr

(4 + δni ζ)Rqint
Rqtr

−θni+2 + 4θni+1 − 3θn+1
i

2∆x
. (8.31)

8.4 Linear and steady Case

In this section, we study the steady linearized set of equations with small disturbances

from an equilibrium ground state {ρ0, v0i = 0, θ0}. First, we write all variables in terms

of their ground state values plus a small deviation, denoted by a hat, as

ρ = ρ0 + ρ̂, θ = θ0 + θ̂, vi = v̂i, ∆θ = ∆θ̂, σij = σ̂ij, qi = q̂i,

∆qi = ∆q̂i, B
+
ij = B̂+

ij , B
− = B̂−, B−

ij = B̂−
ij , B

− = B̂−, u0,0ijk = û0,0ijk . (8.32)

All deviations are considered to be very small, and the systems of equations are

being linearized by keeping only linear terms in the deviations. Set of linear steady

equations after dropping the hats are

the conservation laws,
∂q

∂x
= 0 , (8.33)

∂ρ

∂x
+
∂ (θ −∆θ)

∂x
+
∂σ11
∂x

= 0 , (8.34)

balance laws for dynamic temperature and stress tensor,(
2

3 + δ + (1 + θ) dδ
dθ

− 10Rqint

3
(
5Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

)) ∂q

∂x

−
2
(
δ + (1 + θ) dδ

dθ

)
Rqtr

3
(
5Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

) ∂∆q
∂x

= −∆θ

τint
, (8.35)
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2

3

4Rqint

5Rqint
+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

∂q

∂x
+
∂u0,0111

∂x

+
2

3

4
(
δ + (1 + θ) dδ

dθ

)
Rqtr

5
(
5Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

) ∂∆q
∂x

= −
[
1

τtr
+

1

τint

]
σ11 , (8.36)

balance laws for heat fluxes,

∂σ11
∂x

+
5 + δ + (1 + θ) dδ

dθ

2

∂θ

∂x
− ∂∆θ

∂x
− 2

39

∂B+

∂x

+
4δ

(42 + 25δ)

∂B+
11

∂x
+

7 (3 + δ) (14 + 3δ)

(14 + δ) (42 + 25δ)

∂B−
11

∂x
+

5

13

∂B−

∂x
= −

[
1

τtr
+

1

τint

]
(
Rqint

Rqtr

(
5 + δ + (1 + θ) dδ

dθ

)
5Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

q +

(
δ + (1 + θ) dδ

dθ

)
Rqtr (Rqtr −Rqint

)

5Rqint
+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

∆q

)
, (8.37)

5

2

[
1− Rqint

Rqtr

]
∂θ

∂x
− 5

2

(
1 +

3Rqint(
δ + (1 + θ) dδ

dθ

)
Rqtr

)
∂∆θ

∂x

− 5

39

(
1 +

3Rqint(
δ + (1 + θ) dδ

dθ

)
Rqtr

)
∂B+

∂x
+

5

39

(
1− 10Rqint(

δ + (1 + θ) dδ
dθ

)
Rqtr

)
∂B−

∂x

+
δ

(42 + 25δ)

(
7 +

15Rqint(
δ + (1 + θ) dδ

dθ

)
Rqtr

)
∂B+

11

∂x
+
∂σ11
∂x

= −
[
1

τtr
+

1

τint

](
5Rqint

(Rqtr −Rqint
)

5Rqint
+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

q +

(
δ + (1 + θ) dδ

dθ

)
R2

qtr + 5R2
qint

5Rqint
+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

∆q

)
,

(8.38)

balance laws for B+ and B−,

−2
∂q

∂x
=

5Rqint
+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

20Rqint
−
(
δ + (1 + θ) dδ

dθ

)
Rqtr

[
− 1

τint

3

2
((3− δ)Ru1,1 + 20Ru2,0 − (23− δ))∆θ

−
[
1

τtr
+

1

τint

](
3Ru1,1 + 10Ru2,0

13
B+ +

10

13
(Ru1,1 −Ru2,0)B−

)]
, (8.39)
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2
∂q

∂x
=

5Rqint
+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

6Rqint
+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

[
− 1

τint

3

2
(3 + δ + [3− δ]Ru1,1 − 6Ru2,0)∆θ

−
[
1

τtr
+

1

τint

](
10Ru1,1 + 3Ru2,0

13
B− +

3 (Ru1,1 −Ru2,0)

13
B+

)]
, (8.40)

and constitutive equations,
u0,0111

τtr
= −9

5

∂σ11
∂x

, (8.41)

1 +
2(δ+(1+θ) dδ

dθ )µ
3(3+δ+(1+θ) dδ

dθ )v
(70+23δ)Rqint

δ(5Rqint+(δ+(1+θ) dδ
dθ )Rqtr)

− 14−δ
δ

B+
11

µ
= −4

3

∂q

∂x
= 0 ⇒ B+

11 = 0 , (8.42)

(3 + δ)
(
5Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

)
(14 + δ)

(
3Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

)B−
11

µ
= −4

3

∂q

∂x
= 0 ⇒ B−

11 = 0. (8.43)

8.4.1 Linear solution

The above set of equations are reduced to 5 coupled equations for Φ = {∆q, q, u0,0111, σ11, ∆θ}
and the rest of the variables {ρ, θ, B+, B−} are functions of them. The solution of

set of coupled equations, A5×5
∂Φ
∂x

= B5×5Φ,is obtained using the eigenvalue method

as

Φ (x) =
5∑

n=1

Cnϑne
λnx , (8.44)

where, λ and ϑ are eigenvalues and eigenvectors of the coefficient matrix, A−1B.

Substituting new normalized coefficients,

C ′
2 = (C2 + C3) sinh (λ3/2) ,

C ′
3 = (C3 − C2) cosh (λ3/2) ,

C ′
4 = (C4 + C5) sinh (λ5/2) ,

C ′
5 = − (C4 − C5) cosh (λ5/2) ,

into the above set of equations, results in the final form of the solution obtained as,

∆q (x) = C1ϑ1,1 + C ′
3ϑ1,3

cosh (λ3x)

cosh (λ3/2)
+ C ′

2ϑ1,3
sinh (λ3x)

sinh (λ3/2)

+ C ′
5ϑ1,5

cosh (λ5x)

cosh (λ5/2)
+ C ′

4ϑ1,5
sinh (λ5x)

sinh (λ5/2)
, (8.45a)
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u0,0111 (x) = C ′
3ϑ2,3

cosh (λ3x)

cosh (λ3/2)
+ C ′

2ϑ2,3
sinh (λ3x)

sinh (λ3/2)
+ C ′

5ϑ2,5
cosh (λ5x)

cosh (λ5/2)
+ C ′

4ϑ2,5
sinh (λ5x)

sinh (λ5/2)
,

(8.45b)

σ11 (x) = C ′
2ϑ3,3

cosh (λ3x)

sinh (λ3/2)
+ C ′

3ϑ3,3
sinh (λ3x)

cosh (λ3/2)
+ C ′

4ϑ3,5
cosh (λ5x)

sinh (λ5/2)
+ C ′

5ϑ3,5
sinh (λ5x)

cosh (λ5/2)
,

(8.45c)

∆θ (x) = C ′
2ϑ4,3

cosh (λ3x)

sinh (λ3/2)
+ C ′

3ϑ4,3
sinh (λ3x)

cosh (λ3/2)
+ C ′

4ϑ4,5
cosh (λ5x)

sinh (λ5/2)
+ C ′

5ϑ4,5
sinh (λ5x)

cosh (λ5/2)
,

(8.45d)

q = C1 . (8.45e)

The solution for the remaining variables are

B+ = − 1

τint

[
1
τtr

+ 1
τint

] 13 (3 + δ + [3− δ]Ru1,1 − 6Ru2,0)

2 (Ru1,1 −Ru2,0)
∆θ , (8.46)

B− = − 1

τint

[
1
τtr

+ 1
τint

] 169 ([3− δ + [3 + δ]Ru1,1 ]Ru2,0 − 6Ru1,1)

20 (Ru1,1 −Ru2,0)2
∆θ , (8.47)

5 + δ + θ dδ
dθ

2
θ = ∆θ +

2

39
B+ − 5

13
B− +

5

9

u0,0111

τtr
x−

[
1

τtr
+

1

τint

]
(
Rqint

Rqtr

(
5 + δ + θ dδ

dθ

)
5Rqint

+
(
δ + θ dδ

dθ

)
Rqtr

q +

(
δ + θ dδ

dθ

)
Rqtr (Rqtr −Rqint

)

5Rqint
+
(
δ + θ dδ

dθ

)
Rqtr

∆q

)
x+ C6 , (8.48)

and,

ρ = − (θ −∆θ)− σ11 + C7 . (8.49)

8.4.2 Linear boundary conditions

The boundary conditions for the dimensionless linear case become,

boundary condition for total heat fluxes,

qy = − χ

(2− χ)

√
2

π

[
7

39
B− − 1

78
B+ − 1

2
(∆θ − σyy)

+
1

2
[(4 + δζ) (θ − θw)− (1− ζ) 3∆θ]

]
, (8.50)
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Figure 8.2: Comparison of temperature and density profiles for Kn numbers equal to
0.071 and 0.71. Results shown are obtained from: set of R19 equations, blue dashed;
set of RNSF equations, black line; DSMC method, red triangles.
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for heat fluxes difference,

∆qy =
χ

(2− χ) Prqtr
(
δ + (1 + θ) dδ

dθ

)√ 2

π

[
25Prqint

−2
(
δ + (1 + θ) dδ

dθ

)
Prqtr

39
B−

+
15Prqint

+4
(
δ + (1 + θ) dδ

dθ

)
Prqtr

78
B+

−
(
δ + (1 + θ) dδ

dθ

)
Prqtr

2
σyy +

15Prqint
+4
(
δ + (1 + θ) dδ

dθ

)
Prqtr

2
∆θ

−1

2

[
15 Pr

qint

(1− ζ)∆θ −
(
5δζ Pr

qint

−4

(
δ + (1 + θ)

dδ

dθ

)
Pr
qtr

)
(θ − θW )

]]
, (8.51)

for u0,0yyy,

u0,0111 =
χ

5 (2− χ)

√
2

π

[
2 (B− −B+)

39
+ 2 ([θ − θW ]−∆θ)− 7σ11

]
, (8.52)

and the last one is prescribed mass condition,∫ 1
2

− 1
2

ρdx = 0 . (8.53)

8.5 Results

We first compare the results of our proposed models with the Direct Simulation Monte

Carlo method results [91]. Comparison between numerical solution of the R19, the

RNSF equations and DSMC results are shown in Fig. 8.2. Dimensionless wall temper-

atures are at ±0.0476 and reference temperature at 350K. DSMC data is obtained by

considering equivalent translational and rotational relaxation rates, therefore we have

equivalent internal and translational Kn numbers. We investigate two different refer-

ence Kn numbers, 0.071 and 0.71, which represents slip and transition flow regimes,

respectively. We use the values for Maxwell molecules of relaxation parameters for

pure translational moments, Ru2,0 and Rqtr , from Table 2.1. Prandtl number is set

to 0.73 and based on Eq. 5.64, Rqint
is calculated. We extend this relation between

Rqtr and Rqint
to Ru2,0 and Ru1,1 , and obtained Ru1,1 value. These procedures for cal-

culating relaxation parameters are used from now on, unless otherwise stated. Also,

excited internal degrees of freedom is set to 2. It is evident from Fig. 8.2 that there

is a good agreement between the DSMC and the R19 results. However in transition
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Figure 8.3: Comparison of total heat flux as a function of reference pressure, ranging
from continuum to free molecular regime. Results shown are obtained from: set of
R19 equations, black line; DSMC method, red triangles.

regime, there is a considerable deviation of Refined Navier–Stokes–Fourier equations

results from DSMC results and first order set of equations fails to accurately model

the problem.

We compare obtained total heat flux values from R19 equations with DSMC data

[92] at various reference pressure, ranging from Continuum to free molecular regime

in Fig 8.3. The simulation case is a channel with 1µm width and wall temperatures

at 285 and 315 K. The Prandtl number is set to 0.71, and relaxation parameters are

obtained based on Eq. 5.64 and fitting to DSMC data. The reference temperature

and reference shear viscosity is 300 K and 1.775 Pa.s, respectively. The gas under

consideration is N2 with δ+ θ
dδ
dθ

equal to 2.015. Also, full accommodation coefficients

are considered. Reference pressure of 106, 104 and 100 Pa are corresponding to ref-

erence Kntr equal to 0.005, 0.5 and 50. As it is depicted in Fig. 8.3, there is good

agreement between our data and DSMC data up to Knudsen number 0.5. Results

start to deviate at the end of the transition regime and beginning of the free molec-

ular regime. It is seen that the total heat flux is independent of pressure at very low

Knudsen numbers. However, at high Knudsen numbers heat flux changes abruptly

with changing pressure.
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The developing profiles from equilibrium ground state initial condition {ρ0, θ0}
to steady state condition are presented for H2 in Fig. 8.4. Prandtl number is set

to 0.69, reference temperature is at 300 K and dimensionless wall temperatures are

±0.5. The shear viscosity temperature exponent is set to 0.5. Reference time scale

is set to be equal to reference internal time scale, τ0 = τint. Therefore, Based on Eq.

5.84 we have {
Kntr = 0.0091

Knint = 1
. (8.54)

The results presented in Fig. 8.4 are obtained from numerical solution of R19 set of

equations with the initial conditions of the reference equilibrium state {ρ0, θ0} and

all non-equilibrium values are equal to zero. It is depicted that total temperature

and density is rising from zero starting from regions near walls and gradually in

time moving towards central region. Other variables, which all are non-equilibrium

ones, starts from zero at initial state and jump to their maximum value immediately

and then start to decay over time to reach their steady state profiles. The speed

of these decays is not constant and their values keep reducing in time. The values

of nonequilibrium variables at the beginning of the process are order of magnitude

higher than their values in steady state.

Now, we analyze N2 gas. The reference time scale is chosen so that based on Eq.

5.84, we have {
Kntr = 0.062

Knint = 0.2
. (8.55)

This implies the need of a set of equations with both high order accuracy in Kntr and

Knint, that is the set of R19 equations. The reference temperature is at 400 K and

dimensionless temperature at walls are ±0.3. Shear viscosity temperature exponent is

set to 0.74 and Prandtl number is 0.69. Figure 8.5 illustrates the steady state profiles

obtained numerically from full set of R19 and RNSF equations, and analytically from

linear R19 equations. Results from RNSF equations are not in agreement with the

R19 profiles and they are not a good set of equations to be used under these conditions

with mentioned Kn numbers. Also, it is evident that the non-linear and temperature

dependent properties effects are more dominant in profiles associated with internal

variables (∆θ and ∆q) and differ the analytical from numerical results.

The effects of different range of temperatures are studied on N2 gas in Fig. 8.6.

We investigate two cases with upper dimensionless wall temperature at 0.5 and 2.5.

The lower wall temperature and reference temperature are kept fixed at 300 K and
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Figure 8.4: Numerical results of stationary heat conduction from set of R19 equations.
Red line is at t=0 s; black-dashed is at t=0.2 s; blue-thin line is at t=0.6 s; green-thick
is at t=1.5 s; gray-dotdashed is at t=29 s.
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referenced Kn numbers are fixed at Kntr = 0.077 and Knint = 0.2 for two cases

under study. As it can be seen, the main effect here is promoting the non-symmetry

effects by the temperature dependent properties and relaxation times in the case with

higher upper wall temperature. This emphasizes the importance of a model with

capability to model temperature dependent properties in problems with relatively

high temperature variations.

Now, we compare three different gases with distinguished characteristics, H2, N2

and CH4, in Fig. 8.7. Reference and wall’s temperatures are fixed at 700 K, 0 and

0.5, respectively. Translational Knudsen number is also kept fixed at 0.032. The

corresponding reference Knint are obtained from Eq. 5.84 to be

Knint =


N2 : 0.158

H2 : 3.78

CH4 : 10

. (8.56)

Number of excited internal degrees of freedom at reference temperature of these gases

are

δ + θ
dδ

dθ
=


N2 : 2.41

H2 : 2.09

CH4 : 8.89

. (8.57)

H2 and CH4 gases both have large differences between internal and translational

relaxation times. However, internal and translational relaxation times of N2 gas have

comparable values. On the other hand, H2 and N2 gases both have similar excited

internal degrees of freedom. Nonetheless, excited internal DoF of CH4 gas is higher

than the other two gases. The effects of having internal and translational relaxation

times at the same order are seen in profiles of moments corresponding to deviations

from total values, ∆θ and ∆q, which are derived by translational-internal interactions.

These effects are towards promoting the temperature dependency of the profiles,

which now covers a larger range of values between two walls. The effects of different

internal DoF is most seen in total heat flux and stress tensor. CH4 gas with higher

DoF gains higher total heat flux and lower stress tensor in comparison with other

two gases. Effects of the reference temperature on variables is studied in Fig. 8.8.

N2 gas with fixed reference translational Knudsen number at 0.077 and dimensionless

wall temperatures at 0 and 0.5 is used with different reference temperatures of 300

and 700 K. The corresponding reference internal Knudsen numbers are 0.2 and 0.38,
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Figure 8.6: Steady state profiles of N2 gas obtained from numerical method with
θWB = 0 and Red line: θWT = 0.5; black-dotdashed: θWT = 2.5.
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Figure 8.7: Steady state profiles of different gases obtained from numerical solution
of the R19 equations. Red line: H2; black-dotdashed: N2; blue-dashed: CH4.
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respectively. As it is depicted in Fig. 8.8, the case with higher reference temperature,

which means more excited internal degrees of freedom, have higher heat flux value

and more flatter deviation moments, ∆θ and ∆q, profiles in comparison with lower

reference temperature. Also there is slightly higher temperature jump, especially on

bottom wall , in case of higher reference temperature in comparison with the lower

one case.
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Figure 8.8: Steady state profiles of N2 gas obtained from numerical method of the
R19 equations with θWB = 0 and θWT = 0.5. Red line: T0 = 300; black-dotdashed:
T0 = 700.
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Chapter 9

Couette flow

Yes, we have to divide up our time like that, between our politics and our equations.

But to me our equations are far more important, for politics are only a matter of

present concern. A mathematical equation stands forever.

Albert Einstein

Shear flow like Couette flow, is a multi-dimensional phenomenon. As an appli-

cation of a boundary value problem with moving gas, we analyze the steady linear

Couette flow and model different gases with R19 and RNSF equations. We consider

a steady state flow which is homogeneous in z direction. The gas is confined between

two infinite plates and its movement is only at x-direction, v (x, y, z) = (vx (y) , 0, 0),

as shown in Fig. 9.1.The walls are at different temperatures and move with different

x-velocities as {
Top wall: θwt = 0.05, vwt = −0.05

Bottom wall: θwb = −0.05, vwb = 0.05
. (9.1)

Taking into account the homogeneity of flow in z-direction we have the total heat

flux, heat flux difference and trace-free stress tensor as,

q = (qx, qy, 0) , ∆q = (∆qx,∆qy, 0) , σ =

 σxx σxy 0

σxy σyy 0

0 0 − (σxx + σyy)

 . (9.2)

First, we show the linear set of R19 and RNSF equations for the considered

problem. Then, the linear system is solved analytically. Finally, the obtained results

for different gases are shown and discussed.



131

Figure 9.1: General Couette flow schematic. Top and bottom walls are at different
temperatures and moving with different velocities.

9.1 Linear Couette flow

The equilibrium rest state {ρ0, θ0} is used to non-dimensionalize all quantities and

equations. Specifically, we set,

x̄i =
xi

τ0
√
θ0

=
xi
L
, t̄ =

t

τ0
, τ̄int =

τint
τ0

, τ̄tr =
τtr
τ0

, ρ̄ =
ρ

ρ0
− 1 ,

θ̄ =
θ

θ0
− 1 , ∆θ̄ =

∆θ

θ0
, v̄i =

vi√
θ0

, σ̄ij =
σij
ρ0θ0

, q̄i =
qi

ρ0
√
θ0

3 , ∆q̄i =
∆qi

ρ0
√
θ0

3 ,

(9.3)

ū0,0ijk =
u0,0ijk

ρ0
√
θ0

3 , B̄
+
ij =

B+
ij

ρ0θ20
, B̄−

ij =
B−

ij

ρ0θ20
, B̄+ =

B+

ρ0θ20
, B̄− =

B−

ρ0θ20
, F̄ =

τ0√
θ0
F .

Linearized set of equations with small disturbances from an equilibrium ground state

{ρ0, v0i = 0, θ0} are studied in this section. Reference time scale, τ0, is chosen such

that the Knint be controlled as will be shown in the results section. First, we write

all variables in terms of their ground state values plus a small deviation, denoted by

a hat, as

ρ = ρ0 + ρ̂, θ = θ0 + θ̂, vi = v̂i, ∆θ = ∆θ̂, σij = σ̂ij, qi = q̂i,

∆qi = ∆q̂i, B
+
ij = B̂+

ij , B
− = B̂−, B−

ij = B̂−
ij , B

− = B̂−, u0,0ijk = û0,0ijk . (9.4)

All deviations are considered to be very small, and the systems of equations are being

linearized by keeping only linear terms in the deviations.

The set of full R19 equations for this setting consists of 13 independent variables,

namely {
ρ, vx, θ,∆θ, σxx, σyy, σxy, qx,∆qx, qy,∆qy, B

+, B−} ;
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and, seven constitutive equations for
{
B+

xy, B
−
xy, B

+
yy, B

−
yy, u

0,0
xxy, u

0,0
xyy, u

0,0
yyy

}
. Set of lin-

ear steady equations consists of 8 coupled equations and 12 uncoupled equations.

System of 8 coupled equations, after dropping the hats are,

−
2
(
δ + (1 + θ) dδ

dθ

)
Rqtr

3
(
5Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

) ∂∆qy
∂y

= −∆θ

τint
, (9.5)

−
4
(
δ + (1 + θ) dδ

dθ

)
Rqtr

15
(
5Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

) ∂∆qy
∂y

+
∂u0,0xxy

∂y
= −

(
1

τint
+

1

τtr

)
σxx , (9.6)

8
(
δ + (1 + θ) dδ

dθ

)
Rqtr

15
(
5Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

) ∂∆qy
∂y

+
∂u0,0yyy

∂y
= −

(
1

τint
+

1

τtr

)
σyy , (9.7)

4δ

25δ + 42

∂B+
xy

∂y
+

7 (3 + δ) (14 + 3δ)

(14 + δ) (42 + 25δ)

∂B−
xy

∂y
= −

[
1

τtr
+

1

τint

]
(
Rqint

Rqtr

(
5 + δ + (1 + θ) dδ

dθ

)
5Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

qx +

(
δ + (1 + θ) dδ

dθ

)
Rqtr (Rqtr −Rqint

)

5Rqint
+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

∆qx

)
(9.8)

5

2

(
1− Rqint

Rqtr

)
∂θ

∂y
− 5

2

(
1 +

3Rqint(
δ + (1 + θ) dδ

dθ

)
Rqtr

)
∂∆θ

∂y

+
∂σyy
∂y

− 5

39

(
1 +

3Rqint(
δ + (1 + θ) dδ

dθ

)
Rqtr

)
∂B+

∂y

+
5

39

(
1− 10Rqint(

δ + (1 + θ) dδ
dθ

)
Rqtr

)
∂B−

∂y
= −

[
1

τtr
+

1

τint

]
(

5Rqint
(Rqtr −Rqint

)

5Rqint
+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

qy +

(
δ + (1 + θ) dδ

dθ

)
R2

qtr + 5R2
qint

5Rqint
+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

∆qy

)
, (9.9)

B−
xy = −

(14 + δ)
(
3Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

)
(3 + δ)

(
5Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

) τtr ∂qx
∂y

, (9.10)

u0,0xxy = −τtr
(
∂σxx
∂y

− 2

5

∂σyy
∂y

)
, (9.11)

u0,0yyy = −9

5
τtr
∂σyy
∂xy

. (9.12)

Uncoupled equations, which depends on the variables in the above coupled equations,
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are,

∂ρ

∂y
+
∂θ

∂y
− ∂∆θ

∂y
+
∂σyy
∂y

= 0 , (9.13)

∂σxy
∂y

= 0 , (9.14)

∂qy
∂y

= 0 , (9.15)

∂vx
∂y

+
2Rqint

5Rqint
+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

∂qx
∂y

+
2
(
δ + (1 + θ) dδ

dθ

)
Rqtr

5
(
5Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

) ∂∆qx
∂y

= −
(

1

τint
+

1

τtr

)
σxy , (9.16)

B+
xy =

(3 + δ)
(
28δRqint

− (14− δ)
(
δ + (1 + θ) dδ

dθ

)
Rqtr

)
τint

δ (14 + δ)
(
3Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

)
(τtr + τint)

B−
xy , (9.17)

δ

(42 + 25δ)

(
7 +

15Rqint(
δ + (1 + θ) dδ

dθ

)
Rqtr

)
∂B+

xy

∂y
= −

[
1

τtr
+

1

τint

]
(

5Rqint
(Rqtr −Rqint

)

5Rqint
+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

qx +

(
δ + (1 + θ) dδ

dθ

)
R2

qtr + 5R2
qint

5Rqint
+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

∆qx

)
, (9.18)

5 + δ + (1 + θ) dδ
dθ

2

∂θ

∂y
− ∂∆θ

∂y
+
∂σyy
∂y

− 2

39

∂B+

∂y
+

5

13

∂B−

∂y
= −

[
1

τtr
+

1

τint

]
(
Rqint

Rqtr

(
5 + δ + (1 + θ) dδ

dθ

)
5Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

qy +

(
δ + (1 + θ) dδ

dθ

)
Rqtr (Rqtr −Rqint

)

5Rqint
+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

∆qy

)
,

(9.19)
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B− = −

[
3 (3− δ)

2
−

9Ru2,0 − 3(3+δ)
2

Ru1,1

]
τtr

τtr + τint
∆θ , (9.20)

B+ = −3τtr
15 + 5δ(1−Ru1,1) + 184Ru1,1 − 30Ru2,0 − 169Ru1,1(10+3Ru1,1)

3Ru1,1+10Ru2,0

10Ru1,1 (τtr + τint)
∆θ , (9.21)

B+
yy = 0 , (9.22)

B−
yy = 0 , (9.23)

u0,0xyy = 0 . (9.24)

Also, the linear dimensionless form of RNSF equations corresponding to the con-

sidered problem is,

∂ρ

∂y
+
∂θ

∂y
= 0 , (9.25)

∂σxy
∂y

= 0 , (9.26)

∂qy
∂y

= 0 , (9.27)

σxy = −τtr
∂vx
∂y

, (9.28)

qy = −τtr
5Rqint

+
(
δ + dδ

dθ

)
Rqtr

2Rqint
Rqtr

∂θ

∂y
. (9.29)

where, ∆θ and σyy found to be zero from the linear RNSF equations in the problem

under consideration.

9.2 Solution

Solution for the set of 8 coupled equations,

A8×8
∂Φ

∂x
= B8×8Φ ,

Φ = {∆qy, B−
xy,∆θ, u

0,0
xxy, u

0,0
yyy, qx, σyy, σxx}, is obtained using the eigenvalue method

as,

Φ (x) =
5∑

n=1

Cnϑne
λnx , (9.30)
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where, λ and ϑ are eigenvalues and eigenvectors of the coefficient matrix, A−1B. After

some mathematical manipulations we found,

∆qy (x) = C ′
3ϑ1,4

sinh (λ4x)

sinh (λ4/2)
+ C ′

4ϑ1,4
cosh (λ4x)

cosh (λ4/2)

+ C ′
5ϑ1,6

sinh (λ6x)

sinh (λ6/2)
+ C ′

6ϑ1,6
cosh (λ6x)

cosh (λ6/2)
,

B−
xy (x) = C ′

1ϑ2,2
sinh (λ2x)

sinh (λ2/2)
+ C ′

2ϑ2,2
cosh (λ2x)

cosh (λ2/2)
, (9.31)

∆θ (x) = C ′
3ϑ3,4

cosh (λ4x)

sinh (λ4/2)
+ C ′

4ϑ3,4
sinh (λ4x)

cosh (λ4/2)

+ C ′
5ϑ3,6

cosh (λ6x)

sinh (λ6/2)
+ C ′

6ϑ3,6
sinh (λ6x)

cosh (λ6/2)
, (9.32)

u0,0xxy (x) = C ′
3ϑ4,4

sinh (λ4x)

sinh (λ4/2)
+ C ′

4ϑ4,4
cosh (λ4x)

cosh (λ4/2)
+ C ′

5ϑ4,6
sinh (λ6x)

sinh (λ6/2)

+ C ′
6ϑ4,6

cosh (λ6x)

cosh (λ6/2)
+ C ′

7ϑ4,8
sinh (λ4x)

sinh (λ4/2)
+ C ′

8ϑ4,8
cosh (λ4x)

cosh (λ4/2)
, (9.33)

u0,0yyy (x) = C ′
3ϑ5,4

sinh (λ4x)

sinh (λ4/2)
+ C ′

4ϑ5,4
cosh (λ4x)

cosh (λ4/2)

+ C ′
5ϑ5,6

sinh (λ6x)

sinh (λ6/2)
+ C ′

6ϑ5,6
cosh (λ6x)

cosh (λ6/2)
, (9.34)

qx (x) = C ′
1

cosh (λ2x)

sinh (λ2/2)
+ C ′

2

sinh (λ2x)

cosh (λ2/2)
, (9.35)

σyy (x) = C ′
3ϑ7,4

cosh (λ4x)

sinh (λ4/2)
+ C ′

4ϑ7,4
sinh (λ4x)

cosh (λ4/2)

+ C ′
5ϑ7,6

cosh (λ6x)

sinh (λ6/2)
+ C ′

6ϑ7,6
sinh (λ6x)

cosh (λ6/2)
, (9.36)
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σxx (x) = C ′
3

cosh (λ4x)

sinh (λ4/2)
+ C ′

4

sinh (λ4x)

cosh (λ4/2)
+ C ′

5

cosh (λ6x)

sinh (λ6/2)

+ C ′
6

sinh (λ6x)

cosh (λ6/2)
+ C ′

7

cosh (λ8x)

sinh (λ8/2)
+ C ′

8

sinh (λ8x)

cosh (λ8/2)
, (9.37)

where,

C ′
1 = (C1 + C2) sinh (λ2/2) ; C

′
2 = (C2 − C1) cosh (λ2/2) ,

C ′
3 = (C3 + C4) sinh (λ4/2) ; C

′
4 = (C4 − C3) cosh (λ4/2) ,

C ′
5 = (C6 + C5) sinh (λ6/2) ; C

′
6 = (C6 − C5) cosh (λ6/2) ,

C ′
7 = (C8 + C7) sinh (λ8/2) ; C

′
8 = (C8 − C7) cosh (λ8/2) .

Also, for the dependent variables we have,

σxy = C12 , (9.38)

qy = C11 , (9.39)

θ =
2

5 + δ + (1 + θ) dδ
dθ

(
∆θ − σyy +

2

39
B+ − 5

13
B−

+ C9 −
[
1

τtr
+

1

τint

]
y(

Rqint
Rqtr

(
5 + δ + (1 + θ) dδ

dθ

)
5Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

qy +

(
δ + (1 + θ) dδ

dθ

)
Rqtr (Rqtr −Rqint

)

5Rqint
+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

∆qy

)]
,

(9.40)

ρ = −θ +∆θ − σyy + C10 , (9.41)

B− = −

[
3 (3− δ)

2
−

9Ru2,0 − 3(3+δ)
2

Ru1,1

]
τtr

τtr + τint
∆θ , (9.42)

B+ = −
3

[
15 + 5δ(1−Ru1,1) + 184Ru1,1 − 30Ru2,0 − 169Ru1,1(10+3Ru1,1)

3Ru1,1+10Ru2,0

]
10Ru1,1

τtr
τtr + τint

∆θ ,

(9.43)
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vx = − 2Rqint

5Rqint
+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

qx −
2
(
δ + (1 + θ) dδ

dθ

)
Rqtr

5
(
5Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

)∆qx
− u0,0xyy −

(
1

τint
+

1

τtr

)
σxyy + C13 , (9.44)

B+
xy =

(3 + δ)
(
28δRqint

+ (14− δ)
(
δ + (1 + θ) dδ

dθ

)
Rqtr

)
τint

δ (14 + δ)
(
3Rqint

+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

)
(τtr + τint)

B−
xy , (9.45)

δ

(42 + 25δ)

(
7 +

15Rqint(
δ + (1 + θ) dδ

dθ

)
Rqtr

)
∂B+

xy

∂y
= −

[
1

τtr
+

1

τint

]
(

5Rqint
(Rqtr −Rqint

)

5Rqint
+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

qx +

(
δ + (1 + θ) dδ

dθ

)
R2

qtr + 5R2
qint

5Rqint
+
(
δ + (1 + θ) dδ

dθ

)
Rqtr

∆qx

)
, (9.46)

B+
yy = 0 , (9.47)

B−
yy = 0 , (9.48)

u0,0xyy = 0 . (9.49)

9.3 Boundary conditions

The above set of equations has 20 independent variables

Φ =
{
ρ, vx, θ,∆θ, qx,∆qx, qy,∆qy, σxx, σxy, σyy, B

+
xy, B

−
xy, B

+
yy, B

−
yy, u

0,0
xxy, u

0,0
xyy, u

0,0
yyy, B

+, B−} .
First we write the system of equations as

A (Φ)
∂Φ

∂y
= P (Φ)Φ . (9.50)

The number of boundary conditions which should be described equals the number

of the variables of the system (20 for one dimensional R19) minus the number of

multiplicity of the zero eigenvalues of the matrix A (Φ). This is due to the fact that

the left zero eigenvectors in Eq.(9.50) associated with the zero eigenvalues are acting

like constraints on the variable vector Φ and reduce the dimension of the system

by the number of zero eigenvalues. Calculation of the eigenvalues shows that the

matrix A (Φ) possesses a zero eigenvalue with multiplicity of 7. Therefore, we need



138

to prescribe a total number of 13 boundary conditions for regularized 19 equations.

Using the null-space of coefficient matrix, we obtain relations for

{
u0,0xyy, B

+
xy, B

+, B−, B+
yy, B

−
yy

}
. (9.51)

These relations are used to eliminate the depending variables and reduce the sys-

tem. The definition of remaining variables are used to obtain the velocity function

Ψ corresponding to the field of variables Φ. The choice of the velocity and internal

parameter function Ψ (C, I) is restricted by Grad’s finding based on the argument of

specular reflection that the velocity function should be odd in the normal component

of the particle velocity [62]. This is due to the fact that the even polynomials at

the wall boundary condition will produce identity and are uncontrollable. Also, we

only prescribe fluxes and not the variables based on the theory of balance laws which

states that at the boundary we need to prescribe fluxes, not variables [47]. Therefore,

the corresponding velocity and internal parameter function obtained as,

Ψ =

{
Cy, CxCy, Cy

(
C2

2
+ I2/δ

)
,

CxCy

([
1− 11

14

δ

δ + 3

]
C2 +

[
1 +

11

δ + 3

]
I2/δ − 14 + δ

2
θ

)
,

Cy

(
C2

2
− 5Prqint(

δ + θ dδ
dθ

)
Prqtr

I2/δ

)
, Cy

(
CyCy −

3

5
C2

)
, Cy

(
CxCx −

1

5
C2

)}
,

(9.52)

We consider that n =(0, 1, 0) and Vw=(Vw, 0, 0). The general boundary condition,

Eq. 7.2, is used here to obtain macroscopic boundary conditions for different functions

in Ψ. The first condition is obtained by considering Ψ = Cy. For this we rewrite the

part representing incoming particles as

f|36 (c) = χ
[
(1− ζ) f|36 (c) + ζf|36 (c)

]
+ (1− χ) f|36 (c) . (9.53)

So, we have three identity relations which state that the flux of molecules towards the

wall is the same as those leaving for all three reflection types, pure specular, partial
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accommodation and full accommodation,

− (1− χ)

∫ ∫
C.n≺0

Cyf|36dCdI=(1− χ)

∫ ∫
C.n≻0

Cyf
∗
|36dCdI , (9.54a)

−χ (1− ζ)

∫
C.n≺0

Cyf|36dC=χ (1− ζ)

∫
C.n≻0

Cyftr,wdC , (9.54b)

−χζ
∫ ∫

C.n≺0

Cyf|36dCdI=χζ

∫ ∫
C.n≻0

Cyfint,wdCdI . (9.54c)

The first identity is always true based on the definition of f ∗
|36 and f|36. The second

identity give us a relation for ρI,w as,

ρI,w
√
θw = −

exp
[
− I2/δ

θw

]
Γ
(
1 + δ

2

)
840δ

√
2θ(δ+5)/2

[
70
√
2δ

13
θ
(
21B− + 5B+

+ 78

[
(3 + δ) (14 + 27δ)

(14 + δ) (42 + 25δ)
B−

yy −
2δ

42 + 25δ
B+

yy

+

(
δ + θ dδ

dθ

)√
2πθPrqtr(

5Prqint
+
(
δ + θ dδ

dθ

)
Prqtr

) (∆qy − qy) + θ (2ρ [2∆θ − θ]− σyy)

])

− 140I2/δ

(
12
(
δ + θ dδ

dθ

)√
π Prqtr(

5Prqint
+
(
δ + θ dδ

dθ

)
Prqtr

)√θ (∆qy − qy) +
168

√
2δ (3 + δ)

(14 + δ) (42 + 25δ)
B−

yy

+
20
√
2

13
B− +

6
√
2

13
B+ − 18

√
2δ

(42 + 25δ)
B+

yy +
18
√
2

(42 + 25δ)
ρθ∆θ

)]
, (9.55)

and the third one give us,

ρw
√
θw = − (14− δ) (3 + δ)

2 (14 + δ) (42 + 25δ) θ
3
2

B−
yy +

1

156

B+ −B−

θ
3
2

− δ

2 (42 + 25δ) θ
3
2

B+
yy +

1

2

σyy√
θ
+

1

2
√
θ
ρ (2θ −∆θ) = Υ . (9.56)

Furthermore, we obtain boundary condition for stress tensor,

σxy = − χ

2− χ

√
2

π

[
ΥVs +

5Prqint
qx +

(
δ + θ dδ

dθ

)
Prqtr ∆qx

5
(
5Prqint

+
(
δ + θ dδ

dθ

)
Prqtr

)√
θ
+
u0,0xyy

2
√
θ

]
, (9.57)

boundary condition for total heat flux,
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qy = − χ

(2− χ)

√
2

πθ

[
Υ

2

√
θ
[
(4 + δζ) (θ − θw)− (1− ζ) (δθ + 3∆θ)− V 2

s

]
+ (3 + δ)

(140 + δ (32 + δ) + (14− δ) δζ)

4 (14 + δ) (42 + 25δ)
B−

yy +
[(1− ζ) δ − 4]

312
B+

+
δ (4− δ (1− ζ))

4 (42 + 25δ)
B+

yy −
(2 + δ (1− ζ))

4
θ (ρ∆θ − σyy)

+
(56− δ (1− ζ))

312
B− +

δ (1− ζ)

2
ρθ2
]
, (9.58)

boundary condition for heat flux difference ∆qy,

∆qy =
χ

(2− χ) Prqtr
(
δ + θ dδ

dθ

)√ 2

πθ

[
5 (40− δ) Prqint

−12
(
δ + θ dδ

dθ

)
Prqtr

312
B−

+
5 (12 + δ) Prqint

+12
(
δ + θ dδ

dθ

)
Prqtr

312
B+

+
5δ Prqint

−6
(
δ + θ dδ

dθ

)
Prqtr

4
θσyy − δ

5 (6 + δ) Prqint
+6
(
δ + θ dδ

dθ

)
Prqtr

4 (42 + 25δ)
B+

yy

+
10δ Prqint

−8
(
δ + θ dδ

dθ

)
Prqtr

4
ρθ2 +

5 (6− δ) Prqint
+12

(
δ + θ dδ

dθ

)
Prqtr

4
ρθ∆θ

+ [3 + δ]
5δ (42 + δ) Prqint

−6 (14− δ)
(
δ + θ dδ

dθ

)
Prqtr

4 (14 + δ) (42 + 25δ)
B−

yy

+
Υ

2

√
θ

[(
δ + θ

dδ

dθ

)
Pr
qtr
V 2
s − 15 Pr

qint

(1− ζ)∆θ

−
(
5δ Pr

qint

−4

(
δ + θ

dδ

dθ

)
Pr
qtr

)
θ +

(
5δζ Pr

qint

−4

(
δ + θ

dδ

dθ

)
Pr
qtr

)
(θ − θW )

]]
, (9.59)

boundary condition for B−
xy is

B−
xy =

χ

(2− χ)

√
2

π

3 (14 + δ)

14 (3 + δ)

(
37
(
δ + θ dδ

dθ

)
Prqtr

15
(
5Prqint

+
(
δ + θ dδ

dθ

)
Prqtr

)√θ∆qx
−

14
(
δ + θ dδ

dθ

)
Prqtr +33Prqint

3
(
5Prqint

+
(
δ + θ dδ

dθ

)
Prqtr

)√θqx − 1

2

√
θu0,0xyy

−ΥVs

(
V 2
s − θ + 7 (1− ζ)∆θ − (18 + 7ζδ)

3
[θ − θW ]

))
, (9.60)
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boundary condition for u0,0yyy,

u0,0yyy =
χ

(2− χ)

√
2

πθ

[
(−14 + δ) (3 + δ)

(14 + δ) (42 + 25δ)
B−

yy −
δB+

yy

42 + 25δ
− 2 (B+ −B−)

195

−7σyy + 2ρ∆θ

5
θ −Υ

√
θ

5

(
3V 2

s − 2 [θ − θW ]
)]

, (9.61)

and for u0,0xxy,

u0,0xxy =
χ

(2− χ)

√
2

πθ

[
(−14 + δ) (3 + δ)

(14 + δ) (42 + 25δ)
B−

xx −
δB+

xx

42 + 25δ
+

(B+ −B−)

195

+
θ

5
(ρ∆θ + σyy − 5σxx) + Υ

√
θ

5

(
4V 2

s − [θ − θW ]
)]

. (9.62)

9.3.1 Linear boundary condition

The boundary conditions in the dimensionless linear form are

stress tensor,

σxy = − χ

2− χ

√
2

π

[
Vs +

5Prqint
qx +

(
δ + (1 + θ) dδ

dθ

)
Prqtr ∆qx

5
(
5Prqint

+
(
δ + (1 + θ) dδ

dθ

)
Prqtr

) +
u0,0xyy

2

]
, (9.63)

total heat flux,

qy = − χ

(2− χ)

√
2

π

[
1

2
[(4 + δζ) (θ − θw)− (1− ζ) 3∆θ]

+
7

39
B− − 1

78
B+ − 1

2
(∆θ − σyy)

]
, (9.64)
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heat flux difference ∆qy,

∆qy =
χ

(2− χ) Prqtr
(
δ + (1 + θ) dδ

dθ

)√ 2

π

[
25Prqint

−2
(
δ + (1 + θ) dδ

dθ

)
Prqtr

39
B−

+
15Prqint

+4
(
δ + (1 + θ) dδ

dθ

)
Prqtr

78
B+ −

(
δ + (1 + θ) dδ

dθ

)
Prqtr

2
σyy

+
15Prqint

+4
(
δ + (1 + θ) dδ

dθ

)
Prqtr

2
∆θ

+
1

2

[
−15 Pr

qint

(1− ζ)∆θ +

(
5δζ Pr

qint

−4

(
δ + (1 + θ)

dδ

dθ

)
Pr
qtr

)
(θ − θW )

]]
, (9.65)

and boundary conditions for B−
xy, u

0,0
yyy and u0,0xxy,

B−
xy =

χ

(2− χ)

√
2

π

3 (14 + δ)

14 (3 + δ)

(
37
(
δ + (1 + θ) dδ

dθ

)
Prqtr

15
(
5Prqint

+
(
δ + (1 + θ) dδ

dθ

)
Prqtr

)∆qx
−
14
(
δ + (1 + θ) dδ

dθ

)
Prqtr +33Prqint

3
(
5Prqint

+
(
δ + (1 + θ) dδ

dθ

)
Prqtr

)qx − 1

2
u0,0xyy + Vs

)
, (9.66)

u0,0yyy =
χ

(2− χ)

√
2

π

[
−2 (B+ −B−)

195
− 7σyy + 2∆θ

5
+

2

5
(θ − θW )

]
, (9.67)

u0,0xxy =
χ

(2− χ)

√
2

π

[
(B+ −B−)

195
+

1

5
(∆θ + σyy − 5σxx)−

1

5
[θ − θW ]

]
. (9.68)

Also, boundary conditions for the set of RNSF equations are

σxy = − χ

2− χ

√
2

π
Vs , (9.69)

qy = − χ

(2− χ)

√
2

π

[
1

2
[(4 + δζ) (θ − θw)]

]
. (9.70)

9.4 Results

In this section we investigate the effects of Kn numbers, internal degrees of freedom,

Pr number, and accommodation coefficients on the behavior of the Couette flow.

First we investigate the N2 gas and compare the results obtained from the RNSF

and R19 equations. Reference time scale, τ0, along with reference temperature of 300
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Figure 9.2: Couette flow profiles obtained from set of R19 (red solid line) and RNSF
(black dashed) equations of N2 gas with Kntr = 0.31.
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K are chosen such that the Knint = 1 and Kntr = 0.31. Figure 9.2 illustrates profiles

obtained from RNSF and R19 equations. Results from R19 and RNSF equations are

different and again this is shown that the set of refined NSF equations can not predict

accurate results. Temperature gradient on the walls are higher for R19 equations.

However normal heat flux is higher for RNSF equations. This is due to the effects of

the gradients of dynamic temperature and σyy, which act in opposition to the gradient

of temperature and reduces the total heat flux, Eq. 9.19. Also based on Eq. 9.64, low

heat flux value effect on reducing temperature jump is promoted by the effects of ∆θ

and σyy and result in lower temperature jump of R19 equations compare to RNSF

equations. Also the same trend is seen for σxy, Eq. 9.16, which have higher value for

RNSF equations while the velocity gradient is higher for R19 equations. This is due

to the effects of gradient of qx and ∆qx. Furthermore, low stress tensor, qx and ∆qx

effects give lower velocity slip for R19, Eq. 9.63, compare to RNSF equations.

Now we investigate the effects of the relation between two Kn numbers on flow.

Two cases are investigated in Fig. 9.3. The translational Knudsen number is fixed

at 0.5 and internal Knudsen number is set to 0.5 for case #1 and 50 for case #2.

Also, internal degrees of freedom is fixed at 2. It is seen that effects of increasing

internal Knudsen number is strong on all the variables. The case with higher internal

Kn number has higher temperature jump and velocity slip. Due to the lower inter-

nal relaxation times and more active internal exchange processes in case 1, value of

dynamic temperature is slightly higher compare to case 1. Also, less active internal

exchange processes of case 2 produced higher heat fluxes and stress tensor. This

strong effects of different ratios of Kn numbers are diminished at low translational

Knudsen number.

Internal degrees of freedom effects on flow is investigated in Fig. 9.4. Two cases

are studied, both with same Knudsen number, Kntr = 0.5 and Knint = 1. Internal

degrees of freedom of Case #1 is 10 and of Case #2 is 2. There is no effects on velocity

field, density and stress tensor. Normal components of heat fluxes are increased by

increasing internal DoF, this reduces the parallel components of the heat fluxes. Also,

the dynamic temperature, which is a non-equilibrium variable illustrating internal-

translational exchanges are increased with increasing internal degrees of freedom.

Increasing the internal degrees of freedom, slightly decreases the temperature jump

by increasing normal heat flux and dynamic temperature.

Furthermore, the influence of Pr number on flow is investigated in Fig. 9.5. We

use the values for Maxwell molecules of relaxation parameters for pure translational
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Figure 9.3: Couette flow profiles obtained from set of R19 equations with fixed in-
ternal degrees of freeedom and translational Knudsen number, Kntr = 0.5. Internal
Knudsen number is set to Knint = 50 (red line) and Knint = 0.5 (blue dot-dashed
line).
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moment, Rqtr , from Table 2.1 and calculate Rqint
based on specified Prandtl numbers,

Eq. 5.64, which are 0.7 and 0.8, meaning Rqint
is equal to 0.73 and 0.96, respectively.

Two other relaxation parameter, Ru2,0 and Ru1,1 , and degrees of freedom are fixed.

Also, the Knudsen numbers are fixed atKntr = 0.5 andKnint = 1. Changing Prandtl

numbers has no effects on velocity filed, density and stress tensor. Here, specific heat

and viscosity are fixed. Therefore, higher Pr number means lower heat conductivity,

Eq. 5.63. So, the normal component of total heat flux and temperature jump are

higher for the case with lower Pr number. Consequently, the parallel part of the

total heat flux is lower for the case with lower Pr number. The difference between

relaxation times of translational and internal heat fluxes is more for the case with

higher Pr number. Therefore, the heat flux differences and dynamic temperature

values, which are an illustration of internal-translational interactions, are higher for

the case with higher Pr number.

Effects of the accommodation coefficients are investigated in Fig. 9.6. Three cases

are shown with different accommodation coefficients as
case #1: χ = 1 and ζ = 1

case #2: χ = 0.5 and ζ = 1

case #3: χ = 1 and ζ = 0.5

.

Case #1 is the case with full accommodation. Case #2 and 3 are partial accommoda-

tions with full internal and half internal-translational accommodations, respectively.

Heat flux parallel to the walls are almost unaffected by the change in accommoda-

tion coefficients. Partial accommodation with full internal accommodation, case #2,

shows lower temperature and velocity gradient, normal heat flux and stress tensor

in compare with fully accommodated case (#1). Comparing case #1 and 3 shows

that the effects of half internal-translational accommodation are only on temperature,

dynamic temperature, normal heat fluxes. Its effects are towards lower temperature

gradient and normal heat flux. The drastic changes in dynamic temperature between

case #1 and 3 are due to differences of gradient of ∆qy. Velocity, density and stress

tensor is unaffected by half internal-translational accommodation.
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Figure 9.4: Couette flow profiles obtained from set of R19 equations with fixed Knud-
sen numbers. Internal degrees of freedom is set to 10 (red line) and 2 (blue dot-dashed
line).
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Figure 9.5: Couette flow profiles obtained from set of R19 equations with fixed Knud-
sen numbers and internal degrees of freedom. the Prandtl number is set to 0.8 (red
line) and 0.7 (blue dot-dashed line).
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Figure 9.6: Couette flow profiles obtained from set of R19 equations of H2 gas with
Kntr = 10−1 and Knint = 10. black dashed: χ = 1 and ζ = 1; red line: χ = 1 and
ζ = 0.5; blue dotdashed: χ = 0.5 and ζ = 1.
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Chapter 10

Conclusions and recommendations

This book has come to end but there is still story to be told.

Saadi

The present study introduced a modified kinetic model and new macroscopic mod-

els for the accurate description of polyatomic gas flows in the transition regime. Such

flows are presents in many applications, e.g. MEMS and partial vacuumed devices

[71]. It was shown that the proposed model offer accurate results and the ability

to interpret the sometimes surprising details, caused by rarefaction, in the results in

terms of macroscopic quantities. This is achieved with much less computational cost

compared to that required for the DSMC simulations. The emphasis of the present

thesis is on the derivation of the equations and introducing a comprehensive model

for polyatomic gases in the transition regime. As the first applications of the newly

introduced model, we studied the linear wave analysis, stationary heat conduction

and Couette flow.

Polyatomic gases are governed by at least two distinct time scales, the mean

free times for processes that exchange only translational energy, or translational and

internal energies. We introduced a generalized S-model with the following features:

1. The model predicts correct relaxation times of higher moments and Pr number.

2. The correct relaxation of the model towards equilibrium phase densities for

different exchanged processes was shown.

3. We proved that the model conserves the collision invariants.

4. The H-theorem for the proposed model was proven.
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Moment equations for 36 moments were obtained from the proposed kinetic equa-

tion. We introduced the generalized Grad’s distribution function to cover polyatomic

gases based on these 36 variables which was used to obtain constitutive equations to

close the set of 36 moments equations.

The closed system of 36 moments was used to optimize the moment definitions

based on Knudsen numbers. The relation between internal and translational Knudsen

numbers were explored by introducing a smallness parameter, ϵ, and a magnifying

parameter, α. We obtained orders of all 36 moments in two Kn numbers by applying

Chapman-Enskog expansion on the original system of moment equations. Optimized

moment definitions for polyatomic gases were found in a way that all the optimized

moments are linearly independent at the first order. This ensures that at each order

of accuracy, we have the least number of moments possible.

After optimization, all moments have a clear order in the smallness parameter, ϵ,

which were used for model reduction of the set of 36 moment equations and obtained

orders of different optimized moments were used to eliminate higher order terms and

equations at different levels of accuracy. Sets of equations corresponding to different

orders of accuracy up to order ϵ3 were obtained. Based on ordering in two different

Knudsen numbers, 13 different set of equations were obtained and a recipe of which set

is suitable for different problems based on Knudsen numbers was given. At the first

order of accuracy, a refined version of the classical Navier-Stokes-Fourier equations

was obtained, which includes the full balance law for the dynamic temperature (Sec.

5.4). At the second order, a refined variant of Grad’s 14 moment equations was

obtained, which includes some corrections and three extra constitutive equations for

∆qi, B
− and B+. At order 2+2α, a refined variant of Grad’s 18 moment equations was

obtained which consists of 18 PDEs and two constitutive equations. Finally, at the

third order, the regularized 19 moment equations (R19) were obtained which consist

of 19 PDEs and three constitutive equations. Also, temperature dependent internal

degrees of freedom and relaxation times were calculated based on specific heat and

shear viscosities, and incorporated into the proposed model. Also, we discussed the

changes in the equations due to the ratio of the Knudsen numbers.

As a first application of the proposed model, we studied the phase speed and

damping of one-dimensional linear waves as forecasted in the obtained different or-

ders of equations. We compared the predictions of the various equations in the hi-

erarchies among each other as well as to those of the classical Navier-Stokes-Fourier

equations, and its modification containing the balance law for the dynamic temper-



152

ature. Moreover, we studied the influence of excitations of the internal degrees of

freedom by comparing with results for monatomic gases, where we highlighted the

influence of the ratio of collision times, τtr/τint, and reproduced the monatomic gas

behavior by freezing the internal exchange processes. It was shown that the classical

Navier-Stokes-Fourier equations can not produce accurate results.

We introduced a microscopic boundary condition using same idea that we used to

model two distinguished exchanged processes, internal and translational. In the pro-

posed boundary condition, a portion of the particles hit the wall and accommodate

at the wall so that they being reflected with the equilibrium distribution of the wall.

The other portion is reflected specularly. For polyatomic particles that are diffu-

sively reflected, we had two Maxwellian type equilibrium distribution functions, Eqs.

(2.21, 2.25) corresponding to only translational energy equilibrium and total energy

equilibrium. Macroscopic boundary conditions could be obtained from introduced

microscopic boundary condition for different problems.

We solved unsteady one-dimensional stationary heat conduction numerically and

analytically with set of the R19 and RNSF equations and compared the results with

DSMC simulations. It was shown that the Navier-Stokes-Fourier equations were not

accurate in transition regime. The results from set of R19 equations was in a good

agreement with DSMC simulations up to translational Knudsen number of 0.5. The

values of nonequilibrium variables at the beginning of the unsteady process found

to be an order of magnitude higher than their values in steady state. Effects of

non-linearity and temperature dependent properties were more dominant in profiles

associated with translational-internal variables (∆θ and ∆q). The importance of

our proposed model with the capability to model temperature dependent properties

was shown in problems with relatively high temperature variations. The effects of

having internal and translational relaxation times at the same order found to be

on moments corresponding to deviations from total values, ∆θ and ∆q, which are

derived by translational-internal interactions. These effects were towards promoting

the temperature dependency effects and obtained profiles covered a larger range of

values. The effects of different internal DoF were most seen in total heat flux and

stress tensor, where gas with higher DoF gains higher total heat flux and lower stress

tensor in comparison with gas with lower DoF. Higher reference temperature, which

means more excited internal degrees of freedom, produced higher heat flux value and

flatter deviation moments, ∆θ and ∆q, profiles in comparison with lower reference

temperature case.
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Linear Couette flow was investigated by solving the set of R19 and RNSF equa-

tions analytically. This was shown that the set of refined NSF equations could not

predict accurate results. Increasing Kn number ratio with fixed Kntr produced higher

temperature jump, velocity slip, heat fluxes and stress tensor values. This strong ef-

fects of different ratios of Kn numbers were diminished at low translational Knudsen

number. Increasing the internal degrees of freedom, decreased the temperature jump

and increased the normal heat fluxes. Also, the dynamic temperature values were

increased with increasing internal DoF. Heat flux parallel to the walls were almost

unaffected by the change in accommodation coefficients. Partial accommodation with

full internal accommodation showed lower temperature and velocity gradient, nor-

mal heat flux and stress tensor compare to fully accommodated case. Effects of half

internal-translational accommodation were found to be only on temperature, dynamic

temperature, normal heat flux and parallel heat flux difference.

Based on the results obtained, rarefied gas flows in early transition region could

be modeled accurately using the proposed model. During the course of PhD studies,

different issues and ideas were encountered. However due to lack of time, some of these

ideas remained for future research. We divide the future works recommendations in

two parts, first the recommendations for usage of the current proposed model and

second modifications to the proposed model. The recommendations regarding the

utilization of the proposed models are listed below:

1. Solving the multi-dimensional problems by applying finite volume or finite ele-

ment numerical methods on the set of R19 equations. This will allow to inves-

tigate more complicated physical phenomena.

2. A very interesting idea for future work is to extend the proposed model to cover

polyatomic gas mixtures.

3. Exploring more boundary conditions problems, especially in/out flow and open

boundary conditions.

We listed the recommendations on modifying the proposed kinetic model next.

1. We used a continuous internal states model. Implementing a discretized internal

states model will produce more accurate results in gases with internal DoF states

distanced from each other.
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2. In this dissertation, we have considered a simple BGK-type model. Implement-

ing more complicated collision terms and molecular interaction potentials will

allow to produce more accurate results.

The recommendations in part one are feasible. However, the recommendations

given in part two are more challenging, considering that the macroscopic model should

be derived from the modified kinetic model.
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