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ABSTRACT

A high-order macroscopic model for the accurate description of rarefied polyatomic
gas flows is introduced based on a simplified kinetic equation. The different energy
exchange processes are accounted for with a two term collision model. The order of
magnitude method is applied to the primary moment equations to acquire the opti-
mized moment definitions and the final scaled set of Grad’s 36 moment equations for
polyatomic gases. The proposed kinetic model, which is an extension of the S-model,
predicts correct relaxation of higher moments and delivers the accurate Prandtl (Pr)
number. Also, the model has a proven H-theorem. At the first order, a modification
of the Navier-Stokes-Fourier (NSF) equations is obtained, which shows considerable
extended range of validity in comparison to the classical NSF equations in modeling
sound waves. At third order of accuracy, a set of 19 regularized PDEs (R19) is ob-
tained. Furthermore, the terms associated with the internal degrees of freedom yield
various intermediate orders of accuracy, a total of 13 different orders. Attenuation and
speed of linear waves are studied as the first application of the many sets of equations.
For frequencies were the internal degrees of freedom are effectively frozen, the equa-
tions reproduce the behavior of monatomic gases. Thereafter, boundary conditions
for the proposed macroscopic model are introduced. The unsteady heat conduction

of a gas at rest and steady Couette flow are studied numerically and analytically



v

as examples of boundary value problems. The results for different gases are given
and effects of Knudsen numbers, degrees of freedom, accommodation coefficients and
temperature dependent properties are investigated. For some cases, the higher order
effects are very dominant and the widely used first order set of the Navier Stokes
Fourier equations fails to accurately capture the gas behavior and should be replaced

by a higher order set of equations.
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Chapter 1
Introduction

Find something that you love to do, and find a place that you really like to do it in.
I found something I loved to do. I'm a mechanical engineer by training, and I loved
it. I still do. My son is a nuclear engineer at MIT, a junior, and I get the same vibe

from him. Your work has to be compelling. You spend a lot of time doing it.

Ursula Burns

Conventional hydrodynamics fails in the description of rarefied gas flows, where
the Knudsen number is not too small. The Knudsen number is a measure illustrating
the degree of non-equilibrium rarefaction in a gas and is used to characterize the
processes in kinetic theory. In this thesis, we shall introduce models of extended
hydrodynamics for polyatomic gases that extend the validity of the macroscopic de-
scription towards larger Knudsen numbers. These models close the gap between
classical fluid dynamics, as described by the Navier-Stokes-Fourier (NSF) equations,
and kinetic theory, that is, they aim at a good description in the transition regime.

The contemporary kinetic theory of gases starts to form when Maxwell proposed
a general transport equation, which gives the changes of macroscopic quantities (den-
sity, temperature, velocity) over time as a function of microscopic quantities, and
obtained the transport coefficients for a certain type of molecular interaction poten-
tial [1], known as Maxwellian potential. In 1872 Boltzmann [2] proposed a transport
equation which models the evolution of velocity distribution function over time and
space. This equation, known as Boltzmann equation, was a breakthrough in kinetic
theory and created a big motivation in the field. Another great achievement in the ki-
netic theory was established by S. Chapman [3][4] and D. Enskog [5] independently as
they studied closing the transport equations of hydrodynamics for the first time. They



derived formulations for the stress tensor and energy flux as functions of gradients
of hydrodynamic quantities and thus closed the system of hydrodynamic equations.
First attempts into considering the effects of internal degrees of freedom on molecules
behavior was made by Eucken [6] in 1913. Afterward, Wang Chang and Uhlenbeck
[7][8] considered excitation of internal degrees of freedom and proposed a generalized
Boltzmann equation, known as the Wang Chang and Uhlenbeck equation. Successful
attempts for solving this equation using the Chapman-Enskog method in order to
obtain the relations for shear and bulk viscosity and heat conductivity as functions
of the relaxation times were made by Monchick et al. [9, 10, 11, 12, 13] and Morse et
al. [14][15]. A modified quantum-mechanical Boltzmann equation for gases consisting
of molecules with degenerate internal states was proposed by Snider [16] and solved
using the Chapman-Enskog method to obtain an expression for the thermal conduc-
tivity [17]. Later, solving the Wang Chang and Uhlenbeck equation using the moment
equations was considered [18][15]. A. M. Kogan [19] used the entropy maximization
to obtain the generalized Grad’s 13 moment equations for rough sphere polyatomic
gases. The generalized 17-moment equations for polyatomic gases were derived by
Zhdanov [20] and McCormack [21] to cover a wider range of physical problem. They
also introduced expressions for slip velocity and temperature jump.

More recently, Bourgat et al. [22] introduced a model which uses just one addi-
tional continuous internal parameter to represent the internal degrees of freedom of
the polyatomic gas and derived the corresponding equilibrium distribution function.
Mallinger [23] generalized the Grad’s method and derived the 14 moments equations
based on Bourgat’s model. Desvillettes et al. [24] developed a model for a mixture
of reactive polyatomic gases based on Bourgat’s model. Kustova, Nagnibeda and
co-workers studied the strong vibrational nonequilibrium in diatomic gases [25] and
reacting mixture of polyatomic gases for different cases with regards to the charac-
teristic time of the microscopic processes [26, 27, 28, 29] using the Chapman-Enskog
method, and derived the first order distribution function and the corresponding gov-
erning equations [30]. Andries et al. [31] introduced the ellipsoidal Gaussian BGK
model for polyatomic gases considering the additional internal parameter and proved
the H-theorem. Brull et al. [32] used the maximization of entropy and obtained
the same BGK type model as Andries et al. [31]. Cai and Li [33] extended the
NRxx model, introduced in [34][35], to polyatomic gases using the ES-BGK model of
Andries et al. [31] and Brull et al. [32].

In the past four years, Ruggeri, Sugiyama and co-workers developed a generalized



14 field theory for polyatomic gases in the context of rational extended thermody-
namics [36]. They adopted 14 field variables to construct the theory for the dense
gases [37] and showed that the rarefied gas limit of their theory is inconsistent with
Mallinger’s model [23] of kinetic theory. They studied [38] the dispersion relation for
sound and showed that their results have a good consistency with experimental data
up to the non-dimensional frequency of 0.1. Also, the equivalency between extended
thermodynamics and maximization of entropy was shown in [39] for polyatomic gases.
Furthermore, recovering the monatomic gas model as a singular limit of the extended
thermodynamics model of the polyatomic gases was studied in [40]. We will show
that this 14 field theory is not fully at second order of accuracy. Our proposed third
order accurate model is valid at higher Knudsen numbers, where the second order
models loose accuracy.

The macroscopic models at higher order in Knudsen number were shown to work
well for monatomic gases in the transition regime [41]. One of the newly developed
macroscopic models which was shown to work well without being unstable is called
the regularized 13 moment (R13) [42][43][44]. This model has third order accuracy
in the Kn number, and unlike the super-Burnett equations which are unstable, gives
physically meaningful results [45]. The damping and phase speed of ultra sound
waves obtained by this method proofed to be accurate [44]. This model gives, even
at high Mach numbers, smooth shocks [46] and is linearly stable [42][44]. After the
set of R13 equations was completed by boundary conditions [47], several engineering
problems were solved successfully both analytically and numerically. Couette and
Poiseuille flow were solved for flat [48], cylindrical [49][50] and annular channels [51]
geometries. Also, the transpiration flow was solved for both linear and non-linear
cases [52]. Furthermore, this model captures Knudsen boundary layers [53]. The
set of R26 were derived by Gu and Emerson [54] and solved for similar problems
[55][56]. The numerical results of the R13 equations are obtained for heat transfer in
partial vacuum in a micro cavity and the lid driven cavity [57][58]. Recently, the R13
equations for monatomic gases consists of hard sphere molecules are studied in [59].
All these good results are obtained for monatomic gases. However, realistic gases
are polyatomic, and having the same results for polyatomic gases is a perfect tool to
incorporate in design processes.

The present thesis aims at introducing a rigorous macroscopic models for rarefied
polyatomic gases which is obtained from our introduced kinetic model. In order to

obtain such a model we developed a model based on meeting the following require-



ments:

1. be stable,

2. ability to capture Knudsen boundary layers and predict correct relaxation of

higher moments,

3. clearly obtained definition of moments which could construct the model’s field

of variables at it’s minimized number,

4. explicitly shown number of the field variables need to be considered for different

levels of accuracy based on power of the Knudsen number,

5. have high order of accuracy. Specifically, higher than existing first, NSF', and

second order, G14, theories,

6. model the different exchange processes between particles based on their char-
acteristics microscopic time scale and at the same time, have a nice, firm and

simple mathematical structure.

The Chapman-Enskog method at higher order expansions, second or higher, usu-
ally yields unstable equations [60][61]. Therefore, the first item in the list eliminates
the use of Chapman-Enskog method and bring the stable Grad’s moment method
[62][63] into attention. However, the items 2 and 3 imply the need of a more gen-
uine model which satisfies all the requirements. This means that the regularization
method [42][43][44] should be applied and generalized to cover the polyatomic gasses.
The regularization method have another advantage over the Grad’s moment method,
the Knudsen number is related to the model and the moment set needs to be con-
sidered for a given order is clear which is the item 4 in the list. In the procedure of
regularization, as shortly will be described, the minimal number of the moments is
assured and item 3 is satisfied. Regarding item 6 in the list, our introduced kinetic
equation models the exchange processes under two different time scales, using a two
term collision operator. Furthermore, we use a continuous internal energy parameter
to model the internal degrees of freedom, instead of having discrete internal energy
levels. This is also used by other researchers too [22, 24, 31, 32]. Also, a generalized
BGK type collision model [64] [65] is introduced in the kinetic model for having a nice

and simple structure of the Boltzmann collision term to enable us to investigate the



model reduction at high orders. These considerations would satisfy the requirements
in item 6.

Our proposed kinetic model, which is an extension of the Rykov and Shakov
models [65, 66], predicts correct relaxation of heat fluxes and delivers the accurate
Prandtl number. Compared to the BGK, Shakov and Rykov model, in the model
proposed here the number of free relaxation parameters is increased to 4 to allow
proper higher moment relaxation times. The proposed model has a proven H-theorem.
Also, we incorporated the temperature variation of internal degrees of freedom into
the model. Furthermore, based on experimental data of shear and bulk viscosities,
the relaxation times in the proposed model are temperature dependent too.

Our proposed macroscopic models are derived from this kinetic model. The order
of magnitude method [43][67][68][59] is used to obtain macroscopic models and derive

the regularized set of equations. The procedure of this method is as follows,

1. Construct infinite moments hierarchy: A system of moment equations using the
Grad’s method with arbitrary choice of definition and number of moments is

constructed.

2. Reconstructing moments: Apply the Chapman-Enskog method on the moments
and determine their leading order terms. Define new moment definitions, using
linear combination, based on the goal of having minimal number of moments in

each order of magnitude.

3. Full set of equations: Using the equations of old moments definition, the set
of new moments equations is constructed. Apply the Chapman-Enskog on the

new moments and determine their leading order.

4. Model reduction: The full set of equations is rescaled considering the obtained
order of the new moments. Then, the model could be reduce to any wanted

order of accuracy.

The proposed kinetic model and macroscopic models, and results obtained from
the models are all original contributions. Our proposed macroscopic model, extends
the level of accuracy of common macroscopic models, e.g. first order and second order
models mentioned above, for polyatomic gases. We will show that results obtained
from our models are valid in transition regime, where the first order models, e.g.

Navier Stokes Fourier equations, and second order equations loose validity.



We lay out the foundation of the kinetic theory of polyatomic gases in the next
chapter. The two term collision operator is discussed and the generalized S-BGK
type model is introduced along with derivation of equilibrium distribution functions
and H-theorem. From introduced general moments equation for polyatomic gases,
the system of Grad’s 36 moments equations is constructed in chapter 3, which is item
1 in the above list. The Chapman-Enskog procedure is applied, leading order terms
are determined and the new set of moments is reconstructed in chapter 4, which
is item 2 in the list. The full set of new moments equation, item 3 in the list, is
obtained in chapter 5. Model reduction, item 4 in the list, performed in the chapter
5 leads to the regularized equations for different order of accuracy. The linear wave
analysis for different sets of regularized equations is discussed in chapter 6. The
dispersion and damping coefficients of high frequency sound waves for different sets
of equations are compared. The theory of microscopic boundary condition is given
in Chapter 7 and the corresponding macroscopic boundary conditions are given in
subsequent chapters. Chapters 8 and 9 are dedicated to solving boundary value
problems and analyzing different effects on the flow field, e.g. Knudsen numbers and
degrees of freedom. Chapter 8 presents stationary heat conduction analysis. The
unsteady heat conduction problem is solved numerically and the linear steady case
is solved analytically. The obtained results from the proposed model are compared
with DSMC simulations to show the good accuracy of the proposed model. Also, it
is shown that Navier—Stokes—Fourier equations could not produce accurate results.
Analysis of Couette flow is done in Chapter 9. The linear system of equations is solved
analytically and the effect of Kn numbers, internal degrees of freedom, Pr number,
and accommodation coefficients on the behavior of the Couette flow is investigated.

Final conclusions and recommendations are given in Chapter 10.



Chapter 2
Kinetic model

There are those who work all day. Those who dream all day. And those who spend
an hour dreaming before setting to work to fulfill those dreams. Go into the third
category because theres virtually no competition.

Steven J Ross

In this chapter, we present the kinetic theory of polyatomic gases and will in-
troduce our kinetic model for modeling polyatomic gases and explore some of its

properties.

2.1 Kinetic theory of polyatomic gases

The number of independent variables which are required to specify the full state of a
system is called the degree of freedom of that system. A particle in space can move
independently in three directions. Therefore, there are three translational degrees
of freedom associated with any gas molecule in free flight. Besides the translational
degrees of freedom, there are other degrees of freedom due to internal energy of
molecules. These degrees of freedom may be divided into two categories based on
rotational and vibrational movements of the molecules. For example, a diatomic gas
could have rotational movements around two axes, the ones perpendicular to the
connecting line between two atoms [69] and a vibrational degree of freedom in the
direction of the connecting line. Therefore, a diatomic gas has six degrees of freedom.
However, one should keep in mind that based on quantum mechanic analysis, spaces
between the energy levels of vibration and other kinds of molecular energy are big

and usually at room temperature the vibrational levels of internal energy are frozen



[69].

State of molecules changes due to interaction between molecules (collisions). En-
ergy and momentum are conserved, but exchange between different energy forms and
particles. Different exchange processes occur on different characteristic time scales.
In all collisions, the translational energy is exchanged between particles. However,
only in some of the collisions the internal energy is exchanged as well. These differ-
ences and their relation to the reference or macroscopic time scale is a key feature
for defining the state of a gas as being in non-equilibrium or equilibrium. In cases
when there are two different characteristic time scales, one smaller than and the
other one comparable to the macroscopic time scale, both rapid equilibrium and slow
non-equilibrium processes would be present in the gas. The rapid processes are in
equilibrium state at the macroscopic time scale, due to the fact that lots of collisions
with rapid processes occur in the time needed for any changes in the dynamics of the
gas. Also, all the processes with characteristics time much larger than macroscopic
time scale would be assumed to be frozen during the macroscopic time scale.

A collection of numerous interacting particles is called gas in kinetic theory. One
mole of gas at reference temperature and pressure of 273.15 K and 1 atmosphere
will have numer of molecules equal to Avogadro number (N4 = 6.022 x 10*) and
occupies a volume of 2.2 x 1072 m3. These particles are described by their position,
x;, velocity, ¢;, and their internal energy, e;,;, at any given time. Each molecule could
be described by this 7-dimensional space known as phase space at time, ¢t. Using
continuos spectrum internal energy, which is a simplified model where all degrees are

fully developed or frozen, the internal energy is defined as
2
Eint — 13, (21)

I is internal energy parameter which is non-negative; ¢ is the number of non-translational
degrees of freedom of the gas. By introducing the particle or velocity distribution func-
tion f(x,c, €, t), the number of molecules in a phase space element dx;dzadrsdeydesdesdey,
is computed as

dN = f(x,c, e, t)dxdcde,, . (2.2)

The evolution of particle distribution functions is determined by the Boltzmann equa-

tion, which is a nonlinear integro-differential equation written in the absence of ex-



ternal forces, as

of  of

The left and right-hand sides take into account the effects of the particles free flight

and particles collisions, respectively. The quadratic collision term,

5= Z \/(fa'fall_fafal) O'g/aoillg dS2 dcl’

/ !
ag,o’,af

would take different complex forms which is difficult to work with and costly in
computing resources [70, 30]. Here, a and a; denotes the incoming particles before
collision, o/ and o) are denotes particles after collision, ¢ is the differential cross
section, g is relative velocity of the incoming particles, and df2 is the element of solid
angle. Therefore, having simpler models to replace the Boltzmann collision term
which could preserve the basic relaxation properties and give the correct transport

coeflicients is more of our interest.

2.2 Kn number

Processes in kinetic theory are characterized by a dimensionless parameter called the

Knudsen number,

Kn=—=—, (2.4)

L is the characteristic length scale of the process and A is the mean-free path of gas
particles. 7 is the relaxation time of the microscopic exchange processes. In dimen-
sionless form of the Boltzmann equation, relaxation time (microscopic time scale)
is non-dimensionalized by dividing by a typical reference or macroscopic time of the
process 7y. This dimensionless time presents the Knudsen number. When Kn number
is small, we are at hydrodynamic regime and continuum assumption is valid. As the
mean-free path becomes comparable with the characteristic length, which means less
collisions, we are in the transition regime and the continuum assumption starts to
break down and particle-based methods need to be employed. In this situation, the
flow is in rarefied state and one has either to solve the Boltzmann equation, or develop
advanced macroscopic models that include rarefaction effects. When the mean-free
path becomes longer than the characteristic length, we are in the free molecular flow,

which means very rare or none collisions.
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There are several applications that illustrate comparable mean-free path and the
characteristic length [71, 72, 73, 74]. At the small scale devices, e.g. MEMS, the
characteristics length becomes comparable to the mean free length, which for air at
standard condition is around 0.1 um. Vacuum devices have large mean free path
due to low density, e.g. mean free path is around 1 mm at pressure of 10~* Pa.
Also, at high altitude applications we have large mean free path as the air becomes
dilute. Decrease of density and increase of mean free path with increasing altitude is
a exponential function, the mean free path gain the values around 0.1 and 100 m at
100 and 200 £m elevations.

2.3 Macroscopic quantities

The macroscopic properties such as mass density, momentum, energy, and pressure
are moments of phase density. Other than that, there are other moments that have
physical interpretations, e.g., pressure tensor and heat flux vector. Based on the

definition of the trace free part of the central moments,

S, A A2
ullln _m//<eznt) C C<i10i2"' in>fedCdeint

=m / / (IHAC*Cy,Cy...Cy fdedl | (2.5)

where
A=0,1,2,3,..
¢=0,1,2,3,..

and due to substitution e;,; — I,
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The basic and most important moments are:

Density p = m//fdcd] = /pIdI = u®0 | (2.6a)
Velocity pv; = m//cifdcdl or 0 = m//C’ifdch = u?’o ,

(2.6b)
Stress 0, = m//C<iCj>fdch = u%o , (2.6¢)

, 3 C? 1 1
Translational energy puy,. = p=m decd] =5u, (2.6d)
Internal energy pu;,; = m//]z/‘sfdcd[ = /12/6p1df =u™ (2.6e)

. 02 1 1.0

Translational heat flux g;4 =m C’i7 fdedl = éuz , (2.6f)
Internal heat flux ¢, = m//Cilz/‘Sfdch = u?’l . (2.6g)

Here, ¢; is the microscopic velocity, C; = ¢; — v;, is the peculiar particle velocity,
and p; = m | fdc is the density of molecules with the same internal energy e;,;.
Moreover, wuy, and ug,; are the translational energy and the energy of the internal
degrees of freedom, respectively, while ¢; ;» and ¢, ;,,; are the translational and internal
heat flux vectors.

The classical equipartition theorem states that in thermal equilibrium, each degree
of freedom contributes an energy of %8 to the energy of particle, where 6 = %T is
temperature in specific energy units [44]. Thus in equilibrium, the translational and

internal energies are

3 )
Ugr| B = 59 and Uy p = 59 ) (2.7)
We extend the definition of temperatures to non-equilibrium, by defining the trans-

lational temperature 6;,. and the internal temperature 6;,; through the energies as

3 Y
Uty = §0tr and Uint = Eglnt . (28)

With these definitions, the ideal gas law in non-equilibrium reads p = pf;.. The total

thermal energy, u = w;,; + Uy, is defined as the sum of the internal and translational
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energies, and we use the equipartition theorem to define the overall temperature 0 as

3 0 3 0
= — i = =+ = ) 2.
In equilibrium the three temperatures agree, |z = 0;,,,z = 0, while in non-equilibrium
they will differ.

2.4 BGK model

One of the models to replace Boltzmann equation’s quadratic collision term is the
BGK model [64] which was introduced by Bhatnagar, Gross and Krook for monatomic
gases. This model is based on relaxation towards Maxwellian distribution and is
written as

sz%(M—f) | (2.10)

Here, the Maxwellian M is the distribution function at equilibrium state and 7 is the
characteristic time (mean free time).

As discussed earlier, there are many different processes with distinct time scales
for polyatomic gases [30]. While translational energy is exchanged in all collisions,
internal energy is exchanged only in some collisions, due to details of molecular in-
teraction, and leads to different time scales. Our model considers continuous internal
states, and all the internal exchange processes are modeled to relax by only a single
characteristic relaxation time, 7;,;. This implies restriction on our model, specially
at higher temperatures where distance of the energy levels between internal states
are considerable and the assumption of one continuous internal state is not feasible.
For description of these exchanges we use a two term BGK-type collision operator
following [75]. The first term, indicated by subscript tr, represents the translational
energy exchange during the collisions. The second one, indicated by subscript int,

models the exchange of the internal energy between colliding molecules. Therefore,
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2,0 1,0
Oij | G; Uy
7

67_

1
T PTT

T

wing &

Table 2.1: Maxwell molecules’s relaxation times.

Gas HQ NQ 002 &0, CH4
Pr ]10.69|0.72|0.76 | 0.74 | 0.72

Table 2.2: Prandtl number of different gases at temperature of 300 K.

the Boltzmann equation can be written as,

of  af |
E + Cka—xk = Str + Sznt s (211&)
1
Str = __<f - ftr) ’ (211b)
Ttr
1
Sint = — (f = fint) - (2.11c)
Tint

Here, 73, and 7, are the corresponding mean free times that we assume to depend
only on the macroscopic equilibrium variables (p, ). Also, f;. and fi,; are equilibrium
distribution functions that describe the different equilibria to which the distribution
function will relax due to the collisions; they depend on the collisional invariants.
The maximum entropy principle will be used to obtain these equilibrium distribution

functions in section 2.7.

2.5 General moment equation

The moment equations are obtained by taking weighted averages of the Boltzmann
equation. Multiplying the Boltzmann equation with m(I1%/9)4C*C_;,C;,...C;, ~, and

subsequent integration over velocity space and internal energy parameter gives the
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general moment equation as

S,A
Duy” oeusIA Duy, + 9egs A avj n s 0v;
Dt idnk D Weinki 9 Op 4170 ISt 0x;, ~
G, A s+1,A
4 Ui ik 19 n+1 usA Ovg> n au<z’1...¢n,1
B o+ 3 < g ot 1 O
T n -+ T n -+ Ti >
+ 2§ ,U/C,A ‘Dvin> n— ]' nu(“r].,A avinfl + nuC,A Dvln>
2n + 1 <%1...tp—1 Dt 277, o 1 <%1...tp—2 axin> <%1...tp—1 Dt
4o Oy, n n-—1 c41.4  Ovi s v, ~
et Qe 2n4+12n — 177 St 9y R<itdn-1 )
1 1
_ S,A 54 6,A _ . 5A
T WUy in| B tr uil---in] + T |:ui1...in|E,int “uzn] (2.12)
: S,A . SA n_,s+1LA : D __
Here, the relation uZ; , ., = wp, \ + 5quiy " 6,k is used [44], and ; =

0 0
ot T Vigy, -

2.6 S-model

In the original BGK model f;,, and f;,, are the Maxwellian equilibrium distribution
functions corresponding to different collision types which could not predict correct
relaxation of the higher moments, Eq. 2.12, and the Prandtl number [76, 77]. Shakhov
[65] proposed a modified BGK model for monatomic gases to obtain the correct Pr
number and Rykov [66] extended this model to molecules with rotational movements.
In order to overcome these defects we introduce a generalized and modified S-model
for polyatomic gases.

The relaxation times of the Boltzmann collision term for Maxwell molecules in
the case of monatomic gases for some higher moments are presented in table 2.1 [44]
[78]. The relaxation time for all higher moments in the original BGK model are the
same as stress tensor. The relaxation time of ubo is close to the relaxation time of
0i;, but for other moments the differences are considerable and should not be ignored.
Therefore, we introduce a model which correctly predicts the relaxation of these higher
moments and their internal moment counterparts {g; i, @i int, 0ij, u*°, u*'}. Prandtl
numbers of some polyatomic and diatomic gases are given in table 2.2 [79, 80]. Based
on the definition of these higher moments, we introduce translational and internal
distribution functions by expansion about the equilibrium Maxwellian functions, fi,

and fi,, in corresponding polynomials in specular velocity and particle’s internal



2,0 T1
045 Qi tr i int U Uu
1 1 1 1 1 1 1 1 1 1
1 1 o4 1 , 1 4 1 5 1 1
Ttr + Tint thr Tr + Tint qut Ttr + Tint Rzo Ttr + Tint Rypa Ttr + Tint

Table 2.3: Correct relaxation times for higher moments based on four new free pa-
rameters.

energy as

fir = furo [14 (a®° 4+ a7°Ci + 0 °C? + 4} CiC
—i—ail’OCz‘CQ + G?’lcz‘emt + a"CPeim + az’OCZOZ)} ; (2.13)

Fint = Fintg [1+ (00 +00°C; + b1 (C? + €4
b CciCs + b °CiC% + b Crgne + b1 CPeiy + 00CC?) ] L (2.14)

The unknown coefficients in f;, and f;,; are obtained based on the conditions that
the proposed two term collision model predicts correct relaxation for higher moments
by introducing four free relaxation parameters R, , Ry,,, Ru20, R0 as shown in
Table 2.3. The relaxation parameters will be obtained using fitting to experimental
and simulation data. These conditions along with the collision invariants result in

coefficients for the translational distribution function as,

(1 — Ry20) (u?® — 15062 )

ay’ =0 , = e : (2.15a)
tr
070 . (1 - thr) qi,t’f‘ + 25 (1 - qunt) Qi,intm% b
00 — _ = : (2.15b)
tr
u1’1_§6 0t int
1.0 —5(1 = Ry20) (u*” = 15p0;,) — 86p0 0t (1 — Ryr) W,i—;p%
a0 = S0 . (2.15¢)
tr
a},O _ (1 — Rthr) Qi tr aQ,l _ 4 (1 — RQint> i int (215d)
' 5p61§r 7 ! 4u0’29tr - 52p9i2nt9tr ’
3
a171 _ 4 (1 — Rul,l) (ul’l — §5p9t7~(9mt) (215@)
159t2r [4u0’2 - §2p912nt] ’
1— R, 20 _15p0?
20 — ( 20) (u pO.) ’ (2.15¢)

12007,
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and internal distribution function as,

28 (1 — Ryra) [ult — 30p0%] + (5 — 0) (1 — Ry20) [u*° — 15p0?]

0,0 _
b =(6+9) R (30 103+ 0)) !
(2.16a)
b?,O _ (1 - R(Itr) qitr ;’021 - qu'nt) qi,int ’ (216b)
pi —28 (1 — Rya) [ubt — 26p62] — (5= 6) (1 — Ry20) [u?® — 15067 (2,160
2003 (30 + 9 (3+0)) ’ '
0,0 o (1= Ry,) qis 01 _ 21— Ry) Giime
)20 _ 20 (6 — 6) (1 — Ryu) [ult — 26p62] + (30 — 6 (7 — 8)) (1 — Ryz0) [u* — 15p6?]
B 120p6* (30 + 6 (34 4)) ’
(2.16¢)
pl_ 24 (1+6) (1 = Ryaa) [ult — 26p0%] + 6 (3 — 8) (1 — Ry20) [u®° — 15067
60p6* (30 4+ 0 (34 9)) ‘
(2.16f)

2.7 Equilibrium distributions

A gas which is isolated and there is no disturbance or force acting on it, will have
an entropy elevation until its entropy reaches its maximum value. This maximum
value is limited by the conserved quantities during the collisions. In 1987, Dreyer
[81] proposed the maximum entropy principle in non-equilibrium state motivated by
the work of Kogan [82]. We obtain the equilibrium distributions using the maximum
entropy principle here.

The energy of internal states of molecules does not change during translational
collisions. So, the number of molecules with the same internal energy level is an
invariant for this type of collisions. However, in internal processes due to exchange of
the internal energy, the total number of the molecules is an invariant. Also, momen-
tum is conserved in all the collisions. Conservation of the energy for the translational
processes results in conserved translational and internal energies, separately. Total
energy is conserved for the internal processes.

The problem of finding the equilibrium distribution function which maximizes the

entropy,

ps = —kb//fln gdcdf , (2.17)
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under the collision invariants constraints is solved using the method of Lagrange
multipliers [44]. Here, k; is the Boltzmann’s constant and y is volume of inverse of
phase space element. This method is based on the fact that finding the extremum
of a function, L, under constraints GG; = 0, is the same as finding the extremum of
L—7%". NG, where ) is the vector of Lagrange multipliers. The unknown multipliers
are obtained using the constraints. Therefore, the function that should be maximized

for the translational processes is

D= —kb//flngdchJr/Am (p[ —m/fdc) dI
+ A, (0 —m / / C; fdcd]) + Ay, (gpetr —m / / %2 fdcd]) . (2.18)

This is a variational calculus problem with the solution

m C?
f = yeXp[_l - k_b(API + Apvk Ck + Aputr 7)] . (2]'9>
The unknown multipliers are obtained using the constraints (prescribed values of

number of molecules, translational energy and momentum balance) to be

ke
Apu, = ——
PUtr metr
Ay, =0, (2.20)
m PI IS
—1-—(A,)]=1tE .
el = 1 (A,,)] = 22 (-’

Substituting the multipliers back into the distribution function, the equilibrium dis-
tribution function of the translational processes is obtained to be a Maxwellian dis-

tribution function,

f ! %e LG (2.21)
tro = 27TQ,5T *P 20t7‘ ’ '
Also, the function that is maximized for the internal processes is
P = —k;b//flnidcdf—i-Ap (p—m//fdcd[) + Ay, <O—m//C’ifdch>
)
YA, (3_“%@” m / / (— + emt> fdcd]) (2.22)
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Similarly, this is a variational calculus problem with the solution

m C?
f=yexp {—1 — k_b (Ap + Apvszk + AL {7 + emt] )] , (2.23)

using the collision invariants of the internal processes (prescribed values of total num-

ber of molecules, total energy and momentum balance), we have,

ke
A, =2 2.24
P me ( )
Apka = O )
p 1 1

m
exp[—1 — —(A,,)] = — - :
Pl k ) m (27)2 go+3)/2T (1 + g)

Accordingly, the equilibrium distribution function of the internal processes is

intg — 3 e — =41 . 2.25
Jint m (27)2 E+8)/2 T (1+ g) P\ 2 (2.25)

These obtained equilibrium distribution functions are first derived as Maxwellian
distribution function by Bourgat et al. [22] and Andries et al. [31].

Moments of the two equilibrium distributions are

2+ D! o 5

Ui = PO TT (A S ) (2.26a)
T () 2

Uy, = (26 + 1)!!9;,/(12/5)%@1 : (2.26b)

u;Azn\E =0 n#0, (2.26¢)

<

where (2¢ + 1)!! = H(Zs +1) and p; = m/fdc.

s=1
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2.8 Important properties of the proposed model

Now we examine some important properties of our proposed model. First, we consider

equilibrium. Using the Maxwellian distribution functions, we get

u|E tr — m//c emtftrotdCdemt - 5p9mt9tr )
|Et - m//c4ftr0d(:d€znt = 15p9tr ) and
U\E int m//c emtfzntodCdemt —5P92 (227)

‘E int m//c flntodCdeznt - 15p92

In equilibrium we have zero collision term and all moments of the collision term must
vanish, e.g., ¢t = ¢iine = 0. Therefore based on Egs. (2.13,2.14), all the expanding
coefficients become zero and we will get f = fi, = f,,, when we have equilibrium in
translational processes only, and f = fint = fint, When we have equilibrium in both
internal and translational processes.

Next we consider conservation of moments: For the translational exchange pro-
cesses the number of particles with the same internal energy level should be conserved.
Internal exchange processes conserves the total mass and number of particles. Both
internal and translational exchange processes conserve the momentum. The total en-
ergy is conserved in the internal exchange processes, where the translational processes
conserves the translational and internal energies separately. The above conditions im-
ply that the two phase densities , f;,. and f;,;, should have the moments related to

mass, momentum and energy in common with f as,

plzm/ftTdc:m/fdc,
0=m / / Cy fndedl = m / / C, fdedl | (2.282)
gpetr - % / / C2 fpdedl = % / / C2 fdedl .
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P:m//fimdcdfzm//fdcd[ ,
0= m//C’ifmtdcd] = m//C’ifdch , (2.28b)
(3 ) pl = m// (— + emt) fimededI = m// (_ + emt) fdedl .

These equalities are satisfied, and the conservation of mass, momentum and energy
is guaranteed by using the proposed model.

The remainder of this section is dedicated to prove the H-theorem for the proposed
model. Multiplication of the kinetic equation (2.11a) with —kIn f and subsequent
integration over velocities and internal energy give the transport equation for the

entropy density. Consequently, the entropy generation is obtained as

d = —k;/lnf Sdedl
& //1nf<f_fmt)dcd[+%//lnf(f—ftr)dcdl20, (2.29)

Tint

non-equality shows that the entropy generation ought to be non-negative. Right hand
side of Eq. 2.29 have two terms, first we consider the first term.

We write the first term associated with the internal exchange processes as

_ In f |
— / / I f(f = fin)dedl = - fmt (f = fint)dedl
- / / I fini(f — fine)dedI . (2.30)

Here, the first term in the right hand side is always positive by structure. Now, we
focus on the second term. Considering near equilibrium situation with small non-

equilibrium variables iy, @i, [’ — 36p62], [u*® — 15p6%], we write In fi, as,

I fing =10 fingy + (070 + 07°C; + 6" (C® + €4n) + by CiCys
+0;°C,C% + b)Y Crejy + D Oy + V20°C?C?) 1 (2.31)

here, we used the relation In[1 + z] = z with = being small. Due to the conservation
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of energy, momentum and mass, we have

/ / In finto (f — fint)dedI =

1 1/C?
/] lln [— AT AT | 5 (7+)] (f = fi)dedl =0,
/ BO(f = fing)dedl =0 / BOCH(f = fint)dedl =0 (2.32)

and /b1+1 (02 + emt) (f = fine)dcdl =0 .

Therefore, remaining terms of first term of Eq. 2.29 are

2R, (1-R
//b;’ocicz(f — fint)dcde = bil’OQthrqi,tr = I ép93 q”)qitr , (2.33a)
2R - R,
/ / b O (f — fin)dedes = b Ry, Giint = qg 7 qwt)qut . (2.33b)
p k)
which are always positive for {R,,,, Ry, } < 1 and

A= / / bOCPCR(f — fine)dedesm = b0 [Rozo (u?” = 15p6%)] =

200 (6 - 5) Ru2,0 (1 - Ru1,1) [ 1,1 35p92}
12060 (30 + 0 (3 + 0))
5(30 — 8 (7 — 0)) Ryzo (1 — Ry20)
1200007 (30 + 0 (3 + 0)) |

Ay = / / PRACRIO(f — fi)dedesy = bt {Ruu (ul’l - §5p92)] _

_ 801 +0) Ry (L= Rps) [ 1y 35 o 2
= 1200004 (30 + 6 (3 +9)) 2P
206 (3 — 6) Ryt (1 — Ry20) o 11 3
0 _ 1500 (' — 25067 ) .
1200007 (30 + 0 (3 + 0)) [0 = 1507 | =500

[u2’0 — 15p02]

u?® — 15p6%]

It should be pointed out here that two relaxation parameters, R, and R, are

Qint >

analogies to the Pr number and their typical values are around 0.6 —0.8. We use the
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Onsager relation due to the coupling between these last two equations as
A1 + A2 = LABXB-XA s (234&)

with Onsager phenomenological matrix,

5(30_6(7_5))1%1,.2»0 (I—Rugo) 205(6—5)3112’0 (I_Rul,l )

_ 1208007 (30+6(3+9)) 1205007 (30+6(3+9))
Lap = 206(3—6)R,1,1 (1-R,2,0 ) 480(140)R,11 (1-R,1,1) ’ (2.34b)
1206067 (30+6(3+9)) 1206067 (30+6(3+9))
and forces,
3
X, =u*® —15p6* and X, =u"' — 5(5,002 : (2.34c)

The coefficients matrix has proportional non-diagonal terms, non-negative diagonal

terms and determinant for { R,i.1, R,20} < 1. Therefore, we conclude that
3
b*0 [Ryz0 (u*” — 15p6%)] + bM! {Rul,l (ul’l — 55;)92)] >0. (2.34d)

The relaxation parameter, R,z20, have values around 0.7 for monatomic gas as men-
tioned in table 2.1. Now that we proved that the first term in the right hand side of
entropy production, Eq. 2.29, is non-negative, the second term is analyzed next.

We re-write the second term in the entropy production equation (2.29) which is

related to translational exchange processes as,

/lnf(f— fu)dedl = / 11111;: (f - ftr)dcdl—i—/lnftr(f — fu)dedl . (2.35)

The first term is always positive by structure. Therefore, we now focus on the second
term here. Applying the same technique as we did for In f;,;, we will have the In f,

as,

In fy, =1In fo, + (ao,o + a?’OCi 1 gM00?
+az‘1’OCiC2 + a?’lcz‘emt +a*°C?C? + a1’1026mt) (2.36a)

3
PI L \2 L
In f;,, =In | — — 2.36b
nfto t m (27T0t7“) ] 20151"0 ( 30 )
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Due to the conservation of the translational energy, momentum and mass, we have

[ [tets s [ [ ]2 (1)

/ a”(f = fir)dedl =0 | / a’°Ci(f = fir)dedI =0 (2.37)

ol

1, B
] - 2‘9trC ] (f = fu)dedl =0,

and /a1’002(f — fur)dedl =0 .

Therefore the remaining parts are,

QRQtr (1 B th'r) 2

[ataicis - fodedr = e L Husl (2.38¢)
tr
4R,  (1—R,.)
011 2/5 _ _ Qint dint 2
O dedl = c. 2.38b
/az CZ (f ftT) Y etr [4U072 _52pgl2nt] 4 int > ( 38 )
s 1 - U
[avcres - gaydedr = L) a0 ig ) (2.35¢)
tr

4Ru1,1 (1 — Ru1,1)
1591527’ [411’072 - 52p912nt]

3 2
/ a“tC2I2(f — £,)ded] = (ul’l - 55;)9”9%) . (2.38d)

which are always positive for {R,,,, R, Ru20, Ry1} < 1. Here, based on the ob-

Qint

tained G36 distribution function (3.9) we calculate the moment u%? to be

1
gz = 5 (2 0) p0[(6+6)0 — 60,] , (2.39)
(4082, — 62p02,] = p [266% + 3A0 (40 — 3A0)] . (2.39b)

Therefore, both terms in entropy production inequality are non-negative. It follows
from Eq. 2.29 that the H-theorem is fulfilled as,

Z = —k/lnf Sdedl >0 for {R,, R, Rpeo, Rpa} <1. (2.40)

Therefore, H-theorem demands that the values of relaxation parameters be less
than or equal to 1. Also, this agrees with our obtained values of relaxation parameters
from fitting to experimental and DSMC simulation data, as will be shown in Chapter
8.
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Chapter 3
Moment equations

Do not fear to be eccentric in opinion, for every opinion now accepted was once
eccentric.
Bertrand Russell

Moment methods replace the kinetic equation by a finite set of differential equa-
tions for the moments of the distribution function. Some of moments are interesting
and we have physical meaning of them, e.g. heat flux and velocity. Therefore, the
moment equations can be used to approximately describe an ideal gas flow. Also,

increasing the number of moments typically leads to a better approximation [36].

3.1 Conservation laws

Conservation laws for mass (¢ = A = n = 0), momentum (¢ = A =0, n = 1), and
the balance laws for translational (¢ = 1, A = n = 0) and internal (¢ = 0, A = 1,

n = 0) energies are obtained from the general moment equation (2.12) as

Dp 8?)1‘
— =0 3.1
Dv;  100;; = 00y 6y 0
o S0y T T TP
Dt = pOx; Oz, p 0x;
3 DQW aQi,tr 81)3 81}1' 3p (9 — (9,57«)
5P Oij Pl — = ——
D%Hmt n 0qi,mt _ 3p (0 - Qtr)
Dt 0@ Tint 2 '

0, (3.1b)
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The time derivative and spatial derivative of internal heat capacity are

Dg_ag+ 0% d 9 991 _1ddDY (3.23)
Dt ot Uox,  do |ot " Vx| 240 Dt =
9% 1ds 00
-, 2

The conservation of the total energy results from summation of the balance laws for

translational and internal energies as

(%i
8£Ci

3+ 4] + ez_g D_Q + 8q¢,int 8QZ tr av]

N
5 Dr T om T om gy, TR0 AY)

—0. (33

p

Here and later, we replace the translational temperature 6, as variable by its nonequi-

librium part Af = 6 — 6,,, named dynamic temperature,

DA& 2 O 2(0+0%) Oy  2(3+60%) oy
"Dt T3551 6% on,  3(3+0+6%) 0r; 3(310+68) " 0n,
do
2(0+0%) p(0—00) 2% — P ng (34

8@0 7 Tint

T 3B+o+0D)”

The originally derived conservation laws above are coincide with the conservation

laws obtained in References [70, 30].

3.2 Balance laws

1,0
” , translational heat flux, ¢;; = %ul ,

= @i int, Which are present in the conservation laws, are

Moment equations for stress tensor, o;; = ud;

and internal heat flux, u"

obtained from the general moment equation (2.12), as

Do;; 6uzgk 40q<; 0vj> vy,
= ; 20 )i =22 s
Dt + oxy, + 5 0z + 20k oxy, +O]8xk
0v<i 1 1
2010 — AG =—|— i, (3.5
* p[ ] axj> |:Ttr * Tint:| O-] ( )
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Dgiyr 5 doy; 00 OAA
Dt 2 6 — Ad] { z; * pam, p ox;
Olnp 100y,
— = - AY -l
[ axk | ] Ox,  p Ox;j }
1 aui,j) 1 au20 L0 Qv T Ou T O
2 xy | 6 Oz %z, | 51 ag, T 5 oy,

2 v 5 a 11
Zqie—2 — = [6% — 20A0 + AG? =—R — it .6
+ 5q97t axz 2 [ + } axz Qtr |:7—tr + Tint:| Qi tr (3 )

D 00 +3A0 [Doy; 00 OAG olmp]  oull!
P - 0 — A9 i
1 (9u1 1 a’U avk 1 1
a9 a. n 1,4n - ; — i.an 3.7
+33 + G, . +qi taxk qmt{t?‘—FTqu ¢ (3.7)

0 0,0 01
,ur0 ) w and wbt for which full

. o 1,
These equations contain higher moments u;; ik Wi

moment equations can be obtained from Eq. (2.12) with the appropriate choices for
¢ and A. Choosing all moments mentioned so far as variables will construct a 36
moments set,

1,0 ;20 .01 11 00
{pa Ui707A070-ij7tarv% mt»u” y W7 Uy s U 7uijk (38)

The obtained equations for these 36 moments contain higher moments in the fluxes

which we have to obtain constitutive equations for {u TR T e } to close

igky “i 0 gkl Yigko U;
the set of equations. Grad’s distribution function will be used to obtain constitutive
equations for these higher moments as functions of the 36 variables and close the

system of 36 equations.

3.3 Grad closure: 36 moments

Grad [62, 63] proposed a distribution function based on the expansion of the Maxwellian
into a series of Hermite polynomials. It is convenient to consider the expansion with

the trace free moments instead of regular moments, so that the generalized Grad
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distribution function based on the 36 variables is written as

fiso = finto (A0 + A0, + AM0C% + N2 CciChs + A ey
A CC% + N Cregy + AE)._CPOLChs + N20CH

<ij>
A2 C<iCiCrs + A2i15 CiChs it + AV Ciny) (3.9)
where, )‘Zfiz...m are expansion coefficients. Grad 36 distribution function should

reproduce the set of 36 moments. This is done by choosing the coefficients A based

on the definition of 36 moments as,

up = m//\I'Afgﬁdch : (3.10a)

with
Up = {p7 pet?‘a Ioeinta O-ij7 Qi,tr7 Qi,imh u;j‘ou u2707 U?jg; u%‘l7 ul,l} 3 (310b)
c? 2 C,C?
Uy = {17 C; =7 §Cnt C.iCjs, ZT7 Ci€int

C<ic'>027 047 C<iC'Ck>7 C<iC'>€int7 CZeint . 3.10c
J J J
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qutt +u?0 5 3(240)6,
N0 = — - o 3.11
8007 8 0 (3.11a)
1,1
o ubt 15 3(5-0)0,
A __5p93+ﬁ_—2592 , (3.11b)
2utt+u®® 1 (9+4)6,
1,0 __ T
A0 = BTy il Rl (3.11c)
2,0
20 u=’ 1 Htr
= T20p6" TR 468 (8.11d)
11 3 (9 — 5) Qt
Al - 3.11
30001 2062 6563 (3.11¢)
\00 Qitr + Qiint 1,0 ugjo _ Oij (3.11f)
Y PUSIE 9804 4ph3 '
10 Gigr 01 _ 2Giint
2u[.)7.1 + u.lio (9 + 5) Tix
0,0 o 1) 1) 1)
)‘<ij> - 4p03 4p0?2 ’ (3.11h)
0,0 st -
0,0 _ gk 0,1 _ iy ij :
<ijk> " Gpp3 1 T<ii> T 5,0 - _2/)93 : (3.111)

Using the Grad distribution function (3.9), the constitutive equations are obtained

as

1 0,0
ul? = 99y

ijk ik
01 é& 0,0
Wi = 5 Uik >

0

20 _ 00 _
u;” =280, ugy =0,

u?’l = (5qi7mt + 5(]7;’”) 0 . (312)
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Substituting these equations into the 36 balance laws gives the closed set of equations

Therefore the balance laws for the moments x>, 120, u%? 4%

i U s u and ub! are
Duj;’ Olnp 28 O1np
B~ U2 [0 — A o~ 5 10— A<y — B
4 700 00 900 OAO 28 o0

i1k O “z’jk_axk + €Q<i,tr—axj>
28 0A9  Ouly dq 6 1o Ov
B s 220 gpTlisk | 29gpPisir O 1o Ok
5 d<it 0T j~ + oy, 5 0T j~ + 7<ii Oy,

4 10 6'0] 1.0 a'Uj> 108Uk; 1 206U<Z’
- 2u,. ol Y —
M e S L P T
1 Ooaakl 281 aO'J>l 1 1 1,0
_2; i* 95 b pQ<ztr o, = — e w; o, (3.13a)
Du?? Olnp Ot Qi tr OO
— 8qr |0 — AO 280 ——— — gL
Dt et [ ] ka + 8xk 14 81‘]
86 8A¢9 108U 7 a
20q 47 S8qk.tr A0 220 4 -
+ 20Qk 4r 57— D + Sk tr 77— Oy + 4wy 8xk axk
R,2.0

3
0 [(15p [0 — 2600+ A]) =] + T2 [(1507) =], (3.13b)

Du?jz 30<ij aO'k>l 3 au<z] Ooii 89
Dt p  0x 7 0T~ O

Ths I<ij 9
ov 12 0v; 1 1
0,0 Yl J 0,0
- itr— = — | — + s (313
kg 5 Teit 0T~ [Tw Tmt:| ik ( °)
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Dud! 10 0 — Ab ) 5 Ouyy
= QQ<1 nt U]>k - 2[ ]Q<i,int P + 9 gk
Dt p Oxy P Oxij~ 2 Oxy
L 049(9(5+5 0089+2(5 06 4o 0Nl
Uik s A —O<itro iint
49 Dy | 2"k Qg 5 it gy it g
aq<1 int 26 aQ<z tr ) 0,1 aU‘>
20 ———— + —0—— 9 itr Qi =
+ 0xj> 5 0xj> 5 T<it 8:6]> + St Oxy,
ov 2 Ovg; 1 1
0,1 k 1.1 <i 0,1
St T — == | — iy 3.13d
+u” 8xk + 3U 81‘j> |:7-tr + Tint:| u” ’ ( )
Du't Qr.int OO Olnp 0A6l
— 2= L 2k int [0 — O + 2qk.in
Di P 8xj gk, t[ ] D2 qk, ta "
80 an int an tr
3Gk.int + Ok tr 50— 00—
+ ( Qk’ t + Qk,t ) 8l’k + @J]k + c%k
100 0.1 ov; 5 a’l]k
0 ., 21 J <11
+ .t 8:ck + ukj (%k + 3’LL 833k
Ru1,1

B 5, 3 B |, B 0 o\ 11
= {3p[29+2A9} [0 — Af] —u }—l— : [(32p@> u . (3.13¢)

Tint

Grad distribution function implies a relation between the internal state density,
pr, total density, p, and the temperatures, § and Af = 6 — 0,,., viz

_ 14 1?05 — (5 —3) A0 20 —3A0 R
Pr= gL+8/2T (1 + g) { 5 0 + €xp 01 . (3.14)

2
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Chapter 4
Reconstructing Moments

Do not go where the path may lead, go instead where there is no path and leave a
trail.

Waldo Emerson

Closed system of 36 moments is used in this chapter to optimize the moment def-
initions. The relation betwen two Kn numbers are explored at the beginning. Then,
ordering in two Kn numbers by applying Chapman-Enskog expansion on system of
raw moment equations, are used to obtain the first order of all 36 moments. Consid-
ering moments with linear dependent first order, new moment definitions are defined
in a way that all the optimized moments are linearly independent at the first order.
This ensures that at each order of accuracy we have least moment numbers possible.
At the end, using the obtained optimized moment definitions, set of new moment
equations are presented. It should be mentioned that all the work presented here are
new and original, and to the best knowledge of the author there are no similar work

done before for polyatomic gases.

4.1 Mean free times and Knudsen numbers

In the definition of Knudsen number, Eq. 2.4, the typical reference time scale 7 is
defined as Lo/+/8y. For the proposed polyatomic model (2.11a) we have two different
relaxation times, corresponding to two different mean free paths, and two distinct
Knudsen numbers, Kny, = TTLOT and Kn;,; = TT—:)“f The Knudsen numbers measure the
degree of rarefaction, and will be used for model reduction. The expansion parameter

in the Chapman-Enskog method is the Knudsen number, of which we have two, Kny,
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Gas | To(K) | p (Pa-s) x 107 | v (Pa-s) x 10° | 7, (s) Tint (S) Ter | Tint

H, 77.3 35.0 98 3.50 x 107Y [ 3.30 x 107% | 1.06 x 10~
293 88.2 326 882 x 107?126 x107% | 7x 1073

Do 77.3 48.2 174 482 x 1077 | 6.37 x 107" | 7.57 x 1073
293 123 271 1.23 x 107® | 1.01 x 107% | 0.012

Table 4.1: Shear and bulk viscosity values of Hydrogen and Deuterium for two tem-
perature values and reference pressure of 10° Pa. Corresponding additional degrees
of freedom and obtained values of relaxation times and their ratios.

and Kny,;, to account for translational and internal energy exchange. We rescale the

microscopic time scales as

Tir = Kng, 7y, and Tint = Kt Ting - (41)
Here, 73, and 7;,,; are of the order of the macroscopic time scale 75. The notation used
is chosen since it always indicates the type of collision (translational or internal) that
gives rise to a term occurring in the equations below. After the expansion is done,
the Knudsen numbers will be substituted back to microscopic time scales and the
original equations will be recovered.

Kny, should be less than Kn,,;, because internal energies are exchanged only in a
smaller portion of collisions and 7;,; > 73,.. Considering both Knudsen numbers to be
less than unity, we define the internal smallness parameter ¢ as

Kn, =€ and Knjy, = €. (4.2)
With this, the two Knudsen numbers are replaced by a single smallness parameter,
€, and a magnifying parameter, o, with 0 < a < 1. The lower limit of the internal

smallness parameter is « = 1 and the upper limit is @ = 0. From the above we find

In Z= In &=
Tint — (1 Tint

1
=1- )
“ In Kny, In Kn;,, )

(4.3)

While the ratio of relaxation times — depends on the state of the gas, the ratio
T;—OT = ¢ = Kny, depends on the relevant macroscopic time scale 75. Accordingly, the
value of both a and € = Kny, depend on the chosen scale. To show some examples of
the translational and internal relaxation times and their ratios, we used the experi-

mental data on shear viscosity [83] and fitting data on bulk viscosity [38] of normal
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Knint

Figure 4.1: Knudsen number and four relaxation times ratio, 7, /7;,; = 0.5 (gray solid
line), 74, /Tint = 1071 (blue dots), 74, /Tint = 1072 (green dashed line) and 74, /Tin =
1077 (red dot-dashed line). The limit of o = 0.5 is shown with black dashed line.

Hydrogen and Deuterium. As will be shown later, shear and bulk viscosity (5.16)

becomes,

p = Terpobo = TerDo (4.4a)
2(0+60% o)
3(3+0+60% o)

V= Tint Po- (4.4b)

Values for the translational and internal relaxation times of normal Hydrogen and
Deuterium for reference pressure of 10? Pa and reference temperature of 77.3 and 293
(K) are listed in the table 4.1 [83, 38]. Bulk viscosity values are obtained by assuming
different values for specific heat based on the temperature, which are converted to
corresponding values of §, Eq. 5.78. The obtained relaxation times and their ratio,
Ter [ Tint = Ky /KDy, is at order of 1072 and 1073,

Different values of o correspond to different values of internal or translational
Knudsen number and ratios of the relaxation times, 74, /Tin: = Kng/Kng,, as shown
in figure 4.1. For higher Knudsen numbers Kn,;,;, particularly near unity, mostly
values of a less than 0.5 are relevant. The ratio of the relaxation times considered here

covers both extreme cases, Ty, & Tins (Tir/Tine = 0.5) and 74, < Ting (Tor/Tine = 1077),
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and the values in between.

Different problems may encounter different relaxation times and different Knudsen
numbers. A vacuum system with pressure of 20 Pa, temperature of 293 K, and
macroscopic length scale of 5 cm with Deuterium has the following characteristics:
Kny,. = 0.00956, Kn;,,;, = 0.797, a = 0.0488. However, if the pressure and length scale
increase to 100 Pa and 8 cm, the values become: Kn; = 0.00119, Kn;,; = 0.0996,
a = 0.343. As another example, a microsystem at atmospheric pressure, temperature
of 293 K, and macroscopic length scale of 20 pm with hydrogen has the following
characteristics: Kng, = 0.0067, Kn;,; = 0.954, a = 0.0094. If the characteristic
length increases to 150 um, we have: Kng = 0.00089, Kn;,,; = 0.1272, o« = 0.294.

4.2 Optimizing moment definitions

Applying the order of magnitude method to the set of 36 moment equations will
ensure that the minimum number of moments with optimized definitions are used
for any wanted order of accuracy in terms of power of the Knudsen numbers. This
method first applies the Chapman-Enskog expansion on the moments to find their
leading order terms. Then, new moments are constructed such that only those which
are linearly independent have the same order of accuracy. This will give the minimum
number of moments at a certain order of accuracy.

Order of magnitude method is performed in several steps. First step is applying
Chapman-Enskog expansion on the moment equations which is done by expanding
all the variables in smallness parameters, substituting these expansions back into
set of equations and obtaining the first non-vanishing term of each variable. Next
step is defining new linearly independent moment definition to substitute variables
with linearly dependent first order terms. These two steps repeats until we have
full optimized moments with linearly independent first order terms at all orders of
accuracy. Model reduction which is the last step of order of magnitude method is
presented in next chapter. The Chapman-Enskog expansion on the moment equations
must be performed for both Knudsen numbers, that is for all powers of € and €*. Due
to the large ratio possible between the Knudsen numbers, the underlying multiscale
problem might require more than a simple accounting of terms with the same order
only. For instance, when annt ~ Kny,., proper accounting to first order in Kny,
might require consideration of different orders in the CE expansion: expansion to

first order in Kny,., but to second order in Kn;,;. The conserved variables, density,
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velocity and total temperature, have equilibrium values and hence are at zero order.

The remaining variables are expanded in the smallness parameter as

b= [601/)(0,0) el O | 2p(02) | (308) 4 ]
1 ¢la [Eo¢(1,0) el o 2p(12) 4 ]+ 2 [Eow(m) Foelyp@D 4 T
(4.5)

1,0 0,1 0,0
where for the 36 moment system, 1 = { A0, 045, Gitr, Gisints ) > >0, ugy , ult ug)

» g o ) Mgk S
The leading order terms of the moments are found as the first non vanishing term

in their expansion; one finds

O(&) s w09 _ 1567 (4.62)
)
O (&) : 1100 _ %pm ’ (4.6b)
N 2(6+ 0% ov;
O () : A9 = i (3(+ - +ng_5) . (4.6¢)
do ¢
1 (071) %tT 5 86
g0 e 9 4.
O (6 ) ql,tT thT 2p9 axl I ( 6d)
O (e : ugjo(o’l) = _%tr14p92% ’ (4.6¢)
>
O (61) ?51(071) _7~'tr(5,092 av<i ) (46f)
81’j>
v
O(d): o0 = _%tTQan;}i , (4.6g)
J
- ds
. (0,1) T (0+0%) 00
: _ - 4.6h
O (6 ) Qz,znt qut 2 peaxz ) ( 6 )
30uly, 00 Olnp 12 oy
O (%) : QTO(0’2)=—~r S =4 i — 300 —— + — Qi | -
(6 ) u”bjk‘ Tt 7 axk> I< ]a(ljk> iy 8£L’k> * ) Geit afl?k>
(4.61)

LU0.0) " are proportional to
and qg;}t), are proportional

To leading order, the two scalar moments, u>°(*9 and u

the total temperature and density. The heat fluxes, q(O’l)

i,tr
: 0,1)  0,1(0,1 1,0(0,1
to each other, and also the three tensorial moments, O'Z(j ), U O and u,; ( ), are

proportional to each other.

We aim at having the smallest number of moments at each order. Higher order

2,0

replacements for the scalars u?° and u'! are obtained by subtracting their leading
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order terms to define new variables as

w?? = u*" — 15p6? | (4.7a)
3
wht =yt — 5(5,092 . (4.7b)
The dynamic temperature, A8 = 6 — 6,,, is the only variable at order a.

The linear dependent vectors g; s and ¢; ;n¢, which are of first order, can be com-

bined into one first order vector, the total heat flux,

4 = Qitr + Gijint (4.8a)

and one unique higher order variable, heat flux difference,

SR,
dint Qi,int . (48b)

Aa, = g e ——
qi QZ,t (5—|— 9%) thr

Similarly, the 2-tensors can be combined such that only the stress tensor o;; is of

first order, while the moments ull]’-o and u?]’-l are replaced by higher order moments as,

1,0 14 0,1
— —U.’

uij = uij 5 U ) (49&)
L (14+96)

The second order moment u?]g is the only 3-tensor in the equations and thus
remains unchanged. After this first round of the reconstructing moments, we replaced

the original 36 variables by the alternative set

2,0 1,1, — .+ .00
{IO7 Uiaea A070ij7quAQi7w , W 7uz‘j7u7,’j7u7;jk

The new moment equations are obtained from original moment equations, based on



the definition of the new moments. The equations for w?? and w'! read
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37

(4.10)
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The equations for total heat flux and heat flux difference are
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Finally equations for u;; and u;; are obtained as

Du: oul) 14+ 85+0% 9p ONO
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s | pd%s
+ 2868, (5+4) <2d9 + 0d92> Rgus L (5+09) Aq@ﬂ
' 5 (SRQint + (5 + 02_2) R(Itr)2 55 (Squ”t + (5 + eg_g) Rq“‘) ax‘7>
6 5 _ 12 + avk>
* {7 4ot T igyst<u ™ 69"“3} oy,
4 _ 4 + 8vk
S s By Yo L Oopei| —
T3 {14 ket T g ket T00k< } Oz

5 —
280 _ oi; Ul — ug; F 0q; n 035 Ov; L (0— AD) (%Z-}
3+0+0% | 2 14+ pOx;  p Ox; ox;
_O0v, 14 50 10 4\ Ovy 1 1 _
s A H YV wt =— | — p 4.15
oy Oz, + 15 <w 5" 0T~ Tir + Tint Ui s )

The leading order terms of the new moments are found as the first non vanishing
term in their expansion (4.5). Here, { P, i, 0, ¢, Aq;, 05, u?ﬂg} have linear independent
leading order terms, thus, there will be no further change for these variables. The

other variables have linearly dependent leading orders as

O (e*): w0 = _30p0A0 , w0 = ; [3 — 0] pfAG (4.16a)

- . 340
ut = Ttr14[ 5 |

POAD Ovsi —ran _ 7. 11p0A0

) 1]
8xj>

O () : (4.16D)



42

Now the leading order terms of the scalars { A, w?? w! '} are linearly dependent, also

the leading order terms of the 2-tensors {ul_], u;;} are linearly dependent. Therefore,
we construct new moments to have linearly independent moments in all the orders;
the results are four new moments which substitute {w?, w"!, u};, u;;} as
220 = w* + 30p0A0 | (4.17a)
3
2 =t — 3 [3 — 0] pfAG (4.17Db)
11 6
- _ + —_
Bij = U; — ﬁ—é n Suij , (417C)
+ _ o+ -
B = uj +ug; . (4.17d)

The new moment equations for B;; and B;; are written using linear combination of
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— + .
u;; and u;; equations as

DB} [28 2 (14 — 6) (42 + 256) v
v _270_—1,1_—0A9 <2
Di {152 35 5 7 ] 0z
2 : 14 — ; ouy,
0 (5Rg, + (6 +0%) Ry,.) 0 Oz Oxy,
2(70 +236) Ry, (64 609%) 0Aqe; . Ouy
- — 0 + B}
56 (5Ry,,, + (0+0L) R,,) Oz ! Oy,
6144+ 5+ 0%] —14% dé
+2R,, [ to+ dG} - do (5 + 9_)
56 (5Rg, + (6 +0%) R,,.) do
R, R, <2§—g + 9%) (70 + 6 [14 + 96)) N 1446+ %]
Qeim—
5 (5Ry + (0+0%) Ry, “Oays T SRy, + (0+05) R,
g 10 (TR, +2(7+30) Ry, ) & + 14K, 0 ()" + (70 +236) R, 058 ] a9
5 (5Ry,, + (6 +0%) R, ) <O
(70 4+ 238) R,,., (14 — 9) OAO [0 — A0 9p 1005k
+ 2 45 - <1 - -
4 (5qut + ((s + 0@) thr) ) a$j> P aiL'j> P 833]@
2(70 + 236) Ry, (6 + 0%) | PM [0-A0 ap la%k}
56 (5Rth + ((5 + 93—2) wa) = 8xj> P 8xj> P axk
0 [l ag Olnp OA6  1dow] 1446+ =109 00 a0
K oxy, Oz, p Oxy 2 TP 0wy,
v, 8(14—0)(3+0) [14 __ Oug _ Oups
2B = —B,__. 3B, ——
i g T AT 0) @21 250) | B *iam,e U< oy,
80 14 oy, OV 14 oy, OV~
— | =B — +3B7. 40 | —Opcim— + 30cij—
T @2+ 259) [5 k<igg,. T35y, ] 40 { 5 <igr,s 7 g,
2848 28 (34 6) B;; — 3 (14 + 6) B},
+ do = ( ) iJ ( ) iJ |:1 an + % 8@1 + (9 _ AQ) %]
6 (3+0+6%) (14 + 6) (42 + 256) pOx,  p Oxy Oxy,
il = (- A — | =~ | — + B},
5 (3+6+6%) N, T om ) o, T Tine] O

(4.18)
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Dt B 3—|—(50-ij oxy,
2940 10q, oy Ov v

a9 - |19 w1 Ap _k}
(3+06)(14+06) (3+6+6%) ¥ {pﬁxk p Oz ( )(%k

_ Ovjs vy, 14+ + %0% 0,0 00

2B,_,—2~ + B;; 0,
* k< &vk + K 6xk + 2 u”’“@xk
3(14+06) [12(14—8)(3+6) __ 126 . OV
<ij —B<Z” + 600<2] -
14(3+0) | (14+6) (42+250) <Y~ (42 +250) <% Oxy,
6(14+6) [14(14—6)(3+9) _ 146 vy,
4+ Bf 4+ 70| ——
35(3+0) [(14 T 5) (42 + 258) k<t T {2 4 2y Phei T 100kt |
14+9 Fzm + 122,0] v<i (14 +0) Ry,
3+0 |3 5 0zj> (3+6) (5Ry, + (0+0%) Ry,,)

00

q<i 8Ij>

DB,
g 1AH0 1104 ouOu g pgy Ot
p Oz p Oxy

5 dd) 5R,,, + (6 +08)R,,

Qint

dé d?s
[(5 +04) (3 iy ed_é) 26 (2@ + ‘)m) Ry,

2(14 A
+ ( + 5) Rant 5 <5qut |:3 + 5 + ed_5:|
(3+0) (5Ry,,, + (6 +0%) R,,.) o

) ds\? L d%\ a0
(B+9)0+ (7+26)0@ + ((@) +2W) 0 ) q<i@
2(14+6) [(3Ry,,, + (6 + 0%) Ry, ) g<i — 2 (6 4 0%) Ry, Aq]
(340) (5Ry,,, + (6 +0%) R,,,)
[aAe [0-A0 9p laajﬂ 3(14+5)08u%’.2

+RQM‘

0z~ p  Orjs~ p Oxg T(3+9) Oxy
———u, |0 — Al - -
7(34+9) Yigh [ ] oxy, oxy, + p Ox

(14 + 5) (?’qut + (5 + 93—2) RCItr) aQ<z‘

(34 6) (5Rq,,, + (6 +0%) Ry, )  Oj
s .

2 (70 + 230) (5+9d%9) Ry, g00G<i _ [i Lt ] B (419)
50 (5qunt + (5 + 9@) th'r) axj> !

Ttr Tint

There will be no further change in definition of moments B;; and B;;, since they have

linearly independent leading order terms. Furthermore, equations for 2*? and 2! are
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obtained as

Dz0 8 (04+0%)R,, ,0Aq
Dt 5R,,,, + (5 + 6%) Ry, Oxy
5 R,k + (0 + 0%) Ra A {8A9 _pg—ng Qe _ 100y
5qut + (5 + ‘92—2) thr al"k axk P axj
40R,, Jq; 60 dq; O,
+ dint 0— + —— AO— + 800;; —2
5Rl]im + (5 + Qzll_g) RQtr a'rz 3 + ) + Q% axz i 81‘1
2
qk
(5Ry,, + (6 +02)R,,)’ g

o 25
| (250 g + 50Ry, + Ry 0 (% — 20%2)) LT e
(5Ry,., + (6 +0%) R,,)’ Dz~ 37 Ouy
60 ) 2 0
0 o] e _go [ — 2 ) paged
3+0+0% Oy, 3+0+0% Ik
56 (14 — 6) (3 +9) B 566 4] 0v; 60 0“%
(14+0) (424 250) 7 (424256) 7| dx;  3+0+60L " " ou;
_ fluzo [(15pA0%) — 227] — !

Ter Tint

+ 20R,,,

Ty

+20R

— 20

[Ru202°° + (1 — Ry20) 30p9A0] , (4.20)
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Db 6(6460%) dv;
a5 POND -
Di 3+0+09 ox;

10Ry, Ryt (22 +058) (5B, +3R,.) (5+62)| o0

Qint

+
(5Ry,, + (6+02)R,)"  BRy + (9+60%) Rq, Cp

(=343 +0%)R,, (6+0D) 108, Ry,,0 (2% + 9272) . 00
_ o
5qunt + (5 + 9%) RQtr (5qut + (6 + (92—2) Rq”)z axk
2(6+0%) Ry, 0qx . —3+0+0% g
+ - 3 + @ A@a
SRy, + (6 + ede) Ry, Oxy 3+0+ Hda T
- 2(0+0%) Ry, 0Aq. 60 L O,
(5Ry,, + (6 +0L) R,,) " Oxp  (424256) ¥ Ou;
2(0+0L)R,, 0Al O0ln 1 Doy
( d@) d5q [Qk . AQk] [_ . [8 . A‘g] P - k]:|
5RQint + (5 + 9@) thr Oy, Oy, P ax]
do 3 v, —3+5+0% v;
+3=0—0—| ———pAP*—— + 33— N,
{ d913+5+0%p ox; 340+0% e
n 566 (3 + 0) - v, N ézl,l%
(144 0) (42+256) “0x; 3 Oxy
_ M gpAQQ + 2V - Rypaz + (R — 1) 318 =] pOAG ) | (4.21)
Tir 2 Tint 2

1

The leading order terms of z2? and z'! are linearly dependent as

9
O(e) s BN = —JpAg? . 22000 = 15p76°. (4.22)

Therefore, we construct new moments to have linearly independent leading orders

which substitute {2%°, 211} as

Bt =t — 220 (4.23a)

B™ =M =220, (4.23b)
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Using linear combination, the equations for new moments obtained as,

DB~
Dt

(0+0%) Ry, ,0Aq,
bRy + (0 +0B) R, O
[196(6+5)(3+5) . 549 B+] ov; | T O
5

(144 6) (42 +256) ¥ " 5(42+256) | dz; 39 Oxy

L2
5

Ry, 0AD dlnp 180k}
+2(1+ dint — —[6—- A0 - -
( DR + (5 + 93_2) wa) & [axk | | Oy, p O,

2 5R,, 0Af dlnp 1301«]
+-(1- dint Agp |— — [0 — Ab -
) ( R + (5 + 93—2) thr> o [(%k [ ] 8xk P al‘j

Qint

(3 + 0 + Hle_g) thr (6 + 93—2) 2thTqut9 (23_3 + ‘9%) Aq ﬁ
5Ry, + (6 +60%) R, (5Rg, + (6 +60%) qu«)2 " O,

Qint

s 0 + 3A0—
5RQint + ((S + 0@) thr 8xk a$k
2
(5Rgp, + 3Ry,.) (0 +60%) +30R,,,, 24 Lt (22‘—3 + 92%) 0
- Ak
SRy, + (6 +0L) R, (5Rg. + (6 +0L) R, )" |~ O
2 ovy, ov; 12 ov; ov;
— =BT —3pA0* — + Zlo;; 2 + 300,
13 Oxy p ox; + 5 Jjasci * 0383‘;1
_ _i 10R, 11 + 3R,2.0 B+ 3 (Rul,l — Ru2,0) B+ 9 (Rul,l - Ru2,0)pA02
Ttr 13 ].3 2
1 |1 1 W20 w1 — 2
B OR, 1+ 3R 20 +3(R 1 R20)B++§(3+5+[3—5]Ru1,1—6Ru2,0)p9A9 7
Tint 13 13 2

(4.24)
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DB* + 2 (5 + 9%) thr B 40qunt an
Dt 5Ry, + (0 +0%) R, Oy,

(-23+0+0%) Ry, (3+0%)  50Fu R 8 (25 + 053 o2
5Ry, + (0 +02) R, (5Ry,. + (6 +0%) R,,)’ Oz,
5 N L Oug 78 ov;
LB 05 0, 10 (6+0%) Ry, ,0Aq,

3+6+0% " 0x,  BR,,+ (0+0DL)R,, O

Qint

2
50qu"th”9 (22_2 T 0%) (5qunt + Sthr) (5 + 9%) - 100qu‘m 00

q
(5Ry. + (0 +02) R, )* 5Ry,., + (0 +0L) R, e
C[112(7T-6)(3+9) - 620 L] 0v;
(14 4 6) (424 256) 7 (424 258) 7| Oz,
50R,, , 10 (0 +0%) R,
+ 2 _ 5R Qin 5 qk _ ( d@)daq AQk
Qint + (5 + 9@) th'r 5qut + (5 + 6@) thr
A 71 3(23—6—0% ,
|:8 0 . [9 - Ae] alnp . lao-kjj| 4 ( déd@) 2%
oxy, oxy, p Ox; 3+0+05 ox;
3(23—6—0%) v, dv;
— Abo;;—L — 800, —2
3+6+60% Y0 77592,

111
= —— |:1—3 (10 [Rul,l — Ruz,o] B™ + [3Ru1,1 + 10Ru2,0] B+) + (gRum + 15Ru2,0) pA@ﬂ
Tir

1 1
— {1—3 (10 [Ru1,1 — RUQ,O] B+ [SRul,l —+ 10Ru2,0] B+)

Tint

+

DN o

((3 — 5) Ry 4+ 20R,20 — (23 - 5)) peA@} . (425)
After this set of operations, we have the final set of 36 moments,

{pa Uy, 67 Aea 0ij,4i, AQH B+

+ — — 0,0
4, BT, B;, B u,

ij> ijk

By construction, these variables are linearly independent in their leading orders. This

give us the least number of variables at each order of accuracy.
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4.3 Orders and leading terms of optimized mo-

ments

The leading order contributions of all non-equilibrium variables are obtained from
Chapman-Enskog expansion as described in previous section for proper accounting of
the magnitude and later use of the expressions. The leading order terms of dynamic

temperature and stress tensor are

AO =71y , 4.26
TS Bt o+ 0B) o, (4:26)

Ov;
Oii = —Ty2p0 ) 4.27
J trap axj> ( )

The leading order terms of heat fluxes are obtained by decoupling the equations for

total heat flux and heat flux difference. At the leading order we have,

Rqpy Bayr (5+5+9 o ) (5“‘9 a ) Rqy, (th'r' —Rg;py )

=5 = _ 5+0+6042 §20
5Rq;, +(5+095 ) Ry, 5Rq;,,,+(0+09 ) Ry, g | Tir——3 PVU%;;
dé -
5Raj1 (Rasr —Raine ) R T (91046 ) RS, Ag; _Ttrg [1 B % Peaae.
5qunt+(5+9%)thr 5qunt+(5+0%)R‘1tr dtr i
(4.28)
which give us the first order contributions as
5Rq,, + (0 +0%) R, 00
O () : ¢ =m—t 9/ 2 0 and Ag; =0. 4.29
( ) ' ' 2RQint thr a$7f ' < )

Therefore, the total heat flux is at first order and the heat flux difference is at O (e'*).
The leading order terms of Ag; is obtained by decoupling the equations at order ¢!+

as

5(3+6+0%) LY,

14+a) . —
O(E ) . Aql Tt'r'2(5+9§_g) thrp 8xz .

(4.30)

The leading order terms of scalar moments B™ and B~ are obtained by decoupling
their equations. At the O (¢2*) we have

3R +10R 10R —10R
W11 = 2,0 u1,113 12,0 Bt (%Rul,l 4 15Ru2’0) pA92 (4 31>
3R 1,1—3R 20 10R 1,1+3R 2,0 _ = 9 2 ) :
- - B — 2 (Ry11 — Ry20) pAd
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which give us the leading order term of B* as,
20 + 39 2 -
O(e): B = —< PAd and B~ =0. (4.32)

The leading order term of B~ is obtained by decoupling the equations at O (e!) as

3T 3 3—6 349

1 — tr

: = — — — OAG . 4.

O (6 ) B Tint Ru2,o 2Ru1,1 2 p ( 33)

The leading order terms for the remaining optimized moments B;JL, B;; and u”k are

obtained by applying the Chapman-Enskog expansion on their equatlons as

1+a) . + _
O () : Bf=m, 5 p@AGaxj> : (4.34)
_ 6 (14 +0) 0vjs du, 2 Oy
2\ . — _ —r

O(<): By =—m ( 7(3+0) { Tk By 0z, Jaxk]

2(14+9)R,,, < [3+(5+9d5]

(3 + 5) (5R(hnt + (5 + Qda qu" o d@
+R,,. |(340)5+ (7+26) «9— 90
d92 <01,

2(14 +6) (3R, + (5+6d5) Ry.), Olnp
ds q<i
(3+0) (5Ry,,, + (0 +0%) Ry,) 0>

dd
2 (14 + 5) <3R‘Imt + (5 + Hd(s ) qn«) 0 aq<l 7 (435)
(3+6) (5Ry,,, + (6 +0%) Ry,,) Ovjs

O (62) Couw) =7, [3960<U — 300.i;

Jlnp 12R,, . ov;
igk axk>

+ i
0re> | BR,., + (0+0B) Ry, =~ Oxy-
(4.36)
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Chapter 5
Model reduction

So many of our dreams at first seems impossible, then they seem improbable, and
then, when we summon the will, they soon become inevitable.

Christopher Reeve

The last stage of order of magnitude method is model reduction which is discussed
in this chapter. In this stage, the obtained orders of different moments are used to
eliminate higher order terms and equations at different levels of accuracy. We presents
set of equations at different orders up to order €.

The explicit orders can be used for model reduction such that in each order under
consideration only terms up to the corresponding power €* are kept, while all other
higher terms can be ignored. We require the explicit order of all terms be clearly
visible in the equations, so the orders are made explicit by €”. By the next section, €
will be substituted back to unity so that the original form of the equations is recovered.
The introduced notation allows us to arrange all terms by their explicit e-orders. In
particular we have:

The conservation laws for mass, momentum and energy,

Dp ov;

=_r = d
Dv;  Olmp 00  _ [0A0 Olnp (1003 ]
bt "0 Tam € [a A0 axi]“ [;a— =0, (5.1b)

3+6+60% Do i Ovi] | 1|94 Jv;
— pﬁ + pé’axi — € {pAanJ + € la—xz + O'ija_xi:| =0; (5.1¢)
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and the balance laws for dynamic temperature Af, stress tensor o;;, overall heat flux

i, heat flux difference Ag;:

60&

p

DAO  2(5+6%) v,
A
Dt *3(3+5+eg—g)” "o,

+ ¢t

2 B 10R,,,, g
340+0%  3(5R,,, + (6+0%)R,, ) | Oz

10Ry,,, Ry, (2% + 93%‘3) Bl 2(6+0%) 'avj]

3(5Ry, + (54 0B)R, )* O, 3(3+0+0%)  0n,

L tte 108y, R, (23—3 + 9%) . 20409V R, OAg
3 (5Ry,, + (5 +02) R,,)* 0t 3(5Ry,, + (04 0%) Ry,) O

3(3—1—5—1—«93—2)/) Oy Tint

+ ¢!

AG, (5.2)

AR, R, (23—3 + 0%) 56

d<i
Dt (5R,,, + (6 +0%)R,,)’ O
4R ) a@kz 3U»> 8Uk
_|_ 1 th + 2 /L' .7 + 7:‘
“|5Rp, + (0+08) Ry, dxye " 0my 790,

4 (6 + ‘9%) thr aAﬁki_
5 (5Rq,, + (6 +0L) Ry, ) Oxj

AR, R, (d(S d25> 90

My [2,)M%] t elte

al‘j>

qint 2__|_9_
(R + (04 05) Ry, )" \ 0 d9?

ouy) Qv 1 e
”’“] + 20 Ufl =— [— +° ] oij , (5.3)

+ €1+oz

+ ¢

&ck
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Dy,
Dt &xk !

23
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2qut 8Uk n 383*
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qint
QaAe 54+8+0% 90

1

+e€

+ ¢t
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ke ox; + 2 “ pMaxi
—en omol s ae g ST
S (5Rif++ (95%) eﬁ%) R,.) (Aq’f g;},i * AQig_z A g?)]
R b i6§55)235;l—g§i a2 j‘:5255) aai? A gj;j]
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1 24 _d5 00 1 Doy
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Ry Ry (5+6+0%)
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2

«

Ag;

5R + (5 + efil_g) R‘]tr i qint

Qint

) . (5.4)
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i [DAqi o {GAQ +A081np] B §2A9qi%
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2Ry, { dv; iy vy, N c%-]+a (5 [1 B qu] 00 _081np>
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vy, Agq; Oqy o Oy — i Oqu 0,0 Ovj o 0ok

AOAG | — ¢ Gl A 2-a | 890 000V _ Tik 00k
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A - o

5 (0920 B = Ra \g 00N o [5 [ ui — Ra] 5 00

2 ax’ th’r al‘z Qth7 axz
[ o 6“‘] o | 5B Ry — Riint) (6+08)R2 +5R2

= — —_— € . 7
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7

Qint Qint

(5.5a)



5}

. L, 42 . 10R,, { Lo 9 }
C1 = )
' (14+0)°  (42+250)° (6 +6L)R,, [(14+4)> (42 +250)°

(5.5b)
10y, (22 +0%%)
62 = s s s , (5.5¢)
(0+0%) (3+0+0%) (5B, + (6 +0%) Ry.,)
3R,
— 1 qint '
<3 ( + (6+6§—2)thr> ) (55d)
B 15R,,, ., ‘
G = <7+—(6+0;’—§) thr> ; (5.5¢)

Balance laws for higher moments B~ and BT,

DB~ 71 __0v 12 ov;
V22 o=k g, D0
{ Dt 7397 Ba B ea”axi]
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Tr 2 Tint
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(5.6a)
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The equations for higher moments B, B;; and u%’.g,
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As it was discussed earlier, values of « less than 0.5 are relevant and will be considered
from now on, unless stated otherwise. While the expansion series (4.5) contains
all mixed powers of € and €®, the final equations only contain some terms. In the

following, we are interested in terms up to €3, and find only the following powers:

) ) 76’ ) ) )

{607€a762a,€1,€1+a,€1+2a El+30¢ EQ—a 2 62+o¢ €2+2o¢ €2+3o¢ €2+4a,€3}

Their order depends on the value of a. For values of o below 0.5 the different sequence

of orders are (up to €?)

0 <a< 025 . {607€a7 62cy7 61, El+oz’61+20¢’€1+304’€27a7 62, 62+a’€2+2a’€2+3a’€3}
025 <a<0.33: {60, €, e2a, 61, 61+°‘, (—:1+2°‘, (—:2_a, €1+3a, 62, 62+°‘, (—:2+2‘", €2+3"‘, 63}
(5.8)

033 <a<0.5: {60,6a762a,€1,61+a, 62_0‘,€1+20‘,€2,61+3a,62+a, 62+2a, 63}

Here, only the underlined terms are changing location between different values of a.

The following sections will discuss different sets of equations based on the desired
order of accuracy in the powers of €, and the different values of the exponent o, which
determines the relative importance of contributions. For this, we will consider the

increasing orders as laid out in (5.8) up to third order.

5.1 Zeroth order, ¢’: Euler equations

We begin the reduction process with considering the zeroth order terms in conserva-

tion laws,

Dp 8%

Dt + paxi =0, (5.9a)
Dv; Olnp 00
D1 +40 o +axi =0, (5.9b)
3454602 Do ov;
SEE R, gt =0 (5.9¢)

2 th ox;

These equations form a closed set of equations for the variables {p, v;, 0} these are

the the Euler equations for polyatomic gases [84].
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5.2 Order ¢*: Dynamic temperature

The first non-equilibrium correction appears for o order, where the momentum and

total energy balance equations in the conservation laws are corrected as

Dv; dlnp 06 o |OAG dlnp|
3+ 0 + eill_g Do 81}1- a 81}1-
TPE + pea.% — € |:pA9arZ:| =0. (5.11)

Hence, an additional equation for the dynamic temperature A6 is required, which at

this order is simply the leading term of Eq. 5.2,

AO =7, |
3310 +08) ox,

(5.12)

From the conservation laws, we recognize that in a moving gas the pressure is not just
the equilibrium ideal gas pressure pf#, but p = p — pA6f. For this reason, one often
denotes the second term as the dynamic pressure, Il = —pAf, and obtain similar
relation as Eq. 5.12 [37, 70].

5.3 Order ¢**: Refined dynamic temperature

22 The conservation laws

For all @ < 0.5, the next order appearing in (5.8) is €
do not contain terms of order 2, hence they are unchanged from the previous case
(order €*). While the next higher order terms of Af, Eq. 5.2, which are of order £*
and give overall contributions of order €2®, must be considered. This gives the closure

by a full balance equation for A#, while stress and heat flux can still be ignored,

DA 2(6+0% : 2(6+60% :
o | ;DAY O+0%) agdui| _ _20485) ,0u __ p o (5.13)

Dt 3(3+0+08) o | 3310+ 08) 05 T

This is a set of 6 field equations with variables {p,v;, 0, A#}.
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5.4 Order ¢': Refined Navier-Stokes-Fourier equa-

tions

For the first order, terms up to €' order are considered in the conservation laws, for

which now all terms are relevant, Egs. 5.1,

Dp ov; 0
= 14
i T ox; * oz 0, (5.14)

In addition to the balance law for Af (5.13)in order to close the set of equations, the
leading terms of the stress tensor, Eq. 5.3, and total heat flux, Eq. 5.4, are required

as well,
Ov<;
0 = —Ty-2p0 , 5.15
J t axj> ( )
5qunt + (5 + 0%) thr‘ 9 ag
i = —Ttr = -
q ' 2RQint thr p axl

These first order equations for o;; and ¢; are the classical Navier-Stokes-Fourier (NSF)
equations, which relate the stress deviator and heat flux to the gradients of velocity
and temperature. The factors between them are the shear viscosity p and the heat

conductivity x which we identify as

5Ry., + (6 +60%) R,

Qint

2R, R,

Qint

= T p0 and K = Tir 00 . (5.16)
The obtained relation for the shear viscosity is identical to that of the monatomic
gas. Internal degrees of freedom affect the heat conductivity, which differs from the
monatomic gas as extra means of energy transport are present in the polyatomic
gases. In the classical Navier-Stokes equations, the dynamic pressure has the form
IT = —I/g—zz where v is the bulk viscosity. Comparing with the above, we identify a
relation between relaxation time 7;,; and the bulk viscosity,

2 (6+0%9)
Tint s
3(34+0+6%)

v = p (0 —A0) . (5.17)
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The bulk viscosity is a function of the internal relaxation time, hence it will vanish
in the monatomic gas where no internal energy exchange occurs (§ = 0).

However, what we have obtained here at first order are not the classical NSF equa-
tions, since we have to use the full balance law (5.13) for A (or dynamic pressure).
The classical NSF equations is a five variables model for {p,v;,0}. However, the
refined Navier-Stokes-Fourier (RNSF) equations obtained have six independent field
variables, {p,v;, 0, A@}. This is a result of the scaling, where we assumed a < 0.5.

The classical Navier-Stokes-Fourier equations only arise for 0.5 < a < 1.

5.5 Order ¢!7*: RNSF equations with first internal

DoF corrections

The next order of accuracy (for all & < 0.5) is obtained by considering the next higher
terms in the equations for A, 0;; and ¢;, Egs. 5.2,5.3,5.4,which are the contributions
with factor €! for the dynamic temperature, and contributions with factor € for stress
and total heat flux (which are themselves at order €'), so that at order 1+ «, the

conservation laws (5.14) must be closed by

2 qi ]
Dt 3(5R,,, + (6 +0B)R,,)" Oz

qint

p

N 2 B 10R,,,, dqi
340+0%  3(5R,,, +(6+0%)R,, ) | Oz
2 (6 +0%)

ov; 2(6+ Qd—é) v, p
+ AG — ) — — do =t =———Af, (5.18
3(3+5+9§—§)p( )3% 3(3+5+0§—§)0”8xi Tint (5.18a)
oii = —72p[0 — 2G| V< (5.18b)
/A tr p ax]> Y *
5Rg., + (6 +0%) R, 90  5R,., — 3R, ,0A0

P = —Tir i T (0 — Af) — — Lt & . (5.1

g il ( ZRQinthtr ( ) a‘rl 2th‘m thr axl (5 8C)

Additional corrections to the NSF equations occur due to the internal degrees of

freedom. If we consider this correction to the NSF equations, shear viscosity and
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heat conductivity will be of the form,

5Ry, + (6 +60%) R,
2R thr

Qint

= Tp (0 — AD) and K = Tiy p (0 —A0) . (5.19)

5.6 Cases with 0 < o < 0.25

To proceed to the next order, we now have to distinguish further among the possible

values of a;; we begin with the window 0 < o < 0.25.

5.6.1 Order ¢!72%: RNSF equations with second internal DoF

corrections

Close inspection shows that, the next higher terms in the balance for Af, Eq. 5.2, add
contributions to order 1 4 2a. Indeed, at this order the full balance law for dynamic

temperature must be considered,

DAG 2 (6+0%) i 2 g
Dt 3B+o+02)" " 0, 3405+ 08 o,
2(6+0%) 50V 2(6+60%) o
3(3+0+02)" 0, 3(3+0+0%) 0,

p

10R

. Qint P
3 (5 + (0+08) Ry ) |00 3 (3R + (54 6%) Ry,) \ 0w “om,
2) dé .
_ ((S + 9d9) R;gtr aAQZ _ P AH . (520)
3 (5Ry,, + (6 +02) R,,) O Tint

This equation now has a contribution with the heat flux difference Ag;, which here

must be considered to leading order,

. 5(3+6+060%) oAd
"6+ 02\ Ry, Ox;

Ag; = (5.21)
This relates the heat flux difference at leading order to the gradients of dynamic
temperature. We name the factors between them the dynamic heat conductivity xa

which we identify as,
5(3+6+0%)
2(0+0%) Ry,

KA = Tir po . (5.22)
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At this order, the equation for stress remains unchanged, but the equation for heat

flux now has also the terms with the factor €2 so that

5R, .+ (6 +0%)R 540+ 0% 0
— Qint ( d9) d‘;tr Ter o+ db p (Ae . 9) 9
Ry Ra (540 +6%) 2 Oz
A 2 OBt §+0%Y (R, —R,
8 9 + AHQ 8p + a :| _ ( + d@) ( qtr d(sqznt)
Ry, (5+6460%)

qi

+p (0 + AB) Ag . (5.23)

For closing the set of equations, the leading order term of B* is required,
BT = —?pM? : (5.24)

Also at this order, all corrections to the NSF equations are due to the internal degrees

of freedom.

5.6.2 Order ¢!*3*: RNSF equations with third internal DoF

corrections

The next order of accuracy is obtained by considering the conservation laws (5.14),
the dynamic temperature equation (5.2), the constitutive equations for the heat flux
(5.23) and stress (5.18b), and terms up to « order in the heat flux difference, Eq.

5.5a,a8
5R(hnt + ((S + ‘93—2) R‘ltr i) 1+ 3qunt
(6 + 0%) thr

=Ttr

Ag; =

N dp 2 OB*
0+ A0 AG? —
+(qunt _ th'r)p (0 + A@) 89:| 5qunt (th'r _ qunt) g, (525)

th'r amz - 5R2inz + (5 + 9%) Rgtr

5.6.3 Order €2~ RNSF equations with full corrections

The equations at order 2 — « are the full conservation laws (5.14), the full dynamic

temperature equation (5.2), and the following constitutive equations for heat flux and
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stress (considering terms up to €'~ order in Egs. 5.3 and 5.4),

1 Qv
i == 2p10 — A0 : 5.26

" [7'L T'l ] p[ ] axj> ( a)

 BRy, + (6+60%) Ry, <5+6+0%p(G_M> 90 2 0B*

" RuR, (54+046%) [L + L} 2 Ox; 39 Oz,

DAY dp (6 4+ 0%) (R, — Ry,

- 0 Ae - A02 —_ do dir Qint A i 526b
p (0 + AD) Ox; &Bi) R, (5_{_5_‘_02_2) q ( )

The equations for the heat flux difference Ag; and for B* remain the same as for the

previous case, i.e., (5.25, 5.24).

5.6.4 Order ¢’: Refined Grad’s 14 moment equations

Starting with the second order of accuracy, balance laws for stress o;; and heat flux

¢; must be considered as it can be seen from Eqgs. 5.3 and 5.4. At the second order

of accuracy, they should be expressed with terms up to order €' as

ds d%s
DO’ij 4qut aQ<Z’ B 4qu”th” <2@ + 9W> » 00
Dt 5Ry,, + (0+0%) Ry, 0zj>  (5R,,, + (5+0%2)R,,)"  Ozj>
v, 0 v 1 1
+ 20'k<z > ﬂ + 2p (9 — A@) U< = — |:— + :| Oij s (527)

. 0wy, + oy oxy, 0z >

Ttr Tint
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Dg;
Dt

+ Oik

5+0+0% 96 _eﬁlnp] _20B* 5 0B

s 2R, [ v, N ka}
5B, + (0 + 02V R, | % 0n, T Vou,

2Rq. qr O’Uk 9 80 80ik
- — Af +0
* 5qut + ((S + 03—2) thr 8902 8902 8:Ek
N0  5+0+4 0% Bl
— A BpH— A
p (0 4+ AG) oz, + 5 p (6 0) o

Tir Tint

—_ |:i + 1 :| quth“" (5 +0+ 93—2) ) (5 + Hg_g) RQtr (RQtr - RQint)A ‘
SRy, + (0+0%) Ry, BRg, + (0+0%)R,,

(5.28)

The other relevant equations are the conservation laws (5.14), and the dynamic
temperature equation (5.20). For closing the set of equations we need constitutive

equations for B* and Ag; up to order ¢! 72® from Eqs. 5.6b and 5.5a, as

B+:—@pA02+3TtT[10 3—0 23-9¢
2

Rovo 2R 2 } PO, (5.29)

Tint

_ BRy,, + (0+0%) R, 5
C5R2 + (0+6%)R2 2"

qtr

(,0 (0 + AD)

Ag;

1 + 3R(Iint
((5 + 92_2) thr

[SJAV, N dp 383*)

60 :| [1 + ;;t?;i| 5RQint (wa - R%nt)
O; BR2 + (0+60%) R?

qtr

+ (R(h’nt — th’r') p (0 + A@)
thr

q; , (530)

and for B~ at leading order from Eq. 5.6a as,

B~ =—

37 | 3 3—5_3+5
R

- NG 31
o 2Rpa 2 ]p (5:31)

Tint

With balance laws for stress and heat flux, the second order equations form a
set of PDEs for the 14 variables {p,v;, 0, Af,0,5,¢;}. Other authors discuss a 14
moment set for polyatomic gases, [23, 37, 39] where the equations agree with ours
when letting relaxation parameters R,20 and R,11 to be 1 and considering constant 9,

but with some differences due to the ordering of terms for o < 0.5. Indeed, our refined
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Grad’s 14 moment (RG14) equations contain additional terms of order e¢'*2*, which
are the terms underlined here in the equations for overall heat flux and the dynamic
temperature containing B*, Ag; and B~ along with their constitutive equations. The
terms involved with Bt and Ag; would not appear for a > 0.5, where they would give
contributions of higher than second order in €. Hence we can say that the mentioned
14 field theory are more relevant for the cases that a > 0.5, but still not at second
order accuracy.

The mentioned 14 field theory [23, 37, 39] contains three nonlinear terms in (5.4),

2ta and €2, respectively, and will be

which according to our analysis are of orders e
considered below in the appropriate accuracy with other corresponding terms at the
considered order of accuracy. As will be seen below, if one wishes to have a theory

2ta and € orders, there will be additional terms that must be included too. It

at e
should be mentioned that no other theories presents at accuracy higher than second
order. Therefore, different set of equations presented in the coming sections are
derived here for the first time and there are no alternative macroscopic models at

these orders of accuracy.

5.6.5 Order ¢27*: RG14 equations with internal DoF correc-

tions

In the next order of accuracy, the terms up to order '™ should be added to the
equations for heat flux (5.28) and stress (5.27) as

5 25
Doy 4Ry, 0gci Ao fla <2% +93ﬁ) ¢ 90
- <1
Dt 5Rg,, + (6 +0%) Ry, 0xj>  (5R,,, + (6 +0%) R, )*  Orj>
4(5+09)R , .
N (6 +60%) o ING<i 2O_k<iavj> o vy,
5) (5qum + ((5 + 9@) wa) an> 8xk (%k
4R, R, ( do d? ) 00
int tr 2_ + 9_ q i——
(5Ry,, + (6 +0L) R, )" \"d0 ~ "d6? )~ Ouy.
20 (60 — AO = — | — i .32
* p( )a$j> |:Tt'r +Tint:| i (53 )
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39 Ox; 13 Ox;

540+60% 96 Jlnp 2 OBt
—0

s 2R, [ v, N ka}
5B, + (0 + 02V R, | % 0n, " Vou,
2R,
R‘hntq’cd(s 8’Uk- o AQQ 8p + 0
5Ry., + (0 +0%) R, Oz, o,

o,
8:Ek
ONG  54+0+0% ol
— A @ 50— A
p(0+ AD) oz, + 5 p (0 0) o
2(6+60%) R, { O, v, aﬂ
a Agp=—— + Agi— + A
5 (5Rp, - (0102 Ry ) |~ 0w, "o, T "0,
168 Ldé 00 46 OB} Do

; 0Ad dlnp
0 g 51 0027 4 gy (227 1 A
T oy a0 0r, T a2+ 250) By o 0w, 7™ (axk M )

J

- {: L1 } (quthtr (5+6+0%)  (0+0%) Ruy Ry, = Run) ) |
tr

e ) \ 5By + (040 Ry, BRy + (04 0%) Ry,

(5.33)
Together with the conservation laws (5.14) and the full balance law for dynamic
temperature (5.2), we still have a set of PDEs for 14 variables, which is closed by the
constitutive equations for Ag; and B* up to €!7* order from Egs. 5.5a and 5.6b,

5Ry, + (6 +60%) R, 1 5 3R,
Aqi = 2 dé 2 5 + dgn
5RQint + (6 + 9%) Rt]t [?lr Tlt] (6 + 6@) R(Itr
A0 8p 29B*\ 5 10R,, OB~
0+ A0 AG? — —— | 1- Jint
<p( +A0) H At o ) 39 ( (6+0%) R%) O
5 (R, — Rq,) 00 5 R,.. | 00 dlnp
2 it = Tl ) (4 AG) — — oy [ o |1 — i —0
* 2 R, p(6+A49) ox; 7ik\ 2 R, | Oz Oxy,
10qut (22_2 + 0%) 9 Aﬁvk 980““
(6+08)(3+06+0%) (5R,,, + (0+02)R,.) "Owx Oz
2Ry, dv; vy dv; > 5Ry,., (Rg, — Ry,,)
- R e e I
5Ry, + (6 +0%) R, (qJ or; Yo, " P ou, BR2 + (64 60%) R g

(5.34)
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Or;

1
Ttr

1

Tint

34+40+62

e s2g) o

SR, 4+ 10R 20 |:

+ n-lm (g (3= 6) Runs + 20 R0 — (23 — 6)] pﬁAe)
% <§Ru1,1 + 15Ru2,o> pM?] - 1;}&?1;@5:3 =, (5.35)
R
and the leading order contributions to B~(5.31) and B;}, Eq. ,
B = Ttrm%f&spemgzz . (5.37)
B = Ttrﬂ%f&;pemggi . (5.38)

5.6.6 Order ¢72?: Refined Grad’s 18 moment equations

Increasing

the accuracy to 2 + 2a, require the following equations: the conservation

laws (5.14), the full equation for dynamic temperature (5.2), the equations for stress
and heat flux (5.32, 5.33), and balance laws for Ag; and Bt with terms up to order
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¢! from Eqs. 5.5a and 5.6b,

DAg; 0Al dlnp 5 3R, 0Ad
I B UL _ 21 4 2 e g2y

+

2(6+60%) R, vy
5(5Ry,, + (0+02) Ry ) " Oz,

§ 15R,, ., OB};
e [T s -
(42 + 250) (6+0%) Ry, ) Ox;

B
2
( 25R,,, +7 (0 +0L) R, ) ( L v, )

ZE 4 Ag—
5 (5Rgn + (0 +0%) Ry,,) 8xk+ W o

42 15R,, ds . 00 oy,
| T+ 77— | 2Bz + 0+
(42 + 256)° ( (6+06%) wa> do 7 ox;  Oxy,

10R,,,, (2% +0%52) o O
T 02)(3+6+08) (5R,., + (0+02) Ry ) oy
X 10, (2% + 0% 0,20
(6+0L) (3+6+0%) (5R,,, + (6 +0L)R,,) " Ox
5 10R, B~ 5[R,. — R, .00
39 (1 TG+ 03—5)3(1> dui | R, = oz;

5 (., B3R OB | (5] Ry 00 0lp
39 (5 + 9%) wa 8% i 2 wa (‘9xk 8:Ek

N 2R, [ v N Oy, N 8112}
5By, + (0+02) Ry, |V 0x,  Yon, T T ou,
5 3R, OA0 (R, — Ry .. 00
_ wnt wnt tr Ae
2" ( s 1o R, |V 0 | Ry, oz,

1 1 5R, (R, — R, S+0L)YR2 4 5R?
_ |:_ + :| Qint ( qtr = ant) ¢ + ( d@) qtr = qint qu ’ (539)
5Ry,. + (6 +0%) R, 5Ry,. + (6 +0%) R,

1+(

Ttr Tint
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DBt 85 ., du, 3(23—6—0%) v, 78 v;
+ —Bt— + B2 pANP* — + [ 26 — ————— | pAOI——
Dt 39 Oxy 346+ 0% P ox; 3+0+ 93—‘; P ox;

1 /9 1 13
= —— (éRul,l + 15Ru2,0> pA92— |:§ ((3 — (5) R,1 +20R,20 — (23 — 5)) ,OQAQ}

Tir Tint

{1 n 1 :| <3Ru1,1 4+ 10R,2.0 10

BT +

= 55 (s = Rso) B ) . (5.40)

Tir Tint

Closure of this set of equations requires constitutive equations for B;; (up to « order
from Eq. 5.7a) and B~ (up to 2« order from Eq. 5.6a), which read,

42 + 250 2 Ov;
Bt =71, | ——— [ p9A0 + —BT | — 5.41
iJ Tt |: 5 (p + 39 ) 8.1'j>:| ) ( )
) 13 9 (Ryz0 — Rutt) «
= Al
10R,1.1 + 3R,2.0 l 2 p

1 1 3 (R 1,1 — R 2,0) 2 (%k
., o _ u U B+ _B+_
- m ( |:7_tr * 7_int:| 13 * 13 al‘k

o1
Ou 2134643 8] Runs — 6R,20] peAe)] . (5.42)

3pAG?
+ p a[[’l Tint 2

At this order, we have PDEs for the 18 variables {p, v;, 0, A0, 0, ¢;, Ag;, BT}, which
are the refined Grad’s 18 moment (RG18) equations based on the proper ordering.

5.6.7 Order 273*: RG18 equations with internal DoF correc-

tions

At the next order, 2 4+ 3a, the equations are the same as for 2 + 2«, only that now

terms up to order ¢! must be added to equation (5.39),

DAqi 10qut <2% + 9%) AOA %
Dt T (G 0B) (B+0+0%8) (5Ry, + (010D Ry ) 0wy

1 1 5R, (R, — R, S+0¥)R2 4+ 5R?
—_ _ |:_ + :| Qint ( qtr = %nt) qz + ( d@) qtr ph qint AQz (543)
Tir 5Ry,. + (6 +0%) R, 5Rg, + (6 +0%) R,

+ ...

Tint
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5.6.8 Order ¢3: Regularized 19 (R19) equations

Finally, we present the equations at third order of accuracy, which are: the conserva-
tion laws (5.14); the full equation for the dynamic temperature (5.2); The equation
for heat flux difference (5.43), the equations (5.32, 5.33, 5.40) for stress, heat flux,

and BT with added terms as

do d26
Do AR, . 0q<; 4Rg,,, Rq,, <2@ + 9W> 00
Di +5R +(5+0d—5)R Orie ds 2q<z‘8x.
Qint do qtr 7> (5qunt + ((5 + 9@) th'r) 7>
4(64+60L)R Aqe; :
( + d@) d(gtr 8 Q<1 + 20_k<i aU]> + O'Z] avk;
5 (5Ry;, + (6 4+ 0%) R,,.) Orjs Oy, Oxy,
0,0
4R, R, ( 5 d25) o0 uli)
it~ ir 2— +0— | Age; + 5
O L N

+ 2p (9 — AH) @U<i = — |:i + L‘| 0ij (544)

oz j> Ttr  Tint

Diy yr( A My
Dt (14 +6)>  (42+250)°) dO " Ox

T(3+0)(14+30) 9By 0dv;  0udoy

(14 +0) (42 + 250) 0x; | %9z, p Oz,
_ F ! } (RR (5+0+0%) (0402 Ry, (Ry = Ry | )

7

SRy, + (01 6BV R, " BR,, + (64 0%) R,,

Tir Tint

(5.45)
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DB* avj 2 (5 + 9%) th'r - 40qunt an
Dt Oxi bRy, + (6 +0%) R, — Oxk
2
50Rq,,, Rq, 0 (23—3 + 92’%) (5Ry,,., + 3Ry,) (6 +0%) — 100R,,, 90
qk
(5RQint + (6 + 92_2) wa‘)Q 5qu”t + (6 + ezll_g) RQtr amk

50R,,,, Olnp 20 __ Ov
—12- _ Oy — B —
5Rg + (64 60%) Ry, Ory 39 Ouy

3(23—6—0% : '
+8_53+8Uk n ( de)pA92%+ (26—L> p@AGaUZ

39 O 3+6+0% 0; 3+640% O
1 1
= —— gRul,l + 15R,2.0 pAeQ— § ((3 — (5) Ry 4+ 20R,20 — (23 — 5)) p@AQ
Ttr 2 Tint 2
1 1 3R, + 10R,20 10
- | — “ BT+ — 11 — Ry20) B~ 4
|:Tt'r' Tint:| < 13 + 13 (Ru i O) ) ’ (5 6)

and the balance law for B~

DB~ 12 ov;  12Rg,, +2 (5 + 9%) Ry, 0 g, EB‘F%

Dt 5 %on " 3R + (6 +0L)R,, Orr 137 Oy

Qint
(5Rap + 3Ray) (04 0%) +30R,,,  2RacRunf (285 +052) \ o
5Ry,, + (6 +6%) Ry, (5Rg, + (6 +02) R,,)’ D

qint

; Jlnp ov;, 71 Ou
21+ Bint Oqr,——— — 3pAP*— + —B~—
( SRy, + (6 +60%) thr> " 0w P 0w 397 O
1 1,1 — 11,2,0 1
= _ L2 &y d )pAGQ - — <§ (3404 [3—0] Ryri — 6Ry20) p9A9>

Tir 2 Tint

B {i n 1 ] (10Ru1,1 + 3R,2.0 B+ {3 (Ruml; Ruz,o)B+}> . (5'47>

Tir Tint 1 3
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These 19 PDEs are closed with the constitutive equations for B:;- up to 1 — « order,

. 1 (70 + 236) R, , 14-6\  9qe
Bij=—1T—77|% ds - 0
[TL n %} § (5Ry,,, + (0+0L) R,,.) 5 Oz j
4(70 —195) v,  (14—6)0%L —5(14+0),  Ou,
B B ds 9ij

390 Oxjs 6 (3+0+6%) Oy,

_ g (704 230) Ry, 4= Olnp

§ (5Rq,, + (6 +0LYVR,,) ) I<i O js

: 14+6+60%
2(42 + 259) . Qv Lom, + 0+ i
398 O 5Rg + (64 09%) Ry,

2 2
10 (TR, +2(7+30) Ry,) @ +14R,, 0 (%) + (70 + 236) Ry, 093 y 20
vy, Ovjs vy, (42 4 250) Qv
40 204 ci=— + 204 ci—2 i — OA0 , (.48
+ ( k< 0z~ T 20k< Oxy, +U]8xk) ) P O (5.48)

and for usz and B;; at their leading orders,

00 <ij Jlnp 12R,, ov;
0,0 <7) Qint J
= —Ty |30 — 300, + i , (549
umk Tt [ axk> O <ij axk> 5qum n (5 i eg_g) thr d< axk>] ( )
_ 6 (14 +0) Ovjs ov, 2 Ou
B =7, | 2T (, OV (O 2 Ol
9= T { 7(3+9) ("’K LT P 30]83:k>
2(14+0)R do

dint 5R,,., {3+6+9—]
(3+0) (5Ry,, + (6 +0L) R,,)’ ( " df

) doN\®  _d%\ o, a0
(3+6)5+(7+26)9@+<(@) +2W)9 )q«@
2(1440) , Ove  2(14+0) (3Ry,, + (0 +0%) Ry) ,  9lnp

3(3+0)  0r;>  (340) (5Ra + (0 +08) Ry) O

(14+6) (3R, + (6 +0%) Ry,,) , Oq
4 0 . (5.50)
(340) (5Ry,, + (0 +0%) Ry,) Oz

_’_RQtr

This is the set of original regularized 19 (R19) equations corresponding to the third
order of accuracy. Next, we will introduce new forms of the constitutive equations to

replace Egs. (5.48,5.49,5.50) in the set of R19 equations. New forms eliminates some
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derivatives with stress tensor, heat flux and dynamic temperature and makes the set

of equations more suitable to solve while keeping the order of accuracy.

Transformation of equations The balance laws of BT and B, and constitutive
equations in the set of R19 equations could be rewritten using the leading order heat

flux difference, Navier-Stokes-Fourier stress, and viscosities as

81) i o

O'gSF = _2M8x; =0 +0 () +... | (5.51a)

NSF _ _ 90 — . I+a
g "= = g+ O(€7) + .., (5.51b)

A
“Aaa - =Ag+ O () + . (5.51c)
ov;

AGNSE = 220 ng 20) | 51d
e +0 () +... (5.51d)

and still keep the proper order of accuracy. The balance laws take the form of

DB* 220qut — (6 +0%) R, p [0% Olnp (6 — A@)}

Dt~ “B5R,,+ (0+08) R, |0v. " o

Qint
78 3(23—6—060%) 85 20 | Ou
+ [ 26 — ————— | pOA + D7 HN0* + —BT — B~ | —
( 3+5+0§—g>p 34+0+06% P 39 39 O,
2
508 g B, 6 (23—3 i 9373) (5B, + 3Rq,,) (6 +09) — 100Ry,,, | gxa
(5Ry,.. + (0 +02) R,,.)’ SRy, + (0 +0%) R, K
+ 220qum - (5+ 93‘2) thr 0 {Qka i QkAQk] +490ij0¢j
5Ryy + (0 +0L) R, 0—A0 | & KA 1

1 /79 1 |3
=—— | =Ru1 + 15R,20 pA@Q— - ((3 - 5) Ry 4+ 20R,20 — (23 — 5)) pQAQ
Ttr 2 Tint 2
B 1 1 3Ru1,1 -+ 10Ru2,0 B+ n E
13 13

(Rum — Ruz,o) B_) , (5.52)

Ttr Tint
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DB~ QGqunt+(5+9%)thr 0 [qqu QkAQk:|

— +
Dt 5Ry + (6 +0L) Ry, (0 —A0) | & KA
2
(5Ryy, + 3Ry,.) (6 +602) +30R,,, 214 Lt (2;’—2 + 92‘793) o
5Ry, + (0+0%9) R, (5Ry.. + (0+ 02V R,,)* | &
6 0,0 71 2 vy,
_ 29T (3pAG? — B+ BT ) F
5k ( ? 3070 13 ) Dz

SRy, + (0+0DVR,, [0z, 7 oxy

Qint

1 11— I,2, 1
= ——9 (Ru i O)pA(92 - — § (3 + 6+ [3 - (5] R — 6Ru2,0) poAf
Tir 2 Tint 2
1 1 10R, 11 +3R,20 __ 3 (R 11— R 2,0)
—|— - “ B = Bt . (5.53
|:Ttr * Tint:| ( 13 + |: 13 :|) ( )

+

The new constitutive equations for B, B;; and u% in the set of R19 equations after

some manipulations become

Bt — 1 2(70 — 199) B~ + (42 4 256) B
v I T 399 Y
3(3+0+0495 )v
(42 + 250) 14+6+0%
+ 220 00Abo;; — 2R,
25 T T 5R, (0 + 08) R,

510 (TRg, +2(7435) Ry,) 9 + 14R,,. 0 () + (70 4 236) R,, 042 B
5 (5qu”15 + (6+9§_g) thT)Q K <14y>
[(14 —8)0% —5(14+0) 28

+_

%p@AQO’Z] - 800_k<i0-j>k)

§(3+0+0%D) 3
4 24 (70 + 236) Ry, . 14—90 d<i |:q7_> i AQj>}
4 2(6+oj—§()su 6 (5Rq,, + (6 +09) R, J p(0—A0) | k KA
3(3+0+095 )v
2 (70 4+ 230) Ry, S 14-46\1 [8q<i _ Olnp(0— A@)}
1y 20000%) \6 (5B, + (0+05) Ry,) 0 ) p 0w T O ’
B 3(3+0+09 v

(5.54)
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_ 1 6 (14 4 9) (14+9)
B.=——|———00p.i0;/sy — —— =B 0y
i ,09{ T3 +0) k<ik T3 sy T U
2(1449) R, dd
— (14 +9) Ry, 5 (5qu {3+5+9—]
(3+40) (5Ry,,, + (6 +0%) R, dg
do do\?  _d% m
26) 0~ ) 2 ) 2| | Sacg
+R,, |(B3+0)0+ (7T+ 6)9d0+<<d0> + d92>9 ) Kq<qj>]
M2 (14 + ) (3qut + (5 + 93—2) th'r‘) d<i {q]_> i qu>}
(3+0) (5Ry,, + (6 +0%) Re,) p(0—A0) [ £ ka
N 350)(5Ry, + 0+ 02)R,,) p\dz;> = oup W
0,0 6.y, q<iOjk> 0 <ij {ka> Aqk‘>:|
= U +3 —_— | — +
Yk TSR, + 0+ 08 R, p0  Vp(0-A0) |k | ka
% 80'<7;j 6’111/) (0 - AH)
3= | =— — 0 , (b.56
p (8xk> 0 O (5.56)
where the microscopic time scales are substituted by
3(3+0+60%) v
Timt = — and T = — . 5.07
26+ 6%) oo "0 (5.57)
The following relations were used for more compact notation:
Ovejs 1 vy, 1 Ovj= 1 Oy
D gy oy S S g S 5.58
Th< OTp> 20k< 0z~ + 20k< ox 3(7]31’1 ( 2)

O 1 Ovy, 1 0Ov;, 1 Oy 2 Oy 2 Oy 2 oy,

T g g SO — O — — O — — O 0
"< e 3% 0m, 37" 0z, T3 0m,  15790m, 15 %0z, 15 M0z, "
(5.58b)
Ovj= 1 0Ov; 1 ov, 1 Oy
i—— = —Opi=—— + —Opi=— — —Op—0;; , 5.58
Th< 833'k 2O_k (9.]% + 2Jk] 8xk Baklaiﬂk J ( C)
6vk 1 8vk 1 8’Uk 1 81)[
i = —Opi=—— + —Opj— — =0 —20;; , 5.58d
k< 8[Ej> 20k 8xj + QO-kJ aCCZ 3Jkla$k J ( )
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14 8vk 13 0vk> Gvk 8Uk 2 82}1 5
— Ofei = Ocii——— = Opi—— + Opi—=—— — =01 — 04
5 k< 0z > <7 9y, F Oz, & or; 3 kl@xk J
0v; dv; 2 Oy ovy,
i —— —— — —Op =035 ii— , (5.58
+ O-kal‘k +0kj ﬁxk 30k18$k J * Uj@xk ( e)
ovy, OV~ ovy, Ovci~ 7 Ouy
20 )i + 20) i — i = 40pei—2Z 4+~ — 5.58f
k< g T g, T g, T g, 3793 (5.581)

5.7 Cases with 0.20 < a < 0.33

The ordering of terms depends on the value of «, as outlined in Eq. (5.8). Above,
we considered the model reduction for o < 0.25, which gave a hierarchical sequence
of equations. When we consider slightly larger values of «, those in the interval
0.25 < a < 0.33, the ordering of contributions changes. Specifically, only two orders
change position in the ordering sequence (5.8), namely ¢2~® and ' ™3, The difference

is relatively small: all set of equations corresponding to orders

{60760476204’61’61—1—04’ 61—&—204’ 62,€2+a €2+20,€2+30,€3}

)
are the same as those in previous section. The two changed sets of equations are

discussed below.

5.7.1 Order ¢ ¢

The 2 — « order of accuracy requires the full conservation laws (5.14), the dynamic
temperature equation (5.2), the constitutive equations for the heat flux and stress
(5.26b), the heat flux difference (5.21), and the leading term of BT (5.24). To save

space, we will not show the equations in detail.

5.7.2 Order 13

At order 1 + 3a one must consider the full conservation laws (5.14), the dynamic
temperature equation (5.2), the constitutive equations for the heat flux and stress
(5.26b), the leading order of B (5.24), and the equation for heat flux difference
(5.25).
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5.8 Cases with 0.33 < a < 0.5

At even larger values of «, in the range of 0.33 < a < 0.5, four orders change position
in the ordering sequence (5.8), viz. €27, !™2% ¢2 and 3%, Moreover, the 2 + 3«
order is greater than third order and is not further considered. The changed sets of
equations are presented below, the equations at all other orders remain same as those

of previous Section.

5.8.1 Order @

The 2 — « order of accuracy is gained by considering the full conservation laws (5.14),
the dynamic temperature equation with terms up to order 2 — 2« (5.18a), and terms

up to 1 — a order in the heat flux and stress tensor,

1 v
—_ - ]
5 1 , —10R,,, R, (6 4+ 60%) 590
’ [L + L} 2Ry, Ry (5Ryp, + (6 +6%) Ry,) O
(9 +05) R, (10+6+0%) + 58], (5+20+205) 00
QRQint th'r (5qut + (5 + 9%) th'r) 8x’
SRy, + (04 0%) Ry, p 9 5Ry,, — 3Ry, eaAe (5.500)
ZR%M thr axl 2qu‘nt RQtr 8$Z . '

5.8.2 Order ¢l *2®

At order 14 2« the polyatomic gas must be described by the conservation laws (5.14),
the dynamic temperature equation (5.2), the constitutive equations for the heat flux

difference (5.21), and the following equations for stress (5.59a) and heat flux:

5Rg, + (6 +6%) R,

Qint

5+6+460% a0
Af — 0) —

q; =
Ry R (549 +0%8) [+ 2]
OAf 9 8,0 383*} _ (5 + 93—2) (R%r B R%’nt)

+p(0+ AD) Agi . (5.60)
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For closing the set of equations, the leading order term of BT (5.24) is required.

5.8.3 Order ¢2

The second order of accuracy requires all terms in the stress and heat flux balance
up to factors €', which are Eqs. (5.27, 5.28), as well as the conservation laws (5.14),
the dynamic temperature equation (5.2), and the constitutive equations for BT (5.24)

and the equation for heat flux difference as

55Rg,, + (6 +6%) R, 3R, ONG
AQZ = Ttr 5 45 2 9 P 1+ s
2 (6 + 9@) th'r + 5qut (5 + 9@) thr Ox;
+[qut — Ry, 0+ A9) o0 ) B [1 + T:ZJ 5Rg. (Rgi, — Ry,t) . (5.60)
RQtr 83:1 5R§1nt + ((S + 9%) Rgtr' qz . ‘

The second order equations form a set of PDEs for the 14 variables {p, v;, 0, A8, 05, ¢; }.

5.8.4 Order ¢T3

In 1+ 3« order of accuracy, almost all equations are the same as at second order, only
that, in order to include the proper higher order terms, the constitutive equation for
heat flux difference must be replaced by (5.30).

5.8.5 Order ¢

In the third order of accuracy corresponds to the 0.33 < a < 0.5, the only change
from the set of R19 equations at lower a (0 < a < 0.33) is the balance law for the
heat flux difference, which now takes the form of Eq. (5.39).

5.9 Classical Navier-Stokes-Fourier equations, 0.5 <

a <1

The classical Navier-Stokes-Fourier equations arise only for cases with 0.5 < a < 1,
where they are the appropriate system at order '. Here, the powers €°, €% and &'
are required, while the corrections to dynamic temperature of order €® and higher

must be discarded. Accordingly, the proper first order set are the conservation laws
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(5.14), together with the stress and heat flux as given in (5.15), while the equation

for dynamic temperature is (5.12),

2(040%) _ vy
3340 +08) " Oy

(5.62)

The classical NSF equations give a five variables model for {p, v;, 8}. As discussed
before, o will assume values below 0.5 for rarefied flows. Thus, the classical Navier-
Stokes-Fourier equations have rather limited applicability in the rarefied regime. As
was shown earlier, for 0 < a < 0.5, the refined NSF equations are the appropriate
model at first order in €. These use the full balance law for dynamic temperature
(5.13) instead of (5.12), and have the six independent field variables, {p,v;, 0, AO}.

5.10 The Prandtl number

The Prandtl number is defined as the dimensionless ratio of specific heat and shear

viscosity over heat conductivity [76],

5+6+0% 1
r=—— 4T (5.63)

This is a measure of the importance of momentum over thermal diffusivity. Based
on the obtained shear viscosity and heat conductivity definitions (5.16), the Prandtl

number is

(54 0+0%) R, Ry,

qint

~ 5Ry,, + (6 +0B)R,,
R Pr (6 +0%) R, (5.65)
e (5+64+0%) R, —5Pr

Pr (5.64)

The values of the modelling parameters R, , and R, are restricted by the Prandtl

number and one of them depends on the other one through Pr number. Viscosity and

Qint

heat conductivity values could be used to determine heat fluxes relaxation parameters.
Therefore the model provides the freedom to fit two parameters (R,20 and R,i.1).
These values can be found from fitting to experimental or numerical data for rarefied
flows, such as damping of ultrasound, light scattering experiments, or shockwave

structure.
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5.11 Intermediate Summary

The relaxation of the internal degrees of freedom leads to various ordering sequences
for different values of «, which differ in particular in the terms associated with the
dynamic temperature Af. The accounting of these terms, which depends on the value
of a and the accuracy under consideration, needs great care.

At the first order of accuracy, a refined version of the classical Navier-Stokes-
Fourier equations is obtained, which includes the balance law for the dynamic tem-
perature (Sec. 5.4).

At the second order, a refined variant of Grad’s 14 moment equations is obtained,
which includes some corrections and three extra constitutive equations for Ag;, B~
and BT. We note that the higher order terms in the dynamic temperature introduce
higher space derivatives into these equations, which are not present in the typical
Grad 14 moment system. [23, 37]

At order 2 4 2a, a refined variant of Grad’s 18 moment equations is obtained
which consists of 18 PDEs and two constitutive equations.

Finally at the third order, the regularized 19 moment equations (R19) are ob-
tained which consists of 19 PDEs and three constitutive equations, and contribute
regularizing terms similar to what appears in the R13 equations for monatomic gases
[44].

In order to decide which set of equations we need to consider for a particular
problem, the relaxation times, their ratios and characteristic time or length scale
must be known. Therefore, the particular problem under consideration determines
which set of equations should be used. This choice depends on the values of both
Knudsen numbers: If the value of Kny, is rather small while Kn;,,; is relatively large,
one will choose a model with high power in €* and low power in ¢; these are models
with corrections to the NSF equations, i.e., the set of 1 + 3« order equations, Sec.
5.8.4. On the other hand, if both Knudsen numbers are small, one can use a lower
accuracy model, like the refined NSF equations. In problems when both Knudsen
numbers are large, particularly order unity values of Kny,, a higher order of accuracy

is an essential choice, e.g., one would choose the third order R19 equations, Sec. 5.6.8.
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The resulting set of 36 Grad’s equations from the BGK kinetic equation can be

obtained from above equations by setting all relaxation parameters (Ry,,,, Rq,., Ry20

and R,1.1) to unity. The final form of the closed set of 36 optimized moment equations

from BGK kinetic equation is

Dp ov; B
Tyt =0, (5.66)
Dt T pos; + p oz, =0, (5.67)
—%p—+ — + o0y 6 — A0 = :
DAd 10 dé — d*§\ 06
p + (¢ — Ag;) (2— + 8—)
Dt 3 (5+5+9%>2 do ~  db? ) Ox;
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3(3+0+0%) Y0r; \3+0+60% 3(B+5+60%)) 0ri  Tim
(5.69)
Dt 54 (6+60%) 0z 55+ 6+ 0% Oz
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(5+06+0%)° ( i d92> [Ag<t = g O;> {Ttr i Tz’nt} 7> (5:70)
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(5.71)
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Applying order of magnitude on these set of equations produce different results than
the results showed above for our proposed S-model. This is due to the fact that the
leading order term of B~ from BGK theory is at order e!*2*, while it is at order €
from proposed S-model. Due to this difference in leading order of B~, terms and
equations that are presented at different orders of accuracy will change. This will
reduce the number of full balance laws required at third order from R19 of S-model
to R18 of BGK model. Full discussion and different set of equations obtained from
BGK model are given in Ref. [77, 85] and they are not shown here due to lack of

space.



Gas | O, Cy x 10° | Cy x 10 | C5 x 107
Ny 2.7399 | —5.4490 | 3.6718 —5.4125
H, 2.2638 | 0.27047 | —0.00977 | 0.0013103
CO | 27037 | —5.2149 | 3.8171 —5.8349
CO, | 1.3822 | 46.8007 | —18.8412 | 30.6293
CH, | 1.3153 | 12.0982 | 0.53867 —0.98386
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Table 5.1: Constants of specific heats for various gases.

5.13 Properties of different diatomic and polyatomic

gases

In this section we present data for temperature dependent specific heat, and transla-
tional and internal relaxation times for COy, CO, Hy, Ny and C'Hy.

Total specific heat is the sum of translational and internal DoF contributions. A
third order formula gives us a valid approximation of specific heat in the temperature
range between 250 to 1200 °K [86] as,

3406409

Cy 5

= Cy + C10 + Cob* + Cs0? | (5.78)

the four constants for different gases are given in table 5.1. Based on the obtained

formula for specific heat we have

ac, 1 (_do d%5 2
) (2@ + Qd—92> = C1 + 2G50 + 30307, (5.79a)
d?5 dc. do
2 _ v_ gt .79b
0_d92 2(9 7] Qde) , (5.79Db)
do

We use measured data of bulk and shear viscosity of non-rarefied flows obtained
based on classical hydrodynamics and apply them to identify the relaxation times, 7,
and 7;,¢, in our kinetic model, Eq. 2.11. The relaxation times present in our model
have direct relation at N-S-F level to the measured viscosities, and translational and
internal relaxation times are calculated based on them. This is done through the

shear and bulk viscosity definitions, Egs. 5.16 and 5.17 as,
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Gas | n, ’5—8
N, 1.376 1.3038
H, 1 0.0346

COy | —1.353 | 2.5974 x 1074
CHy | 1.295 0.7874

Table 5.2: Bulk viscosity temperature exponent and ratio of reference viscosities at
295 K for various gases.

"

p(0—AG)

_ _3(3+0+0%) v
26+ 6B) p(0—A0)

(5.80a)

Tir =

(5.80D)

For power law potentials with temperature exponent 0.5 < n, < 1, the viscosity is

~ o (MY” : (5.81a)

Do/ Po

bulk viscosity can also be represented by power law formula as,

u:vo(p/” )n , (5.81b)

bo / L0

given by [87]

where, pressure is p = p (0 — Af), and temperature exponents are given in table 5.2
for different gases [79]. C'Hy gas bulk viscosity is best fitted to power law formula
at temperature range between 77 — 293 K. At higher temperatures, bulk viscosity
experimental data is best fitted with exponential function through internal relaxation
time, Eq. 5.80b, as [79]

429.3 x 107° 21.07

Tint = WEW?[(%W] , (5.82)

m and k are mass of molecule and Boltzmann constant.
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Using the dimensionless parameters,

Tint _ Ter P

7__int: y Ttr = 7ﬁ:__1a
Tint0 Tint0 Po
_ VAN
0=——-1, A0d=—, (5.83)
to 0
the dimensionless relaxation times becomes,
fio 2C, — 3 (1 +6 — AG)™ !
] , 5.84
Tt Vo 3CU 1+ P ( a)
3C, 2C,0—3(1+60—A0)"""
int = , 5.84b
Tt = 50, =3 3Cy 1+p (5.84b)
and for C'H4 gas at high temperatures,
X El’p[ 21.07 .
™ 00(140)) 3
Tint = G i )" (5.84c)

(1+p)(14+60—A0) Euxp| ]

ol

(o)

where the bars are dropped for simplicity. Therefore, the values of dimensionless
relaxation times or An numbers as discussed in Sec. 4.1 are obtained based on

experimental data of viscosities and specific heat.
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Chapter 6
Linear wave analysis

There is nothing more genuine than breaking away from the chorus to learn the
sound of your own voice.

Po Bronson

As a first application of the above models, we study the phase speed and damping
of one-dimensional linear waves as forecasted in the obtained different orders of equa-
tions. We compare the predictions of the various equations in the hierarchies among
each other as well as to those of the classical Navier-Stokes-Fourier equations, and
its modification containing the balance law for the dynamic temperature. Moreover,
we study the influence of excitations of the internal degrees of freedom by comparing
with results for monatomic gases, where we will highlight the influence of the ratio of
collision times, 73, /Tin:. For simplicity, all relaxation parameters (R,1.1, R,20, Ry, ,

and Ry, ) are considered to be 1 and specific heat is constant with § = 2.

6.1 Linearized equations

Sound waves are small disturbances of an equilibrium ground state {pg,v? = 0,6},
and hence it suffices to study the linearized equations. For this, we write all variables
in terms of their ground state values plus a small deviation, denoted by a hat, as
p:po—i-[), 0:(90+é, Ui:f)i; AQIAé7 Jij:@-j, Qz:(jza
Ag; = Ag;, Bf; = B, B~ =B", B; =B;, B~ =B, ulj, =i . (6.1)

YR 5 ijk
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All deviations are considered to be very small, and the systems of equations are being
linearized by keeping only linear terms in the deviations.
The equilibrium rest state {pg, 6} is used to non-dimensionalize all quantities and

equations. Specifically, we set

x; t Tint  _ Ter  _ P

fl: 71?:_77771:_77-7‘:_710:__17
70700 70 o ' 70 Po
_ 0 ~  Af U4 Oij i Ag;
9:__17A9:_a{)l: - 75i':i7q7i: : aACji_—Zv
0o 0 Vo 7 pobo Po 903 PO\/9_03
(6.2)
0,0 — _
'IT[,Q’,O = ﬂ 7A+. = 7'_"7— 7i = ﬁ B+ = B—+ B~ = B—
ijk ,00\/0_03 ) ij poeg ) ij poeg ) poeg ’ poeg

Here, 7y and L are characteristics time and length scales. Note that the dimensionless
relaxation times , 7;,,; and 7., are the Knudsen numbers. In order to do the one-
dimensional wave analysis, all variables should depend only on time and x-direction.
For simplicity we use the following notation for the relevant elements of vectors and
tensors:

v =v,011 =0, q=q, Aqg = Ag, u(l)’lol =u"? . (6.3)

To avoid complexity, the over bars and hats are dropped from now on, wherever
applicable. For deriving the trace free tensors in the 1-D equations, care must be

taken. For instance, the trace free parts of derivatives of stress and velocity are

do<11 _ 390 Jvcy _ 20w
Or1> 50z and Oxr1> ~ 30z

equations are presented next.

The final set of one-dimensional linear dimensionless

6.2 Omne-dimensional linear dimensionless equations

In the below set of G36 equations, first, second and third order set of equations are
obtained by zeroing the corresponding underlined terms, e.g. zeroing the double and

triple underlined terms reproduce the second order set of equations. For having the
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Grad’s 36 moment equations, the linearized, dimensionless conservation laws read,

% + g—z_ =0, (6.4a)
%+3i5%+3i5%20’ (64o)
full balance laws for the dynamic temperature, heat flux and stress,
N Y 0 2% 0Ag_ AF - e
ot 3(3+0)0x 3(3+0)(b+0)dx 3(b+6) Ox Tint

0_0+48v 8 dq
ot

4 O, 8 0Ag owh 1 1 (6.4e)
30x 3(5b+96)0x 15(5+6) Ox drr |t Tl '

@+5+5@ Jo  0A0 40

do n OB B 383+
ot 2 Ox_Ox ox 250 + 42 Ox 39 Ox
7(14+30)(3+9) 0B;; 5 0B~ 1 1
— = — — Af
(14+0) (42 + 250) Oz ' 13 Oz R A (6.49)
must be considered along with balance laws,
8Aq_5(34—5)8A9+67_0+15—1—7(567Bf“1 5(340)0B*
ot 20 Ox Oor 42+ 250 Ox 396  Ox;
5(6 —10) 0B~ 3+0 046 0B} 1 1
_ = A4
T35 or  'Taio421 9% on T 7| 24 (08)
OBt 240 — 0 (47 — ) Oq 106 0Aq 1 1
— — - = — | B* 4h
ot 23+9)(5+9)0x 549 Ox Tint+Ttr ’ (6.4h)

0B,  4(14+9)0q N ou®
ot 3(5+0) Ox or

4(T0+235)0Ag [ 1 17 ., |
15(610) 0z { * ]BH’ (6.4

Tint Ter
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au0’0+93_0+ 180 9By, | 18(14-0)(3+4) 9By
Ot 50x  5(256+42) dr  5(14+6) (424 250) O

1 1 0.0

Tint  Ter | =
0B~ 2(6+48)dqg 20 9Aq R
Og 20 04q_ _ N 6.4k
ot " 5146 0: 5(510) oz | (64K
0B, 4(14+6)0g 3(14+ 060" 85(14+4) 9Aqg

ot " 3(+40) 0z T(3+0) 0r 15(3+0)(540) oz

Tint Ttr | =—

6.3 Plane harmonic waves

All sets of linearized one-dimensional equations can be written in the general form

6’u3 8u3 .
AABW + CAB% = Lypug , (6.5)

with the coefficients matrices A g, Cap and L4 corresponding to the equations and

variables vector defined as

w4 = {p,vi,0,0i;, A0, ¢;} first and second order,
(6.6a)

uPh = {p v, 0,055, A0, i, Agi, BY, B~ ugy, By, B} third order and G36. (6.6b)

YR
Making the harmonic wave ansatz,
ua(z,t) = uqexpli(wt — kx)] , (6.7)

with the complex amplitude 14, frequency w and wave number k, and inserting the

harmonic wave into the general form of the equations results in an algebraic equation,

[iwAAB - ik?CAB - LAB] ﬂB =0. (68)
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Non-trivial solutions for this equation are obtained when the determinant of the com-
plex matrix inside the bracket becomes zero, which gives the dispersion relation. For
different set of equations, the dispersion relation has different numbers of branches,

hence several solutions.

6.4 Phase velocity and damping factor

The phase velocity and damping factor are defined as
Uph = 1 and ¢ = —k; . (6.9)

We found 2, 3, 4 and 4 pairs of branches for first, second and third order set of
equations, and G36, respectively. Each of these pairs consist of two waves with the
same damping and velocity magnitude moving in opposite direction.
The frequency is made dimensionless such that it can be considered as a Knudsen
number, [8§]
w=wry=Kn. (6.10)

For convenience, the internal Knudsen number is set to unity, Kn;,; = 1, so that the
reference time scale is the internal mean free time, 79 = 7;,;. This means frequency
is a measure of the internal Knudsen number.

Figure 6.1 shows the branches associated with the lowest damping, this is the
sound wave [88], for the different sets of equations, where only one branch is plotted.
The dimensionless inverse phase velocity and the reduced damping factor ¢/w for a
wide range of dimensionless frequency and two different ratios of Knudsen numbers,
1072 and 1073, are shown as functions of inverse frequency.

All sets of equations agree for low frequency (i.e., small Knudsen number). How-
ever, as the Knudsen number rises (i.e., for smaller inverse frequency), first the refined
NSF equations starts to deviate, followed by the second order set of equations. The
third order equations, R19, have agreement with the full set of 36 equations up to
higher Knudsen numbers. Therefore, the range of validity for the set of R19 equations
is near 1/w7y = Kny,./Kngy; this value of dimensionless frequency corresponds to
the case of Kny;. = 1. Based on the Fig. 6.1, the expected validity of the R19 is up
to Kny,. = 0.6.

A comparison between the refined and classical NSF equations is made in Fig.
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Figure 6.1: Inverse dimensionless phase velocity /(5 +9) /(3 + 9) /v, (left) and re-
duced damping «/w (right) as functions of inverse frequency 1/w for various Knudsen
number ratios and different sets of equations: refined NSF (blue dashed), second order
(green dotted), R19 (black continuous), G36 (black dash-dotted).
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6.2. The difference between the two sets is simply the time derivative % in Eq.
(6.4d), which is there for the refined case, but not for the classical NSF equations.
Original NSF deviates from R19 for almost all frequencies plotted, while refined NSF
agrees to R19 for dimensionless inverse frequencies 1/ (w7i,;) down to the values of
Kny, /Kn;,;. Considering the proposed refined version of the NSF equations, Sec. 5.4,
instead of the classical one, will extend the range of validity of the NSF equations

considerably.

6.5 Monatomic limit

The cases with very low relaxation time ratio, so that 7, < 79 < 7, correspond to
frozen internal exchange processes. Therefore, if the internal mean free time becomes
much larger than the macroscopic time and translational mean free time, the internal
degrees of freedom are frozen and the polyatomic gas acts like a monatomic gas.

For convenience, now the translational Knudsen number is set to unity, Kn,. = 1,
so that the reference time scale is the translational mean free time, 79 = 7,.. This
means frequency is a measure of the translational Knudsen number. In Fig. 6.3
results from the R19 equations for three different relaxation times ratios are compared
with the result from monatomic counterpart, which are the R13 equations [44]. The
three relaxation times considered here corresponds to two extreme cases, excited
(Ter = Tiny) and frozen (7;,,; > 7.) internal degrees of freedom, and one case in
between: 7. /Tine = 0.5,0.05,1075. The case with 74,./7ins = 1075 corresponds to
the frozen internal state and exhibits a good agreement with the monatomic results
from the R13 equations. A polyatomic gas with § = 2 behaves like a monatomic gas
with 6 = 0, if the internal degrees of freedom are frozen. This behavior is seen for
polyatomic gases with higher internal degrees of freedom too. For intermediate values
of Ty /Tine, the speed of sound is strongly dependent on frequency. If the frequency is
small (large 1/wT), the internal degrees of freedom have time to relax, and the speed
of sound is that for 6 = 2, but for larger frequency, the internal degree of freedom
does not have sufficient time to relax, which results in an increased speed of sound.

Here, we reproduce the monatomic gas behavior as an asymptotic solution of the
equations, without setting the internal degrees of freedom to zero, as was done in Ref.
40].
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Chapter 7
Theory of boundary condition

One sign that you are pushing boundaries is a lot of failures.

Ben Silbermann

In this chapter, we introduce a microscopic boundary condition using same idea
that we used to model two distinguished exchanged processes, internal and transla-
tional. In next two chapters, we use this microscopic boundary condition to obtain
the corresponding macroscopic boundary conditions. Having the macroscopic bound-
ary condition enable us to solve different boundary value problems, e.g. stationary
heat transfer and Couette flow, using proposed macroscopic models above.

Microscopic wall boundary condition prescribes the distribution function of the
particles reflected from the wall when the distribution function of the incoming par-
ticles towards the wall is known. The most common used condition for boundary is
the Maxwell’s accommodation model [89]. Maxwell proposed that the gas particles
are reflected from the wall specularly or diffusivity. A portion of the particles hit the
wall and accommodate at the wall so that they being reflected with the equilibrium
distribution of the wall. The other portion is reflected specularly. In this case the
normal component of the velocity changes sign and the distribution function describ-
ing the reflected particles is akin to the incoming particles distribution function with
corresponding transformed velocities, f* (¢) = f (c — 2 (n.c) n).

For polyatomic particles that are diffusively reflected, we have two Maxwellian
type equilibrium distribution functions, Eqs. (2.21, 2.25) corresponding to only trans-
lational energy equilibrium and total energy equilibrium. We adopt the generalized
Grad’s 36 distribution function (3.9) and its corresponding form as the phase density

(f*) for incoming and specularly reflected particles. Therefore we introduce the wall
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boundary condition as the velocity distribution function in the infinitesimal precinct
of the wall,

Flo) = { X1 =€) fira () + Cfintn (@) + (1= %) fizg (€) m(e=vu) =0,
Ji36 () n.(c—vy,) <0,

(7.1)

where the two wall accommodation coefficients, ¢ and y, are specifying the level of
accommodation of the particle on the wall. Full accommodation is specified by ( = 1
and y = 1, partial accommodation for particles only accommodated translationally
identified by ¢ = 0 and x = 1, and the pure specularly reflected particles are described
by ¢ =0 and y = 0. Moreover, n is the wall normal pointing towards the gas.
Wall boundary conditions for gases must obey a number of requirements, most im-
portantly proper normalization and reciprocity [90].The above is a variant of Maxwell
boundary conditions, and obeys these requirements. Normalization implies that the
number of particles conserved, and this is ensured here by adjusting the densities for
the wall Maxwellians, fi.,, and fi,. ., accordingly, see Eq. 8.17 in Sec. 8.2. The
distribution used on the wall are Maxwellian distribution which are normalized and
the Grad’s distribution is an expansion on the Maxwellian distribution, which are
designed to ensure conserved particles number as will be seen in Eq. 8.17. This
means the kernel is normalized and number of particles hitting the wall are same as
reflecting particles and the normalization condition is satisfied [90].

For obtaining boundary conditions for our field of macroscopic equations, we do
the similar procedure as we did to obtain the balance law for moments: we multiply
the wall distribution function ( f > by corresponding velocity and internal parameter
function, ¥, and take the integral of it over velocity and internal parameter space.
This will give us the relations between the macroscopic properties at the wall to the
wall properties given in the wall equilibrium distribution functions, fi.., and fi .-
We define two peculiar velocities based on average velocity, C = ¢ — V y,,, and based
on the wall velocity, C,,= ¢ — V. This will give us the integral of the weighted wall

distribution function as,



104

/\P(C,I)NC) dCdI =
//C 0 W (C,I)+(1=x)¥(C—2nC)n,I) fi3 (C,I)dCdI

X {/ /C.n>—0 v (Cw - Vs [) [(1 - C) ftr,w (Cwa I) + Cfim&,w (Cw, I)] dC,dlI | , (7.2)

where the slip velocity is Vi = Vg6 — V.

The choice of the velocity and internal parameter function ¥ (C, I) is restricted by
Grad’s finding based on the argument of specular reflection that the velocity function
should be odd in the normal component of the particle velocity [62]. This is due
to the fact that the even polynomials at the wall boundary condition will produce
identity and are uncontrollable. Also, we only prescribe fluxes and not the variables
based on the theory of balance laws which states that at the boundary we need to
prescribe fluxes, not variables [47].

In next two chapters, we model and solve two boundary value problems, heat
conduction and Couette flow, using above proposed models. Based on the model
formulation of each problem, corresponding velocity and internal parameter function

U (C, 1) is obtained and macroscopic boundary conditions are derived using Eq. 7.2.
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Chapter 8

One dimensional stationary heat

conduction

But heat can also be produced by the friction of liquids, in which there could be no
question of changes in structure, or of the liberation of latent heat.

Hermann von Helmholtz

As the first boundary value problem, one dimensional heat transfer within the
stationary polyatomic gas is studied, using numerical and analytical methods to solve
non-linear and linear systems. Two sets of equations are used in this chapter, the
R19 and the refined NSF equations. We consider an unsteady heat conduction which
is homogeneous in y and z directions. The gas is confined between two infinite plates
and is stationary, as shown in Fig. 8.1. The walls are at different temperatures and
the flow properties and variables depend only on x-direction. We study different gases
and different test case scenarios.

The equilibrium rest state {pg, 6} is used to non-dimensionalize all quantities and

equations. Specifically, we set

T; T t Tint  _ Tir p

ji:—Z:_7E:_7fin:_77r:_a7:__17
T0v o L 7o ' To ' To P Po
_ 0 ~ Af ij i Ag;
9:——17A9:—>5ij=(7],(Z':q—,A(Z':—q, (8.1)
0 0 pod 0’ Vo
0 0 00 Pov Yo Pov Vo
0,0 + - _
u,; _ Bi‘ _ Bl,. _ B+t _ B
L I R R
pov/bo potly oty potls potly

Note that the dimensionless relaxation times , 7;,; and 7., are the Knudsen num-
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Figure 8.1: General stationary heat conduction schematic. Top and bottom walls are
at different temperatures.

bers. To avoid complexity, the over bars and hats are dropped in the following
dimensionless set of R19 equations describing the considered problem:
energy and momentum conservations and the balance laws for dynamic tempera-

ture A6, stress tensor o;;,

9x T e oz =0 (8.2)
3+0+(1+0)% 900 9dq

0+ >8A9 . 2 - 10R,,,, dq
P) o 340+(1+6)%  3(5R,,+(6+1+60)L)R,,) ) Ox
B 200+ (1+60)%)R,, 0Aq
3(5Rg + (0+(1+0)L)R,, ) Ox
10Ry,,, Ry, <2% +(1+90) %) 00 (1+p)
_ S(g—Aq) = =—"LINg, (84)
3(5Ry,, + (6+(1+0)L)R,) Oz Tint
Ot 35Rg., +(6+(1+0)L)YR, 0 35(55R,,+(0+(1+0)L)R,,) Oz
> AR, P (25 +(1+6) 53) 00 oul 1o
T3 S 2(Aq_Q)8_+a—:_ —t o1t ,
(5qut —|— (5 —|— (1 —|— 9) @) Rq ) x X Ttr 7_int

(8.5)
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overall heat flux ¢, heat flux difference Ag,

dq 1 doyy H+o+(14+60)% a0
E—l—(l—i—@—l—A@—;aH) e + 5 [(1—}—,0)[1—1—9—A9]+011]%
N 168 +d_5@+ 49 8Bﬂ_388++383‘
(42 +250)° "d0Ox  (424256) Ox 39 dr 13 Ox
7(34+90) (14 + 39) 0By, 0Af
B+ ) Loy — (1+p)[L+ 60+ A0

(144 0) (42 + 256) Ox oz
(146 —Ab) oy 2] ap ( 1 24 ) _do oo
— + AO°| —+7 — i
{ (1+p) O (1446)*  (42+256)° ) 1dOOx
— |:i + 1 :| qu”th”‘ (5 + 6 + (1 + 9) %) q (6 + (1 + 9) %) thr (thT - qunt> q
SRy, + (6+ (1 +6) L) Ry, 5Ry + (6+ (1+6) L) R, ’

Ttr Tint

(8.6)

g 5 3R, I
— + —— 1 dint 1 1+60+A0)| —
T 2( +(5+(1+9)%)thr>< A0+ A0)
(AG—1—6) 5 3R, .| 9p
RS S int A2 22

1+p M7 2 + (0+(1+0)B)R,, ox

) 3R,
1+0+ -1+ dint A0
2( thr(5+(1+9)%)>
5 10R,, 0B~ ) 15R,, OB,
tog(1— ds + T+ "3
39 (6+(1+0)L)R,, ) Ox (42 +259) (6+(1+0)%)R,, ) Ox

42 (7 oy )
(6+(1460) 9 ) Ry, chB+ a0

(90'11 5 3R

+ s 1 + qint aB+
oxr 39 (5 +(1+06) g—g) R, | Ox

5 R,
B — L 1 146+ A6 =
2 { qu ont (L4 p) (L4 6+ A0+ (42 + 250)° a0 | ox
— |:i 1 :| 5R‘h’nt (RQt'r B R‘Iint) + (5 + (1 + 9) %) thr + 5R2¢nt A
Tir Tint 5RQint + (5 + <1 + 0) %) th'f ! 5RQint —I— ((S + (]' + 0) Z_g) th'r ’

(8.7)
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and higher moments B and B~

8B+_2(1+ ) 9q q Op (0 — AG)
ot dr  (1+p)(14+60—A0) Ox
5R,, S+ (1+0) 2R 1
_ Gint +( +( + )dg(s) Gtr {__ (QRUM + 15Ru2’0) (1 +P) A92
20R,,,, — (0+(14+60) L) Ry, | 7o \2
1
- - @ ((3 = 0) Ryt + 20Ry20 — (23 — 8)) (1 + p) (1 + 6) A0> —6(1+06) ““:”
int
50Ry,,, R, (1+0) (23—3 +(1+90) 575> 5By + 3Ry,) (5+(1+6) %) — 100R,,, \ qq
(5R¢h‘nt + (5 + (1 + 9) %) qu-)Q 5R‘Iint + (5 + (1 + 9) ;l_g) Rq" k
1 1 3Ryt +10Ry20 o, 10 _ 2(140) [qq qAq
|:Ttr + Tmt:| < 13 BT g5 (lwr = Ruzo) B )] T40-00 | % T |
(8.8)
0B~ Jq q Op (0 — AG)
= _49(1 -4 _
g t20+0) [8:{; (19 (1+0-70) oz
5R,, S+ (1+0)%)R 11 — Ryzo0
— ant—‘r( +( + )Zg) qtr |:_i9(R’LL’ RU’)(1+p)A02
6RQint + (5 + (1 + 0) @) RQtr Ttr 2
011011

2

Tint

<§ (3464 [3— 6] Ryns — 6Rzo) (14 p) (14 0) Ae) + % (140)

5Ry, + (6 + (1 +6) %) Ry, (5Rg,. + (6 + (1+6) ©) R,,)*
B |:i n 1 :| (10Ru1,1 + 3Ru2,0 B+ 3 (Ruml; Ru2,o) B+):|

Ttr Tint 13

2
((5qu +3Ry,) (04 (1+0)9) 4+ 30R,,, 2Bau R (110) (23—2 +(146) %) ) aq
K

49 (1+0) {qq qAq

(1+0—A0) ?*H}’ (8.9)
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the constitutive equations for the higher moments Bi’;, B;; and u?]’.z,
(1+p)(1+6) 1 1 . 4 (14+0)q [q Aq
—+ Bli=crm—"7—n |-t —
(70+239) R,y M8 | T T 3(1+60—A0) |k ka
1 0 Op (0 — Ab
S e q p( )
3 dr (1+p)(14+0—A0) oz

B 1 (2 (70 — 196) B~ + (42 + 259) B
( (704+238) Ry, , 14_5) 1390
o(

011

5qunt+(6+(1+0)%)th'r) s

(42 + 250) -

doyon 4 qq 14+5+(1+9)Z—g
(1+p)7 3 K |5Ry,, + (6+(1+0) L) R,
10 (TRy,, + 2 (7 +36) Ry, ) (14 0) B 1 14R,,, ((1+6) ©)* + (70 + 236) R2, (1 + 6) &4
8§ (5Rg, + 0+ (1+0) L) R,,)” ]
(14-0)(1+0) 5% —0(14+0) 28
S(3+0+(1+0)%) 3

3(3+6+(1+0)%) MUH) (8.10)

(340) (5Ry,, + (6 + (1 +60) L) R,,.) By, _ 4 (1+0)q {g N g}
(144 0) 3Ry, + 0+ (1 +0) L) R, ) T 3(14+0—A0) |k kA
4 d dp (6 — NG
—3(1+0) (a_z_ (1+p)(1q—i—9—A9) p(ax ))
(3+06) (5Ry,, + (6 4+ (14+60) L) R,,.) 1
(144 0) 3Ry, + (6 + (1 +0) D) R, ) (L4 p) (14 0) 7,
[_3(14+5) (14 +9)
7(340) 3(3+49)
5Ry [34+0+ (14 0) %] + R, [(3 +8)0+ (T+25)(1+0) % + ((3—3)2 + 2%) (1+ 9)2]
3(346) (5Ry, + (6+(1+6) L) R, )’
2R, R,

Qint

SRy, + (0+ (1+0) %) Ry,

(1—|—6)0’110'11— 37011—4(14+(5)R

Qint

qq| , (8.11)
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0,0

Uy _ 9 (1+60)ou [q [ Ag
T H(1+0—A0) |k ka
+ 18R,,,, 4011
5 (5Rq,, + (04 (1+0) §5) Ra,) (L+2) (L4 6)
9 80'11 011 8/) (0 - AG)
—-(1 - : A2
5 +9)(8:1: (I1p)(1+60-20) oz (8.12)

8.1 Refined NSF equations

The corresponding first order equations, refined Navier Stokes Fourier (RNSF), to

the stationary heat conduction problem under consideration are,

op 00
— — .1
p + p 0, (8.13a)
3+40+(1+0)% 90  Oq
5 (1+p)§+%—0, (8.13b)
SRy, + (64 (1+06) %) R, 09
q=—THp—— “(1+p)(140)—. (8.13¢)
' 2qunt th'r' 61’

Where, the stress tensor and dynamic temperature are obtained to be zero at this

order, for the problem under consideration.

8.2 Boundary conditions

For obtaining the boundary conditions, we consider the steady state condition with

11 independent variables,
¢ = {87 A@, q, ACL B+7 B_u Bii_h B1_17 Py 011, u?i()l} )

and write the system of equations as

0P
B(®)—=P(D)d. 8.14
@)%, =P (@) (5.14)
The number of boundary conditions which must be described is the number of vari-
ables of the system (11) minus the number of multiplicity of the zero eigenvalues of
the matrix A (®) [47]. This is due to the fact that the left zero eigenvectors associated

with the zero eigenvalues in Eq.(8.14) are acting like constraint on the variable vector
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® and reduces the dimension of the system by the number of zero eigenvalues. Cal-
culation of the eigenvalues shows that the matrix A (®) possesses a zero eigenvalue
with multiplicity of 4. Therefore, we need to prescribe a total number of 7 boundary
conditions for regularized 19 equations. Using the eigenvectors associated with the

zero eigenvalues, we obtain relations for
{B*,B~,B},.By,} . (8.15)

These relations are used to eliminate the depending variables and reduce the system
from 11 independent variables to a system of 7 independent variables. Based on this
reduced 7 field of variables of ®, we have the velocity and internal energy parameter

function corresponding to the odd fluxes of the variables as,

C? C? 5Pr,,. 3
UV=<L0,0=—+1*) | =—— dint 25 ) (O (C C ——02) .
{ 1, 1( 2 + )a 1 ( 2 <5+9%) Prqtr ) 1 1Y1 5

(8.16)

The microscopic boundary condition along with ¥ function, Eq. 7.2, are used to

obtain macroscopic boundary conditions. We obtained from the first term in W,

- 11

3 + 3 3
(14 +6) (42 +255) 03 1 156 g3 2 (42 4 256) 62

10'11 1

+-—= 4+ _9/) (20 — AQ) =7 . (8.17)

_ + _ RB—
pw\/e_:—2 (14-6)3+8) 1 B -B 5 N

The boundary condition for total heat flux is obtained by second term in W as,

X 2 G6-5(1-0) (140 + 6 (32 + 8) + (14 — §) 6¢)
1=y %[ sz P BT T a2t 20
[(1—¢)d —4] d(4-0(1-¢) (2+6(1=¢)
L TU 4(42 + 250) Bl - 4 0 (pA6 —on)
d(1-9)

- P> + ;/5 [(446C) (0 —0,) — (1 —C) (00 +3A0)]| . (8.18)

2

Bn
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From third term in ¥, boundary condition for heat flux difference is obtained as,

Ag=n Y [2|5(40 = ) Pry,, =12 (0 + 6%) Pry, 5
Y(2 = x)Pry, (6+0%)V 76 312

5(12+6) Prg,, +12 (6 4+ 0%) Prg,, . 106 Pr,, , —8 (6 +0%) Pr,,,
+ Bt +
312 4
56 (42 + 6) Pry,,, —6 (14 — 6) (0 + 0%) Pry,,
4 (144 6) (42 + 259)
5(6 — 0) Prg,,, +12 (6 + 0%) Pr,,,

pb°

+[3+ 4]

Bn

N 56 Prg,,, —6 (6 + 09) Pr,,,

1 boyy 1 po Al
5(6 + 0) Pry,,, +6 (6 + 0%) Pr, T db
- “Bh+— — | PrV?—15Pr (1 -¢)A
g 4(42 1 250) g VO (94005 | PrVZ —15Pr (1 () Af
do do
(56Pr—a(64+6%L ) Pr) o+ (56¢cPr—a(6+6%)Pr)(6=6w)|| . (819
Qint d@ qtr Qint d@ qtr
Finally, last term in ¥ give us boundary condition for v% as,

yyy

0.0 X 2 [ (-14+40)(346) _ CSBf“1 2(Bt—B7)
Uy = Ny 7 By — -
(2—x)V 7m0 (14 +9) (42 + 259) 42 + 256 195

_7011 + 2pA6’0

- + T%x/é [0 — QW]] . (8.20)

These boundary conditions have to hold on both walls with n, = £1 for lower and

upper wall, respectively. Last boundary condition is the prescribe mass condition,

L
3
/ pdx = polL . (8.21)
If the gas was not stationary and velocity component towards the wall was non-zero,
the balance of mass would replace this condition.

Also, the boundary condition for the RNSF equations along with the prescribe

mass condition is the temperature jump condition obtained from Eq. 8.18 at order

(2—x) [705R,,, + (0+0%) R, 00
0—0, = — — . 22
w = Ny Tir N 5 (4+00) Ry R, 0z (8.22)

elas,
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8.3 Numerical scheme

The finite difference method is used to discretize our system of equations

oo oo"
A (D) N + B (9") 3y

= P (") " . (8.23)

with second order accuracy in spatial discretization as,

00 Dy — Dy

8_y —oAr (8.24)
and first order discretization in time as,
oo oIt — @r
= (8.25)

o At
Where, superscript n+1 denotes next time step values while variables with superscript
n are at current time step. Spatial nodes are shown by subscript ¢ with 0 < i < m,
where m is number of grid nodes.

The above set of equations along with the boundary conditions are solved at each
time step to obtain the next time step values, starting from the initial conditions.
This procedure continuous until we reach steady state and the steady state condition
is satisfied,
grtl _ pn

m/2 m/2

o]

<1079, (8.26)

The initial conditions are the reference equilibrium state {pg, 6o } with all non-equilibrium
values are equal to zero. The dimensionless boundary conditions are as follows:

boundary condition for total heat flux,

(140 + 6 (32 + 0) + (14— 6)6¢)

Bm+(3+9) 4 (14 + 6) (42 + 256) 1

X 2 [@6—50—4»

o\ T re 312

=084 S8 -00 =)y LEIUZO) (14 gy (14 ) 20 - o)

312 4(42+255) M 4
PO 4y 0 LT +50) (0 6,) — (1 - ) (6(1+6) + 328)]|

(8.27)
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for heat flux difference,

X 2
(2= X)Prq, (6+(1+60) D)\ 7(1406)

Ag = n,
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56 (42 + 6) Pry,,, —6 (14— 6) (6 + (1 +6) %) Pry,,
4 (14 +6) (42 + 250)
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+[3+ 9] By

(1+p)(140)A0
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100 Pr,, , —8 (8 + (1 +6) ©) Pr,,
+ Qin ( 4( ) ) QT(1+p)(1+0)2
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Qint Qint

+ (55( pr— <5 L 1+0) jg) Pr) 0 ew)H . (8.28)

Qint qtr

and for u)? .
00 _ X 2 (-14+06)(3+0) ,,. 0B  2(B*—B7)
W)V n(1+0) | (14 +0) (42 +250) 1 424256 195
2(14p) A
_Tont (5+p) f 6) + 1= 20 10— 0wl| . (829

The prescribed mass condition along with Eq. 8.2,

1

/ *pdr =0, (8.30)

N

is solved by trapezoidal rule to obtain the density. Here we are interested in only sta-
tionary heat conduction, therefore all the velocities are set to zero. And the prescribed

mass condition along with conservation of momentum is solved to gain distribution
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of mass at each time step. If we were to allow gas movements and convection to be
a part of the problem, the conservation of mass and normal velocity of gas on wall
would replace the prescribed mass condition.

For RNSF’s temperature jump boundary condition, Eq. 8.22, the second order
backward and forward finite difference discretization are used, e.g. for lower wall we

have

2—x) [m(+067)

n+1 _

2
n 1 doT
PHRani (5i 140 ng) By, —07, + 407, — 307 (8.31)
(4 + 5zn<> qu’m wa 2Ax ' ’

8.4 Linear and steady Case

In this section, we study the steady linearized set of equations with small disturbances
from an equilibrium ground state {pg, v{ = 0,6,}. First, we write all variables in terms

of their ground state values plus a small deviation, denoted by a hat, as

p=po+p,0="00+0, v =10, A =AD, 0y = 65, ¢; = G,
CAA PE Pt P B me B e B .00 _ ~00
Ag; = Ag,, Bz’j = Bija B~ =B", Bij = Bij7 B~ =B", Ui = Ugjg - (8-32)
All deviations are considered to be very small, and the systems of equations are
being linearized by keeping only linear terms in the deviations. Set of linear steady
equations after dropping the hats are

the conservation laws,

9q _
or
8p 0 (0 — Ag) 80‘11
or * or * ox

balance laws for dynamic temperature and stress tensor,

0, (8.33)

=0, (8.34)

2 B 10R,, , dq
340+(14+0)%L  3(5Rg,, +(6+(1+0)L)R,,.) ) Oz
20+ (1+0)%)R,, dA\q A6

- — =, (835
3(5Rg + (0+(1+0)LYR,, ) Ox Tint (8:35)
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4qunt @ au?iol
5Ry + (6+ (1+0) L) R, O0x  Ox

qtr

Wl N

2 4(0+(1+0) LY R, OA 1 1
2 40+0A+0)F) Fu. o[ Low, s
35 (5Rg, + (6 + (1+0) %) R, ) Ox Tir  Tint
balance laws for heat fluxes,
oy N 5+5+(1+0)j—g@_ oA 2 9B*
ox 2 ox Jdr 39 Ox
46  OBf, T(3+6)(14+36) 0B;; 5 OB~ 1 1
+ _ — |
(42 4 250) Oz (14 4+ 0) (424 250) Oz 13 Ox Ter  Tint

RQintRQtr (5 + 5 + (]‘ + 0) :1{_2) q (5 + (]‘ + 0) :11_2) R‘Itr (un" - qut)Aq (8 37)
5RQint + (6 + (]‘ + 0) %) R(Itr 5R(h’nt + (5 + (]‘ + 0) %) RQtr 7 ‘

2 R,, | 0z 2 0+ (1+0) %) Ry, ) Ox

5 (. 3R, o5t 5 (- 10R,,, OB~
39 (0+1+0)5) Ry, ) Or 39 (0+1+0)%) Ry, ) Ox
i ) 7 n 15qum an_l 80'11
(42 + 250) (6+(1+0)L)R,, ) 0xr = Ox
— |:i + 1 :| 5R‘1int (RQt'r B R%’nt) + (5 + (1 + 9) %) Rgtr _'_ 5Rgznt
Tir Tint 5R¢Iint + ((5 + (1 + 0) %) RQtT q 5RQint + (5 + (1 + Q) Z_g) thr 7

(8.38)

balance laws for BT and B~

0q Ry, + (0+(14+6) %) Ry, {_ 1
dr  20R,, — (6+(1+60) L) R,,

1 1 7] (3Ry1 +10R,2, 10 _
_{ " K 1453 zOB++E(Ru1,1—Ruz,o)B )},(8.39)

g (3= 6) Rurn + 20Ryn0 — (23 — 6)) A0

Tint

Ter Tint
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dq  5Rg., + (6+(1+0)L)R, 13
2_(] Gint ( ( ) Zg) qGtr |:_ (3 + 6+ [3 5] wll — 6Ru2,0) AO
ox 6qut + (5 + (1 + 9) %) thr Tint 2

{ 1 1 ‘| (10Ru1,1 + 3R,20
— +

B+ 3 (R — Ry20)
13 13

B*)], (8.40)

Ttr Tint

and constitutive equations,

0,0
Uiy 9oy
= 8.41
Ttr 5 al‘ ’ ( )
14 2(6+(140) 9 )
3(3+0+(140) 95 )v B, 4 dq
o 1 p - 3op =0~ Bui=0 (8.42)
3(5Rg;, +(5+(140) 2 ) Ry, 5
340) (5Rg,, + (0+(1+0)L)R,,) By 49
(840) (5 + (0.4 (146) ) B u_ 2N _ g po—0 (343
(14 +0) 3Ry, + (0 + (L +0) %) Ry,,) 1 30

8.4.1 Linear solution

The above set of equations are reduced to 5 coupled equations for & = {Ag, q, u(l)’lol, o1, Af}
and the rest of the variables {p, 6, B*, B~} are functions of them. The solution of
set of coupled equations, A5X5g—i = Bs«5P,is obtained using the eigenvalue method

as

5
= Z Cnﬂne)\nx ) (844>
=1

where, A and 1 are eigenvalues and eigenvectors of the coefficient matrix, A1 B.

Substituting new normalized coefficients,

= (Cy 4 C3)sinh (A3/2) ,
= (C5 — Cy) cosh (A3/2)
= (Cy + C5) sinh (A5/2)

Cé = — (04 — 05) cosh ()\5/2) s

into the above set of equations, results in the final form of the solution obtained as,

, o cosh (Asx) , smh (A3x)
A = i v il
q (.T) 017.9171 + 0319173 cosh ()\3/2> O 191 3 ()\3/2)
, cosh ()\530) , o sinh (Asx)
—_— _— 4
TG e2) T () - B4
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0.0 , cosh (A3x)

sinh (A3z)
upyy (z) = Cy zsm 1y JoN

sinth (A3 /2)

cosh (A5z) , . sinh (A\sz)

cosh (A5/2) 4 *’sinh (As/2) ’
(8.45Db)

cosh (A5) , sinh (A5x)

+ 0579273 + Cé”l?g’g)

cosh (A3x) , sinh (A3x)

. !/ PN T e A / PN T e A
(@) = Gl g2 T s a2y T O s g2) T cosh (p2)
3/ (A3 5/2) 5/
(8.45¢)
cosh (A3x) sinh (A3x) cosh (A5) sinh (A5x)
Af _ LORRAA3L ) ’ R et ’ ORI AL / e S e
(z) 02194’3sinh A3/2 3743 cosh (A3 /2 +C4Q94’58inh A5 /2 5745 cosh (Ag/2)
(As/2) (As/2) (As/2) (As/2)
(8.45d)
q=0Cy. (8.45¢)
The solution for the remaining variables are
B — _ 1 13(3+0+[3—0] Ry — 6J~2u2,0)M ’ (3.46)
T [L 1 } 2 (Rul,l — RuQ,O)
int Ttr Tint
1 1 — 1,1 w20 — wlsl
B — 69([3—0+[3+0] R, ]R20 6R )M’ (8.47)
Tint [Tt% + Tilnt} 20 (Rul,l — RUQ,O)
MQZAQ_’_EB*‘_EB—_}_?u?ﬂx_ i 1
2 39 13 9 Ttr Ttr Tint

<R‘Iint an (5 +0+ 9%) q (5 + 9%) th'r (thr - qut)
5Ry,,, + (6 +0%) Ry, 5Ry,., + (0 +0%) R,

Qint

Aq) x4+ Cs, (8.48)

and,

p:—(H—AQ)—<711+C’7. (849)

8.4.2 Linear boundary conditions

The boundary conditions for the dimensionless linear case become,

boundary condition for total heat fluxes,

X 27 1 1
W= Gy ;[@ ~7gl T3 (80w
F5lA+00) (0 6,) — (1 Q)300]| | (850)
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set of RNSF equations, black line; DSMC method, red triangles.
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for heat fluxes difference,

A, — X \/? 25Pr,,,, —2 (0 4+ (1+06) %) Pr,, s
Y 2=X)Pr,, 6+ (1+0) L)V 39

15 Prqint +4 ((S + (1 + 9) %) Prqt'r
+
78
(64 (1+6) %) Pr,, 15 Prg,,, +4 (6 + (1 + 6) %) Pr,,,

- 5 oyy + 5 Ab

_% {15 Pr(1—¢) A0 — (55< Pr —4 (5 + (14 6) 3—2) Pr) (0 — 0w)” , (8.51)

Qint Qint qtr

B+

for ugy
X 2 [2(B-—B*"
Ui = 5e-yVr {% +2([0 — Ow] — Ab) — Tou1 | (8.52)

and the last one is prescribed mass condition,

1

/ e (8.53)

N

8.5 Results

We first compare the results of our proposed models with the Direct Simulation Monte
Carlo method results [91]. Comparison between numerical solution of the R19, the
RNSF equations and DSMC results are shown in Fig. 8.2. Dimensionless wall temper-
atures are at +0.0476 and reference temperature at 350 K. DSMC data is obtained by
considering equivalent translational and rotational relaxation rates, therefore we have
equivalent internal and translational Kn numbers. We investigate two different refer-
ence Kn numbers, 0.071 and 0.71, which represents slip and transition flow regimes,
respectively. We use the values for Maxwell molecules of relaxation parameters for
pure translational moments, R 20 and R,, , from Table 2.1. Prandtl number is set
to 0.73 and based on Eq. 5.64, R,
R, and R

culating relaxation parameters are used from now on, unless otherwise stated. Also,

qtr )
2. 18 calculated. We extend this relation between

gine 10 Ry20 and Ry,11, and obtained R,1.1 value. These procedures for cal-

excited internal degrees of freedom is set to 2. It is evident from Fig. 8.2 that there

is a good agreement between the DSMC and the R19 results. However in transition
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Figure 8.3: Comparison of total heat flux as a function of reference pressure, ranging
from continuum to free molecular regime. Results shown are obtained from: set of
R19 equations, black line; DSMC method, red triangles.

regime, there is a considerable deviation of Refined Navier—Stokes—Fourier equations
results from DSMC results and first order set of equations fails to accurately model
the problem.

We compare obtained total heat flux values from R19 equations with DSMC data
[92] at various reference pressure, ranging from Continuum to free molecular regime
in Fig 8.3. The simulation case is a channel with 1um width and wall temperatures
at 285 and 315 K. The Prandtl number is set to 0.71, and relaxation parameters are
obtained based on Eq. 5.64 and fitting to DSMC data. The reference temperature
and reference shear viscosity is 300 K and 1.775 Pa.s, respectively. The gas under
consideration is Ny with & + 93—2 equal to 2.015. Also, full accommodation coefficients
are considered. Reference pressure of 10, 10* and 100 Pa are corresponding to ref-
erence Kny equal to 0.005, 0.5 and 50. As it is depicted in Fig. 8.3, there is good
agreement between our data and DSMC data up to Knudsen number 0.5. Results
start to deviate at the end of the transition regime and beginning of the free molec-
ular regime. It is seen that the total heat flux is independent of pressure at very low
Knudsen numbers. However, at high Knudsen numbers heat flux changes abruptly

with changing pressure.
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The developing profiles from equilibrium ground state initial condition {p, 0}
to steady state condition are presented for H, in Fig. 8.4. Prandtl number is set
to 0.69, reference temperature is at 300 K and dimensionless wall temperatures are
+0.5. The shear viscosity temperature exponent is set to 0.5. Reference time scale
is set to be equal to reference internal time scale, 79 = 7;,;. Therefore, Based on Eq.
5.84 we have

Kngy = 0.0091
{ e (8.54)

Knint =1

The results presented in Fig. 8.4 are obtained from numerical solution of R19 set of
equations with the initial conditions of the reference equilibrium state {po, 6y} and
all non-equilibrium values are equal to zero. It is depicted that total temperature
and density is rising from zero starting from regions near walls and gradually in
time moving towards central region. Other variables, which all are non-equilibrium
ones, starts from zero at initial state and jump to their maximum value immediately
and then start to decay over time to reach their steady state profiles. The speed
of these decays is not constant and their values keep reducing in time. The values
of nonequilibrium variables at the beginning of the process are order of magnitude
higher than their values in steady state.

Now, we analyze N, gas. The reference time scale is chosen so that based on Eq.
5.84, we have

(8.55)

Kny = 0.062
Knmt =0.2

This implies the need of a set of equations with both high order accuracy in Kn;, and
Kn;p,, that is the set of R19 equations. The reference temperature is at 400 K and
dimensionless temperature at walls are £0.3. Shear viscosity temperature exponent is
set to 0.74 and Prandtl number is 0.69. Figure 8.5 illustrates the steady state profiles
obtained numerically from full set of R19 and RNSF equations, and analytically from
linear R19 equations. Results from RNSF equations are not in agreement with the
R19 profiles and they are not a good set of equations to be used under these conditions
with mentioned K'n numbers. Also, it is evident that the non-linear and temperature
dependent properties effects are more dominant in profiles associated with internal
variables (Af# and Ag) and differ the analytical from numerical results.

The effects of different range of temperatures are studied on N, gas in Fig. 8.6.
We investigate two cases with upper dimensionless wall temperature at 0.5 and 2.5.

The lower wall temperature and reference temperature are kept fixed at 300 K and



123

0.002

0.001

0.000 F

AG

-0.001 , 1
-0002 , ]

-0003F . B

-0.004 \ . E

0.0 0.2 0.4 0.6 08 10

0.01 1

000 .
5

-0.01

1

| 4
-002f | B

i 1

0.0 0.2 0.4 0.6 0.8 10

o

Q

R

T

/

’
[ R

0.00

-0.02

Aq

~0061 | \

L T R R R

—0.08 L1 I I I I 1
0.0 02 0.4 0.6 0.8 1.

Figure 8.4: Numerical results of stationary heat conduction from set of R19 equations.
Red line is at t=0 s; black-dashed is at t=0.2 s; blue-thin line is at t=0.6 s; green-thick
is at t=1.5 s; gray-dotdashed is at t=29 s.



02F<Ts,] }
L ~‘~~~~
.
0.1 Seel B
L ~.~.
~a
0of .
® [ Sa.
§~‘. ~.~.~.
-01r N ~.~.~,
e,
\\
02} .
-04 -02 0.0 02 0.4
04 7ﬁ-h-h-h-h-\--h-‘--‘--‘----‘--‘--‘--I--‘--‘--‘--l--‘--L
03} ]
o 02t 1
o1l ]
00 v v v P E R N |
-04 -02 0.0 0.2 0.4
0.05 1
g 000 /- ===
—0.05 | 1
-04 -0.2 0.0 0.2 0.4

Figure 8.5: Steady state profiles of Ny gas obtained from numerical and analytical

A6

124

02}

o1

0.003

0.002

0.001

0.000

-0.001

-0.002

0.005

0.000

-0.005

-0.010

-04

-0.2

0.0

0.2

0.4

-04

-0.2

0.0

0.2

04

methods. Red line: R19-numerical; black-dotdashed: RNSF-numerical; blue-dotted:
R19-analytical.



125

referenced Kn numbers are fixed at Kny, = 0.077 and Kn;y = 0.2 for two cases
under study. As it can be seen, the main effect here is promoting the non-symmetry
effects by the temperature dependent properties and relaxation times in the case with
higher upper wall temperature. This emphasizes the importance of a model with
capability to model temperature dependent properties in problems with relatively
high temperature variations.

Now, we compare three different gases with distinguished characteristics, Hs, No
and C'Hy, in Fig. 8.7. Reference and wall’s temperatures are fixed at 700 K, 0 and
0.5, respectively. Translational Knudsen number is also kept fixed at 0.032. The

corresponding reference Kn;,; are obtained from Eq. 5.84 to be

Ny 0.158
Kngy ={ Hy: 378 . (8.56)
CH4 . 10

Number of excited internal degrees of freedom at reference temperature of these gases

are
N2 . 2.41
do
O+0-5=q Ha: 200 (8.57)
CHy: 8.89

H, and CH, gases both have large differences between internal and translational
relaxation times. However, internal and translational relaxation times of N, gas have
comparable values. On the other hand, Hy and N, gases both have similar excited
internal degrees of freedom. Nonetheless, excited internal DoF of C'H, gas is higher
than the other two gases. The effects of having internal and translational relaxation
times at the same order are seen in profiles of moments corresponding to deviations
from total values, Af and Aq, which are derived by translational-internal interactions.
These effects are towards promoting the temperature dependency of the profiles,
which now covers a larger range of values between two walls. The effects of different
internal DoF is most seen in total heat flux and stress tensor. C'H, gas with higher
DoF gains higher total heat flux and lower stress tensor in comparison with other
two gases. Effects of the reference temperature on variables is studied in Fig. 8.8.
N, gas with fixed reference translational Knudsen number at 0.077 and dimensionless
wall temperatures at 0 and 0.5 is used with different reference temperatures of 300

and 700 K. The corresponding reference internal Knudsen numbers are 0.2 and 0.38,
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respectively. As it is depicted in Fig. 8.8, the case with higher reference temperature,
which means more excited internal degrees of freedom, have higher heat flux value
and more flatter deviation moments, Af and Agq, profiles in comparison with lower
reference temperature. Also there is slightly higher temperature jump, especially on
bottom wall | in case of higher reference temperature in comparison with the lower

one case.
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Chapter 9
Couette flow

Yes, we have to divide up our time like that, between our politics and our equations.
But to me our equations are far more important, for politics are only a matter of
present concern. A mathematical equation stands forever.

Albert Einstein

Shear flow like Couette flow, is a multi-dimensional phenomenon. As an appli-
cation of a boundary value problem with moving gas, we analyze the steady linear
Couette flow and model different gases with R19 and RNSF equations. We consider
a steady state flow which is homogeneous in z direction. The gas is confined between
two infinite plates and its movement is only at x-direction, v (z,y, 2) = (v, (v),0,0),
as shown in Fig. 9.1.The walls are at different temperatures and move with different

x-velocities as

{ Top wall: 0,; = 0.05, v,; = —0.05 01)

Bottom wall: 6,;, = —0.05, v,, = 0.05

Taking into account the homogeneity of flow in z-direction we have the total heat

flux, heat flux difference and trace-free stress tensor as,

Ozx Oay 0
qd=(¢s,q,0), Aq=(Ag,Aq,0), oc=| 04 o0y 0 . (9:2)
0 0 — (0w +0y)

First, we show the linear set of R19 and RNSF equations for the considered
problem. Then, the linear system is solved analytically. Finally, the obtained results

for different gases are shown and discussed.
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Figure 9.1: General Couette flow schematic. Top and bottom walls are at different
temperatures and moving with different velocities.

9.1 Linear Couette flow

The equilibrium rest state {pg, 0o} is used to non-dimensionalize all quantities and

equations. Specifically, we set,

o= i _ T {:t %‘t:Tmt %t:& p:ﬁ_l
(2 7_0\/9—0 L 9 0 9 m 7_0 ) T 7_0 9 pO b
— 0 — Af V; B 04 q; _ AQ’L
9:9——17AQ:9—,U1_—970@‘_ é 5, Ag = 35
0 0 V0o Pobo pov 6o oV 0o
(9.3)
0,0 n _ B
u,; _ Bi. _ BZ.A _ Bt B B 3
a?]’z: ]k?,’Bz'_;: jgaBz';: ]2’B+:_2’B*:_2’F:iF.
povV o oy polg poty oy Vo

Linearized set of equations with small disturbances from an equilibrium ground state
{po,v) = 0,6y} are studied in this section. Reference time scale, 7, is chosen such
that the Kn;,; be controlled as will be shown in the results section. First, we write
all variables in terms of their ground state values plus a small deviation, denoted by

a hat, as

p=po+p,0="00+0, v =10, A =AD, 0y = 645, ¢; = G,
CAA Dt Bt P B P B p—_ H— 00 _ ~00
Ag; = Ag;, Bl-j = Bij, B~ =B, Bij = Bz’j? B~ =B, Uiy = Ui - (9.4)
All deviations are considered to be very small, and the systems of equations are being
linearized by keeping only linear terms in the deviations.
The set of full R19 equations for this setting consists of 13 independent variables,

namely
{:07 Uy, ‘97 A97 Oxay Oyyy Oxy,y Qs AQma Qy, Aan B+7 Bi} ;



and, seven constitutive equations for { B, By, Bf B_ u%% w20 00

TY) TTXY TTYY? YY) Taxy? Yy TYyy
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}. Set of lin-

ear steady equations consists of 8 coupled equations and 12 uncoupled equations.

System of 8 coupled equations, after dropping the hats are,

2(6+(1+0)L)R,, 00Ag, A8

. = _ , 9.5
3 <5qu'nt + (5 + (1 + 0) Z_g) thr) ay Tint ( )
4(5+(1+6)LYR A oul? 1 1
- O+0+00%) fu,  0q, ““y:—( +—)am, (9.6)
15 (5Rg,,, + (6 + (1 +0) LY R, ) Oy y Tint Tty
8(6+(1+6)L)R A oul? 1 1
B R
15 (5Ry,,, + (6 + (14 6) %) Ry,) Oy dy Tint  Tir
0B, T(B+0)(4+30) 0B,  [1 1
256 +42 Oy  (14+6)(42+250) Oy |7 Tine
RQintRQtr (5 + 5 + (]‘ + 0) j_g) q (5 + (]‘ + 0) g_g) R‘Itr (RQtr - qut)Aq (9 8)
5R‘h’nt + (5 + (1 + 0) %) RQtr ’ 5RQint + (5 + (1 + 0) %) R‘Itr' ’ .
2 Ry, ) 9y 2 (0+(1+0)L)R,, ) Oy
doyy 5 1+ 3Ry, oB*
dy 39 (0+(1+0)5) Ry, ) Oy
n E 1_ 10R,,,, 0B~ L [i n 1 ]
39 (5 + (1+0) le—g) Ry, ] Oy Ttr  Tint
5qunt (RQtr - R(Iint) (6 + (1 + 6) %) Rgtr + 5R21nt
do 4y a5 Agy | 5 (9:9)
5RQint + (5 + (1 + 8) @) R%r 5R¢h‘nt + (5 + (1 + 0) @) thr
_ (1440) (3R, + 0+ (1+0) L) R,,)  0q, 010
zy ds Ttr—— ( . )
(340) (BRgm + (6+ (1 +0) LY R,,) " Oy
do 2 0o
0,0 — _ A vy 11
umzy Ttr ( 8y 5 ay ) ) (9 )
9 Oo
Uy = ~ETir 5 (9.12)

Y

Uncoupled equations, which depends on the variables in the above coupled equations,
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are,

dp , 90 9A0 |, Doy,

dy - oy Oy dy

004y

— . ]_4
94y
dy

=0, (9.13)

=0, (9.15)

v, n 2R,,,, 04,
dy  B5Ry,, + (6+ (1+060) %) R, Oy
20+ (1+60)%) Ry, 8Aqx__(1 +i)0
5(5Rg, + (0 +1+0)2)R,) oy e

Tint Tir

(9.16)

. (340)(280R,,, — (14 —0) (6+ (1+0) %) Ry,,) Tint _
B}, = - B, . (9.17)
§ (144 0) (3Rq,, + (6 + (L +60) D) Ry, ) (Tor + Tine)

) 15R,,., OB}, 1 1
— | 7T+ s =—|—+
(42 + 250) (6+(1+0)%)R,, | Oy Ter  Tint

( 5qunt (thr - RQint) (6 + (1 + 9) %) Rgtr + 5R§int qu> , (918)

x

+
5Rq:'nt + (5 + (]‘ + 0) %) RQtrq 5R‘h‘nt + (5 + (1 + 0) %) RQtr

5+5+(1+0)j—g@_aA0+@ayy

2 dy dy dy
_EGB++383‘__i 1
300y 130y |7 Tim

quntht'r (5 + 5 + (1 + 0) Z_g) + ((5 + (1 + 9) %) thr (th'r - qunt)A
5Rg. + (0 + (14 6) L) R, o 5Rg + (6 4+ (1+6) 2) R, W)
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B 3(3—06) ORpo—CGRT o
B™ =— — 2 T Af 2
2 Rul,l Ttr + Tint ’ (9 0)

169R 1,1 (10+3R 1,1)

15+ 55(1 — Rul,l) + 184R,1.1 — 30R,2.0 —

Bt = —3r, SO0 Ag (921
Tt ].ORul,l (Ttr -+ Timg) ’ ( )
+
B}, =0, (9.22)
B, =0, (9.23)
ul) =0. (9.24)

Also, the linear dimensionless form of RNSF equations corresponding to the con-

sidered problem is,

dp 00
8—5 Ty 0, (9.25)
a%;y =0, (9.26)
%—q; =0, (9.27)
v,
Ogy = _Ttra_lz; s (928)
5Ry, + (0 + %) Ry, 00
_ in iy 2
qy Ttr 2qunt th'r 8y <9 9)

where, Af and oy, found to be zero from the linear RNSF equations in the problem

under consideration.

9.2 Solution

Solution for the set of 8 coupled equations,

0P
A8><88_ = B8><8CI) )
X

® = {Aqy, By, A9, udd  u)0 . qu, 0y, Oac}, is obtained using the eigenvalue method

as,

5
O (x) = Cotpe™” (9.30)
n=1
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where, \ and ¢ are eigenvalues and eigenvectors of the coefficient matrix, A='B. After

some mathematical manipulations we found,

sinh (A\yx) , o cosh (M)

A — !
qy (2) 03191’4sinh (A1/2) T cosh (Aa/2)

, o sinh (A\gx) , o cosh (Aex)
Ol g A6T) | ot g, g~ N6T),
O i e /2) T 6 st (0 /2)
inh h
By, (1) = Cly g2 Wo2) | oy, , coS Oat) (9.31)

sinh (Ay/2) 2722 cosh (Mg /2)

h (\y2) sinh (A4x)

A0 (z) = Clg o2 4 gy AT

(@) = Gl g on 2 T G osh u/2)
cosh (A¢) , sinh (A¢2)

Cldg g——r—"t —_— .32
T *Osinh (A/2) 6735 cosh (Ag/2) (9:32)
inh (A\y) cosh (\47) sinh (A\g)
0.0 _ (g, SO ' ,
Uazy () = Cytha g oy + O o) T GV i e /2)
, . cosh (Agz) , o sinh (M\gz) , . cosh (\gz)
CeV46——F = — —— .
O ) T s o) T o a2y O3
0.0 o sinh () , o cosh (M)
Uy () = Gy sinh (A\4/2) * Cals.a cosh (A\y/2)
, . sinh (\gz) , o cosh (Agx)
Cils 66— — .34
V50 o er2) T O o a2y (O3
, cosh (Ag) , sinh (Ay2)
e (2) = Cl————= —, .
4 (2) Ysinh (\2/2) 2cosh (\2/2) (9:35)
L uo  cosh (M) , sinh (A4x)
oy () = C "sinh (Ay/2) L " cosh (A\y/2)
h inh
-l cosh (A¢) , sinh (A¢2) (9.36)

sinh (Ag/2) % "Pcosh (Ag/2) ’
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, cosh (\y) , sinh (\yz) , cosh (Ag)

oar (0) = G 50072 T Creosh 0/2) T Gk Oe/2)
, sinh (A\gz) , cosh (A\g7) , sinh (A7)
+Co cosh (N\g/2) "sinh (\g/2) 8cosh (\g/2) (9:37)
where,
C] = (Cy + Cy) sinh (Ay/2); Cy = (Cy — Cy) cosh (A\2/2) ,
Cé = (Cg + 04) sinh ()\4/2) i C;l = <C4 — 03) cosh ()\4/2) 5
Cé = (06 + 05) sinh (/\6/2) ) Cé = (CG — 05) cosh ()\6/2) s
C; = (Cs + C7) sinh (Ag/2) ; C§ = (Cs — C) cosh (A\g/2)
Also, for the dependent variables we have,
O'J;y = 012 y (938)
gy =Ch1, (9.39)

2

o 5
540+ (1+0)D

2
A — Zpt_2p-
( w39 13

1 1
+ 09 — {— + ] Yy
Tir Tint
Ry Re, (5+6+ (1+6) zé—Z)q (6+(1+6)%) Ry, (Rg, — Rg,) .
SRy + (0+(14+0) )R, ™ 5Ry. 4+ (6+(1+0)L)R,, A

(9.40)
P = —0+ A0 — Oyy + ClO s (941)
_ IR 20 — 230
B —_ 3820 9o =75 Tr__Ag, (9.42)
2 -Rulvl Tr + Tint
3 [15 1 50(1 = Ryn) + 184R 00 — 30R,z0 — 20t (0F3u11)
Bt = R T AG
10R, 11 Ter + Tint ’

(9.43)
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2R,,,, 204 (1+60)%) Ry,
SRy + (04+(1+0)B) Ry, 5 (R, + (64 (1+0) %) R,,,)
1 1
— %0 — — o, C13, (9.44
. (3+0)(280R,,,, +(14—10) (0 + (1 +0) ) Ry,,) Tint (0.45)
W 0(14+0) (3R, + (6 + (1 +0) L) Ry, ) (7o + Tia) '
) 15R,,,, 0B, 1 1
— 7+ L =—|—+
(42 + 256) (6+(1+0)%)R,, ) Oy Ttr  Tint
5RQint (thr - thnt) q + (6 —l— <1 + 0> %) thr + 5Rgznt Aq <946)
BRe,. + (6+ (1 +0) D) R, ™ bRy, +(6+(1+60)L)R,, )
B}, =0, (9.47)
B,, =0, (9.48)
ud? =0. (9.49)

9.3 Boundary conditions

The above set of equations has 20 independent variables

¢ = {pavxaeaAea‘]:vaA%caanAQy;O'mmU:vyao'yyaBJr B, , Bl B ud w20 420 BJF;Bi}‘

TY XY TTYY YY) Taxy’ Tayy? TYyy?

First we write the system of equations as

A (D) oe =P(®)D. (9.50)
dy

The number of boundary conditions which should be described equals the number
of the variables of the system (20 for one dimensional R19) minus the number of
multiplicity of the zero eigenvalues of the matrix A (®). This is due to the fact that
the left zero eigenvectors in Eq.(9.50) associated with the zero eigenvalues are acting
like constraints on the variable vector ® and reduce the dimension of the system
by the number of zero eigenvalues. Calculation of the eigenvalues shows that the

matrix A (P) possesses a zero eigenvalue with multiplicity of 7. Therefore, we need
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to prescribe a total number of 13 boundary conditions for regularized 19 equations.
Using the null-space of coefficient matrix, we obtain relations for

{ugfy, B;y,BJF,B’,BL,By’y} . (9.51)
These relations are used to eliminate the depending variables and reduce the sys-
tem. The definition of remaining variables are used to obtain the velocity function
U corresponding to the field of variables ®. The choice of the velocity and internal
parameter function ¥ (C,I) is restricted by Grad’s finding based on the argument of
specular reflection that the velocity function should be odd in the normal component
of the particle velocity [62]. This is due to the fact that the even polynomials at
the wall boundary condition will produce identity and are uncontrollable. Also, we
only prescribe fluxes and not the variables based on the theory of balance laws which
states that at the boundary we need to prescribe fluxes, not variables [47]. Therefore,
the corresponding velocity and internal parameter function obtained as,

02
U= {C’y, C,C,, C, (7 + 12/5> :

16 7 , 11 ] 5 1440
omcy([l 145+3]o+[1+5+3}1 0.

% 5Pr,, 5 :
_ int ]2/5 92 1,
Oy ( 2 (5+ 9%) Prqtr > ) Cy (Cycy 50 ) ) Cy (CZCI 50 )} ,

(9.52)

We consider that n =(0,1,0) and V,,=(V,,,0,0). The general boundary condition,
Eq. 7.2, is used here to obtain macroscopic boundary conditions for different functions
in W. The first condition is obtained by considering ¥ = C,,. For this we rewrite the

part representing incoming particles as

i (€) = x [(1 =€) fiss (€) + C fise (€)] + (1 = x) fise (c) - (9.53)

So, we have three identity relations which state that the flux of molecules towards the

wall is the same as those leaving for all three reflection types, pure specular, partial
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accommodation and full accommodation,

- C, fi36dCdI= (1 — Cy frsdCdl | 9.54
10 [ [, leat=0-0 [ [t 054
—x (- )/C <OC y f136dC=x (1 — () Cy firwdC | (9.54b)

C.n>0

—x( / / C, fis6dCdI=x( / / C, fint.wdCdI | (9.54c)
C.n<0 C.n>0

The first identity is always true based on the definition of f"gﬁ and f36. The second

identity give us a relation for py,, as,

2/6
exp [_{o_] 70v/28
wV 0w = — 0 (21B~ +5B"
o T (1+3)8406v/266+9)/2 | 13 (
(3+0)(14+275) __ 25,
ik [(14+5) (42 + 250) O T 121 255 0w

N (5 + 93—2) V2m Pry,,
(5 Pr,,., + (5 + 93—2) Prqtr)
do

(Agy — qy) + 0 (2p[2A0 — 0] — 7yy)

5Prg,, + (6 +0%) Pr,,, ) (14 + 0) (42 + 256)

+20\FB +M 18v/20 18V, 18v2

13 137 T (42+250) v T (42 +250)" 0M)  (955)

and the third one give us,

(14—-6)(3+0 _ 1 Bt - B~
Puw\ O = — 1 ) 7 By, 3
2 (14 + 8) (42 + 250) 07 156 ¢3

) + 1oy, 1

 2(42 +256) 63 Bt gt oA =T (956)

Furthermore, we obtain boundary condition for stress tensor,

2 5Pr,,  qu+ (6 +0%)Pr, Aq, u?
_ X [T " ertq ( d@) rQr q + Yy (957)

ST T \Va 5 (5Prg,, + (6 + 0%2) Pr,, ) VO 2V0

boundary condition for total heat flux,
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___x 2T o) —(1— e
4= -Gy we{ VO [(446¢) (0 — 6,) — (1 —C) (80 + 3A8) — V2]

2
(140 + 3 (32 +0) + (14— 8)3C) _ [(1—¢)d—4]
S e ¥ Vo ¥ 7 7 R TR
6(4=6(1-0) p+ (2+5(1-9)
* 4 (42 + 256) Byy =
(56 -5(1-0) , 5010
31

0 (pAb — o)

+

O
[\]

boundary condition for heat flux difference Ag,,

Ag — X 2 |5(40 — 8) Pry,,, —12 (0 + 0%) Pry,, B
“= 2P, (6+6%)V 70 312
N 5(12+6) Pry,,, +12 (6 + 0%) Pry,, B
312
. 50Pry, =6 (6 +6%) Pr,, 65 _ 5D (6+06)Pry, +6 (6 +6%) Pr,, B
4 v 4 (42 + 256) vy
N 106 Pr,,,, —8 515 +60%) Pr,,, o 5(6 —0)Pr,,, +i2 (6 +6%) Pr,,, J6A9
50 (42 + ) Pry,, —6 (14 — 0) (6 + 0L) P
+ [3 + 5] ( + ) r%nt ( ) ( + d6') rqw B_
4 (14 + 5) (42 + 250) v
T do )
+ VO |(64+6—)PrV2—15Pr (1 —¢) A
2 d(g qtr Qint

~(sopr—a (640D pr)ot (socPr—a(5+0D)pr)@—0w)|| . (9.59)
Qint d@ qtr Qint d& qtr

boundary condition for B, is

37(6+6%)P
B = X \/23 (14 +9) (6 +6%) ;(;hr VBAG,
2=x)V714(3+9) \ 15 (5P, + (0 +6%) Pr,,.)

14 (6 + 04%) Pr,,, +33Pr,,, L /7 00
3 (5Pr,,, + (0 + 0%2) Pr,, ) Vi = Vo,

—TV, (Vf —0+7(1—C) A0 — W[a—ew])) . (9.60)
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0,0

boundary condition for w,, ,

00 X 2 [ (-14+0)(34+6) _ 5B;'y 2(Bt—B7)
\/% L b

fowy = (2 =) 14+0)(42+250) " 424256 195
2pA
—M’%ﬂe - T? (3V2—2[0— Hw])] . (9.61)
and for udy ,
00 — X 2 [ (1446 (3+9) B 4B, N (B* — B)
w=y = (2= )V 70 (14 +6) (42 + 250) ** 42+ 250 195
0 g

+5 (pAO + 0y — 50yy) + T\/?_ (4VZ -0 — QW])] . (9.62)

9.3.1 Linear boundary condition

The boundary conditions in the dimensionless linear form are

stress tensor,

e [V+5Pfqmt%+<5+<l+9> 4) Pry, Mg,
2—X T s

O’ocy - 5 (5 Prqmt + ((5 + (1 + 9) Z_g) Pfqtr) 2 ] ) (963)

total heat flux,

___x 2|1 —0) — (1—
b= [l 000 - a-gs

7 1 1
B Bt (Af-— 64
39 78 5 ( ow)| o (9:64)
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heat flux difference Ag,,

Aq — X \/? 25 Prq:'nt _2 (5 + (]‘ + 0) %g) Prqw B_
b2 x)Prg, (0 (10 G) V 39

N 15 Prg,,,, +4 (6 4+ (1 + 6) ©) Pr,,, B (64 (1+6) %) Pr,,

78 N 2 v
N 15 Pry,,, +4 (6 +2 (146) %) Pr,,, N
1 dé
+3 —15Pr (1 -Q) A0+ (56¢Pr—4(d+(1+6) 7 Pr)(@—6w)|| , (9.65)
qint Qint qtr

" ~ 00 0,0
and boundary conditions for B, , u,. and ug,,

B __X \/23(14+5) 37(0+ (1+6) %) Pry, A
W 2-x)Vm14(3+0) \ 15 (5P, + (6 + (L+6) L) Py, )
4(6+1+0)L)p 33 Pr,, 1
o ( + ( + ) d9) err —Za r%nt qm o _U/g,yoy _|_ Vg 7 (966)
3 (5Prg,. + (0+ (1+6) %) Prg,,) 2
00 X 2[ 2(Bt—B~) To,+2A0 2
0 — Z |- — -0 9.67
Yo = 2 ) w[ 195 5 Ts@-bw)|, (967

195 )
Also, boundary conditions for the set of RNSF equations are

uzfyz(Qi‘X)\/g[(B“B_Ml( 9+ayy—5am)—%[e—ew]} . (9.68)

X 2
Doy = "5y Ve, (9.69)
___x J2! _
0= 2 [harse-a) . (9.70)

9.4 Results

In this section we investigate the effects of Kn numbers, internal degrees of freedom,
Pr number, and accommodation coefficients on the behavior of the Couette flow.
First we investigate the Ny gas and compare the results obtained from the RNSF

and R19 equations. Reference time scale, 7y, along with reference temperature of 300
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Figure 9.2: Couette flow profiles obtained from set of R19 (red solid line) and RNSF
(black dashed) equations of Ny gas with Kny. = 0.31.
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K are chosen such that the Kn;,; = 1 and Kn,,. = 0.31. Figure 9.2 illustrates profiles
obtained from RNSF and R19 equations. Results from R19 and RNSF equations are
different and again this is shown that the set of refined NSF equations can not predict
accurate results. Temperature gradient on the walls are higher for R19 equations.
However normal heat flux is higher for RNSF equations. This is due to the effects of
the gradients of dynamic temperature and o,,, which act in opposition to the gradient
of temperature and reduces the total heat flux, Eq. 9.19. Also based on Eq. 9.64, low
heat flux value effect on reducing temperature jump is promoted by the effects of Af
and o,, and result in lower temperature jump of R19 equations compare to RNSF
equations. Also the same trend is seen for o,,, Eq. 9.16, which have higher value for
RNSF equations while the velocity gradient is higher for R19 equations. This is due
to the effects of gradient of ¢, and Ag,. Furthermore, low stress tensor, ¢, and Ag,
effects give lower velocity slip for R19, Eq. 9.63, compare to RNSF equations.

Now we investigate the effects of the relation between two Kn numbers on flow.
Two cases are investigated in Fig. 9.3. The translational Knudsen number is fixed
at 0.5 and internal Knudsen number is set to 0.5 for case #1 and 50 for case #2.
Also, internal degrees of freedom is fixed at 2. It is seen that effects of increasing
internal Knudsen number is strong on all the variables. The case with higher internal
Kn number has higher temperature jump and velocity slip. Due to the lower inter-
nal relaxation times and more active internal exchange processes in case 1, value of
dynamic temperature is slightly higher compare to case 1. Also, less active internal
exchange processes of case 2 produced higher heat fluxes and stress tensor. This
strong effects of different ratios of K'n numbers are diminished at low translational
Knudsen number.

Internal degrees of freedom effects on flow is investigated in Fig. 9.4. Two cases
are studied, both with same Knudsen number, Kn; = 0.5 and Kn;,; = 1. Internal
degrees of freedom of Case #1 is 10 and of Case #2 is 2. There is no effects on velocity
field, density and stress tensor. Normal components of heat fluxes are increased by
increasing internal DoF', this reduces the parallel components of the heat fluxes. Also,
the dynamic temperature, which is a non-equilibrium variable illustrating internal-
translational exchanges are increased with increasing internal degrees of freedom.
Increasing the internal degrees of freedom, slightly decreases the temperature jump
by increasing normal heat flux and dynamic temperature.

Furthermore, the influence of Pr number on flow is investigated in Fig. 9.5. We

use the values for Maxwell molecules of relaxation parameters for pure translational
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moment, R, , from Table 2.1 and calculate R
Eq. 5.64, which are 0.7 and 0.8, meaning R
Two other relaxation parameter, R, 20 and R,11, and degrees of freedom are fixed.
Also, the Knudsen numbers are fixed at Kny;, = 0.5 and Kn;,; = 1. Changing Prandtl

aine Dased on specified Prandtl numbers,

is equal to 0.73 and 0.96, respectively.

qint

numbers has no effects on velocity filed, density and stress tensor. Here, specific heat
and viscosity are fixed. Therefore, higher Pr number means lower heat conductivity,
Eq. 5.63. So, the normal component of total heat flux and temperature jump are
higher for the case with lower Pr number. Consequently, the parallel part of the
total heat flux is lower for the case with lower Pr number. The difference between
relaxation times of translational and internal heat fluxes is more for the case with
higher Pr number. Therefore, the heat flux differences and dynamic temperature
values, which are an illustration of internal-translational interactions, are higher for
the case with higher Pr number.

Effects of the accommodation coefficients are investigated in Fig. 9.6. Three cases

are shown with different accommodation coeflicients as

case #1: y=1land ( =1
case #2: y =05and (=1
case #3: x =1and ( =0.5

Case #1 is the case with full accommodation. Case #2 and 3 are partial accommoda-
tions with full internal and half internal-translational accommodations, respectively.
Heat flux parallel to the walls are almost unaffected by the change in accommoda-
tion coefficients. Partial accommodation with full internal accommodation, case #2,
shows lower temperature and velocity gradient, normal heat flux and stress tensor
in compare with fully accommodated case (#1). Comparing case #1 and 3 shows
that the effects of half internal-translational accommodation are only on temperature,
dynamic temperature, normal heat fluxes. Its effects are towards lower temperature
gradient and normal heat flux. The drastic changes in dynamic temperature between
case #1 and 3 are due to differences of gradient of Ag,. Velocity, density and stress

tensor is unaffected by half internal-translational accommodation.
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Figure 9.5: Couette flow profiles obtained from set of R19 equations with fixed Knud-
sen numbers and internal degrees of freedom. the Prandtl number is set to 0.8 (red
line) and 0.7 (blue dot-dashed line).
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Chapter 10
Conclusions and recommendations

This book has come to end but there is still story to be told.
Saadi

The present study introduced a modified kinetic model and new macroscopic mod-
els for the accurate description of polyatomic gas flows in the transition regime. Such
flows are presents in many applications, e.g. MEMS and partial vacuumed devices
[71]. It was shown that the proposed model offer accurate results and the ability
to interpret the sometimes surprising details, caused by rarefaction, in the results in
terms of macroscopic quantities. This is achieved with much less computational cost
compared to that required for the DSMC simulations. The emphasis of the present
thesis is on the derivation of the equations and introducing a comprehensive model
for polyatomic gases in the transition regime. As the first applications of the newly
introduced model, we studied the linear wave analysis, stationary heat conduction
and Couette flow.

Polyatomic gases are governed by at least two distinct time scales, the mean
free times for processes that exchange only translational energy, or translational and

internal energies. We introduced a generalized S-model with the following features:

1. The model predicts correct relaxation times of higher moments and Pr number.

2. The correct relaxation of the model towards equilibrium phase densities for

different exchanged processes was shown.
3. We proved that the model conserves the collision invariants.

4. The H-theorem for the proposed model was proven.
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Moment equations for 36 moments were obtained from the proposed kinetic equa-
tion. We introduced the generalized Grad’s distribution function to cover polyatomic
gases based on these 36 variables which was used to obtain constitutive equations to
close the set of 36 moments equations.

The closed system of 36 moments was used to optimize the moment definitions
based on Knudsen numbers. The relation between internal and translational Knudsen
numbers were explored by introducing a smallness parameter, €, and a magnifying
parameter, a. We obtained orders of all 36 moments in two Kn numbers by applying
Chapman-Enskog expansion on the original system of moment equations. Optimized
moment definitions for polyatomic gases were found in a way that all the optimized
moments are linearly independent at the first order. This ensures that at each order
of accuracy, we have the least number of moments possible.

After optimization, all moments have a clear order in the smallness parameter, ¢,
which were used for model reduction of the set of 36 moment equations and obtained
orders of different optimized moments were used to eliminate higher order terms and
equations at different levels of accuracy. Sets of equations corresponding to different
orders of accuracy up to order € were obtained. Based on ordering in two different
Knudsen numbers, 13 different set of equations were obtained and a recipe of which set
is suitable for different problems based on Knudsen numbers was given. At the first
order of accuracy, a refined version of the classical Navier-Stokes-Fourier equations
was obtained, which includes the full balance law for the dynamic temperature (Sec.
5.4). At the second order, a refined variant of Grad’s 14 moment equations was
obtained, which includes some corrections and three extra constitutive equations for
Ag;, B~ and B*. At order 2+2q, a refined variant of Grad’s 18 moment equations was
obtained which consists of 18 PDEs and two constitutive equations. Finally, at the
third order, the regularized 19 moment equations (R19) were obtained which consist
of 19 PDEs and three constitutive equations. Also, temperature dependent internal
degrees of freedom and relaxation times were calculated based on specific heat and
shear viscosities, and incorporated into the proposed model. Also, we discussed the
changes in the equations due to the ratio of the Knudsen numbers.

As a first application of the proposed model, we studied the phase speed and
damping of one-dimensional linear waves as forecasted in the obtained different or-
ders of equations. We compared the predictions of the various equations in the hi-
erarchies among each other as well as to those of the classical Navier-Stokes-Fourier

equations, and its modification containing the balance law for the dynamic temper-
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ature. Moreover, we studied the influence of excitations of the internal degrees of
freedom by comparing with results for monatomic gases, where we highlighted the
influence of the ratio of collision times, 7./7;, and reproduced the monatomic gas
behavior by freezing the internal exchange processes. It was shown that the classical
Navier-Stokes-Fourier equations can not produce accurate results.

We introduced a microscopic boundary condition using same idea that we used to
model two distinguished exchanged processes, internal and translational. In the pro-
posed boundary condition, a portion of the particles hit the wall and accommodate
at the wall so that they being reflected with the equilibrium distribution of the wall.
The other portion is reflected specularly. For polyatomic particles that are diffu-
sively reflected, we had two Maxwellian type equilibrium distribution functions, Eqgs.
(2.21, 2.25) corresponding to only translational energy equilibrium and total energy
equilibrium. Macroscopic boundary conditions could be obtained from introduced
microscopic boundary condition for different problems.

We solved unsteady one-dimensional stationary heat conduction numerically and
analytically with set of the R19 and RNSF equations and compared the results with
DSMC simulations. It was shown that the Navier-Stokes-Fourier equations were not
accurate in transition regime. The results from set of R19 equations was in a good
agreement with DSMC simulations up to translational Knudsen number of 0.5. The
values of nonequilibrium variables at the beginning of the unsteady process found
to be an order of magnitude higher than their values in steady state. Effects of
non-linearity and temperature dependent properties were more dominant in profiles
associated with translational-internal variables (Af and Agq). The importance of
our proposed model with the capability to model temperature dependent properties
was shown in problems with relatively high temperature variations. The effects of
having internal and translational relaxation times at the same order found to be
on moments corresponding to deviations from total values, Af and Agq, which are
derived by translational-internal interactions. These effects were towards promoting
the temperature dependency effects and obtained profiles covered a larger range of
values. The effects of different internal DoF were most seen in total heat flux and
stress tensor, where gas with higher DoF gains higher total heat flux and lower stress
tensor in comparison with gas with lower DoF. Higher reference temperature, which
means more excited internal degrees of freedom, produced higher heat flux value and
flatter deviation moments, Af and Agq, profiles in comparison with lower reference

temperature case.
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Linear Couette flow was investigated by solving the set of R19 and RNSF equa-
tions analytically. This was shown that the set of refined NSF equations could not
predict accurate results. Increasing Kn number ratio with fixed Kny, produced higher
temperature jump, velocity slip, heat fluxes and stress tensor values. This strong ef-
fects of different ratios of Kn numbers were diminished at low translational Knudsen
number. Increasing the internal degrees of freedom, decreased the temperature jump
and increased the normal heat fluxes. Also, the dynamic temperature values were
increased with increasing internal DoF. Heat flux parallel to the walls were almost
unaffected by the change in accommodation coefficients. Partial accommodation with
full internal accommodation showed lower temperature and velocity gradient, nor-
mal heat flux and stress tensor compare to fully accommodated case. Effects of half
internal-translational accommodation were found to be only on temperature, dynamic
temperature, normal heat flux and parallel heat flux difference.

Based on the results obtained, rarefied gas flows in early transition region could
be modeled accurately using the proposed model. During the course of PhD studies,
different issues and ideas were encountered. However due to lack of time, some of these
ideas remained for future research. We divide the future works recommendations in
two parts, first the recommendations for usage of the current proposed model and
second modifications to the proposed model. The recommendations regarding the

utilization of the proposed models are listed below:

1. Solving the multi-dimensional problems by applying finite volume or finite ele-
ment numerical methods on the set of R19 equations. This will allow to inves-

tigate more complicated physical phenomena.

2. A very interesting idea for future work is to extend the proposed model to cover

polyatomic gas mixtures.

3. Exploring more boundary conditions problems, especially in/out flow and open

boundary conditions.
We listed the recommendations on modifying the proposed kinetic model next.

1. We used a continuous internal states model. Implementing a discretized internal
states model will produce more accurate results in gases with internal DoF states

distanced from each other.
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2. In this dissertation, we have considered a simple BGK-type model. Implement-
ing more complicated collision terms and molecular interaction potentials will

allow to produce more accurate results.

The recommendations in part one are feasible. However, the recommendations
given in part two are more challenging, considering that the macroscopic model should

be derived from the modified kinetic model.
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