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Abstract

This dissertation assesses the long-term technological and policy implications of adapting
to water constraints and climate change impacts in the energy sector. Energy systems are
increasingly vulnerable to climate change and water resource variability. Yet, the majority
of long-term energy infrastructure plans ignore adaptation strategy. New analytical ap-
proaches are needed to address the spatial and temporal scales relevant to both climate
change and water resources. The research in this dissertation overcomes these challenges
with improved engineering-economic modeling. Specifically, the conventional systems-
engineering energy technology planning framework is extended to incorporate: (1) ro-
bust capacity decisions in the electricity sector in light of impacts from hydro-climatic
change and uncertain environmental performance of technology options; (2) an endoge-
nous, spatially-distributed representation of water systems and feedbacks with energy de-
mand; and (3) multi-objective decision-making. The computational modeling framework
is applied to four regional case study analyses to quantify previously unaccounted for
policy-relevant interactions between water, energy and climate systems. Application of the
robust adaptation planning framework to the power system in British Columbia, Canada,
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reveals technology configurations offering long-term operational flexibility will be needed
to ensure reliability under projected climate change impacts to provincial hydropower re-
sources and electricity demand. The imposed flexibility requirements affect the suitability
of technology options, and increases the cost of long-term electricity system operation.
The case study analysis then focuses on the interaction between groundwater conservation
and concurrent policy aimed at reducing electricity sector carbon emissions in the water-
stressed country of Saudi Arabia. Application of the novel water-energy infrastructure
planning framework reveals that transitioning away from non-renewable groundwater use
by the year 2050 could increase national electricity demand by more than 40 % relative to
2010 conditions, and require investments similar to strategies aimed at transitioning away
from fossil fuels in the electricity sector. The research in this dissertation demonstrates the
crucial need for regional planners to account for adaptation to climate change and water
resource constraints when developing long-term energy strategy.
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Chapter 1

Introduction

1.1 Motivation

Water plays a key role in the supply of energy in many regions globally, primarily for ther-
mal power plant cooling, fuel processing and hydropower generation [1]. Constraints on
the availability of water resources in these regions therefore pose risks to the reliable sup-
ply of energy. At the same time, a significant amount of energy is required to extract, treat
and distribute water resources [2]. Constraints on the supply of water services therefore
pose risks of additional energy requirements. Moreover, energy and water are required for
meeting the development goals of societies. These interdependencies promote coordinated
planning of water and energy systems.

Additional energy system planning challenges are posed by climate change. Projec-
tions of future climate under a range of possible greenhouse gas emission pathways indi-
cate that a 1 to 2 ◦C increase in global mean temperature change is likely by mid-century,
with concurrent large-scale shifts in global precipitation patterns and water resource avail-
ability [3]. Energy infrastructure developed this decade is likely to operate until mid-
century, making these assets vulnerable to projected hydro-climatic change [4, 5]. More-
over, technology investments impart long-term structural inertia into the entire energy sup-
ply chain that can impact technology decisions for many decades to come [6]. To ensure
long-term reliability of energy systems, it is essential that regional planners integrate cli-
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mate change adaptation into system development strategy.
Adaptation here refers to the anticipation of effects from climate change and water

contraints, and taking the appropriate measures to reduce foreseen damages or maximize
any opportunities during system design. Adaptation measures from a systems engineering
perspective include modifications to the operation of existing assets or transformation in
the integrated system structure through development and decomissioning of technologies.
Although energy sector adaptation strategy addressing both climate change and water re-
source constraints is an increasingly urgent issue facing regional planners, it is not included
in the majority of long-term energy infrastructure plans. New analytical approaches are
needed to address the complex challenge of assessing energy systems at spatial and tem-
poral scales relevant to both climate change and water resources. The research presented
in this dissertation seeks to provide insight into how these challenges can be overcome by
exploring alternative formulations of the long-term energy planning model. Specifically,
this research focuses on improving the endogenous representation of water supply sys-
tems in energy optimization models and addressing long-term uncertainty due to climate
change during system design. The improved systems analysis tools are applied in this
dissertation to assess the long-term technological and policy implications of adapting to
water constraints and climate change impacts in the energy sector.

1.2 Previous work

1.2.1 Assessing energy sector transformation pathways

Computational models have emerged as important tools for assessing the benefits of dif-
ferent transformation strategies in the energy sector [7–9]. These tools focus on assessing
potential transformations in the context of different performance criteria, such as reli-
ability, costs and environmental impacts. Mathematical programming enables modeling
development scenarios that optimize system performance. Such frameworks are also com-
monly referred to as engineering-economic models due to the usual focus on minimizing
system production costs.

Infrastructure development decisions are tackled with models that optimize system ca-
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pacity. Capacity decisions incorporate both the size and location of new technologies, and
are key design parameters for regional planners due to the relationship with geographical
constraints, investment costs and long-term structural inertia of the supply systems [6].
Moreover, capacity decisions are crucial from the perspective of adaptation strategy due to
the opportunity to embed adaptation measures during infrastructure development. Strate-
gizing capacity decisions is also commonly referred to as capacity expansion planning,
but may also entail reductions in system capacity in situations where reduced demands are
projected. Due to the impact on long-term structural inertia, capacity decisions are usually
assessed over multi-decadal time periods.

A large body of previous work demonstrates application of mathematical program-
ming models to the assessment of long-term energy transitions. The majority of this work
focuses on the economic impacts of low-carbon energy pathways [10], although the scope
of similar models are being increasingly broadened to enable analysis of co-benefits such
as reducing air pollution and increasing energy security [11].

1.2.2 Water-energy nexus analysis

A number of previous studies demonstrate the risks posed to water resources by regional
low-carbon energy transitions. Specific concern surrounds increased development of bioen-
ergy, and the potential use of irrigated crops as energy feedstock. Global analysis with
an integrated model of the energy-land-climate system estimates that the scale of future
bioenergy expansion consistent with deep global decarbonization can be supported pri-
marily with rainfed crops [12]. Nonetheless, any precipitation incorporated into the feed-
stock biomass will be significant, and becomes unavailable for downstream purposes such
as ground and surface water recharge [13]. Downscaled decarbonization scenarios for
the United States indicate increased risk of regional water stress due to potential bioen-
ergy expansion that could exceed the anticipated water impacts of more extreme climate
change [14]. This previous research demonstrates the importance of assessing water con-
straints during the formulation of climate change mitigation strategies involving bioenergy.

Low-carbon transitions including electric power generated with thermal processes could
also lead to increased stress on water resources due to the potential water demand for pro-
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cess cooling [15–20]. Alternative cooling technologies can significantly reduce cooling
water demand, but are also more expensive. The costs of transitioning the existing elec-
tricity supply to cooling systems with zero freshwater use was considered for the United
States using spatially-explicit cost functions for alternative cooling technologies [21]. The
analysis suggests the transition would cost $3.53/MWh or less than 4% of recently reported
average electricity prices in the United States [22]. Several other studies have examined
the impact of water availability on the development of the energy sector by adding ex-
plicit constraints to an optimal infrastructure planning model [23,24]. Optimal dispatch of
water and electricity supply systems has also been proposed for integrated thermal power
plants and desalination systems prevalent in the Middle East and North Africa (MENA)
region [25], and for river-cooled thermal power generation in the United States [26, 27].
Other approaches dynamically link electricity generation planning to physical water con-
straints derived with water resource assessment models [28–33].

Previous work further demonstrates the risks posed to energy systems by future wa-
ter supply transitions. Recent long-term analysis of different cities in the United States
quantifies the potential electricity sector emissions directly attributed to water supply de-
velopment using projections of water sector energy use and pre-defined regional electricity
supply scenarios [34]. Similar analyses for regions in the Middle East and China at a rel-
atively coarse spatial and temporal resolution integrates water and energy supply planning
decisions with an optimization model covering both sectors [35–37]. This type of hard-

linked optimization framework was also considered in its basic form much earlier [28,29],
and allows identification of coupled regional infrastructure pathways that simultaneously
balance energy and water sustainability objectives. Similar research underscores the im-
portance of geography due to water distribution-related energy demand [31,38–40]. These
studies demonstrate that spatially-explicit cost functions are required to parameterize the
water and energy interactions in regional capacity expansion models.

1.2.3 Quantifying impacts of climate change

Climate is a key driver of energy supply and demand. Previous research explored impacts
of warming temperatures on building energy demand and generally highlight geographic
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variability due to the differential effects on cooling and heating requirements [41–44].
Projections of sea-level rise under alternative global climate scenarios have also been used
to assess the vulnerability of existing power plants in the United States [45]. Hydrological
modeling under alternative climate scenarios has further been explored at local, regional
and global scales to estimate the impact of climate change on the magnitude and timing
of hydropower potential [30, 46–48]. The analyses suggest mixed outcomes, with some
regions expected to benefit under projected increases in precipitation and shifts in seasonal
snowpack. Likewise, projections of streamflow and stream temperature have been used to
estimate climate change impacts on the efficiency and availability of river-cooled thermal
generation [49–53]. Moving towards air cooling technology will reduce hydro-climatic
vulnerabilities, but comes with additional tradeoffs in terms of energy efficiency and in-
vestment cost. Recent analysis for a water stressed region in Northern China indicates
the transition to air cooling technology over the past two decades has resulted in a 1 % in-
crease in national electricity sector carbon emissions [54]. Climate change will also impact
wind patterns, cloud cover and ocean conditions, and the implications for the performance
of wind, solar and ocean energy technologies have been considered in different regional
case studies by employing regional climate models [55–57]. Finally, variations in air tem-
perature impact the electrical properties of materials, and these implications of climate
warming have been previously assessed for electricity transmission technologies [58].

These studies (among others) highlight the importance of including climate change im-
pacts into long-term energy strategy, and further provide a wealth of techniques and data
useful in impacts quantification. However, most previous studies neglect impacts during
long-term energy system planning. These decisions are critical from the perspective of
adaptation strategy, due to the opportunities to modify system design [59]. Integrated
analyses of the operational impact of climate change on energy systems has been assessed
in quite some detail for hydropower systems using hydro-economic models [60–63]. Re-
cent analyses with energy-economic models are further quantifying the broader anticipated
impact on electricity prices [30, 64–66]. Less explored is the opportunity to incorporate
climate change impacts into the regional capacity planning process. This approach embeds
adaptive capacity into system design. The implications have been discussed for Brazil [67]
and the northwestern United States [68], where hydropower resources represent the major-
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ity of total electricity supply. These previous studies apply long-term optimization models
to examine least-cost regional energy system adaptation pathways. Similarly, adaptation
of Macedonia’s energy system to climate change-driven shifts in demand was investigated
using an optimization modeling framework [69]. An optimization approach was further
investigated in the US for electricity generation planning under impacts of climate change
on thermal power generation [31].

Integrated analyses of development pathways for the island of Mauritius and the Sacra-
mento Valley in California demonstrate a new framework that combines two models used
extensively for climate change impact and adaptation planning [70, 71]. The integrated
framework soft-links existing tools in the sense that the output from each model is used
as inputs for the other sector models. The feed-forward process is repeated until strate-
gies simulated by the framework reach an acceptable level of convergence. Simultane-
ous optimization of decision-making across sectors (i.e., hard-linking ) is more desirable,
as less sensitivity analysis is required to identify scenarios that balance unified objec-
tives [29, 35, 72].

1.2.4 Key limitations

Very few long-term assessments of climate change mitigation include representation of
climate change impacts, even though some impacts are projected to occur regardless of
mitigation measures taken [73]. This prevents estimating the avoided cost of adaptation,
which could reduce the apparent cost of mitigation in situations where climate change
causes detrimental impacts to system performance. Long-term energy scenarios should be
designed to reflect that global policies aimed at reducing emissions are likely to reduce the
magnitude of climate change impacts on energy systems.

Climate change is highly uncertain and thus it is further essential that energy infrastruc-
ture be designed acknowledging that it will need to cope with a range of hydro-climatic
conditions [74]. Previous studies that incorporate climate change impacts into the en-
ergy technology planning process are limited because of the focus on a specific climate
outcome. Planning models should internalize risks and opportunities associated with al-
ternative scenarios to identify a long-term system configuration resilient to climate change
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uncertainty [74]. Li et al. [75] explored robust optimization as a tool for system planning
under climate change impact risks to electricity supply technologies. Further important
aspects are hydrological changes, and the ability to represent feedbacks with physical cli-
mate and water constraints.

Additional modeling of water constraints under alternative climate scenarios and an
endogenous representation of the water supply systems will provide the capabilities to as-
sess energy system performance across a broader range of future operational conditions.
Greater spatial detail than that typically used in regional energy planning is needed to re-
solve physical water constraints and the energy demand resulting from water supply and
distribution. Moreover, conflicting performance metrics across water and energy will ne-
cessitate application of multi-criteria model analysis methods. Such tools will support
analysis of tradeoffs between all relevant objectives, and interactive exploration of diverse
trade-off solutions across multiple objectives. Despite the potential to apply this type of
tool to effectively model coupled economic-environmental decision-making [76], applica-
tion of multi-criteria methods to the integrated planning of energy and water systems has
been limited to cooling technology choices in the power sector [77].

1.3 Objectives and outline

The objective of this dissertation is to assess the technological and policy implications of
adapting to water constraints and climate change impacts in the energy sector. Improved
computational analysis tools are developed for this purpose. Specifically, the conven-
tional systems-engineering energy technology planning framework is enhanced to incor-
porate: (1) robust capacity decisions in the electricity sector in light of impacts from hydro-
climatic change and uncertain environmental performance of technology options; (2) an
endogenous, spatially-distributed representation of water systems and feedbacks with en-
ergy demand; and (3) multi-objective optimization capabilities. The enhanced modeling
tools are demonstrated within four case studies to assess regionally-specific issues sur-
rounding energy sector adaptation to climate change and water constraints.

In chapter 2, the robust adaptation framework is applied to examine the potential im-
pact of climate change on electricity generation planning in British Columbia, Canada.

7



Adaptation strategy is crucial in this region, mainly due to the large contribution of hy-
dropower resources to regional electricity supply. The model is then extended in chapter
3 to consider uncertain environmental performance of technology options, and is applied
to examine system design implications of policies that avoid electricity resource options
with uncertain greenhouse gas emissions intensity. The scenario analysis developed for
this chapter integrates climate change mitigation and adaptation assessment by stategi-
cally linking electricity demand, resource availability and carbon emissions projections.

In chapter 4, the framework incorporating an improved representation of water sup-
ply operations and capacity investment is used to examine how groundwater and climate
sustainability objectives can be balanced in the water-stressed country of Saudi Arabia.
These objectives are selected as the focus for the analysis due to the anticipated challenges
in balancing future socioeconomic development with aspirations surrounding global cli-
mate stewardship and national food security. The former is a concern due to increasingly
stringent global climate change policy, and the fact that more than half of the current
power generation fleet in Saudi Arabia burns carbon-intensive crude oil [78]. Fulfilling
national food security ambitions locally in Saudi Arabia’s harsh desert environment re-
quires industrial-scale irrigation, and has driven widespread over-exploitation of regional
groundwater resources, leading to concerns regarding long-term supply sustainability [79].
A modified version of the reference point methodology is applied in chapter 5 to enhance
the integrated water-energy supply planning model with multi-objective optimization ca-
pabilities.

Demand projections represent a critical input to the water and energy supply modeling
approaches applied in this dissertation. The Saudi Arabia case study analysis develops a
set of unique national demand projections consistent with the most recent global change
scenarios. A further contribution to modeling demand projections is presented in Ap-
pendix A, and applied to map global impacts of climate change and human development
on municipal water demand.
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Chapter 2

Robust response to hydro-climatic
change in electricity generation
planning1

1The body of this chapter was published in S. Parkinson and N. Djilali, Climatic Change 130 (4), 475-
489, 2015, and is reproduced with the permission of Springer. SP and ND conceived and designed the
study. SP performed the analysis, drafted the initial manuscript, and finalized the published version. ND
contributed to the refinement of further manuscript drafts.
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Preamble

An electricity generation planning framework incorporating adaptation to hydro-climatic
change is presented. The planning framework internalizes risks and opportunities associ-
ated with alternative hydro-climate scenarios to identify a long-term system configuration
robust to uncertainty. The implications of a robust response to hydro-climatic change
are demonstrated for the electricity system in British Columbia (BC), Canada. Adapta-
tion strategy is crucial in this region, mainly due to the large contribution of hydropower
resources to regional electricity supply. Analysis of results from basin-scale hydrologic
models driven with downscaled global climate data suggest that shifts in regional stream-
flow characteristics by the year 2050 are likely to increase BCs annual hydropower poten-
tial by more than 10 %. These effects combined with an estimated decrease in electricity
demand by 2 % due to warmer temperatures, could provide an additional 11 TWh of
annual energy. Uncertainties in these projected climate impacts indicate technology con-
figurations offering significant long-term operational flexibility will be needed to ensure
system reliability. Results from the regional long-term electricity generation model incor-
porating adaptive capacity show the significant shifts required in the non-hydro capacity
mix to ensure system robustness cause an increase in cumulative operating costs of be-
tween 1 and 7 %. Analysis of technology configurations involving high-penetrations of
wind generation highlights interactions between flexibility requirements occurring over
multiple temporal scales.

2.1 Introduction

Under current global development trends, fundamental changes in the climate system are
projected this century [3]. The implications for infrastructure are substantial [80], includ-
ing widespread impacts on energy systems [5]. Adaptation strategy is an increasingly ur-
gent issue: energy technology investments made today impart long-term structural inertia
into the entire energy supply chain [6].

A number of previous studies quantify impacts of climate change on energy systems
[5,81,82]. For instance, projected hydrologic changes are expected to shift the timing and
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magnitude of hydropower potential across Europe [46–48]. Increased streamflow tempera-
tures under climate-warming are further capable of reducing the efficiency and availability
of the region’s river-cooled thermal generation [51, 52]. Integrated analyses of hydrologic
impacts suggest important feedbacks into European electricity prices [30, 32, 64, 65]. In
California, climate-warming is likely to trigger increased demand for cooling that is ex-
pected to increase the electricity system peak load carrying requirement by 6-20% [58,83].
Corresponding shifts in the seasonal availability of the state’s hydropower resources is fur-
ther expected to affect regional electricity prices [61, 84]. In North America’s Columbia
River basin, climate change impact on electricity resources has been assessed in some
detail, including: combined analysis of both hydropower and demand impacts in the US
portion of the basin [43, 68]; and operational strategies for the integrated multinational
hydropower system [60].

These studies (among others) highlight the importance of including climate change
impacts into long-term energy system development plans, and further provide a wealth
of techniques and data useful in impacts quantification. However, most previous stud-
ies neglect impacts during the long-term planning of infrastructure capacity. The need to
incorporate climate change impacts into the regional capacity planning process has been
discussed for Brazil, where hydropower resources supply approximately 80% of electric-
ity demand [67]. The study develops a long-term optimization model to examine national
energy system adaptation pathways. Similarly, adaptation of Macedonia’s energy system
to climate change-driven shifts in demand was investigated using an optimization mod-
eling framework [69]. An optimization approach was further investigated in the US for
electricity generation planning under impacts of climate change on thermoelectric gener-
ation [31].

Climate change is highly uncertain and thus infrastructure should be designed ac-
knowledging that it will need to cope with a range of climate conditions [74]. Previous
studies that incorporate climate change impacts into the capacity planning process are
limited because of the focus on a specific climate outcome. In the current study, a robust
optimization approach to capacity planning under climate change is proposed. The frame-
work internalizes risks and opportunities associated with alternative scenarios to identify
a long-term system configuration robust to uncertainty. The approach is similar to that
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recently proposed in [75], although the current study integrates combined hydrologic and
climate uncertainties into the analysis. The framework is demonstrated for the electric-
ity system in British Columbia, Canada, where adaptation strategy is especially crucial:
the existing system contains a large portion of climate-sensitive supply (hydropower) and
demand (heating and cooling technologies).

2.2 Methodology

Optimization models are commonly applied tools in long-term energy planning analy-
sis [6, 85–87]. These models enable representation of physical and institutional processes
as algebraic relationships, and identification of solutions that optimize an overarching ob-
jective (e.g., minimization of total system costs). Long-term planning models are typically
deterministic in the sense that perfect foresight over a future planning horizon is assumed.
Incorporating impacts of hydro-climatic change into these models presents a challenge:
projections of both future climate [88], and hydrology are highly uncertain [89].

Uncertainties surrounding future hydro-climate are integrated into the conventional de-
terministic analysis using the framework depicted in Fig. (2.1). The methodology relies
on regional hydro-climate scenarios generated from a large number of coupled modeling
experiments. By incorporating a wide range of models and results into the analysis, the
scenario space captures uncertainty across available projections. Many previous studies
focus on the generation of hydro-climate ensemble projections (e.g., [89–93]), with a brief
methodological overview provided here. At the global-scale, general circulation models
(GCM) investigate the evolution of climate variables under specified long-range emission
or radiative forcing scenarios [94,95]. Current GCMs lack the spatial and temporal resolu-
tion needed for hydrologic impact assessment, with downscaling tools applied to transform
GCM results into a desired frame of reference. When driven with the downscaled climate
parameters, hydrologic models generate concurrent projections of hydrologic variables,
such as streamflow and groundwater recharge.

By quantifying effects of the alternative hydro-climate scenarios on electricity system
performance, concurrent electricity impact scenarios are generated. The distribution of
projected impacts is then used to parameterize design constraints in an electricity gen-
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Figure 2.1: Framework for incorporating hydro-climatic change into the electricity gener-
ation plan.

eration planning model. This model solves for the least-cost operational trajectory of the
electricity system at a seasonal time-step, including investment decisions in new and exist-
ing generation and interregional transmission capacity. A robust optimization formulation
is chosen for the planning model because it enables proactive consideration of scenario-
based uncertainties in large-scale system design studies2 [101]. In robust optimization,
optimal design (capacity) and control (activity) variables are determined based on calcu-
lated performance across a number of alternative scenarios. By including climate change
impact scenarios in the analysis, robust optimization reveals system designs resilient to
uncertainties in climate change projections [74, 75].

In the current study, we extend the robust optimization approach to include hydrologic
impacts of climate change. We further impart increased stringency into the system’s de-
sign by requiring feasibility across all electricity impact scenarios included in the analysis
(i.e., the model is solution robust [101]). This choice of model formulation enables our
analysis to highlight long-term capacity implications of hydro-climate uncertainty. The
objective function in this case minimizes the weighted sum of each scenario’s total cost.
The weights are inferred from the frequency distribution associated with the hydro-climate

2Alternative methods for addressing uncertainty in long-term energy planning analysis include stochas-
tic programming [96, 97], mini-max optimization [98], real-options [99], and hybrid approaches [100]
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ensemble. This objective favours a technology portfolio that performs best under projec-
tions occurring most frequently in the coupled modeling experiments3. The mathematical
formulation of the model is provided in the Supplementary Information.

2.3 Application: British Columbia, Canada

The proposed energy system adaptation framework is applied to British Columbia’s (BC)
electricity system. To resolve long-term climate change impacts, a planning horizon of
2010-2050 is chosen for the analysis. The region is an ideal place to apply the planning
framework due to its strong linkage to the hydrologic cycle: provincially-operated hy-
dropower resources currently service more than 90% of BC’s annual electricity demand,
with seasonal surplus further generating significant export revenue within inter-regional
electricity markets [103]. BC’s heating and cooling end-use sector is also sensitive to
changes in climate, and is a major contributor to electricity demand in the province [104].
Our analysis specifically focuses on impacts and uncertainties surrounding hydropower
potential and electricity demand, as these effects are expected to dominate regionally. A
comprehensive assessment would account for other vulnerabilities (e.g., wind potential,
transmission systems, thermoelectric efficiency, etc.), and will be addressed in future re-
search.

2.3.1 Hydro-climate scenarios

Results from analysis by the Pacific Climate Impacts Consortium (PCIC) parameterize
the hydro-climate scenarios applied in the case study. PCIC generated an ensemble of
23 downscaled climate projections for BC, from 8 GCMs run under the B1, A1B and
A2 global emissions scenarios [94, 105, 106]. The downscaled climate parameters were

3A limitation of this approach is that the climate ensemble distribution is not a true probability distribu-
tion but instead an expert judgment with respect to potential future climatic conditions [102]. Nonetheless,
this is currently the best representation of future conditions regional planners have access to, and thus is used
to parameterize the scenario probability space.
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then applied to hydrologic models of several key provincial freshwater basins4 [93]. The
models are found to outperform other approaches at predicting historical conditions [108].
The large number of scenarios considered also helps to estimate the range of future hydro-
climate uncertainty.

The specific hydro-climate scenarios considered in the current study are the seasonal
streamflow and temperature anomaly distributions projected by PCIC for 2041-2070 trends
relative to observed 1961-1990 trends [93,108]. These changes are assumed to accumulate
linearly over a 1990-2050 period (i.e., some changes are assumed to have occurred by the
model base year of 2010). The data is provided in the Supplementary Information, with
overall trends summarized here. Climate warming is observed across PCIC’s downscaled
regional projections. An increased precipitation trend is seen in most seasons and annually,
with notably drier conditions observed in the summer. Perennial warming triggers earlier
spring snowmelt, which combined with an increasing precipitation trend, is expected to
make more run-off available in the winter and spring seasons. Less snowpack combined
with warmer and drier summer conditions are expected to reduce summer run-off in many
provincial basins. Projected hydro-climatic conditions differ regionally, with some loca-
tions displaying greater uncertainty than others. For a thorough breakdown, readers are
directed to [93].

2.3.2 Electricity impact scenarios

The approach taken to quantify climate change impacts to hydropower potential is simi-
lar to that seen in other recent assessments [30, 47]. Hydropower potential is calculated
considering the potential energy E in available streamflow V :

E = ρ ghV (2.1)

The potential depends on the site-specific hydraulic head h. The parameters g and ρ repre-
sent the acceleration due to gravity and water density respectively. Historical streamflow
data is merged with the anomalies estimated by PCIC to generate impact scenarios at

4For the hydrologic analysis, PCIC applied a modified version of the Variable Infiltration Capacity (VIC)
model [107].
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hydroelectric facilities throughout the province. The spatial distribution of the stations
included in the study is provided in Fig. (2.2). Historically, these sites on average pro-
duce about 90% of hydropower in the province. The remaining 10% consists mainly of
small-scale distributed systems, and due to data limitations is represented in the model as
an aggregated resource that follows an average seasonal inflow trajectory. Facility-level
technical data used to parameterize this model is obtained from various regional water-use
planning documents [109–115], and is summarized in the Supplementary Information.

For climate impacts to electricity demand, the model identification process typically
involves regression analysis of historical time-series data [81], and we developed a BC-
specific model applying a similar approach. Hourly aggregate electricity demand data for
the province over the 2012-2013 period was obtained from the regional balancing area
authority [116]. Concurrent hourly temperature data was obtained from a number of cli-
mate measurement stations [117]. To better capture spatial temperature variability within
the analysis, a population-weighted regional temperature trajectory was generated [118].
Four stations were selected based on their proximity to the following population centres:
Vancouver, Victoria, Kelowna, and Prince George. The contribution of each station to-
wards the weighted average follows the regional distribution in [119]. Daily averages and
peaks of the combined dataset were calculated and applied within a least-squares analysis
to identify polynomials of various order5. For daily averages, business and non-business
days are separated, to account for known correlations overlooked in the regression analy-
sis. Cubic polynomials are found to provide adjusted R2 values ranging from 0.90-0.92.
The data and fitted models are provided in the Supplementary information. Seasonal de-
mand requirements for each hydro-climate scenario were then synthesized by applying
the derived statistical model to shift a baseline load forecast. The baseline trajectory is ob-
tained from the regional balancing area authority’s recent long-term resource plan6 [104].

5A limitation of this approach is that it neglects structural changes in the end-use technology mix that
would likely accompany a warmer climate (i.e., increased market penetration of cooling technology). Al-
though empirical models that capture these effects have been proposed for air conditioners [41], they are un-
able to account for the complex interaction with other emerging technologies, such as heat pumps. This can
be addressed in future work by incorporating end-use technology investment decisions into the long-term
planning problem. Neglecting structural change effects means our estimates likely underestimate climate
change impacts to summer electricity demand.

6The baseline load trajectory is further shifted by known annual energy entitlements that hydropower
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Figure 2.2: Spatial distribution of hydroelectric facilities and population centers included
in the study. The diameter of the hydroelectric facility marker is proportional to the
contribution of that station to aggregate provincial energy production (all depicted sites
together represent approximately 90%). Some of the mapped facilities represent aggre-
gations, as operations are already synchronized or insufficient data was available. This
includes: Kootenay Canal, which also considers Corra Lynn, Upper / Lower Boddington,
South Slocan and Brilliant capacity; Seven Mile, which also considers Waneta capacity;
Bridge, which also considers Seton and Walden capacity; and Campbell, which consists
of Stratchcona, Ladore and John Hart capacity.
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Future baseline seasonality trends are assumed to follow historical trends.

2.3.3 Technology and policy assumptions

Considering the importance of hydropower generation in BC, specific attention is paid
to the representation of these technologies in the model. Streamflow management is inte-
grated into the optimization model as a water balance constraint at individual hydroelectric
facilities. Streamflow can be directed through the turbines, stored (if available), or spilled.
The cascading nature of large-scale facilities with seasonal storage opportunities is re-
spected. Long-term reservoir sustainability is assured by constraining the initial level in
each winter to be the same. Other water demands at the reservoirs included in the model
are minimal, and are excluded from the analysis. The model considers planned hydro-
electric capacity upgrades, as well as assumed addition of a new 1,100 MW facility in
2020 [120]. The model excludes expansion of the existing large-scale hydropower system
beyond that planned. Facility-level technical data used to parameterize the hydropower
system is provided in the Supplementary Information.

Other generation technologies considered in the BC electricity model follow the re-
cent assessment of resource options performed by the provincial balancing area author-
ity7 [120]. This includes the following fossil fuel technologies: single-cycle natural gas
turbines (SCGT), combined-cycle natural gas turbines (CCGT), and distributed natural gas
cogeneration. The model further considers the following renewable energy technologies:
two types of wind technology (offshore and onshore), wave, tidal, geothermal, small-scale
run-of-river (RoR), and three types of bioenergy technology. The model can also choose
from two technologies that help balance supply and demand: pumped storage and demand
response8 (DR). Renewable energy technologies are considered non-dispatchable, with

resources incorporated into the model currently provides.
7Nuclear and coal generation technologies are excluded from the analysis. Neither is considered a viable

option in BC due to the province’s no-nuclear, low-carbon energy policy. Carbon capture and storage tech-
nology is also excluded from the analysis due to uncertainties surrounding its performance and regulation in
the province.

8Demand response here refers to a technology that enables the shifting of load over periods ranging
from minutes to hours. This is different from long-term demand impacts of efficiency investments and price
response, which are included in the baseline load forecast [104].
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energy contributions determined by a seasonal capacity factor. To enable consideration of
short-term operating issues at a seasonal time-step, specific capacity and flexibility reserve
constraints are imposed in the model. The mathematical formulation can be found in the
Supplementary Information.

Interregional transmission links included in the model are corridors south to the United
States (US) and east to Alberta (AB). The model allows for expansion of each corridor up
to a maxmimum of 4,000 MW. Current provincial energy policy strives for electricity self-
sufficiency9 [120]. This strategy is integrated into the model by prescribing that imports
never exceed 5% of annual electricity consumption. This enables some importing of elec-
tricity for services such as balancing and peak support that is likely to occur regardless of
the provincial self-sufficiency policy. Based on this constraint, transmission expansion in
the model is driven by the desire to export electricity.

Existing generation and transmission capacities are obtained from a number of sources
[119–122]. Cost of renewable generation, distributed cogeneration and pumped storage
are represented as different resource grades fitted to supply curves derived by the provin-
cial balancing area authority [120]. For each technology category, the supply curves rank
spatially-distributed projects based on levelized cost of supplying electricity ($/MWh).
The supply curves also limit technology expansion, as only cost-effective projects are
included. SCGT, CCGT and transmission expansion costs, as well as natural gas and
trade prices are estimated from [119]. A supply curve for DR technology is estimated
from [123]. Current levels of provincial climate policy are assumed over the modeled
time-horizon (i.e., a carbon price of $30 per tonne of CO2-equivalent), which impacts the
operating costs of technology options that incur emissions. Technology costs, including
natural gas and trade prices, are held at a constant rate over time. Tradeoffs between
climate adaptation and concurrent climate and technology uncertainties is the topic of a
companion paper [124].

The model is applied within two policy scenarios. The first enables the system to
expand within conventional bounds, and the second explores system configurations free of
natural gas generation. The latter scenario reflects the commitment of BC to a low-carbon

9BC contains significant natural gas resources and thus it is assumed that use of these resources does not
jeopardize self-sufficiency goals.
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energy future through fulfillment of capacity requirements with renewable resources [120].

2.4 Results

Key results of the impacts analysis are summarized in Fig. (2.3). The model estimates
that average future streamflow conditions bring approximately 9 TWh of additional hy-
dropower potential by 2050 (an 11% increase)10. Significant seasonal variability exists;
much of the increased potential comes in the spring (MAM), while a deficit is observed
in the summer (JJA). On the demand-side, reductions in heating overshadow modest in-
creases in summer cooling. Mean future temperature conditions are found to decrease both
average and peak demand (not shown) by 2%11. Overall, the net effect of climate change
on BC’s electricity system is dominated by the change in hydropower potential, and trans-
lates to an increase of approximately 11 TWh of available energy by 2050 (equivalent to
a 38% decrease in the supply-demand energy gap). The variations in seasonal impacts
are of a similar magnitude, and underscore the importance of including climate change
uncertainty into the planning analysis.

Results from the regional electricity system model are provided in Fig. (2.4). De-
picted is the optimal installed capacity in 2050, excluding the large-scale hydropower
system, for the two natural gas policy scenarios. To examine the implications of planning
problem formulation, the capacity mix was obtained under five different climate change
adaptation strategies. The base strategy neglects projected hydro-climatic change, and
considers only one scenario characterized by baseline trajectories (i.e., no impacts). The
minimum, average, and maximum strategies also consider a single scenario, characterized
by the corresponding level of electricity impacts depicted in Fig. (2.3) (i.e., the 5th, 50th,
and 95th percentiles). Finally, there is the robust strategy, which considers the minimum,
average, and maximum electricity impact scenarios in the proposed robust optimization
framework12. This range covers 90% of the ensemble distribution (from the 5th to 95th

10Hydropower impacts calculated for BC are of similar magnitude as those estimated for Nordic Europe
[30, 47]. The results do not consider limitations imposed by existing hydropower capacity, which must
accommodate the new conditions. This aspect is explored in the optimization model.

11Demand impacts calculated for BC compare well with those estimated for Canada [42].
12The robust objective function scenario weights are inferred from the percentiles, which in this case
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Figure 2.3: Estimated impact of hydro-climatic change on average electricity demand and
average hydropower potential in the year 2050. Left: change in energy versus the baseline
(no climate change); Right: percent change in energy versus the baseline. The marker
represents the impacts obtained under the mean (50th percentile) trajectory from the hydro-
climate ensemble distribution, with the whiskers extending to the results obtained under
the minimum (5th percentile) and maximum (95th percentile) trajectories. Net impacts
represent hydropower less demand. DJF = December, January, February; MAM = March,
April, May; JJA = June, July, August; SON = September, October, November.
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percentile), meaning the robust configuration will remain reliable across a wide range in
projected conditions.

The modeled impacts to hydropower and demand translate to noticeable shifts in the
trajectory of the non-hydro capacity mix. In each case, the excess energy made available
by climate change displaces capacity expansion. Naturally, the robust strategy consistently
requires more capacity than the average and maximum cases since it yields a portfolio
that it is capable of adapting to the extreme case (minimum climate change). The robust
strategy therefore places a high value on operational flexibility. For instance, when natural
gas is included as an electricity resource option, more efficient CCGT capacity adopted
under the minimum adaptation strategy is displaced by less efficient SCGT capacity in the
robust case, even though both strategies face equivalent capacity requirements (i.e., the
supply-demand gap is at its greatest in the minimum impacts case, which is the limiting
factor within the robust problem formulation). This effect is observed because CCGT
capacity is modeled with a much higher minimum utilization rate than SCGT capacity,
and thus is less flexible when it comes to adapting to the projected range in future hydro-
climatic conditions.

When natural gas is excluded as an electricity resource option, wind and pumped stor-
age technology are combined to provide adaptive capacity. Tab. (1) presents the percent
change in cumulative trade when moving from the deterministic to robust case for each
natural gas and electricity impact scenario. It can be seen that increased exploitation of
non-dispatchable wind resources when natural gas is excluded significantly increases in-
terregional exports under the average and maximum impact scenarios. This is because
wind resources are over-developed in the robust strategy to provide redundancy needed in
the extreme case (minimum impacts). In the other electricity impact scenarios, the interre-
gional transmission system provides a sink for the excess wind generation. If transmission
was unavailable, expanded storage options would be needed to prevent wind curtailment.

The cost of embedding adaptive capacity into the electricity system is also compared
to the deterministic cases in Tab.(1). Presented is the percent increase in total discounted
costs when moving from the deterministic to robust strategy for each natural gas and elec-

translates to a normalized value of 0.08 for both the maximum (95th percentile) and minimum (5th per-
centile) impact cases, and 0.84 for the average (50th percentile) case.
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Figure 2.4: Accumulated capacity (excluding large-scale hydropower) in 2050 for each
climate change adaptation strategy and natural gas policy scenario. SCGT = single-cycle
natural gas; CCGT = combined-cycle natural gas; AB / US = AB / US transmission capac-
ity; Distr. NG = distributed cogeneration; RoR = small-scale run-of-river; Bio = bioenergy;
DR = demand response; Pump Stor. = pumped storage.
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Electricity Impact Scenario
Minimuim Average Maximum

Cumulative Trade
Natural Gas Included 5.6 % 10.6 % 10.3 %
Natural Gas Excluded 0.8 % 47.8 % 59.2 %

Discounted Cost
Natural Gas Included 0.7 % 1.8 % 2.6 %
Natural Gas Excluded 0.6 % 4.6 % 6.6 %

Table 2.1: Percent increase in cumulative trade and discounted costs when moving from
the deterministic to robust energy strategy for each natural gas and electricity impact sce-
nario (positive trade values indicate a net increase in exports).

tricity impact scenario. The robust strategy increases cumulative operating costs between
0.7 and 6.6%, depending on the natural gas policy assumed and hydro-climate trajectory.
The difference in cost between the natural gas scenarios is driven by available technology;
if natural gas is excluded, other more costly options must provide capacity (i.e., wind and
pumped storage). For BC, the smallest difference in cost is observed under minimum elec-
tricity impacts. This is because the minimum scenario determines capacity requirements
within the robust problem formulation. For systems that experience a capacity deficit un-
der hydro-climatic change–the opposite of what is predicted here for BC–the trends would
be reversed.

For climate change, most of the impacts are likely to occur in the second half of the cen-
tury. Although robustness was assessed in the view of average conditions to mid-century,
path-dependency in the electricity system makes the period after 2050 relevant. Regional
climate projections do suggest the direction of change continues post 2050, which would
likely cause further impacts to hydropower potential and electricity demand in BC. Fo-
cusing on a robust response in 2050 is therefore likely to place the system on a direction
well-suited for further climate adaptation. Potentially concerning, however, is the growth
in BC’s summer electricity demand and reductions in late summer water availability under
climate change, which could drive capacity shortages if conditions are strained in the fu-
ture. This outcome represents a divergence from trends, which may threaten the ability of
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the 2050 configuration to adapt in the longer term. Future work should consider implica-
tions of these effects by exploring electricity pathway response to century-scale planning
horizons. A recursive planning model might be better at reflecting the decadal practices
widely applied in today’s electric power sector.

2.5 Conclusion

Given the long lead times required for deploying any new infrastructure, and the inertia
technology decisions impart into the entire energy supply chain, protecting the electricity
system from hydro-climatic change should be an integral part of long-term system plan-
ning. Uncertainties surrounding impacts of hydro-climatic change pose risks to electricity
strategy developed deterministically. Planning for resilience is one way to hedge against
these risks, by ensuring the system remains reliable across a range of possible outcomes.
The robust optimization modeling framework presented in this paper addresses the issue of
uncertain adaptation planning in the electricity sector by providing an approach to identify
generation portfolios that contain sufficient adaptive capacity to handle a range of future
hydro-climatic conditions.

Implications of a robust response to hydro-climatic change in the electricity sector was
demonstrated for the western Canadian province of British Columbia. Climate change
impact scenarios were initially generated considering the seasonal effects of projected
streamflow changes on hydropower potential and the senstivity of seasonal demand to
shifts in temperature. The results suggest climate change could be beneficial; warming
temperatures reduce both peak and average demands, and increased precipitation enhances
hydropower potential. These combined effects narrow the future supply-demand gap, re-
ducing capacity expansion requirements. The wide range in quantifed impacts is, however,
a complicating issue. Application of the robust planning framework reveals technology
configurations offering significant long-term operational flexibility will be needed to en-
sure reliability. The imposed flexibility requirements effect the suitability of technology
options, and increases the cost of long-term electricity system operation.

Although the analysis is specifically focused on BC, some of the conclusions have
broader relevance, and the methodology can be readily extended to other regional jurisdic-

25



tions. Particularly concerning are electricity systems that display a strong linkage to the
hydrologic cycle, and where climate change impacts degrade system performance (the op-
posite of what is projected here for BC). In these situations, the need for flexible adaptive
capacity adds to the costs of deteriorating operational conditions under climate change.
This has implications for mitigation strategy, where simultaneously adapting to climate
change could affect options for reducing emissions. The results of this study demonstrate
how wind energy technology paired with storage and/or interregional transmission could
provide mitigation and adaptation co-benefits. In this case, interactions between flexibility
requirements occurring over short- and long-term scales are found to be important drivers
of technology investment.

Climate impacts in this paper were assessed in the view of average conditions at mid-
century. Yet, the majority of climate change impacts are likely to occur in the second
half of the century, and because development of the electricity system is highly path-
dependent, the period after 2050 may be relevant to our analysis.Much more uncertainty
surrounds climate conditions after 2050, further exacerbating the long-term planning chal-
lenges. Attempting to preserve robustness across a scenario-space bridging century-scale
climate uncertainty is impractical with the stringent system reliability constraints used in
this study. Future work could consider implications of longer-term effects by exploring
alternative formulations of the optimization framework.
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Chapter 3

Long-term energy planning with
uncertain environmental performance
metrics1

1The body of this chapter was published in S. Parkinson and N. Djilali, Applied Energy 147, 402-
412, 2015, and is reproduced with the permission of Elsevier. The model analysis is an extension of the
framework presented in chapter 2. SP and ND conceived and designed the study. SP performed the analysis,
drafted the initial manuscript, and finalized the published version. ND contributed to the refinement of
further manuscript drafts.
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Preamble

Environmental performance (EP) uncertainties span a number of energy technology op-
tions, and pose planning risk when the energy system is subject to environmental con-
straints. This paper presents two approaches to integrating EP uncertainty into the long-
term energy planning framework. The methodologies consider stochastic EP metrics
across multiple energy technology options, and produce a development strategy that hedges
against the risk of exceeding environmental targets. Both methods are compated within
a case study of emission-constrained electricity generation planning in British Columbia,
Canada. The analysis provides important insight into model formulation and the interac-
tions with concurrent environmental policy uncertainties. EP risk is found to be particu-
larly important in situations where environmental constraints become increasingly strin-
gent. Model results indicate allocation of a modest risk premium in these situations can
provide valuable hedging against EP risk.

3.1 Introduction

Environmental resources are increasingly strained, with technological transitions in the
energy sector sought to provide relief [125]. For long-term planners, policies that constrain
the environmental impact of energy systems drive the need to rank technology options
based on environmental performance (EP). Common EP metrics include the rate at which
a technology emits greenhouse gases and other air pollutants [126], or consumes land and
water resources [17, 127].

Accurate EP quantification at the technology-level requires detailed knowledge of the
end-use demands, location of implementation, and the supply chain that enables technol-
ogy operation [128, 129]. The large-scale, spatially-distributed nature of modern energy
systems means long-term planners often lack computational resources to perform analysis
at the necessary resolution. Although lifecycle studies quantify EP uncertainty, long-term
energy scenarios–developed to inform long-term planners–are typically generated with
models operated under deterministic conditions. This approach poses risk when the plan-
ner must secure environmental targets: if technology is developed under the precondition

28



it provides a certain level of EP, only to find out later it was overestimated, unforeseen
changes to the energy strategy may be required. Potential measures include pre-mature
retirement of capacity: a fate projected for much of the global coal-powered electricity
generation under climate stabilization policy [130]. These ‘lock-in’ effects are costly, and
caused by the lengthy planning period and lifecycle associated with energy infrastruc-
ture, and the resulting inertia technology decisions impart into the entire energy supply
chain [6]. To avoid similar energy pathways, opportunities to mitigate EP risk should be
considered within the long-term energy planning framework.

A number of previous studies tackle the issue of risk in long-term energy system plan-
ning. Uncertainties covered span a number of different components, including: technology
costs and availability [23,87,96,131–133]; technological learning rates [134–136]; renew-
able resource availability and demand [137]; climate policy [98, 138, 139]; climate sensi-
tivity [140–142]; or a combination thereof [97, 99, 100, 143–150]. Relatively few studies,
however, examine implications of EP risk. Technology efficiency scenarios were explored
within a stochastic planning framework [151, 152]. Uncertain technology efficiency and
emission factors were also addressed within a multi-criteria analysis [153]. The issue of
natural gas lifecycle emissions uncertainty was incorporated within a stochastic planning
model [154]. This recent study demonstrates the importance of including uncertain EP
into the long-term planning analysis, by quantifying the potential benefits of upstream
emission controls on climate change mitigation costs.

The current study presents two approaches to integrating EP uncertainty into the envi-
ronmentally constrained long-term energy planning framework. The methodologies con-
sider stochastic EP metrics across multiple technology options, and produce a development
strategy that hedges against the risk of exceeding associated environmental targets. The
models are applied to a case study of emission-constrained electricity generation planning
in western Canada. The analysis provides important insight into model formulation and
the interactions with concurrent environmental policy uncertainties.
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3.2 Methodology

Mathematical programming is a frequently applied tool for resource planning analysis
that enables representation of physical and institutional processes as a series of algebraic
relationships and identification of solutions that optimize some overarching objective. Due
to the large number of relationships requiring representation, linear models are typical in
long-range energy planning studies [7–9]. A conventional linear programming problem is
represented by the following set of equations:

Min ∑
j

(
c j · x j

)
(3.1a)

s.t. ∑
j

(
ai, j · x j

)
≤ bi ∀ i (3.1b)

x j ≥ 0 ∀ j (3.1c)

The objective of the problem is to find the solution vector x (with elements x j) that mini-
mizes the function defined in (3.1a), subject to the constraints given in (3.1b) and (3.1c).
For long-term energy planning, the solution vector represents the capacity and activity of
energy technologies over the time horizon of interest. The objective is typically economic,
and coefficients c j therefore transform the solution vector into expenditures and revenue.
The performance of individual technologies is represented by the technical input-output
coefficients ai, j. These parameters determine the amount of constrained resource i con-
sumed or provided by decision j. The total amount of constrained resource i available
or demanded is given by b. Energy-related constraints include service requirements, fuel
availability and capacity levels. Environmental constraints are also of increasing concern
to energy planning, and can be represented by using the input-output coefficients to link
development and operation of technologies to specific environmental impacts. An example
is the inclusion of emission factors and emission constraints to explore system configura-
tions that ensure an emissions-level that remains below a desired target.

The linear programming model in its current form is deterministic, and therefore its
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utility in studying EP uncertainty is limited. Deterministic scenario analysis is an option;
however, this strategy requires multiple model runs and a skilled analyst to identify ro-
bustness across the solution space [96]. Another method is to hedge against potential risks
through explicit representation of uncertainties within the original problem framework.
One way of incorporating risk-hedging within the mathematical programming framework
is to define a measure of risk R that inflates the original deterministic objective func-
tion [155]. The risk measure can be parameterized based on the total absolute deviation
from the expected value, obtained based on successive draws from a known probability
space [156]. Risk-hedging against EP uncertainties requires a different tactic, as these un-
certainties concern the technical input-output coefficients. A similar approach translates
the risk measure to the technical constraints [157, 158]. Formulation of a linear program-
ming problem with risky input-output coefficients can be represented by the following
system of equations:

Min ∑
j

(
c j · x j

)
(3.2a)

s.t. ∑
j

(
āi, j · x j

)
+Φi ·Ri ≤ bi ∀ i (3.2b)

∑
j

[(
ai, j,k− āi, j

)
· x j

]
−
(

r+i,k− r−i,k
)
= 0 ∀ i,k (3.2c)

1
N
·∑

k
r+i,k−Ri = 0 ∀ i (3.2d)

x j,Ri,r+i,k,r
−
i,k ≥ 0 ∀ i, j,k (3.2e)

The mathematical programming model now considers stochastic technical coefficients
ai, j,k, which are included in the model as N realizations of the assumed uncertainty dis-
tributions. The subscript k denotes the particular realization of the stochastic coefficients
included in the model. Constraint (3.2b) contains the risk term Φ ·Ri, which is added to the
technical performance obtained under the expected value of the input-output coefficients
āi, j. The risk term inflates resource usage above the expected value, and essentially pro-
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vides a reserve margin. Following Messner et al. [96], the mean positive deviation from
the expected value parameterizes the risk measure in (3.2d). The positive value is chosen
to reflect that underestimating technical performance is more risky than overestimation2.
Constraint (3.2c) computes the deviations obtained under each realization k of the stochas-
tic technical coefficients. The deviations are broken into positive and negative components
r+i,k and r−i,k to preserve linearity. The parameter Φ is the risk aversion parameter, and its
utility is sensitivity analysis of results, namely to varying decision-maker attitudes towards
technical performance risk. The formulation allows for impact-specific risk aversion pa-
rameters to be specified, enabling preferential weighting of resource constraints.

A drawback of the above approach is the abstract nature of the risk aversion parameter
and the expected difficulty in eliciting an appropriate value from non-technical decision-
makers. These individuals are typically interested in understanding tradeoffs between cost
and risk reduction. An alternative approach based on available budgetary constraints is
therefore proposed here, and is similar to that described in [150]. In this formulation, a
risk premium quantifies the decision-maker’s willingness to safeguard the energy system
from technical performance uncertainty. Risk is then minimized subject to expected total
system costs. The formulation of this linear programming problem is given by:

2Arguably, both positive and negative risk should be penalized, as both impact the strategy costs at the
expected (average) parameter values. This type of formulation can be achieved by defining a non-linear risk
measure (e.g., linear-quadratic risk). Options are discussed in greater detail in [150]. The energy models
explored in this paper implement linear solvers and thus this work is limited to linear programming solutions.
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Min ∑
i
(φi ·Ri ) (3.3a)

s.t. ∑
j

(
c j · x j

)
≤ (1+µ ) ·Cdet (3.3b)

∑
j

(
āi, j · x j

)
≤ bi ∀ i (3.3c)

∑
j

[(
ai, j,k− āi, j

)
· x j

]
−
(

r+i,k− r−i,k
)
= 0 ∀ i,k (3.3d)

1
N
·∑

k
r+i,k−Ri = 0 ∀ i (3.3e)

x j,Ri,r+i,k,r
−
i,k ≥ 0 ∀ i, j,k (3.3f)

In this model, risks occurring across different resources are weighted within the objective
function by coefficients φ . Similar to the risk aversion parameter, these coefficients allow
certain technical performance risks to be preferentially mitigated. A risk premium µ is de-
fined, and represents the fraction of total cost in absence of uncertainty the decision-maker
is willing to pay for hedging expenditures. The total cost in absence of uncertainty Cdet

is equivalent to the deterministic solution obtained under the expected values of technical
performance.

A key difference between the two risk-hedging approaches is that the focus is strictly
risk minimization in the risk premium formulation, whereas reductions in both average
resource use and performance risk can contribute to satisfying the reserve margin im-
posed in the risk aversion parameter approach. Both formulations benefit from relatively
straightforward implementation, provided the analyst is able to accurately parameterize
the uncertainty distributions. The models are also able to address a number of technical
performance uncertainties concurrently and could be combined with alternative risk for-
mulations to examine sources of uncertainty throughout the problem structure (i.e., in the
objective function or right-hand side constraints).
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3.3 Case study

3.3.1 Emission-constrained electricity generation planning in BC

The modeling approaches presented in the previous section were applied to a case study
and demonstrates the implications of including EP uncertainty into the long-term energy
planning framework. The focus of the study is emission-constrained electricity gener-
ation planning in the western Canadian province of British Columbia. The province is
an ideal test case for the following reasons: (i) policy-makers have historically demon-
strated a commitment to reducing environmental risks, as illustrated by their implemen-
tation of a progressive carbon tax and a low-carbon energy policy [159]; (ii) although
hydropower currently provides more than 90% of provincial electricity needs, significant
capacity shortfalls are expected in the coming years [159]; (iii) resource options with un-
certain lifecycle impacts, such as natural gas, forest bioenergy and electricity imports, are
expected to play an increasing role in the regional electricity mix [119, 120].

The proposed EP risk-hedging approaches are integrated into an existing BC long-term
electricity generation planning framework. The original framework is a deterministic lin-
ear systems-engineering optimization model, and thus it is possible to translate all model
equations into a form equivalent to (3.1). The following section describes salient features
of the existing BC model, with the mathematical formulation provided in the appendix.
Parameterizing the risk metrics in terms of an emissions constraint requires generation of
technology-specific emission factor uncertainty distributions, with the procedure applied
described in section (3.3.3). All technical input-output coefficients other than emission
factors are assumed fixed (i.e., deterministic). The corresponding constraints therefore re-
duce to the conventional linear programming form given by (3.1b). It will be the topic of
future work to explore potential tradeoffs between risks occurring across multiple environ-
mental resources (e.g., water use and CO2 emissions).

3.3.2 Existing BC model description

The existing BC electricity capacity planning model solves for the least-cost operational
trajectory of the electricity system at a seasonal time-step, over a planning horizon span-
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ning the years 2010-2050. The decisions include investments in new generation and in-
terregional transmission capacity. Considering the importance of hydroelectric power in
the provincial electricity mix, specific attention is paid to the representation of these re-
sources in the model. Streamflow management is integrated into the optimization model by
considering the water balance at individual hydroelectric facilities. The cascading nature
of large-scale facilities with seasonal storage opportunities is respected. Simplifications
are made at smaller stations where operations are already synchronized (i.e., cascading
run-of-river systems), or when insufficient data is available. The model includes planned
hydroelectric capacity upgrades, as well as assumed addition of a new 1,100 MW facility
in 2020 [120].

Other technologies considered in the model follow the recent assessment of resource
cost competitiveness performed by the provincial balancing area authority [120]. This
includes the following fossil-fuelled generation types: single-cycle natural gas turbines
(SCGT), combined-cycle natural gas turbines (CCGT) and distributed natural gas cogen-
eration. The model further considers the following renewable energy resource types:
onshore wind, offshore wind, wave, tidal, geothermal, small-scale run-of-river, biogas,
and forest bioenergy. Pumped storage, and load control3 technolologies are also incor-
porated into the model. Renewable energy resource costs are modeled as long-term en-
ergy contracts with independent producers; the costs of which are represented as differ-
ent resource grades fitted to the supply curves derived by the provincial balancing area
authority [120]. These supply curves also limit distributed resource expansion, as only
cost-effective projects are included. Distributed resources are assumed non-dispatchable,
with energy contributions determined by a seasonal capacity factor.

Interregional transmission included in the model are corridors south to the United
States (US) and east to Alberta (AB). The model allows for expansion of each interre-
gional transmission corridor up to a maximum of 4,000 MW. Current provincial energy
policy takes a strong stance on self-sufficiency [120]. This strategy is integrated into the
model by prescribing that imports never exceed 5% of annual electricity consumption.

3Load control refers to a technology that enables the shifting of load over periods ranging from minutes
to hours. A supply curve for this technology is estimated from [123]. For more information on how this
technology as well as pumped storage are integrated into the modeling framework, readers are directed
to [160].
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This enables some importing of electricity (e.g., ancillary services) that is likely to occur
regardless of the provincial energy security policy. Based on this constraint, transmission
expansion is mainly driven by the desire to export energy.

3.3.3 Emission factor uncertainty distributions

The Intergovernmental Panel on Climate Change performed a review of lifecycle emis-
sions from electricity generation technology [126], and the uncertainties estimates are
used to parameterize many of the CO2 emission factor distributions in the current study.
Lognormal distributions are fitted to the range of reported values4. Specific attention is,
however, paid to forest bioenergy and natural gas technologies, as well as electricity im-
ports.

The carbon benefit of forest bioenergy may be overestimated, even in situations where
waste forest management residues are the only source of feedstock [161, 162]. Neverthe-
less, research also indicates potential benefits of utilizing residues from degraded forests,
particularly those from the vast areas of British Columbia affected by mountain pine bee-
tle [161]. A lognormal distribution is defined to model the uncertainty of forest bioenergy
emissions, with the mean representing the value currently proposed by the province for
emissions analysis [163].

Similar controversy has centered on natural gas. In particular, upstream methane leak-
age at unconventional extraction sites remains highly uncertain [164], and has the potential
to offset carbon benefits typically associated with the movement from coal to gas in the
electricity system [165, 166]. We utilize the range in lifecycle impacts of natural gas re-
ported in [129, 165, 167] to model the emission uncertainty as a lognormal distribution.

Finally, BC’s electricity imports come from one of the largest interconnected systems
on the planet. This network contains a diverse range of both carbon-intensive and low-
carbon generation technologies. The actual mixture differs substantially based on time-

4Lifecycle impacts incorporate electricity used during construction, and thus some double-counting of
emissions is likely to occur by implementing lifecycle values within the analysis. However, part of the
construction process may take place outside the region in question (e.g., component manufacturing) and
could be associated with emissions from sources outside the electricity system (e.g., emissions from direct
fuel- or land-use). This in itself is an uncertainty that should also be considered in the analysis.
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of-day and season, although it is typical to assume an average Pacific Northwestern US
electricity emission factor for US imports and an average AB electricity emission factor for
AB imports [163]. For US imports, the uncertainty distributions are defined based on the
range put forward in [168]. For AB imports, less uncertainty is assumed due to the relative
size of the system and the high-prevalence of carbon-intensive generation technology.

The emission factor distributions implemented in the model are depicted in Fig.(3.1).
These distributions are sampled to estimate the carbon risk associated with a given tech-
nology strategy. Latin hypercube sampling has been shown to produce better convergence
than conventional random sampling methods in stochastic energy system optimization
modeling [150], and thus is implemented to estimate the risk function under a finite num-
ber of samples. A suitable sample size is identified in the appendix. Correlation between
the emission factor distributions is unaccounted for, except in the case of natural gas tech-
nologies. In these cases, the same natural gas emission factor distribution is assumed (i.e.,
perfectly correlated), with the rate of natural gas use determined by a technology-specific
average conversion efficiency.

3.3.4 Scenarios

The model is applied within three scenarios to highlight the interactions between stochastic
emission factors and global climate policy uncertainties. The scenarios reflect potential
conditions under which energy planning will take place over the coming decades. To
mimic the scenario space implemented by BC’s regional electricity system planner (i.e.,
the balancing area authority), the scenarios are interpreted from the most recent provincial
electricity resource plan [104, 108,120, 169]. The scenarios dictate the level of demand as
well as the carbon intensity of electricity imports. The scenarios are further extended to
incorporate impacts of climate change. This enables the scenario space to address climate
change mitigation and adaptation simultaneously. The scenarios are described below.

• Scenario (A). Business-as-usual scenario. No global climate change policy beyond
current levels resulting in a lack of change in the average carbon intensity of Western
Interconnection electricity imports. Maximum global climate change impacts are
realized and limited electrification of the transport and heating sectors occurs.
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Figure 3.1: Emission factor distributions assumed in the risk-hedging version of the BC
long-term energy planning model. The unit is metric tons of CO2 equivalent (tCO2e) per
GWh of electricity produced. The distribution for pumped storage technology (not shown)
is drawn from the same distribution as run-of-river. The edge of the box represents the 25th
and 75th percentiles with the whiskers extending to 1.5 times the interquartile range.
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• Scenario (B). Middle-of-the-road scenario. Moderate global climate change policy
beyond current levels is implemented resulting in a 30% decrease in the average car-
bon intensity of Western Interconnection electricity imports by 2050. Mean global
climate change impacts are realized and medium-scale electrification of the transport
and heating sectors occurs.

• Scenario (C). Climate stabilization scenario. Ambitious global climate change pol-
icy beyond current levels is implemented resulting in an 80% decrease in the aver-
age carbon intensity of Western Interconnection electricity imports by 2050. Min-
imum global climate change impacts are realized and large-scale electrification of
the transport and heating sectors occurs.

Concurrent cumulative CO2 emission caps are imposed by coupling the scenarios to
carbon price trajectories developed by the regional balancing area authority [169]. The
carbon price is equivalent to the shadow price of an emission constraint, and thus is inter-
changeable with an emission cap. To obtain the emission constraint, the model is initially
run deterministically (i.e., assuming average emission factors) under a given carbon price
trajectory. The cumulative emissions from this scenario are then used to constrain the
stochastic model. The carbon intensity of imports is also related to the climate policy sce-
narios. To model each case, the emission reductions for electricity imports defined within
the storyline are assumed to accumulate linearly, with the emission factors then scaled
accordingly.

The scenario parameters introduced above are depicted in Fig.(3.2). Increases in de-
mand under more stringent climate policy is driven by electrification of end-use services
traditionally met with fossil fuels (e.g., transport and heating) [104]. Demands incorpo-
rate efficiency programs, price effects, and transmission losses [104], as well as climate
change impacts [160]. Climate change is expected to translate to net benefits for BC’s
electricity system; gains in hydropower potential and reductions in demand are projected
under a warming climate [160]. The jump in hydropower potential in 2020 is the result of
assumed development of a new 1,100 MW facility5 [120].

5Hydropower potential represents the raw resource and does not consider limitations imposed by exist-
ing hydropower capacity. These constraints are imposed in the optimization model.
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Figure 3.2: Average annual demand, average annual peak demand, average annual hy-
dropower potential, and carbon price trajectories for each scenario implemented in the BC
long-term energy planning model.

40



3.4 Results

The model is initially run deterministically, applying (3.1) with expected (average) emis-
sion factors. This step is needed to obtain the emission and cost constraints for the stochas-
tic analysis. The results are provided in Tab.(1). Costs steadily increase with the level of
climate policy defined in the scenario storyline. In scenario (C), the largest future supply-
demand gap occurs due to a combination of widespread heating and transport electrifica-
tion, accompanied by only modest gains in hydropower potential under climate change. A
high carbon price trajectory dictates that significant investment into abatement measures
already occurs in scenario (C). In scenario (A), low demand growth combined with an
unambitious carbon price trajectory causes less pressure for future low-carbon capacity to
be incorporated into the electricity system. Much of the load growth in this case is offset
by combined climate change impacts to hydropower potential and heating demand. Al-
though slightly more ambitious climate policy is proposed in scenario (B), the emissions
from the electricity system increase with respect to scenario (A). Nevertheless, this analy-
sis neglects tradeoffs implicit in the scenario storyline; heating and transport electrification
displaces fossil fuels from final energy demand, but these carbon benefits are unaccounted
for.

Climate Policy Scenario
(A) (B) (C)

Cost [ × 109 $ CAD (2010) ] 51 76 105
Emissions [ × 106 tCO2e ] 173 240 90

Table 3.1: Baseline emissions and costs obtained under the average emission factors.

For the stochastic analysis, each scenario was run over a range of risk aversion param-
eters (0 to 5) and risk premiums (0 to 5%). This enables the analysis to capture results
sensitivity to potential environmental risk attitudes.

The capacity and cumulative energy mixtures6 in 2050 obtained under the risk aver-
6The mixture represents the portion of each technology included in the aggregate. The energy mixture

is the cumulative output over the simulation horizon (2010-2050). The capacity mixture is a snapshot of
conditions in 2050.
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sion parameter formulation are provided in Fig.(3.3). Initial conditions (i.e., for the year
2010) are also provided for reference7. Scenario (A) is relatively insensitive to the risk
aversion parameters tested. The emissions reserve imposed by this formulation primarily
pushes distributed natural gas cogeneration from the energy mixture. Impacts are slightly
more pronounced in scenario (B), where increased risk aversion displaces SCGT gener-
ation from the capacity portfolio. In scenario (C), forest bioenergy and US imports are
displaced from the energy mixture as the risk aversion parameter is increased, with addi-
tional onshore wind and geothermal entering the mix. Minor impact on the final capacity
portfolio is observed in scenario (C), indicating the majority of risk is mitigated during the
2010-2050 transition (i.e., by limiting the activity of risky technologies over the simulated
horizon or by investing in lower risk technologies earlier).

Capacity and energy mixtures obtained under the risk premium formulation are pro-
vided in Fig.(3.4). In this case, scenarios (A) and (B) undergo significant changes as
the risk premium is increased. Natural gas and forest bioenergy technologies, as well as
electricity imports are displaced. Interestingly, in scenario (C) more forest bioenergy is
pushed out of the energy mix than electricity imports: the opposite of what is seen in the
risk aversion parameter approach.

To help understand these results, the relationship obtained between total costs and risk
parameterization is provided in Fig.(3.5). Costs increase non-uniformly in the risk aver-
sion parameter approach. In scenarios (A) and (B), the least impact on costs is observed
because more low-cost abatement measures remain in the baseline capacity configura-
tions. This means it costs less to provide the emissions reserve margin imposed by the
risk aversion parameter. Most of the low cost abatement measures have already been
tapped in scenario (C); therefore, costs increase significantly with risk aversion. For the
risk premium approach, the increase in cost is equivalent to the risk parameterization, and
thus both quantities are interchangeable. Overall, more risk hedging expenditures are in-
curred in the risk premium approach, leading to greater impact on the energy and capacity
mixtures. These results highlight a key aspect of the risk aversion parameter approach:

7The model results show that existing natural gas capacity contributes a negligible amount of energy to
the initial mixture. This results from the assumed initial conditions, which includes a carbon price of $30 per
tCO2e and enough hydropower potential to fulfill most of the energy requirements. Under these conditions,
natural gas generation is less appealling than the other existing resources and thus is left primarily idle.
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sensitivity analysis is required to identify a given level of risk hedging expenditure.
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Figure 3.5: Relationship between risk parameterization and total system costs.

The primary purpose of including EP uncertainty into the long-term planning frame-
work is to provide a way to hedge against environmental impact risk. To explore risk
implications of the hedging expenditures, the cumulative emissions associated with the
identified strategies were calculated under each stochastic realization of the emission fac-
tors. The distribution of results obtained for each risk parameterization are depicted in
Fig.(3.6) as the percent change in baseline CO2 emissions. The baseline represents the cu-
mulative emissions calculated deterministically, or more specifically the cumulative emis-
sions cap imposed on the electricity system. A percent change greater than zero therefore
indicates a situation where the emission constraint is exceeded. A modest risk premium
provides significant hedging against exceedance risks. For example, in scenario (C) a risk
premium of 1% reduces the probability of exceedance from 45% to 4%, representing an
89% decrease. In all scenarios, risk-hedging investments reduce expected emissions.
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Figure 3.6: Impact of risk aversion parameter and risk premium on the CO2 emissions un-
certainty. Results are presented as distributions of percent change in baseline CO2 emis-
sions. The distributions are obtained by calculating the emissions associated with each
stochastic realization of the emission factors. The baseline is the cumulative CO2 emis-
sions calculated under expected performance parameters, and corresponds to the emissions
constraint imposed in each scenario. The edge of the box represents the 25th and 75th per-
centiles with the whiskers extending to 1.5 times the interquartile range. The outliers
extend to the most extreme outcomes.
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3.5 Conclusions

Deployment of energy technology under specified environmental impact constraints poses
investment risk due to the uncertaintes in environmental performance. One way to safe-
guard the system from this risk is to hedge against it within the long-term development
plan. The methodologies proposed in this paper provide such a procedure, by integrating
stochastic EP metrics into the conventional long-term energy modeling framework.

The risk aversion parameter approach hedges against EP risk by holding a reserve
margin. This reserve can be provided by either reductions in the expected environmental
impact or the associated performance risk. The methodology brings some challenges in
interpretation, due to the abstract nature of the risk aversion parameter and the need for
its elicitation from often non-technical policy-makers. Furthermore, the risk aversion pa-
rameter approach requires sensitivity analysis to identify similar risk hedging expenditures
within different modeling cases. Alternatively, the risk premium approach sets the avail-
able risk hedging budget from the onset. This enables quick comparison of risk across
alternative model scenarios and is easier to interpret from a non-expert perspective. How-
ever, the focus in the risk premium approach is on risk minimization, meaning the model
neglects potential opportunities to hold performance risk by reducing expected systemic
environmental impacts.

When EP risk hedging is applied to British Columbia’s electricity system, the results
capture expected attitudes towards certain technologies that would otherwise be difficult to
model. This includes the displacement of natural gas, forest bioenergy and interregional
imports. Alternative methods might involve limiting the expansion or activity of these
technologies with explicit constraints. The risk-hedging methodologies achieve these re-
sults under more formal conditions and allow identification of tradeoffs between technol-
ogy options that might be difficult to identify within a scenario analysis. These qualities
benefit the planning process, as the risk-hedging model is more transparent and robust than
conventional deterministic designs.

Performance risk-hedging impacts both the timing and magnitude of technology in-
vestment, although activity limitation also provides opportunities for risk reduction. In-
corporating EP risk into the planning framework is most valuable when decision-makers
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face stringent environmental constraints. In these situations, many of the low-cost envi-
ronmental impact abatement measures would be part of the original deterministic agenda,
making tradeoffs between risk hedging and technology selection potentially expensive.
The model results indicate allocation of a modest risk premium in these situations pro-
vides valuable risk reduction, and thereby helps to safeguard against the possibility of
exceeding environmental targets.
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Chapter 4

Impacts of groundwater constraints on
Saudi Arabia’s low-carbon
electricity supply strategy1

1The body of this chapter was published in S. Parkinson et al., Environmental Science & Technology
50(4), 1653-1662, 2016, and is reproduced with the permission of the American Chemical Society. SP
and ND conceived and designed the study. SP performed the analysis, drafted the initial manuscript, and
finalized the published version. Other authors contributed data and to the refinement of further manuscript
drafts.
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Preamble

Balancing groundwater depletion, socioeconomic development and food security in Saudi
Arabia will require policy that promotes expansion of unconventional freshwater supply
options, such as wastewater recycling and desalination. As these processes consume more
electricity than conventional freshwater supply technologies, Saudi Arabia’s electricity
system is vulnerable to groundwater conservation policy. This paper examines strate-
gies for adapting to long-term groundwater constraints in Saudi Arabia’s freshwater and
electricity supply sectors with an integrated modeling framework. The approach com-
bines electricity and freshwater supply planning models across provinces to provide an
improved representation of coupled infrastructure systems. The tool is applied to study
the interaction between policy aimed at a complete phase-out of non-renewable ground-
water extraction and concurrent policy aimed at achieving deep reductions in electricity
sector carbon emissions. We find that transitioning away from non-renewable groundwa-
ter use by the year 2050 could increase electricity demand by more than 40 % relative to
2010 conditions, and require investments similar to strategies aimed at transitioning away
from fossil fuels in the electricity sector. Higher electricity demands under groundwater
constraints reduce flexibility of supply-side options in the electricity sector to limit carbon
emissions, making it more expensive to fulfill climate sustainability objectives. The results
of this analysis underscore the importance of integrated long-term planning approaches for
Saudi Arabia’s electricity and freshwater supply systems.

4.1 Introduction

Located on the Arabian Peninsula in Western Asia, the Kingdom of Saudi Arabia is a
rapidly expanding economy of more than 28 million people. From 1990 to 2010, the
average income in Saudi Arabia nearly doubled [170], and was accompanied by an average
annual increase in urban electricity and freshwater demand of 7 and 3 % respectively
[78, 171]. With similar demographic trends projected moving forward [172, 173], there is
concern surrounding increased consumption. The additional strain on the region’s existing
infrastructure will require expanded electricity and freshwater supply capacity [171, 174,
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175]. A key challenge facing regional planners is identification of a cost-effective and
sustainable long-term development strategy.

Compared to most other nations, Saudi Arabia contains relatively little exploitable sur-
face water, and relies primarily on groundwater resources for its freshwater supply [171].
Annual groundwater withdrawals of approximately 18 km3 exceed the estimated national
renewable groundwater resource of 0.8 to 2.2 km3, and are rapidly depleting long-term
aquifer storage in the region [79,171,176,177]. To mitigate the risk of freshwater scarcity,
the country has developed more seawater desalination capacity than any other nation glob-
ally [177, 178]. Wastewater recycling also plays an important role in managing the re-
gion’s freshwater challenges [177, 179]. As desalination and wastewater recycling re-
quires more electricity than conventional groundwater and surface water supply technolo-
gies [180, 181], expanding capacity to balance groundwater constraints and urban growth
will impact the regional electricity supply.

The bulk of electricity generation in Saudi Arabia is from oil burning thermal plants
(53 % in 2010 [78]) that are carbon intensive. Increased electricity demand from the
water sector thus exacerbates climate change risks. The region has abundant untapped
renewable energy resources in the form of favorable solar, wind, and geothermal energy
potentials [182–188]. To meet increasing demands while decreasing carbon emissions, na-
tional energy policy calls for the development of over 50 GW of new renewable electricity
generation capacity by 2040 [189, 190]. Increased operational flexibility will support leg-
islated solar and wind power integration, and is an electricity service market well-suited
for an electrified freshwater supply [191–193]. Thermal power plants can also require
large amounts of freshwater for cooling and steam production [194], although regional
freshwater scarcity has prompted implementation of alternative seawater and air cooling
technologies throughout Saudi Arabia [195–197]. Trade-offs with conventional freshwa-
ter cooling systems include increased implementation and maintenance costs, and reduced
power generation efficiency [198–200].

The existing linkages between Saudi Arabia’s electricity and freshwater strategies, and
the pressing need for a transition towards a more sustainable pathway, make an integrated
electricity-freshwater supply strategy essential. A number of previous studies highlight
co-benefits of systems integration. Analysis of regional technology deployment strategies
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find that solar-assisted desalination is already cost-effective in many locations through-
out Saudi Arabia for the combined supply of low-carbon electricity and freshwater ser-
vices [183, 186]. Opportunities to enhance operational efficiencies in coupled electricity-
water supply systems through combined management have also been investigated for sim-
ilar arid regions in the Middle East [25, 191]. Recent analysis has also focused on the
climate impacts of various water supply options in the US under pre-defined electricity
supply scenarios [34]. Less explored are the interactions between electricity and freshwa-
ter systems during the planning of regional infrastructure capacity (supply technologies
and networks). These investment decisions are important from the viewpoint of policy,
as electricity and water supply infrastructures last for many decades and introduce struc-
tural inertia into the long-term development pathway [6]. This quality of energy and water
infrastructure requires prospective analysis of development strategies over decadal time-
scales [6, 79].

Optimization models have emerged as key planning tools that enable system design-
ers to explore long-term development pathways and the tradeoffs among technology op-
tions [201, 202]. Many regional jurisdictions employ optimization models to develop in-
tegrated resource plans [203], and yet few combine long-term energy and water supply
planning despite potential synergies. For example, previous research demonstrates that
water supply planning models are sensitive to energy prices [29, 201, 204], and likewise
electricity generation planning models are sensitive to water constraints [23,24,28,30,70],
and water-related energy demand [39, 174, 193]. Recent analysis of the Middle East re-
gion and China at a relatively coarse spatial and temporal resolution demonstrates the
insights from and benefits of co-optimizing electricity and freshwater supply planning de-
cisions [35–37]. This type of hard-linked optimization framework allows identification
of pathways that hedge against undesirable interactions between electricity and freshwa-
ter systems, and provides a platform to explore technology portfolios that simultaneously
balance energy and water sustainability objectives. Similar research underscores the im-
portance of geography due to water distribution-related energy costs [39]. These spatial
effects are particularly important to consider in the case of Saudi Arabia because of the
inland urban population lacking direct access to desalination opportunities available on the
coast.
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In this paper, we develop a modeling framework that co-optimizes electricity and
freshwater supply planning decisions across spatially-distributed regions to provide an
improved representation of feedbacks between coupled infrastructure systems. The tool
is applied to study impacts of groundwater management on the structure of the electric-
ity system and the potential interplay with strategies aimed at reducing electricity sec-
tor climate impacts through deployment of low-carbon power generation. Results of this
analysis provide important insight into the potential cost of policies and characteristics of
technology portfolios that enable a transition towards a more sustainable system.

4.2 Methods

We explore the interaction between long-term groundwater constraints and climate change
mitigation objectives with a linear systems-engineering optimization model. We provide
an overview of the salient features of the model in this section; the mathematical details
are given in the Supplementary Information (section S1 to S3). The modeling frame-
work explicitly represents key electricity and water supply technologies in Saudi Arabia.
Each technology is modeled as a linear input-output process where the consumption of
resources and production of services are defined by average conversion factors. Tech-
nologies are coupled to form a closed system by accounting for the physical balance of
resources across the modeled supply-chain. A cost-optimization model calibrated to the
existing national electricity and freshwater supply systems is then used to identify future
infrastructure investments under projections of future demand and technology costs. The
framework is applied across a number of scenarios to explore sensitivities to different na-
tional policy levers and model parameterizations.

4.2.1 Integrated systems modeling

The integrated systems model developed for the analysis is depicted in Figure (4.1). The
supply systems are mapped as a series of electricity and water flows between technologies.
The system boundary is defined such that hydro-climate data is used to parameterize water
resource constraints, including the availability of surface water, groundwater and precip-
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itation. Sector demand projections parameterize supply requirements. The water supply
technologies included are reverse osmosis (RO) desalination, multi-stage flash (MSF) de-
salination, rainwater harvesting, groundwater withdrawals, and surface water withdrawals.
These technologies convert raw water resources (seawater, precipitation, groundwater and
surface water) into freshwater suitable for consumption within the different end-use sec-
tors (agriculture, industrial and domestic). Water storage technologies included are surface
reservoirs and potable water storage at end-use. Wastewater recycling is also included in
the analysis, and enables upgrading of wastewater to potable quality. Water supply tech-
nologies interact with the electricity system through electricity intensity factors (e.g., kWh
per m3 of potable water produced). The cost and energy intensity of water supply tech-
nologies are parameterized to include pre-treatment and local distribution (Supplementary
Information, Table S4) [180,181,205]. Thermal energy requirements for MSF desalination
technologies are also included and are supplied with the estimated excess heat from co-
located thermal power generation, which is a common practice at modern combined-cycle
plants in Saudi Arabia today [206].

Modeling of the electricity supply system parallels that of the water supply, and con-
siders a number of different power plant technologies. Fossil fuel technologies (oil or natu-
ral gas) included are single- and combined-cycle steam turbines, and combustion turbines.
We exclude carbon capture and storage technologies due to uncertainties surrounding costs
and performance. Coal is also excluded due to its high emission intensity and expected
impact on regional energy security (international imports would be required). Low-carbon
technologies considered include nuclear, municipal waste-to-energy, geothermal, onshore
wind, solar photovoltaic (PV), and concentrating solar power (CSP) with and without ther-
mal storage. Thermal power plants (including CSP) are further distinguished by cooling
technology to enable feedbacks to the water supply system. Once-through and closed-loop
cooling systems utilizing freshwater are considered in the analysis, as well as air-cooled
and seawater-cooled once-through systems. The volume of water withdrawn and the as-
sociated wastewater return flow is defined based on average water intensity factors (i.e.,
m3 of water per kWh generated) [20]. The choice of cooling system affects operating ef-
ficiency and investment costs [198–200], and these characteristics are explicitly included
in the analysis by defining unique parameters for each type of cooling technology.

54



Surface Run-off

Aquifer Recharge

Precipitation

Hydro-climate

Desalination 

Plants

Surface Water  

Withdrawals

Rainwater 

Harvesting

Groundwater 

Withdrawals

Wastewater 

Recycling

Wastewater 

Treatment

Power Plants w/ 

seawater use 

Groundwater 

Storage

Surface Water 

Storage

T
re

a
te

d

W
a
s
te

w
a
te

r

U
n

tr
e

a
te

d

W
a
s
te

w
a
te

r

G
ro

u
n
d
w

a
te

r

S
u
rf

a
c
e
 W

a
te

r

P
re

c
ip

it
a
ti
o
n

S
e
a
w

a
te

r

F
re

s
h
w

a
te

r

Potable Water 

Storage

Domestic

Agriculture

Manufacturing

Sector Demand

Freshwater 

Network

Power Plants w/ 

freshwater use

Power Plants 

w/o water use

Electricity 

Network

Electricity 

Storage

Electricity

Water Supply TechnologyElectricity Supply Technology Water FlowElectricity Flow

Outflow

Figure 4.1: Integrated modeling of electricity and water supply systems. The systems are
mapped as a series of flows between technologies. Each technology is modeled as a linear
input-output process where the consumption of resources and production of services are
defined by average conversion factors. Technologies are coupled to form a closed system
by accounting for the physical balance of electricity and water flows across the modeled
supply-chain. The system boundary is defined such that existing hydro-climate data is
used to parameterize water resource constraints, including the availability of surface water,
groundwater and precipitation. Exogenous sector demand projections parameterize supply
requirements. The integrated system is represented in each province, with the network
technologies allowing flow and trade of electricity and freshwater between provinces.
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Constraints on peak and flexibility requirements of the electricity technology portfolio
are defined to reflect operating constraints occurring between model periods (Supplemen-
tary Information, section S1) [207]. We also distinguish flexible and base-load power plant
operational modes to account for different operating costs and scheduling procedures that
accompany flexible operation [208]. Short-term electricity storage and load control tech-
nologies are also included in the analysis, and interact with the system by providing peak
and flexibility reserve capacity [209]. The potential for load control is dynamically linked
to the total demand for electricity, allowing increased demand from the water sector to
contribute to load control capabilities. The load control technologies are different from
end-use conservation measures, which are addressed in the scenario analysis.

Long-distance transport of electricity and water is important to consider when com-
paring options for supply development [38, 40, 210]. We incorporate spatial effects by
disaggregating the study region into the 13 provincial administrative regions (Supplemen-
tary Information, Figure S6). We chose this level of spatial disaggregation due to limited
input data and computational efficiency. Expandable electricity and freshwater transmis-
sion between regions is included in the model with a simplified transport representation
(i.e., the capacity of a network pathway is defined as a maximum amount of water or elec-
tricity that can be transferred over a given model period). Transmission losses are included
(Supplementary Information, Table S7). Energy for interprovincial water conveyance is
estimated based on a recent analysis of long-distance desalination transport in the United
States [211], and incorporates vertical and horizontal components of expected energy use
(Supplementary Information, S1.2). Distances and elevations between regions are inferred
based on the locations of major provincial cities, with primary road transport connecting
these cities used as a proxy for candidate network pathways. Elevation distances are calcu-
lated based on the altitude of major cities and do not incorporate the cumulative elevation
change.

Although the majority of Saudi Arabia’s population resides in urban areas (82 % in
2010 [170]), there remains a significant rural population. These individuals often lack
access to the urban electricity and water supply infrastructures. We model the rural tech-
nologies separately to reflect these differences, with limitations set on the availability and
cost of options. Rural electricity technologies considered in the model include diesel gen-
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erators, solar PV and battery storage systems. For freshwater, rural areas are assumed
to have access to groundwater, rainwater harvesting, and wastewater recycling technolo-
gies [212]. Anticipated urbanization is included in the demand projections, allowing the
analysis to address future migration towards urban areas. Electricity and freshwater trade
between rural and urban areas is excluded.

4.2.2 Optimization

Optimization methods are used to solve for the capacity (design) and output (activity) of
technologies included in the model (Supplementary Information, section S1). The objec-
tive of the optimization is to minimize cumulative discounted costs of water and electric-
ity supply systems over the planning horizon, with technology investment, fixed/variable
O&M, and fuel costs considered in the system cost accounting. This type of cost opti-
mization model is common in national infrastructure planning [202, 203], and could be
extended to include risk metrics or multi-objective formulations. Similar to the approach
proposed in Dubreuil et al (2013) [35], we represent both water and electricity supply
technologies and solve for the design and activity variables simultaneously. Climate and
groundwater objectives are modeled as constraints on carbon emissions and groundwa-
ter withdrawals. A planning horizon of 2010 to 2050 in 5-year segments is selected for
the analysis to explore impacts of national policy and path-dependency on technology de-
ployment. Each modeled year is broken into monthly time-slices to enable treatment of
seasonal effects, such as the potential mismatch between available supply and demand.
Intertemporal optimization is used to solve for each time-step concurrently.

4.2.3 Parameterization

A significant amount of input data is required to parameterize the model, and is detailed in
the Supplementary Information (section S2). We specifically calibrate the model to exist-
ing conditions by identifying the capacity, vintage, and location of existing and committed
infrastructure from regional planning documents and recent resource assessments [174,
177,180,195,196,213–215]. Cost and performance data for supply technologies are taken
from a number of recent technology assessments [20, 123, 180, 181, 205, 212, 216–221].
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Future fuel costs are estimated using domestic prices from a previous regional planning
study [174], and growth rates for the Middle East North Africa (MENA) region projected
from a global integrated assessment model [222]. Due to regional water scarcity and lack
of data, we assume that all thermal power generation in 2010 located in coastal regions are
seawater-cooled and all thermal generation in 2010 located inland are air-cooled. Techni-
cal documentation for large-scale plants support this assumption [195–197].

4.2.4 Demand projections

Demands for electricity and water from the coupled supply technologies are endogenous
to the cost-optimization model. Limited data is available to parameterize the diverse set
of technologies and consumers existing in the domestic, agriculture and manufacturing
sectors. We therefore treat these demands as exogenous and define a number of scenarios
to explore uncertainties surrounding conservation potential. Econometric models link-
ing socioeconomic development to consumption are typically used to generate exogenous
electricity and freshwater demand projections [174, 183, 203], and we apply a similar ap-
proach to generate demands for Saudi Arabia. The demand models estimate agriculture,
manufacturing and domestic electricity and freshwater consumption based on projected
population, urbanization, GDP and rate of technological change (i.e., improved efficiency
over time). The model identification process and parameterization is summarized in the
Supplementary Information (section S3). Corresponding wastewater volumes from the
industrial and domestic sectors are estimated with national consumption efficiencies (the
fraction of water withdrawn that is consumed) from a previous global analysis [223].

For the projections, we use population, urbanization, and GDP trajectories aligned
with the shared socioeconomic pathways (SSP) [172,173,224,225]. We specifically focus
on the SSP2 scenario, a mid-range case reflecting a continuation of current trends (mod-
erate sustainability policy and technology shifts). Although SSP2 is a moderate scenario
(globally), in the specific case of Saudi Arabia it corresponds to substantial population
and economic activity growth [172, 173]. We utilize the quantitative SSP scenario data to
generate a reference national-level electricity and freshwater demand trajectory for each
sector (agriculture, manufacturing, and domestic) out to 2050. The results are depicted in
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Figure (4.2) and project an average annual growth rate for urban electricity demand of 3
%. The trajectories are more conservative than other recent projections [189], and suggest
the existing renewable energy deployment strategy (50 GW by 2040) will accommodate
load growth and not reduce aggregate electricity sector emissions.

Water demands remain relatively constant reflecting large reductions in per capita ir-
rigation. Nevertheless, desalination would be needed to support the reference agriculture
demand under aggressive groundwater conservation, which represents a significant and
costly transformation pathway. Similar development has occurred in Spain and Israel,
where the desalinated seawater enables production of high-value fruits and vegetables in
areas facing water scarcity [226]. Recent analysis of Saudi Arabia’s agricultural policy
suggests a shift towards increased production of similar crops to promote national food
security [227]. It therefore seems likely that Saudi Arabia would consider large-scale sea-
water desalination as a potential supply option for irrigation.

When desalinated seawater or recycled wastewater is used for irrigation, additional
care must be taken to replace nutrients stripped during the treatment process that are im-
portant for soil quality [228,229]. These additional costs are excluded from the assessment
due to lack of data.

The estimated national domestic and industrial demands are downscaled to the provin-
cial level based on the population distribution, whereas agriculture demands are disag-
gregated following the historical provincial distribution [230]. Future monthly domestic
electricity demands are decomposed based on historical trends [189]. Domestic and irriga-
tion water demands are broken into monthly components based on the estimated monthly
average soil moisture deficit, which is calculated across 1/4 degree grid cells and weighted
based on population for domestic demands [231].

4.2.5 Scenarios

The model is applied across a number of scenarios to explore: (1) tradeoffs and synergies
between groundwater and climate policy; and (2) sensitivity to uncertainties in model pa-
rameterization. The impact of national groundwater policy on the electricity and freshwa-
ter supply systems is explored by varying the allowable annual extraction in each model
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Figure 4.2: National socioeconomic and demand projections for the SSP2 scenario. a.
Population; b. Per capita GDP; c. Electricity demand; and d. Freshwater withdrawal. In-
dustrial demands exclude electricity for desalination and cooling water for thermoelectric
generation.

region. It is estimated that at current extraction rates approximately 50 years of fossil
groundwater remains in Saudi Arabia [180, 232], although estimates vary widely across
the literature [177]. We initially explore the mid-century timeframe by constraining the
allowable extraction in each region along a linear trajectory that results in national an-
nual groundwater withdrawals reducing from 18 km3 in 2010 to 1.6 km3 in 2050 (i.e., a
91 % reduction). This would correspond to an annual extraction rate in 2050 that falls
within estimates of the renewable recharge [177, 230]. This also corresponds to a de-
pletion of remaining non-renewable groundwater reserves of approximately 330 km3 by
2050, which is within recent estimates of the available resource [177]. It is important to
note that further investigation into the distributed aquifer response via long-term hydroge-
ological modeling should be pursued to fully understand the implications for groundwater
sustainability [79, 233].

We also explore potential interplays with increasingly ambitious climate policy. Limit-
ing 21st century climate change to 2 ◦C over pre-industrial levels will require widespread
transformation of the electricity system [222]. We construct scenarios for Saudi Arabia
by simulating stringent mitigation policies that are constrained to achieve an 80 % reduc-
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tion in cumulative carbon emissions as compared to unconstrained conditions by the year
2050. Sensitivity to simultaneous groundwater and climate objectives are then examined
by simulating different combinations of increasingly stringent policy scenarios. Each pol-
icy objective is varied between a baseline (0 % fulfillment) and a 100 % fulfillment case
in increments of 50 %. As groundwater is already overexploited, the baseline constrains
withdrawals to 2010 levels. The results of this analysis provide insight into how costs and
technology deployment patterns vary based on groundwater and climate policy ambition.

To investigate results sensitivity to uncertain model parameters, the cost-optimization
model is applied across the scenarios listed in Table (4.1). The Reference scenario consid-
ers average performance parameters and the exogenous demands depicted in Figure (4.2).
Uncertainties surrounding the scale of the available groundwater resource are explored by
parameterizing a conservative scenario that shifts the 91 % reduction target to the year
2030. An additional scenario considers a 50 % capital cost subsidy to renewable electric-
ity generation, and is meant to reflect a situation where market conditions are improved
with external financial support. The remaining scenarios explore demand uncertainties.
Although the reference demand trajectories include improvements in energy efficiency,
advanced conservation scenarios are defined to reflect uncertainties surrounding techno-
logical change, price response, and end-use behaviour (Supplementary Information, Fig-
ures S2 and S3). Exogenous demands in the advanced conservation scenarios decrease 40
% by the year 2050 relative to the reference scenario. This represents a potential for water
and electricity conservation similar to that identified in recent analyses [39,180,234,235].
The potential impacts of alternative food import policies on national irrigation withdrawals
are also important to consider due to the fraction of total freshwater demand applied for
irrigation. We explore a scenario investigating the potential for increased food imports
to displace unconventional water resource expansion by simulating a 50 % reduction in
irrigation withdrawals by 2050 (Supplementary Information, Figure S4). The electricity
intensity of water supply technologies is also uncertain, and we explore the potential for
enhanced performance to impact the results by including a scenario parameterized with
the lowest energy intensities from the literature (Supplementary Information, Table S4).
Finally, we combine all conservation measures and efficient water supply assumptions to
generate an Optimistic development scenario (Supplementary Information, Figure S5).
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Scenario Model implementation

Reference Reference demand trajectories. Performance / cost parameters follow averages from the literature.

2030 groundwater target The groundwater target year is shifted from 2050 to 2030.

Low-cost renewables Investment costs for renewables are reduced by 50% relative to the reference scenario.

Water conservation Exogenous freshwater demands are reduced by 40 % in 2050 relative to the reference scenario.

Electricity conservation Exogenous electricity demands are reduced by 40 % in 2050 relative to the reference scenario.

Increased food imports Agriculture freshwater withdrawals are reduced by 50 % relative to the reference scenario.

Efficient water supply Water supply technologies set to the lowest energy intensity from the literature.

Optimistic Electricity and water conservation, increased food imports and efficient water supply.

Table 4.1: Summary of scenarios explored in the analysis.

All scenarios include Saudi Arabia’s existing renewable energy deployment strategy
that involves integration of over 50 GW of renewable power generation by 2040. The
strategy includes the following technology-specific targets: 25 GW of CSP, 16 GW of
solar PV, 9 GW of wind, 3 GW of waste-to-energy, and 1 GW of geothermal [189]. We
model this policy by constraining the capacity from the associated technologies to exceed
an annual deployment target in each simulated year. The target capacity development
represents a linear trajectory fitted between current levels and the 2040 goal.

4.3 Results

We initially focus on analyzing the implications of simultaneous groundwater and emis-
sion constraints on supply and network technology development for the Reference sce-
nario. Depicted in Figure (4.3) are the optimal supply mixes and network technology
capacities aggregated to the national-scale for the year 2050 across the groundwater and
climate policy objectives simulated. Provincial results are included in the Supplementary
Information (section S4.2).
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Figure 4.3: Optimal supply mixes and network technology capacities aggregated to the
national-scale for the year 2050 across the groundwater and climate policy objectives in-
vestigated. The groundwater target represents a 91 % reduction in annual groundwater
withdrawals in 2050 relative to 2010.



The rapid growth in electricity demand and retirement of existing units results in a
complete redesign of the electricity generation portfolio. When carbon emissions are un-
constrained, combined-cycle natural gas plants make-up the largest portion of new ca-
pacity due to the relatively low investment cost. The capacity is deployed primarily in
coastal regions to access seawater for cooling. A relatively small amount of capacity
employing closed-loop freshwater cooling is also deployed in Asir: a province lacking
coastlines but with a relatively high per capita availability of surface water resources. Air-
cooled combined-cycle generation and combustion turbines are deployed in the remaining
provinces to help support load growth without expanding transmission. Existing renew-
able energy policy (50 GW of installed capacity by 2040) results in wind, geothermal,
solar PV and CSP expansion. The CSP capacity is deployed in coastal regions due to
the accessibility of seawater for cooling. Rural areas combine diesel generators with PV
capacity to meet the stagnating demand growth anticipated under the SSP2 urbanization
scenario. The constraint on groundwater withdrawals in the reference case to remain at or
below 2010 levels results in an increase in wastewater recycling and desalination capac-
ity, and expansion of the water conveyance infrastructure beyond 2010 levels is needed to
transport desalinated water inland.

Policy that reduces cumulative carbon emissions in 2050 by 80 % relative to the uncon-
strained scenario triggers an electricity system transformation. All regions rapidly deploy
solar technologies to reduce emissions, and utilize a combination of conventional stor-
age and load control technologies to maintain system reliability. PV technology expands
particularly quickly under the parameterized cost improvements. Seawater withdrawals
reduce significantly under PV expansion due to the displacement of seawater-cooled ther-
mal generation. Electricity transmission capacity is reinforced to support matching sea-
sonal solar and load coincidence across provinces. The electricity system transformation
is found to have a relatively modest impact on the structure of the water supply. The largest
difference compared to the unconstrained emissions case is a small increase in wastewater
recycling.

Policy that reduces annual groundwater withdrawals in 2050 by 91 % relative to 2010
results in a significant transformation of the water supply system. RO desalination ca-
pacity expands rapidly in coastal provinces, and all regions utilize available wastewater
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for recycling. The interprovincial water network is developed more extensively to support
inland transfer of desalinated water from coastal regions, and a greater volume of water
must be produced to overcome distribution losses. The regional distribution of electric-
ity technologies shift towards increased capacity of power generation in coastal regions
where desalination occurs. The increased electricity demand from desalination and water
conveyance impacts the electricity transmission configuration, with larger capacity cor-
ridors developed between regions connecting high-quality inland solar energy resources
with coastal desalination opportunities. More investment into load control technologies
also occurs due to greater resource availability accompanying the increased water sector
electricity demand.

In the baseline scenario (no emissions or groundwater reduction targets), water sec-
tor electricity use increases from 15 TWh in 2010 to 22 TWh in 2050 (3 % of total na-
tional electricity demand). The majority of water sector electricity use in this case is from
groundwater (11 TWh), with the remaining balance mainly attributed to desalination (6
TWh), recycling (3 TWh) and conveyance (2 TWh). Electricity requirements increase
rapidly with stringency of the groundwater constraint. In the scenario where groundwater
withdrawals are reduced by 91 % in 2050, the freshwater supply sector represents 12 %
(92 TWh) of total final electricity demand. For perspective, this represents more than 40
% of the total national electricity demand in 2010. The majority of increased electricity
use comes from desalination (67 TWh), water conveyance (19 TWh) and wastewater re-
cycling (4 TWh), with groundwater electricity demand dropping significantly (1 TWh).
The freshwater allocated to the electricity system is less intuitive. Most freshwater is used
in the unconstrained emissions scenario to support closed-loop cooled natural gas gener-
ation located inland, with a small amount persisting in the intermediate scenario despite
increasingly stringent groundwater constraints. Nevertheless, freshwater allocated to the
electricity sector in the most extreme case represents less than 1 % of projected national
demand across all sectors in 2050, suggesting a relatively minor role in future freshwater
supply requirements.

Transitioning to 100 % fulfillment of the groundwater conservation objective without
climate policy results in costs increasing 46 % compared to the baseline scenario. Under
2010 groundwater withdrawals, reducing cumulative carbon emissions by 80 % increases
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discounted costs by 51 %. Combining the 91 % groundwater reduction and the 80 %
emission reduction policies results in costs increasing by 101 %. The main challenge un-
der combined policy objectives is the need to simultaneously increase electricity supply
capacity to allow for increased electricity demand due to desalination, wastewater recy-
cling and water conveyance, while decreasing carbon intensity to maintain cumulative
electricity sector carbon emissions. It is important to note that some of the benefits and
costs associated with these scenarios are excluded (e.g., conservation measures, climate
damages, reduced air pollution, avoided water shortages, etc.).

Further sensitivity analysis is performed by examining the results obtained across the
different scenarios listed in Table (4.1). We specifically explore uncertainties surrounding
future costs by varying the technology cost assumptions across a suitable range identified
in the literature (Supplementary Information, Table S9) [220]. Figure (4.4) depicts the
percent change in discounted system costs relative to the unconstrained baseline scenario
(i.e., no cumulative emissions constraint, groundwater extraction limited to 2010 rates,
reference demand trajectories, and average cost / performance parameters for technolo-
gies). System costs increase in the reference scenario between 79 to 149 % relative to the
unconstrained scenario. Nuclear generation expands when the least optimistic technology
costs are assumed due to the slow cost improvement for solar generation and advanced
grid technologies (load control and storage). Major cost savings are achieved in the ”Low-
cost renewables” scenario. PV and CSP become more attractive as a generating option,
and expand across all regions to prevent transmission development despite the geographic
diversity modeled between provinces. When the groundwater target year is shifted to a
more conservative 2030 fulfillment timeframe, investment into unconventional water re-
source options is accelerated earlier in the planning horizon, leading to large increases
in system costs. The scenarios involving reduced demands achieve significant savings,
while the enhanced water supply performance scenario displays less impact. The ”Opti-
mistic” scenario, combining the conservation and efficient water supply parameterizations,
results in a supply portfolio that costs 11 to 65 % more than the unconstrained case, thus
representing considerable savings when compared to the costs obtained for the reference
scenario.

66



Optimistic

Efficient water supply

Increased food imports

Electricity conservation

Water conservation

Low−cost renewables

2030 groundwater target

Reference

Cost increase [ % ]

0 50 100 150 200 250

Figure 4.4: Sensitivity to technology cost parameterization for the scenarios listed in Ta-
ble (4.1). The horizontal bars represent results obtained with average cost parameters.
The error bars span the results obtained with the minimum and maximum cost parameters.
Each scenario considers 100 % fulfillment of the groundwater and climate objectives (91
% reduction in groundwater withdrawals and 80 % reduction in cumulative carbon emis-
sions). The cost increase is calculated as a percent change relative to the unconstrained
baseline scenario (i.e., no cumulative emissions constraint, groundwater extraction limited
to 2010 rates, reference demand trajectories and average cost / performance parameters
for technologies).
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4.4 Discussion

Many parts of the world face increasing groundwater stress that will necessitate the deploy-
ment of alternative electricity-intensive water infrastructure, such as desalination, wastew-
ater recycling, and long-distance water transfers. Saudi Arabia is one of the most severely
constrained jurisdictions in this respect and provides a challenging case study for exploring
tradeoffs between electricity and freshwater systems. In this paper, we developed a new
modeling framework that hard-links electricity and freshwater investment decisions across
provinces to provide an improved representation of feedbacks between coupled infrastruc-
ture systems. The framework was applied to explore impacts of groundwater constraints
on the structure of electricity and freshwater supply in Saudi Arabia, and the potential
interplay with climate policy aimed at reducing electricity sector carbon emissions.

Our results suggest that strategies aimed at achieving deep reductions in non-renewable
groundwater extraction will lead to fundamental changes in regional electricity system
design. Large-scale expansion of desalination and regional water distribution capacity
emerges as a critical infrastructure solution enabling displacement of groundwater with-
drawals while supporting growth in urban freshwater demand. The required infrastruc-
ture increases water sector electricity-intensity and migrates electricity demand from dis-
tributed groundwater pumping stations to coastal desalination plants. The reconfiguration
of demand benefits thermal generation, due to the ability to co-locate with desalination
plants and access seawater for cooling. Protecting coastal ecosystems from the increased
industrial activity (e.g., thermal water pollution) will pose additional constraints to tech-
nology development that were unexplored in this analysis, and important to address in
future research.

Our results further suggest that strategies aimed at mitigating non-renewable ground-
water extraction are likely to require similar investment as strategies aimed at limiting
fossil fuel use in the electricity sector. The increased water supply costs follow from the
required ramp-up in desalination and water distribution investments. When emission con-
straints are also considered, we find that higher electricity demands under groundwater
constraints reduce flexibility of supply-side options in the electricity sector to limit carbon
emissions. The need to simultaneously increase electricity supply capacity while reducing
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carbon intensity make it more expensive to fulfill climate change mitigation objectives un-
der groundwater constraints. The integrated planning framework incorporating investment
and operation across provinces is crucial to identifying these tradeoffs, and underscores the
importance of a systems perspective when assessing suitability of supply options across
the electricity-water nexus.

Results incorporating optimistic demand projections indicate the significant potential
for end-use conservation to enable a low-cost transition away from non-renewable ground-
water use and towards a low-carbon electricity system. Potential policy instruments tar-
geting demand reductions include increased prices or end-use efficiency standards. Our
assessment also demonstrates the sensitivity of the optimal system configuration to un-
certainties surrounding groundwater constraints and technology costs. To provide further
insight into robust strategies, future work should consider endogenous representations of
these key uncertainties in the optimization model. Finally, the importance of agricultural
policy suggests the framework would benefit from incorporating land-use decisions. This
approach would enable consideration of adaptive land management to address concerns
surrounding desalination and national food security.
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Chapter 5

Multi-criteria infrastructure planning
for integrated water-energy systems1

1The body of this chapter was submitted for publication, and is reproduced with the permission of
Elsevier. The analysis extends the modeling framework developed in chapter 4. Simon Parkinson, Marek
Makowski and Ned Djilali conceived and designed the study. SP performed the analysis, drafted the initial
manuscript, and finalized the published version. Marek Makowski provided software for the computations
and assistance with the analysis. Other authors contributed data and to the refinement of further manuscript
drafts.
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Preamble

Sustainable development objectives surrounding water and energy systems are interde-
pendent, and yet the associated performance metrics are often distinct. Regional plan-
ners tasked with designing future supply systems therefore require multi-criteria analysis
methods and tools to determine a suitable combination of technologies and scale of in-
vestments. This paper presents a flexible and interactive multi-criteria model analysis
framework and its application to long-term energy and freshwater supply planning at na-
tional or regional scales. The framework incorporates a linear systems-engineering model
of the coupled supply technologies and intra-regional transmission networks. The applied
multi-criteria analysis approach enables the interactive specification of diverse decision-
making preferences for disparate criteria, and leads to learning on trade-offs between the
resulting criteria values of the corresponding Pareto-optimal solutions. A case study of the
water-stressed nation of Saudi Arabia explores diverse, simultaneously attainable goals for
conflicting objectives such as cost, water and climate sustainability, and reveals the corre-
sponding integrated system configurations that remain ambitious from both an economic
and environmental perspective.

5.1 Introduction

Water plays a key role in the supply of energy in many regions globally, primarily for ther-
mal power plant cooling and hydropower generation [236]. Constraints on the availability
of water resources in these regions therefore pose risks to energy service reliability. At
the same time, a significant amount of energy is required to extract, treat and distribute
freshwater resources [2]. Constraints on the supply of freshwater services therefore pose
risks of additional energy requirements. Moreover, energy and freshwater are required for
meeting the development goals of societies. These interdependencies promote integrated
planning of water and energy infrastructure systems.

Infrastructure here refers to the technologies or processes that enable supply of energy
and water services to consumers. Planners tasked with designing regional energy and
freshwater infrastructures are faced with a plethora of technologies and a wide variety of

71



economic, social and environmental conditions, which make it difficult to decide which
technologies to invest in and promote, and in what order. The optimal combination of
technologies and level of investments will be difficult to determine without appropriate
analysis methods and tools. From this perspective, mathematical programming models
have provided critical decision support by enabling planners to identify system designs
that perform well under anticipated operational conditions [6, 8, 9, 201, 237, 238].

Previous studies explored impacts of water constraints on energy system operation by
coupling water supply and electricity generation dispatch models [25, 30, 32, 239, 240].
Several other previous studies note the importance of future capacity decisions (the size
and location of technologies) in terms of enabling effective adaptation to future water con-
straints, and examined the impact of water availability on the development of regional
power systems by adding explicit water constraints to an optimal infrastructure planning
model [23,24,28,31,67,241]. Water constraints are found to primarily cause a shift towards
water-efficient cooling technology for thermal power generation, as well as increased sit-
ing in regions with greater access to water availability [31]. Increased hydrologic variabil-
ity under climate change was also found to cause further long-term capacity challenges
in regions where hydropower plays an important role in electricity supply [67, 160]. A
key limitation of these previous analyses of water constraints is the inability to incorpo-
rate feedbacks from future water supply development, which will impact the availability
of water for energy and water-related energy demand. To reconcile development interde-
pendencies, a number of other studies link freshwater and energy infrastructure planning
models directly [29, 35, 37, 39, 70]. This approach enables modeling of system configura-
tions that adapt to undesirable interactions between water and energy during infrastructure
development.

Most previous coupled planning models focus on identifying system configurations
that minimize costs or maximize consumer surplus. Yet, there are often other social or en-
vironmental objectives of concern to regional decision-makers and stakeholders, thus re-
quiring a more integrated approach to assessing system performance [242]. Metrics of in-
terest include limiting greenhouse gas emissions and air pollution, and securing food, wa-
ter and energy resources. Previous analyses addressed such objectives as constraints, val-
ues of which were explored using parametric optimization [11, 23, 37, 241]. Parametriza-
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tion of constraints requires not only skilled analysts but also specification of a large number
of optimization problems, many of which are either infeasible or result in dominated (in-
efficient) solutions. Multi-criteria analysis (MCA) of discrete alternatives can be applied
to the results of parametric model optimization [11], but such a two-stage process is by
far less effective than a direct linking of the model with the MCA tool. Another popular
approach is based on weighted-sum criteria aggregation into a composite goal function.
This approach has, however, serious shortcomings [243], e.g.,: (1) in some situations the
same solution is returned even if substantial changes are made to the weights; (2) many
efficient solutions2 cannot be obtained by varying the weights; and (3) increasing a weight
does not guarantee improvement of the corresponding criterion value.

In this context, MCA methods offer an improvement to traditional optimization ap-
proaches, as illustrated by a sample of applications relevant to the case study presented
in this paper [244–247]. MCA supports analysis of tradeoffs between all relevant objec-
tives, and interactive exploration of diverse efficient solutions across multiple objectives.
Despite the potential to apply this type of methodology and tools to effectively model cou-
pled economic-environmental decision-making [76], application of MCA to the integrated
planning of energy and water systems has been limited to cooling technology choices in
the power sector [77].

This paper presents a novel systems analysis tool for integrated regional planning of
energy and freshwater supply systems. The framework incorporates a multi-objective de-
cision support system to enable analysis of long-term infrastructure strategies that balance
economic, energy and water sustainability objectives. The integrated decision support
framework is demonstrated within a case study of the water-stressed nation of Saudi Ara-
bia. The results of the analysis provide important insight into model formulation and the
scale of tradeoffs between environmental and human development objectives in the case
study region.

2Solutions are called efficient or Pareto-optimal if there exists no other solution for which at least one
criterion can be made better without sacrificing performance of the criteria.
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5.2 Methodology

This section presents the approach for coupled water-energy supply planning and its inte-
gration with the MCA methods and tools. The framework is based around a water-energy
infrastructure planning model developed previously for Saudi Arabia [241]. Previous
research with this framework demonstrated that transitioning away from nonrenewable
groundwater use by the year 2050 in Saudi Arabia could increase electricity demand by
more than 40% relative to 2010, due to rapid development of desalination and water con-
veyance infrastructure, and require investments similar to strategies aimed at transitioning
away from fossil fuels in the electricity sector. These results highlight the need to incorpo-
rate multiple policy objectives into system design, and is the key feature of the enhanced
MCA tool proposed in the current study. Following a description of the mathematical
model for coupled water-energy supply planning, we discuss its integration with the ap-
plied MCA methodology. Finally, we describe the input data and scenarios explored in the
case study demonstrating model application.

5.2.1 A core model for water-energy infrastructure development

The planning challenge dealt with in this paper is the sustainable long-term development
of water and energy systems. These decisions are typically made at national or regional-
scales, and encompass choices surrounding the capacity of existing and future infrastruc-
ture. Capacity decisions are key design parameters for energy and water supply plan-
ners due to the relationship with geographical constraints, investment costs and long-term
structural inertia of the supply systems [6]. Capacity choices incorporate both the size
and location of new technologies, as well as the operational management (activity) of the
technologies over the planning horizon. Strategizing capacity decisions is also commonly
referred to as capacity expansion planning, but may also entail reductions in system ca-
pacity in situations where reduced demands are projected. Due to the impact on long-term
structural inertia, capacity decisions are usually assessed over multi-decadal time periods.
Performance criteria of primary concern include service reliability, end-use prices and en-
vironmental impacts.
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Water and energy resource potentials represent an important input to any capacity
planning approach, and vary significantly across resources, time and geographic location.
Transporting water and energy from one location to another also requires massive invest-
ment in network infrastructure, with long-distance water conveyance presenting further
interdependencies due to the energy required for pumping. Planning models incorporating
spatially resolved infrastructure systems will be needed to understand the implications of
local constraints and transmission for long-term development strategy [21, 38–40, 210].
Yet, there is also a need to maintain an adequate temporal resolution in order to capture
operational constraints occurring primarily in the electricity sector [33]. Moreover, spatial
units typical in water resource management are geophysically-based and do not necessarily
align with administrative units typical in energy supply planning (e.g., national, provincial,
utility, etc.). The spatial mismatch may require disaggregation of spatial decision-making
units in order to converge on a common resolution across energy and water systems [248].
The added complexity will be additionally demanding to accommodate in mathematical
models containing an already diverse range of technologies and processes. Maintaining
a careful balance between spatial and temporal scales when developing integrated water-
energy models for long-term planning purposes is thus a critical challenge for regional
planners, and scoping will depend on the specific research question (e.g., transmission
expansion, emissions mitigation, groundwater depletion, etc.) and characteristics of the
study region (interconnectivity of basins/aquifers, population density, income-level, etc.).

In this paper, we adapt the Saudi Arabia Electricity-Water Planning model (SEWP):
an integrated supply planning framework that incorporates simulataneous capacity deci-
sions in the water and electric power sectors. The framework includes a diverse range
of technologies including most power generation types (e.g., natural gas combined-cycle,
concentrating solar power, etc.) and water supply technologies (e.g., groundwater extrac-
tion, desalination, wastewater recycling, etc.). Thermal power plants are further distin-
guished by cooling technology (e.g., once-through, recirculating, etc.). The study region
is broken into the 13 provincial administrative regions, with expandable electricity and
freshwater transmission between provinces included in the capacity planning decisions.
To explore impacts of national policy and path-dependency on technology deployment,
SEWP focuses on a planning horizon of 2010 to 2050 in 5-year segments, with each time-
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step solved concurrently. Each modeled year is broken into monthly timeslices to enable
treatment of seasonal effects, such as the potential mismatch between available supply
and demand. For computationaly efficiency, the current version of SEWP considers lin-
ear relantionships between variables. Although designed specifically for application to
infrastructure planning in Saudi Arabia, the approach is readily adaptable to other regional
situations.

SEWP ensures a physical representation of resource conversion across a set of R re-
sources, I spatially distributed regions, and T temporally distributed decision making in-
tervals. For each resource r ∈ R, location i ∈ I and time-step t ∈ T , the managed supply
must exceed the exogenous demand:

Q(r, i, t)+∆S(r, i, t)≥ D(r, i, t) (5.1)

where Q is the managed flow from supply technologies, ∆S is the managed flow from
storage, and D is the exogenous demand. The managed flow from supply technolo-
gies includes consumption and production of different energy and water resources at the
technology-level, and can be modeled consistently using appropriate functional relation-
ships that link technology activity to net resource availability. SEWP considers a diverse
set of P technologies capable of operating in a set of O operational modes, and calculates
the managed flow of resource r ∈ R from a specific technology p ∈ P using input activity
ratios ε in and output activity ratios εout . The activity ratios represent the average rate at
which a certain technology consumes or produces a certain resource per unit of activity-
level. Operational modes are distinguished to enable representation of diverse operating
costs and efficiencies for a single technology type. To allow for spatial transfers of water
and electricity via conveyance or transmission infrastructure, net resource flows in each
region i ∈ I incorporates inputs produced and consumed in that region, as well as from
other regions j ∈ I. Summing across regions, modes and technologies yields the managed
flow for each resource in each region and time step:

Q(r, i, t) = ∑
p,o, j

[
εout(r, p,o, j, i, t) · x(p,o, j, t)− ε in(r, p,o, i, j, t) · x(p,o, i, t)

]
(5.2)
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where x is the activity-level of a specific technology. The change in storage-level is equiv-
alent to the difference between the levels across decision-making intervals:

∆S(r, i, t) = s(r, i, t)− s(r, i, t +1) (5.3)

where s is the storage-level. Surface water reservoirs and potable storage at end-use are the
only between-month storage technologies currently included in SEWP. Level-dependent
losses are important for surface water reservoirs (evaporation is proportional to surface
area), and can be accounted for using linearized area-volume relationships [249]. Saudi
Arabia contains relatively little exploitable surface water and associated storage, and for
this reason, volume-dependent losses are neglected. Due to uncertainties surrounding the
scale of the resource and complexities of hydro-geological modeling, groundwater storage
is incorporated into SEWP as a model criteria (section 5.2.2).

The activity-level of each technology is constrained in SEWP by the available capacity:

φ(p, i, t) · z(p, i, t)−∑
o

σ(p,o, i, t) · x(p,o, i, t)≥ 0 (5.4)

where z is the installed capacity, φ is the fraction of installed capacity that is available
(or the capacity factor), and σ is the rate at which a particular operational mode utilizes
capacity. Certain operational modes are allowed to consume more capacity than others
in the model to reflect e.g., capacity impacts of scheduling flexible reserve generation in
the electricity sector [250]. SEWP includes incremental capacity expansion decisions u

that alleviate capacity constraints. Incremental capacity retirements w are also modeled
as decision variables to allow representation of finite technology lifecycles. The installed
capacity of a particular technology is given by:

z(p, i, t)− z(p, i, t +1)+u(p, i, t)−w(p, i, t) = 0 (5.5)

Likewise, storage capacity c constrains storage levels, incremental new storage capacity b

can be used to alleviate constraints on storage levels, and incremental storage retirements
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d reduce installed storage capacity:

ψ(r, i, t) · c(r, i, t)− s(r, i, t)≥ 0 (5.6)

c(r, i, t)− c(r, i, t +1)+b(r, i, t)−d(r, i, t) = 0 (5.7)

where ψ is the fraction of installed storage capacity that is active. In the case reported
in this paper, capacities are modeled by continuous variables. The authors are aware that
integer variables enable modeling the effects of reduced unit costs with increasing unit
size (i.e., economies-of-scale), which provides insight into the benefits of distributed or
centralized supply configurations [210]. However, the choice of continuous variables is
justified by two arguments. First, the obtained capacity values usually provide a good
approximation. Second, and most importantly, due to the model size its mixed-integer
formulation would require qualitatively more computational resources.

Upper and lower bounds are further imposed on the capacity and activity variables to
reflect e.g., resource availability, excess supply and existing infrastructure. Other addi-
tional contraints address operational policies such as technology retirements, inter-annual
reservoir sustainability and electricity system flexibility. A detailed account of these rela-
tionships can be found elsewhere [241], and for brevity are not repeated here.

5.2.2 Multi-criteria model analysis

A vector of outcome variables y can be used for measuring various consequences of the
simulated development strategy in SEWP. Outcome variables are often named differently
(e.g. criteria, objectives, goals, metrics, performance indices, etc.). A vector of algebraic
relations F are defined that convert decisions variables to outcomes:

y = F(v) , v ∈Vo (5.8)

where v is the vector of model decision-variables (the activity and capacity of the technolo-
gies introduced in the previous section), and V0 is the set of feasible solutions (admissible
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due to the physical and logical constraints introduced in the previous section).
Past application of SEWP focused on a single objective: minimize total discounted

system costs over the planning horizon. This formulation requires a unique specification
of a goal function that adequately represents system cost. Capital and operational cost
parameters for each technology are input to SEWP and multplied by the corresponding
capacity or activity variable to estimate the cost contribution. Discounting is then used to
translate future costs into an estimated present value. In the single-objective formulation,
preferences for outcomes, including available budget, requires a re-definition of the set of
feasible solutions V0 by V1: V1 =V0∩P, where P is the set of outcomes conforming to the
decision-making preferences. In some cases the preferences are too ambitious, e.g., tight
constraints on the budget actually shrinks the set of feasible solutions to a small subset
(which ignores many possibly interesting solutions), or even results in an empty set V1,
which in turn makes the underlying optimization problem infeasible.

Alternatively, preferences for multiple objectives might be obtained based on linear
weighted-sum criteria aggregation into a composite goal function. This approach has
the serious shortcomings mentioned in the introductory section [243]. In this paper, an
achievement scalarizing function (ASF) serves as the goal function in the mathematical
programming analysis built on the core model described in the previous section. The
ASF is defined through criteria achievement functions (CAFs) specified for each objective
independently. The role of the CAFs is to provide a common measure for criteria perfor-
mance, typically defined in different metrics and scales. We utilize a modified version of
the reference point methodology [76,251], where each CAF is parametrized by two values
specified by the user, namely aspiration and reservation levels, which correspond to the
criterion values that are desired and worst acceptable, respectively. In this context, a CAF
for the k-th criterion is denoted by:

uk = fk(qk, q̄k,qk), (5.9)

where fk(·) is a strictly monotone concave function (decreasing for minimized, and in-
creasing for maximized criteria, respectively), and qk, q̄k,qk are the criterion value, aspi-
ration, and reservation levels, respectively. Values of qk are defined by the corresponding
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outcome variables of the analyzed core model (i.e., qk = yk). The fk(·) are usually defined
as piece-wise linear functions with linear segments determined by the utopia, aspiration,
reservation, and nadir values [252]. The utopia point U is defined by a vector composed of
the best values of all considered criteria. Utopia components are easily computed through
the so-called selfish optimizations (i.e., optimizing each criterion separately). The nadir
point N is defined by the worst values of the criteria within the Pareto-set. The piece-
wise linear functions represent the human values related to satisfaction and regret, and
also have a nice mathematical property; namely, the underlying multi-criteria optimiza-
tion model remains linear for linear core models. A correctly implemented multi-criteria
model analysis framework does not impose any restrictions on the feasibility of the aspira-
tion and reservation values, other than two exceptions: (1) the reservation is lower/higher
than aspiration for minimized/maximized criterion, respectively; and (2) the aspiration and
reservation values are between the corresponding utopia and nadir values.

The CAF values have a very easy and intuitive interpretation in terms of the degree of
satisfaction from the corresponding value of the criterion. Values of 1 and 0 indicate that
the value of the criterion exactly meets the aspiration and reservation values, respectively.
CAF values between 0 and 1 can be interpreted as the degree of satisfaction of the criterion
value, i.e., to what extent this value is close to the aspiration level and far away from the
reservation level. These interpretations correspond to the interpretation of the membership
function from fuzzy set theory [252]. In fact, the CAF extends the membership function
concept because the CAF also takes negative values (for criteria values worse than the
reservation), and values greater than one (for criteria values better than the aspiration).
This extension is necessary for proper handling of any q̄k and qk, which in turn frees the
users from concerns regarding attainability of the considered aspiration and reservation
levels.

The ASF is defined by:

S = min
k∈Ka

(uk )+
ε
K
·

K

∑
k=1

uk (5.10)

where Ka is the subset of active criteria, uk are defined by (5.9), and ε is a small positive
number. The first term causes improvement of the worst performing (in terms of the corre-
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sponding CAF) criterion. The second term assures that the optimal solution provided for
maximization of the ASF is indeed Pareto-optimal [76, 253]. Maximization of (5.10) for
v ∈Vo generates a properly efficient solution aligned with the user’s criteria preferences.

Implementation of the MCA methods described in this paper is accomplished with
the Integrated Modeling Environment Project’s online Multiple Criteria Model Analysis
(MCMA) framework [254]. The approach is outlined in E.1.

5.2.3 Case study

The focus of the Saudi Arabia case study analysis are infrastructure strategies that are ef-
ficient at simultaneously minimizing investment costs, groundwater extraction and carbon
dioxide (CO2) emissions. These objectives are selected as the focus for the analysis due to
the anticipated challenges in balancing future socioeconomic development with aspirations
surrounding global climate stewardship and national food security. The former is a con-
cern due to increasingly stringent global climate change policy, and the fact that more than
half of the current power generation fleet in Saudi Arabia burns extremely carbon-intensive
crude oil [78]. Fulfilling national food security ambitions locally in Saudi Arabia’s harsh
desert environment requires industrial-scale irrigation, and has driven widespread over-
exploitation of regional groundwater resources, leading to concerns regarding long-term
supply sustainability [79]. Cost, groundwater criteria is accounted for in the SEWP model
by tracking the corresponding cumulative value over the planning horizon (2010-2050)
and over all sub-national regions (13 provinces).

The case study in this paper demonstrates the analytical efficiency of a multi-objective
framing to long-term planning models of water and energy supply systems, and is applied
within a scenario analysis involving interactive specification of the criteria aspiration and
reservation levels. Relative levels of ambition across the disparate objectives are defined
by normalizing the range between the nadir and utopia values for each criteria, and sep-
arating the normalized values into three intervals: Ambitious (+++), Moderate (++), and
Relaxed (+). The Ambitious criteria interval has the aspiration and reservation levels near
the utopia point, whereas the Relaxed interval converges on the nadir. Scenarios involving
a combination of these aspiration and reservation categories are initially defined to explore
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trade-offs between sustainability objectives. Following the initial assessment, a sensitiv-
ity analysis is performed in which approximately 100 model iterations are explored (i.e.,
criteria preferences specified by diverse combinations of the aspiration and reservation
levels).

Technology performance and demands for electricity and water occurring in the agri-
cultural, municipal and manufacturing sectors are key inputs to the MCA framework.
The analysis in this paper focuses on a single technology performance scenario; sensi-
tivity of the SEWP model to these assumptions were explored previously [241]. Ex-
ogenous demands from each sector are generated with quantitative socioeconomic pro-
jections that follow the Shared Socioeconomic Pathways (SSP) [255]. National popula-
tion and per capita GDP increase more than two-fold by 2050 in the mid-range (SSP2)
scenario [172, 173, 225]. Previously derived sector-specific econometric models linking
population and GDP to freshwater and electricity demand are used to convert the SSP
data into provincial demand trajectories [241]. Moderate levels of end-use technological
change are included, and reflect expected efficiency improvements driven by technological
innovation. The SSP2 scenario results in modeled national electricity demands (other than
for water supply) increasing from approximately 200 TWh in 2010 to more than 700 TWh
in 2050. Freshwater demands (other than for power supply) increase less dramatically,
from 21 km3 in 2010 to 25 km3 in 2050, due to anticipated impacts of existing national
agricultural policy [227]. A detailed account of the input data used to parameterize the
model, including an assessment of existing infrastructure, can be found in [241].

5.3 Results

5.3.1 Impact of multiple criteria on system cost

This section presents key results of the scenario analysis with specific focus on the im-
pacts of the MCA enhancements on system cost in the SEWP model. To highlight system
boundaries, the scenario analysis initially involves exploration of the utopia solutions, and
then moves to adjusting the aspiration and reservation levels to explore compromise so-
lutions. Outcomes for each criteria for a select range of aspiration and reservation levels
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obtained through interactive scenario analysis are presented in Table 5.1. The relationship
between the criteria for the selected scenarios are also plotted in Figure 5.1, where results
are indexed to the respective criteria outcome obtained in the cost-minimization solution.

Criteria reservation (q ), aspiration (q ) and outcome ( q )

Scenario name Criteria ambition-level Cost [ ×1012 USD ] CO2 [ ×109 metric tons ] GW [ ×103 km3 ]
Cost CO2 GW q q q q q q q q q

Cost selfish (+++) (-) (-) 1.04 0.24 0.24 - - 8.32 - - 1.26
CO2 selfish (-) (+++) (-) - - 1.25 3.51 0.46 0.46 - - 0.21
GW selfish (-) (-) (+++) - - 2.17 - - 4.04 0.39 0.03 0.03
GW-CO2 ambitious (+) (+++) (+++) 2.05 0.24 0.81 2.75 0.46 1.18 0.30 0.03 0.12
Cost-CO2 ambitious (+++) (+++) (+) 0.84 0.24 0.53 2.66 0.46 1.52 0.84 0.03 0.42
Cost-GW ambitious (+++) (+) (+++) 0.84 0.24 0.56 7.31 0.46 4.07 0.30 0.03 0.17
CO2 ambitious (++) (+++) (++) 2.05 0.24 0.69 2.75 0.46 1.04 0.84 0.03 0.23
GW ambitious (++) (++) (+++) 2.05 0.24 0.74 7.31 0.46 2.37 0.30 0.03 0.11
Cost ambitious (+++) (++) (++) 0.84 0.24 0.47 7.31 0.46 3.04 0.95 0.03 0.38
Cost-GW-CO2 (+++) (+) (++) 0.84 0.24 0.50 7.31 0.46 3.40 0.64 0.03 0.29
Cost-CO2-GW (+++) (++) (+) 0.84 0.24 0.49 5.03 0.46 2.32 0.95 0.03 0.41
All criteria ambitious (+++) (+++) (+++) 0.48 0.24 0.62 1.38 0.46 1.89 0.15 0.03 0.22

Table 5.1: Parameterization of the decision-making preferences (aspiration and reserva-
tion levels) and the corresponding MCA results for the preliminary scenarios investigated.
Each scenario is identified based on its level of ambition with respect to cost, CO2 and
groundwater (GW) objectives. Relative levels of ambition across the disparate objectives
are defined by normalizing the range between the nadir and utopia values for each crite-
ria, and separating the normalized values into three intervals: Ambitious (+++), Moderate
(++), and Relaxed (+); inactive criteria are marked by (-). The Ambitious criteria inter-
val has the aspiration and reservation levels near the utopia values, whereas the Relaxed
interval converges on the nadir.

We find largest cost trade-offs in this preliminary analysis for the groundwater selfish
scenario. Under the parameterized technology costs, this scenario represents a discounted
system cost that is more than 8 times the cost-minimization (cost selfish) solution. In fact,
the cost selfish solution corresponds to the groundwater nadir outcome, highlighting the
direct trade-offs between these objectives. The CO2 selfish solution is also more than 6
times expensive than the cost-minimization solution; however, this scenario also achieves
groundwater co-benefits, as indicated by the 80% drop in cumulative groundwater extrac-
tion compared to the cost-minimization solution (Figure 5.1). Varying the criteria aspi-
ration and reservation levels across the other scenarios listed in Table 5.1 reveals that the
largest costs are incurred when fulfilling the stringent CO2 and groundwater preferences,

83



●

●

●
●

●

●

●

●

●

0 10 20 30 40 50

0
10

20
30

40

Carbon Dioxide Emissions
[ % cost−minimizing solution ]

G
ro

un
dw

at
er

 E
xt

ra
ct

io
n

[ %
 c

os
t−

m
in

im
iz

in
g 

so
lu

tio
n 

]

●
●
●
●
●
●
●
●
●
●
●

    MCA Scenario

Cost (−) ; CO2 (+++) ; GW (−)
Cost (−) ; CO2 (−) ; GW (+++)
Cost (+) ; CO2 (+++) ; GW (+++)
Cost (+++) ; CO2 (+++) ; GW (+)
Cost (+++) ; CO2 (+) ; GW (+++)
Cost (++) ; CO2 (+++) ; GW (++)
Cost (++) ; CO2 (++) ; GW (+++)
Cost (+++) ; CO2 (++) ; GW (++)
Cost (+++) ; CO2 (+) ; GW (++)
Cost (+++) ; CO2 (++) ; GW (+)
All Criteria (+++)

● ●
200 400 600 800

System Cost
[ % cost−minimizing solution ]

Figure 5.1: System cost, groundwater extraction and CO2 emission outcomes obtained
for the scenarios listed in Table 5.1. The marker area is proportional to the discounted
system cost. Results are indexed to the respective criteria outcome obtained in the cost-
minimization solution.
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and that a slightly relaxed criteria preference can achieve significant cost savings while re-
maining ambitious from an environmental perspective. For example, when all criteria are
set to relatively ambitious preferences (i.e., the ’all criteria ambitious’ scenario), the MCA
model seeks a Pareto-optimal solution that is relatively balanced across objectives. The
discounted system cost in this solution is only 2.5 times the cost-minimization outcome,
but simultaneously achieves deep reductions in cumulative groundwater extraction (more
than 80% reduction versus the cost-minimization outcome) and cumulative CO2 emis-
sions (more than 75% reduction versus the cost-minimization outcome). Further relaxing
the cost preferences (i.e., the ’GW-CO2 ambitious’ scenario) results in a system that is 3.4
times more expensive than the cost-minimization solution, but achieves a further 10% re-
duction in cumulative groundwater extraction and CO2 emissions. The level of mitigation
in this latter scenario is likely required to avoid local groundwater shortages [177], and
achieve national electricity sector contributions to global climate stabilization [222].

5.3.2 Impact of criteria preferences on system configuration

Impacts of the criteria settings on the provincial-level technology build-out for selected
scenarios are provided in Figure 5.2. Depicted is the optimal annual electricity and fresh-
water supply mix in each region, as well as the interprovincial transfers and demand-
levels. The cost-minimization solution (Figure 5.2a) involves expansion of relatively low-
cost combined-cycle natural gas generation, with existing renewable energy policy driving
development of 50 GW of mostly solar generation capacity. Groundwater withdrawals
are left unconstrained in the cost-minimization model, and under the parameterized costs
dominate the future water supply mix and displace existing interprovincial desalination
transfers. Moreover, in the cost-minimization solution thermal power plants employ once-
through freshwater cooling systems due to the low investment cost and lack of concern
surrounding groundwater sustainability. The modeled extraction across sectors in this sce-
nario likely exceeds available aquifer storage [177].
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Figure 5.2: Provincial electricity and freshwater supply in 2050 for three of the MCA
scenarios listed in Table 5.1. a. Cost selfish (minimization) solution; b. Groundwater
(GW) selfish solution; c. All criteria ambitious solution. The top row depicts the criteria
outcomes in relation to the Utopia and Nadir points. Row two and three from the top depict
the annual freshwater and electricity transfers between provinces, as well as the scale of
annual demand. The bottom two rows depict the supply mix from the different resources.



In the groundwater selfish solution (Figure 5.2b) costs are more than 8 times the cost-
minimization solution due to the rapid expansion of desalination, wastewater recycling and
rainwater harvesting, and corresponding development of highly integrated interprovincial
conveyance networks to meet water demands located inland. The increased electricity
load from the water sector technologies increases aggregate national electricity demand
in 2050 by 12% compared to the cost-minimization solution, and additional electricity
sector capacity is developed to meet these requirements. Deep reductions in technology
costs projected later in the simulation horizon combined with a lack of water requirements
results in solar PV dominating the 2050 electricity supply mix in the groundwater self-
ish solution, and large-scale investment into electricity storage and load control capacity
enables this transition (not depicted).

Similar characteristics of the 2050 supply mix are apparent when all criteria are set
to ambitious preferences (Figure 5.2c). The push to reduce costs in this scenario re-
sults in a slower transition away from groundwater extraction and CO2 emissions, and
enables groundwater and fossil fuel generation to continue to provide services in areas
facing costly infrastructure constraints. For example, inland provinces continue to extract
groundwater in the ’all criteria ambitious’ scenario to displace investment in rainwater
harvesting and conveyance infrastructure, and fossil fueled power plants are operated to
provide flexibility to displace investment in storage technology and transmission upgrades.

5.3.3 Sensitivity analysis

The sensitivity analysis involved over 100 model iterations (i.e., preferences specified
by diverse combinations of the aspiration and reservation levels). Each of the identi-
fied Pareto-optimal solution has a certain trade-off (compromise) between criteria values.
However, in decision-making practice extreme solutions (i.e., solutions with very good
values for some criteria and very bad for the other criteria) are rarely accepted. As an
example of exploration of criteria trade-offs we examine the iterations presented in Figure
5.3. The solutions are sorted by increasing cost.

Similar to the preliminary analysis, solutions with low cost have very high levels of
CO2 emissions and groundwater extraction. For a relatively small increase of cost one
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Figure 5.3: Criteria outcomes for the extended scenario analysis and identification of po-
tential balanced solutions. Results are indexed to the respective criteria outcome obtained
in the cost-minimization solution.
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can achieve substantial reduction to the other two criteria, although such reductions are
not monotone for both criteria. On the other hand, solutions with very low levels of CO2

and water are very expensive. Such an illustration of various Pareto-efficient solutions
provides a good basis for selecting a subset of the Pareto-frontier for further exploration.
Such a selection depends on the preferences of actual decision-makers, who decide on the
actual available budget and the goals for other criteria. The role of the MCA is to help
them identify goals for all criteria that are simultaneously attainable.

For example, solutions in the region marked as balanced solutions might be considered
as having good compromises between the criteria values, as each of them achieves rela-
tively ambitious outcomes for both groundwater and CO2 with relatively moderate impact
on costs. Mitigation costs increase rapidly for more expensive solutions with relatively
little improvement over the other criteria, and can therefore be deemed cost-prohibitive.
Balanced solutions display similar system configurations in 2050 as in (Figure 5.2c), but
are distinct with respect to implementation time. Largest cost savings are found to accom-
pany balanced solutions that wait longest to transition away from groundwater.

5.4 Conclusion

Water and energy systems are increasingly interdependent, and will benefit from inte-
grated long-term development strategy. Diverse performance criteria across development
objectives necessitate multi-criteria assessment methods and tools. This paper presented a
multi-criteria model analysis framework for long-term energy and water supply planning
at national or regional scales. The framework incorporates a linear systems-engineering
model of the coupled supply technologies and intra-regional transmission networks. A
modified version of the reference point methodology enables interactive specification of
decision-making preferences for disparate sustainability criteria, and convergence on a
Pareto-optimal solution reflecting the relative criteria ambition-levels. Scenarios involv-
ing a combination of economic, climate and groundwater sustainability preferences were
explored in the context of national planning in Saudi Arabia to demonstrate the perfor-
mance of the novel analysis framework, as well as to quantify criteria trade-offs specific
to the case study region.
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Application of the integrated modeling framework in the case study region demon-
strates important tradeoffs between diverse sustainability criteria. Similar to previous re-
search [241], we find that policy objectives in Saudi Arabia for 2050 that reduce cumula-
tive groundwater extraction and electricity sector CO2 emissions to levels likely needed to
avoid local groundwater shortages and meet global climate stabilization targets are associ-
ated with a significant increase in system investment costs. However, the MCA framework
in this paper goes further by revealing a suite of trade-off solutions that remain nearly am-
bitious at much lower costs. These savings would impact the affordability of water and
energy services in the rapidly developing nation of Saudi Arabia.

Our results further demonstrate that a conventional linear systems-engineering model
used to identify optimal capacity expansion policies and investment strategies for inte-
grated water-energy systems can be efficiently converted into a multi-objective framework
using a generic transformation algorithm. Overall, the MCA framing is found to require
approximately the same computational effort to solve each scenario as the single-objective
framing, with the added benefits of significant analytical efficiency in terms of long-term
performance assessment due to the capabilities in balancing multiple development ob-
jectives. It is therefore recommended that similar MCA methods become widespread in
long-term water-energy infrastructure planning.

The scope of model applications in this paper focuses mainly on the electricity sec-
tor. Future work should consider expanding the system boundaries to allow assessment
from resource extraction through to end-use services. This would allow mapping the im-
pacts from a more comprehensive set of technologies to energy and water sustainability
metrics of interest. An important issue to address in this context is the linking of sur-
face and groundwater management, which was simplified in the analysis due to surface
water scarcity in the case study region. Moreover, the effects of other criteria important
to regional planners (e.g., air pollution, energy security, investment risk, etc.) on the op-
timal development strategy should be explored to fully highlight potential trade-offs or
synergies. The general MCA framework proposed in this paper can readily be adapted to
include these features, and will be the topic of future research.
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Chapter 6

Summary and contributions

The anticipated climate and water resource variability around the world this century will
pose challenges to future energy systems. One way to adapt is to hedge against climate
and water vulnerabilities within long-term regional infrastructure plans. This dissertation
assesses the technological and policy implications, and presents integrated optimization
methods for the adaptation of regional energy systems to climate change and water con-
straints. A hard-linked, spatially-resolved representation of water and energy supply ca-
pacity planning is derived to study the interaction between sustainable groundwater man-
agement and concurrent policy aimed at reducing electricity sector carbon emissions in
the groundwater-stressed country of Saudi Arabia. Additionally, an optimal electricity
generation planning model incorporating a robust response to climate change impacts to
hydropower and demand is derived to quantify the cost of climate change adaptation in the
hydro-dominated electricity mixture of western Canada.

6.1 Key findings

The results of this research demonstrate a crucial need for regional planners to account
for adaptation to climate change and water constraints when developing long-term energy
strategy. Of particular concern are energy systems with a strong linkage to the hydrological
cycle or regions that face challenges in securing freshwater resources. Key findings of this
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research broadly applicable to energy systems planning include:

• Water supply and resource constraints can reduce the availability of supply-side op-
tions in the energy sector and increase energy demand, making it more expensive to
fulfill climate sustainability objectives.

• Adequate quantification of water constraints requires greater spatial resolution than
that typically seen in regional energy modeling.

• Adapting to uncertainties surrounding future hydro-climatic change will require em-
bedding increased operational flexibility into energy system design.

• A conventional linear systems-engineering model used to identify optimal capac-
ity expansion policies and investment strategies for integrated water-energy systems
can be efficiently converted into a multi-objective framework using a generic trans-
formation algorithm.

These general observations are consistent with previous research on water constraints and
climate change adaptation in the energy sector [30, 35, 39, 67].

In addition to the integrated modeling and optimization, novel contributions of this
research emerge from the regional case studies. Specifically, the analysis provides impor-
tant insight into the potential direction and magnitude of a number of environmental and
economic parameters important to regional policy-makers:

• British Columbia (BC), Canada:

– Climate change has the potential to increase provincal hydropower potential in
2050 by more than 10 %, and reduce annual electricity demand by about 2 %.

– Adapting to the uncertainties in the hydro-climatic projections requires opera-
tional flexibility and could increase long-term electricity supply costs by more
than 3%.

– Allocating a modest risk premium of 1 % of total investment costs during elec-
tricity generation planning can provide significant hedging against the risk of
natural gas and bionenergy emissions performance uncertainty.

92



• Saudi Arabia

– Transitioning away from non-renewable groundwater use in Saudi Arabia could
incur costs similar as the transition away from fossil fuels in the electricity sec-
tor.

– The use of desalination, wastewater recycling and distribution to displace ground-
water use in Saudi Arabia has the potential to increase electricity demand by
40 % in 2050 relative to 2010.

6.2 Future work

Future work should consider expanding the system boundaries to allow assessment from
energy resource extraction to end-use services. This would allow mapping the impacts
from a more comprehensive set of technologies to energy and water sustainability metrics
of interest. Moreover, the applications rely on pre-defined earth-system scenarios, whereas
operationalizing the earth-system components of the model (hydrology and regional cli-
mate) would provide a better tool for updated analysis. An important issue to address
in this context is the linking of surface and groundwater management across wide geo-
graphic areas. Network effects occur due to users and resources distributed along rivers
and aquifers, and will complicate the use of conventional optimization methods. The need
to model non-linear water quality indicators such as water temperature in order to ac-
curately estimate power plant cooling requirements introduces further complexity [49].
Reduced form approaches representing water temperature and allocation are likely needed
to ensure the analysis remains manageable from a computational perspective.

Finally, as land-use plays an essential role in global greenhouse gas emissions and wa-
ter use, it would be very informative to further consider modeling endogenous land-use
decision-making. This would allow adaptive response of the agricultural and forestry sec-
tors in the model (and associated water and energy use) to tradeoffs between food security,
ecosystems and climate change. A challenge is deriving suitable economic representations
of agricultural exports into the future, due to dependence on the evolution of international
markets. Integrated assessment models incorporating energy, water, land-use and climate
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provide a potential tool to assess global synergies and tradeoffs across sectors [256], but
currently lack the spatial and temporal detail to explore endogenous water constraints in
the energy sector. Thus, a crucial area of future work is the development of improved
methods to incorporate spatial water constraints into global integrated assessment mod-
els [257].
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Appendix A

Climate and human development
impacts on municipal water demand:
A spatially-explicit global modeling
framework1

1The body of this chapter was published as S. Parkinson et al., Environmental Modelling & Software 8:
266-278, 2016, and is reproduced with the permission of Elsevier. The approach is applied in chapters 4 and
5 to generate demand scenarios for the case study analysis. SP conceived of and performed the analysis, and
drafted the initial manuscript. Other co-authors contributed data sources and to the refinement of updated
manuscript drafts.
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Preamble

Municipal water systems provide crucial services for human well-being, and will undergo
a major transformation this century following global technological, socioeconomic and
environmental changes. Future demand scenarios integrating these drivers over multi-
decadal planning horizons are needed to develop effective adaptation strategy. This pa-
per presents a new long-term scenario modeling framework that projects future daily mu-
nicipal water demand at a 1/8◦ global spatial resolution. The methodology incorporates
improved representations of important demand drivers such as urbanization and climate
change. The framework is applied across multiple future socioeconomic and climate sce-
narios to explore municipal water demand uncertainties over the 21st century. The scenario
analysis reveals that achieving a low-carbon development pathway can potentially reduce
global municipal water demands in 2060 by 2 to 4 %, although the timing and scale of
impacts vary significantly with geographic location.

A.1 Introduction

Global hydrological models (GHM) provide a virtual environment to explore the im-
pacts of long-term development pathways on water resources and the effectiveness of
policy [256, 258–262]. As the quality and magnitude of water resources varies with geog-
raphy, GHMs incorporating spatially-resolved water demand projections have been crucial
in the assessment of future water challenges, such as resource scarcity and ecosystem qual-
ity [263, 264]. Municipal water systems extract and distribute water for direct use by the
population and play an important role in the global hydrological cycle, representing 12
to 14 % of total water withdrawn globally for human purposes in 2010 [223, 265]. Most
GHMs incorporating municipal water demand estimate average per capita trends at the
national-level, and then downscale to a finer resolution by assuming national trends hold
within countries [223, 256, 261, 266]. Yet, historical observations suggest that per capita
municipal water demand within countries varies spatially, mostly due to a combination of
local climate conditions, economic status and urban form [267–270]. Furthermore, global
models applied for future projections assume a static population distribution and are there-
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fore unable to represent the sub-national spatial demand variability that will accompany
projected urbanization.

Also less explored at the global-scale are the potential impacts of future climate change
on municipal water demand. The direct climate sensitivity arises in the municipal sector
from the freshwater used for municipal irrigation [267,271–276]. Municipal irrigation in-
cludes water to support household and municipal landscaping (e.g., turf grass and gardens),
and outdoor water features (e.g., swimming pools and fountains). Municipal irrigation rep-
resents more than 50 % of total municipal water demand in many regions of the United
States [268], and could play a key role in meeting future urban food requirements [277]
and mitigating urban heat island effects [278]. Future variations in urban climate will af-
fect water requirements of vegetation as well as the rate of evaporation from outdoor water
features. Understanding the scale of climate change impacts on municipal water demand
will provide insight into suitable adaptation strategy and the potential water co-benefits of
global climate change mitigation policy.

The objective of this paper is to provide a new approach to developing long-term global
municipal water demand scenarios. A spatially-explicit modeling framework is proposed
that incorporates enhanced representations of human migration, economic development
and climate sensitivity. The framework is applied across multiple future human develop-
ment and climate scenarios to explore the impact of coupled climate-development trajec-
tories on municipal water demand uncertainties over the 21st century. The results provide
important insight into model formulation and the potential water co-benefits in the munic-
ipal sector of policy targeting climate change mitigation.

A.2 Methods

A.2.1 Overview

Combined impacts of climate change and human development on municipal water de-
mand are assessed at the global-level with the computational framework depicted in figure
(A.1). The approach involves mapping per capita demand on a gridded representation of
the earth’s surface (i.e., a raster). The per capita water demand in each grid-cell is modeled
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as a function of a number of spatially-explicit indicators including projected income, pop-
ulation density, climate and historical observations. Per capita demand is then multiplied
by spatial projections of population to estimate aggregate municipal water requirements in
each grid-cell. The methodology utilizes spatially-explicit, quantitative interpretations of
the most recent global change scenarios as a basis for the projections: the Shared Socioeco-
nomic Pathways (SSP) [224], and the Representative Concentration Pathways (RCP) [95].
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Figure A.1: Framework for assessing global impacts of human development and climate
change on municipal water demand. FAO = Food & Agriculture Organization of the
United Nations [230]. WBI = World Bank Indicators [170]. SSP = Shared Socioeconomic
Pathway. RCP = Representative Concentration Pathway.

A key output of the analysis is therefore a new harmonized dataset well-suited for
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further application in global integrated assessment models (IAMs). Increasingly, global
IAMs are being adapted with GHMs to examine the interplay between long-term economic
development, water constraints and climate change mitigation [256, 279]. Global IAMs
incorporating future water constraints must project the scale of demand from different
end-use sectors in order to devise economic responses at scales relevant to water system
transformations. The simulated water demands from the municipal sector will aid in the
quantification of constraints on water availability for land-use and energy, which are the
historical focus of global IAMs used to study climate change mitigation [10].

Demand scenarios are computed at a 1/8◦ spatial resolution (grid cells approximately
14 km x 14 km near the equator) and out to the year 2100 to align with the downscaled
SSP and RCP datasets. The spatial resolution also ensures that parameterized demand
sensitivities to population density are captured. Urban and rural populations are modeled
separately in the framework to feature diversity in per capita demand stemming from dif-
ferences in economic status, urban form and local climate conditions. A temporal down-
scaling approach enables generation of the demand scenarios at a daily time-scale. The
daily time-scale is investigated to capture anticipated effects of changing socioeconomic
and climatic conditions on extreme (peak) demand events important to water supply reli-
ability [280]. Spatially-explicit validation of the modeling framework is currently limited
due to the absence of suitable historical data. We alternatively calibrate the model to ob-
served national data and use demand projections from other global models to evaluate the
reliability of model results.

We use the term municipal water demand in this paper to refer to the volume of water
that is needed in a particular location to fulfill useful end-use services in the municipal
sector. We emphasize the definition here to differentiate the modeled water volumes from
withdrawals, which often occur at locations other than end-use due to the reach of urban
water infrastructure [264]. A separate analysis is required to parameterize corresponding
scenarios for water supply e.g., with a hydro-economic model including investment deci-
sions for alternative water supply options (reservoirs, wastewater recycling, desalination,
etc.) [238,241]. Hydro-economic models are able to quantify economic tradeoffs between
upstream and downstream users, as well as economic impacts of conjunctive management
of different sources. Future water prices can be simulated with a hydro-economic model
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and used to parameterize an expected response from municipal consumers [281]. In this
context, the demand scenarios presented in this paper provide a useful reference point for
analysis of additional responses to future water availability.

A.2.2 Income effects

Previous studies highlight that as household income increases, demand for water from
the municipal sector increases because part of this new income is spent on increasingly
water-intensive end-uses [267,270,282]. However, as income continues to rise, per capita
demand for water increases less proportionally, due to eventual saturation of useful ser-
vices [259]. This suggests a non-linear relationship between household income and mu-
nicipal sector water demand, and we propose an empirical model capturing these charac-
teristics.

The lack of comprehensive consumer income and water use data makes identifying
household-level models on a global-scale impractical. At the national-level, the Food &
Agriculture Organization of the United Nations (FAO) provides estimates of aggregate mu-
nicipal sector water demand [230]. Concurrent observations of GDP are further available
from organizations such as the World Bank [170]. Consequently, per capita GDP has been
widely applied as a surrogate for average income in national-level municipal sector water
demand models [183, 223, 259, 266, 283–285]. Yet, the non-linear demand response to
income changes expected at the household-level means consumers respond differently de-
pending on their current income-level. Therefore, aggregating the response of households
following non-linear demand curves to average income changes should involve treatment
of the income distribution [286].

The effects of income inequality are included in the demand model applied in this
paper following the formulation proposed in [286]. The approach takes advantage of the
observation that income distributions typically follow a log-normal shape [287]. Under the
assumption of log-normality it is possible to consider average annual per capita demand Ω

as a function of both per capita GDP g and the variance of the income distribution ν , by
replacing the assumed arithmetic mean income (i.e., per capita GDP) with the geometric
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mean in a conventional semi-logarithmic demand model [286]:

Ω(y) = α(y)+β (y) ·
[

lng(y)− ν(y)
2

]
(A.1)

where α and β are model coefficients, and y denotes year. The Gini coefficient can be
used to estimate the variance of the income distribution under the assumption of log-
normality [288], and historical values are available for most countries [170]. A similar
approach for municipal energy consumption utilized the Gini coefficient to project de-
mands associated with different income quintiles [289]. In the approach applied here,
when two countries with the same average per capita GDP are compared, the country
with less income inequality will have the higher per capita water demand (i.e., aggregate
demand elasticity with respect to income inequality is less than one). Previous analysis
suggests the inclusion of the income inequality term has a relatively minor impact on de-
mand levels; however, for long-term projections the effects of income inequality are likely
important because of impacts on the rate of demand growth and interplay with long-term
technological progress [286].

All parameters in (A.1) can be estimated for a number of countries in the base-year,
making it possible to calculate the model coefficients at the national-scale using e.g., re-
gression. Figure (A.2) depicts the results of a least-squares cross-sectional regression anal-
ysis utilizing data from 2000 and 2005 for 105 countries. The r-squared values are 0.56
and 0.55 respectively, and compare well with similar analysis of this dataset [284, 290].
Differences in the socioeconomic standing and consumption characteristics between ur-
ban and rural populations within countries are ubiquitous [291], and suggests the model
should distinguish between population groups. We assume that in the base-year urban
and rural populations within countries display different average income-levels but follow
similar national demand curves (i.e., equivalent α and β ). The national urban and rural
demand curves are then calibrated based on gridded socioeconomic and climate indicators
(section A.2.4).

Cultural preferences and existing water policies (e.g., water price) represent other key
determinants of municipal water demand [270], but are difficult to include in the modeling
framework due to a lack of comprehensive global data. Previous analysis at the house-
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hold level used agent-based models to integrate behavioral and social drivers of water
demand [292]. Other global modeling approaches have incorporated water prices into the
analysis by combining a number of separate country-level data sources [284]. These data
sources often cover only part of a country’s population, and include costs for wastewater
treatment. Instead, the model in this study emphasizes a combination of path-dependency
and long-term convergence at the national-scale to reflect inertia of the existing systems
and associated policies and behaviors that impact long-term municipal water use, such as
water pricing and cultural preferences.

The model accounts for path-dependency and the wide-range in observed historical per
capita demands at the national-scale by identifying an ensemble of demand curves. The
curves are estimated using quantile regression with (A.1). The quantile regression analysis
specifies ten unique demand curves (or decile curves) representing the best fit solutions to
ten equal increments of the cross-sectional data ordered from lowest to highest [293]. The
decile curves fit to the FAO data for the year 2005 are also depicted in Figure (A.2). In the
initial simulation year, countries are associated with a best-fit decile curve based on histor-
ical FAO data trends from 2000 to 2010. Countries lacking historical data are assumed to
follow a regional average, with the regionalization following the breakdown used in sim-
ilar previous global scenario modeling [294]. Convergence towards the identified decile
curve is assumed over time using the following scaling factor:

γ(y) = 1+ γo · e−λ ·y (A.2)

where γo is the fractional difference between the base year observation, and the best-fit
decile curve estimated with (A.1). The parameter λ governs the convergence speed. By
exploring the response to different convergence speeds and levels, as well convergence to
alternative decile curves, the simulation framework can incorporate scenario-specific as-
sumptions surrounding behavior and policy. For example, behavioral changes implicit in
the scenario narrative (section A.2.6) that are expected to reduce long-term water use inten-
sity are represented in the framework by selecting a lower decile curve for convergence.
The use of decile curves bounds the projections to lie within the historically-observed
range of per capita demand intensities. Combining this constraint with the convergence
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rules enables a diverse number of plausible demand trajectories to be generated. The decile
curves do not cover all possible future policy regimes, and therefore alternative demand
trajectories outside the simulated range are a possibility.

A.2.3 Technological change

Technological change is a dynamic effect apparent in the long-term development of mu-
nicipal water systems [223], and refers to the observed improvements in the efficiency of
resource use caused by long-term technological innovation [295]. The emergence of tech-
nological change is represented in the demand curves by scaling the model coefficients α
and β in (A.9) by an annual improvement factor, with assumptions embedded in the sce-
nario narratives (section A.2.6). It is expected that technological change will occur most
rapidly in countries that spend more on technology research, and historical spending levels
typically correlate with income-level [170]. We reflect this quality using the sigmoid curve
depicted in figure (A.3) to model accelerated technological change as an annual improve-
ment in water intensity ε that increases with average income. The frontier technological
change rate (εmax) is interpreted from previous long-term scenario studies [223, 259, 284],
with the minimum rate (εmin) assumed to be half the frontier value. Curve parameters
are updated in each simulation year to reflect changes in the global GDP distribution.
Scenarios involving a reduction in between country income inequality therefore lead to
harmonization of technological change rates in the model.

Technological change is calculated at the national-scale in each simulated year using
the projected intensity improvements:

η(y) =
y

∏
t=1

[1− ε(y) ] (A.3)

where η is the cumulative intensity improvement. Combining the path-dependency and
technological change parameters yields the following form for the model coefficients:

α(y) = αo · γ(y) ·η(y) (A.4)
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Figure A.3: Graphical depiction of the implemented technology frontier approach to tech-
nological change, where ε is the compound annual efficiency increase and g is per capita
GDP.

β (y) = βo · γ(y) ·η(y) (A.5)

where αo and βo denote the coefficients identified in the base year using quantile regression
with (A.1).

A.2.4 Climate and population density

Local climate conditions affect the amount of moisture needed to sustain vegetation grown
in urban environments. Evaporative losses from swimming pools and fountains are also
enhanced under increasingly arid conditions. The soil moisture deficit is an empirical
hydro-climatic indicator describing the amount of freshwater needed to sustain moisture
levels in a particular location, and is routinely applied to estimate irrigation requirements
under data limitations [296,297]. Previous studies investigating the linkage between local
climate and municipal water demand highlight the relationship between observed mu-
nicipal irrigation and the calculated soil moisture deficit [267, 268, 271, 272, 298, 299].
Following the results of these previous studies, we integrate climate sensitivity into the
global model by accounting for changes in the moisture deficit under alternative climate
scenarios.
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Initially, municipal irrigation demands Ωi are disaggregated from the national demands
estimated by (A.1). A parameter µ representing the fraction of total demand used for
municipal irrigation is defined:

Ωi(y) = µi(y) ·Ω(y) (A.6)

Previous observations suggest that µ increases with household income [267,268,300]. For
example, survey of households in Eastern Africa show that municipal irrigation makes up
a small fraction (about 1%) of total water demand in very low-income rural households,
whereas nearby urban areas able to afford piped access apply an average of 10 % of total
demand towards municipal irrigation [269]. Previous research in China and Brazil also
identifies similar differences between the fraction of total demand used for municipal ir-
rigation and income-level [301, 302]. We model the observed income effect on municipal
irrigation penetration with the sigmoid curve ψ depicted in Figure (A.4a). The stylized
curve increases from a minimum of 1 %, which occurs at the average per capita GDP es-
timated for rural Sub-Saharan Africa in 2010, to a saturation level at an average per capita
GDP equivalent to the United States in 2010. The saturation level is calibrated based on
geographical sensitivities to the moisture deficit observed in North America [268]. Specif-
ically, we fit a linear function φ between the estimated annual average moisture deficit ma

and observed municipal irrigation (Figure (A.4b)), and results compare well with similar
analysis in Mayer et al (1999) [268]. Combining the income and climate sensitivity terms
yields the estimated fraction of total demand used for municipal irrigation (i.e., µ = ψ ·φ ).

Further spatial and temporal downscaling of the municipal irrigation demands is achieved
by assuming proportionality with changes in the simulated daily moisture deficit. A similar
approach to temporal disaggregation was proposed in [261], but was based on the monthly
temperature distribution. A proportional relationship between changes in irrigation vol-
umes and the moisture deficit was also previously used to estimate the impact of climate
change on agricultural systems in the United States [275] and globally [297]. As the de-
mand curves applied in this paper are calibrated from national-level averages, spatial vari-
ations in municipal irrigation due to climate are taken relative to the population-weighted
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mean annual moisture deficit Mo:

Mo =
1

Nc
·∑

c
[ p̂(c,yo) ·ma(c,yo) ] (A.7)

where c denotes grid-cell, Nc is the number of grid-cells, p̂ is the normalized population
(i.e., grid-cell population divided by total national population), and yo is the first year in
the simulation horizon. The population-weighted moisture deficit in the initial year is
also used to estimate the maximum penetration of municipal irrigation (i.e., φ = φ(Mo) ).
This choice ensures a consistent representation of non-irrigation demands under varying
climate. Spatial and temporal variations in municipal irrigation due to climate variability
are reflected by the fractional change in the moisture deficit δm:

δm (c,y, t) = χ(c,y) ·
[

m(c,y, t)
Mo

−1
]

(A.8)

where m represents the daily moisture deficit, and t represents the sub-annual time-slicing
(daily). A scaling factor χ is applied to the gridded daily moisture deficit to reflect re-
duced per capita irrigable area with increasing population density. This urban form effect
has been observed e.g., in China, where municipal irrigation plays a minor role in dense
urban areas [303], but is prevalent in lower income rural municipalities [301]. These ob-
servations contradict the assumed relationship between income and municipal irrigation,
and follow from reduced availability of outdoor area in dense urban cities. We estimated
an inverse sigmoid function χ = ξ (d), where d is population density, to reflect the antici-
pated impacts of urban form on municipal irrigable area. The stylized curve is depicted in
Figure (A.4c). Population density is calculated as the total grid-cell population divided by
the raster grid-cell area. Assuming the non-irrigation demand is spread evenly across the
population and year, the following functional form for per capita municipal water demand
ω is obtained at the grid-scale:

ω (c,y, t) = Ω(y) · [1+µi (y) ·δm (c,y, t) ] (A.9)

We calculate the moisture deficit at the daily time-scale as the difference between po-
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Figure A.4: Stylized models for representing demand sensitivities to climate and urban
form: a. Municipal irrigation utilization (ψ) as a function of per capita GDP; b. Maximum
penetration of municipal irrigation into national demand (φ ) as a function of mean annual
moisture deficit, and observed values for a number of cities in North America [268]; and
c. Municipal irrigable area indicator ξ as a function of population density.

108



tential evapotranspiration v and effective precipitation e :

m(c,y, t) = v(c,y, t)− e(c,y, t) (A.10)

Effective precipitation is calculated following the methodology described in [296] and
[297], and the modified daily Hargreaves method is used to calculate potential evapo-
transpiration [304]. Evapotranspiration rates vary across vegetation types, although we
currently assume a constant vegetation index due to a lack of historical urban vegetation
data at the global-scale.

The proposed methodology represents a simplified way of modeling climate and urban
form sensitivities. Basing the response of municipal irrigation on changes in the moisture
deficit is somewhat analogous to the use of heating and cooling degree days in the estima-
tion of climate change impacts on the municipal energy sector [42]. There are a number
of limitations, including uncertainties surrounding assumptions that municipal irrigation
demands scale linearly with changes in the moisture deficit. Detailed physical modeling
will provide a more accurate representation of the water impacts of urban form [305], but
is currently too data intensive to consider in global-scale analysis. The lack of irrigated
vegetation in dense urban areas is also a contributor to the urban heat island effect [278],
and the current version of the model does not account for impacts of urban irrigation on
local climate conditions.

A.2.5 Return-flow

The return-flow from the municipal water sector provides an indication of the potential
wastewater volume produced over a given timeframe. Following previous studies [223]
the return flow is quantified by subtracting consumptive demand (the amount of water
demanded that will not be returned to the source) from total demand. Consumptive demand
is estimated with country-level efficiencies taken from the WaterGAP model [223]. The
consumption efficiencies are then assumed to converge towards a maximum of 92 % under
the process of long-term technological change. The maximum possible efficiency is meant
to represent constraints on the amount of municipal water that must be consumed (e.g., for
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transpiration and other evaporative losses), and is selected based on the highest observed
historical level [223]. Convergence rates align with assumptions for supply efficiency, and
are described in greater detail in the following section.

A.2.6 Human development scenarios

The shared socioeconomic pathways (SSP) represent the most recent socioeconomic sce-
narios implemented in long-term global change modeling. The scenarios consist of qual-
itative narratives and quantitative projections for economic growth, technology, and de-
mographic characteristics, and are specifically tailored to span the range of expected chal-
lenges faced when mitigating and adapting to climate change [224]. The five SSP narra-
tives are briefly described below, with a detailed description provided in [255].

• SSP1 (Sustainability): The world transitions towards a more sustainable path, with
specific focus on the environment. Population growth is low, economic development
is high, and inequalities decrease both between and within countries.

• SSP2 (Business-as-usual): Countries proceed on a social, economic, and techno-
logical pathway that follows historical patterns. Population growth and economic
development is in the mid-range of the projections.

• SSP3 (Regional rivalry): Countries increasingly focus on domestic and regional
issues. Economic development is slow, consumption is material-intensive, and in-
equalities persist or worsen over time. Population growth is low in high-income
countries and high in emerging countries.

• SSP4 (Inequality): Inequality worsens both within and between countries. Eco-
nomic growth is moderate in high-income and middle-income countries, while low-
income countries lag behind. Global population growth is moderate, driven by high
fertility in emerging countries.

• SSP5 (Fossil fueled development): The world transitions toward a more fossil fuel
intensive path, with relatively little action on avoiding potential global environmen-
tal impacts, due to a perceived tradeoff with economic development. Global popu-
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lation growth is low, driven by reduced fertility in the developing world, economic
development is high, and inequalities reduce both between and within countries.

The SSP narratives provide important guidance on assumptions surrounding techno-
logical change, behavior and income inequality. For example, the conditions expected in
SSP1 are likely to translate into sustainable and inclusive water development strategies.
The focus on sustainability is expected to drive rapid technological change that combined
with long-term behavioral shifts, would lead to long-term reductions in per capita munic-
ipal water demand. Conversely, limited concern and action on issues in SSP5 is expected
to correlate with widespread increases in per capita intensity, although rapid technological
change accompanying high-income levels will help to offset increased supply require-
ments.

Table (1) summarizes the translation of the SSP narratives to the model parameteriza-
tion. Convergence towards different demand curves is stipulated to reflect the differences
in behavior and policies implicit in the SSP narratives. For example, sustainable end-use
behavior and policies assumed in SSP1 are simulated by having countries converge to-
wards one of the lower decile curves. Following [294], we further utilize the scenario
narratives to disaggregate urban-rural average income trajectories, by assuming income
convergence to different levels at different rates (Appendix A). For instance, to reflect in-
equalities implicit in the narratives, urban-rural incomes in SSP3 and 4 are assumed to
converge the slowest.

The quantitative SSP data applied in this work includes the GDP and population pro-
jections for 184 countries. Population projections come from the Wittengenstein Centre
for Demography’s long-term population model, which generates national-level population
estimates out to 2100 based on assumptions surrounding future age, sex and educational
composition [172]. Urbanization dynamics have also been estimated under SSP-specific
assumptions surrounding urbanization rates [225]. National-level GDP scenarios (in pur-
chasing power parity) come from the Organization for Economic Co-operation and Devel-
opment’s (OECD) Environmental Growth model, which is based on a convergence process
and places emphasis on the following key drivers: population, total factor productivity,
physical capital, employment and human capital, and energy resources [173].
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Parameter Socioeconomic Scenario
SSP1 SSP2 SSP3 SSP4 SSP5

Per capita demand decile curve 30th 30-70th 50-90th 40-90th 90th
Frontier technological change rate 1.00 % 0.50 % 0.25 % 0.25 % 1.00 %
Urban-rural IR convergence level 5 % 10 % 20 % 20 % 5 %
National Gini convergence level 0.25 - 0.60 0.60 0.25
Convergence year 2110 2120 2130 2130 2110

Table A.1: Translation of the qualitative SSP narratives to the quantitative water modeling
parameterization. For per capita demand decile curves, entries with a range in values in-
dicate divergence across countries. For example, in SSP4 developing economies converge
to a lower decile curve, with advanced economies converging to higher levels. Techno-
logical change rates are estimated from [223] and [284]. Urban-rural income ratio (IR)
convergence modeled after [294]. Decile curve and Gini convergence are interpreted from
the SSP narratives. For SSP2, the Gini coefficients remain at the estimated 2010 level over
the projections.

Spatial population scenarios are a key component of the analysis, and we apply the
dataset described in [306] to represent the national-level urban and rural population pro-
jections at a 1/8◦ spatial-scale. The downscaling approach applied in [306] utilizes a
gravity-based population model to capture important spatial effects of urbanization, in-
cluding densification and urban sprawl. Further improvements over previous approaches
include refined treatment of protected areas and boundary effects, and a procedure for esti-
mating model parameters from historic trends [307]. The spatial population scenarios are
a potential source of uncertainty, as small area (grid-cell) projections of long-term popu-
lation change are subject to a variety of assumptions regarding vital rates, migration, as
well as population response to the socio-economic drivers of spatial change. The GDP
pathways are also broken into urban and rural components and downscaled to the corre-
sponding 1/8◦ spatial-scale following the procedures described in Appendix A.
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A.2.7 Climate scenarios

For climate, we utilize the most recent scenarios applied in the global climate modeling
community, the RCPs [95]. Downscaled, bias-corrected ensemble results from five global
climate models participating in the Coupled Model Intercomparison 5 (CMIP5) project are
included in our analysis [308, 309]: MIROC-ESM-CHEM, IPSL-CM5A-LR, HadGEM2-
ES, NorESM1-M and GFDL-ESM2M. The downscaled data was obtained from the Inter-
sectoral Impacts Model Intercomparison Project (ISI-MIP) database2 [310]. These data
are generated at a 1/2◦ spatial-scale, and we downscale to 1/8◦ using bi-linear interpola-
tion. We decided to utilize this simple downscaling approach to enable better treatment of
the effects of population density at the 1/8◦ spatial scale, which would be less pronounced
if the population data was aggregated to 1/2◦. Challenges associated with developing
higher resolution downscaled climate parameters for projecting hydrologic indicators is
discussed recently in [311], and overcoming these challenges is beyond the scope of this
paper.

A.3 Results

This section presents key results of the global assessment, with specific focus on spatial,
temporal, and scenario-specific dimensions of the analysis. We initially assess the rel-
ative importance of socioeconomic drivers by exploring results sensitivity to the SSPs.
Effects of non-stationary climate conditions are then incorporated by examining results
under SSP-RCP scenario combinations.

A.3.1 National-level

Figure (A.5) depicts the modeled urban and rural demand curves obtained at the national-
level under stationary base-year climate for a sample of eight representative countries.
The national demand curves trace the per capita water demand as a function of per capita
GDP (income) over the simulation horizon (2000 to 2100). Municipal water demand in

2The data is produced up to 2099, and to simplify the modeling we assume these conditions hold in the
year 2100.
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emerging economies (China, India, Egypt, Nigeria and Brazil) initially increases rapidly
across all scenarios due to high elasticity at low-incomes. The model projects relatively
steady per capita demand in developed economies (Germany, US, and Japan) across most
scenarios due to the assumed saturation of useful water services at high-income levels.
Base year per capita demand in Germany is relatively low compared to other advanced
economies, and as the SSP5 scenario is parameterized to converge towards the 90th per-
centile global trend curve, significant demand growth occurs in Germany in this scenario.
Conversely, the sustainability-oriented behavioral and policy changes assumed implicit in
the SSP1 narrative lead to significant reductions in per capita water demand across all
nations (convergence towards the 30th percentile global trend curve), with the results par-
ticularly prevalent in the US, which currently experiences some of the highest per capita
demand levels globally.

Technological change is included in the results depicted in Figure (A.5), and helps
offset increases in water demand with increasing incomes. The impacts are most prevalent
in SSP1 and 5, where a reduction in water demand intensity can be seen as countries
transition to higher income-levels. Lower technological change rates occur in SSP3 and
4. These differences affect the long-term trajectory in the US, where per capita demands
excluding technological change in SSP4 and 5 are similar but diverge significantly when
technological change is considered. The GDP downscaling procedure places more wealth
in urban areas, with the effects observed in the results as a difference between the urban
and rural trajectories in the base year. Rural per capita demands are observed to exceed
urban demands at similar income-levels because rural technological change lags behind
urban areas based on the parameterized relationship with income-level. In SSP1 and 5, the
urban-rural incomes converge more quickly, both within and between nations, leading to
similar end-of-century per capita demands globally. Alternatively, in SSP3 and 4, where
the most inequality is assumed, the trajectories remain more divergent over the simulation
horizon.
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Figure A.5: Modeled urban and rural demand curves obtained at the national-scale under
constant climate for a sample of eight representative countries. The demand curves trace
the per capita water demand trajectory as a function of per capita GDP over the simulation
horizon (2000 - 2100) for SSP1 - 5, and include scenario-specific effects of technological
change.
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A.3.2 Grid-level

The demand curves estimated at the national-scale are downscaled to the grid-level with
Eq.(A.9). Results of the spatially-explicit analysis are summarized in Figure (A.6). De-
picted is the mean annual municipal water demand across the SSPs, in the years 2010, 2040
and 2070, under stationary base-year climate conditions. The most significant growth in
municipal sector water demand is anticipated to occur between 2010 and 2060, and to take
place mainly in South Asia, China, and Sub-Saharan Africa. Economic growth is pro-
jected in these regions across many of the SSPs [173], which under the identified demand
model (high elasticity at low-incomes), significantly increases per capita water demand.
Concurrent to the economic development is an increasing population, which is expected to
peak in these regions across most scenarios (excluding SSP3) around 2070 [172]. A com-
bination of reduced fertility rates and saturation of useful municipal water services occurs
as urban areas transition towards higher income-levels, and leads to long-term reductions
in per capita demand.

Further mapped in Figure (A.7) is the coefficient of variation (CoV) calculated across
the SSPs as the maximum range divided by the mean. The spatial distribution largely fol-
lows country delineation due to the parameterized national demand curves. The largest
variability occurs in locations with a combination of uncertainties surrounding both de-
mand intensity and population. For example, variability is particularly prevalent in the
Tibetan Plateau region of Southwest China mainly due to uncertainties surrounding ur-
banization levels and its effect on the distributed rural population in this region. Most
locations display a range of results across the SSPs that is greater than the ensemble mean
value (i.e., CoV > 1), indicating a high-degree of sensitivity to socioeconomic uncertain-
ties. As expected, much more uncertainty surrounds end-of-century conditions compared
to mid-century conditions.

Scenario-specific results are highlighted for Nigeria in Figure (A.7). The economic
growth and urbanization projected for this emerging African economy across the SSPs
results in rapid growth in urban water demands across all scenarios. The SSP5 scenario
displays the most growth due to the assumed transition towards water-intensive societies
and the scale of the projected GDP expansion relative to the other SSPs. Conversely, the
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Figure A.6: Mean and coefficient of variation (CoV) of the spatially-explicit global mu-
nicipal water demands obtained across the SSPs. In the calculation of the CoV, we utilize
the maximum range across the scenarios divided by the mean value.
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sustainability-oriented policy and behavioral measures expected in SSP1 lead to signifi-
cantly lower water requirements. SSP2 and 3 display somewhat similar demand patterns,
but the per capita demand in SSP3 is less due to slower income growth. In the end, the
reduced per capita usage in SSP3 ends up being offset by increased population. Similar
results are obtained for other emerging economies throughout Sub-Saharan Africa, as well
as in Latin America and Asia.
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Figure A.7: Spatially-explicit municipal water demand scenarios for Nigeria across the
SSPs.
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A.3.3 Global

Aggregating the water requirements at the grid-scale yields an estimate of total global
municipal water demand. Annual results are presented in Figure (A.8), along with the
calculations for consumption and return-flow. In SSP1 we find that by 2070, global mu-
nicipal water use reduces compared to current levels. The largest reductions are expected
in consumptive demand due to a combination of improved supply and end-use efficien-
cies. At the high-end of the projections, we find that SSP3 and 5 lead to end-of-century
requirements more than doubling from the current level. Peak water demand is expected
to occur in SSP5 in the year 2070, and represents a municipal water requirement nearly
three times the current level. Results from three similar models for the SSP2 socioeco-
nomic scenario are also depicted in Figure (A.8). Our assessment appears to yield a global
estimate for SSP2 that compares well with the H08 model [266,312], but is lower than the
WaterGAP [312] and PCR-GLOBWB [261] models, as well as a similar business-as-usual
scenario explored with the GCAM model [284].

A.3.4 Impacts of climate change

We focus on the municipal water implications of the RCP2.6 and 8.5 climate scenarios
to capture the largest range of uncertainties in radiative forcing under future greenhouse
gas emissions. The RCP8.5 scenario represents a fossil fuel intensive global develop-
ment pathway that results in an increase in end-of-century radiative forcing of 8.5 W/m2

relative to pre-industrial levels and extreme climate change [313]. The RCP2.6 scenario
represents a low-carbon development pathway associated with a 2.6 W/m2 increase in ra-
diative forcing and a high probability of limiting global mean temperature change over the
21st century to 2◦C [314]. The use of the extreme climate scenarios restricts the socioe-
conomic scenarios that can be explored to SSP3 and 5, as these are the only cases likely
to produce emission pathways consistent with a 2.6 and 8.5 W/m2 radiative forcing. Even
SSP3 may be incapable of providing the economic input commensurate with a 8.5 W/m2

world; nonetheless, we decided to analyze the pathway to explore the different challenges
to adaptation with SSP5.
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Figure A.8: Annual results aggregated to the global-scale for: a. Demand; b Consumptive
demand; and c. Return-flow. For comparison, global results from similar models [H08
[266], PCR-GLOBWB [261] and WaterGAP [312]] available for the SSP2 socioeconomic
scenario are included in the results for demand. Also included is the business-as-usual
(BAU) scenario from the GCAM model [284].
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Average and peak demand

To highlight the vulnerability of municipal water supply systems to climate change, we
examined impacts to both average and peak daily demand requirements. The peak daily
requirements are closely related to the required capacity of water supply and distribution
infrastructure, and are therefore an important aspect of long-term planning. We estimated
the peak daily water demand in each grid-cell as the 95th percentile of the annual time-
series. The long-term response of the climate to different emission pathways means the
climate scenarios vary little until mid-century [95], and to capture these longer-term effects
while accommodating uncertainties surrounding the long-term evolution of the climate
system, we focus on the average impacts obtained over the 2050 to 2080 period.

Figure (A.9) depicts the mapped difference in global municipal water demand between
RCP8.5 and RCP2.6. In most locations, RCP8.5 (extreme climate change) results in rel-
atively modest increases in average annual municipal water demand, although in some
instances (e.g., Indonesia), demand in fact decreases. This decrease is due to wetter condi-
tions in RCP8.5 reducing the need for municipal irrigation. Spatial precipitation patterns
vary significantly across climate models, and will affect the results depending on the se-
lected model (in this case we used the ensemble). The analysis suggests that achieving the
RCP2.6 scenario (minimum climate change) would reduce aggregate annual global mu-
nicipal water demand in comparison to the RCP8.5 scenario (maximum climate change)
by 2 % in the SSP3 scenario, and by 4 % in the SSP5 scenario.

Benefits of climate change mitigation (i.e., achieving RCP2.6 opposed to RCP8.5)
differ spatially. Figure (A.10) depicts the percent change in average and peak demand for
SSP3 and 5 as a cumulative spatial distribution calculated across inhabited grid-cells. The
change is calculated relative to results obtained under static base-year climate conditions.
We find that in the RCP8.5 scenario that 95% of locations experience a change in average
demand between -1 to 10 %, and a change in peak demand between 0 to 12 %. More than
half of inhabited grid-cells in the RCP8.5 scenario see an increase in peak daily demand
of 4 %. The range in climate impacts is reduced substantially in the SSP3 scenario: 95%
of locations experience both peak and average demand increases of only 0 to 6%, with a
mean value of less than 1%. Similar distributions are obtained when the gridded impacts
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Figure A.9: Mapped change in municipal water demand in RCP8.5 relative to RCP2.6.
The changes are averaged over the 2050 to 2080 period. a. Annual average demand; and
b. Peak daily demand.
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are weighted by population.
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Figure A.10: Spatial distribution of climate change impacts on municipal water demand
over the 2050 to 2080 period. The change is calculated relative to the results obtained
under stationary baseyear climate conditions, and is averaged across the three decades. a.
Annual average demand and b. Peak daily demand.

A.4 Discussion and conclusion

The municipal water sector provides crucial services for human well-being and will ex-
perience significant growth under the projected socioeconomic change in many regions
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globally. The municipal water sector is also directly vulnerable to the effects of climate
change due to the large volumes of water used for municipal irrigation. This paper has
assessed, for the first time, coupled climate-development impacts on global municipal wa-
ter demand. A new modeling framework incorporating enhanced representations of human
migration, income inequality, population density and climate sensitivity was developed for
this task. The framework was applied to generate global municipal water demand scenar-
ios over the 21st century aligned with the most recent global change scenarios at a 0.125◦

spatial resolution.
Model results suggest that socioeconomic changes will be the most important driver of

shifts in future municipal water demand, with a wide range in outcomes obtained across
the scenarios investigated. The least water-intensive scenario (SSP1) results in global mu-
nicipal water demand decreasing at an average rate of 0.1 % per year over the 21st century,
whereas the most water-intensive case (SSP5) results in demands increasing at a rate of
0.9 % annually. All scenarios investigated involve rapid demand growth in urban areas
of emerging economies (0.7 to 1.7 % increase per year), whereas demand-levels in high-
income regions remain relatively constant or decrease (-0.7 to 0.5 % increase per year).
The scale of growth and levels of uncertainty observed across the results for emerging
economies suggest a critical need for infrastructure development strategies that incorpo-
rate long-term flexibility.

Climate sensitivities were incorporated into the global modeling framework using
an empirical hydro-climatic metric encapsulating local water availability (the moisture
deficit). Results obtained under non-stationary climate conditions suggest that half of all
inhabited locations may experience peak municipal water demands 2 to 4 % higher under a
fossil fuel intensive global emission scenario (RCP8.5) relative to demand consistent with
the emission scenario displaying a high probability of stabilizing global mean temperature
change over the 21st century at 2◦C (RCP2.6). The outcome means there are moderate
freshwater co-benefits of climate change mitigation policy anticipated in the municipal
sector that are additional to estimates from previous integrated assessments.

Comparing the non-stationary climate results across the SSP3 and 5 socioeconomic
scenarios indicates that in terms of municipal water demands, SSP5 is much more vul-
nerable to the effects of climate change. Differences between the scenarios are largest in
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Sub-Saharan Africa and India. These results follow from the assumptions surrounding sen-
sitivity of municipal irrigation to both changes in climate and socioeconomic development.
In SSP3, slower income growth in emerging economies result in less municipal irrigation
and therefore lower climate sensitivity, whereas in SSP5, rapid income growth results in a
higher-penetration of municipal irrigation and therefore increased climate change vulnera-
bility. Although the population in SSP5 appears more vulnerable than in SSP3, it is better
equipped for adaptation due to significantly higher-incomes and less inequality.

Systematic validation of the modeling framework is currently limited by our ability
to test its long-term performance due to the absence of spatially-explicit historical data.
Global results were compared with four similar modeling frameworks harmonized to sim-
ilar national data-sets, and it was found that our calculations fall on the low-end of previous
estimates. The reason is likely due to the semi-logarithmic form assumed in the demand
model, and what this implies for demand elasticity at higher-incomes. Incorporation of
income distribution effects in the model developed in this paper also leads to reduced de-
mand projections, due to the impact on perceived average income-level in the aggregated
household demand model. Overall, the income-demand relationship has a strong impact
on the results, and this causal link could in fact be less pronounced. Other local drivers,
such as institutional stability, cultural trends, policies and infrastructure could not be taken
into account due to lack of globally comprehensive data sets. These areas are important
for future work aiming to explain a greater range of the historical data.

A.5 Supplementary material: GDP downscaling

National GDP projections are initially disaggregated into urban and rural average incomes
in the base-year (2010). We make the assumption that per capita GDP in purchasing power
parity is equivalent to per capita income at the national-scale. The national per capita GDP
is then related to the urban and rural components through the following relationship:

gn = u ·gu +(1−u) ·gr (A.11)
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where u is the urbanization rate (fraction of national population that is urban), gn is av-
erage per capita GDP (income) across the national population, and gu and gr denote the
urban and rural values respectively. The GDP projections are disaggregated into the urban
and rural components following the procedure described in Grübler et al. (2007) [294].
The approach relies on the observation that residents in urban areas typically have higher
incomes [291]. To reflect the income inequality between urban and rural populations, we
take advantage of the fact that income is typically distributed lognormally across a popula-
tion [287], and that in the base-year (2010) the top income quintile (i.e., top 20%) always
resides in urban areas [294].

We identify the average per capita GDP of the national income quintiles using the
income Lorenz curve L. The Lorenz curve is estimated based on the shape of the log-
normal distribution [288]:

L(x) = Φ
[

Φ
−1 (x)−σ

]
(A.12)

where x is the percentile associated with a given income quantile, σ is the standard devia-
tion of the income distribution, and Φ denotes the cumulative normal distribution function.
Under the assumption of lognormality, the standard deviation is estimated with the follow-
ing relationship [288]:

σ =
√

2 ·Φ−1
(

π +1
2

)
(A.13)

where π is the Gini coefficient. Historical observations of the Gini coefficient are available
for most countries from the World Bank, and are applied in this study to parameterize
income inequality in the base-year. For countries lacking historical observations, we utilize
a regional average.

Assuming the bottom four national income quintiles incorporating both urban and rural
residents split the income evenly (i.e., everything but the GDP represented by the top
quintile), we identify the average rural per capita GDP using the value of the Lorenz curve
at the top income quintile:

gr = gn ·
L(x)

x
(A.14)

where x = 0.8 for the top income quintile. Once calculated, the rural per capita GDP is
inserted into (1) to calculate the corresponding urban-level. Without further information
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on the sub-national distribution of income-levels3, we assume that the identified urban and
rural per capita GDPs do not vary across grid-cells within countries.

In future years, national Gini coefficients are assumed to converge or diverge towards
the qualitative inequality trends implicit in the scenario narratives (Table 1, main text).
For example, in SSP1 and 5, inclusive development leads to widespread reductions in in-
equalities, and we reflect these conditions by having Gini coefficients converge towards a
relatively low value of 0.29 by the end of the century (close to the level currently seen in
Sweden and Denmark). Conversely, in SSP 3 and 4, which contain explicit narratives de-
scribing increased inequality, we set convergent values to 0.6 (close to the level currently
seen in South Africa). To account for institutional inertia, we analyzed decadal observa-
tions for OECD countries to identify a distribution of historical rates of change and then
set a maximum rate of inequality change to the 50th percentile value (0.15 % per year).

The model formulation requires estimates of the urban and rural Gini coefficient. Em-
pirical studies show that differences between urban and rural income inequality exist in
countries such as India, where in the 90s, the rural Gini was typically about 20 % less than
the urban Gini [316]. In China, the urban and rural Gini coefficients from 1978 to 2002
trace a similar path [317]. Without detailed information on the historical trajectories of all
countries we simplify the analysis by assuming that the urban and rural population groups
display equivalent Gini coefficients, and identify a common value that ensures consistency
with the national-level and the decomposed average income levels. The Theil index is an
alternative inequality metric that can be readily decomposed into urban and rural com-
ponents [318]. Under income distribution lognormality, the Theil index is approximately
equal to half the variance ν = σ2 [319]. Based on the Theil decomposition described
in [318], we obtain the following relationship between the national income standard devi-
ation (νn) and the urban-rural value (νur):

νur = νn +2 · {u · ln(κ)− ln [1+u · (κ−1) ]} (A.15)

3The GECON dataset provides sub-national spatial information on the distribution of GDP [315]. Cal-
culating gridded per capita GDP with the GECON and SSP population datasets results in extreme outcomes
because some rural areas with low population have high industrial output. The spatial GDP in GECON is a
better metric for production intensity, not consumption in the municipal sector.
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where κ is the urban-rural average income ratio. Corresponding urban-rural Gini coef-
ficients can be identified with (A.13). Following the analysis in [294], the urban-rural
average income ratio is assumed to converge over time at the scenario-specific rates in
Table 1 of the main text. This feature allows the simulation framework to incorporate
expected income effects implicit in the scenario narrative, such as inclusive development
strategies that reduce income inequalities across a population.

Software/data availability

The gridded municipal water demand scenarios described in this paper are available upon
request from the corresponding author (S.C. Parkinson: scp@uvic.ca).

Acknowledgements

The Coupled Model Intercomparison Project Phase 5 (CMIP5) and the Inter-Sectoral Im-
pact Model Intercomparison Project (ISIMIP) is acknowledged for providing the global
climate model output for this study. SCP was supported in part by a post-graduate scholar-
ship from the Natural Sciences & Engineering Research Council of Canada. ND acknowl-
edges with thanks partial funding of this project by the Deanship of Scientific Research
(DSR), King Abdulaziz University, Jeddah, under grant no. (1-135-36-HiCi).

128



Appendix B

Supplementary material:
Robust response to hydro-climatic
change in electricity generation
planning

129



List and description of symbols

Sets

c Scenario

g Resource grade

l Interregional transmission link

p Power plant type

r Managed rivers or aggregated basins

s Season in year

y Year in simulation horizon

Parameters

α Seasonal storage recharge frequency

β Discount rate

δ Seasonal time-step duration

ε Hydroelectric streamflow-to-energy conversion coefficient

η Energy conversion efficiency

φ E Capacity / availability factor

φ F Flexibility factor

φ P Peak load carrying capability factor

ψC Fixed costs coefficient

ψ I Import price coefficient

ψN Capital costs coefficient

ψV Variable costs coefficient

ψX Export price coefficient



τ Minimum storage discharge time

d avg Seasonal average energy demand

d f lex Flexible reserve demand

d peak Seasonal peak capacity demand

vnat Natural streamflow into hydroelectric facility

w Objective function weighting

Variables

C Installed capacity

D Volume of streamflow in seasonal reservoir storage

D+ Volume of streamflow into seasonal reservoir storage

D− Volume of streamflow out of seasonal reservoir storage

E Electricity produced

I Imported electrcicity

N New capacity

R Retired capacity

S Volume of streamflow spilled

T Total annual cost of system operation

V Volume of streamflow passed through hydroelectric turbines

X Exported electricity



B.1 Hydro-climate scenarios

Tab. (1) provides the climate scenario data included in the study. Presented are the sea-
sonal ranges in provincial temperature and precipitation anomalies projected by the Pacific
Climate Impacts Consortium (PCIC) for 2041-2070 trends relative to observed 1961-1990
trends [106]. Climate warming is observed across the ensemble distribution. An increased
precipitation trend is seen in most seasons and annually, although drier conditions are
expected in the summer.

Climate Parameter Winter Spring Summer Fall Year
(DJF) (MAM) (JJA) (SON)

Temperature [ ◦C ] 2.6 (0.6, 3.6) 2.1 (1.1, 3.2) 2.6 (1.4, 4.4) 2.2 (1.3, 3.9) 2.4 (1.4, 3.7)

Precipitation [ % ] 13 (5, 26) 12 (0, 19) -3 (-21, 5) 13 (1, 27) 9 (0, 18)

Table B.1: Regional mean temperature and precipitation anomalies projected for 2041-
2070 trends relative to observed 1961-1990 trends. The 5th and 95th percentile of the
annual ensemble distribution are provided in brackets. Adapted from: [106].

Corresponding distributions in streamflow impacts modeled by PCIC using the VIC
hydrologic model at a number of major provincial hydroelectric reservoirs are provided
in Tab. (2). Perennial warming triggers earlier spring snowmelt, which combined with an
increasing precipitation trend, is expected to make more run-off available in the winter and
spring seasons. Warmer and drier summer conditions lead to reduced summer run-off in
many of the managed basins.

B.2 Climate-sensitive electricity demand model

The data and fitted models for the electricity demand model are depicted in Fig.B.1. Cubic
polynomials are found to provide adjusted R2 values ranging from 0.90-0.92. Coefficients
from the regression analysis are provided in Tab.(B.2).
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Figure B.1: Sensitivity of regional electricity demand to weighted outdoor air temperature
at the daily timescale and the corresponding cubic polynomial model fit.
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Basin Winter Spring Summer Fall Year
(DJF) (MAM) (JJA) (SON)

Kinbasket [ % ] 53 (14, 104) 77 (75, 68) 9 (5, 11) 2 (-9, 15) 17 (10, 24)

Revelstoke [ % ] 91 (24, 132) 79 (84, 63) -2 (-7, 4) -1 (-20, 21) 12 (2, 23)

Arrow Lakes [ % ] 111 (60, 115) 53 (54, 57) -7 (-14, 0) -3 (-16, 18) 9 (-1, 21)

Williston [ % ] 78 (25, 64) 61 (46, 55) -15 (-28, -7) 5 (-5, 13) 11 (-7, 19)

Kootenay [ % ] 86 (72, 101) 38 (37, 46) -18 (-31, -12) -4 (-27, 17) 6 (-5, 16)

Strathcona [ % ] 52 (45, 42) 6 (-10, 13) -64 (-68, -43) 10 (8, 12) 1 (-10, 8)

Table B.2: Mean natural inflow (run-off) anomalies projected for 2041-2070 trends relative
to observed 1961-1990 trends at major provincial hydroelectric reservoirs. The 5th and
95th percentile of the annual ensemble distribution are provided in brackets. Adapted
from: [108].

B.3 Climate-sensitive hydropower model

Climate change impact to BC’s hydropower potential is quantified by explicitly consid-
ering the streamflow balance at existing facilities. The spatial distribution of the stations
included in the study is provided in Fig. (2.2). Historically, these sites on average pro-
duce about 90% of hydropower in the province. The remaining 10% of hydroelectric
capacity consists mainly of small-scale distributed systems, and due to data limitations
is represented in the model as an aggregated resource that follows an average seasonal
inflow trajectory. The approach taken to quantify hydropower potential is similar to that
seen in other recent climate change impact assessments [30, 47]. Hydropower potential is
calculated considering the potential energy E in available streamflow V :

E = ρ ghV (B.1)

The potential depends on the site-specific hydraulic head h. The parameters g and ρ rep-
resent the acceleration due to gravity and water density respectively.

Facility technical data implemented in the model is summarized in Tab.(B.3). The pa-
rameters are calibrated such that each plant’s baseline trajectory aligns with the historical
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Time-series Polynomial Coefficients Adj. R2

a0 a1 a2 a3

Average Demand
Business days 8765.9841 -209.1196 -4.0521 0.4347 0.9221
Non-business days 8314.1203 -208.0120 -2.5101 0.3464 0.9002

Peak Demand
Annual 10442.7920 -193.3393 -8.0773 0.4435 0.9147

Table B.3: Coefficients and adjusted R2 for fitted polynomials y = ao +a1x+a2x2 +a3x3,
where y is aggregate provincial electricity demand and x is the population-weighted
provincial temperature trajectory.

long-term energy performance reported in the literature. The model includes planned hy-
droelectric capacity upgrades, as well as the addition of a new 1,100 MW plant on the
Peace River (the so-called Site C, downstream from the G.M. Shrum and Peace Canyon
projects). The remaining 10% of hydroelectric capacity consists mainly of small-scale
distributed systems, and is represented in the model as an aggregated resource that follows
an average seasonal inflow trajectory.

Streamflow projections at the Seven Mile, Kemano, and Bridge project locations are
not covered in the PCIC study. To include these stations in the study at hand, we take
advantage of the consistency observed in the direction of projected streamflow changes.
Missing project inflow anomalies are inferred from those available based on how histori-
cal seasonal inflow patterns and predicted future climate trends compare. Future climate
conditions at project locations were taken from PCIC’s sub-regional database [320]. The
results of this mainly qualitative analysis couple the following stations inflow anomaly
distributions: Seven Mile and Kootenay Canal; Bridge and Mica; and Kemano and Revel-
stoke.
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Active Annual Seasonal Inflow Fraction Annual Planned
River Facility Reservoir Capacity Head Storage Inflow DJF MAM JJA SON Energy Expansion Sources

[ MW ] [ m ] [ Mm3 ] [ Mm3 ] [ GWh ] [ MW ] (Year)

Columbia Mica Kinbasket 1,805 197 14,800 18,196 0.05 0.17 0.63 0.15 8,562 1,000 (2015) [109, 120, 122]

Columbia Revelstoke Revelstoke 2,480 160 1,850 7,442 0.05 0.22 0.57 0.16 9,496 500 (2021) [109, 120, 122]

Columbia Arrow Lakes Arrow Lakes 185 10 8,760 11,195 0.16 0.39 0.32 0.13 767 - [109, 321]

Peace G.M. Shrum Williston 2,730 190 39,472 34,059 0.07 0.25 0.51 0.17 16,477 220 (2025) [110, 119, 120, 122]

Peace Peace Canyon Dinosaur 728 50 25 - - - - - 4,054 - [110, 119, 120, 122]

Peace Site C Site C - 60 25 - - - - - - 1,100 (2020) [119]

Nechako Kemano Nechako 1,000 700 3,400 4,081 0.05 0.29 0.50 0.16 7,271 - [114, 115, 119]

Pend D’Oreille Seven Mile Seven Mile 1,298 123 46 17,660 0.17 0.33 0.30 0.20 5,327 335 (2015) [111, 120, 121]

Kootenay Kootenay Canal - 1,030 194 - 11,639 0.06 0.29 0.55 0.10 5,533 - [93, 111, 120, 121]

Bridge Bridge Carpenter 583 325 1,732 3,500 0.06 0.15 0.62 0.17 2,793 - [113, 121, 122]

Campbell Campbell Strathcona 240 160 767 3,130 0.12 0.34 0.39 0.15 1,230 - [112]

Table B.4: Technical data used to parameterize the hydroelectric facilities included in
the analysis. Hydraulic heads have been calibrated such that the historical inflow data
matches the reported annual energy performance. Parameterizations that represent the
characteristics of multiple projects aggregated together include: Kootenay Canal, which
also considers Corra Lynn, Upper / Lower Boddington, South Slocan and Brilliant capac-
ity; Seven Mile, which also considers Waneta capacity; Bridge, which also considers Seton
and Walden capacity; and Campbell, which consists of Stratchcona, Ladore and John Hart
capacity.

B.4 Robust electricity generation planning model

Model equations

A dynamic optimization model is developed to examine impacts of hydro-climate uncer-
tainty on the electricity generation planning process. The model is linear and solves for
the least-cost operational trajectory of the electricity system at a seasonal time-step. This
includes investment decisions in new generation and interregional transmission capacity.
Interrseasonal capacity and flexibility constraints are imposed to relfect short-term operat-
ing requirements. The model is written in the GNU Mathematical Programming Language
(GMPL) and solved with the GNU Linear Programming Kit (GLPK) [322].
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Objective

The formulation specifically incorporates climate-resilience into the optimal technology
portfolio using a form of robust optimization. Robust optimization is chosen because
it is an effective method for pro-actively handling scenario-based uncertainties in large-
scale system design problems1 [101]. In robust optimization, optimal design (capacity)
and control (activity) variables are determined based on calculated performance across
a number of alternative scenarios. By including climate change impact scenarios in the
analysis, robust optimization reveals system designs resilient to uncertainties in climate
change projections [75].

In the current study, we extend the robust optimization approach to include hydrologic
impacts of climate change. We further impart increased stringency into the system’s design
by requiring feasibility across all electricity impact scenarios included in the analysis (i.e.,
the model is solution robust [101]). This choice of model formulation enables our analysis
to explore long-term capacity implications of climate-resilience. The objective function in
this case minimizes the weighted sum of each scenario’s total cost.

Min ∑
c

wcZc (B.2)

The weights are inferred from the frequency distribution associated with the hydro-climate
ensemble used to generate each impact scenario included in the robust set. This objective
favours a technology portfolio that performs best under projections occurring most fre-
quently in the coupled modeling experiments.

Economics

Total discounted cost of each climate scenario included in the analysis is given by:

Zc = ∑
y

Tc,y (1+β )−y (B.3)

1Alternative methods for addressing uncertainty long-term energy planning analysis include stochastic
linear programming [96, 97], mini-max optimization [98], real-options [99], and hybrid approaches [100]
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Annual costs are comprised of investments in new capacity, and the operation and mainte-
nance of existing infrastructure:

Tc,y = ∑
p,g,s

(
ψN

p,g,yNp,g,y +ψC
p,g,yCp,g,y +ψV

p,g,yEc,p,g,s,y

)
+

∑
l,s

(
ψN

l,yNl,y +ψC
l,yCl,y +ψ I

l,yIc,l,s,y−ψX
l,yXc,l,s,y

) (B.4)

In the above equation, variable costs include fuel and emissions. Note that activity vari-
ables are scenario-dependent while capacity variables are scenario invariant; this ensures
the capacity is robust.

Electricity

To ensure consistent service, electricity production is constrained to always be greater than
or equal to consumption:

∑
p,g

Ec,p,g,s,y +∑
l
(Ic,l,s,y−Xc,l,s,y)≥ d avg

c,s,y (B.5)

The activity of each generation-type is constrained by its installed capacity and seasonal
availability (i.e., capacity factor):

Ec,p,g,s,y ≤ φ E
p,g,s,yCp,g,y δ (B.6)

Likewise, imports and exports are constrained by installed transmission capacity:

Ic,l,s,y +Xc,l,s,y ≤Cl,y δ (B.7)

To resolve peak capacity constraints, seasonal peak demand is considered separately from
average requirements:

∑
p∈P1,g

φ P
p,gCp,g,y + ∑

p∈P2,g
φ P

p,gEc,p,g,s,y δ−1 ≥ d peak
c,s,y (B.8)
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The model considers all dispatchable technologies (set P1) to contribute to peak require-
ments based on the installed level, whereas non-dispatchable technologies (set P2) con-
tribute based on their average energy output. The peak requirements include a 10% buffer
for reserve.

Flexibility constraints are also incorporated into the model using the methodology de-
scribed in [207]. The flexibility requirement is defined based on the level of energy de-
mand:

∑
p,g

φ F
p,gEc,p,g,s,y ≥ d f lex

c,s,y (B.9)

Technologies are then defined to contribute to flexible capacity differently based on aver-
age performance expectations. For instance, SCGT plants provide positive flexible capac-
ity while wind technologies provide negative flexible capacity.

To meet future demand requirements, new capacity must be developed. The accumu-
lated capacity in each year is given by:

Cp,g,y =Cp,g,y−1 +Np,g,y−1−Rp,g,y−1 (B.10)

Cl,y =Cl,y−1 +Nl,y−1−Rl,y−1 (B.11)

Pumped storage technology included in the model requires special treatment. Inter-
temporal dispatch is set exogeneously, by defining a set number of recharge intervals per
season and a minimum discharge time. To simplify the modeling, seasonal storage is
disallowed (seasonal storage opportunities are addressed in the hydrologic model). Due to
efficiency losses, the storage unit represents net seasonal energy consumption:

Ec,p,g,s,y =Cp,g,y τ
(
η2−1

)
α (B.12)

The operational strategy for a typical pumped storage technology described in [323] is
used to parameterize the storage model.

Demand response (DR) is also included in the model, and refers to a technology that
enables the shifting of load over periods ranging from minutes to hours. This is different
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from long-term demand impacts of efficiency investments and price response, which are
included in the baseline load forecast [104]. These resources contribute to peak load and
flexible capacity, but do not effect energy demand. Resource grades for DR are estimated
from the supply curve in [123], which is then multiplied by a factor of 2 to represent po-
tential costs in 2025. The supply curve limits DR to a maximum of 10% of peak demand.
Both storage and DR capacity expansion is enabled in the model post-2025.

For hydropower technologies coupled to streamflow, water passed through the hydro-
electric turbines produces energy at a rate proportional to the site-specific conversion ef-
ficiency (product of turbine efficiency, acceleration due to gravity, water density and hy-
draulic head):

Ec,p,g,s,y = ∑
r

εp,s,yVc,r,p,s,y (B.13)

Other energy-related constraints on the model include minimum infrastructure utiliza-
tion rates, maximum growth rates, maximum installed capacity constraints (e.g., renew-
able resource availability), and non-negativity constraints.

Streamflow

Hydrologic constraints are represented within the long-term planning problem by explic-
itly considering streamflow balance at most of the provincial large-scale hydroelectric sta-
tions. At upstream stations this balance is modeled by:

Vc,r,p,s,y +Sc,r,p,s,y +D+
c,r,p,s,y−D−c,r,p,s,y = vnat

c,r,p,s,y (B.14)

For rivers that contain projects in a cascading configuration, the regulated outflow from
upstream projects must be considered in the downstream project balance:

Vc,r,p,s,y−Vc,r,p−1,s,y +Sc,r,p,s,y−Sc,r,p−1,s,y +D+
c,r,p,s,y−D−c,r,p,s,y = vnat

c,r,p,s,y (B.15)

The total amount of active water in storage is determined by:

Dc,r,p,s,y = Dc,r,p,s−1,y +D+
c,r,p,s−1,y−D−c,r,p,s−1,y (B.16)
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This formulation neglects reservoir and downstream transport losses (e.g., reservoir evap-
oration), although the model parameters are specifically calibrated to help account for
potential errors.

For the Mica facility, seasonal pumped storage opportunities are considered, and an
extra variable is added to the upstream and downstream water balance that represents the
volume pumped from downstream to upstream. If developed, energy required for pumping
is determined using the hydropower equation from above.

Streamflow management variables are further constrained by prescribed capacities and
to remain non-negative. Seasonal minimum / maximum (ecological) flow requirements
are also respected. Finally, reservoir sustainability is assured by constraining the initial
level in each winter to be the same.
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Appendix C

Supplementary material:
Long-term energy planning with
uncertain environmental
performance metrics

C.1 Formulation of the existing BC electricity planning
model

The existing BC electricity planning model is linear and solves for the least-cost opera-
tional trajectory of the electricity system at a seasonal time-step. The model is written in
the GNU Mathematical Programming Language (GMPL) and solved with the GNU Linear
Programming Kit (GLPK) [322]. Model formulation is in Appendix B.4.

C.2 Stochastic sampling sensitivity

Risk is parameterized by estimating the shape of the uncertain performance distributions.
This is done by drawing a finite number of random samples from a defined probability
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distribution. To test stability of solutions to the emission factor distribution sample size,
a modified version of the convergence criteria proposed in [150] was applied. A 1-norm
convergence criteria ∆ is calculated, and describes the distance between two objective
functions C obtained under alternative realizations of the stochastic distributions a and b.
The difference is then compared to the relative magnitude of the solutions, namely:

∆a,b =
|Ca−Cb |
Ca +Cb

(C.1)

The model was run with different sample sizes with the 1-norm criteria computed to
test for convergence. It was found that the risk aversion parameter approach produces the
most volatile response at the highest risk parameter tested (Φ = 5). Results of the analy-
sis are depicted for this case in Fig(C.1). It can be seen that solutions provide adequate
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Figure C.1: Objective function convergence obtained under different number of samples
drawn from the stochastic emission factor distributions.

convergence when N = 3000. This sample size was applied in all remaining model runs.
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Appendix D

Supplementary material:
Impacts of groundwater constraints on
Saudi Arabia’s low-carbon
electricity supply strategy
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List and description of symbols

Sets

c Carrier

m Month

m f Final month (December)

mi Initial month (January)

o Supply technology operational mode

r Region

rr Alternative region

s Storage technology

t Supply technology

y Year in simulation horizon

yend Final year in simulation horizon

Parameters

α tech Capacity used by activity in a specific operating mode

β tech Maximum capacity available for an activity in a specific operating mode

δ Discount rate

εnet,in Input activity ratio for network technology

εnet,out Output activity ratio for network technology

εsto,in Input activity ratio for storage technology

εsto,out Output activity ratio for storage technology

ε tech Input/output activity ratio for supply technology

γnet Network technology fixed costs



γsto Storage technology fixed costs

γ tech Supply technology fixed costs

µ Minimum run-time fraction for supply technologies.

φ net Capacity or load factor of network technology

φ sto Capacity or load factor of storage technology

φ tech Capacity or load factor of supply technology

πtech Supply technology fuel costs

ψnet Network technology investment costs

ψsto Storage technology investment costs

ψ tech Supply technology investment costs

D Exogenous demand

l Lifetime of infrastructure

Variables

N Total consumption/production of all network technologies in a region

S Total consumption/production of all storage technologies in a region

T Total consumption/production of all supply technologies in a region

xnet Network technology activity

xsto,in Storage technology input activity

xsto,level Amount stored in storage technology

xsto,out Storage technology output activity

xtech Supply technology activity

Z Cumulative discounted cost over the simulation horizon

Z f ix Total fixed costs



Zinv Total investment costs

znet,new New network technology capacity

znet,ret Retired network technology capacity

znet Existing network technology capacity

zsto,new New storage technology capacity

zsto,ret Retired storage technology capacity

zsto Existing storage technology capacity

ztech,new New supply technology capacity

ztech,ret Retired supply technology capacity

ztech Existing supply technology capacity

Ztot Total annual cost

Zvar Total variable costs



D.1 Mathematical formulation of the planning model

This section presents the mathematical formulation of the supply planning model, as well
as the sub-models used to estimate technology performance. The nonmenclature details
the parameters and variables, with the model equations then defined.

D.1.1 Objective

The objective of the optimization is to identify the design (capacity) and activity variables
of technology options included in the model that minimize the total discounted cost over
the simulation horizon. The discounted cost is calculated as the annual cost of operation
multiplied by the discount factor. The discount factor is weighted to reflect the multi-year
decision-making (i.e., inter-temporal optimization across 5-year time steps). This yields
the following objective function formulation:

Min Z = ∑
y

(
δy ·Ztot

y
)

(D.1)

The model solves for the optimal variables subject to the constraints detailed below.

D.1.2 Resource balance with network flow and storage

To ensure demands are met, supply of each carrier within each region is constrained to be
greater than the demand for the carrier in that region.

Tr,c,y,m +Sr,c,y,m +Nr,c,y,m ≥ Dr,c,y,m ∀ r,c,y,m (D.2)

Carriers considered in the model are depicted in Figure (1) of the main text. Exogenous
demands are defined for electricity, freshwater, and wastewater. Wastewater from the do-
mestic and manufacturing sectors defined in this way are negative due to the contribution
to resource availability.

Total consumption / production of carriers in each region by supply technologies is
calculated with average conversion coefficients. These coefficients relate the activity of
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supply technologies to the consumption or production of a specific carrier (e.g., m3 of
water per kWh of electricity produced). Multiplying the activity of each technology by
its activity ratio yields the total amount consumed or produced by a technology over the
model period (1 month). These technology-level results are summed across the portfolio
included to quantify the total transformation in each region:

Tr,c,y,m = ∑
t,o

ε tech
t,c,o · xtech

r,t,o,y,m ∀ r,c,y,m (D.3)

We model electricity supply technologies across multiple operational modes to account
for the effects of flexibility requirements, which are described in greater detail below.

A similar approach is used for storage technologies. Surface reservoirs and potable
water storage at end-use are considered options for storing water between months. The
need to track the storage level dynamically is addressed by breaking the storage activity
into input and output components:

Sr,c,y,m = ∑
s

(
εsto,out

s,c · xsto,out
r,s,y,m − εsto,in

s,c · xsto,in
r,s,y,m

)
∀ r,c,y,m (D.4)

Likewise, the total supply or consumption by network technologies are calculated by sum-
ming the total input and outputs across potential transmission pathways:

Nr,c,y,m = ∑
rr,n

(
εnet,out

rr,r,c,n · xnet
rr,r,n,y,m− εnet,in

r,rr,c,n · xnet
r,rr,n,y,m

)
∀ r,c,y,m (D.5)

Network losses are incorporated in the framework, including energy use for water pumping
with the procedure used to identify the network parameters detailed below.

For seasonal storage technologies, the level must also be balanced across time-periods.
To ensure long-term sustainability of surface water reservoirs and prevent pre-filling of
new storage investments (i.e., conservation of energy) we constrain the level at the end
of the year to be equivalent to the initial value. These assumptions yield the following
constraints:

xsto,level
r,s,y,m+1 = xsto,level

r,s,y,m + xsto,in
r,s,y,m− xsto,out

r,s,y,m ∀ r,s,y,m < m f (D.6)
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xsto,level
r,s,y,m f

+ xsto,in
r,s,y,m f

− xsto,out
r,s,y,m f

= xsto,level
r,s,y,mi

∀ r,s,y (D.7)

D.1.3 Capacity adequacy

Operating flexibly impacts the efficiency and cost of power plants [208], and we distin-
guish between two operational modes for plants included to capture effects within the
long-term modeling framework. The first mode represents steady or base-load operation,
with the second mode representing flexible or load-following mode. Plants operating in
load-following mode must be scheduled in advance, with the scheduled capacity required
to move in both incremental and decremental directions to balance under and over forecast
errors. This scheduling effect reduces the capacity available from power plants operating
as a flexibility reserve. The scheduling impacts are emulated in the model by stipulating
that power provided by power plants operating flexibly consumes twice the capacity as
when it operates in base-load operation (i.e., capacity to move up or down is maintained
in the flexible mode to account for scheduling). These assumptions yield the following
capacity constraints for supply technologies:

∑
o

(
α tech

t,o · xtech
r,t,o,y,m

)
≤ φ tech

r,t,m · ztech
r,t,y ∀ r, t,y,m (D.8)

α tech
t,o · xtech

r,t,o,y,m ≤ β tech
t,o ·φ tech

r,t,m · ztech
r,t,y ∀ r, t,y,m (D.9)

The load factor varies across months to reflect the variability of wind and solar generation.
Water supply technologies are only considered to operate in a single operational mode
with capacity usage assumed to scale one-to-one with activity.

To mitigate capacity constraints, new investments in capacity can be made in the
model. Capacity retirements also accompany the decommissioning of ageing infrastruc-
ture. The capacity available in each year is therefore updated based on a balance of new
investments and retirements:

ztech
r,t,y+1 = ztech

r,t,y + ztech,new
r,t,y + ztech,ret

r,t,y ∀ r, t,y < yend (D.10)
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Forced retirements follow from a constraint on the lifetime of infrastructure:

ztech,ret
r,t,y+lt ≥ ztech,new

r,t,y ∀ r, t,y < yend− lt (D.11)

Similar capacity constraints are defined for storage:

xsto,level
r,s,y,m ≤ φ sto

s · zsto
r,s,y ∀ r,s,y,m (D.12)

zsto
r,s,y+1 = zsto

r,s,y + zsto,new
r,s,y + zsto,ret

r,s,y ∀ r,s,y < yend (D.13)

zsto,ret
r,s,y+ls ≥ zsto,new

r,s,y ∀ r, t,y < yend− ls (D.14)

For network technologies we reflect the bi-directional flow on possible pathways by con-
straining capacity in either direction to be equivalent and then divide the investment and
operating costs equally between the pathways:

xnet
r,rr,n,y,m + xnet

rr,r,n,y,m ≤ φ net
n · znet

r,rr,n,y ∀ r,rr,n,y,m (D.15)

znet
r,rr,n,y = znet

rr,r,n,y ∀ r,rr,n,y (D.16)

znet
r,rr,n,y+1 = znet

r,rr,n,y + znet,new
r,rr,n,y + znet,ret

r,rr,n,y ∀ r,rr,n,y < yend (D.17)

The current version of the model does not consider retirement of network technology or
surface water reservoirs due to the selected simulation horizon (2050) and the long life-
times typically associated with the infrastructure.

Minimum run requirements are included in the model to prevent fossil generation ca-
pacity contributing to reserve requirements without operating. We prescribed that the an-
nual activity from power plants exceed 1% of installed capacity.

∑
o,m

xtech
r,t,o,y,m ≥ µ · ztech

r,t,y ∀ r, t,y (D.18)
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D.1.4 Cost accounting

Total costs of electricity and water system operation are calculated in each year by sum-
ming the investment, fixed and variable costs associated with each technology option:

Ztot
y = Zinv

y +Z f ix
y +Zvar

y ∀ y (D.19)

The investment costs are calculated based on the new capacity and no salvage value for
retirements are currently considered.

Zinv
y = ∑

r,t

(
ψ tech

t,y · ztech,new
r,t,y

)
+∑

r,s

(
ψsto

s,y · zsto,new
r,s,y

)
+ ∑

r,rr,y

(
ψnet

n,r,rr,y · znet,new
r,rr,n,y

)
∀ y (D.20)

Similarly, fixed costs are calculated based on existing capacity:

Z f ix
y = ∑

r,t

(
γ tech

t,y · ztech
r,t,y

)
+∑

r,s

(
γsto

s,y · zsto
r,s,y

)
+ ∑

r,rr,y

(
γnet

n,y · znet
r,rr,n,y

)
∀ y (D.21)

We only consider variable costs for supply technologies. Different costs are assumed for
the operating modes to account for the cost of operating flexibly, and include fuel costs.

Zvar
y = ∑

r,t,o,m

(
πtech

t,o,y · xtech
r,t,o,y,m

)
∀ y (D.22)

D.1.5 Short-term electricity storage

Inter-temporal dispatch of short-term electricity storage is set exogenously, by defining
a set number of recharge intervals per season and a minimum discharge time. Due to
efficiency losses, the storage unit represents net seasonal energy consumption:

d = z · τ ·
(
η2−1

)
·ξ (D.23)

where d is the total electricity consumption, z is the installed capacity, τ is the mini-
mum storage discharge time, η is the one-way storage efficiency, and ξ is the number of
recharge intervals per season.The operational strategy for a typical pumped storage tech-
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nology used for short-term purposes described in [218] is used to parameterize the storage
model.

D.1.6 Energy for water conveyance

Energy requirements for water conveyance are parameterized after the analysis in [211].
The Darcy-Weisbach equation is used to estimate head losses due to turbulent flow in the
pipeline:

h f = f · v2

2g
· ∆L

D
(D.24)

where h f is the head loss due to friction, g is the acceleration due to gravity, f is the
friction factor, ∆L is the pipe length, v is the average fluid velocity, and D is the inside pipe
diameter. We utilize the parameters described in [211] to estimate an average energy input
per km of horizontal conveyance. For vertical pumping we consider the energy needed to
lift an equivalent volume of water:

p = ρ ·g ·∆h ·V (D.25)

where ρ is the density of water, ∆h is the elevation change and V is the volume of water.

D.1.7 Implementation

The optimization model is written in the GNU Mathematical Programming Language
(GMPL) and solved with the CPLEX barrier method.
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D.2 Input data

D.2.1 Electricity generation technologies

The electricity generation technologies included in the model are listed in Table (D.1).
The implemented cost and performance data for electricity generation are provided in Ta-
ble (D.2). Power generation costs and heat rates for 2010 are estimated from [218, 219].
Cost multipliers for the different power plant cooling technology costs are used to gen-
erate future projections (section S2.4). Cost and efficiency impacts of operating the unit
flexibly are estimated from [208]. Water performance of the different power generation
technologies are taken from [20]. Costs for the different power plant cooling technolo-
gies are distinguished following an analysis with a power plant cost model [20]. Load
control technology costs are estimated from the supply curves in [123], with the capacity
constrained to be less than 10% of the total electricity demand in each time period. Cost
uncertainty for load control is included by considering the range in supply curves reported
in [123] and a similar range in cost reductions are assumed for storage. Technology vin-
tages and locations, as well as committed investments (future capacity installations) are
estimated from [174, 195–197] and are included in Table (D.3).

Carbon emissions from fossil fuel combustion are tracked and constrained in the model.
We use the Intergovernmental Panel on Climate Change’s default values for crude oil (73.3
kg / GJ) and natural gas (56.1 kg / GJ) [324].

D.2.2 Water supply technologies

The implemented cost and performance data for water supply technologies are provided in
Table (D.4). The water supply technologies included are reverse osmosis (RO) desalina-
tion, multi-stage flash (MSF) desalination, rainwater harvesting, groundwater withdrawals,
and surface water withdrawals. Desalination energy costs are taken from [181], and for
RO, include enhanced energy recovery. Costs for rainwater harvesting are estimated us-
ing the data reported for a multifamily unit in [205]. Average available rainfall in each
region is then used to identify a monthly capacity factor. Wastewater treatment costs are
estimated from [217]. The electricity intensity of rainwater harvestng systems is estimated
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Energy Carrier Fuel Technology Cooling System Model Name

Urban Electricity Natural Gas Combined-cycle Once-through - Freshwater NGCC OT

Once-through - Seawater NGCC SW

Closed-loop - Freshwater NGCC CL

Air-cooled NGCC AC

Single-cycle Once-through - Freshwater NGST OT

Once-through - Seawater NGST SW

Closed-loop - Freshwater NGST CL

Air-cooled NGST AC

Combustion turbine - NGGT

Oil Combined-cycle Once-through - Freshwater OLCC OT

Once-through - Seawater OLCC SW

Closed-loop - Freshwater OLCC CL

Air-cooled OLCC AC

Single-cycle Once-through - Freshwater OLST OT

Once-through - Seawater OLST SW

Closed-loop - Freshwater OLST CL

Air-cooled OLST AC

Combustion turbine - OLGT

Nuclear Once-through - Freshwater NC OT

Once-through - Seawater NC SW

Closed-loop - Freshwater NC CL

Geothermal Once-through - Freshwater GEO OT

Once-through - Seawater GEO SW

Solar Concentrating w/o thermal storage Once-through - Freshwater CSP OT

Once-through - Seawater CSP SW

Closed-loop - Freshwater CSP CL

Air-cooled CSP AC

Concentrating w/ thermal storage Once-through - Freshwater CSPTS OT

Once-through - Seawater CSPTS SW

Closed-loop - Freshwater CSPTS CL

Air-cooled CSPTS AC

Photovoltaic - PV

Wind Onshore - WND

- Load Control - LC

Short-term Electricity storage - ELS

Rural Electricity Oil Combustion Turbine - Rural OLGT

Solar Photovoltaic - Rural PV

- Short-term Electricity storage - Rural ELS

Table D.1: Electricity supply technologies considered in the analysis.
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Model Capital Fixed Variable Flexible Baseload Flexible Load Water Return
name cost cost cost cost Heat rate heat-rate factor ELCC withdrawal flow Lifetime

[ $/kW ] [ $/kW-yr ] [ $/MWh ] [ $/MWh ] [ btu/kWh ] [ btu/kWh ] [ m3/MWh ] [ m3/MWh ]

NGCC OT 1023 15.37 3.27 2.17 6430 6816 0.85 0.9 39.8 39.3 30

NGCC CL 1064 15.98 3.40 2.17 6564 6958 0.85 0.9 0.7 0.1 30

NGCC AC 1105 16.60 3.53 2.17 6591 6986 0.85 0.9 - - 30

NGCC SW 1023 15.37 3.27 2.17 6430 6816 0.85 0.9 - - 30

NGGT 676 7.04 10.37 1.61 9750 10335 0.92 0.9 - - 30

NGST OT 1159 16.18 3.27 2.05 10850 11501 0.85 0.9 132.8 131.2 30

NGST CL 1205 16.83 3.40 2.05 11033 11695 0.85 0.9 2.4 0.3 30

NGST AC 1251 17.47 3.53 2.05 12045 12767 0.85 0.9 - - 30

NGST SW 1159 16.18 3.27 2.05 10850 11501 0.85 0.9 - - 30

OLCC OT 1023 15.37 3.27 2.17 6430 6816 0.85 0.9 39.7 39.4 30

OLCC CL 1064 15.98 3.40 2.17 6564 6958 0.85 0.9 0.6 0.1 30

OLCC AC 1105 16.60 3.53 2.17 6591 6986 0.85 0.9 - - 30

OLCC SW 1023 15.37 3.27 2.17 6430 6816 0.85 0.9 - - 30

OLGT 676 7.04 10.37 1.61 9750 10335 0.92 0.9 - - 30

OLST OT 1159 16.18 3.27 2.05 10850 11501 0.85 0.9 132.5 131.4 30

OLST CL 1205 16.83 3.40 2.05 11033 11695 0.85 0.9 2.1 0.4 30

OLST AC 1251 17.47 3.53 2.05 12045 12767 0.85 0.9 - - 30

OLST SW 1159 16.18 3.27 2.05 10850 11501 0.85 0.9 - - 30

NC OT 5530 93.28 2.14 2.05 - - 0.90 0.9 176.6 175.0 30

NC CL 5751 97.01 2.23 2.05 - - 0.90 0.9 5.7 1.2 30

NC SW 5530 93.28 2.14 2.05 - - 0.90 0.9 - - 30

GEO OT 6243 132.00 0.00 2.05 - - 0.90 0.9 71.27 70.56 30

GEO SW 6243 132.00 0.00 2.05 - - 0.90 0.9 - - 30

CSP OT 5067 67.26 0.00 2.05 - - 0.35 0.1 206.4 204.1 30

CSP CL 5270 69.95 0.00 2.05 - - 0.34 0.1 3.5 3.4 30

CSP AC 5472 72.64 0.00 2.05 - - 0.31 0.1 - - 30

CSP SW 5067 67.26 0.00 2.05 - - 0.35 0.1 - - 30

CSPTS OT 7286 79.72 0.00 2.05 - - 0.35 0.9 206.4 204.1 30

CSPTS CL 7577 82.90 0.00 2.05 - - 0.31 0.9 3.5 3.4 30

CSPTS AC 7869 86.09 0.00 2.05 - - 0.28 0.9 - - 30

CSPTS SW 7286 79.72 0.00 2.05 - - 0.35 0.9 - - 30

PV 3873 24.69 0.00 0.00 - - 0.35 0.1 - - 30

WND 2213 39.55 0.00 0.00 - - 0.35 0.1 - - 30

LC 3000 0.01 0.00 0.00 - - 0.90 0.9 - - 20

ELS 3000 16.39 0.00 1.50 - - 0.95 0.9 - - 20

Rural OLGT 676 7.04 10.37 2.05 9750 10335 0.90 0.9 - - 30

Rural PV 4183 27.75 0.00 0.00 - - 0.35 0.9 - - 30

Rural ELS 935 16.36 0.00 1.50 - - 0.95 0.9 - - 20

Table D.2: Cost and performance of electricity supply technologies implemented in the
model. Heat rates are used to convert fossil fuel generation output to fuel consumption
and emissions. The water requirements for seawater cooled plants are not tracked as there
is no constraint on seawater withdrawals beyond coastline accessibility. ELCC = effective
load carrying capacity: the fraction of installed capacity allocated to peak load carrying
capability of the system.
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Power Generation Capacity [ MW ]
Province NGCC AC NGCC SW NGST SW NGST AC NGGT OLCC AC OLCC SW OLST SW OLST AC OLGT Rural OLGT

Asir 0 0 0 0 0 0 0 0 0 572 0

Bahah 0 0 0 0 0 0 0 0 0 0 0

N. Borders 0 0 0 0 0 0 0 0 0 629 45

Jawf 0 0 0 0 0 0 0 0 0 214 0

Madinah 0 0 0 0 0 0 0 0 0 202 0

Quassim 0 0 0 0 0 0 0 0 0 493 0

Riyad 1992 0 0 1151 721 0 0 0 0 1296 21

E. Region 0 520 6003 0 916 0 0 0 0 2010 0

Ha’il 0 0 0 0 0 0 0 0 0 210 0

Jizan 0 0 0 0 0 0 0 2400 0 618 20

Makkah 0 0 0 0 0 0 2983 8625 0 1134 0

Najran 0 0 0 0 0 0 0 0 0 289 61

Tabuk 0 0 0 0 0 0 0 0 0 902 70

Total 1992 520 6003 1151 1637 0 2983 11025 0 8568 216

Table D.3: Estimated baseyear distribution of power generation in Saudi Arabia.

from [216]. Investment and fixed costs for groundwater and surface water are excluded as
it is assumed that most of this infrastructure is already in place and no further expansion is
considered in the model. Additional costs for surface and groundwater are accounted for
by tracking the electricity used, which is assumed to be the primary component of supply
costs.

The base-year distribution of unconventional water supply and wastewater treatment
technologies in Saudi Arabia is provided in Table (D.5), and are estimated from the analy-
sis in [177]. The distribution of surface reservoirs and precipitation by month is provided
in Table (D.6) and is also estimated based on the analysis in [177].

D.2.3 Electricity transmission and water conveyance

The electricity transmission and water conveyance data implemented in the mode is sum-
marized in Tables (D.7) and (D.8). Electricity transmission capacity data is difficult to ob-
tain and we alternatively estimated existing and planned capacities between regions based
on maps provided by the regional balancing area authority [213, 214]. Water conveyance
capacity between regions is estimated from recent regional assessments [177,180]. Trans-
mission costs are taken from another electricity planning model with a similar representa-
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Technology Capital Fixed Variable Electricity Heat
type cost cost cost Demand Demand Lifetime

[ $/m3/day ] [ $/m3/day ] [ $/m3 ] [ kWh/m3 ] [ MJ/m3 ]

Groundwater - - 0.01 0.3 - 0.8 - -

Surface water - - 0.01 0.1 - 0.3 - -

Rainwater Harvesting (RWH) 590 15 0 0 - 0.2 - 30

Primary Wastewater Treatment (WWTP) 1000 0 0.04 0.3 - 0.5 - 30

Wastewater Recycling (WWTT) 1500 0 0.04 0.8 - 1 - 30

Multi-stage Flash Desalination (MSF) 1850 0 0.1 10 - 16 200 - 250 30

Reverse Osmosis Desalination (RO) 1700 0 0.1 3 - 5 - 30

Table D.4: Cost and performance of water supply technologies implemented in the model.
The range in reported energy intensities is used to parameterize a ”min”, ”mean”, and
”max” water performance scenario. The ”min” scenario is explored in the sensitivity anal-
ysis with the ”mean” scenario used in the other cases.

Water Supply Capacity [ MCM/yr ]
Province MSF RO WWTP Recycling

Asir 0 0 13 6

Bahah 0 0 0 0

N. Borders 0 0 0 0

Jawf 0 0 0 0

Madinah 117 39 59 28

Quassim 0 0 14 6

Riyad 0 0 267 128

E. Region 506 29 371 178

Ha’il 0 0 0 0

Jizan 1 0 0 0

Makkah 356 36 189 91

Najran 0 0 0 0

Tabuk 7 4 0 0

Total 986 108 913 438

Table D.5: Estimated baseyear distribution of unconventional water supply and wastewater
treatment technologies in Saudi Arabia. WWTP = Primary wastewater treatment (not
suitable for potable reuse).
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Precipitation Surface Storage Monthly Precipitation Fraction
Province [ mm/yr ] [ MCM/yr ] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Asir 278 411 0.06 0.06 0.14 0.22 0.19 0.03 0.07 0.10 0.02 0.02 0.04 0.03

Bahah 81 41 0.10 0.06 0.16 0.30 0.15 0.02 0.02 0.05 0.01 0.02 0.04 0.06

N. Borders 96 21 0.22 0.09 0.17 0.17 0.02 0.02 0.00 0.00 0.00 0.07 0.08 0.16

Jawf 67 0 0.25 0.00 0.09 0.16 0.00 0.03 0.00 0.04 0.11 0.17 0.03 0.12

Madinah 202 85 0.16 0.02 0.17 0.24 0.09 0.01 0.00 0.01 0.00 0.02 0.19 0.08

Quassim 145 6 0.15 0.07 0.18 0.20 0.10 0.00 0.00 0.00 0.00 0.03 0.17 0.11

Riyad 93 92 0.13 0.11 0.26 0.25 0.03 0.00 0.00 0.00 0.00 0.01 0.07 0.14

E. Region 90 0 0.25 0.08 0.06 0.14 0.04 0.00 0.00 0.00 0.00 0.00 0.20 0.24

Ha’il 101 13 0.18 0.19 0.12 0.11 0.05 0.00 0.00 0.00 0.05 0.09 0.13 0.08

Jizan 202 246 0.06 0.02 0.04 0.09 0.08 0.06 0.11 0.16 0.11 0.11 0.07 0.06

Makkah 202 336 0.19 0.01 0.06 0.11 0.01 0.00 0.01 0.05 0.05 0.13 0.20 0.19

Najran 22 90 0.00 0.43 0.02 0.05 0.17 0.15 0.00 0.07 0.00 0.11 0.00 0.00

Tabuk 120 7 0.15 0.24 0.13 0.09 0.05 0.00 0.00 0.00 0.05 0.07 0.11 0.12

Table D.6: Precipitation and surface water storage data implemented in the modeling
framework.

tion [221], while water conveyance infrastructure costs are estimated from a recent analy-
sis for Saudi Arabia [212]. No cost improvements for network technologies are considered
in the model. Existing interprovincial water conveyance is estimated from [177], and in-
cludes a 360 MCM/yr connection between E. Region and Riyad, a 20 MCM/yr connection
between E. Region and Qassim, and a 10 MCM/yr line between Makkah and Asir.

Network Technology Capacity units Capital cost Fixed O&M Lifetime Efficiency loss
[ $/capacity-km ] [ $/capacity-yr ] [ %/km ]

Electricity Transmission kW 1.13 0.01 60 0.006

Freshwater Transfer m3/day 6.70 0.03 60 0.03

Table D.7: Estimated costs for network technologies.

D.2.4 Cost projections and senstivity

The long-term cost projections implemented in the model are provided in Table (D.9). An
investment cost multplier is used to shift the base-year investment costs in future model
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Province Province Distance Elevation ∆ Line Rating Est. Capacity Status
Start End [ km ] [ m ] [ MW ]

Asir Riyad 954 -1788 1 X 380 kV 467 E

Asir Jizan 200 -2360 2 X 380 kV 934 E

Asir Makkah 600 -2123 1 X 380 kV 467 P

Asir Najran 249 -1107 1 X 380 kV 467 E

Bahah Makkah 311 -1878 1 X 380 kV 467 E

N. Borders Jawf 163 30 1 X 380 kV 467 P

N. Borders E. Region 966 -526 1 X 380 kV 467 E

Jawf Ha’il 391 426 1 X 380 kV 467 E

Jawf Makkah 467 194 1 X 380 kV 467 P

Madinah Quassim 509 40 1 X 380 kV 467 E

Madinah Ha’il 481 384 1 X 380 kV 467 P

Madinah Makkah 441 -331 2 X 380 kV 934 E

Madinah Tabuk 620 152 2 X 380 kV 934 E

Quassim Riyad 359 -36 3 X 380 kV 1401 E

Quassim E. Region 720 -638 1 X 380 kV 467 E

Quassim Ha’il 269 344 1 X 380 kV 467 E

Riyad E. Region 478 -602 4 X 380 kV 1868 E

Riyad Makkah 876 -335 1 X 380 kV 467 P

Jizan Makkah 702 237 1 X 380 kV 467 E

Jizan Najran 328 1253 1 X 380 kV 467 E

Table D.8: Estimated baseyear distribution of electricity transmission technologies [213,
214]. Line ratings were converted to estimated transfer capabilities based on the historical
transfer capabilities between zones described in [174]. Existing lines (status = E) are
assumed to already be available in the baseyear, whereas planned lines (status = P) are
assumed available in 2015.
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years to reflect anticpated long-term improvements and uncertainties. Future cost changes
for electricity generation technology are estimated from the recent projections released by
the National Renewable Energy Labratory [220]. We specifically consider the min, mean,
and max range projected in the NREL data to generate the cost multipliers. These mul-
tipliers are then applied to the costs listed in Table (D.2). For water supply technologies,
moderate cost improvements are anticipated [181], and we alternatively vary the base-year
captial costs according to the uncertainty ranges reported in [180, 181, 205, 217].

D.2.5 Resource potentials

Renewable energy potentials are derived for each province by defining an average monthly
capacity factor (the fraction of total installed capacity that can be produced annually) for
each technology. For solar energy, intra-annual geographic diversity is modeled using
monthly observations of solar intensity from a number of measurement stations [214].
These data are then calibrated to reflect the anticipated performance of actual solar power
systems (average capacity factor of 30%) estimated from a detailed technological assess-
ment [325]. For wind energy, many of the best sites lie on the Western coast [187,214], and
we constrain wind expansion to these provinces and assume an average capacity factor of
30%. Similarly, we constrain geothermal expansion to provinces with known geothermal
potential [184].

Without connection to a hydrological model tracking surface water availability, the
provincial distribution of surface water resources is assumed to follow the distribution
of reservoir capacities [177]. We then model the monthly contribution of annual run-off
following the historical spatial monthly precipitation distribution. Access to seawater is
constrained to provinces with coastlines. For rainwater harvesting, the historical average
precipitation is used to identify a monthly capacity factor in each region.
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Technology Scenario 2010 2015 2020 2025 2030 2035 2040 2045 2050

PV min 1.00 0.50 0.29 0.29 0.29 0.29 0.29 0.29 0.29

mid 1.00 0.52 0.43 0.36 0.29 0.29 0.29 0.29 0.29

max 1.00 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54

WND min 1.00 0.71 0.67 0.65 0.63 0.63 0.63 0.63 0.63

mid 1.00 0.78 0.76 0.74 0.74 0.73 0.73 0.73 0.73

max 1.00 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78

CSPTS min 1.00 0.93 0.42 0.42 0.42 0.42 0.42 0.42 0.42

mid 1.00 0.93 0.56 0.49 0.42 0.42 0.42 0.42 0.42

max 1.00 0.93 0.70 0.70 0.70 0.70 0.70 0.70 0.70

CSP min 1.00 0.93 0.42 0.42 0.42 0.42 0.42 0.42 0.42

mid 1.00 0.93 0.56 0.49 0.42 0.42 0.42 0.42 0.42

max 1.00 0.93 0.70 0.70 0.70 0.70 0.70 0.70 0.70

NGCC / OLCC min 1.00 0.99 0.93 0.91 0.89 0.88 0.87 0.87 0.87

mid 1.00 0.99 0.93 0.91 0.89 0.88 0.87 0.87 0.87

max 1.00 0.99 0.93 0.91 0.89 0.88 0.87 0.87 0.87

NGGT / OLGT min 1.00 0.92 0.89 0.87 0.85 0.83 0.83 0.83 0.83

mid 1.00 0.92 0.89 0.87 0.85 0.83 0.83 0.83 0.83

max 1.00 0.92 0.89 0.87 0.85 0.83 0.83 0.83 0.83

NC min 1.00 0.97 0.85 0.83 0.80 0.78 0.76 0.76 0.76

mid 1.00 0.97 0.85 0.83 0.80 0.78 0.76 0.76 0.76

max 1.00 0.97 0.85 0.83 0.80 0.78 0.76 0.76 0.76

LC / ELS min 1.00 1.00 0.50 0.33 0.33 0.33 0.33 0.33 0.33

mid 1.00 1.00 0.67 0.50 0.33 0.33 0.33 0.33 0.33

max 1.00 1.00 0.92 0.83 0.67 0.67 0.67 0.67 0.67

MSF min 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65

mid 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

max 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35

RO min 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53

mid 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

max 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47

RWH min 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

mid 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

max 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42

WWTT min 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

mid 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

max 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30

Table D.9: Investment cost multipliers for supply technologies.
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D.3 Demand models

Demands for electricity and water occurring in the agricultural, domestic, and manufactur-
ing sectors drive capacity expansion requirements and thus represent crucial model inputs.
Econometric models are widely used to generate demand projections, and we apply a sim-
ilar approach to generate demands for Saudi Arabia. We identify semi-logarithmic models
between historical per capita GDP and domestic sector electricity and water withdrawal
to reflect saturation of useful services with increasing income-level [223, 326]. Historical
energy consumption data is obtained from the International Energy Agency [78], historical
water data is obtained from the United Nations Food & Agricultural Organization [230],
and historical socioeconomic indicators are obtained from the World Bank [170]. Least
squares analysis is then used with these data to identify the models included in Table
(D.10). Urban and rural income inequalities are estimated by downscaling national GDP
following the procedure described in Grübler et al. [294]. Manufacturing demands are
estimated with a similar model that treats downscaled provincial GDP as the independent
variable, with electricity used for desalination subtracted from the baseyear data using the
estimated capacity and energy intensity in 2010. Wastewater (return-flow) from the man-
ufacturing and domestic sectors is estimated based on national consumption efficiencies
taken from a recent global analysis [223].

Agricultural demand projections account for the additional relationship observed be-
tween irrigation water requirements and national agricultural policy. Historically, cereals
were promoted and grown as an export crop, but due to irrigation requirements and the
impact on groundwater, Saudi Arabia’s agricultural policy recently moved towards phas-
ing out this water intensive crop and in the direction of producing higher value fruits and
vegetables for local consumption [227]. It can be expected that as income-levels increase
in Saudi Arabia, the demand for higher value food products will as well [327], poten-
tially leading to higher irrigation withdrawals to support cultivation locally. We reflect
these anticipated income effects on agricultural water use by first removing the volume
applied for cereals from the historical data based on a recent analysis of irrigation water
demands [227], and then fitting a semi-logarithmic model between the remaining agricul-
tural water demand and per capita GDP. Irrigation for cereal crops is assumed to stagnate
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post-2010. The majority of water withdrawn for irrigation is consumed, and for this reason
we exclude return-flow from the agricultural sector. For agricultural electricity demand,
we find no clear relationship with historical irrigation volumes and alternatively utilize the
estimated baseyear agricultural water-energy intensity (kWh/m3) for future projections.

For the demand projections, we utilize population, urbanization, and GDP projections
aligned with the shared socioeconomic pathways (SSP) [172, 173, 224, 225]; the most
recent socioeconomic scenarios put forward by the international global change research
community. We specifically focus on the SSP2 scenario, a mid-range case reflecting a
continuation of current trends (moderate sustainability policy and technology shifts). Al-
though SSP2 is a moderate scenario (globally), in the specific case of Saudi Arabia it
corresponds to substantial population and economic activity growth [172, 173].

We utilize the quantitative scenario data to generate a single national-level electricity
and freshwater demand trajectory for each sector out to 2050, with the aggregated results
depicted in Figure (D.5). Moderate levels of end-use technological change are included
(1 % per year compound annual reduction), and reflect expected efficiency improvements
driven by technological innovation. Positive growth coefficients are stipulated for elec-
tricity (1 % per year compound annual increase) due to the anticipated growth in elec-
trified end-uses (e.g., air conditioning and electric vehicles). It is important to note that
the resulting electricity demand trajectory is somewhat conservative to other recent pro-
jections [189]. The estimated national domestic and industrial demands are downscaled
to the provincial level based on the population distribution, whereas agricultural demands
are disaggregated following the historical distribution [230]. Monthly domestic electricity
demands are decomposed based on historical trends [189]. Domestic and irrigation water
demands are broken into monthly components based on the estimated moisture deficit,
calculated across 1/4 degree grid cells and weighted based on population for domestic
demands [231]. The distribution across each region is summarized in Table (D.11).

D.3.1 Sensitivity scenarios

Although the reference demand trajectories include improvements in energy efficiency,
advanced conservation scenarios are defined to reflect uncertainties surrounding techno-
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Figure D.1: National socioeconomic and demand projections for the SSP2 scenario. a.
Population; b. Per capita GDP; c. Electricity demand; and d. Freshwater withdrawal. In-
dustrial demands exclude electricity for desalination and cooling water for thermoelectric
generation.

Sector Resource Demand Equation Units Model Parameters
a b λ

Domestic Freshwater (a+b · lng) ·φ ·λ y m3/capita 356.96 -28.71 1.00

Electricity (a+b · lng) ·φ ·λ y kWh/capita -15745.75 2194.47 1.01

Industrial Freshwater (a+b · lnG) ·φ ·λ y km3 -12.89 0.51 0.99

Electricity (a+b · lnG) ·φ ·λ y km3 -222.15 9.04 0.99

Agriculture Freshwater (a+b · lng) ·φ ·λ y m3/capita 692.73 -29.16 0.99

Electricity a ·λ y kWh/m3 0.22 - 0.99

Table D.10: Identified demand models for the domestic, industrial, and agricultural sec-
tors. The parameter φ represents the base-year model error, and decays to unity along
an exponential trajectory to represent convergence over time. Agriculture water require-
ments exclude irrigation for cereal crops, which is assumed to stagnate over future peri-
ods. G = GDP, and g = per capita GDP. Positive technological change parameters λ are
stipulated for electricity due to the anticipated growth in electrified end-uses (e.g., air con-
ditioning and electric vehicles) that may outpace autonomous efficiency improvements.
Least-squares analysis is applied to identify model coefficients with data from IEA [78],
FAO [230], and the World Bank [170].
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Monthly Demand Fraction
Province % Total Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Asir 1.9 0.075 0.077 0.079 0.086 0.089 0.096 0.09 0.087 0.089 0.084 0.075 0.074

Bahah 0.2 0.077 0.078 0.078 0.085 0.089 0.095 0.091 0.087 0.087 0.084 0.076 0.073

N. Borders 0.0 0.065 0.072 0.075 0.083 0.093 0.101 0.102 0.099 0.092 0.082 0.069 0.066

Jawf 8.8 0.067 0.071 0.076 0.083 0.093 0.101 0.101 0.099 0.092 0.081 0.069 0.066

Madinah 2.4 0.070 0.075 0.081 0.087 0.092 0.097 0.094 0.091 0.090 0.082 0.072 0.070

Quassim 18.8 0.068 0.073 0.078 0.088 0.092 0.097 0.097 0.093 0.091 0.083 0.071 0.069

Riyad 24.0 0.070 0.074 0.077 0.085 0.091 0.097 0.096 0.092 0.090 0.084 0.073 0.070

E. Region 9.2 0.071 0.075 0.078 0.086 0.092 0.097 0.094 0.091 0.089 0.083 0.074 0.070

Ha’il 10.8 0.068 0.072 0.077 0.086 0.093 0.099 0.098 0.096 0.091 0.082 0.071 0.067

Jizan 15.1 0.074 0.079 0.080 0.087 0.088 0.096 0.089 0.088 0.089 0.083 0.075 0.074

Makkah 3.8 0.073 0.077 0.081 0.086 0.090 0.095 0.091 0.088 0.090 0.083 0.074 0.073

Najran 1.1 0.073 0.077 0.080 0.086 0.089 0.097 0.089 0.088 0.088 0.083 0.075 0.073

Tabuk 4.0 0.069 0.073 0.077 0.086 0.092 0.099 0.098 0.095 0.090 0.081 0.071 0.068

Table D.11: Regional and monthly breakdown of irrigation requirements. Regional dis-
tribution is taken from FAO [230]. The percent total is used to disaggregate the national
agricultural sector electricity and water demand projections to the provincial level, and is
held constant over future periods. The monthly distribution is assumed to follow the mois-
ture deficit, which is calculated across 1/4 degree grid cells and averaged across regions
following the procedure described in [231].
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logical change, price response, and end-use behaviour. The alternative scenarios are gen-
erated by varying the technological change parameter λ in Table 10 such that the demands
decrease by 40% in the year 2050 relative to the reference scenario. This represents a
potential for water and electricity conservation similar to that identified in recent analy-
ses [39, 234]. The potential impacts of alternative food import policies on national irri-
gation withdrawals are also important to consider due to the fraction of total freshwater
demand applied for irrigation. We explore a scenario investigating the potential for in-
creased food imports to displace unconventional water resource expansion by simulating
a 50% reduction in irrigation withdrawals by 2050. Finally, we combine all conserva-
tion measures to generate an Optimistic development scenario. The alternative demand
scenarios are depicted in Figures 2 to 5 below.
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Figure D.2: Demand projections for the ”Electricity conservation” scenario. a. Electricity
demand; and b. Freshwater withdrawal.
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Figure D.3: Demand projections for the ”Water conservation” scenario. a. Electricity
demand; and b. Freshwater withdrawal.
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Figure D.4: Demand projections for the ”Increased food imports” scenario. a. Electricity
demand; and b. Freshwater withdrawal.
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Figure D.5: Demand projections for the ”Optimistic” scenario. a. Electricity demand; and
b. Freshwater withdrawal.
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D.4 Supplementary figures

D.4.1 Provincial delineation
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Figure D.6: Spatial extent of subnational regions considered in the model align with
provincial administrative boundaries. The locations of provincial capital cities are used
to estimated network parameters, and are depicted along with the estimated 2010 provin-
cial population distribution.
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D.4.2 Provincial technology distributions in 2050
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Figure D.7: 0% reduction in groundwater withdrawals, and 0% reduction in cumu-
lative CO2 emissions. Optimal supply technology distributions in 2050. Top: electricity
supply by resource. Middle: electricity supply by cooling technology. Bottom: water
supply by source.
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Figure D.8: 0% reduction in groundwater withdrawals, and 0% reduction in cumula-
tive CO2 emissions. Optimal network technology distributions in 2050. Top: interprovin-
cial electricity network. Bottom: interprovincial freshwater network.
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Figure D.9: 90% reduction in groundwater withdrawals, and 0% reduction in cumu-
lative CO2 emissions. Optimal supply technology distributions in 2050. Top: electricity
supply by resource. Middle: electricity supply by cooling technology. Bottom: water
supply by source.
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Figure D.10: 90% reduction in groundwater withdrawals, and 0% reduction in cu-
mulative CO2 emissions. Optimal network technology distributions in 2050. Top: inter-
provincial electricity network. Bottom: interprovincial freshwater network.
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Figure D.11: 0% reduction in groundwater withdrawals, and 80% reduction in cumu-
lative CO2 emissions. Optimal supply technology distributions in 2050. Top: electricity
supply by resource. Middle: electricity supply by cooling technology. Bottom: water
supply by source.
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Figure D.12: 0% reduction in groundwater withdrawals, and 80% reduction in cu-
mulative CO2 emissions. Optimal network technology distributions in 2050. Top: inter-
provincial electricity network. Bottom: interprovincial freshwater network.
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Figure D.13: 90% reduction in groundwater withdrawals, and 80% reduction in cu-
mulative CO2 emissions. Optimal supply technology distributions in 2050. Top: electric-
ity supply by resource. Middle: electricity supply by cooling technology. Bottom: water
supply by source.
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Figure D.14: 90% reduction in groundwater withdrawals, and 80% reduction in cu-
mulative CO2 emissions. Optimal network technology distributions in 2050. Top: inter-
provincial electricity network. Bottom: interprovincial freshwater network.
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Appendix E

Supplementary material:
Multi-criteria infrastructure planning
for integrated water-energy systems

E.1 MCA process and implementation

This supplementary material describes in greater detail the MCA procedure applied in this
paper and its implementation as an integrated software tool. This framework is embedded
in the modular web-based tool for multiple criteria model analysis (MCMA) [254].

E.1.1 Process

Specification of the MCA starts with uploading the core model provided either in the stan-
dard mathematical programming system (MPS) format or as a General Algebraic Model-
ing System (GAMS) format model. In this paper, the core model is written in the GNU
mathematical prgramming language and converted to MPS format. The names of the core
model variables are presented to the user, who selects those to be used as criteria, and de-
fines the corresponding criterion name and type (either minimization or maximization).
The uploaded core model together with the criteria specification constitutes the MCA
problem instance, definition of which triggers a set of optimization tasks necessary for
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computing the pay-off table, i.e., the values of utopia components and an approximation
of the nadir. Computation of the pay-off table requires 4 ·K optimizations, where K is the
number of selected criteria. After these computations are completed, the MCA problem
instance is ready for interactive analysis. An option for defining more than one analysis
instance is used in diverse situations, e.g., when problems are analyzed by several users or
if a user wants to make several analyses each with a different focus. The initial analysis
instance is generated automatically. Subsequent instances are optionally created by the
users whenever desired.

MCA is an iterative process supporting the user in the Pareto set exploration that aims
at finding subsets of solutions with desired properties (e.g., cheap, or moderately priced,
or expensive). Therefore each analysis is composed of iterations. To provide an initial
view on the Pareto-set, several iterations are generated automatically. First, efficient solu-
tions corresponding to each utopia component are generated by selfish optimization of the
corresponding criterion, i.e., all other criteria are set to be inactive. Finally, an example
of balanced preferences is generated by setting for each criterion the same relative (to the
utopia/nadir range) levels of aspiration and reservation.

With the above summarized background information the user takes full control of fur-
ther iterations. For each iteration the user analyzes the Pareto-solutions obtained in pre-
vious iterations, and considers which criteria he/she wants to improve and which should
be compromised, and then sets values for each criterion of aspiration and reservation aim-
ing at obtaining an efficient solution that fits their preferences (desired trade-offs between
criteria values) better. At each iteration the multi-criteria problem is converted into an
auxiliary parametric single-objective problem using the achievement scalarizing function
given by (5.10), the solution of which provides a Pareto solution hopefully having a better
trade-off between criteria than the previous solution.

Typically, the MCA users explore various areas of the Pareto frontier (e.g., cheap and
expensive having the corresponding bad and good values of environmental criteria) before
deciding which compromises between the criteria values fit best their preferences. Ex-
amples of this process are provided in Section 5.3, and more methodological background
in [76, 243, 252, 253].
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E.1.2 Implementation

The MCA of the model described in Section 5.2.2 was done with the MCMA, modular
web-based tool for multiple criteria model analysis [254]. The MCMA tool implements
the methodology described in Section 5.2.2 and enables analysis of models provided in
either the standard MPS format for linear programming (LP) models or models specified
in GAMS. In order to enable a proper MCA the core models should conform to specific
requirements on the core model (i.e., outcome variables defined, no constraints due to
preferences, optimization criterion ignored, etc.).

The workflow of the MCA implementation is actually hidden from the MCA users,
who are guided through the MCA process (described in E.1.1) by a typical Graphical User
Interface (GUI). The SEWP core model described in Section 5.2.3 is initially generated in
the standard MPS format in the same way as for the traditional single-criterion optimiza-
tion; only the constraints for objectives other than cost are not generated. Then the MCMA
tool is used for the MCA process described in E.1.1. For each iteration (i.e., specification
of aspiration and reservation values for each criterion) the following actions are executed:

• The interactively specified values of q̄k and qk are stored in a common data-base
(DB).

• The GUI calls the multi-criteria (MC)-solver, which generates the MC-part of the
MCA, and queues the corresponding Optimization Task (OT).

• A dedicated utility called Task Manager (TM) distributes the OTs over the work-
stations with the available optimizers (same solvers as used for the single criterion
model optimization).

• A dedicated MC optimization-solver merges the MC-part with the core model into
either the MPS standard file or a GAMS format model, and invokes the relevant
solver for solving the corresponding LP problem. For the MCA of the SEWP model,
the CPLEX solver is used.

• After the LP problem is solved, the MCO-solver extracts from the provided solution
file values of criteria and uploads them into the DB.
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• After the solution is uploaded into the DB, the MC-solver computes the elements of
the graphical solution representation, and marks in the DB as available for the user.

• The status of computations related to each MCA iteration is updated in the DB by
each software component. The GUI checks this status whenever the user wants to
explore the results of the corresponding iteration, and provides the user with access
to the relevant selected iteration of efficient solutions or to the information about the
computation status of the iteration.

• In addition to the analysis in the criteria space typically supported by the GUI of
the MCA tools, the user has access to full solutions provided by the solver of the
optimization task. These solution can therefore be used for model-specific analysis
(a sample of such analysis is shown in Section 5.3).
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[134] A. Gritsevskyi and N. Nakićenovic, “Modeling uncertainty of induced technologi-
cal change,” Energy policy, vol. 28, no. 13, pp. 907–921, 2000.

[135] E. Shittu, “Energy technological change and capacity under uncertainty in learning,”
IEEE Transactions on Engineering Management, vol. PP, no. 99, pp. 1–13, 2013.

199



[136] H. Chen and T. Ma, “Technology adoption with limited foresight and uncertain
technological learning,” European Journal of Operational Research, 2014.

[137] S. J. Stoyan and M. M. Dessouky, “A stochastic mixed-integer programming ap-
proach to the energy-technology management problem,” Computers & Industrial

Engineering, vol. 63, no. 3, pp. 594–606, 2012.

[138] M. Yang, W. Blyth, R. Bradley, D. Bunn, C. Clarke, and T. Wilson, “Evaluating the
power investment options with uncertainty in climate policy,” Energy Economics,
vol. 30, no. 4, pp. 1933–1950, 2008.

[139] L. Fan, B. F. Hobbs, and C. S. Norman, “Risk aversion and CO2 regulatory uncer-
tainty in power generation investment: Policy and modeling implications,” Journal

of Environmental Economics and Management, vol. 60, no. 3, pp. 193–208, 2010.

[140] S. Syri, A. Lehtilä, T. Ekholm, I. Savolainen, H. Holttinen, and E. Peltola, “Global
energy and emissions scenarios for effective climate change mitigation: Determinis-
tic and stochastic scenarios with the TIAM model,” International Journal of Green-

house Gas Control, vol. 2, no. 2, pp. 274–285, 2008.

[141] R. Loulou, M. Labriet, and A. Kanudia, “Deterministic and stochastic analysis of
alternative climate targets under differentiated cooperation regimes,” Energy Eco-

nomics, vol. 31, pp. S131–S143, 2009.

[142] T. Ekholm, “Hedging the climate sensitivity risks of a temperature target,” in Risks,

costs and equity: Modelling efficient strategies for climate and energy policy, VTT
Technical Research Centre of Finland, 2013.

[143] A. Kanudia and R. Loulou, “Robust responses to climate change via stochas-
tic MARKAL: The case of Quebec,” European Journal of Operational Research,
vol. 106, no. 1, pp. 15–30, 1998.

[144] M.-C. Hu and B. F. Hobbs, “Analysis of multi-pollutant policies for the US power
sector under technology and policy uncertainty using MARKAL,” Energy, vol. 35,
no. 12, pp. 5430–5442, 2010.

200



[145] F. Babonneau, A. Haurie, R. Loulou, and M. Vielle, “Combining stochastic opti-
mization and Monte Carlo simulation to deal with uncertainties in climate policy
assessment,” Environmental Modeling & Assessment, vol. 17, no. 1-2, pp. 51–76,
2012.

[146] E. De Cian and T. Massimo, “Mitigation portfolio and policy instruments when
hedging against climate policy and technology uncertainty,” Environmental Model-

ing & Assessment, vol. 17, no. 1-2, pp. 123–136, 2012.

[147] L. Fan, C. S. Norman, and A. G. Patt, “Electricity capacity investment under risk
aversion: A case study of coal, gas, and concentrated solar power,” Energy Eco-

nomics, vol. 34, no. 1, pp. 54–61, 2012.

[148] M. Labriet, A. Kanudia, and R. Loulou, “Climate mitigation under an uncer-
tain technology future: A TIAM-World analysis,” Energy Economics, vol. 34,
pp. S366–S377, 2012.

[149] I. Keppo and B. van der Zwaan, “The impact of uncertainty in climate targets and
CO2 storage availability on long-term emissions abatement,” Environmental Mod-

eling & Assessment, vol. 17, no. 1-2, pp. 177–191, 2012.

[150] V. Krey and K. Riahi, “Risk hedging strategies under energy system and climate
policy uncertainties,” in Handbook of Risk Management in Energy Production and

Trading, pp. 435–474, Springer, 2013.

[151] Y. Li, G. Huang, and X. Chen, “Planning regional energy system in association
with greenhouse gas mitigation under uncertainty,” Applied Energy, vol. 88, no. 3,
pp. 599–611, 2011.

[152] A. Kanudia, M. Labriet, and R. Loulou, “Effectiveness and efficiency of climate
change mitigation in a technologically uncertain world,” Climatic Change, pp. 1–
16, 2012.

201



[153] G. Heinrich, L. Basson, B. Cohen, M. Howells, and J. Petrie, “Ranking and se-
lection of power expansion alternatives for multiple objectives under uncertainty,”
Energy, vol. 32, no. 12, pp. 2350–2369, 2007.

[154] J. E. Bistline, “Electric sector capacity planning under uncertainty: Shale gas
and climate policy in the US,” in 31st USAEE/IAEE North American Conference.

Austin, TX, 2012.

[155] G. B. Dantzig, “Linear programming under uncertainty,” Management science,
vol. 1, no. 3-4, pp. 197–206, 1955.

[156] P. B. Hazell, “A linear alternative to quadratic and semivariance programming for
farm planning under uncertainty,” American Journal of Agricultural Economics,
vol. 53, no. 1, pp. 53–62, 1971.

[157] J. A. Wicks and J. W. Guise, “An alternative solution to linear programming prob-
lems with stochastic input-output coefficients,” Australian Journal of Agricultural

and Resource Economics, vol. 22, no. 1, pp. 22–40, 1978.

[158] B. A. McCarl and T. H. Spreen, “Applied Mathematical Programming Using Alge-
braic Systems,” 1997.

[159] A. Sopinka, G. Cornelis van Kooten, and L. Wong, “Reconciling self-sufficiency
and renewable energy targets in a hydro dominated system: The view from British
Columbia,” Energy Policy, vol. 61, pp. 223–229, 2013.

[160] S. C. Parkinson and N. Djilali, “Robust response to hydro-climatic change in elec-
tricity generation planning,” Climatic Change, vol. 130, no. 4, pp. 475–489, 2015.

[161] T. W. Hudiburg, B. E. Law, C. Wirth, and S. Luyssaert, “Regional carbon dioxide
implications of forest bioenergy production,” Nature Climate Change, vol. 1, no. 8,
pp. 419–423, 2011.

[162] E.-D. Schulze, C. Körner, B. E. Law, H. Haberl, and S. Luyssaert, “Large-scale
bioenergy from additional harvest of forest biomass is neither sustainable nor green-
house gas neutral,” GCB Bioenergy, vol. 4, no. 6, pp. 611–616, 2012.

202



[163] “B.C. Best Practices Methodology for Quantifying Greenhouse Gas Emissions,”
tech. rep., Government of Britich Columbia, Ministry of Environment, 2013.

[164] A. Brandt, G. Heath, E. Kort, F. OSullivan, G. Pétron, S. Jordaan, P. Tans, J. Wilcox,
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and M. Mustafa, “Integration of renewables and reverse osmosis desalination: Case
study for the Jordanian energy system with a high share of wind and photovoltaics,”
Energy, vol. 92, pp. 270–278, 2015.

[194] K. T. Sanders, “Critical review: Uncharted waters? The future of the electricity-
water nexus,” Environmental Science & Technology, vol. 49, no. 1, pp. 51–66, 2014.

[195] Alstom, “Alstom Case Study: Gas Product Solutions, Riyadh 12 - Saudi Arabia,”
2013.

[196] “ACWA Power International, Combined Qurayyah IPP1 and 2: Addendum to So-
cial and Environmental Assessment Report,” 2011.

[197] “MAC Construction, PP9 1200 MW Combined-cycle Power Station,” 2012.

[198] K. Gerdes and C. Nichols, “Netl: Water requirements for existing and emerging
thermoelectric plant technologies,” tech. rep., DOE/NETL, 2009.

[199] C. Turchi, M. Wagner, and C. Kutscher, “Water Use in Parabolic Trough Power
Plants: Summary Results from WorleyParsons’ Analyses,” NREL, pp. 1–25, 2010.

[200] C. Zhang, L. D. Anadon, H. Mo, Z. Zhao, and Z. Liu, “Water-carbon trade-off in
China’s coal power industry,” Environmental Science & Technology, vol. 48, no. 19,
pp. 11082–11089, 2014.

[201] S. Atilhan, A. B. Mahfouz, B. Batchelor, P. Linke, A. Abdel-Wahab, F. Nápoles-
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