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ABSTRACT

Widespread access to renewable electricity is seen as a viable method to mitigate

carbon emissions, although problematic are the issues associated with the integra-

tion of the generation systems within current power system configurations. Wind

power plants are the primary large-scale renewable generation technology applied

globally, but display considerable short-term supply variability that is difficult to

predict. Power systems are currently not designed to operate under these conditions,

and results in the need to increase operating reserve in order to guarantee stability.

Often, operating conventional generation as reserve is both technically and economi-

cally inefficient, which can overshadow positive benefits associated with renewable en-

ergy exploitation. The purpose of this thesis is to introduce and assess an alternative

method of enhancing power system operations through the control of electric loads.

In particular, this thesis focuses on managing highly-distributed sustainable demand-

side infrastructure, in the form of heat pumps, electric vehicles, and electrolyzers, as

dispatchable short-term energy balancing resources. The main contribution of the

thesis is an optimal control strategy capable of simultaneously balancing grid- and

demand-side objectives. The viability of the load control strategy is assessed through

model-based simulations that explicitly track end-use functionality of responsive de-

vices within a power systems analysis typically implemented to observe the effects of

integrated wind energy systems. Results indicate that there is great potential for the

proposed method to displace the need for increased reserve capacity in systems con-

sidering a high penetration of wind energy, thereby allowing conventional generation

to operate more efficiently and avoid the need for possible capacity expansions.
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Ċlf Online load-following reserve ramp capacity

Ċreg Online regulation reserve ramp capacity

L̇ Load-following ramp capacity contract
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Chapter 1

Introduction

1.1 Motivation

The carbon-intensive industrialization pursued over the past century has resulted

in a rapid increase in the amount of atmospheric carbon dioxide [1]. The higher

levels of atmospheric concentration in conjunction with the spectroscopic properties

of this molecule result in increased atmospheric absorption of radiation. Resultant

temperature differentials compromise the thermodynamic stability of earth’s climate

system, and foreshadow a future of extreme weather events. Furthermore, as a large

portion of the carbon dioxide in the atmosphere makes its way to the ocean via

the carbon cycle, producing carbonic acid, increased atmospheric concentration and

ocean acidification are in concert. Acidic oceans usurp key building-block ions used

by integral species in the marine food-web, reducing the ability of such species to

survive in the long-term [2]. Finally, health problems linked to the inhalation of

carbon emissions and concomitant pollutants associated with fossil-fuels combustion

are becoming a serious health concern in many locations in which emission intensities

are at their highest [3]. As the stability of these global-scale phenomena (climate,

food-webs, and well-being) allowed humanity to develop societies to the current levels

of sophistication, urgent action is required to reduce carbon emissions globally.

Integral to economic development is access to energy, where energy dense fossil

fuels have traditionally provided a cheap, plentiful, and reliable supply framework.

The widespread use of fossil fuel as an energy feedstock is the primary contributor to

global anthropogenic carbon emissions, and accounts for approximately 60% of total

global greenhouse gas emissions [4]. Further burdening humanity’s explicit reliance
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on fossil fuels are problems related to supply sustainability [5]. Fossil fuel resources

are becoming harder to obtain each year, where the amount of energy being expended

in the extraction processes is approaching similar levels to that achieved at end-use.

In order to maintain standards of living currently commensurate with economic or

social success, a rapid shift away from fossil fuel exploitation is needed, which will

require a total transformation within the energy supply sector.

To meet these ambitious goals, it is expected that nearly 6 trillion dollars will

be invested into restructuring the entire energy supply chain [6]. Development of re-

placement clean energy technologies and application of energy efficiency measures are

currently pursued with varying degrees of rigour internationally, and have resulted in

a plethora of individual technologies and system configurations that claim to reduce

carbon emissions. On the supply-side, low-carbon generation technologies, such as

wind, wave, solar, and tidal power plants are in the process of demonstrating their

suitability to displace conventional fossil fuelled generation. Due to resource inter-

mittency and unpredictability, challenges remain in the development of approaches

focused on fostering the grid-integration of these technologies into the locations where

they are needed, whilst ensuring supply reliability [7].

On the demand-side, electric vehicles (EV), and electric heating systems, are seen

as available tools to mitigate emissions within transportation and building sectors,

with the development of alternative fuels, such as hydrogen, set to further aid in the

displacement of fossil fuel for both stationary and transport-based applications. The

key underlying theme between these demand-side clean energy technologies is the

possible use of electric power as an energy source, although widespread use will result

in a large increase in electric power demand. Introduction of renewables on the supply-

side is viewed as the most promising route for meeting these increasing requirements

[8, 9, 10], but as mentioned, the power system is currently not designed to operate

with a large portion of such generation. In fact, the clean-energy service technologies

identified on the demand side have in common the requirement of electric energy

and load cycles with a degree of flexibility, opening the door for possible demand

side management to alleviate increased variability on the supply side. The main

motivation for this thesis is then the need to develop a resilient systems integration

framework that looks to tap into this flexible demand, such that optimal pathways

for minimizing emissions can be achieved through the simultaneous integration of

renewable generation technologies and sustainable demand-side infrastructure.
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1.2 Main Contributions

The pursuit of innovative control strategies and system configurations specifically

aimed at overcoming traditional operational barriers is on the horizon via coupling of

power system operation with real-time networking capabilities. There is considerable

ground to cover before mass deployment of this so-called smart grid technology oc-

curs. Many of the issues that need to be resolved require new design tools and control

models to capture a physical system-level view over relevant time-scales, as well as

concurrent management strategies that display robustness and reliability during im-

plementation [11]. To this regard, this thesis offers the following main contributions:

1. A community-scale approach to demand-side management is proposed, in which

an energy-based business is to be in charge of developing a transaction between

the operator of a low-carbon electric power system and community-specific elec-

tric load infrastructure. Demand-side clean energy technology, in the form of

air-source heat pumps, EVs, and electrolyzers are targeted for demand response

recruitment, in order to leverage the use of these devices within the low-carbon

energy systems in which they are needed.

2. A novel control strategy is introduced that accurately manages the aggregate

demand trajectory of a large population of electric loads to provide ancillary

services to the power system. The key attribute of the proposed method is its

capability to simultaneously balance grid-side objectives with those typically

expected on the demand-side by the customers. The method is able to seam-

lessly integrate with typical power system control by aggregating responsive

load population dynamics into models equivalent to conventional dispatchable

generation.

3. A computational modelling framework is developed that allows for an integrated

bottom-up analysis of the proposed load management strategy. The model is

capable of explicitly tracking end-use functionality of responsive devices within a

power systems analysis typically implemented to observe the operational effects

of integrated renewable energy systems.
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1.3 Thesis Outline

The thesis proceeds as follows. Chapter 2 provides an overview of power system

operation. In particular, the chapter explicitly outlines problems associated with

low-carbon system configurations, in which intermittent renewable generation is to

be employed at large-scales. Chapter 3 introduces the prospect of involving demand-

side infrastructure in the operation of low-carbon energy systems. A resilient frame-

work for engaging communities is developed, as well as a novel design of a comfort-

constrained load management strategy aiming to control large populations of heat

pumps, electric vehicles, and electrolyzers for power system ancillary services. Chap-

ter 4 provides the integrated computational modelling framework that connects the

supply- and demand-side dynamics within the power systems analysis. Chapter 5

provides an overview and discussion of the results obtained from utilizing the compu-

tational model within different scenarios. Chapter 6 concludes the thesis, providing

recommendations and further avenues for future research.
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Chapter 2

Barriers to Low Carbon Electric

Power Systems

The carbon emissions associated with an electric power system are related to the

mix of resources that provide capacity in conjunction with the efficiency at which the

grid’s infrastructure delivers energy to end-users. Understanding tradeoffs between

the two is therefore important in the development of optimal design and operational

policies intended to achieve both economic and environmental objectives of system

stakeholders. The purpose of this chapter is to review the current barriers to im-

plementing low carbon power systems, and to provide insight into possible benefits

associated with involving elements from the demand-side in operations.

2.1 Review of Electric Power Generating Sources

There is a myriad of generation technologies currently available to power system

operators, and in turn applied within a variety of different configurations. In order to

meet the demand for energy, typical utilities employ services from centralized, large-

scale generating plants. Conventional large-scale generation technologies include:

hydroelectric plants that capture the potential energy of falling water; nuclear plants

that capture the energy liberated through nuclear fission; coal power plants that

implement the energy liberated in coal combustion; and combined-cycle gas turbines

(CCGT) and open-cycle gas turbines (OCGT) that use the energy liberated through

combustion of gas (typically natural gas).

Alternative generating technologies that rely on naturally reoccurring sources of



6

energy (or renewable energy) are also under vigorous development. These include:

solar, wind, tidal, and wave power generating plants. Of these alternative technolo-

gies, wind power generation has emerged as the primary scaleable technology that can

be applied economically. As such, wind energy development is predicted to continue

to dominate the renewable energy technology market, in particular due to its use in

large-scale developments [7].

Historically, minimizing short-term project costs has prevailed in terms of genera-

tion planning and operation, and allowed fossil-fuel based generating technologies to

dominate, although hydroelectric generation has played a large role within suitable

geographic regions. As new fossil fuel reserves are becoming harder to locate each

year, fossil fuel costs have become an increasing worry, that now combined with the

long-term project costs associable to the environmental degradation resulting from

high carbon feedstocks, have driven the desire to pursue alternative low carbon gener-

ation technologies. Table (2.1) displays costs and emissions data for typical large-scale

generation technologies, and has been adapted from [12]. Each individual technol-

Table 2.1: Cost and Emissions Data for Large-scale Generating Technologies.

Technology Fuel Cost Variable O&M Construction Emissions
[ $/MWh ] [ $/MWh ] [ $106/MW ] [ tCO2/MWh ]

Hydroelectric 1.13 0.02 1.55 0.009
Nuclear 6.20 0.07 1.70 0.012
Coal 13.70 0.70 1.10 0.980
CCGT 37.00 5.00 0.55 0.450
OCGT 41.00 4.50 0.46 0.650
Wind 0.00 0.17 1.30 0.015

ogy displays beneficial attributes that depend on whether the project’s objectives are

focused on short-term costs, or long-term sustainability.

In terms of emissions, both hydroelectric and nuclear developments appear su-

perior, even when compared in relation to wind generated energy. However, simply

ranking the environmental qualities of these generation technologies with respect to

their CO2 emission rate is in fact misleading. Development of large-scale hydroelectric

plants can result in the need to displace conventional land-use in surrounding areas,

which can mean flooding surrounding farmland or altering the surrounding aquatic /

terrestrial ecosystems. Availability of undeveloped locations suitable for hydroelectric

generating stations has also diminished, meaning future developments may need to
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focus on locations associated with higher risk. For nuclear power projects, the resul-

tant waste from the nuclear fission process pursued within a nuclear generating plant

emits dangerous levels of radiation, and while only small amounts of waste are pro-

duced, disposal requires assumptions that the disposal location will be uninhabited

until the waste decays (thousands of years). Further are added problems associated

with operational security either nuclear or hydro plants introduce in the geographic

regions in which they operate. Natural disasters or human errors can result in un-

stable operation, leading to the collapse of a hydroelectric dam, or a nuclear reactor

meltdown. Either event can contaminate large geographic areas for generations. Fi-

nally, the costs associated with building a nuclear power plant or hydroelectric dam

are immense, due to the complicated system required to contain and control the high

energy processes. Likewise, such plants take a considerable amount of time to build,

and therefore may not be able to provide the rapid decarbonization the electric power

system requires to allow atmospheric CO2 levels to stabilize and eventually diminish

to non-threatening levels.

Conversely, widespread integration of renewable energy technologies is seen as a

method to displace carbon emissions in the short-term [7], although many of these

technologies also face social barriers to implementation. Wind for instance can be

an unappealing development from the viewpoint of nearby communities, mainly due

to perceived decay in landscape aesthetics and threat posed to surrounding wildlife.

Nonetheless, prospects of community ownership and ecological siting considerations

have been shown to ease these tensions [13]. In hopes of meeting the majority of

their jurisdictions’ emission reduction targets within the electric power sector, utili-

ties in Denmark have demonstrated that wind energy systems can provide effective

generation capacity, where approximately 20% of their total electricity demand is

met with wind alone [14]. A problem faced by these utilities, and others hoping to

pursue similar aggressive wind integration strategies, is the loss of controllability on

the supply-side, as the fuel source—wind energy—is non-dispatchable, and therefore

new methods of maintaining grid stability are required.

Many European nations are granted the added benefit of a meshed transmission

network, providing needed support from neighbouring jurisdiction’s power systems.

In alternative locations in which similar connections are lacking, wind integration will

require access to grid-reinforcements in order to accommodate supply variability [15].

This underlines one of the main barriers preventing widespread access to renewable

electricity, which are the challenges associated with handling unpredictable short-
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term supply variability within conventional approaches to power system operation

and control [16].

2.2 Power System Operations

In order to understand how intermittent renewable generation effects power system

operations, a brief review of power system control is now provided. Power system

operators rely on specific control strategies aimed at particular planning horizons

to achieve a continuous balance between supply and demand. Capacity expansion

planning on the order of months to years is typically considered through forecasting

demand trends in conjunction with equipment maintenance and decommissioning

[17]. Actual individual generator schedules become available on the order of days

to hours, as many types of generating sources take a significant amount of time to

bring online (coal-fired plants are an example), and therefore must be allocated well in

advance. Fittingly, this type of scheduling is typically referred to as unit commitment

(UC), and relies on the use of load forecasts to develop an optimal operating schedule.

Beyond UC, economic dispatch (ED) is pursued on the order of minutes to hours,

again relying on updated load forecasts and generator states to directly control the

output of available generating resources [17].

The common theme among these approaches is that each approach applies an

optimization problem to arrive at a decision. As all methods must rely on fore-

casts to establish control variables, each contains inherent uncertainty, which can be

somewhat accommodated through application of suitable stochastic problem formu-

lations. Errors are inevitable though, which would result in an energy imbalance

between supply and demand, leading to operational instability. Real-time control

strategies commonly denoted as regulation must be applied in order to maintain a

continuous balance through the adjustment of suitable generators’ output.

Two separate regulation strategies are applied to achieve real-time balancing: pri-

mary and secondary control1. Primary control is intended to balance local frequency

deviations through decentralized control of individual generating units. Speed gov-

ernors are implemented on units participating in primary control (typically hydro or

thermal resources), and managed in response to local frequency measurements using

1There is also tertiary control that focuses on system security and involves planning reserves
meant to come on-line in the event of a contingency, for instance if a voltage collapse is foreseen to
occur, or a generator fails.



9

the droop characteristics of the particular unit [18]. Secondary control, often denoted

as automatic generation control (AGC), regulates frequency on the order of control

areas or balancing authorities that encompass many different generating units. AGC

uses measurements of tie-line flows between adjacent areas to generate a system-wide

metric known as the area control error (ACE). Units participating in AGC react to

the ACE signal based on their individual availability, and attempt to drive the ACE

signal to zero through adjustment of their output [18].

In either case, regulation reserves must be pre-allocated, which in turn effects the

other components of power system management. Figure (2.1) depicts a conceptual

representation of the different decision making time-scales apparent in power system

operation, where each individual control action is encompassed within the grid struc-

ture and demand profile. Feedbacks between the decision making intervals exist, and

result in regulation requirements propagating through the system.
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2.2.1 Effects of Variable Renewable Generation

The typical power system control architecture has provided a robust framework for

maintaing system performance, with problems now becoming apparent in systems in-

tended to integrate large amounts of intermittent renewable generation, in particular

wind [16]. Wind displays a high level of temporal variability, and is difficult to accu-

rately predict over short time-scales (minute-to-minute) [19]. Indication of the scales

over which wind power production displays variability is given by Apt [20]. Measured

and compiled performance data from a population of geographically dispersed wind

turbines is used by Apt to show that wind power production follows the Kolmorgorov

spectrum over a time-scale ranging from 30 seconds to over 2 days. As a result, Apt

was able to conclude that although wind variability can be somewhat accommodated

by the variability in demand, a considerable amount of wind power fluctuates over

different time-scales.

To understand what this means in terms of power system operations, integration

studies usually focus on how operation of the wind plant affects each component of

power system control. This process typically entails model-based power system simu-

lations in order to quantify the incremental reserves arising from enhanced variability

in the power system [21]. Using these incremental requirements in conjunction with

the corresponding cost per capacity seen by these services in conventional markets,

the integration-based costs of the project can be estimated, and combined to compute

the levelized cost of the wind energy.

Many wind integration studies find that reserves relevant for regulation are the

most affected, which can introduce problems for the power system operator, who

must provide greater access to such reserve resources [22]. In particular, operating

conventional generation as regulation reserve (typically hydro or thermal units) can

be unappealing from the viewpoint of the system operator for the following reasons:

• In direct contrast to the other control components, no attempt is made to

implement a least-cost dispatch for regulation [23].

• Both primary and secondary control require participating units to rapidly ramp

output in response to corresponding frequency measurements. Excessive ramp-

ing prematurely degrades units participating in regulation, reducing perfor-

mance and reliability over time [24].

• Ramping thermal units increases operating emissions [25].
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• Regulation requirements (up and down) can result in the need to operate the

unit partly-loaded, and therefore reduce its efficiency, though this can be mini-

mized through the use of multiple smaller units [26].

Beyond these initially identified problems associated with regulation are the neg-

ative effects felt throughout the other components of power system planning and

control. Within a particular management area, in order to ensure reliability under all

operating scenarios, generators suitable for regulation are contracted to provide regu-

lation capacity, as well as a corresponding online ability to ramp output up and down.

Similarly, control actions made during ED further require online ability of suitable

generators to provide load-following contracts for capacity and ramping capability.

Figure (2.2) is introduced to illustrate these ideas from the viewpoint of individual

generators. Part-load efficiency curves associated with two identical generating units

within a hypothetical control area are depicted. These curves are meant to represent

either hydro or thermal units, as both suffer a reduction in efficiency when subject to

part-load, achieving a minimum efficiency ηmin at its minimal load-level Pmin and a

maximum efficiency ηmax near the capacity-loading Pmax, with the efficiency between

varying non-linearly [27, 26]. The regulation requirements are denoted as capacity

R, with the load-following requirements denoted as capacity L. In this case, either

unit will provide both load following and regulation services, with generator (A) con-

tracted to provide twice the regulation reserve requirement as compared to generator

(B). The regulation reserve capacity covers both up- and down-ramping, and there-

fore, as indicated in Fig.(2.2), results in the need to buffer the maximum and minimum

achievable load following levels (denoted Lmax and Lmin) by the same amount. The

size and ramping capability of these generating units are thus constrained by:

P
(g)
max − P

(g)
min ≥ L(g) + 2R(g)

Ṗ
(g)
max ≥ Max

�
L̇(g) , Ṙ(g)

� (2.1)

where g is the generator type index, L̇ denoting load-following ramping requirements,

and Ṙ denoting regulation ramping requirements. The first constraint in (2.1) makes

sure the unit is capable of meeting the contracted reserve requirements, with the

second guaranteeing that the generator can respond at a rate required to qualify as

both a load-following and regulation resource.

As generator (A) and (B) are identical, with the only difference in this case being

that generator (A) has twice the regulation reserve obligations, generator (B) is able
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to commit more of its capacity to ED reserve. In fact, the first constraint in (2.1)

states that for each unit of regulation reserve capacity reduced, we are able to increase

the generators’ load-following flexibility, or ability to participate in ED, two-fold. As

there is no attempt made to implement a least-cost dispatch for regulation, it can be

assumed that energy allocated for load-following, procured through ED, is allocated

under more socially-optimal conditions [23]. Therefore, it can be expected that in

this scenario, from the viewpoint of system operator, generator (B) is utilized at a

greater social benefit in comparison to generator (A). Finally, generator (A) would

need to increase its total capacity by 2R(B) in order to maintain the same operating

range as generator (B), which is a condition that would need to be treated within

the power system’s capacity planning stages.

This brief example demonstrates the unequivocal connection between regulation

and the other components of power system planning and control, and can be summa-

rized into the following main effects:

• Regulation reserve capacity results in less capacity available for ED, and there-

fore less capability to allocate installed capacity optimally.

• Regulation reserve capacity results in the need to allocate more online capac-

ity during UC. This online capacity is rarely used to its full potential and is

therefore under-utilized. The extra capacity that does not make it onto the

grid represents missed opportunity, which would otherwise embody enhanced

flexibility to participate in ED, and thereby provide additional opportunities to

supply cleaner and cheaper electricity to the grid.

• Regulation reserve capacity affects the size of the required generation capac-

ity, and therefore plays an important role in planning generation developments

for a given management area. Operating generation as regulation reserve can

reduce its operating efficiency, increase maintenance requirements, and overall

prematurely degrade the unit. These aspects must also be considered during

the capacity planning stages.

As continued large-scale wind integration will require greater access to regulation-

based resources, these negative operational effects can overshadow positive benefits

commonly associated with wind power generation.
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2.2.2 Distributed balancing resources

Alternative methods for mitigating enhanced regulation requirements arising from in-

tegrated wind energy systems have been proposed, with the underlying thematic con-

clusions outlining co-located regulation reserves as an attractive option [28, 29]. This

can involve capacity expansion, usually through the introduction of an alternative

fast-acting energy resource classified as energy storage. While these types of devices

may in fact provide a wealth of flexibility to the power system, storage accrues effi-

ciency penalties during roundtrip energy conversion, and in most situations, current

storage systems lack economic viability at required capacities. Nonetheless, similarly

themed resources will be required for continued large-scale wind integration, which

in terms of power system control, results in increased participation of more spatially

distributed resources in the provision of the regulation ancillary service, and a need

to down-scale conventional AGC dispatch to smaller localized balancing authorities

[30].

As will be introduced in the following chapter, spatially-distributed regulation

provides an effective foreground for the participation of communities located nearby

wind project developments to aid in integration. An important aspect of regulation is

that its requirements are typically zero-mean (energy requirements balance to zero),

although both regulation-down and regulation-up events are considered dispatched

capacity within typical ancillary service markets [31]. This is an extremely important

aspect of regulation, as when it is possible to tap into flexible demand of nearby

communities to offset the need for enhanced localized regulation reserves, there is

little or no change to the functionality of targeted loads. The resultant effects would

in turn propagate throughout the other power system control components, and help

to provide a powerful platform to efficiently integrate renewable generation onto the

grid.
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Chapter 3

Engaging Communities in Low

Carbon Power System Operations

Traditionally, energy imbalances within the power system are overcome by changing

the supply to meet the demand, with operational problems arising with the integration

of large amounts of intermittent renewable energy resources that lack controllability.

In fact, the goal of balancing energy within the system could be met with a change

in demand rather than supply. Such a system configuration requires management

of the electric devices the power system services, and could be achieved through the

application of suitable communication infrastructure to manipulate the operation of

these loads. Based on the suggestions in the previous chapter, if these loads could be

targeted to displace the need for online regulation reserve, they could provide con-

siderable operational benefits to power systems looking to mitigate carbon emissions,

by aiding integration of renewable energy. Implementation of this system configu-

ration will incur increased capital costs, and further look to manipulate resources

that are not the property of the utility. An operational strategy capable of balanc-

ing power system and demand-side objectives is therefore needed to ensure success.

In response to this requirement, this chapter introduces a resilient approach based

on the direct control of community-based electric loads in the efficient operation of

low-carbon electric power systems through intelligent management of their aggregate

demand profile.
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3.1 Designing Load Management Networks

Before diving into a rigorous design framework, it is important to understand the goals

and constraints of all involved stakeholders, as well as the available resources on hand.

Many commercial operations have already focused on applying information technology

to aid in the implementation of energy efficiency measures at the building-level. For

example, a typical building automation network (BAN) is capable of linking with a

web-based browser that can be accessed over the internet, allowing a building manager

to benchmark energy usage and identify possible avenues to increase efficiency [32].

It would in principle be relatively straightforward for the building manager to share

device-level information with an outside entity, by granting access to the BAN. The

outside entity could then act as an intermediary, and develop and implement real-

time operational strategies that are beneficial from the viewpoint of the power system

operator, for instance to balance system energy through modulating the building’s

energy demand to match the available supply.

It will be the job of the intermediary to develop the transaction between the

building managers and the power system operator. To be successful the intermediary

should display the following four attributes:

1. Non-intrusive: On the customer-side, the intermediary must develop control

strategies that are comfort-constrained in the sense that service levels commen-

surate with customer satisfaction are observed at all times. On the grid-side,

the intermediary’s strategy should seamlessly integrate with conventional sys-

tem management.

2. Secure: On the customer-side, the intermediary must ensure that an acceptable

level of privacy is maintained when accessing the BAN. On the grid-side, the

intermediary must ensure operation does not compromise system security.

3. Profitable: The intermediary must develop contracts between the stakeholders

so that the project provides economic benefit to both the customer and load

serving entity.

4. Ecological: As an energy-based development, the project needs to represent a

net reduction in emissions over its classical counterparts.

Both building managers and power system operators are more likely to participate in

load management programs of this nature, and readily provide long-term access to
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their resources.

3.1.1 A Community-scale Approach

While a power system operator could in fact encompass intermediaries within their

operations, it is argued that separating an intermediary at the community-level is

indeed a superior approach. This is because electric loads are inherently the property

of community members, who collectively represent a primary stakeholder. Through

treatment of load management as a community-based resource, the intermediary could

in fact operate as a community business, offering the demand resource to the power

system operator. This in turn could allow communities to diversify their business pro-

files, and further provide a solid foundation for future deployment of local renewable

energy resources, as a community-based entity could act to provide the integration

and operational support. The task of maintaining network privacy is also simplified

within a community-based approach, as securing device-level information within a

local network is much easier than a geographically distributed large-scale network

that encompasses many thousands, perhaps even millions of customers.

This idea has further implications in terms of resource adequacy, as the issue

of population size and the accompanying problems associated with communication

congestion can be alleviated through operating a local system that contains fewer cus-

tomers. Control actions could then focus on shorter time-frame events, at a high-level

of accuracy, promoting resource exploitation to its full potential and thus providing

greater overall benefits. Community members are also much more likely to trust a

community-based operation working to maintain their goals, rather than an outside

entity who may act, or be perceived to act, to primarily serve the interests of out-

side stakeholders. Localized goals could include efficient management of local energy

resources that, for instance, could entail maintaining local power quality to maintain

the performance / lifespan of the community’s appliances, or alternatively, managing

integration of a community-owned renewable generation facility, in hopes of maximiz-

ing its performance.

The goal of the community-based entity is then to recruit loads from their com-

munity, with the resultant group of recruited loads hereafter referred to as the load

community (LC). The proposed community-based load management policy is there-

fore seen to consist of the following steps. Prospective building managers, who at the

residential building-level are more specifically community residents, enable the trans-
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action between power system operator and their targeted devices by joining their

community-specific energy management network, with community-members retain-

ing the right to decide whether or not to participate. By joining the network, the

community member’s device-level information becomes available to the intermediary,

who can then change the operational-state of suitable end-use devices based on their

specific strategy. In turn, the intermediary rewards the community member based on

some pre-defined contractual obligations, for instance based on the amount of time a

particular community member’s devices participate in the program during a particu-

lar billing period. The intermediary is then rewarded by the power system operator

based on the performance quality of the resource the intermediary offers their system.

The intermediary therefore represents a load aggregator (LA), where in this thesis

interaction with the power system operator will be achieved through the development

of models that describe LC population dynamics in a format equivalent to conven-

tional generation, or a virtual generator model (VGM). The LA will then use these

models to pursue strategies that result in loads encompassed within the LC cooper-

ating to achieve grid-side benefits, which in this work is the efficient management of

embedded renewable generation technologies. The VGM format is selected as it will

integrate well with traditional deregulated ancillary service market structures [33],

but it will be the focus of this work to develop a strategy that seamlessly integrates

with power system operations. Control of the load management network is based

solely on local inputs, and therefore communication with the power system operator,

or interference with their operations, would be deemed unnecessary.

3.2 Deferrable Loads

Having determined a framework for the operation of the load management network,

the next challenge becomes targeting potential demand-side infrastructure, as only

specific types of loads will be suitable for recruitment. The primary objective of any

load control strategy is increased demand flexibility, and therefore requires partici-

patory load-types to display similar device-level attributes. The ability to operate

under a flexible schedule results in demand that can be deferred to more opportune

times, such as when an excess of renewable energy is available, and therefore devices

displaying similar attributes can be defined as deferrable loads. The purpose of this

section is to introduce and assess different types of deferrable load potentially avail-
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able at the community-level from the viewpoint of controllability and sustainability,

and then to select certain end-use appliances for further study that display the best

characteristics for recruitment.

3.2.1 Thermostatically controlled loads

Upon inspection of the load-types currently dominating the market, thermostatically

controlled loads (HVAC systems, water heaters, refrigerators, etc.) occupy a large

portion of the residential and commercial demand profile [34]. A thermostatically

controlled load (TCL) is driven by a thermostat that controls a machine capable

of converting electrical energy to heat energy, which can then be used to condition

a given space to a user-provided temperature set point. Other than providing the

comfort settings, daily interaction with the end-user is scarce, though the device con-

tinues to operate post-interaction. If TCLs are indeed deferrable, they are therefore

an ideal candidate for demand response recruitment, as changes to the operational

schedule could be achieved without disrupting the end-user’s experience. This is in

direct contrast to other load-types, where customer interaction during load operation

is frequent or continuous, and therefore any change to the operational schedule would

directly impact the end-use functionality of the unit.

TCLs are typically designed to operate at a certain power rating Pr, meaning the

trajectory of the load demand associated with a single TCL is given by:

P (t) = n(t)Pr (3.1)

where n is the operational state of the device at time t. For thermally-based loads,

operation is triggered as a result of heating / cooling requirements. If the heat transfer

rate from the conditioned thermal system q̇loss is in fact less than the rated heating

power of the device, the TCL can be operated intermittently:

η|Pr| > |q̇loss| (3.2)

where η is the energy conversion efficiency associated with the unit. Through com-

munication with the thermostats controlling the operation of grid-connected TCLs

conforming to (3.2), operation can be deferred for brief periods of time, coasting

through prescribed intervals by relying on the thermal energy store inherent in the

system. Constrained by thermal comfort bounds, the use of the device within a certain
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time-frame is inevitable, but seemingly small deferral intervals could in fact provide

considerable flexibility when considered in aggregate across a large population, and

thereby provide grid-support under enhanced supply-side variability.

Heat pumps

In the case of water heaters and refrigerators, the costs associated with investing in the

required device-level communication infrastructure may out-weigh resulting grid-side

benefits, as individual units do not consume a large amount of energy, and therefore

a very large population, or a large amount of communication hardware would be

required. In comparison, HVAC systems consume a large amount of energy per device,

and would therefore require a smaller population or less communication hardware.

While this may be the case, the majority of communities in colder climates heat their

buildings with systems that utilize fossil fuels as an energy source, mainly natural

gas [35], and such HVAC systems would be unavailable for recruitment. This reality

further places HVAC systems as one of the main sources of carbon emissions within the

building sector [36]. The natural gas these furnaces commonly employ is often touted

as a clean energy substitute for conventional fossil fuels, due to its lower emission rate.

If there is a desire to move towards less carbon-intensive energy resources, promoting

a shift towards natural gas will only provide temporary mitigation, and does not

represent a long-term sustainable solution.

In temperate climates (moderate changes between summer and winter), such as

those found on the Pacific Coast of Canada, air-source heat pumps represent the

ideal replacement for fossil-fuel based furnaces. Operating in these geographic re-

gions, air-source heat pumps can achieve high seasonal efficiencies, with coefficients

of performance (COP) exceeding 2.5 year-round [37]. The COP of a heat pump

represents how efficiently it converts the electrical energy needed to run the device

compressors, relative to the heat that is transferred to the indoor air. A value of

2.5 means that for a heat pump that uses 1 kW of electrical energy, 2.5 kW of heat

energy is provided. All combustion-based units have a COP less than 1. Heat pumps

are also reversible, meaning that they can act as both heating and cooling units, and

further can be combined into multi-function units that simultaneously provide both

water heating and indoor air conditioning services [38].

If in fact heat pumps are integrated into low carbon power systems, many of the

emissions associated with thermal space-conditioning can be mitigated [8]. While
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such a large-scale integration would result in a shift of the heating service to the

electrical load and the need for widespread retrofits, if appropriately controlled, these

devices could support the implementation of a sustainable power system by effectively

providing “virtual” capacity expansion. This would therefore provide possibilities for

retrofit financing. Retrofits would further provide an ideal time to equip these units

with the required communication hardware, which in turn should cost relatively little

in comparison to the costs of installing the heat pump itself.

An effective load management strategy provides a pathway to transform con-

ventional heat pumps into extremely efficient combined heat and power units (both

thermal and electrical services are attained during operation), that further enable the

mitigation of emissions within both the electric power and building sectors, simul-

taneously replacing fossil fuelled furnaces and aiding grid-integration of intermittent

renewables.

Some previous work has recognized the potential of TCLs as a regulation resource.

In [39], the potential for water heaters as a regulation resource is investigated, but the

accuracy of the attained response as compared to the costs of equipping these devices

with the required communication hardware would not support widespread use. In

[40], Callaway proposes an open-loop control strategy aimed at controlling large pop-

ulations of air-conditioning units. Callaway implements system identification tech-

niques to develop aggregate load models capable of following the output of a large

wind farm. The method relies on identification of linear models of aggregate power

dynamics using large populations of first-order load models under quasi-steady-state

conditions, and therefore may face problems under true dynamic conditions unless

suitable adaptive identification methods are developed. The main goal of this thesis

is to introduce a method, based on the implementation of higher-order load models

under dynamic conditions that can adapt the aggregate load models online so that

large populations can be accurately controlled.

3.2.2 Energy-constrained storage as a deferrable load

Many types of electric load convert grid energy to an alternative resource that can

be utilized later for similar energy-based activities. This includes charging of device

batteries, or the production of an alternative fuel. The operations of such storage

devices share similar objectives of achieving a desired level of stored energy at the

end of the operation cycle. This corresponds to a certain amount of charging energy
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Ec to be accumulated over a user’s desired charging-horizon Ts. Denoting the charging

trajectory over the charging-horizon as E, and assuming the rated power and efficiency

of the unit is constant, the end-use constraint on the device is then given by:

E(Ts) =

Ts�

0

ηPrn(t)dt ≥ Ec ; E(0) = 0 (3.3)

where η is the one-way energy conversion efficiency associated with the storage unit.

Considering (3.3), it is clear that if the unit can charge in less time then the user

requires, namely:

ηPr >
Ec

Ts
(3.4)

then through changes to the operational-state trajectory, the grid-loading trajectory,

given again by (3.1), can be deferred over the user-set charging-horizon, without

disrupting end-use functionality of the unit.

Electric vehicles

The transportation sector is responsible for approximately 13% of global carbon emis-

sions, of which personal transportation vehicles are the single largest component [4].

In light of this, many automobile manufacturers have recognized this statistic and

have pursued vehicle designs that are capable of all-electric operation, with some

modern designs capable of achieving distances of up to 160 km on a single charge

[41]. As vehicles that travel less than this distance per day are responsible for a

considerable portion of total travel requirements [42], EVs may be able to power a

substantial portion of daily travel with electricity, and could thus displace a large

fraction of gasoline use.

Nonetheless, if these units are not integrated into low carbon power systems, any

mitigatory benefits decrease rapidly [9]. However, if these units can be controlled

to provide support to the integration of renewable energy sources, their use can be

leveraged within these system types, thereby maintaining the desired demand-side

environmental qualities. As some of the EVs available on the market come equipped

with the technology to communicate important state attributes [41], the prospect of

communicating with these loads to modulate demand could be achieved with little

added investment in end-use hardware.

The idea of using EVs to provide grid-side benefits is not new. Introduced in
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[43] and further in [44], the effectiveness of EVs in providing ancillary services is

discussed, where vehicle-to-grid energy services are demonstrated. The problem with

a vehicle-to-grid approach is that it relies on both the storage and extraction of energy

from the battery to attain the grid-side service, and therefore energy dispatched is

subject to the roundtrip efficiency losses associated with the battery. Furthermore,

enhanced cycling of the batteries degrades performance over time, and therefore may

be unappealing from the viewpoint of the end-user, who owns and operates the unit

for alternative reasons. It is therefore the focus of this work to obtain grid-side services

from EV fleets without extracting energy from the battery.

Other methods for involving EVs in the provision of ancillary services have been

proposed. In [45], a sequential algorithm aimed at engaging energy constrained loads

(EVs or TCLs) is investigated, while in [46] a decentralized method for utilizing

large populations of EVs to fill diurnal valleys in demand (a load-following service)

is proposed. These initial studies have demonstrated that in order to attain ancillary

services from EVs, vehicle-to-grid is not a necessity, and that simply deferring on/off

status of the charging process can in fact be quite beneficial.

Electrolytic hydrogen production infrastructure

Hydrogen fuel cells can be employed to extract energy from an electrochemical reac-

tion involving hydrogen and oxygen. As the product of this reaction is mainly water,

operational carbon emissions are negligible. Fuel cells thus provide an ideal pathway

to fully replacing the traditional internal combustion engine for both stationary and

mobile applications. While fuel cells are enticing from an environmental perspective,

how the hydrogen feedstock is produced is of utmost importance [10]. It is expected

that locations that will first use fuel cell technologies will coincide with those in which

electric power and water supply represent the most reliable demand-side services. As

electricity can be used to split water molecules into its constituent gases via the pro-

cess of electrolysis, hydrogen can be produced at the location of end-use (hydrogen

fuelling stations) through utilization of distributed grid-connected electrolyzers.

Hydrogen lacks density, which causes issues related to storage and transport. By

producing this fuel locally using electrolyzers distributed throughout communities,

and operating these based on an on-demand production schedule (producing daily

quotas to be used immediately), problems associated with the transportation and

storage costs associated with centralized production schemes and seasonal storage



24

can be avoided.

Again, use of electrolyzers results in traditionally fossil fuel-based services shifting

to the electrical load. Expected environmental benefits are only to be observed if in-

creased capacity requirements are met with low carbon generating sources. A similar

argument to that made for EVs can be made for leveraging electrolyzers to support

the integration of renewable energy resources in order to attain the desired low car-

bon electricity supply. Numerous projects have focused on the use of regenerative fuel

cell systems that encompass both the storage and regeneration aspects of operating

side-by-side fuel cells and electrolyzers [47]. The roundtrip efficiency losses achieved

in regenerative systems are problematic, which are indeed much greater than those

associated with conventional energy storage. Also, the rapid-cycling of electrolyzers

that accompany their use as a short term energy buffer has been shown to effect

their long-term performance [47]. Therefore, it is the focus of this work to obtain

the desired grid-side services from the electrolyzers without ever extracting energy

from units, whilst further ensuring that device operation maintains the long-term

performance of the participating units.

3.2.3 Hysteresis control of deferrable loads

The focus now shifts to a common device-level control strategy that will look to main-

tain levels of end-use functionality commensurate with user satisfaction, while fur-

ther providing a foreground for an effective system-level control strategy. For TCLs,

device-level control is maintained by thermostats, which control the operational-state

of the TCL through comparing the current level of end-use function periodically, and

comparing it in relation to the desired end-use function (the set-point) in order to

decide whether or not to operate the device over the next operational period. Temper-

ature measurements are usually accompanied by a considerable amount of volatility,

and therefore thermostats typically employ hysteresis-based control logic. Hystere-

sis control involves defining a range of end-use measurements that can occur, or a

deadband space, over which end-use state measurements contained within result in

no change in the operational state. Any measurement outside this region results in a

state-transition to either the active or inactive machine state, depending on the cur-

rent state of the device. This type of strategy prevents rapid cycling of the TCL that

can occur under a noisy input and a definite set-point objective. As many types of

loads are subject to design constraints that result in the need for minimum run- and
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down-times, hysteresis control maintains these operational qualities autonomously

through the choice of the deadband width.

As thermostats sample the end-use state and temperature periodically to control

the TCL, they thereby discretize the system, where mathematically, hysteresis control

logic can be written for a heating condition as [48]:

n[k + 1] =






1 �[k] ≤ �−

0 �[k] ≥ �+

n[k] otherwise

(3.5)

where � is the sampled end-use state comparison, k the thermostat’s sampling index

associated with the current operational interval, �+ representing the upper deadband

boundary, and �− denoting the lower deadband boundary. When the device- level

controller measures a charging-trajectory outside the deadband space, or beyond the

deadband boundary, it will switch the charging status of the TCL. Thus, �− and �+

represent state-transition boundaries, where measurements below �− cause TCLs in

the inactive-state to transition to the active-state, while end-use measurements above

�+ cause active TCLs to transition into the inactive-state.The transition boundaries

are assumed to be centred around the set-point datum:

�± = ±δ

2
(3.6)

where δ is the deadband width. In the case of heat pumps, the sampled end-use state

comparison is given by:

�[k] =
θa[k]− θs[k]

δ
(3.7)

where θa is the indoor air temperature measurement made by the device-level con-

troller, and θs the user’s current set-point temperature. In the case of heat pumps,

the end-use state comparison is non-dimensionalized by dividing it by the deadband

width.

As suggested by Callaway and Hiskens [11], the operation of deferrable energy-

constrained storage can further be controlled at the device-level by hysteresis con-

trollers. For EVs and electrolyzers, the primary objective of the device-level con-

troller is to maintain a charging trajectory from which (3.3) can always be attained.

The set-point energy-level Es therefore represents a charging-schedule that must be

maintained to ensure the device can meet the end-user’s desired energy-level by the
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end of the charging horizon, and is given by:

Es[k + 1] = Es[k] +
Ec

Ts
T ; Es[0] = 0 (3.8)

By periodically querying the end-use state of the storage unit (state-of-charge), and

updating the charging-schedule, the device-level controller can then apply the hys-

teresis control logic given by (3.5) to control the operational state by converting to

the following non-dimensionalized state-of-charge:

�[k] =
E[k]− Es[k]

Ec
(3.9)

3.3 Managing Large Populations

With an operational strategy common to both TCLs and energy-constrained storage

defined at the component-level capable of assuring normal device operation is main-

tained, the focus now shifts to the development of a system-level strategy in order to

manage large populations effectively.

3.3.1 Controlling Population Dynamics Online

Considering a population of responsive loads, denoting the population index as i, the

aggregate demand P from a particular population of Ni individual units is:

P (t) =
Ni(t)�

i=1

ni(t)Pr,i (3.10)

The operational state of the device at time t is determined by the individual digital

controllers:

ni(t) = ni[ki] ; kiTi ≤ t ≤ [ki + 1]Ti (3.11)

where each sample index and period has been explicitly written as ki and Ti, as

each individual unit is operating based on its own clock. Clearly, through controlling

the individual operational states of the units, control of the aggregate load can be

achieved, but will require not only solving for each individual machine-state, but

also tracking of the individual end-use states of the devices to make sure device-level

constraints are maintained (temperature/charging-levels and minimum run- and shut-
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down times). Management of this type may prove unsuccessful in controlling loads

in near-real-time, such as that required for regulation-based ancillary services, as the

computational complexity resulting from the multi-period optimization required to

handle these inputs will prove inefficient at the system-level except in trivial cases

considering very small load populations.

The alternative approach taken in this thesis is to rely on the device-level hysteresis

controllers to maintain normal operating limits. An aggregate-level management

strategy based on the characteristics of hysteresis control is then formulated. This

relieves the system-level task of tracking each individual unit’s constraints, providing

a more efficient method of managing larger populations.

Aggregate population dynamics can be described by the power density distribution

function for both the active (φ1) and inactive (φ0) machine-states. These functions

describe the amount of power at a given air temperature or state-of-charge relative

to the total installed power that exists in the participating population. As the total

power existing in the active state defines the aggregate load, the current level can be

expressed in terms of the total power in the current responsive population Pcap, and

a capacity-factor Φ as:

P (t) =
Ni(t)�

i=1

Pr,i

∞�

−∞

φ1(�, t) d� = Pcap(t)Φ(t) (3.12)

If each load operates based on the same device-level clock, we can use the fact that

the hysteresis control logic given by (3.5) introduces a discontinuity between sampling

intervals, wherein the end-use state measurement is utilized to determine the individ-

ual machine-states thereafter, thus re-distributing the power density distribution in

the aggregate system accordingly. Any distribution in a given state that has traversed

past the corresponding state-transition boundary (�+ for n = 1, and �− for n = 0),

will be transferred to the opposite distribution. Boundary conditions on either side

of the discontinuity event occurring at time t∗ require that:

lim
t∗+→t∗

Φ(t∗+) = lim
t∗−→t∗






�−�

−∞

φ0(�, t
∗
−) d�+

�+�

−∞

φ1(�, t
∗
−) d�




 (3.13)

where t∗+ is the time just after the discontinuity event, and t∗− the time just before.

Traditionally, the capacity factor can not be controlled, but considering (3.13)
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it is clear that changes to the state-transition boundary locations could in fact be

used to control the capacity-factor of the aggregate load over the next sampling in-

terval. As was first suggested by Callaway in [40], if each element within a targeted

population is equipped with communication hardware capable of enabling a network

through which operational data from a LA and LC can be shared, or programmable

communicating hysteresis controllers (PCH), the capacity factor could indeed be sys-

temically controlled through perturbation u to the end-use state comparison. At

the aggregate-level, again assuming the loads are synchronized, the capacity-factor is

then:

lim
t∗+→t∗

Φ(u, t∗+) = lim
t∗−→t∗






u(t∗−)+�−�

−∞

φ0(�, t
∗
−) d� +

u(t∗−)+�+�

−∞

φ1(�, t
∗
−) d�





(3.14)

From the viewpoint of the device-level controllers, the hysteresis control logic is now

given by:

ni[k + 1] =






1 �i[k] ≤ �− + u[k]

0 �i[k] ≤ �+ + u[k]

ni[k] otherwise

(3.15)

The control signal synchronizes loads near state-transition boundaries to attain the

response, and therefore in the case of energy storage, never involves extracting energy

from the unit. This mitigates all possible conflicts associated with enhanced perfor-

mance degradation and roundtrip conversion losses apparent in vehicle-to-grid and

regenerative fuel cell approaches.

To measure the distributions and synchronize their response, each load willing

to participate in the current responsive population provides the LA with its current

power-state vector zi, then waiting for the system-level set-point decision before re-

acting to (3.15). By waiting for the system-level response, the individual sampling

intervals are synchronized to the same central clock (ki = k), and will therefore

commit any managed aggregate load over the next measurement cycle, allowing us

to schedule this load in real-time. The power-state vectors convey all information

needed to classify the loads into the distributions, and as each load in the population
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is a hybrid-state system, observability requires power-state vectors to be given by:

zi[k] =





ni[k]

�i[k]

Pr,i




(3.16)

The LA therefore obtains a certain set of power-state vectors Z from the participating

loads where:

Z[k] = { z1[k], z2[k], . . . , zNi [k] } (3.17)

The proposed closed loop control strategy is depicted in Fig.(3.1). The resultant

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5
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1.5

2

u

LA

Z

LC

Figure 3.1: Closed-loop control strategy implemented.

delay-time between LA signal broadcast and LC response must be considerably less

than the PCH update time to ensure compatibility, and will be directly related to

the number of participating customers, network quality, and efficiency of system-level

decision making.

As the device-level controllers are constrained by measurement resolution, the

integral in (3.14) can be simplified over a region encompassing all possible end-use

state measurements, which is taken to be twice the deadband width1. Each end-use

1In the case of heat pumps, if the customer was to change the temperature set-point, temperature
measurements could be made that exist well outside the 2δ-region. Therefore, these customers
would be unfit, or ineligible to participate in this aggregate load model formulation. As these
customers choose to maintain control authority, they would in turn forfeit the benefits associated
with participation. Therefore, this customer’s thermostat would not send a power-state vector to
the LA until the end-use state was again within this interval.
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measurement therefore corresponds to an index m by:

�[m] = δ

�
2m

R − 1

�
; R ∈ N

m = 0, 1, 2, ...,R
(3.18)

where R is the discretization resolution. If all device-level controllers operate at the

same measurement resolution, through ordering Z into the distributions, an exact

formulation of the forthcoming capacity-factor can be obtained as a function of the

set-point index location:

Φ[ms, k + 1] =
ms[k]+m−�

m=0

φ0[m, k]∆� +
ms[k]+m+�

m=0

φ1[m, k]∆� (3.19)

where ∆� is the distance between possible state-measurements, ms the index corre-

sponding to the set-point, and m± denoting the indices associated with the transition

boundaries. As the resultant function is convex, once obtained it can be reliably

implemented by the LA within the following deviation minimization problem:

Min ( P ∗[k + 1]− Pcap[k + 1]Φ [m∗
s, k + 1 ] )2 (3.20)

where optimal solutions m∗
s cause a k + 1 aggregate responsive load demand corre-

sponding to the target P ∗. This target will be pre-defined by the LA to achieve some

grid-side objective. The optimal set-point index then converts to a corresponding

set-point change by:

u[k] = δ

�
2m∗

s[k]

R − 1

�
(3.21)

Without ramp-constraints, set-point modulations can access any load within the

deadband space, resulting in possible rapid cycling of units that can degrade devices

prematurely. This can be avoided through constraining LA decisions to set-point

modulations existing within the quarter-deadband width:

| u[k] | ≤ δ

4
∀ k (3.22)

The above constraint prevents access to loads for over half of the deadband each

operating cycle, guaranteeing that each system displays a somewhat natural duty-

cycle, passing through the customer’s desired set-point. All of the targeted devices
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are designed to operate over a range in duty-cycle, and therefore should not face

degradation issues under selection of (3.22). This constraint converts to corresponding

maximum and minimum set-point indices ms,max and ms,min:

ms,min =
3

8
R

ms,max =
5

8
R

(3.23)

Therefore, the LA must define targets that exist within the feasible region:

Pmin[k + 1] ≤ P ∗[k + 1] ≤ Pmax[k + 1]

Pmin[k + 1] = Pcap[k + 1]Φ[ms,min, k + 1]

Pmax[k + 1] = Pcap[k + 1]Φ[ms,max, k + 1]

(3.24)

The feasible region given by (3.24) limits ability to ramp the aggregate responsive

load. This interval directly relates the end-use constraints (reliability-constrained

charging-schedule) to power system-level planning (aggregate demand), and thus rep-

resents the VGM. As the responsive population-basis consistently evolves (especially

in the case of EVs), the closed loop control strategy is critical, and allows the LA to

accurately adapt the VGM online.

3.3.2 Optimal dispatch of multiple responsive load popula-

tions

Due to device-level dynamics, it can be expected that a LA that manages different

types of loads will most likely need to generate individual VGMs for each, and will

therefore need to determine a dispatch process that optimally allocates power within

the management area. Of particular interest is minimizing both the variability and

amplitude of the end-use function perturbation u. Reducing the variability of the

control signal accelerates dispersion of end-use states within the system-level equiva-

lent deadband space, widening the feasible region given in (3.24). This will result in a

greater capability of the VGM to ramp up and down the next operational period, and

thus enhance its long-term performance as a balancing resource. The benefit to also

selecting an objective that minimizes amplitude is of course that the deflection from

the customer’s settings will be minimized. As it can be expected that this amplitude



32

will be proportional to forfeited end-use benefits, this objective also minimizes the

cost of attaining the service from the LC.

Integer programming would need to be applied to explicitly solve for the different

set-point indices, which may in turn present a bottleneck in terms of system-level

decision making efficiency. Alternatively, a linear programming (LP) approach can

be pursued by assuming that the amplitude of the control signal will be proportional

to the amplitude of the deflection from the uncontrolled trajectory. The control signal

that minimizes the variability and amplitude occurs at u[k] = 0 ∀ k, or the trajectory

corresponding to the uncontrolled capacity-factor Po, which can be determined using

(3.19) at the uncontrolled set-point index (ms = R/2):

Po[k + 1] = Pcap[k + 1]Φ [R/2, k + 1] (3.25)

Denoting the controlled deviation from Po as ∆P ∗, the responsive load trajectory, as

defined in (3.20), is then given by:

P
∗[k + 1] = Po[k + 1] +∆P

∗[k + 1] (3.26)

Dropping the time-dependence, the controlled deflection is decomposed into positive

and negative deflections from the uncontrolled datum:

∆P ∗ = ∆P ∗
+ −∆P ∗

−

∆P ∗
+,∆P ∗

− ≥ 0
(3.27)

A similar process can be pursued for the control signal:

u = u+ − u−

u+, u− ≥ 0
(3.28)

Based on the maximum allowable set-point change, as defined in (3.22), in combina-

tion with the uncontrolled setting, we know the value of the controlled deflections in

terms of the decomposed control signal at two points:

∆P ∗
+(u+ = 0) = 0

∆P ∗
+(u+ = δ/2) = Pmax − Po

(3.29)
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∆P ∗
−(u− = 0) = 0

∆P ∗
−(u− = −δ/2) = Po − Pmin

(3.30)

where the maximum and minimum are defined by the VGM feasible region in (3.24).

While the relationship between these points may not be linear, to first order we can

assume the deflections in either direction are proportional to the ratio of the controlled

deflections and their maximums, namely:

u+ =
δ

4

∆P ∗
+

Pmax − Po

u− =
δ

4

∆P ∗
−

Po − Pmin

(3.31)

If there are now Np responsive load types within the particular control area, the LA

will attempt to minimize the control signal deflections, while ensuring that the grid-

side objective target PT and individual VGM ramp constraints are maintained. An

optimization problem considering the grid-side inputs achieving these objectives can

then be formulated as an LP by:

Min
Np�
p=1

�
∆P

(p)∗
+

P
(p)
max − P

(p)
o

+
∆P

(p)∗
−

P
(p)
o − P

(p)
min

�

s.t.
Np�
p=1

�
∆P

(p)∗
+ −∆P

(p)∗
−

�
= PT − PU + PW −

Np�
p=1

P
(p)
o

∆P
(p)∗
+ ≤ P

(p)
max − P

(p)
o

∆P
(p)∗
− ≤ P

(p)
o − P

(p)
min

∆P
(p)∗
+ ,∆P

(p)∗
− ≥ 0

(3.32)

where PU is the area’s unresponsive load, PW the wind power generation, and p

representing the VGM number associated with a particular load-type. Solving the LP

results in controlled deflections from the uncontrolled trajectories capable of meeting

the grid-side target, that are in turn optimal in the sense that the amplitude of the

control signal u is minimized across each load-type. This formulation assumes the

defined grid-side target is feasible, and is a condition that must be checked before the

LP can be solved.
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3.3.3 Target design for a self-regulating load

As the LA develops models that are equivalent to conventional online generation, this

virtual generation can be dispatched to mitigate variability in place of traditional reg-

ulation reserve. In this case, the losses accrued at end-service (converting to battery

state-of-charge or air temperature) is only a problem for the end-user, not the grid, as

there is no need to convert this stored energy back to electricity (changing the state-

trajectory of the deferrable loads provides the desired response). Therefore, from the

grid’s perspective, the service is obtained at near 100% efficiency, with the inefficien-

cies in this case accruing due to transmission and distribution losses. To obtain this

service, the target response PT must be defined to provide regulation-based services to

the particular area, or self-regulate the area load. As wind power is non-dispatchable,

it is often treated as a component of the area demand (negative load) and therefore

a self-regulating objective attempts to simultaneously smooth the total demand and

variable wind energy supply.

In order to achieve this goal, the grid-side objective is set to attain an aggregate

demand target that does not require dispatch of regulation PR. This target represents

an aggregate demand trajectory that causes demand fluctuations that occur outside

of the regulation time regime. A weighted moving average of the sampled area load

can be used in an attempt to smooth the demand over some defined range:

PR[k + 1] =
M�

j=1

ajPtot[k − j + 1] ;
M�

j=1

aj = 1 (3.33)

where Ptot is the total area load, M is the number of past load samples to be con-

sidered in the moving average, and aj the weighting associated with the particular

load sample. In this thesis, these weightings are taken to be equivalent, and therefore

(3.33) represents a moving average. It will be the focus of future work to develop an

online procedure to set these coefficients to ensure the long-term performance of the

controller through integration of possible wind / load forecasting techniques. As this

regulation target is defined at the level of the LA, there is no need to interact with

the power system operator if the LA can obtain the area load measurement.

Even in unison, the responsive load populations may be unable to meet such a

trajectory, due to the end-use constraints contained in the individual VGMs defined

in (3.24). Therefore, the target must be refined to reflect these limits through con-
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sideration of each VGM’s ramp-constraints when defining the target:

PT [k + 1] =






Np�
p=1

P
(p)
max[k + 1] PR[k + 1] ≥

Np�
p=1

P
(p)
max[k + 1]

Np�
p=1

P
(p)
min[k + 1] PR[k + 1] ≤

Np�
p=1

P
(p)
min[k + 1]

PR[k + 1] otherwise

(3.34)

This corrected target is what is sent to the optimization problem in (3.32), and

guarantees a feasible LP solution.

Figure (3.2) depicts a flow-chart of the multi-stage optimization problem. While

in this thesis the self-regulating objective has been defined as the target, it would

be relatively straightforward to implement other types of objectives (i.e. frequency

and voltage regulation, relays from conventional power system management, etc.), if

these objectives can be formulated in terms of an equivalent change in demand.

The following section will introduce the computational modelling study imple-

mented to observe the performance of the proposed load control strategy.
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Figure 3.2: Flow-chart of the multi-stage optimization problem
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Chapter 4

Computational Modelling

Framework

The previous chapter presented a mathematical framework for engaging sustainable

demand-side infrastructure in the provision of power system ancillary services. Ob-

taining experimental evidence regarding the viability of this system configuration will

prove extremely costly. Thus, a computational model was developed to test the per-

formance of the proposed load control policy. The strategy is inherently multi-scalar,

as it looks to encompass dynamics occurring within the supply- and demand-side,

and therefore requires a similarly themed modelling framework to understand its

potential.

Of particular interest is simulation of the device-level hysteresis controllers. These

govern both the resultant load as well as providing the power-state vectors to the LA,

and will require sufficient treatment of the end-use states of the individual loads (air-

temperature for heat pumps and charging trajectory for energy-constrained storage)

that are input to the hysteresis control logic. This approach of modelling the individ-

ual device-states, that are in turn used by a local control authority that takes part in

the aggregate response of interest, is typically referred to as an agent-based model.

In this case, the hysteresis controllers are the autonomous agents, as they look to

fulfill the local control objectives, which is to maintain the end-use state comparison

within a certain deadband width, as given by (3.15). The interaction between the

agents emerges as an aggregate load on the power system, as given by (3.10). The

purpose of this chapter is to introduce the individual dynamic models of these agents

(the loads), providing a framework for rating the performance of the management
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strategy. The latter looks to manipulate the interaction between these agents (the

response), for system-level benefits (ancillary services).

4.1 Demand-side: Load Models

Each targeted end-use device is a complicated systems unto itself. Large-scale simu-

lations that look to capture the behaviour of an individual load will therefore require

simplification. The following sections present the dynamic load models for each tar-

geted end-use device (heat pumps, EVs, and electrolyzers).

4.1.1 Heat Pump Model

Accurately modelling an individual air-source heat pump requires treatment of the

building physics that govern its operation. Building heat transfer dynamics is com-

plex, where multi-physics approaches are commonly employed at the building-level.

Such tactics are computationally intense, and therefore unsuitable within a modelling

framework that is primarily interested in large populations of buildings. An alterna-

tive is a simplified model structure, that typically takes the form of a one-dimensional

equivalent thermal parameter (ETP) model. An ETP model decomposes the building

into different thermal masses that are connected to each other through coefficients of

heat transfer. One of the simplest ETP-type models considers a small- to medium-

sized building as a coupled thermal system, where the indoor air thermal mass Ca

is connected to a single building-interior thermal mass Cm, through a heat transfer

resistance Rma. Outdoor air temperature conditions θo interact with the coupled

masses, through the building envelope resistance Rao. The complete coupled ETP

model is displayed in Fig.(4.1) [49].

The temperature trajectories of the individual masses (θa for the air temperature,

and θm for the interior contents) are then coupled through the following linear dynamic

system representation:

θ̇ = Aθ +BU (4.1)

The state-equation defines the temperature trajectories of the coupled thermal masses

under the current system inputs (outdoor air temperature θo, and heat input q̇). The
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state- and input-matrix are determined by the structure of Fig.(4.1):

a11 = −
�

1

RmaCa
+

1

RaoCa

�
a12 =

1

RmaCa
a21 =

1

RmaCm
a22 = − 1

RmaCm

b11 =
1

RaoCa
b12 =

1

Ca
b21 = 0 b22 = 0

A =

�
a11 a12

a21 a22

�
B =

�
b11 b12

b21 b22

�
θ =

�
θa

θm

�
U =

�
θo

q̇

�

θ̇ = Aθ +BU
(4.2)

In this model, the imposed heat input is determined by

q̇(t) = n(t) q̇op(t) (4.3)

where q̇op is the operational heating power of the device, and the operational state of

the device is determined by the hysteresis control logic given by (3.15).

Ca

q̇

θo

q̇op
n = 0

θa RaoRma
Cm

θm

Figure 4.1: The one-dimensional coupled ETP model of a building, with thermostat-
ically controlled heat pump currently in the inactive-state (n = 0).

A solution to the resultant discrete-time version of (4.1) under steady-inputs is

[50]:

θ[k + 1] = Ωθ[k] + ΓU[k]

Ω = exp (AT )

Γ =
T�
0

ΩBdτ

(4.4)
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where Ω is the state-transition matrix, and Γ the input-transition matrix. The dy-

namics over which outdoor temperature gradients effect device-level duty-cycle (di-

urnal) are much longer than that of the thermostat (typically 1 minute), making the

assumption of a constant uniform outdoor temperature regime over this period rea-

sonable. For added accuracy, the outdoor temperature input to the building models

should reflect the sol-air temperature in hopes of representing any solar-induced heat

flux in the system. All other unmodelled system internal gains / losses (operation

of other electronic devices, opening doors, body-heat, etc.) are considered through

inclusion of a stochastic white noise term e displaying independent components of

standard deviation σn.

θ[k + 1] = Ωθ[k] + ΓU[k] + e[k] (4.5)

Heat pump unit sizing

The thermal-integrity level of each building, contained within its corresponding ETPs,

can further be utilized to size an individual heat pump. To ensure reliability, each

device must be sized under the design-level conditions that the building will be subject

to. These include worst-case scenario estimates of all terms in (4.5), under the climatic

temperature extremes expected in the particular geographic region. By balancing the

system heat flux that occurs under these conditions, so that the desired indoor air

temperature represents the equilibrium level of the linear system, and applying an

appropriate oversizing factor, the design heating power of the heat pump q̇d can be

determined by:

q̇d = γ

�
θs − θd

Rao

�
(4.6)

where γ is the over-sizing factor, and θd is the heating design temperature. The

operational capacity-rating is time dependent, due to the fact that the efficiency

η of an air-source heat pump depends on outdoor temperature conditions. This

characteristic is treated through fitting to a manufacturer’s data-sheet third order

polynomials with constant coefficients αx.

η[k] =
2�

x=0

αxθo[k]
x (4.7)
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The individual unit can then be sized under the design heating power of the heat

pump, with the efficiency corresponding to the design efficiency at this temperature

extreme ηd:

Ph =
q̇d

ηd
(4.8)

where Ph is the required electrical power to produce the design heating power. Each

rated power is then rounded up to the nearest 0.5 kW to account for discretization

between unit capacities. Assuming the device will always be operated at this level,

q̇h varies according to:

q̇h[k] = η[k]Ph (4.9)

The heat generated by the heat pump is circulated through the building by a fan.

The operational capacity of the device is then given by the heating power of the unit

q̇h, increased by the heating power attained from fan operation q̇f :

q̇op[k] = q̇h[k] + q̇f (4.10)

The total electric power associated with the operational heat pump is then modelled

by:

Pr = Ph + Pf (4.11)

where in this work, the fan is assumed to operate at an ideal efficiency (q̇f = Pf ).

Example

To demonstrate the device-level dynamics, a simple example considering a single

building is presented. The parameters implemented in the model can be found in [51]

and [40], and are given in Tab.(4.1). The resulting ETP model is meant to represent

a typical small- to medium-scale building or single-detached residential home.

The device is sized under a design heating temperature of −5oC, and results in

a heat pump power rating of Pr = 5.5 kW. The model is ran under the outdoor

temperature profile given in the top panel of Fig.(4.2), with the results given in the

bottom two panels. The indoor air temperature is seen to rebound between the ther-

mostat deadband, at a rate directly related to the outdoor temperature regime, while

the indoor building thermal mass remains centred around the set-point. The warmer
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Table 4.1: Parameters implemented in the heat pump model

Parameter Description Value
R Envelope thermal resistance 2 oC/kW
C Bulk thermal mass 10 kWh/oC
Cm Indoor contents thermal mass 75% of C
Ca Indoor air thermal mass 25% of C
Rma Indoor heat transfer resistance 0.5 oC/kW
q̇fan Heating power of the fan 500 W
θs Temperature setpoint 20 oC
δ Thermostat deadband width 1 oC
T Sampling time interval 1 minute
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Figure 4.2: Example of the ETP model under the displayed outdoor temperature.
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temperatures experienced by the building in the late afternoon results in less of a

temperature gradient to exist across the building envelope, and therefore the build-

ing loses less energy over these periods. This results in less need to operate the unit,

as the indoor temperature trajectory decays at a slower rate in comparison to that

observed at colder temepratures, while the operational intervals of the device dimin-

ish due to less of a need to add heat energy into the system. It is therefore extremely

important to accurately capture these dynamics within the load model, as they di-

rectly effect the device’s duty-cycle (percentage of time the unit is active relative to

the time it is inactive), or the loading the heat pump places on the grid. The coupled

ETP model allows for these characteristics to carry through, while further providing

the computational efficiency for application in population-based simulations.

4.1.2 EV charging

The charging of an EV is strongly tied to the travel history associated with the

unit, which is complicated to capture without full treatment of the social factors

governing charging schedules. We can in fact represent the charging trajectory using

a simplified linear model of the charging process alone, and neglect the travel history

through stipulation of a suitable charging capacity in (3.3). The charging process is

an electrochemical reaction, and is non-spontaneous, meaning that work equivalent

to the Gibbs free energy change must be provided for the reaction to proceed in the

proposed direction. The power system will provide the energy needed by the reaction,

as well as the encompassing intrinsic heat loss to the environment, due to a change in

entropy. As the characteristic of interest is the behaviour of the hysteresis controller

governing the charging status, the approach pursued in this work is to simply model

the local controller using a quasi-steady state model of the charging reaction through

application of a defined efficiency. This controller will need to sample the charging

trajectory periodically, with the state-equation for charging-trajectory measurements

occurring at a sample period T modelled by:

E[k + 1] = E[k] + n[k]ηPrT + e[k] (4.12)

An error term e has been added, that will be taken to display constant variance, and is

meant to represent all unmodelled physical phenomena associated with the charging

process (ambient temperature changes, transient electrochemical effects, leaks, sensor

noise, etc.). Future work should focus on extending this load model to account for
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the transient phenomena accompanying the charging process.

Example

An example of the EV charging model is given in Fig.(4.3), with Table (4.2) overview-

ing the model parameters implemented. The unit modelled requires 14 kWh of

Table 4.2: Parameters implemented in the EV charging model

Parameter Description Value
Pr Rated power of the charger 4 kW
η Charging efficiency 0.95
Ec Desired charging capacity 14 kWh
Ts Desired time to accumulate Ec 7 hours
δ Hysteresis control deadband width 0.025
T Sampling time interval 1 minute

charging energy over a charging horizon of approximately 7 hours, with the rated

power of the charger being 4 kW and a charging efficiency of 95%. This could repre-

sent a typical EV owner, who depletes the majority of their battery’s state of charge

over the course of the day, and then charges the vehicle overnight. The charging

trajectory is mapped to the hysteresis controller’s deadband space by (3.9), using

the set-point defined by (3.8), and results in the duty-cycle-based charging rate, and

the staggered charging trajectory. The choice of deadband width somewhat sets the

cycling frequency. A larger deadband space results in a greater allowable drift from

the user’s set-point or distance for loads to traverse and therefore longer times be-

tween operational switching events, with the other extremely important input driving

device-level duty-cycle being the user’s set-point. For this example it has been set at

δ = 0.025 so that the operational periods last between about 20 and 30 minutes.

4.1.3 Electrolyzers

Electrolyzers utilize the process of electrolysis to decompose water into its constituent

gases oxygen, and hydrogen. This reaction is non-spontaneous, and therefore (4.12)

can also be applied for electrolyzers as well through stipulation of a suitable “charg-

ing” capacity. It is assumed that this capacity corresponds to a daily production

quota, and therefore there is no need to account for units passing into and out of the

available responsive population (units participate continuously).
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Figure 4.3: Example of the EV load model.
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Example

An example of the electrolytic hydrogen production model is given in Fig.(4.4), where

a 20 kW unit is commissioned to produce 170 kWh of hydrogen (based on lower-

heating value) over the production period (1 day). The efficiency of the production

process is sensitive to the voltage applied across the electrolytic cells, where it is

assumed that in each case the rated power that the unit will be operated at corre-

sponds to the maximum efficiency associated with the number of electrolytic cells

encompassed in the unit (η = 0.75). A summary of the parameters implemented in

the electrolyzer example are give in Table (4.3). Again, the charging trajectory is

Table 4.3: Parameters implemented in the electrolyzer model

Parameter Description Value
Pr Rated power of electrolyzer 20 kW
η Electrolyzer energy conversion efficiency 0.75
Ec Desired amount of hydrogen (energy content) 170 kWh
Ts Desired time to accumulate Ec 24 hours
δ Hysteresis control deadband width 0.035

mapped to the hysteresis controller’s deadband space by (3.9). In the case of elec-

trolyzers, the choice of the deadband width is important, as rapid cycling of these

units has been shown to degrade performance [47]. A deadband width of δ = 0.035

is selected, as this produces minimum run- and down-times exceeding 45 minutes,

which should allow transient phenomena to sufficiently diminish during operation.

4.2 Supply-side: Power System Model

As the primary interest of this work is the prospect of managing demand-side infras-

tructure for power system ancillary services, a model for the power system in which

the load models interact is needed. Furthermore, these interests lie with the opera-

tion of power systems that employ a low carbon mixture containing large amounts of

wind generation. Treatment of wind generation systems within the model is therefore

needed. The purpose of this section is to introduce the modelling framework for the

power system, as well as the model of the wind energy system that will promote low

carbon operation.
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4.2.1 Wind Energy System Model

In modern turbines, wind that passes over the turbine’s blades generate lift based on

the structural properties of the blade (material and shape). This lifting force spins

the turbine blades, which are connected to an induction generator. The generator

produces an electrical current due to the time-varying magnetic flux brought on by

the spinning generator, which when passed through power electronics, can be used as

power supply on the grid. Due to the large number of components that make up a

system of this type, development of rigorous analytical models capable of accurately

quantifying the systems performance is an extremely arduous undertaking. Typically,

simplification is pursued, and a general transfer function between the wind speed input

and power output is defined.

The quasi-steady total mechanical power extracted by a wind turbine Pm is related

to the wind speed uw through [52]:

Pm[t] =
1

8
Cp (λ[k], β[k]) ρπD

2
uw[k]

3 (4.13)

where D is the rotor diameter, ρ the air density, and Cp the turbine’s coefficient of

performance, which in turn is a function of the tip-speed ratio λ and blade pitch

angle β. Equation (4.13) relates the mechanical power imparted to the turbine, to

the total power in the wind stream passing over its blades through considering the

wind turbine aerodynamic interaction as an inefficiency, contained in Cp. Often the

full Cp(λ, β) data are not available so that (4.13) cannot be used directly in power

performance evaluations. According to [53], a good approximation is found by using

the following relation:

Cp[k] =






0 uw[k] < uci

Cp,m

�
1− F1

�
um

uw[k]
− 1

�2

− F2

�
um

uw[k]
− 1

�3
�

uci ≤ uw[k] ≤ ur

Cp,r

�
ur

uw[k]

�3

ur ≤ uw[k] ≤ uco

0 uw[k] > uco

(4.14)

where uci is the wind speed at which the turbine begins to generate power (cut-in),

Cp,m is the maximum coefficient of performance, um the wind-speed at Cp,m, ur the
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wind speed at which the turbine is rated, Cp,r coefficient of performance at ur, and

uco the speed at which the turbine furls (cut-out). The coefficients F1 and F2 are

determined using boundary conditions, namely that Cp = 0 at uw = uci and Cp = Cr

at uw = ur.

In this thesis, the mechanical power imparted to the turbine blades is taken to

be passed through a gear-box before the generator. Power electronics then interface

the system to the grid. These conversions further reduce the available work the

wind turbine can produce on the grid-side. Based on the method described in [54],

the gearbox is modelled as a number of stages S, where the efficiency at which the

gearbox operates is related to the current mechanical input by:

ηg[k] =






0.1 Pm[k] ≤
SPrt

90

1− 0.01SPrt

Pm[k]
otherwise

(4.15)

where Prt is the rated power of the turbine, which occurs at the rated wind speed. The

piecewise approach is applied to ensure the gearbox efficiency remains positive. The

model for the generator simply assumes that all electrical inefficiencies are described

as a constant ηe, or that the wind system provides a constant power input unto the

grid and does not effect voltage. The total wind power injected onto the grid PW

can then be obtained using the mechanical power imparted to the blades less the

inefficiencies that accompany the transferral of this power through the mechanical

and electrical components:

PW [k] = ηeηg[k]Pm[k] (4.16)

Tab. (4.4) displays the inputs used throughout this work to describe the wind

turbine, and are meant to represent a generic 1.5 MW system.

4.2.2 Grid Model

The wind energy system and load models interact through the power system model. A

DC formulation of a single network bus is implemented to simulate the power system,

as it provides a computationally efficient method of modelling both the load and

renewable generation, while also providing a platform to test both grid-connected and

isolated systems. Future work should focus on extending the model to AC simulations

and accounting for distribution-level power-flow, but for the purpose of this work, the
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Table 4.4: Parameters implemented in the wind energy system model

Parameter Description Value
Prt Rated power of the unit 1.5 MW
D Rotor diameter 82.5 m
uci Cut-in wind speed 4 m/s
uco Cut-out wind speed 26 m/s
ur Rated wind speed 12 m/s
Cp,r Rated coefficient of performance 0.250
Cp,m Maximum coefficient of performance 0.300
um Wind speed at Cp,m 7 m/s
S Number of stages in the gearbox 3
ηe Efficiency of the electrical components 0.95
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DC formulation will allow us to sufficiently capture the primary characteristics of the

proposed load managment policy, which is balancing energy within the system.

The selected energy system is given in Fig.(4.5), where the total aggregate com-

munity load is given by PL, the wind power by PW , and the conventional generation

by PG. The energy system is modelled through consideration of the grid management

problem, which is to minimize operating costs subject to the operating constraints.

Generators are modelled as capacity- and ramp-constrained units, which results in

the need to consider power curtailment PC at the network bus in the case the power-

gradient exceeds the ramping duty of the generators ṖG,max or capacity constraints

PG,min/PG,max. The best possible outcome can be obtained by assuming all inputs

are known from the outset (perfect knowledge assumption), and solving the grid-

management problem as a dynamic optimization, namely:

Min OC =
Nk�
k=1

(wG[k]PG[k] + wC [k]PC [k])

s.t. PG[k] + PC [k] = PL[k]− PW [k] ; ∀ k

PG[k]− PG[k − 1] ≤ ṖG,maxT ; ∀ k

PG[k − 1]− PG[k] ≤ ṖG,maxT ; ∀ k

PG,min ≤ PG[k] ≤ PG,max ; ∀ k

PC [k] ≥ 0 ; ∀ k

(4.17)

where OC is the total operating cost associated with the planning horizon consisting

of Nk decision intervals, wG the cost associated with the generator’s output, and wC

the costs associated with the curtailed power. No attempt is made at this point to
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Figure 4.5: Simplified DC electric power system model.

distinguish the control components, as the main interest is obtaining the aggregate

load placed on the conventional generation units. Under this main objective, the
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costs are set at wG = 0 and wC = 1 for further simplification, so that the manage-

ment system focuses on the single objective of attempting to minimize the amount of

curtailed energy from the bus.

The total aggregate load is made up not only of the responsive load populations,

but further the unresponsive loads existing within the community as well. The unre-

sponsive load profile used throughout this work is given in Fig.(4.6), along with the

wind power data that has been generated using the wind plant model and then scaled

up to represent a 10 MW plant. The unresponsive load is generated to represent a

typical load profile that displays diurnal variations driven by the synchronization of

community resident schedules. The total load on the network bus at each time-step
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Figure 4.6: Unresponsive load and wind power time-series data.

is then given by the aggregation of the individual load profiles in (3.10), added to the

uncontrolled inputs to the bus.

PL[k] =

Np�

p=1

N(p)
i [k]�

i=1

�
n
(p)
i [k]P (p)

r,i

�
+ PU [k] (4.18)

4.2.3 Selecting the Simulation Time-step

The complete model integrating each component description requires the ability to

capture both the dynamics of the load models and generation while further preserving
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the accuracy of the simplifications pursued to accelerate computational times. A one-

minute sampling time (T = 1 min) provides these qualities, as it will allow transient

dynamics associated with the component models to sufficiently dissipate, allowing

the quasi-steady-state descriptions to remain viable, while further coinciding with

the device and grid-level control strategies of interest. Below one-minute, generation

has been shown to not follow load exactly [55], while ill-considered turbine structural

dynamics are also observed to effect the performance of the unit below a one-minute

sampling frequency [20]. Wind displays considerable variability at this scale, which

similarly themed models that focus on longer time-scales may neglect.

From the viewpoint of the control strategy, individual loads will be entering into

and out of the LC, especially in the case of EVs. End-users wishing to interact with

the loads can not be expected to remain passive until the control interval is complete.

Selection of one-minute provides some room for user’s accommodation, in which they

may choose to wait in order to reap the benefits associated with participation. Fur-

thermore, the device-level controllers typically operate at this sampling frequency,

meaning that longer simulation steps may in fact be incompatible. Finally, grid regu-

lation is the primary ancillary service of interest, which takes place between economic

dispatch intervals. These intervals typically take place every 5 to 15 minutes, mean-

ing a one-minute sampling time should provide a sufficient framework to capture the

regulation dynamics.

4.3 Control Performance Metrics

To understand the viability of the proposed load management strategy, the following

section introduces the metrics used to rate performance, which should look to directly

quantify the merits for success outlined at the beginning of Chapter (3).

4.3.1 Supply-side

As introduced in Chapter (2), increased integration of intermittent renewable genera-

tion will require greater access to real-time balancing services (regulation) in order to

maintain system security. As suggested in [23], different ancillary service types can be

estimated through separating the loading profile on the grid’s generation into base-

load, load-following, and regulation components. The base-load and load-following

components are meant to represent energy allocated during UC and ED, and can be
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estimated using the 15-minute moving average of the total area load:

Pbase + Plf [k] =
1

15

7�

m=−7

PL[k +m] (4.19)

The base load Pbase represents the minimum constant load that can be achieved:

Pbase = Min

�
1

15

7�

m=−7

PL[k +m]

�
(4.20)

while the load-following component Plf is given by:

Plf [k] =
1

15

7�

m=−7

PL[k +m]− Pbase (4.21)

The regulation component Preg therefore encompasses the remaining load:

Preg[k] = PL[k]− Plf [k]− Pbase (4.22)

Generators contracted to provide either load-following or regulation requirements

must ensure reliability under all operating scenarios. These contracts were introduced

in Chapter (2) to understand their effect on conventional online generation, and now

using the separated components, the required characteristics of these resources can

be quantified. In the case of load-following, the required capacity Clf corresponds to

the maximum of the load-following sequence less the base-load requirements:

Clf = Max (Plf )− Pbase (4.23)

As the regulation capacity Creg must cover both up- and down-ramping events, it

is defined using three standard deviations of the absolute value of the regulation

sequence:

Creg = 3 · stddev (|Preg|) (4.24)

This approach assumes the regulation sequence is normally distributed so that three

standard deviations encompass over 99% of occurrences.

Load-following and regulation also requires a certain level of responsiveness, or

online ability to ramp participating resources up and down. Finite-differencing the
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absolute value of the load-following signal provides the load-following power gradient

Ṗlf , with the regulation power gradient Ṗreg obtained from pursuing the same pro-

cedure on the regulation signal. Assuming these power gradients are again normally

distributed, the required load-following reserve ramp capacity Ċlf and regulation re-

serve ramp capacity Ċreg are given by:

Ċlf = 3 · stddev
�
|Ṗlf |

�
(4.25)

Ċreg = 3 · stddev
�
|Ṗreg|

�
(4.26)

The process of determining the required load-following and regulation character-

istics resources providing these services must exhibit is usually pursued on an hourly

basis. In order for the load control strategy to be deemed suitable, it should result

in a decrease in the required regulation reserve capacity, as this would result in an

increase in the operating efficiency of the effected generation and displace possible

needs to expand capacity under wind integration.

Another supply-side attribute of interest with respect to load control performance

is the amount of wind power curtailed during the simulation. Along with obtaining

these data through simulating the grid management strategy given by (4.17), the

ramp-rate of the conventional generation ṖG further provides a method of assessing

how well the control strategy is able to mitigate wind-induced variability across the

network bus, and can be obtained through finite-differencing the generator’s trajec-

tory:

ṖG[k] =
PG[k]− PG[k − 1]

T
(4.27)

4.3.2 Demand-side

On the demand-side, the characteristics of interest in terms of control performance

relate to both the benefits achieved through equipping the targeted infrastructure

with the proposed smart grid technology and the end-use services forfeited as a re-

sult. As each load is explicitly modelled, the cumulative energy demand from the

generator EG over the simulated time-horizon provides a method of observing the
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end-use functionality of individual loads at the system-level, and is given by:

EG[k] =
k�

k̂=0

PG[k̂]T (4.28)

By comparing the EG trajectory achieved subject to control to that seen uncontrolled,

discrepancies should remain minimal throughout the time-series in order to draw

conclusions that the control strategy was in fact non-invasive. Furthermore, the

statistics of the control signal u sent to the individual populations can provide insight

into both the cost and end-use disruption that accompanies the control process, and

will be used to draw conclusions with respect to control performance.

As the different targeted load-types display different device-level qualities that

will surely effect population dynamics, the performance of the each in comparison to

the others can be achieved through observing the total energy dispatched over a given

period in the optimization problem given by (4.17). Using the deviations from the

uncontrolled trajectories, the total energy dispatched ED from load-type p is taken

to be equivalent to regulation in the sense that both up and down requirements are

to be considered as dispatched capacity:

E
(p)
D =

Nk�

k=1

��∆P
(p)[k]

��T (4.29)

The ramping capability of the load resource is also of keen interest in terms of the

reserve requirements, and can be quantified through obtaining the width of the VGM

feasible region given in (3.24). Hereafter this quality will be referred to as the load

flexibility F , and is given by:

F (p)[k] = P
(p)
max[k]− P

(p)
min[k] (4.30)



57

Chapter 5

Model Results

The main objective of this section is to analyze the operating characteristics of the

energy system model, and draw conclusions with respect to the observed performance

of the proposed load management strategy.

5.1 Preliminary Model Results

In order to test the load control strategy, populations of the targeted demand-side

infrastructure are required. The unresponsive load given in Fig.(4.6) will be used

throughout the simulations. It is assumed that due to its peak demand (10 MW), that

it could represent a suburban or rural community connected to a single distribution

system (approximately 2000 customers) [56]. Assuming somewhat arbitrarily that

three quarters of the customers have both a heat pump and EV, initially populations

of 1500 heat pumps and 1500 EVs are generated.

To ensure realistic conditions, these populations must be heterogenous so that

the device diversity expected in typical communities is observed. For the heat pump

population, this is achieved through drawing normally distributed ETPs using the

example given in Table (4.1) as the average values. For the EV population, a similar

process is pursued, where the user’s initial input, the charging capacity to be accumu-

lated over their desired charging horizon, is drawn again from a normal distribution.

Charging rates of 3, 4 or 5 kW are set by generating a uniform distribution over these

three values. Complicating the EV model is the definition of the exact time the units

should initialize charging. It can be expected that most EV drivers will deplete their

battery during the day, and charge overnight, which would prove beneficial under
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time-of-use electricity pricing scenarios (overnight would correspond to the cheapest

customer electricity rates). Desired times to be fully charged are initially drawn from

a uniform distribution spanning 5 - 9 AM, with the charge initialization times then

correlated to these instances through drawing charging horizons uniformly between

a range of 6 - 10 hours, so that the majority of charge initializations begin between

6 - 12 PM. As it can be expected that some EV drivers would also charge during

the day, 50% of the vehicles (750 in this case) were also selected to partially charge

over short periods during the day, at smaller required charge capacities (selected as

approximately 50% of their nightly charging capacity). All other parameters in the

EV population are left as is given in Table (4.2). In total, the EV population charges

22.6 MWh of energy from the grid, which can then be used to displace gasoline

for transportation. Assuming an average charge depletion mode efficiency of 0.25

kWh/km [56], and a discharge efficiency of 95%, this amount of EV charging energy

corresponds to an average of approximately 60 km per customer, more range than an

average driver would require.

As the electrolyzers consume more power per unit than the heat pumps and EVs,

a smaller population of 350 electrolyzers is initially implemented. Their rated power

was set uniformly over the range 10, 15, or 20 kW. The time requiring full charge

was set through defining a normal distribution centred about 24 hours. This choice

avoids having each individual unit traversing a very similar deadband trajectory, or

more particularly, the population synchronizing within the deadband space. The

required hydrogen capacity was then defined so that each system would display a

50% duty cycle, which corresponds to setting Ec = ηPrTs/2. All other parameters in

the electrolyzer population are left as is given in Table (4.2). In total the electrolyzers

produce a daily quota of 48 MWh of distributed local hydrogen feedstock (based on

the lower heating value), which could be used in various fuel cell applications. Fuel

cells achieve a wide arrange in operating efficiency, especially in applications such as a

vehicle engine in which a variety of loading conditions are expected. In these scenarios

the system-level fuel cell efficiency typically attains approximately 50% [57], which

means that the locally produced hydrogen could provide about 24 MWh of energy

for similar stationary or transport-based requirements.

Once the model inputs were defined, two separate scenarios were considered, with

the first simulating the system without access to the load management resource, and

the second with the load management strategy enabled. The temperature profile

input to the building models is given in the top plot of Fig.(4.2). The scenarios
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result in the uncontrolled and controlled load trajectories given in Fig.(5.1). The top
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Figure 5.1: Load trajectories associated with the preliminary simulation.

plot displays the aggregate heat pump load, the second plot the aggregate EV load,

the third plot the aggregate electrolyzer load, with the bottom plot indicating the

total load on the network bus (including wind input). The total load is input to the

grid management problem in (4.17), which in this preliminary case, does not result

in any power curtailed from the network bus, meaning the bottom plot of Fig.(5.1)

also represents the load on the conventional dispatchable generators. As can be seen,

the controlled case displays considerably less variability. The heat pump trajectory is

observed to display the greatest ability to ramp up and down over short-periods, while
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the electrolyzer population displays oscillatory behaviour occurring over longer time-

scales. These characteristics are directly attributable to the device-level duty-cycles

that accompany the choice of deadband width, as the shorter duty-cycles observed

in the heat pump and EV populations result in accelerated replenishment of regions

near state-transition boundaries, while the oscillations observed in the electrolyzer

population, even in the uncontrolled case, seem to indicate that the population’s

states may be synchronizing (many individual electrolyzers existing within a similar

region in the deadband space) near the end of the simulated horizon. These aspects

will be further investigated in the following sections.

5.1.1 Population Dynamics

To further investigate population dynamics, the individual responsive load trajecto-

ries are examined in greater detail over the hour 01:00 to 02:00, and are displayed in

Fig.(5.2). The top plot depicts the trajectory associated with the VGM, which en-

compasses the aggregate demand from each responsive load type. Also depicted is the

target trajectory defined in (3.34), as well as the time-varying feasible region attained

through online assessment of the demand resource, determined through combining the

device-level boundaries given by (3.24). Beneath the total responsive load trajectory

are the individual responsive load-trajectories, computed by (3.10) for each type, as

well as the associated time-varying feasible region boundaries, and target trajectories

computed through solution to the optimization problem in (3.32). The targets are ob-

served to be followed at an accuracy exceeding 98.5% over the entire simulation, where

these minute discrepancies can be attributed to the discretization of the deadband

width and quantized device-level power-ratings. Over certain intervals the trajectory

associated with the total VGM is observed to bottom-out against the minimum fea-

sible region boundary. These occurrences indicate that the regulation target defined

in (3.33) is unattainable in the sense that the loads are unable to meet the target

without compromising the feasible region, and thereby reduces the capability of the

responsive loads to regulate the total demand, and results in the need to dispatch

conventional regulation resources. Therefore, while the electric load populations may

reduce the regulation requirements, it can be expected that they will be unable to

fully replace generating units traditionally participating.

Delving deeper into the population dynamics, the power density distributions are

further tracked over the same interval, and are depicted graphically as contour plots
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Figure 5.2: Close-up view of the virtual generator responses over the period 01:00 to
02:00.
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in Fig.(5.3). The amount of power at each individual end-use state is shown over the

discretized 2δ-region encompassing all end-use state measurements. Also depicted are

the controlled state-transition boundaries computed upon solution to (3.20) under

the target power allocated to the particular load type. Apparent state-transition
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Figure 5.3: LC power distributions from 01:00 to 02:00.

boundary overshoots are a result of devices in the preceding interval diffusing into the

state-transitioning regions, which are then the focus of current time-step management.

It can be seen that the intervals over which the total responsive load bottomed-

out in Fig.(5.2) correspond to events in which the control signal also lies along its

minimal level in Fig.(5.3), as set in (3.22) so as to ensure the control remains non-

disruptive at the device-level. Further noteworthy are the relative differences observed

in the evolution of the distribution shapes. The heat pump population’s distribution

remains relatively uniform. Device-level state synchronization is observed to occur
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between 01:40 and 01:50, but in turn dissipates quickly, and indicates the heat pump

population is capable of maintaining diversity.

On the other hand, the EV and electrolyzer distributions display considerable

non-uniformity, as well as intervals over which considerable state synchronization is

observed. Even though the EV population is operating on a deadband width that

should promote accelerated replenishment of the deadband transitioning regions, the

dynamic population size that accompanies the connection / disconnection of units,

as well as the relative distribution sparsity, results in less flexibility in the aggregate

population or a need to implement large amplitude control signals to achieve any sort

of response.

While the electrolyzer population size remains static, the synchronization observed

dissipates slowly, partly due to slower device trajectories accompanying a larger dead-

band width, but also further indicates the population in fact displays less of the

heterogeneity that is needed to promote state diversity. The combined ability to

quickly damp disturbances in state diversity and maintain distribution uniformity

allows the heat pump VGM to display the greatest flexibility, or more particularly,

that smaller set-point changes result in greater overall ability to move power. As can

be seen in Fig.(5.2), the heat pump VGM consistently displays the largest feasible

region, with boundaries that in turn remain relatively stable. These characteristics

promote selection of the heat pump population over its counterparts within the op-

timal dispatch process in (3.32), as it looks to minimize the cost of attaining the

desired demand response across each load-type through minimization of the control

signals. Overall, through consistently dispatching the heat pump population, the

heat pump distributions have been completely shifted downwards towards the lower

state-transition boundary (�−). Nonetheless, the device-level mean temperature has

only shifted about -0.25oC, and hence should go unnoticed by the end-user.

The total dispatched capacities over the simulated time-horizon, mean VGM flex-

ibilities, mean control signal amplitudes, and control signal standard deviations are

given in Tab.(5.1). The heat pump population is dispatched for the most energy, as

computed by (4.29), which can be directly attributed to the flexibility the population

consistently displays, as computed by (4.30). The superior flexibility results in a lower

cost associated with energy dispatched from the heat pumps, as the aggregate heat

pump demand is more sensitive to set-point modulations. Therefore the heat pump

VGM is selected ahead of its counterparts due to a reduced cost within the viewpoint

of the optimization in (3.32).
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While these results may indicate that the heat pump population is indeed the

superior load-type, they must be accepted with caution. The first-order linear load

models pursued in the case of EVs and electrolyzers determines the rate at which the

devices traverse the deadband region, which in turn governs the evolution of the power

distributions. These models do not capture load dynamics sufficiently. In contrast,

models that preserve the transient phenomena associated with the electrochemical

energy conversion processes should enhance heterogeneity within the load popula-

tions, thereby increasing device-level flexibility in the case of EVs and electrolyzers.

Furthermore, the EV charging strategy has been defined somewhat arbitrarily, and

it may in fact be expected that more units are available throughout the day, which

would in turn increase aggregate flexibility. Also, in many locations, heat pumps

will only be operated seasonally, and therefore may become unavailable for control.

For these reasons, while the EVs and electrolyzers may in fact be outperformed by

the heat pumps in this preliminary simulation, under realistic conditions EVs and

electrolyzers should perform somewhat better, and the heat pumps somewhat worse.

It will be the focus of Sec.(5.2) to investigate results sensitivity to certain initial

conditions.

Table 5.1: Performance of the load resource.

Dispatched Mean VGM Mean Control Control Signal
Load Type Capacity Flexibility Signal Amplitude Standard Deviation

[ MWh ] [ MW ] [% of umax] [% of umax]

Heat Pumps 35.6 3.2 79.9 30.3

EV Charging 2.8 0.5 31.5 42.7

Electrolyzers 5.2 1.3 39.4 43.5

5.1.2 Network Bus Power Dynamics

The power dynamics across the network bus can be examined through computing the

power gradient and cumulative energy demand given by (4.27) and (4.28), using the

total load given in Fig.(5.1). The power gradient data can be ordered by occurrence

frequency to observe the data’s spectrum, and is given for each scenario (controlled or

uncontrolled loads) in the left plot of Fig.(5.4). The controlled case is observed to act

as a low pass filter, as the majority of the larger fluctuations seen in the uncontrolled
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case are eliminated when the loads are subject to control. This result clearly indi-

cates that through synchronization of deferrable device-level schedules, the proposed

control strategy is capable of buffering variability across the network bus. Consid-

ering that the emission rate of thermal generation increases with power gradient, if

these types of generating units are servicing the network bus, the controlled case will

result in a reduction in emissions. Furthermore, ramping of any generation unit can

degrade performance reliability over time. The controlled case mitigates this variabil-

ity, and therefore the units servicing the network bus are able to operate steadily and

smoothly, prolonging these unit’s lifecycle and reducing maintenance costs.
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Figure 5.4: Left: power gradient experienced by the generator. Right: cumulative
demand for energy from the generator.

The cumulative demand for energy is given in the right plot of (5.4). As can be seen

the trajectories overlap over the entire simulated time-horizon, meaning that while

we obtain the variability buffering seen in the left panel of Fig.(5.4), the demand

for energy in the controlled and uncontrolled case remains equivalent. This result

underlines that each modelled end-use device, controlled or not, consistently demands

the same amount of energy throughout the day, and as this energy demand appears as

an equivalent level of end-service, it therefore guarantees that end-use functionality of

the participating units is maintained when subject to the proposed control strategy.
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5.1.3 Effect on Conventional Generation Scheduling

While a reduction in power gradient has been observed across the network bus, which

in turn should allow conventional generation to operate more efficiently, further anal-

ysis is needed to understand effects on power system operations. Initially, the regu-

lation component is removed from the total load on the conventional generation by

using (4.22) with the trajectories given in the bottom panel of Fig.(5.1). The result

is given in Fig.(5.5), and as can be seen, the case in which the load control straegy

has been enabled results in considerably less need to dispatch regulation. In total,
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Figure 5.5: Regulation component that must be accommodated by the conventional
generation

the uncontrolled case requires 8.8 MWh of regulation to be dispatched, while the

controlled case requires only 1.8 MWh (80% decrease).

The required hourly online load-following and regulation reserve characteristics

can be computed through application of Fig.(4.23) to (4.26), with the results displayed

graphically in Fig.(5.6). Over each hour, the controlled case is observed to reduce both

the required regulation capacity and ramp-rate. The load-following reserves are seen

to in fact increase over certain hours of the day, although considering the cumulative

energy demand given in Fig.(5.4), these increases can be met with the equivalent

capacity liberated from the regulation reserves, with the major benefit now being an

increase in the conventional generation’s energy utilization efficiency. The reduction

in dispatched regulation capacity also results in a greater capability of the affected

units to provide actual capacity to the grid, as the units operating as online reserve



67

0

2.50

5.00

L
o

a
d

−
fo

ll
o

w
in

g
 

C
a
p

a
c
it

y
 

[ 
M

W
 ]

 

 

0

0.15

0.30

L
o

a
d

−
fo

ll
o

w
in

g
R

a
m

p
 C

a
p

a
c
it

y
[ 

M
W

 /
 m

in
 ]

0

1.00

2.00

R
e
g

u
la

ti
o

n
C

a
p

a
c
it

y
[ 

M
W

 ]

08−09 12−13 16−17 20−21 00−01 04−05 07−08
0

0.30

0.60

Hour of Day

R
e
g

u
la

ti
o

n
R

a
m

p
 C

a
p

a
c
it

y
[ 

M
W

 /
 m

in
 ]

Uncontrolled Loads Controlled Loads

Figure 5.6: Required hourly online load-following and regulation reserves.



68

have associated missed opportunity capacity that must remain online but does not

actually make it onto the grid. Through subtracting the hourly regulation reserve

capacity from the hourly dispatched capacity, it was found that in the controlled case

24.2 MWh of missed opportunity capacity occurred, with only 6.9 MWh occurring

in the controlled case. Therefore, the proposed load control strategy has essentially

freed 17.3 MWh of energy that could take part in ED.

To understand what the preliminary results mean in terms of the operating char-

acteristics of the dispatchable generation, the required load-following and regulation

reserves can be combined using (2.1) to understand both the required operating range

and ramp-capacity the participating units must display in order to remain viable

choices for reserve. The results of this process are displayed in Fig.(5.7) for both the

controlled and uncontrolled cases, along with the hourly dispatched capacity from

each load type and corresponding flexibility achieved when subject to the proposed

control strategy. The required ramping duty of the dispatchable generation is seen to

decrease over each hour when loads are subject to control, which means that slower

moving resources can be implemented. Over the majority of the day, the operating

range of the conventional dispatchable generation in the controlled case is reduced,

even over hours in which the required load-following characteristics were in fact ob-

served to increase. This can be attributed to the structure of (2.1), as the operating

range is twice as sensitive to the regulation reserve reductions achieved in the con-

trolled case as compared to changes in load following reserves. A smaller operating

range means that participating generators can be continuously operated closer to ideal

conditions, or near loading conditions that correspond to maximum output efficiency,

thereby reducing the need to operate multiple smaller units in order to conserve op-

erating efficiency. Over the final two hours of the day, the operating range is in fact

seen to increase in the controlled case, which in turn corresponds to the interval over

which the electrolyzer population is observed to display oscillatory behaviour. As this

attribute is brought about by synchronization of device-level states, it underlines the

importance of ensuring control stability through maintaining load diversity.

The bottom two panels of Fig.(5.7) display the hourly dispatched capacity and

flexibility of each responsive load population. The loads are seen to be dispatched for

more energy each hour than the observed reductions in regulation achieved. There-

fore, these results indicate that it would be unsuitable to set the cost of ancillary

services generated by responsive loads at the same rate as power from from more

traditional reserve capacity generators. Controlling loads intrinsically changes the
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fundamental demand profile, which is used as the datum from which deflections are

considered dispatched capacity from the LC, as given by (3.26). Pricing services at-

tained from the loads based on this deflection under the idea that the uncontrolled

trajectory represents the ideal uncontrolled case from the viewpoint of the LC is there-

fore unsuitable. Once load control commences the uncontrolled trajectory may in fact

result in sub-optimal conditions as direct result of a previous control action. Under

these scenarios it would make most sense from the viewpoint of the load management

network’s stakeholders to pursue control strategies so as to ensure the long-term per-

formance of the resource. A single stakeholder (the LA) should then not be faced

with the prospect of paying another stakeholder (the LC) during pursuit of a mu-

tually beneficial action. It is therefore argued here that it does not make sense to

attempt to price direct load control actions in real-time. Rather the LA should pay

participating load groups based on the positive effects they add to the system post-

occurrence. These attributes could be obtained by quantifying the decreases in online

reserve requirements and emissions, as well as any efficiency gains.

5.2 Sensitivity Study

The computational model is modular and extensible, and can further be used to

understand the sensitivity of preliminary results to initial conditions. Here, each load-

type is investigated under varying model initializations in order to gain further insight

into the performance of the load management strategy. The effects of the recruited

population-size on load control performance are of particular interest . Recruitment of

each load-type can be modelled through generating populations of varying sizes, and

then simulating these groups both controlled and uncontrolled, under model inputs

that are expected to vary considerably across diverse populations.

The hourly regulation reserve requirements (capacity and ramp-rate) obtained in

each case (controlled and uncontrolled) can be averaged over the simulated time-

horizon, and then subtracted to quantify the reserves liberated when deferrable loads

are subject to self-regulating control. Obtaining these values across different population-

sizes and load-types therefore provides a method of determining the marginal benefit

associated with recruiting these targeted loads through the application of the smart

grid technology, and provides valuable insight into the least-cost population-basis that

should be sought by the LA in order to provide the greatest overall benefits.
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5.2.1 Heat Pump Integration

Different heat pump population sizes are generated using the parameters given in

Tab.(4.1). In order to reflect the large decrease in demand accompanying removing the

other load-types from the system, the wind power data are scaled down to represent

a 2.5 MW unit. The initial input parameter investigated is the number of terms in

the aggregate controller’s moving average horizon M , as defined in (3.33). Selection

of M sets how intensely the controller attempts to smooth the load profile, or more

importantly, to operate in the load-following regime. A population performing well

at a large value of M therefore reduces load-following reserves, increasing base-load

requirements proportionally, which in turn would further provide considerable benefits

to the power system by decreasing the gap between demand peaks and valleys. This

allows the power system to operate more frequently at the loading levels it is designed

to handle. The problem is that more flexibility from the load populations would be

required, which may be incompatible with the comfort-constraints embedded in the

optimal dispatch procedure.

Figure (5.8) graphically depicts the marginal benefit of recruiting heat pumps

(decremental regulation reserve capacity and ramping capacity) over the choice of

M = 2,3, and 4. It is initially observed that the marginal benefits associated with

recruiting heat pumps diminishes after approximately 1000 units exist in the respon-

sive population. As can be seen for the decremental regulation reserve capacity in

the left panel, the initial M = 2 case performs somewhat better for population sizes

less than approximately 1000 units, with the M = 4 case overtaking at larger lev-

els. As these larger population sizes contain more thermal mass, more energy is able

to accumulate within the population without significantly affecting the temperature.

This allows the controller to operate more effectively in the load-following regime,

and is why the larger values for M perform better at larger population sizes. A large

amount of thermal mass is therefore seen as a positive building-level characteristic

for heat pump loads, and buildings possessing this quality should be sought for re-

cruitment over those that may lack thermal mass in comparison. Nonetheless, it

is more beneficial to recruit a population of smaller buildings with a total thermal

mass equivalent to a single larger building, as a larger population enhances the power

density distribution diversity.

Building envelope thermal integrity is also an important attribute to consider when

recruiting customers. Buildings with lower envelope resistance traverse the deadband
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at a greater rate, and therefore, it can be expected that buildings that have poor

insulation in fact represent ideal candidates for recruitment, as these populations will

in turn result in a VGM with the greatest flexibility (deadband transitioning regions

replenish quicker). While intriguing in terms of the proposed load management strat-

egy, it should not be an issue of promotion amongst community residents, as this

would in turn result in a greater steady-state demand for energy from the build-

ings. This may offset the benefits associated with the load management strategy and

further promote inefficient use of energy at the building-level.

In the right panel of Fig.(5.8), the decremental regulation reserve ramp-capacity

is given, where the M = 2 case performs better over all population-sizes. This result

is to be expected, as smaller values for M result in the primary controller objective

shifting towards the minimization of the power gradient across the network bus, while

larger values focus on longer time-scale smoothing.

Next, the effect of outdoor temperature regime on control performance is investi-

gated. The outdoor temperature regime drives the apparent operational duty-cycle

of the heat pump, as the gradient that it places across the building envelope governs

the rate at which heat is lost from the air. In terms of load control performance, a

50% duty cycle should be ideal, as it promotes a steady-state aggregate demand that

provides an equal opportunity to ramp-up or down. To check the effects of outdoor

temperature regime on the online regulation reserve requirements, the initial tem-

perature input given in Fig.(4.2) is shifted by ±5oC, resulting in three temperature

profiles (mean of 3.5oC, 8.5oC and 13.5oC) that display similar trends in tempera-

ture gradient. The wind plant is kept at a 2.5 MW capacity, and M = 2 is again

implemented. Each temperature profile is input to the varying population sizes, and

the regulation reserves computed, and are given in Fig.(5.9). There is no clear trend

observed in the reserve requirements displayed in the left panel, though the colder

temperature regime is observed to result in a better ramping performance in the right

panel. Considering that the heat pumps are sized at a design temperature of -5oC,

and that the efficiency of these units have been modelled as a non-linear function of

temperature, it can be expected that the lowest regime indeed results in an average

duty-cycle lying closest to 50%, and therefore provides a greater ability to ramp the

resource up and down. A 50% duty-cycle corresponds to air temperature trajectories

that dissipate equally in either the active or inactive-state, and results in similar at-

tributes emerging at the system-level as well. Namely, the power density distributions

dissipate equally in either direction, replenishing the deadband transitioning regions
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similarly and promoting overall diversity. This enhances the population’s flexibility,

or its effective ramping ability and not its capability to store energy, and is the main

reason why the colder regime is observed to perform better in the case of online

ramping capacity and that no clear trend is observed in the reserve capacity.

5.2.2 EV Integration

The effects of EV integration are now checked over different initial conditions. Firstly,

selection of M is again checked, with results given in Fig.(5.10). It is initially ob-

served that the EVs do not provide the same level of benefits as that observed in

the case of heat pumps. As the predefined charging schedule results in EVs being

disconnected from the grid for the majority of the day, they are likewise unavailable

for recruitment. This results in a greater need to implement conventional regulation

resources, although the extra benefit now being that a reduced capacity is consumed

overall by the EV population in comparison to the other load-types. The selection of
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Figure 5.10: Effect of EV population size and selection of M .

M is observed to have little effect on the regulation capacity, while the ramp-capacity

is derceased most in the M = 2 case, again due to the fact that the controller is

attempting to minimize power gradients most under this selection of M .

As the charging schedule has been defined somewhat arbitrarily, resulting in low

availability of grid-connected vehicles during the day, the sensitivity of the results
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with respect to the percentage of vehicles that also charge during the day is now

investigated. The initial 50% level is checked, along with levels of 75% and 100%,

with the results given in Fig.(5.11). The results indicate that increased access to

EVs during the day can provide moderate increases in control performance. While

availability may increase with more EVs charging during the day, the extra variability

resulting from an increased number of units connecting and disconnecting from the

grid, as well as the induced duty-cycle based charging, in fact offsets some of the

expected positive benefits.
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Figure 5.11: Effect of EV population size and number of day-charging events.

Finally, sensitivity with respect to deadband width δ is investigated. The choice

of δ drives the duty-cycle frequency. Depending on the operational constraints of the

charger itself, which would bear the brunt of any cycling induced degradation, EVs

may in fact embody the greatest flexibility in terms of the selection of δ. There may

be room to manipulate this parameter considerably, whereas the other load-types of

interest contain definite constraints in terms of cycling frequency (electrolyzers and

heat pumps have minimum run/down-times). Values of δ = 0.025, 0.050 and 0.075 are

checked (unitless due to the non-dimensionalization of the end-use state performed in

equation (3.9)), with results displayed in Fig.(5.12). Little effect is observed on the

regulation capacity, while the smallest choice of δ results in the greatest reduction

in ramping rate. A smaller deadband space effectively results in EV loads traversing
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Figure 5.12: Effect of EV population size and width of deadband.
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the space at a greater rate, or more particularly, accelerates replenishment of the

deadband transitioning regions, and therefore increases the ramping capability of the

VGM.

5.2.3 Electrolyzer Integration

Sensitivity to initial conditions for the electrolyzer population are now investigated.

Three values of M are assessed over a range in population size in Fig.(5.13). The

electrolyzers consume more energy per device, and therefore a smaller range in popu-

lation size is considered. The electrolyzer population provides similar overall benefits

as the heat pumps, with marginal benefits increasingly rapidly up to a population

size of approximately 500 units, whereupon these benefits saturate. Similar conclu-
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Figure 5.13: Effect of electrolyzer population size and selection of M .

sions apply to M : the selection of M = 2 also performs best in the regulation reserve

capacity case.

The electrolyzer population yielded the greatest problems in terms of maintaining

diversity within the deadband space; thus the standard deviation of the device-level

measurement noise σn was modulated in order to model enhanced diversity. Results

are given in Fig.(5.14), where the largest selection of σn performs best. Increasing

the measurement noise pushes the device-level electrolyzer model to deviate from its
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Figure 5.14: Effect of electrolyzer population size and measurement noise.
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linear characteristics, and this result indicates that this increased variability in the

measurement noise enhances the performance of the load management strategy. As

under actual conditions it can be expected that the electrolyzer will in fact operate

under non-linear conditions, dependent on transient phenomena, a real population

should yield a greater ability to maintain diversity. This result underlines the need to

accurately model loads at the device-level. Moreover, transient models, such as that

used in the case of heat pumps, should be pursued in order to obtain higher quality

results.

5.3 Effects of Wind System Capacity

By scaling the wind power time-series data given in Fig.(4.6), the effects of wind

plant size on load control performance can be investigated. The smoothing effects

that do occur with an increased number of turbines are neglected, and is sufficient

for this study, as we are primarily concerned with how larger fluctuations can be

accommodated by the load control strategy, and possible limitations or tradeoffs that

may exist. Each responsive load type is reinitialized to the properties implemented in

the preliminary case, with the simulation results provided in Fig.(5.15). The decre-
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Figure 5.15: Effect of wind energy system capacity and selection of M .

mental regulation reserve capacity and ramp rates have been plotted versus the wind

plant capacity, where it can be seen that the benefits associated with controlling the

responsive loads increase until the wind plant capacity reaches 20 MW, whereupon

benefits diminish. The responsive load populations are unable to provide the flex-

ibility required to follow the power gradients present in the large-scale cases, and
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therefore the performance of the control strategy becomes less effective. Also plotted

are the results for different M , where again, the M = 2 provides the largest decreases

in required regulation reserve capacity and ramping capability. More responsive loads

would be needed at larger wind capacities, as this would provide greater flexibility to

follow the larger power gradients.

As incremental regulation reserve requirements are typically used to apply in-

tegration costs to wind development projects [22], these results also indicate that

grid-integration into communities enabled with the proposed load control strategy

would in turn face lower integration-based costs. Therefore, from the standpoint of

project cost, this type of configuration leverages community-owned wind projects, as

attaining the regulatory services from wholly owned infrastructure (customers own

the responsive loads) comes at reduced costs in comparison to an independent project

developer.

5.3.1 Application in Remote Power Systems

Remote grids typically need to transport fossil fuels into the location in order to use

diesel generators. This requirement results in an extremely expensive and vulnera-

ble supply. Although many remote locations are ideal candidates for wind energy

exploitation, in many cases they lack the ability to accommodate grid integration.

These isolated grids are usually associated with low mechanical inertia that is nega-

tively effected by an integrated wind turbine, due to rapid changes resulting from wind

variability. This variability also prematurely degrades the diesel gensets. These are

major drawbacks for isolated grids, that would benefit considerably from a localized

renewable energy resource.

Access to the proposed load control should then provide dual benefits. It can act to

protect these diesel generators from premature degradation, by reducing their ramping

duty, and allowing wind energy to partially displace the need for their operation.

Furthermore, the load control strategy could prove beneficial in reducing wasted wind

energy. If the weak grid cannot handle large wind fluctuations, wind energy needs

to be curtailed, reducing the amount of diesel fuel displaced. Within the model used

in this thesis, the grid flexibility, or the maximum allowable power gradient across

the network bus, describes the grid’s ability to accommodate variability, and is now

manipulated in order to understand any positive effects the load control strategy

brings to weaker systems.
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The responsive load populations and wind plant capacity are reinitialized to those

implemented in the preliminary case, and simulations are then ran under a varying

maximum generator ramp-rate ṖG,max, as defined in (4.17). Results are provided in

Fig.(5.16), as the range of grid flexibilities tested versus the decremental wind energy

that is curtailed when the loads are subject to control. As can be seen, as the grid
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Figure 5.16: Effect of grid flexibility.

flexibility decreases, the benefits associated with pursuing the proposed load control

strategy increase rapidly, as less wind energy is curtailed from the network bus. The

responsive loads reinforce the grids inertia through adapting demand to explicitly

follow wind fluctuations. Therefore, it can be expected that implementing similar

load control strategies within low inertia grids should provide considerable benefits in

terms of wind integration by allowing more wind energy to penetrate into the demand

profile. Auxiliary benefits would be a reduction in the ramping duty of the gensets,

thus preventing wind-induced degradation.

5.4 Effects of Communication Network Quality

The proposed control strategy is closed loop and therefore presents problems, as

a considerable amount of data needs to travel among the participants in order for
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the control to remain effective. If a very large number of spatially-distributed loads

are to be controlled, the probability of losing information vital for accurate VGM

development increases. Typically, the packet loss ratio (PLR) is used to describe the

quality of a network with respect to its ability to retain information. While packet loss

can occur for a number of different reasons, it is expected that packet loss will most

readily occur during the most heavily congested communication intervals, which in

this case represents the LA’s process of gathering the power-state vectors from the LC.

The PLR in this case then represents the percentage of power-state vectors (packets)

that do not make it to the LA, relative to the total number of packets sent from the

participating load group. It can be expected that this results in an aggregate load

model that underestimates the resource, as packet loss results in more loads currently

participating in the LC than the LA expects, potentially leading to the dispatch of

more demand than actually desired. Packet loss therefore results in uncertainty in the

aggregate load model, and should be dealt with appropriately through modification

of the dispatch process.

To understand the effects of packet loss on the control performance, and gain

insight into possibilities of dealing with uncertainty within the proposed dispatch

framework, a model comprising a heat pump population of 1000 units and a 2.5 MW

wind plant is generated. Packet loss is then simulated through deletion of individual

state-vectors from the set Z each sampling interval, and is achieved through drawing

three random variables from a uniform distribution spanning the total number of

loads in the population. These variables are then used to directly select and delete

individual power-state vectors. The number of vectors to be deleted are determined

by setting the PLR at the start of simulation, which in this preliminary case was

checked over a range the 0 to 4%. As as example, a PLR of 1% therefore represents a

loss of on average 10 power-state vectors each sampling interval from the population

of 1000 heat pumps.

Model results are given in Fig.(5.17) for three of the tested PLRs, as the total

demand trajectories over the simulated time horizon. The resultant response error

is given for each scenario in the bottom panel of this figure. As can be seen, packet

loss reduces the controller accuracy. As the observed response error is positively

biased, our initial hypothesis that packet loss causes an underestimate of the demand

potential was indeed correct. Increasing the packet loss results in a controller that

consistently over dispatches the load, as the aggregate load model does not consider

all power-state vectors that are actually participating in the current model.
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Figure 5.17: The effects of packet loss on the total demand and response error.
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While these results indicate that packet loss is in fact a major problem for the

control accuracy, it is important to consider the true objective associated with em-

ploying such a system configuration. The goal of the controller is to reduce demand

variability or the need for regulation reserve, and therefore these attributes should be

checked to understand the true impacts of packet loss. Both the regulation reserve

capacity and power gradient are computed for each of the simulated levels of packet

loss, with the results given with the control accuracy in Fig.(5.18). Each of these
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Figure 5.18: The effects of packet loss on the load control performance.

metrics is plotted as a percent of the base case (PLR = 0, and controlled) over the

range of PLRs simulated. As can be seen, while the accuracy quickly deteriorates with

increased PLR, the power gradient and regulation reserve capacity do not display the

same level of sensitivity. In fact, the required regulation reserve and average power

gradient consistently remain well below the uncontrolled case for both the gradient

and regulation reserve, even at a higher PLR. This result can be attributed to the

fact that while packet loss causes state-vectors to not make it to the LA, these vectors

may not take part in the aggregate load model formulation. Considering (3.19), it is
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clear that if power-state vectors do not fall within the regions encompassed by the

summation, they do not play a role in defining the VGM. Therefore, if these types of

vectors are missed due to packet loss, there is no effect on the aggregate load model.

Furthermore, PLR may increase the response error considerably, but when the am-

plitude of these inaccuracies are considered in tandem with the required response

amplitude based on the whole population, they remain minimal.

These results indicate that control accuracy is sensitive to packet loss, although

these impacts diminish within the viewpoint of the controller’s true objective. In

fact, at a PLR less than 0.5% packet-loss has no effect at all on the control perfor-

mance metrics. As packet loss will be directly related to the size and density of the

population, these results promote the proposed community-scale approach to load

management, as it can be expected that operating the smaller network containing

fewer customers should in turn be accompanied by less packet-loss.
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Chapter 6

Conclusions

This thesis has provided a framework for engaging community-based sustainable

demand-side infrastructure in the provision of power system ancillary services. Clean

energy technologies in the form of heat pumps, electric vehicles, and electrolyzers

were targeted to act as a responsive load basis, as the inherent operational flexi-

bility and autonomous device-level control strategy associated with these load-types

provides an ideal platform to mitigate enhanced variability within a power system.

By adapting their demand to reinforce the short-term operating capabilities of the

grid, these end-use devices can provide dual benefits in terms of carbon emissions

mitigation. Their adoption can displace fossil fuel-based demand-side devices, while

their grid-side control increases the ability of the electric power system to accomodate

intermittent renewable energy technologies.

Problems associated with electric power system management under increased un-

certainty were discussed in Chapter 2. Real time short-term energy balancing, de-

noted as regulation, was singled out as a major shortcoming in terms of renewable

energy integration. In particular, current methods of providing regulation require

allocation of specific reserves, which in turn result in both technical and economic

inefficiencies within current grid-management configurations. As renewable energy

generation, in particular wind power production, displays variability over time-scales

relevant to regulation, integration of these sources can result in a need to increase

regulation reserves, which can thereby overshadow many of the positive economic and

environmental benefits associated with wind energy.

In response to these problems, Chapter 3 presented a framework for engaging

communities in the provision of regulation-based ancillary services. The idea was in-

troduced of a community-based business acting as an intermediary between the power



88

system operator and community residents in possession of electric loads suitable for

demand response recruitment. It was argued that such an intermediary can provide

economic benefits to the community through offering the community’s flexible de-

mand resource to the power system operator at a cost equivalent to the market-based

benefits achieved due to resultant increases in grid operating efficiency. Furthermore,

security, quality, and reliability of the demand resource were deemed superior within

the bounds of a community-based approach. Chapter 3 also provided the mathe-

matical framework for the novel load management strategy. The strategy is framed

around the characteristics of hysteresis control, and by doing so, is able to acceler-

ate decision-making efficiency. End-use digital communication hardware would be

used to track and control the population of loads through the development of online

aggregate load models equivalent to conventional dispatchable generation.

In Chapter 4, the computational model used to test the proposed load control

policy was put forward. A bottom-up approach to energy systems modelling was

used to explicitly connect end-use functionality of the participating responsive load

groups to a power systems analysis typically pursued to understand the effects of

integrated renewable energy systems. Numerical metrics for rating the performance

of the load control strategy within both the viewpoint of the end-user and the power

system operator were further developed.

Chapter 5 presented applications of the computational model within various sce-

narios, with the main conclusions from these results summarized in the following:

• Large populations of hysteresis controlled loads can be managed for regulation-

based ancillary services, without sacrificing the end-use functionality of par-

ticipating units. Direct, closed-loop control of the demand response network

provides control accuracy and reliability by allowing the LA to adapt the VGM

online. Different load-types can be controlled similarly by mapping their oper-

ation to a common device-level control space.

• Model results indicate that populations of heat pumps provide an effective ba-

sis for regulation-based ancillary services, but are ill-suited for load following.

Increasing the thermal mass of a building population would provide greater op-

portunities to operate within the load-following regime, as more energy could

accumulate within the buildings without significantly affecting the indoor air

temperature. The populations of EVs and electrolyzers were outperformed by

the heat pumps, but EVs may in fact provide a more versatile resource to the
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power system, due to greater device-level flexibility and year-round utilization.

• If a population exists, there is no need to implement vehicle-to-grid or regen-

erative fuel cell approaches in order to provide variability buffering, as simply

controlling the on / off status of an EV or electrolyzer can provide significant

short-term flexibility.

• The proposed load control strategy can significantly reduce the need to operate

online regulation reserves. As a result, integration of renewable generation that

lacks controllability in locations near communities enabled with the proposed

load control strategy will face lower integration-based costs. Modelling results

further indicated the benefits associated with pursuing the load control strategy

in weak grids, as access allowed larger wind plants to be included, with the

available energy able to penetrate deeper into the demand profile.

• Although the proposed load control strategy is computationally efficient at the

level of the LA, it is limited due to the need for explicit closed-loop communi-

cation with each responsive load. Communication network error in the form of

packet loss is a major problem for the load control accuracy, but can be allevi-

ated through operating an optimally designed network with fewer customers.

The overarching conclusion of this thesis is the identified benefits associated with

applying hierarchal systems integration to the development of low carbon energy

systems. This thesis has demonstrated that by aggregating large groups of spatially-

distributed loads into comfort-constrained virtual embedded generation, we can seam-

lessly integrate the control of these loads into conventional power system operational

strategies. The insight then is to realize the applicability of these hierarchal control

architectures to further development of alternative small-scale distributed energy re-

sources, such as micro-turbines, biodiesel generators, and fuel cell systems. These

devices are typically implemented in locations close to the end-user, and thereby can

provide opportunities for cogeneration, as well reductions in transmission losses. As

communities often have access to local renewable feedstocks that can be reformed to

produce low carbon fuels, such as hydrogen or biodiesel, distributed generation that

exploits these fuel types would be extremely well-suited to provide the small amounts

of capacity needed for many typical ancillary services. However, the inclusion of these

devices within typical ancillary service markets is difficult. Large numbers of small-

scale units complicates power system management, and would reduce the ability of
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the power system to perform ED efficiently (too many control variables). Alterna-

tively, networking these devices within a given area could allow aggregation of both

small-scale distributed generation and responsive loads into virtual generation that

would display capacity comparable to larger-scale generation. This would reduce the

computational complexity associated with optimally dispatching a large population

of distributed energy resources.

The main recommendation of this thesis is that community-based energy man-

agement authorities should be developed. These entities would oversee and operate

localized energy management networks. If such authorities can balance the interests

of all parties within a strategy that is non-intrusive, secure, profitable and ecological

from the perspective of both the community and the power system operator, they can

provide a bridge that simultaneously provides economic benefit to the community and

to the electric power system.

Aside from these conclusions is the observed superiority of direct load control as

compared to approaches that rely on real-time pricing to achieve control actions, such

as those seen in [49, 58]. Not only do these methods inherently contain uncertainties

brought on by customer-behaviour, and expect participating customers to take part

in the somewhat daunting task of dealing with the energy market that governs power

system operation, real-time price-based control of loads requires an associated market,

or more particularly, combining load control with ED. Market clearing occurs over

periods of approximately 15 minutes, which means that price-based control actions

would need to focus on longer-time scales services (load-following). The results in this

thesis have indicated that the targeted loads are incapable of providing such services,

unless end-users were to agree to forfeit typical load functionality, or a very large load

population was available. The comfort-constrained load control pursued in this work

is capable of acting over shorter time-frames, providing fast ramp rates and control

accuracy that allows it to displace the need for regulation. Price-based control would

be unable to tap into this ancillary service market, which can be provided by the

loads through direct control, without effecting end-use function.

Regulation with direct load control can reduce reserve capacities associated with

conventional generation, effectively increasing the active power capacity of the power

system. This extra capacity could be used to meet a growing demand and perhaps

relieve the need to pursue load control actions aimed at peak load reduction. This

could, in fact, be classified as a load-following service (shifting generation instead of

shifting demand).
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A considerable number of open questions remain and provide opportunities for

future research:

• Incorporation of detailed physically-based models into the systems analysis, in

particular for EVs and electrolyzers. This would involve explicitly connecting

the model to a full transportation model capable of accurately capturing the

demand for both electric vehicle and hydrogen energy. It would be beneficial

to add hydrogen storage into the model, in terms of compression requirements

versus the length / amount of storage needed. The distribution system should

be treated through full AC power simulations, as many load types are voltage

/ frequency sensitive. To this regard, there may be further opportunities to

achieve innovative control objectives within the distribution system, such as

minimizing power losses and voltage regulation [59].

• Further consideration of the communication network design is required. The

aspect of response delay as well the energy required to in fact power the network

itself should be determined [60].

• Market and environmental factors should be fully modelled to understand the

viability of pursuing this system configuration. As the targeted demand-side

infrastructure represents relatively new technology, tradeoffs between possible

increases in capacity brought about by widespread use, and the potential ability

to control these units as a resource to liberate conventional generation must be

quantified.

In any case, the opportunities to make fundamental contributions within this rela-

tively new research field are numerous, and will provide considerable benefits to the

development of sustainable low carbon energy systems.
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