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Composite materials are being widely used in light weight structural applications due 

to their high specific stiffness and strength properties. However, predicting their 

mechanical behaviour accurately is a difficult task because of the complicated nature of 

these heterogeneous materials. This behaviour is not easily modeled with most of existing 

macro mechanics based models. Designers compensate for the model unknowns in failure 

predictions by generating overly conservative designs with relatively simple ply stacking 

sequences, thereby mitigating many of the benefits promised by composites.  

The research presented in this dissertation was undertaken with the primary goal of 

providing efficient methodologies for use in the design of composite structures 

considering inherent material variability and model shortcomings. A micromechanics 

based methodology is proposed to simulate stiffness, strength, and fatigue behaviour of 

composites. The computational micromechanics framework is based on the properties of 

the constituents of composite materials: the fiber, matrix and fiber/matrix interface. This 

model helps the designer to understand in-depth the failure modes in these materials and 

design efficient structures utilizing arbitrary layups with a reduced requirement for 

supporting experimental testing. The only limiting factor in using a micromechanics 

model is the challenge in obtaining the constituent properties. The overall novelty of this 

dissertation is to calibrate these constituent properties by integrating the micromechanics 

approach with a Bayesian statistical model.  

The early research explored the probabilistic aspects of the constituent properties to 

calculate the stiffness characteristics of a unidirectional lamina. Then these stochastic 

stiffness properties were considered as an input to analyze the wing box of a wind turbine 

blade. Results of this study gave a gateway to map constituent uncertainties to the top-
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level structure. Next, a stochastic first ply failure load method was developed based on 

micromechanics and Bayesian inference. Finally, probabilistic SN curves of composite 

materials were calculated after fatigue model parameter calibration using Bayesian 

inference. 

Throughout this research, extensive experimental data sets from literature have been 

used to calibrate and evaluate the proposed models. The micromechanics based 

probabilistic framework formulated here is quite general, and applied on the specific 

application of a wind turbine blade. The procedure may be easily generalized to deal with 

other structural applications such as storage tanks, pressure vessels, civil structural 

cladding, unmanned air vehicles, automotive bodies, etc. which can be explored in future 

work.  
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Chapter 1 Introduction  

 

Fibre reinforced thermosetting composite materials are widely used in light weight 

structural applications due to their high specific stiffness and strength properties. 

However, predicting their mechanical behaviour accurately is a difficult task because of 

the complicated nature of these heterogeneous materials. This behaviour is not easily 

modeled with most of the existing macro mechanics based models. Designers compensate 

for the model unknowns in failure predictions by generating overly conservative designs 

utilizing overly large safety factors, thereby mitigating many of the benefits promised by 

composites. The research presented in this dissertation has as its primary goal to provide 

efficient, high fidelity methodologies for composite material failure predictions for use in 

the design of structures made up of composite materials.  

The methodology developed is based on micromechanics model which has been 

shown in prior work to more accurately be able to simulate the stiffness, strength, and 

fatigue behaviour of composites. This is in contract to more typical homogenization 

based formulas [1, 2] that have difficulties accounting for the various failure modes and 

matrix-fibre material interactions in composites. The micromechanics model helps the 

designer to understand in-depth failure modes in these material and design efficient 

structures. Micromechanics models themselves are not novel in the literature [3, 4, 5, 6], 

although their use in practise remains relatively rare. A key limiting factor in employing 

micromechanics models is the unavailability of the constituent properties. In reality, the 

underling physical properties are subject to uncertainty from material variations. 

Moreover, in contrast to metallic materials, this uncertainty is compounded by variations 

layup and curing processes. 

The novelty of the work presented in this dissertation is therefore to calibrate these 

constituent properties by integrating a micromechanics approach with Bayesian statistical 

models. The outputs of the proposed analysis method are also unique in providing 

probabilistic metrics of predicted mechanical performance, rather than simply mean or 

worst case predictions. This aspect can afford the composite designer the ability to use 

appropriate safety factors and work to desired reliability levels, or alternatively refine 

materials and production processes to achieve desired levels of reliability. Overall 
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proposed methodology helps to lower the testing costs, next to its better accuracy in 

predicting damage modes.  

The focus in this research was on continuous fiber reinforced polymer (FRP) 

composite laminates but could be extended more broadly to other composite materials 

like textile composites or braided composites where there are more inherent non-

linearities in the material response. Throughout this research, extensive experimental data 

sets from various sources [7, 8, 9, 10] have been used to evaluate the proposed model 

results. The micromechanics-based probabilistic framework formulated here is quite 

general; applications are illustrated herein for wind turbine blade composite laminates. 

The procedure could also be applied to other structural applications such as storage tanks, 

pressure vessels, civil structural cladding, unmanned air vehicles, automotive bodies.  

1.1 Dissertation Outline  

The body of this dissertation is comprised of four separate papers that have already 

been published or submitted to peer-reviewed academic journals and/or presented in 

international conferences, as indicated at the start of every chapter. The literature review 

relevant to the specific topics is discussed in the introduction section of each chapter 

(paper).  

Chapter 2 presents a study that aims to bring together a high fidelity micro-model 

based stiffness calculations of composite materials and probabilistic analysis. The 

homogenization approach coupled with a Monte Carlo simulation method is used to 

predict variability in composite material properties. This chapter starts with the concept 

of Representative Unit Cell (RUC) models and the stiffness properties calculation 

procedure using Rule of Mixture and homogenization based approaches. Then the 

concept of the Monte Carlo Simulation along with Latin Hypercube sampling and 

sensitivity analysis is introduced. Chapter 2 closes with a discussion on the applicability 

of the presented approach in this chapter to a wind turbine blade analysis.   

Chapter 3 focuses on the probabilistic first ply failure (FPF) analysis of composite 

laminates using a high fidelity multi-scale approach called M-SaF (Micromechanics 

based approach for Static Failure). For this, square and hexagonal representative unit 

cells of composites were developed to calculate constituent stresses with the help of 
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bridging matrix between macro and micro stresses called stress amplification factor. 

Separate failure criterion was applied to each of the constituents (fiber, matrix, and 

interface) in order to calculate damage state. The successful implementation of M-SaF 

requires strength properties of constituents which are most difficult and expensive to 

characterize experimentally and this limits the use of M-SaF in the early design stages of 

a structure. This obstruction is overcome by integrating a Bayesian inference approach 

with M-SaF. Bayesian inference calibrates M-SaF FPF model parameters as posterior 

distributions from the prior probability density functions drawn from the lamina test data. 

The posterior statistics were then be used to calculate probabilistic FPF for a range of 

different laminates. 

Chapter 4 is an extension of chapter 3, where the last ply failure (LPF) was calculated 

using a damage evolution algorithm. The analysis was carried out on a three dimensional 

representative unit cell of the composite. The predictions from the model were compared 

with the available test data for E-glass/epoxy in the literature. 

In chapter 5, the micromechanics approach was extended from predicting the static 

behavior of composites to performing fatigue analysis. The primary objective of this 

work was to estimate the probabilistic fatigue life of laminated composites. A 

micromechanics model for Fatigue Life Failure (M-LaF) and again a Bayesian inference 

approach were employed. The proposed framework is applied to various glass fiber 

reinforced composite lamina and laminates, followed by an application to wind turbine 

blade.  

The workflow in Figure 1.1 shows the connections of all chapters towards end goal of 

this dissertation which is to perform statistical analysis of composite properties at ply 

level using micromechanics and then carry out the probabilistic/reliability investigation 

of structures for robust performance.  

 



 

 

4 

 

Figure 1.1: Research workflow in this dissertation 

 

Conclusions and recommendations for the future work are offered in chapter 6. 

1.2 Research Contributions 

In summary, the novel contributions arising from this work are as follows: 

a) Structural probabilistic and sensitivity analysis: A computational framework is 

formulated based on micromechanical model along with statistical information of 

constituent stiffness properties to extract the stochastic models of composite 

materials at lamina level. These stochastic models were then applied to perform 

probabilistic and sensitivity analysis of wind turbine blade structure to highlight the 

key material properties that most influence the structural response (see Chapter 2). 

This work was published in Composite Structure Journal [11]. 

b) Calibration of constituent properties: A Bayesian inference formulation was 

employed to combine the test data from physical experiments and predictions using 
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micromechanical model to calibrate the M-SaF model parameters. With these 

calibrated parameters, a first ply failure (FPF) probabilistic analysis of a variety of 

laminates was then performed (see Chapter 3). This paper is submited for 

publication to the Journal of Composite Materials. The first order statistics of 

posterior of M-SaF model parameters was used to predict last ply failure (LPF) (see 

Chapter 4). This work was presented at the 10th Canada-Japan Conference [12]. 

c) Probabilistic fatigue analysis of composites: The hybrid approach using Bayesian 

and micromechanical model that was developed for static case was extended to 

perform probabilistic fatigue analysis for various lamina and laminates (see Chapter 

5). This paper was published in the special issue of the Composite Structures 

Journal [13]. 
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Chapter 2 Probabilistic Micromechanical Analysis of Composite 

Material Stiffness Properties for a Wind Turbine Blade 
 

This paper was published in Composite Structures Journal and published online in August 

2015. 

 

Mustafa, Ghulam, Afzal Suleman, and Curran Crawford. "Probabilistic micromechanical 

analysis of composite material stiffness properties for a wind turbine blade." Composite 

Structures 131 (2015): pp 905-916.  

[http://dx.doi.org/10.1016/j.compstruct.2015.06.070] 

 

This chapter is an initial step towards a bigger picture to analyze the composite structures 

using micromechanics and statistical models. The scope of this chapter is confined to the 

stiffness and use of Monte Carlo approach for probabilistic analysis of composite 

materials. The later chapter covers strength and fatigue of composites using Bayesian 

inference model.   

ABSTRACT 

 

This work presents a coupled approach for stiffness property prediction of composite 

materials used in wind turbine blades using an advanced micromechanics and reliability-

based methodologies. This approach demonstrates how to map the uncertainties in the 

fiber and matrix properties onto the equivalent stiffness properties of composite 

laminates. Square and hexagonal unit cells were employed for the estimation of the 

composite equivalent properties. The finite element formulation of the unit cells were 

performed in the ANSYS Multiphysics. The results from numerical experimentation 

conform well with the available test data and to the results from the Modified Rule of 

Mixture (MROM). A probabilistic analysis using Monte Carlo Simulation with Latin 

Hypercube Sampling was used to assess the uncertainties in the equivalent properties 

according to the variability in the basic properties of the constituents. Furthermore, a 

sensitivity analysis based on the Spearman Rank Order correlation coefficients was 

carried out to highlight the influence of important properties of the constituents. As an 

illustration, the above approach is applied to analyze a 5 MW wind turbine blade section 

under static loading. Results demonstrate the possibility of the coupled approach at macro 

level (structure) from micro level (unit cell) with the aim to design robust structures. 
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2.1 Introduction 

 

The size of wind turbines is increasing to capture more energy and this trend will 

continue into the future [14]. Several multi-MW prototype wind turbines exist for 

offshore applications [15, 16]. The power of a wind turbine scales as square of the rotor 

diameter, while the mass of the blade (for similar conceptual designs) scales as the cube 

of rotor diameter. Considering these scaling laws one might predict that in the end 

material costs would govern and avert further scaling. The cost of the blade would then 

also scale as the cube of rotor diameter but advanced structural concepts reduce its 

scaling exponent to ~2.5 [17]. A polymer-based composite material is a good choice for 

large structures such as wind turbine blades. The high strength-to-density ratio, high 

stiffness-to-density ratio, good fracture toughness, fatigue performance and suitability for 

use in fast production of large structures makes composites a good choice for their use in 

structural applications. The composite properties provided by the manufacturer are 

generally the average properties in a particular manufacturing environment. On top of 

this, manufacturers usually don’t mention the number of tests that they performed to 

obtain the average. This adds risk to structural design, especially for large-scale 

composite layups such a blades. It is impossible to completely control variation in the 

composite properties. There are many factors that contribute to that variation including: 

batch-to-batch production, manufacturing conditions like temperature, pressure, and 

humidity, curing time, labour skill, along with the property variations in the basic 

building blocks of the ply (the fiber and the matrix). These variations in the mechanical 

properties of composite materials are due primarily to variation in the properties of the 

constituents - the fiber and matrix [18]. This variation in properties establishes a scatter in 

the response of a structure made up from this material, for example, the deflection of the 

wind turbine blade. Therefore, it is necessary to consider the variable nature of composite 

properties at the design stage. Current wind turbine blade design is based on a 

deterministic approach with a large factor of safety to ensure target static and fatigue 

limits [19]. It is very expensive experimentally to obtain the design allowables for a 

composite laminate in a deterministic approach as significant test campaigns for each 

candidate layup are required.  
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The micromechanics (MM) based homogenization approach is good alternative to 

characterize the stiffness properties of composite materials [2, 3]. The Rule of Mixtures 

(ROM), also known as the Simple Rule of Mixture (SROM), is one of the oldest and 

simplest forms of micromechanics for calculating mechanical properties of unidirectional 

plies [2, 20, 21]. Halphin [22] proposed a Modified Rule of Mixture (MROM) as there 

are shortcomings in calculating the transverse Young’s modulus and in-plane shear 

modulus using SROM. Dong et al. [23] simulate the behaviour of various unit cells using 

an asymptotic homogenization technique. Other researchers have considered the 

uncertainty in the basic constituent’s properties with the homogenization approach. 

Kamiński and Kleiber [24] calculated the first two probabilistic moments of the elasticity 

tensor using the homogenization method of composite structure. However, due to the 

complicated mathematical formulation, these studies are of limited applicability. 

The present study aims at bringing together high fidelity micro-model based stiffness 

calculations of composite materials and probabilistic analysis. The homogenization 

approach coupled with a Monte Carlo simulation method is used to predict variability in 

composite material properties. The paper is organized as follows. Section 2.2 introduces 

the concept of the Representative Unit Cell (RUC) models and the stiffness properties 

calculation procedure using Rule of Mixture and homogenization based approaches. 

Section 2.3 provides details of the Monte Carlo Simulation along with Latin Hypercube 

sampling and sensitivity analysis. Section 2.4 presents the results. Section 2.5 details the 

applicability of the method to a wind turbine blade section analysis. Section 2.6 

summarizes the most important conclusions drawn from this study.  

2.2 Theory  

2.2.1 Representative Unit Cell (RUC) Models 

The wind turbine blade structure is made up of polymer-based composite laminates, 

which are in turn made up of plies stacked in a certain sequence. These plies are made up 

of fibre and matrix constituents. All these levels are divided into two main groups, the 

macro and micro levels as shown in the Figure 2.1. Customarily, one moves right or left 

in these levels via localization and homogenization. A homogenization procedure 

provides the response of a structure given the properties of the structure’s constituents. 
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Conversely, the localization method provides the response of the constituents given the 

response of the structure.  

 

 

Figure 2.1: Macro and Micro levels structures 

 

The fibres are randomly arranged in the real unidirectional (UD) ply. The far left side 

of Figure 2.2 shows a cross section of a continuous UD ply [25]. There is no obvious 

regular pattern in which the fibres are arranged. A true representation of the fibre 

arrangement is shown in the middle of Figure 2.2. To aid computation, an idealized fibre 

arrangement is used, as shown in the far right side of the Figure 2.2. In this study, an 

idealized square (SQR) RUC model is used for probabilistic analysis as shown at the 

bottom of Figure 2.2. Although it is possible with suitable boundary conditions to 

represent a hexagonal arrangement with square unit cell. Other choices for the RUC, such 

as triangular RUC, could be exploring in the future. The implication of assuming fibres 

packed in regular manner is not predicting well strain hardening behaviour due to 

assumed elastic/perfectly plastic behaviour as assumed for the matrix. On the other side, 

this behaviour is quite noticeable for randomly distributed fibers in stress-strain curve. 

Also, the RUC considered in this work did not consider fiber misalignment and it would 

have an effect on composite properties like longitudinal compressive strength. This will 

lead to over predictions and will add weight to the structure considering safety factors. 

This is obviously beyond the scope of the present paper but it’s worth mentioning to 

readers. 
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Figure 2.2: Representative Unit cell models for composite analysis 

2.2.2 Rule of Mixture (ROM) 

Structures made up from composite materials can be designed by tailoring the 

constituent properties. This requires high fidelity analysis and design of composite 

materials. Micromechanics is an approach that handles this scenario by establishing a 

relationship between the constituents and the ply or lamina. Several theoretical models 

have been proposed for the prediction of composite properties from those of the 

constituent fiber and matrix. An investigation of the existing micromechanics models has 

been summarized by Hashin [26]. The Rule of Mixtures (ROM) is one of the oldest and 

simplest forms of micromechanics for calculating the mechanical properties of 

unidirectional plies [2, 20, 21]. There is not an accurate prediction for the transverse 

Young’s modulus     and in-plane shear modulus     through SROM. This deficiency is 

overcome by the Modified Rule of Mixture (MROM) as proposed by Halphin [22].  

2.2.3 Ply Stiffness Computational Procedure with RUC 

It is not easy to determine experimentally the longitudinal and transverse shear moduli 

of unidirectional composites. It is also difficult to predict these moduli using MROM as 

they require ply level information [2]. Thus, numerical techniques such as the finite 

element method (FEM) are needed to facilitate these predictions. The stiffness properties 
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of a unidirectional (UD) ply are calculated using FEM from the constituent's properties: 

the fibre and resin (or matrix) properties; fibre volume fraction    which controls the 

geometric parameter of the RUC. For example, in the case of SQR RUC, the radius of the 

unit cell is given as   
           , where   and   is lengths of square unit cell as 

shown in Figure 2.2. 

The behaviour (stress and strain fields) of fiber and resin under uniform loading is 

quite different due to their different material properties. Therefore, special attention must 

be paid in order to make sure that linear stress-strain relationships can be used to compute 

the elastic properties of the lamina. In the stiffness properties prediction procedure, it is 

assumed that in an undamaged state both constituents are perfectly bonded everywhere 

along the length of the fibre/resin interface. For a fully reversible linear material domain, 

the constitutive relationship between stress and strain for a UD ply is given in Equation 

2.1. For the plane stress case, the stiffness matrix    is invertible to obtain a compliance 

matrix   . Their product must produce a unity matrix, i.e.            . By definition, ply 

stiffness properties can be computed from the elements of the      matrix [25]. 

 

 

 
 
 
 
 
 
   
   
   
   
   
    

 
 
 
 
 

 

 
 
 
 
 
 
 
  

    
    

  

  
    

    
  

  
    

    
  

          
           
             

              
     
   

  
    

   
   

    
   

 
 
 
 
 
 

 
 
 
 
 
 
   
   
   
   
   
    

 
 
 
 
 

 Equation 2.1 

 

2.2.4 Boundary Conditions on RUC 

The homogenization approach acts as a bridge between the microscopic and 

macroscopic scale analyses. Homogenization consists of two steps: 1) calculate local 

stresses and strains in constituents 2) use homogenization to obtain global stresses and 

strains for elastic property calculations. The successful implementation of 

homogenization assumes that the RUC has global repetition or periodicity. There are 

varieties of homogenization approaches to predict the composite material behaviour [20, 

27]. The homogenization technique given by Sun and Vaidya [27] is most widely used 

because of its relatively low computation cost and this can be achieved by applying 
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proper boundary conditions (BCs) that are periodic. These periodic BCs give more 

practical results compared with other boundary conditions such as uniform stress 

boundary condition or kinematic uniform boundary conditions, and have been validated 

by various researchers [28, 29]. The periodic boundary conditions satisfy three 

statements: 1) the deformation should be the same on the opposite surface, 2) the stress 

vectors acting on opposite surfaces should be opposite in direction in order to have stress 

continuity across the boundaries of unit cell, and 3) there is no separation or overlap 

between the neighbouring RUC. The displacement field boundary condition on the 

boundary   of domain   of the unit cell is given in Equation 2.2 as stated by Suquet [30]: 

 

                       
            Equation 2.2 

 

In the above,      is the global average strain of the periodic structure and    represents 

a linear distributed displacement field.   
  is a periodic part of the displacement from one 

RUC to another on the boundary surface and, unfortunately, it cannot be directly applied 

to the boundaries since it is unknown. In order to determine the stiffness matrix     of the 

constitutive Equation 2.1, different displacement boundary conditions are applied on the 

RUC with appropriate periodicity as determined by Equation 2.2. The graphical 

explanation of these BCs is given in Figure 2.3.  

 

 

Figure 2.3: Boundary Conditions for Calculation of Effective Material Properties of UD 

The constraint equations have been applied in the FEM code ANSYS. To apply 

constraint equations on the nodes of opposite faces of the RUC, identical mesh schemes 

were applied on opposite surfaces of the RUC. The degree of freedom (DOF) coupling 

technique in ANSYS is utilized to apply periodic boundary conditions. The coupling and 

constraint equations relates the motion of one node to another [31]. For example, in the 
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case of      , the constrained equations applied are shown in Figure 2.4. The Von-

Mises stress distribution on the RUC under BCs is also given in Figure 2.4. Two 

important points should be noted from the RUC stress distribution. First, stresses at the 

same location on opposite sides are the same and this confirms the traction continuity. 

The second is that the boundary faces are no longer planes. 

 

Figure 2.4: Shear Boundary Conditions on HEX RUC 

2.3 Probabilistic analysis 

2.3.1 Monte Carlo Simulation approach and Latin Hypercube Sampling 

Most probabilistic techniques require running deterministic models multiple times 

with different realizations of random input variables. The key difference between various 

probabilistic techniques is the choice of the realization from the current analysis to the 

previous one. A probabilistic analysis answers a number of questions: 1) how much 

scatter induced due to randomness in the input variables; 2) what is the probability the 

output parameters are no longer fulfilled based on design criterion; 3) which random 

input variable most affect the output parameters which helps to screen the design 

variables [31]?. The Monte Carlo Simulation (MCS) approach is one of the most general 

tools to perform stochastic analysis under uncertainty of input variables [32]. In this 

work, the second order statistics of the responses are obtained using MCS with the 

random input variables (RVs) specified by their mean   and standard deviation  . The 
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MCS consists of three steps: 1) generation of realization corresponding to probability 

distribution function (PDF) – Latin Hypercube Sampling is used for this purpose in this 

work; 2) a finite element simulation evaluates responses for each realization; 3) statistical 

analysis of the results yields valuable information concerning the sensitivities of the 

responses to the stochastic RVs. In the Latin Hypercube Sampling technique the range of 

all random input variables is divided into   intervals with equal probability and the 

sample generation process has a memory in the meaning that the sampling points cannot 

cluster together.  

2.3.2 Sensitivity Analysis 

Analysis of parameter sensitivity investigates the effect of variability of certain input 

random variables on the variability of design-relevant response quantities; the 

sensitivities can be described by coefficients of correlation. One of the most commonly 

used coefficient of correlation which is calculated by Spearman’s rank correlation and is 

given in Equation 2.3 between two random variables   and   :  

 

         
     

       
  Equation 2.3 

 

where   is the difference between rank order of variable 1 and rank order of variable 2 

and   is the number of samples in each set.  

The flow chart to calculate probabilistic properties of a UD composite based on the 

constituent’s uncertainties in a modular fashion is illustrated in Figure 2.5. 
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Figure 2.5: Probabilistic analysis flow chart from constituent stiffness properties 

2.4 Results and Discussion 

2.4.1 Boundary Conditions for 2D Unit Cell 

The periodic boundary conditions (BCs) devised by Xia [29] and given in Equation 

2.4 are applied to a SQR and HEX unit cell FEM model which insures that the composite 

has the same deformation mode and there is no separation between unit cells. To verify 

the BCs, a 2-dimensional unit cell model is considered first. The fiber volume fraction is 

50%. The elastic moduli and Poisson's ratio for the fiber and matrix are    
 

 

             
 

       and                    , respectively. 

 

   
            

            
             Equation 2.4 

 

In Equation 2.4,   
  

 and   
  

 are displacements of one pair of nodes at opposite 

boundary faces, with identical coordinates in the other two directions. The constant   
 
 

represent the stretch or contraction of the unit cell model under the action of normal 

forces or shear deformations due to the shear forces. A simple fibre-matrix domain was 

defined in ANSYS [31] tool as shown in Figure 2.6. The FEM unit cell model and the 

deformed shape of the unit cell are shown in Figure 2.6. The boundaries do not remain 
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planes after load application, and shear stresses are uniform in the unit cell. Table 2.1 

compares the present results with Xia [29] demonstrating excellent agreement of shear 

strain, shear stress, and equivalent shear modulus. 

 

 

Figure 2.6: 2D unit cell and shear stress distribution 

 

Table 2.1: 2D unit cell model result comparison 

Parameter   Xia et al [29]   FEM 

Shear Stress, τxy (MPa) 6.4831 6.4917 

Shear Strain, γxy (-) 0.0036 0.0036 

Shear Modulus, G (MPa) 1801 1803 

 

2.4.2 Boundary Conditions for 3D Unit Cell 

The next step was to define a finite element model of a square unit cell and repeated 

array in order to compare the behaviour under identical loadings and boundary 

conditions. The 3-D structural solid element, SOLID45, is used for the FEM analysis. 

The material properties of Silenka E-Glass 1200 tex and MY750 Epoxy are given in 

Table 2.2.  
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Table 2.2: Material Properties of Fiber and Matrix 

Properties E-glass Fiber Properties MY750 Epoxy 

   
 

 (GPa)  74.0   
 (GPa) 3.35  

   
 

,    
 

 (GPa)  74.0    
  (-) 0.35  

   
 

,    
 

 (GPa)  30.8 
  

   
 

 (-)   0.2 
  

 

The responses of the multi-cell array and the unit cell model were compared for 

different loading conditions with proper periodic boundary conditions. As an example, 

the comparison of the SQR and HEX multi-cell array and the unit cell models under 

shear load is shown in Figure 2.7. From Figure 2.7, it is clear that the stress distributions 

in the multi-cell model and the unit cell are identical. There is no boundary separation, 

which verifies the boundary conditions. The rest of the boundary conditions were verified 

in a similar manner. 

 

 

Figure 2.7: Comparison of Shear Stress (N/m2) distribution in Multi-Cell & Unit Cell Model 
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2.4.3 UD Ply Stiffness Properties 

To verify the homogenization technique, the stiffness properties were determined with 

the SQR and HEX unit cell first and compared with test data [7] as well as predictions 

from SROM and MROM. The same E-glass fibre and MY750 epoxy was used for this 

analysis. The stiffness properties were calculated in the linear elastic region. The 

comparisons were made using 60% fiber volume fraction. The predictions were 

compared with test data [7] and were found to be in good agreement, as shown in Figure 

2.8.  

 

 

Figure 2.8: Comparison of Stiffness Properties from RUC with test data 

2.4.4 Statistical Model Description and Monte Carlo Simulation 

In this section, the Monte Carlo Simulation approach is coupled with a 

homogenization based stiffness calculation procedure to access the uncertainty of the 

stiffness properties of UD due to variation in the constituent’s properties. This coupling is 

achieved in three steps: 1) generation of realizations according to the Latin Hypercube 

Sampling technique of random variables, i.e. the fiber and the matrix; 2) using the RUC 

and homogenization approach to simulate UD properties against each set of realizations; 

3) post-processing the results to calculate statistical response and sensitivities of the 

output response parameters. Steps 1 and 2 were implemented in the finite element tool 
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ANSYS PDS and ANSYS Multiphysics respectively by user defined subroutines. Step 3 

is performed partially in ANSYS PDS and in MATLAB. The generation of the 

realizations is based on the probability distribution; a Gaussian distribution is used for 

fiber and matrix property random variables. Note that an alternate choice of the 

distribution type would not modify the overall methodology. The Gaussian probability 

density function (PDF) is given in Equation 2.5. The mean    and standard deviation 

   are the two parameters describing the Gaussian PDF for each random variable  . 

 

    
 

     

     
       

   
   Equation 2.5 

The details of the constituent random variables are given in the Table 2.3. The 

properties of the constituents (E-glass fiber and MY750 matrix) were taken from [7]. A 

5% standard deviation is considered where data was missing for a particular quantity. The 

response parameters include: longitudinal modulus (   ), transverse modulus (   ) and 

(   ), in-plane shear modulus (   ) and (   ), transverse shear modulus (   ), major 

Poisson’s ratio (   ), and minor Poisson’s ratio (   ) and (   ).  

 

Table 2.3:  Input Random Variables for Calculation of UD Properties 

Material  Random Variable  Symbols Mean  Std dev 

Fiber 

Longitudinal modulus (GPa)    
  74.00 18.50 

Transverse modulus (GPa)    
  74.00 14.80 

Transverse modulus (GPa)    
  74.00 14.80 

In-plane shear modulus (GPa)    
  30.80 7.70 

Transverse shear modulus (GPa)    
  30.80 6.16 

Transverse shear modulus (GPa)    
  30.80 6.16 

Major Poisson's ratio (-)    
  0.20 0.01  

Minor Poisson's ratio (-)    
  0.23 0.01  

Minor Poisson's ratio (-)    
  0.23 0.01  

Matrix 

Elastic Modulus (GPa)    3.35 0.84 

Poisson's ratio (-)   
 0.35 0.02  

Shear modulus (GPa)   
 1.24 0.25 
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A common question is the required number of iterations to be performed with the 

Monte Carlo method. Equation 2.6 [33] can be used to estimate the required number of 

runs by the standard error of the mean of the distribution relation: 

 

       
   

  
 Equation 2.6 

 

where   is a confidence multiplier and its value is 2 for 95% confidence level,    is 

standard deviation and   is the is the number of runs or simulations performed in the 

Monte Carlo simulation. The percentage error of the mean becomes: 

 

   
      

    
 Equation 2.7 

 

For the estimation of runs  , the Equation 2.7 becomes:  

 

    
      

   
 
 

 Equation 2.8 

 

For example, using UD longitudinal stiffness (   ) from test data,     
          

and     
         , for a 95% confidence level       and      , the required 

number of Monte Carlo simulations is 400.  

The results of the probabilistic analysis after post-processing in MATLAB are given in 

Figure 2.9. The       represents the mean, standard deviation, and kurtosis of each 

parameter respectively. The response parameters are presented as histograms along with 

the PDFs fit to the data; Gaussian was found to be a good fit for the UD properties. The 

higher standard deviation in the stiffness property of the fiber is reflected in the UD 

longitudinal property response parameter. The probability that the UD longitudinal 

stiffness     is smaller than 35 GPa is 0.16677 with a 95% confidence level. The lower 

stiffness of E-glass/epoxy composites will cause more deflection in the blade. Therefore, 

it is important to calculate this probability. The standard deviation in UD transverse 
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stiffness is 3.00 GPa. The standard deviations in shear modulii and Poisson’s ratio are 

given in the Figure 2.9.  

The evaluation of the probabilistic sensitivities is based on the correlation coefficients 

between all random input variables and a particular random output parameter. The 

sensitivity analysis was performed using the Spearman rank coefficient of correlation 

approach to investigate correlation between input design variables and output response 

parameters. The results of this analysis are shown in the Figure 2.10. These correlations 

explain the strength of the relationship between the stochastic quantities and range from -

1 to +1. A correlation of -1 describes perfect negative relation and +1 a strong positive 

relation. A correlation close to 0 indicates no or weak relation. It can be clearly seen from 

Figure 2.10 that UD longitudinal stiffness     has a strong relation with fiber longitudinal 

modulus. Likewise,     has a strong positive relation (close to 1) with matrix 

modulus   . The shear properties of composites are also very impotent, particularly in 

wind turbine blade shear webs [34]. The sensitivity analysis shows that matrix shear 

modulus    correlates very highly with UD lamina shear molulii, i.e.             but 

   has only a minor sensitivity to the UD lamina Poisson’s ratio. This sensitivity 

analysis aids in improving the material according to design requirements as well as 

screening out unnecessary design variables for optimization purposes.  
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Figure 2.9: Histograms & PDFs of Output Parameters: Top row represents longitudinal and 

transverse stiffness, middle row for shear stiffness, and bottom row for Poisson’s ratio 
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Figure 2.10: Spearman Rank Order Correlation Coefficients 

 

The statistical interdependence between the output response parameters was also 

calculated by a Spearman rank order correlation coefficients approach. Figure 2.11 shows 

the sensitivity plot of the response parameters, i.e. UD stiffness properties. It can be seen 

from this Figure 2.11, some properties are strongly correlated with others and some are in 

a week manner. This is important information for further analysis of the wind turbine 

blade. At the time of declaring the stochastic properties of UD for the analysis of blade, a 

threshold criterion will be applied between correlations in UD properties. This will not 

only accelerate the overall simulation time but also give more insight into structural 

response dependency on the input variables as explained in the following section.  
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Figure 2.11: Spearman Rank Order Correlation Coefficient Matrix between Output Parameters 

2.5 Application to Wind Turbine Blade Section 

A case study was carried out to highlight the implications of micromechanics-based 

probabilistic analysis for realistic application to a composite wind turbine blade structure. 

Wind turbine blades can be analyzed as beam-like structures, as is done by current design 

codes [19, 35]. In this section though, the analysed blade is modeled in more detail as a 

shell structure. The investigated blade has shell and spar/web type internal structural 

layout. The aerodynamic outer shell is obvious as it is providing required aerodynamic 

characteristics to the blade. The internal blade structure consists of spar caps and shear 

webs. The spar caps carry the bending and axial loads. The shear webs carry the shear 

stress and provide airfoil shape stability. The classic embodiment of this concept is 

similar to the steel I-beam except that there are shells around the outside that form the 

aerodynamic shape. The geometry and other specifications of the rotor blade considered 

in this research is based on the NREL 5MW baseline wind turbine described in [36]. A 

61 m blade is attached to a hub with a radius of 2 m, which gives the total rotor radius of 

63 m. Although the blade is composed of several airfoil types, in this work the airfoil 
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used is the  NREL-S818 [37] from maximum chord to the tip of the blade. The first 

portion of the wind blade is a cylindrical in shape. Further away from the root the 

cylinder is smoothly blended into a NREL-S818 airfoil at maximum chord. The power 

curve and other environmental parameters are given in Figure 2.12. 

A part of the blade is considered for simplicity of computation. The details of the 

blade wing box and the composite layup sequence are given in the Figure 2.13. The 

investigated blade consists of three different types of E-glass/epoxy composites: 

unidirectional (UD) plies, BX [±45°]s, and TX [0°/±45°]s. The UD and TX are used in the 

shell structure along with a PVC core. The BX and PVC core [38] is used in shear webs 

to provide shear resistance. The properties of the materials used in the wing box analysis 

were calculated from the probabilistic analysis on RUC as described in the previous 

section.  

 

 

Figure 2.12: NREL-5MW baseline wind turbine specifications 
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Z0 = Surface roughness parameter

Vin = Cut-in wind speed
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Parameter Units NREL-5M

Rated Power MW 5

IEC Class (-) 1A

Number of blades (-) 3

Rated wind speed m/s 12

Cut-in wind speed m/s 3

Cut-out wind speed m/s 25

Blade Tip Speed m/s 81.7

Rated Rotor Speed rpm 13

Tip Speed Ratio (-) 6.81

Diameter m 126

Blade Length m 63

Hub Height m 110

Maximum Chord m 4

Maximum Twist deg 14

Precone deg 2.5

Direction (-) Clockwise

Orientattion (-) Upwind
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Figure 2.13: Blade Wing Box and typical stacking sequence 

The finite element model of the wing box is shown in the Figure 2.14. This model was 

generated in the ANSYS Multiphysics module. The wing box was modelled using the 

SHELL181 ANSYS element type [31]. Two types of loads were applied: flapwise and 

edgewise loads. These loads were calculated using an aeroelastic computer-aided 

engineering  tool for horizontal axis wind turbines, FAST [39]. Figure 2.14 shows the 

boundary conditions applied to the wing box section. The quasi-static analysis were 

performed according to IEC-DLC 6.1 load case [19]. In this load scenario, the rotor of a 

parked wind turbine is either in standstill or idling condition. For an annual average wind 

of 12m/s, the 50-year extreme wind is 70m/s which is the maximum of the 3s average. 

The left side of Figure 2.14 shows the FEM results under one set of input realizations and 

the maximum deflection calculated with this set of realizations was 195.1 mm. 
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Figure 2.14: Boundary conditions & FEM modelling of wing box 

 

Figure 2.15 illustrates the procedure used to calculate the probabilistic response of the 

wing box caused by uncertainties in the UD properties in a modular manner. These 

modules consist of: 1) selection of input design variables and description of their mean 

and standard deviation along with distribution type; 2) realization generation using 

efficient Latin Hypercube Sampling (LHS) approach; 3) user subroutine is used to 

calculate stiffness properties of UD with micro model and periodic boundary conditions 

(PBCs); 4) post processing of data performed once convergence criteria on mean values 

and standard deviations is met; 5) filters are applied with a threshold of 35% on the 

correlations given in Figure 2.11 to screen the unimportant design variables. This value is 

subjective at the moment but can be better decided using null hypothesis testing and will 

be incorporated in future work; 6) probabilistic finite element analysis were performed on 

the wing box with filtered correlation matrix and stochastic properties of UD. The results 

of step 6 were then post-processed to calculate the overall probabilistic response of the 

wing box. 
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Figure 2.15: Flow chart for probabilistic deflection analysis of wing box 

 

A summary of the stochastic response of the wing box deflection is shown in the 

Figure 2.16 with and without considering correlation and the fitted PDF on the right side 

of the Figure 2.16. The PDF fit to the data is a Weibull distribution, even though the 

distributions of inputs were Gaussian. The 2-parameter Weibull model used to fit the 

data.  
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One of the Weibull model parameter   controls the scale and the second one   

controls shape. Several methods have been devised to estimate the parameters that will fit 

the particular data distribution. Some available parameter estimation methods include 

probability plotting, rank regression, and maximum likelihood estimation (MLE) [40, 

41]. The MLE approach in MATLAB was used to estimate the Weibull parameters. The 

Weibull parameters are given in the Figure 2.16. The MCS applied in this work used 500 

realizations for probabilistic analysis of the blade section, without the use of a MCS 

convergence criterion. In order to have a fair comparison between results with and 
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realizations. As can be seen from the histogram on the left side and the fit PDF on the 

right side of Figure 2.16, the correlations have little effect on the maximum displacement 

of the wing box. However, inclusion of the correlation coefficients highlighted in detail 

the important factors on the deflection of wing box, as shown in Figure 2.17 which shows 

the sensitivities on output response parameter with a 95% significance level. Based on 

these results, ignoring correlations suppressed the sensitivities of input variables on the 

response parameters. The consideration of correlations helps to screen some of the 

unimportant factors such as                  with a threshold of 20%. These parameters 

can therefore be treated as deterministic in the future reliability analysis. Also, from the 

sensitivity analysis, one can conclude that     and     are the two key input variables 

that controls the deflection and these variables are related to the output deflection 

response in a strong negative manner, which means with the increase of these variables, 

the deflection response will be lower. Overall, these analyses illustrate the capability of 

the coupled approach for structural robust analysis by indicating the variables to change 

in order to achieve a given reliability level.    

 

 

Figure 2.16: Wing box deflection with and without correlation 
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Figure 2.17: Wing box deflection sensitivities with and without correlation 

 

2.6 Conclusion 

This work aimed to develop a coupled approach for stiffness property prediction of 

composite materials used in wind turbine blades using advanced micromechanics and 

reliability-based methodologies. The homogenization approach was used with a unit cell 

to estimate composite material stiffness properties. The predicted results were compared 

with SROM and MROM along with the test data and found to be in good agreement with 

test data and MROM.  The work was then extended to perform the probabilistic analysis 

with Monte Carlo Simulation to incorporate uncertainties in the constituent’s properties. 

Latin Hypercube Sampling was employed to cover most of the input variable design 

space. From the probabilistic analysis, it was found that the equivalent properties of UD 

followed the Gaussian distribution and these properties were affected by variations in 

fiber and matrix properties. The Spearman Rank Order sensitivity analysis gave insights 

into important constituent’s properties and found that the modulus of fiber and matrix has 

more influence on composite properties. In addition, correlations were calculated 

between UD properties which were then used in blade analysis. This probabilistic 

micromechanical approach for composite materials provides a useful tool for performing 

preliminary material design for finalizing material for structural application.  

From a practical point of view, the method was then applied to a 5MW wind turbine 

blade structural analysis. A section of the blade was considered for demonstration 

purposes. The stochastic finite element analysis was performed in ANSYS/Multiphysics 
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using a user subroutine in order to simulate probabilistic response of wing box section. 

Two analyses were simulated with and without correlations between UD properties. 

There was no significant difference between PDFs but ignoring correlations suppressed 

the sensitivities of input variables on the response of wing box. Also, it was found that 

longitudinal modulus and in-plane shear modulus of the composite are the most critical 

material properties that influence deflection of the blade box. Besides this, sensitivity 

analysis screens out unimportant input variables which can be treated as deterministic in 

the further analysis. Furthermore, sensitivity analysis highlights the key material 

properties that most influence the response of the structure and this will eliminate/reduce 

unnecessary time consuming and expensive full testing campaign. In future work, the 

proposed probabilistic analysis can help determine constraints for use in structural 

optimization. The next step in this research is to expand micromechanics based 

probabilistic analysis to estimate strength and fatigue life of composites using Bayesian 

Inference approach.  
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Chapter 3 Probabilistic First Ply Failure Prediction of Composite 

Laminates using a multi-scale M-SaF and Bayesian Inference 

Approach  
 

This paper is submitted for publication to the Journal of Composite Materials. 

This chapter is a next step to analyze the composite structures using micromechanics and 

statistical models. The prime goal of this chapter is to focus on the strength prediction of 

composite materials using Bayesian inference statistical method. The scope is limited to 

first ply failure prediction of composites in this chapter.  

ABSTRACT 

 

This paper presents a probabilistic first ply failure (FPF) analysis of composite 

laminates using a high fidelity multi-scale approach called M-SaF (Micromechanics 

based approach for Static Failure). For this, square and hexagonal representative unit 

cells of composites are developed to calculate constituent stresses with the help of a 

bridging matrix between macro and micro stresses referred to as the stress amplification 

factor matrix. Separate failure criteria are applied to each of the constituents (fiber, 

matrix, and interface) in order to calculate the damage state. The successful 

implementation of M-SaF requires strength properties of the constituents which are the 

most difficult and expensive to characterize experimentally, limiting the use of M-SaF in 

the early design stages of a structure. This obstacle is overcome by integrating a Bayesian 

Inference approach with M-SaF. An academic sample problem of a cantilever beam is 

used to first demonstrate the calibration procedure. Bayesian Inference calibrates the M-

SaF FPF model parameters as posterior distributions from the prior probability density 

functions drawn from lamina test data. The posterior statistics were then be used to 

calculate probabilistic FPF for a range of different laminates.  
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3.1 Introduction  

Composite materials fail in a more obscure manner than metals under various 

mechanical and environmental loads such as thermal/ice and moisture effects. The 

complicated nature of composite failure arises from various factors such as delimitation, 

matrix cracking, fiber rupture, imperfections and voids from composite manufacturing 

process, de-bonding between interfaces, and interlaminar damage. These failure modes 

must be fully accounted for in the design and analysis phase of the structure. Therefore, a 

predictive methodology needs to capture most the relevant failure modes in composites.  

The different approaches available for failure analysis of composite materials can 

broadly be divided into two main categories: macro level and micro level approaches 

[42]. In macro level approaches, a ply or lamina is treated as the main building block in 

which properties of the constituents, i.e. the fiber and the matrix, are smeared to generate 

homogeneous characteristics for the composite structural member. The work by Azzi and 

Tasi [1] focused on the analysis of thin plies and proposed an interaction-based 

formulation. Later, Tsai and Wu [43] provided interaction-based quadratic failure 

criterion for laminates using on-axis stresses at ply level as failure contributors. This 

failure criterion is by far the most widely used in industry currently due to its ease of use. 

The different failure modes, fibre or matrix failure, were identified specifically in the 

failure criterion given by Hashin and Rotem [9]. Hart-Smith used isotropic failure criteria 

to cover orthotropic cases [44]. He used a strain to characterize the failure rather than 

stress. Puck [45] used Mohr-Coulomb effective stresses to calculate fracture conditions. 

Puck proposed an analytical form for the case of plane stress that shows matrix failure to 

occur in compression.  All these criteria are macroscopic formulations that work at a ply 

level but do not directly take into account the constituent’s failure modes. Also, a large 

number of mechanical properties are required to use these models for structural analysis, 

properties that are unique to each layup/lamina. For example, even with the same base 

constituent materials, composites differing only in their fiber volume fractions require 

separate test campaigns to determine their respective properties. Furthermore, it is 

difficult to relate macro level failure theories to consider time dependent environmental 

loads such as those that induce creep effects.  
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As an alternative to macro level theories, there is another way to look at the problem, 

namely at the micro level. Micro level failure theories conduct the damage assessment at 

the micro level of the fibre and matrix constituents. The fibre and matrix properties are 

homogeneous within their own volume, and therefore no homogenization of properties is 

necessary. This eliminates the need for interaction parameters. Micro level analyses have 

been made of reinforced composites by employing representative unit cells. There are 

several typical packing arrangements available for unit cells to represent the true 

unordered composite fibers, including square, hexagonal, and diamond unit cells [46]. 

These are referred to called Unit Cells (UC), Representative Unit Cells (RUC), or 

Representative Volume Elements (RVE). A UC is defined as a representative sample of 

material on the micro structural level.  

The micro level approach hasn’t received as much attention in the past due to the 

unavailability of constituents’ properties for analysis. Aboudi [47] proposed a 

micromechanics model, known as the “Method of Cells” (MOC). It is based on a unit cell 

with fibres having a square shape of a composite that are arranged in a periodic fashion in 

matrix. The damage algorithm used by Aboudi is catastrophic in nature, which means 

that the composite is predicted to have failed when either of the constituents is damaged. 

This is an overly simplistic and conservative model, especially considering matrix 

cracking found commonly in experiments but which is not necessarily catastrophic. 

 Advancements in computational capabilities has spurred the evolution of the MOC 

into the Generalized Method of Cells (GMC) [48]. In the GMC approach, the unit cell 

can be discretized into an arbitrary number of sub-cells; this helps to model complex unit 

cell shapes. The drawback with GMC is the lack of normal-shear coupling in the analysis. 

That means the application of macroscopic normal stress to GMC model produces only 

normal sub cell stresses even though the unit cell is orthotropic. This lack of coupling has 

major inferences for predicting the behavior of such materials. Another micromechanics-

based approach developed by Kwon and Berner [49] consists of a periodic unit cell 

geometry the same as Aboudi [47]. Their failure criterion assumed the sudden death of 

the constituents once failure was detected. The work by González and LLorca [50] shows 

the micromechanical analyses on representative volume elements (RVE) using the elasto-

plastic constitutive model. The multi-continuum theory (MCT) is a micromechanics 
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based theory proposed by Mayes and Hansen [51] in which phase averaging of stresses at 

the micro-level are applied to each constituent, i.e. the  fiber, the matrix and the interface.  

Huang [52] proposed a micromechanics-based bridging model to analyze the strength 

of composite laminates in World Wide Failure Exercise (WWFE) [53]. Notably, Huang 

also used different constituent properties than provided by WWFE organizer; these 

properties differ from as small as 4% to as large as 33%. The only reason to use different 

properties is to predict test data as closely as possible.  Some researchers back-calculated 

constituent properties from lamina properties using a simple rule of mixture [3]. Others 

calibrated material properties in a deterministic fashion with the aid of genetic algorithm 

and gradient-based techniques [54, 55]. These calibrated values were the mean 

parameters and do not reflect any uncertainty due to the material’s natural variability. 

Therefore, the predictive capability of these micro models hinges on the availability of 

constituents properties.  

In contrast to deterministic approaches to analysis, the Bayesian theorem provides 

measures of conditional probability [56, 57]. Bayesian methods are presently becoming 

popular in science and engineering as a mean of probabilistic inference [58]. In these 

methods, the expert opinion or quantitative previous information is reflected in prior 

distributions which basically cover a wide range of possible values of the parameters to 

be estimated. These values are then updated using likelihood functions by utilizing test 

data to determine posterior distributions. This process can be iterated as additional test 

data becomes available, to refine the parameter estimates. It is also an advantageous 

approach as determinist analysis incorporating conservative safety factors can be replaced 

with probabilistic and robustness metrics to define acceptable performance.   

There are two objectives of the work presented here. Firstly, a first ply failure (FPF) 

prediction method for laminated composites using a micromecahnics approach is 

developed, resulting in a Micromechanics for Static Failure (M-SaF) method. Secondly, a 

unified framework for the representation and quantification of uncertainty present in the 

fiber and matrix properties is developed through the use of a Bayesian Inference 

approach, in order to calculate probabilistic composite failure using M-SaF. The 

proposed framework is applied to glass fiber reinforced composite laminates. The 

remainder of the paper is organized as follows. In section 3.2, M-SaF is explained, in 
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particular an explanation of the constituent failure criterion. A comprehensive 

explanation of the Bayesian Inference technique is summarized in section 3.3. Section 3.4 

details the computational implementation of M-SaF combined with the Bayesian 

Inference approach. Section 3.5 provides an illustrative example of a cantilever beam 

analysis to demonstrate the overall Bayesian approach. Results for a range of composite 

test cases are presented in section 3.6, followed by conclusions offered in section 3.7.   

3.2 M-SaF Methodology 

3.2.1 Representative Unit Cell (RUC) Models 

Composite structures such as wind turbine blades are made up of polymer-based 

composite laminates, which are in turn made up of plies stacked in a prescribed sequence 

and orientation. These plies are made up of fibre and matrix constituent materials. All 

these levels are divided into two main groups, the macro and micro levels as shown in the 

Figure 3.1. Customarily, one moves right or left in these levels via localization and 

homogenization. A homogenization procedure provides the response of a structure given 

the properties of the structure’s constituents. Conversely, the localization method 

provides the response of the constituents given the response of the structure.  

 

 
Figure 3.1: Macro and Micro levels of composite structure 
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The fibres are randomly arranged in the real unidirectional (UD) ply. The top of 

Figure 3.2 shows a cross section of a continuous UD ply [25]. There is no obvious regular 

pattern in which the fibres are arranged. A true representation of the fibre arrangement is 

shown in the middle of Figure 3.2. To aid computation, an idealized fibre arrangement is 

used, as shown in the bottom of the Figure 3.2. In this study, an idealized square (SQR) 

RUC model is used for probabilistic analysis as shown at the bottom of Figure 3.2. 

Although it is possible with suitable boundary conditions to represent a hexagonal 

arrangement with square unit cell. Other choices for the RUC, such as triangular RUC, 

could be exploring in the future. The modelling and mesh generation of the RUC were 

performed within the ANSYS Multiphysics finite element environment [31]. 

 

 
Figure 3.2: Representative unit cell models for unidirectional ply  
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3.2.2 Boundary Conditions on RUC 

The homogenization approach acts as a bridge between the microscopic and 

macroscopic scale analyses. Homogenization consists of two steps: 1) calculating local 

stresses and strains in the constituents 2) using homogenization to obtain global stresses 

and strains for elastic property calculations. The successful implementation of 

homogenization assumes that the RUC has global repetition or periodicity. There are a 

variety of homogenization approaches to predict composite material behaviour [20, 27]. 

The homogenization technique given by Sun and Vaidya [27] is the most widely used 

because of its relatively low computational cost and can be implemented by applying 

proper boundary conditions (BCs) that are periodic. These periodic BCs give more 

practical results compared with other boundary conditions, such as uniform stress 

boundary conditions or kinematic uniform boundary conditions, and have been validated 

by various researchers [28, 29]. The periodic boundary conditions satisfy three 

statements: 1) the deformation should be the same on the opposite surface, 2) the stress 

vectors acting on opposite surfaces should be opposite in direction in order to have stress 

continuity across the boundaries of unit cell, and 3) there is no separation or overlap 

between the neighbouring RUCs. The displacement field boundary condition on the 

boundary   of domain Ω of the unit cell is given in Equation 3.1 as stated by Suquet [30]: 

 

                       
            Equation 3.1 

 

where       is the global average strain of the periodic structure and    represents a linear 

distributed displacement field.   
  is a periodic part of the displacement from one RUC to 

another on the boundary surface and, unfortunately, it cannot be directly applied to the 

boundaries since it is unknown. For a RUC with parallel opposite surfaces (such as SQR 

and HEX) the displacements on a parallel opposite boundaries     and      are expressed 

in Equation 3.2 and Equation 3.3:  

 

   
  

       
  

   
  Equation 3.2 

 

   
  

       
  

   
  Equation 3.3 
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where   
  is the same on the two parallel boundaries due to periodicity. The difference 

between Equation 3.2 and Equation 3.3 is given as: 

 

   
  

   
  

        
  

   
  

         
 
 Equation 3.4 

 

where    
 
 is constant with the known      making the right hand side of the equation 

constant. These displacement constraint equations can be implemented in a finite element 

code like ANSYS [31]. Additional constraints must be enforced in order to avoid rigid 

body motion of the unit cell. For example, a displacement constraint applied at arbitrary 

point               of the RUC is: 

 

                   Equation 3.5 

 

A composite ply is considered as a homogenous orthotropic material with effective 

stiffness properties in Classical Laminate Theory (CLT). These material properties are, in 

fact, ‘average’ material properties of the composite. In order to describe this homogeneity 

at a macro level, we need to take volumetric averages of the stress and strain tensor over 

the RUC as:  

 

      
 

 
             
 

 Equation 3.6 

 

      
 

 
             
 

 Equation 3.7 

 

The concept behind Sun’s approach [27] is that the strain energy stored in the 

homogenous unit cell is equal to that in a heterogeneous unit cell provided that perfect 

bonding occurs at the fiber-matrix interface under appropriate boundary displacements    

that would produce uniform stress      and strain     . The strain energy stored in the 
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homogenous material of volume V is given in Equation 3.8 and in the heterogeneous 

volume V in Equation 3.9.  

 

   
 

 
           
 

 Equation 3.8 

 

    
 

 
         
 

 Equation 3.9 
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 Equation 3.11 

 

    
 

 
     

   

   

 
    

   

    
 

 
        

 

  Equation 3.12 

 

Taking the difference between the stored strain energies in the heterogeneous and 

homogenous volumes yields: 

 

      
 

 
     

   

   

 
    

   

   
 

 Equation 3.13 

 

With the use of the equilibrium condition          , Equation 3.13 can be written as: 

 

      
 

 
 

 

   

               
 

 Equation 3.14 

 

With the use of Gauss’s theorem:  

 

      
 

 
                
 

 Equation 3.15 
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where S is the surface of the RUC over which this integration is applied, and n represents 

the outward unit normal vector. On the surface S:       , leading to the final result that: 

 

      Equation 3.16 

 

The average stress and strain quantities ensure equivalence between strain energy from 

the homogenous RUC with that from heterogeneous one. In order to determine the 

stiffness matrix, different displacement boundary conditions are applied on the RUC with 

appropriate periodicity as determined by Equation 3.1. The graphical explanation of these 

BCs is given in Figure 3.3. 

  

 

 
Figure 3.3: Boundary conditions for calculation of effective material properties of UD 
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case of       , the constrained equations applied are shown in Figure 3.4. The Von-

Mises stress distribution on the RUC under the BCs is also given in Figure 3.4. Two 

important points should be noted from the RUC stress distribution. First, stresses at the 

same location on opposite sides are the same confirming the traction continuity condition. 

The second is that the boundary faces are no longer planes.  

 

 
Figure 3.4: Shear boundary conditions on RUC 
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Figure 3.5: Stress (MPa) distribution in RUC subjected to a unit load 

  

Below the elastic limit, the macro stresses under mechanical and thermal loads are 

related to the micro stresses via the following relationship [3, 6, 59, 60]: 

 

                     Equation 3.17 

 

where matrices      and      denote Stress Amplification Factors (SAFs) for macro 

mechanical stresses and for the macro temperature increment, respectively. Another name 

for these matrices found in literature is Stress Magnification Factor [3, 6]. Also,     and 

     represent the tensor form of the micro and macro stresses respectively. This work 

considers only mechanical stresses, so the last term on the right hand side of Equation 

3.17 is excluded; the superscript M denoting mechanical stresses is also omitted for the 

sake of simplicity. Based on Equation 3.17, the micro stresses in the fiber and matrix are 

related to the macro stresses as: 

 

               Equation 3.18 

 

where      and      represent SAF for fiber phase and matrix phase respectively under 

mechanical loading. These matrices are determined by the finite element method for a 

particular fiber volume fraction and specific fiber-matrix mixture. It is necessary to apply 

proper boundary conditions (BC) to obtain the SAF.  These BC include: (i) nodes at the 

boundaries of RUC having the same displacements and (ii) the free faces must remain flat 
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as proposed by [6, 29]. The SAFs constitute a 6 x 6 matrix. For all stresses in a Cartesian 

coordinate system XYZ (or 123), Equation 3.18 can be expanded into Equation 3.19 [59, 

60]. The superscript j represents either the fiber or the matrix phase.  

 

 

 

 

  
 
 
 
 
 
  

  

  

  

  

   
 
 
 
 
 
   

 

 
 
 
 
 
 
         

         

         

         

         

         

         

         

         

         

         

          
 
 
 
 
 
   

 
 
 
 
 
 
   
   
   
   
   
    

 
 
 
 
 

 

 

Equation 3.19 

 

The elements of the SAF are determined by applying unit macro mechanical loads of 

vector      to the model one at a time. For example, with the application of a unit 

mechanical load σ    , Equation 3.19 can be simplifies to Equation 3.20 as: 

 

 

 
 
 
 
 
 
  

  

  

  

  

   
 
 
 
 
 
   

 

 
 
 
 
 
 
         

         

         

         

         

         

         

         

         

         

         

          
 
 
 
 
 
   

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

 

 

Equation 3.20 

 

Solving a linear system of equations leads to: 

 

 

 
 
 
 
 
 
  

  

  

  

  

   
 
 
 
 
 
   

 

 
 
 
 
 
 
   

   

   

   

   

    
 
 
 
 
 
   

 
Equation 3.21 

 

The elements of the SAF in Equation 3.21 are the micro stresses as a result of macro 

stress σ    . The stress contours (in N/m
2
) of A12, A22, and A42 of Equation 3.21 for 

SQR and HEX RUC with 60% fiber volume fraction are presented in Figure 3.6.  
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Figure 3.6: SAF distribution in RUC under macro stress 

 

As can be seen from Figure 3.6, the the micro stress distributions vary over the RUCs. 

It is not feasible computationally to consider SAF at all points in the RUC; it is therefore 

necessary to define specific positions in the fiber, matrix and fiber-matrix interface in 

each RUC at which to compute SAF values [59, 60, 61]. The SAFs are extracted within 

one unit cell, i.e. RUC, inside the multi cell array. The chosen locations for the SAF 

computations in a single SQR and single HEX RUC is shown in Figure 3.7. Twenty one 

points in each of RUC are then chosen for the extraction of SAFs. Thirteen points are 

located at the fiber-matrix interface represented by a solid circle in Figure 3.7. Three 

points, represented by star in Figure 3.7, consider the fiber region. Three points are 

located at inter-fiber position and represented by solid squares in Figure 3.7. An inter-

fiber location is defined as a place in the RUC where fibers are closest to each other. The 

two locations marked with solid triangles represent interstitial locations. The interstitial is 

a location where the fibers are farthest from each other or in other words it is a matrix 

dominant region. For given constituent properties of the composite and specific fiber 

volume fractions, the SAF at each of these locations in the RUC is separately calculated 

independent of the actual macro stresses in the structure. This means that for multiple 

macro loading cases, and indeed different layup schedules, the SAF must only be 

calculated once for a given fibre/matrix combination and given fibre volume fraction. 
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Figure 3.7: SAF locations in SQR and HEX RUC 

 

Once the stress amplification factors are calculated for the RUC, the macro stresses 

computed in the aggregate structure are amplified with these SAFs to calculate actual 

micro stresses. Failure criteria are then applied and compared with the critical values as 

shown in Figure 3.8. In-plane loads in composite laminates, for example in the case of a 

wind turbine blade, are calculated using the finite element method under particular 

loading conditions. On-axis ply stresses are then calculated from in-plane loads, either 

using finite element method output directly or via Classical Laminate Theory (CLT) [2, 

3, 43]. These on-axis ply stresses are then multiplied with SAFs to obtain micro stresses.  

 

 

 
Figure 3.8: Micro stresses calculation procedure 

3.2.4 Failure Criterion for the Composite Material Constituents 

Three constituent regions exist in composite materials: the fiber, the matrix and the 

interface. All posses distinct material behaviours and behave differently under the same 

load [3], so it is rational to apply appropriate failure criteria to each constituent 

individually. In M-SaF (Micromechanics based Failure analysis under Static loading), 
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three different models are employed to treat each constituent of the ply differently. The 

inputs to each of the constituent failure models in M-SaF are the micro stresses which are 

based on the macro stresses in the structure and the constituent material parameters, 

mainly the strength properties of the constituents.  

For the matrix material, a modified Von-Misses failure criterion proposed by Ragava 

et al [62] was used in this work. Even though the matrix behaves isotropically, it has 

different tensile and compressive strengths. The modified version of the Von-Misses 

criterion considers this aspect of the material. The original form of the modified Von-

Misses failure criterion [62] is: 

 

    
    

       
    

       
    

               
    

    
  

       
Equation 3.22 

 

where    and    are tensile and compressive strengths of the matrix and superscript 

  is for matrix material. With      , Equation 3.22 becomes the standard Von-

Misses criterion. Equation 3.22 can be expressed as a failure criteria: 

 

    
  

    
  

 

  
 

 

  
   

    Equation 3.23 

 

where    
  is the Von-Missses stress and   

     
    

    
   is first stress invariant 

calculated from the micro stress    in the matrix region of RUC with following 

relations: 

 

    
   

 

 
    

    
       

    
       

    
        

     
     

     Equation 3.24 

 

where   
    

    
  are the normal micro stresses and   

    
    

  are  the shear micro 

stresses in the matrix. Once the equivalent stress reaches the tensile strength of the 

matrix, the criterion in Equation 3.23 takes the form in Equation 3.25 and this equivalent 

stress is called Stassi Equivalent stress model [63, 64, 65].   

 

    
  

               
        

  

  
 Equation 3.25 
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where   is a ratio of compressive matrix strength    and tensile matrix strength   .  

The Tsai-Wu quadratic criterion was used for fiber failure because it takes into 

account the orthotropic behavior of the fiber [3, 25, 43, 64]. It takes the following form in 

terms of fiber stresses and fiber strength parameters: 

 

        
 

 

   

 

   

  
 

      
 

 

   

   Equation 3.26 

 

where     and    are coefficients that depends on the strengths of the fiber and the 

superscript   is for the fiber material. The expanded form of Equation 3.26 is: 

 

      
  

       
  

   
  

    
 
  

 
         

 
  

 
   

 
  

 
         

  
 

 12 2+ 44 23 2  2  3 + 2 2 + 3 + 1 1    
Equation 3.27 

 

where   
 
   

 
   

 
 are the micro stresses normal to the fiber and    

     
     

  are shear 

micro stresses in the fiber. The full definition of the coefficients of the quadratic criterion 

in Equation 3.26 or Equation 3.27 in terms of fiber strengths are given below: 

 

 
    

 

     
        

 

     
         

 

 
 

 

          
 

    
 

  
  

        
 

  
  

      
 

  
 

 

   
       

 

 
 

 

   
 

Equation 3.28 

 

where    and     are the longitudinal tension and compression strengths of the fiber. 

  and     are the transverse tension and compressive strengths of fiber.   
 
 and   

 
 are 

through-thickness shear and in-plane shear strengths of the fiber. Other researchers [60, 

63, 66] used the Maximum Stress Criteria [25] for fibre failure for simplicity. This is 

expressed in Equation 3.29. Failure is deemed to have occurred once   
 
 reaches either 

   in case of tensile loading or     in case of compression loading.  

 

    
 

    
 
  Equation 3.29 
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The failure criterion adopted for matrix and fiber assumed that a composite fails when 

either fiber or matrix fails. However, this can be to some extent subjective.  Thus, the M-

SaF is rather predicting initial failure. This hypothesis appears to be very restrictive, but 

the failure of a RUC is a representative of all multiple RUCs with the same stress states. 

Also, current failure criterion is homogeneous in each constituent, meaning that the entire 

ply damages upon failure and this might leads to under predictions of composite failure. 

The interface between the matrix and fibre plays an important role in ply strengths, 

such as transverse tensile and shear strengths [67]. Perfect bonding between matrix & 

fiber is assumed here for typical fibres coated with appropriate sizing to match the 

employed matrix system. Thus the interface will not enter in the current analysis but 

could be added in future work.  

3.3 Bayesian Inference Methodology for Uncertainty Quantification  

3.3.1 Uncertainties 

The widespread application of composite materials is accompanied by a widespread 

concern about quantifying the uncertainties prevailing in their properties. This 

uncertainty has always been a major concern in the use of composite materials in 

structural applications. The sources of uncertainty in the design and analysis of composite 

structures are broadly classified into two categories [68]. The first category is aleatoric 

uncertainty which is due to the presence of physical variation and inherent randomness in 

nature. For example, if the outcome of a physical test differs each time the experiment is 

run under controlled conditions, then this is an example of aleatory uncertainty. This type 

of uncertainty is irreducible. The second category is referred to as an epistemic 

uncertainty. This uncertainty is due to the lack of information regarding a particular 

quantity and/or a physical phenomenon. It  arises from errors in measuring that particular 

quantity [69]. This form of uncertainty can be decreased (and sometimes eliminated) if 

new information is available. The nature of uncertainties and methods of dealing with 

them has been a subject of discussion by statisticians, engineers, scientists, and other 

specialists for extensive time period [70, 71, 72]. In engineering practice, safety factors 

have been used to practically but crudely handle uncertainty. In the past few decades 

however, increasing attention is being paid to methods for directly accounting for and 
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dealing with uncertainty in engineering applications to improve design through reducing 

the safety factors required for safe operation. 

3.3.2 Uncertainty Quantification 

In intricate engineered systems, full-scale testing may not be feasible for predicting the 

structural performance under real operational conditions. Therefore, mathematical models 

are often used to predict the full-scale structural response under those conditions as 

accurately as possible. For example, M-SaF helps to accelerate the product design cycle 

as it only requires constituent's material properties, i.e. stiffness and strength of the fiber 

and matrix. As aleatoric uncertainty cannot be avoided in the constituent material’s 

properties, it must be quantified and calibrated to inform design decisions.  

In general terms, the quantity        is simulated from a computational mathematical 

model   with controlled input variables   and unknown (or known to some extent) 

parameters  . The basic outline of the model M-SaF in this terminology is given in 

Figure 3.9. The controlled inputs   to M-SaF are the on-axis stresses which comes 

directly from the FEM of a structure, RUC, and the fiber and matrix stiffness properties. 

The parameters   in the M-SaF model are strength properties of the fiber and matrix 

phase.  

 

 
Figure 3.9: Sources of uncertainty in model prediction 

  

There are some model parameters that are easily directly measurable, e.g. matrix 

tensile strength, however many are not, e.g. fiber strength properties. In general, the 

availability of measurements is influenced by the availability of the required 

instrumentation and/or standard testing guidelines. The computational mathematical 
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model   might be used in two different types of problem formulations: forward and 

inverse [73]. In the forward problem, the parameters are known and        must be 

computed. A simple Monte Carlo simulation (MCS) is an example of forward 

formulation. The parameters that cannot be measured directly need to be estimated 

through the inverse problem formulation. In this approach, the final output test data is 

given and one needs to estimate the parameters  . The parameter estimation is sometimes 

referred to as model calibration or model updating by researchers [73].  

One of the most basic of such methods is the least-squares technique [74]. In this 

method, the sum of the squares of the differences between the experimental 

measurements and the simulated responses of the system is minimized. The Bayesian 

Inference method (BIM) [75] is considered in this work to tackle the statistical inverse 

problem. The key objective of this work is to develop a unified framework for the 

representation and quantification of aleatoric uncertainty present in the fiber and matrix 

properties through the use of the Bayesian Inference approach. Figure 3.10 depicts the 

statistical forward and inverse problem. In the case of the statistical forward problem 

(figure (a) of Figure 3.10) the inputs are the random values of   that goes to the function 

(or model)      that depends on  . The typical output is represented by histogram. For 

the statistical inverse problem (figure (b) of Figure 3.10) the inputs are the distribution of 

parameters   defined by the prior and a test data      . Note that the physical tests are 

performed without knowing the exact value of   and are independent of any model of the 

physical process. The output is represented by tuned probability distribution function 

(PDF) for parameter  . 

 

 
Figure 3.10: The representation of (a) statistical forward problem and (b) statistical inverse 

problem 
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3.3.3 Bayesian Inference Methodology 

In this section, the Bayesian Inference methodology is explained with a view to 

calibrating M-SaF mechanical model parameters using available test data. Bayes’ 

theorem, which lies at the heart of the Bayesian method, is presented in its general form, 

followed by a specific expressions for the likelihood and posterior functions used for 

calibrating the composite constituent properties. In the Bayesian method, the data are 

observed from a realized sample, and the parameters are unknown and described 

probabilistically. In contrast, in the frequentist approach the data are a sample from a 

random process in which the underlying parameters remain constant during the 

repeatable sampling process. Described another way, frequentist statistics estimate 

uncertainty in model outputs from inherently random processes, whereas the Bayesian 

approach provides estimates of the degree of certainty in an underlying model to explain 

observed data. 

3.3.3.1 Bayes’ Theorem  

Bayes’ theorem estimates the degree of belief in a hypothesis based on the evidence 

available by using the definition of conditional probability [56]: 

 

                              Equation 3.30 

 

where the term        is a conditional probability of   when   is given. The conditional 

probability in Equation 3.30 can be re-written as: 

 

        
          

    
 Equation 3.31 

 

In the scenario of estimating the M-SaF model parameters, the conditional probability 

of parameter   when a set of test is available can be written as: 

 

            
              

                 
 Equation 3.32 
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Bayes’ theorem in Equation 3.32 is written as a probability density function (PDF) 

rather than a probability distribution, as this is a more appropriate form for use in the 

present work. The Bayesian updating formula in Equation 3.32 can be re-written as: 

 

            
        

        
 Equation 3.33 

 

where            is the posterior PDF representing the updated knowledge about the 

model parameters  ,      is the prior distribution about the model parameters   before 

the test data was observed (from an initial guess or previous iterations).      

           represents the likelihood function which is the conditional probability of 

observing the given test data given the parameter  . The term          =             

is a normalizing constant that makes Equation 3.33 a PDF and ensures that the area under 

the posterior PDF is equal to unity. In order to apply the Bayesian methodology, the prior 

distribution      and the likelihood function      must be specified. These terms are 

discussed in the following sections. To reiterate, the Bayesian method takes as its input a 

set of data       and a prior assumption about the distribution of parameters     , and 

produces an updated estimate of     , the posterior           . In this process, the 

likelihood function must be evaluated which involved model evaluations combined with 

use of the test data. 

3.3.3.2 Mathematical Model  

The computational mathematical model        represents the set of procedures to 

simulate values of             . For example, in the case of M-SaF, the elements of 

       are first ply failure stress and first ply failure strain, as well as critical plies and 

associated failure modes. The predictive model with known input variables   and 

unknown parameters   is written as: 

 

                    Equation 3.34 

 

For M-SaF, the set of variables   are on-axis ply stresses, the RUC model constants, 

and the stiffness properties of the fiber and matrix materials. The parameters   are a  

vector of strength properties of the fiber and matrix materials, i.e. 
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       . The superscript   is for fiber and   for matrix. As the 

mathematical model provides an approximate solution of physical phenomenon, the true 

value of the model output        accounting for various sources of uncertainty is given as: 

 

                      Equation 3.35 

 

where    denote the error which could arise from a measurement or numerical errors, 

sometimes referred to as the model discrepancy term [76, 77]. In order to predict the 

mean of       , the mean of   , i.e.    
, is set to zero for unbiased model analysis. This 

assumption assumes that the measurement process is well calibrated [78, 79] which 

should be true generally in material testing campaigns given efforts to reduce epistemic 

sources of error.   

3.3.3.3 Likelihood Function Formulation 

The first key element of the Bayesian method is to formulate the likelihood function of 

the observed test data as the conditional probability of the observations given the 

parameter values. The likelihood function computes the probability that the current θ 

estimate is representative of the true   given a set of observed dataset      . The higher 

the likelihood, the more likely it is that the best estimates of the parameters have been 

obtained. Suppose that a random output variable has probability density function        . 

Given an observed value   of      , the likelihood of   for one test data point is defined 

by [75, 80]: 

 

                 Equation 3.36 

 

Thus we are considering the likelihood function density as a function of  , for a 

fixed   function input. The independent and identical distribution (iid) of a random 

variable sample is defined so that it has the same probability distribution as other random 

samples and all samples are mutually independent. For example, if  X1,X2,… designate 

the result of the 1
st
, 2

nd
, and so on toss of a coin (where Xi=1 means the i-th toss is heads 

and Xi=0 tails), you have that X1,X2,… are iid. They are independent since every time a 

coin is flipped, the previous result doesn't influence the current one. They are identically 



 

 

55 

distributed, since every time you flip a coin, the chances of getting head (or tail) are 

identical, no matter if it’s the 1
st
 or the 100

th 
toss (probability distribution is identical over 

time).  

In the case of multiple observations,                 is a vector of observed values 

and unless otherwise stated it is assumed here that           are iid. In this case 

              is the product of the marginals. Equation 3.36 for multiple test samples 

then becomes: 

 

             
   

      
   

          
   

            
   

   

 

   

 Equation 3.37 

 

where      
   

 is     test data observation and   is the number of test data points available. 

For iid error    which is typically Gaussian distributed with mean    
   and 

variance    
 ,      

      
  , the likelihood function follows the form: 

 

 

                     
        

 

   

 

                  
 

      
 

     
 

    
 

      
   

       
          

 
  

 

   

 

 
 

Equation 3.38 

 

Rearranging, Equation 3.38 becomes: 

 

                       
 

    

     
 

    
 

       
   

       
          

 
 

   

  Equation 3.39 

 

where      
   

 is a vector of test data and       
   

       is a vector of mathematical 

computational model results, computed in this work using M-SaF.  

3.3.3.4 Prior Distribution of Parameters 

The prior PDF      encodes the previous knowledge or user’s judgment of the 

parameter values   that is independent of the test data and that was determined before 

observing the test data. Many researchers have addressed the issue of specifying the 
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priors [81, 82, 83]. There are broadly two categories for the prior: conjugate priors and  

non-conjugate priors [84]. A prior is said to be conjugate to a class of likelihood 

functions if the resulting posterior distributions are in the same family as the prior 

distribution, otherwise, it is non-conjugate prior [80]. There are two typical prior 

distributions commonly used for material property parameters as shown in Figure 3.11. 

Both flat (uniform) as well as Gaussian priors will be used in this work. These are non-

conjugate priors because posterior distribution dose not fall in the same class as of prior. 

If little or no information is available, it is appropriate to choose a non-informative prior 

which is uniform because it is providing the inferential information but gives answers 

that are only inspired by the shape of the likelihood function [85].  

 
Figure 3.11: Typical priors for Bayesian analysis 

3.3.3.5 Posterior of Parameters 

The posterior PDF            represents the updated state of knowledge, after 

observing the test data, about the parameter that was specified in the prior PDF. 

Following Bayes' theorem, the likelihood function, when combined with the prior 

distribution of the unknowns, leads to the posterior distribution. Bayes’ theorem in 

Equation 3.33 can be re-written without the denominator constant          as a 

proportionality in Equation 3.40. The constant          is a function of the data       

which are fixed for the problem at hand yielding the proportionality assumption. 

 

                     Equation 3.40 

 

                  
 

    

     
 

    
 

       
   

       
          

 
 

   

        Equation 3.41 
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Equation 3.41 represents the joint posterior distribution of the parameters once the test 

data is observed. For a complex computational mathematical model such as M-SaF, 

analytical solution of the posterior distribution is not possible. Therefore, a numerical 

method to approximately calculate the posterior is employed. For this purpose, a Markov 

Chain Monte Carlo (MCMC) technique, specifically the Metropolis-Hastings Algorithm, 

is used to calibrate the parameters and quantify their uncertainty.   

3.3.3.6 Joint Posterior Sampling by Random Walk Metropolis-Hastings Algorithm 

One major difficulty in the practical application of the Bayesian approach is that it 

requires the evaluation of multi-dimensional integrals in the denominator of Equation 

3.33: 

 

 

         =             
 

                
 

    

     
 

    
 

       
   

       
          

 
 

   

         

Equation 3.42 

 

Generally, the estimation of the Bayesian integral cannot be done analytically. 

Therefore, stochastic simulation methods in which samples are generated from the joint 

posterior PDF            are commonly used. The Bayesian integral may be computed 

by the Monte Carlo simulation technique [86] or by the importance sampling method 

[87]. These methods add computational cost and are very expensive in cases where for 

example sampling requires running FEM analyses. Fortunately, specific methods have 

been proposed recently for directly computing the posterior PDF           . These are 

so-called Markov Chain Monte Carlo (MCMC) methods [84]. The MCMC is more 

efficient than importance sampling as it needs relatively fewer samples to reconstruct a 

posterior probability density function. Also, MCMC methods don’t require directly 

solving the Bayesian integral in Equation 3.33.  

MCMC methods require sampling from the posterior distribution based on the 

construction of a Markov chain. A Markov chain is a series of randomly generated 

variables that possess the Markov property defined by the next state only depending on 

the present state and not on any historical states in the chain. The aim of MCMC methods 

is to sample the parameter from the posterior as accurately and efficiently as possible, by 
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directly converging the posterior estimate rather than computing individual terms in 

Bayes’ formula. A broad review of MCMC methods can be found in [88]. Two well-

known methods in the literature fall into this category. One is the Random Walk 

Metropolis-Hastings (M-H) (Metropolis et al. [89]; Hastings et al. [90]) MCMC sampling 

method; the other is the Gibbs MCMC sampling method [80, 84]. Gibbs sampling [84] is 

a special case of the Metropolis-Hastings algorithm, where all proposed random walk 

samples are drawn from a target distribution (the posterior PDF) and the acceptance 

probability is always unitary. The more general random walk Metropolis-Hastings 

algorithm draws samples from the posterior distribution of unknown parameters. It is the 

preferred choice here due to its characteristic of posing an acceptance criterion, Step # 7 

below, which limits unnecessary        runs. Without acceptance criterion, as in Gibbs 

sampling, comparatively more        evaluations would be required adding 

computational cost.  The Metropolis-Hastings algorithm ([89, 90]) works as follows:  

 

Step # 1: Set the initial value of the parameter θ,     θ        

Step # 2: Calculate the posterior using Equation 3.41. This step involves running the 

mechanical model, M-SaF. 

j = 2 to N (where N is the maximum number of iterations of the algorithm) 

Step # 3-a: Randomly generate a sample parameter input (or realization) θ 
 from the prior 

distribution  

Step # 3-b: Calculate   θ   from prior 

Step # 4: Calculate the Posterior             using Equation 3.41. This step involves 

running the mechanical model         based on θ
 
.So, basically the Equation 3.41 

provides an updated information about parameter based on the test data        . 

Step # 5: Calculate the Acceptance Ratio           

 

              
           

               
  Equation 3.43 

 

Step # 6: Generate a random value   from a uniform distribution with bounds   and   

        

Step # 7: Compare        with   
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Equation 3.44 

 

Step # 8: Increment   and go back to Step # 3. This loop continues until a sufficient 

number of samples are obtained so that the posterior distribution stops evolving, or in 

other words the Markov chain converges. The multiple runs   in Equation 3.41 depend 

on the number of the test data points available.  

The Markov chain takes some iterations at the beginning of the MCMC run to 

converge to a stationary position. These iterations are called burn-in iterations and are 

usually discarded from generated samples in order to compose the final posterior PDF 

and to calculate statistical moments of the posterior. In the end, the posterior distribution 

is constructed using Kernel Density Estimation (KDE) [91].  

3.4 Computational Implementation  

3.4.1 Flow chart for First Ply Failure (FPF) analysis using M-SaF 

The section explains the overall procedure to calculate first ply failure (FPF) analysis 

of composite materials using M-SaF in a sequential fashion as illustrated in Figure 3.12. 

First, global scale FEM analysis is performed on the complete composite structure, such 

as a wind turbine blade under a particular load condition. From the FEM results, the in-

plane loads and stresses are calculated. Then, ply on-axis stresses are computed from the 

in-plane loads either using FEM or Classical Laminate Theory (CLT); these are the 

macro stresses. Stress amplification factors (SAF) are calculated from constituent 

material stiffness properties with chosen RUC and proper boundary conditions under unit 

loads, for each different fibre/matrix and fibre volume fraction used in the structure. 

Again note that these computations are independent of the number of load cases 

considered to compute the macro stresses. Macro stresses are then multiplied with SAFs 

to obtain the micro stresses. These micro stresses are different in each of the constituent 

materials. A failure index is determined in the fiber and matrix regions as per the 

appropriate failure criterion for each constituent. The critical failure index is then used to 
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compute first ply failure stress and strain. The critical failure index also identifies the 

critical ply in the laminate and the failure mode. The later information is very helpful 

during initial design stages and in optimization of the composite structure.  

 

 
Figure 3.12: Flow chart for First Ply Failure (FPF) analysis using M-SaF 

3.4.2 M-SaF with Bayesian Inference Approach  

The workflow for M-SaF model parameter estimation using the Bayesian inference 

approach is shown in Figure 3.13. The inputs to and outputs from M-SaF are given in 

Figure 3.12. In order to calculate failure indices in the constituents, the strength 

properties of the fiber and matrix materials, i.e.       
       

   
 
   

 
       are 

required. This comprises a vector of unknown parameters which has to be calibrated 

using the Bayesian inference approach. As all the elements of the calibration vector are 

physical properties, their values have to be positive due to the physical nature of the 

problem. The test data used for calibration in this work are taken from the OptiDAT data 

base [8] and the World Wide Failure Exercise (WWFE) [53]. The test data considered for 

calibration consist of ply or lamina level strengths in the form of either first ply failure 

load or a stress-strain curve. The model             is M-SaF with the   are the known 

inputs and   are the unknown parameters. The Bayesian approach uses the test data       

on the model outputs – here the first ply failure (FPF) load – to update the PDF for the 
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parameters. This is done by applying Bayes’ theorem:                             , 

where            is the posterior distribution for   given the      ,      is the prior 

distribution about parameter  ,      is the likelihood of the test data given model output 

using parameters   and          is a normalization constant. The test data are only used 

in the calculation of the likelihood. The prior is then combined with the likelihood to 

provide posterior distribution. The posterior will be narrower and more sharply peaked 

than the prior indicating that parameter   is calibrated and the parameter uncertainty is 

reduced. So, in this way Bayesian inference calibration reduces the uncertainty about the 

parameter values which are the strength properties of the constituents in this work.  

 

 
Figure 3.13: Workflow for model parameters estimation using Bayesian 

 

3.4.3 Design and Analysis Application  

With the quantified uncertainty in the parameters  , the posterior distributions will then 

be used by designers to make probabilistic predictions in first ply failure (FPF) load for a 

variety of composite laminas and laminates using M-SaF model. The procedure is 

explained in Figure 3.14. At this stage for the model       : the   are the known inputs 

and   are the calibrated PDFs of parameters. The output is probabilistic FPF load and this 
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information will then be used to calculate the probabilistic response and optimization of 

the composite structures. 

 

 

Figure 3.14: Flow chart for probabilistic analysis after Bayesian calibration 

 

3.5 Illustrative Example: Cantilever Beam under Point Load 

The basics of the Bayesian methodology framework is demonstrated using a set of 

cantilever beams           that are subjected to a point load    at the free end. The 

Young’s modulus   is constant along the beam span as it is made up of isotropic 

material, i.e. aluminum that exhibits an aleatory variability in  . The value of   is 

unknown and the aim is to calibrate it using randomly generated synthetic test data. The 

test data consists of deflection measurements of cantilever beams at the free end under 

load   . The beam lengths   , widths   , heights   , thicknesses   , and the applied load 

   are precisely known, with no epistemological uncertainty and are treated as 

deterministic values in the analysis. The beam dimensions are           ,    

         ,        , and         . For each beam  , the maximum 

displacement        at the free end is given by an analytical model                , 

where   is area moment of inertia, i.e.           . This analytic model will also 

constitute the forward model for each individual beam   with unknown   . The schematic 

of the beam is shown in Figure 3.15 along with a description of mechanical model   

inputs and outputs.   has an analytical form in this beam example problem. The flow 
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chart for calibration of model parameter   is given in Figure 3.16. The bar chart in the 

lower right of Figure 3.16 represents a typical histogram of the test data.  

 

 
Figure 3.15: Cantilever beam specifications and mechanical model inputs and outputs 

 

 

 
Figure 3.16: Flow chart for cantilever beam model parameter estimation using Bayesian inference 

  

Two test cases are formulated to demonstrate the applicability of the Bayesian 

inference method. These are listed in Table 3.1. The “test data” is the deflection at the 

free end of the cantilever beam. The two different types of prior are considered: 1) 

uniform prior  (min, max); 2) normal prior  (mean, standard deviation). The priors used 

in each test case are also listed in the Table 3.1. The objective is not only to estimate 

  from prior but also to see the effect of different priors on the posterior estimates.  
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Table 3.1:  Description of test cases of cantilever beam sample problem 

Test 

Case 
Description 

Prior for   

[GPa] 

1 Parameter   is estimated from 100 synthetic pseudo test data 

generated from   ~  (70,5) 

  (50,85) 

2   (65,20) 

  

The MCMC sample size was set to 10
4
 after performing convergence studies on 

various sample sizes. The trace plot of parameter with burn-in period shown in Figure 

3.17. This smoother plot of the raw sample traces is helpful in checking for convergence 

and can make it easier to identify and understand any non-stationarity as well as it 

provides the subjectively selection of the burn-in period length. 

 

 

Figure 3.17: Convergence check of the parameter 

 

The Markov chain was initiated at the mean value of the respective prior in each test 

case. This choice fulfills the required condition of the first step of Metropolis-Hastings 

random walk algorithm. For these test cases, the trace plots of the Markov chain 

parameter   along with a moving average of the parameter   is given on the left hand 

Burn-in period

Samples for posterior 

statistics calculation
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side of Figure 3.18. The posterior of parameter   is shown on the right of Figure 3.18 

along with the prior distribution and true normal distribution in the same figure. The true 

value is defined as the mean value of the generated samples of   from  (70, 5) in each 

test case. The algorithm for this simple example performs quite well because the statistics 

of   that are used to produce the synthetic pseudo test data have been recovered as shown 

in Table 3.2. The percent difference is less the 2% for the mean. The percent difference in 

case of the standard deviations is 15%. The normal distribution prior provides better 

results in terms of mean values.  

 

 
Figure 3.18: The posterior distribution of E in the cantilever beam example (Test case 1 and 2) 

 

Table 3.2: Cantilever beam result comparisons for Test case 1 and 2 

Parameter Test Case 1 Test Case 2 

True Mean [GPa] 70.42 70.42 

Posterior Mean [GPa] 71.73 70.52 

% Difference [-] 1.31 0.10 

True Standard Deviation [GPa] 5.31 5.31 

Posterior Standard Deviation [GPa] 4.55 4.47 

% Difference [-] 15.25 15.82 

 

 

Test Case: 1 Test Case: 1

Test Case: 2 Test Case: 2
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There is no direct and easy answer to the choice for the range of priors. The analyses 

from the sensitivity study for various prior ranges shows that there is not much effect on 

the mean value but there is considerable difference on the standard deviations if the prior 

range is very narrower. This can be seen in Figure 3.19. The uniform prior was 

considered for this sensitivity analysis as this is appropriate choice for most of material 

properties if little or no information is available and, also, this provides the freedom to 

select any range of values.  

 

 
Figure 3.19: Sensitivity study for choice of the prior 

3.6 Results and Discussion  

3.6.1 Boundary Conditions for 3D Unit Cell 

Finite element models of a single unit cell and a repeated array were defined in order 

to compare behaviours under identical loadings and boundary conditions. The 3-D 

structural solid element, SOLID45, is used for the FEM analysis. The material properties 

of Silenka E-Glass 1200 tex and MY750 Epoxy are given in Table 3.3 [53].  

 

Table 3.3: Material properties of Fiber and Matrix 

Properties E-glass Fiber Properties MY750 Epoxy 

E11(GPa) 74.0 Em (GPa) 3.35 

E22, E33(GPa) 74.0 vm (-) 0.35 
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G12, G13 (GPa) 30.8 
  

v12 (-) 0.2 
  

 

The responses of the multi-cell array and the unit cell model were compared for 

different loading conditions with proper periodic boundary conditions. As an example, 

the comparison of the SQR multi-cell array and the SQR unit cell model under shear load 

is shown in Figure 3.20; the HEX multi-cell array and unit cell models under shear load 

is shown in Figure 3.21. From Figure 3.20 and Figure 3.21, it is clear that the stress 

distributions in the multi-cell model and the unit cell are identical. There is no boundary 

separation, which verifies the boundary conditions. The rest of the boundary conditions 

were verified in a similar manner. 

 

 
Figure 3.20: Comparison of shear stress (N/m

2
) distribution in Multi-Cell & SQR unit cell model 

 

 
Figure 3.21: Comparison of shear stress (N/m

2
) distribution in Multi-Cell & HEX unit cell model 

3.6.2 FPF Index and Load of Ply under Tensile Load using Tsai-Wu and M-SaF 

An attempt was made to compare the FPF index and load using Tsai-Wu failure 

criteria [43] and M-SaF methodology. The material system used is E glass fiber and 
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MY750 epoxy. The ply angle considered varies from    to    . A unit tensile load is 

applied at the ends. The predicted results from Tsai-Wu and M-SaF with SQR RUC are 

given in Figure 3.22. There is little deviation in the region where the influence of fiber is 

greater, but overall a good correlation between the predictions is shown.  

 

 
Figure 3.22: Prediction of FPF index and load of ply under tensile loading 

3.6.3 Statistical Inverse Problem Results  

The proposed Bayesian inference method with the M-SaF framework was employed to 

calibrate the model parameters and quantify the uncertainties of constituent strength 

material parameters. The test data used was from the OptiDaT data base [8] and the 

World Wide Failure Exercise (WWFE) [53]. The ply material used is constructed of the 

same type of e-glass/epoxy material system as given in Table 3.3. The ultimate 

longitudinal tensile strength,  , of a ply was used in calibrating the longitudinal tensile 

strength of the fiber  
 

. It is believed that fibers are the main load bearing constituent in 

this load condition. The laminate UD1 was used for this purpose and there are 10 test 

data values available in OptiDaT data base. The ultimate transverse tensile strength   of a 

ply was used in calibrating the tensile strength of the matrix   . It is believed that the 

matrix is the main load bearing constituent in this load condition. The details of the test 

data used for these parameters are given in Table 3.4. The prior distribution of   
 

 is 

taken as uniform  [1200, 2800] MPa and of    also used a uniform prior  [20, 150] 

MPa.  
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Table 3.4: Details of the test data used for    and    

Calibration 

Parameter 

Test data information 

Specimen 

name 

Test 

type 

Test data  

reference 

Specimen 

lay-up 

Number 

of tests 

Test data statistics 

Mean 

 

[MPa] 

Standard 

Deviation 

[MPa] 

   UD1 Tension Ref. [8]  [0
o
]5 10 839.88 37.18 

   UDT Tension Ref. [92] [90
o
]2T 5 35.1 2.85 

 

The distributions of these parameters were calibrated using MCMC sampling with the 

Metropolis-Hastings algorithm. A random value was sampled from the parameter prior 

distribution in each MCMC iteration. The likelihood function was then calculated from 

observing test data and the outputs from M-SaF. This step requires running finite element 

analyses on the RUC. MCMC simulations were carried out for five thousand samples 

from the prior distribution. The resulting calibrated parameters   
 
      are shown in 

Figure 3.23. The top row of Figure 3.23 shows results for  
 

 and the bottom row is for 

  . The trace plots of both parameters are given as well and appear to be well mixed. 

The posterior mean of  
 

 was used in order to calculate the     distribution. Similarly, 

the other parameters were calibrated using posterior mean of rest of the parameters. The 

first 500 samples were discarded as burn-in samples and were not considered in 

calculating the statistics of the parameters. In the second column of Figure 3.23, the 

posterior distribution as a parameter’s histograms can be seen along with the prior 

distributions. The posterior histogram was then fitted with a smoothing curve using the 

kernel density estimate function in MATLAB. The kernel density estimate returns a 

probability density estimate for the generated posterior vector.  The posterior mean value 

is plotted as a blue triangular. The circular red dot shows the fiber longitudinal tensile 

strength provided by WWFE [7]. The square black dot is the value of  
 

 used by Huang 

[52] in order to predict test data. As it can seen clearly that the posterior mean is closer to 

the WWFE value, however the WWFE just provides a single point value. Evidently the 
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value used by Huang was far from WWFE and the posterior mean. A similar pattern can 

be found for the parameter    . In this case, the posterior mean is closer to the WWFE 

provided value. The calibration accuracy could be further improved further by utilizing 

more test data. From the trace plots, the calibrated posterior parameters do exhibit good 

convergence.  

 

 
Figure 3.23: The posterior distribution of    and    

 

In the high fidelity micromechanics and Bayesian coupled framework, it is difficult 

to assess how much the prior affects the posterior.  Specifying the prior distribution is 

substantially harder when there is little to no information available. From the prior 

sensitivity analysis given in Figure 3.19, a wider range for the prior (e.g.  [10, 200]) 

provided posterior statistics that are close to the mid-range prior (e.g.  [55, 85]) and with 

the conservative prior (e.g.  [65, 75] or  [70, 75]), the posterior statistics deviate 

significantly, especially for the standard deviation compared with true values. Based on 

these analyses, priors were selected for constituent material properties. Mid-range priors 

were selected where there is some information is available in literature. For example, in 

the case of    and    priors, there is test data information available in WWFE. The same 

is true for    and    , but in the case of    and     wider prior ranges were selected 
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because no information was available and these wider priors cover a minimum value as 

close to zero and maximum as high as it is realistic. 

Similar procedures were implemented to calibrate the other M-SaF model 

parameters. The calibrated posteriors were computed for the following parameters: 

matrix compressive strength   ; fiber longitudinal compressive strength    
; fiber 

transverse compressive strength    
; fiber transverse tensile strength   . For    and    

, 

the test data is from the WWFE consists of UD ply with [90
o
] layup under compressive 

load. As there is no test data available for the failure mode dominated by fibre transverse 

compressive failure, this leads the assumption of using this test data for     
 calibration. 

The test data for a [90
o
] ply under tensile load from WWFE was used for     parameter 

calibration. A 20% standard deviation is used in case of test data where there are no 

statistics available. The details of the test data used for these parameters are given in 

Table 3.5. 

 

Table 3.5: Details of the test data used for other parameters 

Calibration 

Parameter 
Test type 

Test data  

reference 

Specimen 

lay-up 

Number 

of tests 

Test data statistics 

Mean 

 

[MPa] 

Standard 

Deviation 

[MPa] 

      
 Compression Ref. [53] [90

o
]T - 144.7 - 

   
 Compression Ref. [8] [0

o
]T 10 800 60.67 

   Tension Ref. [53] [90
o
] - 40 - 

 

 The prior and posterior estimates of all parameters are shown in Figure 3.24. Each 

parameter was calibrated one at a time in order to reduce the computational time. These 

distributions show the narrower band of parameter values from the prior distributions. No 

values of    
 and     were provided by WWFE, but, with the help of the Bayesian 

approach, these parameters could non-the-less be calibrated. Little information is 

available in the literature about the constituent strength properties, which motivated the 

use of a uniform prior distribution on the basis of perception about respective strength 
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properties. Five thousand simulations runs were carried out for obtaining posterior 

distribution of these parameters. Most of the calibrated parameters attained a well-defined 

peak in the posterior distribution, except   . This is a sign that the test data used was 

insufficient, a situation that could be improved by having additional test data. Overall, the 

Bayesian inference approach successfully quantified the uncertainties inherent in the 

constituent strength properties.  

 

 
Figure 3.24: The posterior distribution of  M-SaF model parameters: (a) matrix compressive 

strength; (b) fiber longitudinal compressive strength; (c) fiber transverse compressive strength; 

(d) fiber transverse tensile strength 

3.6.4 Statistical Forward Problem Results  

This section focuses on analyzing the probabilistic effect of constituent strength 

properties on the first ply failure (FPF) of composites within stochastic framework. As 

uncertainties are inherent in the composite materials which is a combined effect of 

material’s natural behaviour and manufacturing process and, therefore, it is necessary for 

a deterministic M-SaF model to implement the stochastic methodology to account for 

these uncertainties. For this, all the calibrated parameters with their distributions in the 

previous section were used to predict the probabilistic FPF of a variety of laminates with 

(a) (b)

(c) (d)
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different fiber volume fractions using M-SaF model. The Monte Carlo Simulation (MCS) 

approach is one of the most general tools to perform stochastic analysis under uncertainty 

of input variables [32]. The MCS consists of three steps: 1) generation of realization 

corresponding to probability distribution function (PDF) – which is the posterior 

prediction from the previous section; 2) a finite element simulation evaluates the 

responses for each realization; 3) statistical analysis of the results yields valuable 

information concerning the sensitivities of the responses to the stochastic inputs. A 

normal distribution with 20% standard deviation of the posterior distribution along with 

posterior mean was used for the cases where the posterior was calculated with only one 

test data point. This assumption can be eliminated if the researchers report the detailed 

statistics of the test data in the literature. The test used for comparison purposes were 

taken from OptiDAT public database [8] and WWFE [7]. The lamina named “UD1” has 

five layers with fiber volume fraction is 55%, total laminate thickness is 4.4 mm and 

represented as [0
o
]5 in OptiDAT data set. Two cases are considered and the details for 

these are given in Table 3.6. These cases help to identify the effect of calibrated posterior 

PDFs on FPF predictions on UD1.   

 

Table 3.6: Test cases for UD1 probabilistic analysis 

Case 

Number 

Case Description 

UD1-a Using posterior PDFs (calibrated) of all constituents  

UD1-b Using only    posterior PDF and  

1
st
 statistical moment of rest of the calibrated posteriors parameters 

(   
       

      ) 

 

In case UD1-a; the calibrated posterior PDFs of all constituents were considered and 

for the case UD1-b; the posterior PDF of calibrated    is considered only along with the 

1
st
 statistical moment of rest of the calibrated posteriors parameters (   

       
 

     ). Figure 3.25 shows the probabilistic analysis of UD1 after post-processing in 

MATLAB. It is seen that the peak of the curve for the UD1-b case falls right on the test 

data mean value which is 840 MPa and the PDF of UD1-b case is very close to the 

OptiDAT test data uncertainty curve, which means by using only    posterior 
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distribution, the test data uncertainty will be recovered because this test data was used to 

calibrate    as expected. In the case of UD1-a, the output PDF has very large standard 

deviation because of the use of the posterior distributions of all parameters for which 

many had insufficient test data available to properly converge the posterior estimates for 

the individual parameters.  

 

 
Figure 3.25: Probabilistic FPF of lamina UD1 

 

Next we considered the shear laminate [+45
o
]S with fiber volume fraction of 50%. 

The source for test data in this case is OptiDAT report [93] and data provided by ETS 

(École de technologie supérieure, Québec Canada) [94]. The base material in both test 

data is e-glass/epoxy. In this case, the peak of the posterior distribution matches the test 

data, as shown in Figure 3.26.  
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Figure 3.26: Probabilistic FPF of shear laminate 

 

If the experimental mean of FPF from OptiDAT or ETS is assumed to be true, then 

how significantly different is this from numerically simulated mean using M-SaF? To 

answer this question, t-tests at 95% significance level are used to determine significant 

differences between mechanical testing and simulations [95]. The hypothesis to check is 

the mean from mechanical testing data significantly different from the numerical 

simulation data? The t-test is performed by calculating the T-value given by the 

following relation [96]: 

 

 

t-test statistic model:                        
          

 
    

 

    

 
     

 

     

 

Equation 3.45 

 

where sim represents simulation and test is for test data.   is mean value,     is variance, 

and   is sample size. Table 3.7 lists these parameters.  
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Table 3.7: t-test model parameters  

  n 
Mean  

(MPa) 

Standard Devotion 

(MPa) 

Test Data 
OptiDAT  23 40.88 3.05 

ETS 5 42.13 6.56 

Simulation 
Numerical 

Simulation 
4500 42.15 6.08 

 

Two assumptions have to be checked before applying t-test. The first: are these 

independent samples? Yes, since each sample is collected from different source. The 

second: are these a normal population? This is checked by plotting the data in normality 

plots. The intention of probability plots is to graphically assess whether the data either 

from physical tests or numerical simulation could come from a normal distribution. As 

the plots shown in Figure 3.27 are linear and this shows that the data is normal. 

 

 

Figure 3.27: Normal probability plots of test data and simulations 

OptiDat Data ETS Data 

Simulation 
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The t-test results are shown in Table 3.8. Since     is less than           in both cases, 

we conclude that the hypothesis is rejected, and there is statistically evidence to conclude 

that the numerical mean is not significantly different from the experimental mean. 

 

Table 3.8:  t-test statistic results for shear laminate 

 OptiDAT ETS 

    1.994 0.007 

          2.0686 2.571 

 

The probabilistic FPF predictions for angle ply laminates, i.e., [+30
o
/-60

o
]S and [+15

o
/-

75
o
]S and cross-ply laminate [0

o
/90

o
]T are shown in Figure 3.28. The load acts in the 

longitudinal tensile direction. These consist of fibreglass and epoxy material with 60% 

fiber volume fraction. The test data was taken from [97] for angle ply laminates and from 

the WWFE in case of cross-ply laminate [7]. There is good correlation found in the case 

of cross-ply laminates between predictions and test data, although clearly more test data 

is required for a definite comparison, however this is not available in literature. 
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Figure 3.28: Probabilistic FPF of cross-ply laminate (top row) and angle ply laminates (bottom 

row) 

 

The probabilistic FPF analysis of a qusai-isotropic laminate [0
o
/+45/90

o
]T is shown 

in Figure 3.29. The material is AS4/epoxy with 60% fibre volume fraction. The results 

from Tsai-Wu [43] and Multicontinuum [51] (MCT) failure theories are also given in this 

figure. The results from Tsai-Wu and MCT were deterministic. The probabilistic mean 

falls near the test data and MCT. The Tasi-Wu prediction is far from the test data and 

micromechanics based predictions from M-SaF and MCT.  
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Figure 3.29: Probabilistic FPF of quasi-isotropic laminate 

3.7 Conclusion 

In this paper, a methodology for the failure of composite laminates based on 

micromechanics, i.e. Micromechanics based approach for Static Failure (M-SaF), is used 

to evaluate first ply failure. This method is based upon behavior of the constituents, i.e. 

the fiber, matrix, and interface. The model determines the failure of composites by 

considering failure of constituents in a micromechanical analysis. The M-SaF FPF results 

matches well with well known Tsai-Wu failure theory.  Also, the Bayesian Inference 

framework was used to calibrate the M-SaF model parameters from available test data. 

This calibration produced posterior distribution of constituent strength properties. By 

using Metropolis-Hastings MCMC simulation, samples of M-SaF model parameters   

are drawn efficiently from prior distribution. The first order statistics of posterior found 

to be very close to the available values from literature. The joint posterior probability 

density function of   was then used for FPF probabilistic analysis of a variety of 

laminates. The base material for all considered laminates was e-glass and epoxy. But, this 

will be extended to carbon fiber laminates in future. Additional test data will improve the 

accuracy and the bonds of the calibrated parameters. The presented coupled approach 

facilitates to identify the probability density functions of the constituent properties. This 

allows structural designers to incorporate uncertainty in analysis with confidence and can 
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benefit reliability based composite structural design and optimization by allowing 

contracted the factor of safety due to improved knowledge on uncertainties in the 

constituent material properties. The next step in this research is to extend presented 

coupled micromechanics based probabilistic framework to estimate the fatigue life of 

composites. Deterministic values of the constituent stiffness properties are used in the 

present work but these will be calibrated with the Bayesian inference method along with 

constituent strength properties in future work. Finally, there is clearly a need for more 

reporting of statistical test data by experimental practitioners to support further 

development of probabilistic failure models.  
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Chapter 4 Damage Initiation and Growth in Composite Laminates of 

Wind Turbine Blades 

 

This paper was presented in the 10th Canada-Japan Conference Vancouver Canada and has 

been accepted for publication in the scientific proceedings of the Design, Manufacturing and 

Applications of Composites (2014): pp 17-28 

[ISBN: 978-1-60595-169-0, Publisher: DEStech Publications Inc.] 

 

This chapter is a subsequent step for the composite structures analysis using 

micromechanics. The principal focus of this chapter is to predict the last ply failure (LPF) 

of composites. As LPF requires progressive running damage scheme, so scope was 

limited to use mean values of the constituents. 

ABSTRACT 

 

The physical properties of composite materials, such as high strength-to-density and 

stiffness-to-density ratios, are key properties for wind turbine blade structure. These 

materials are however vulnerable to damage during service. The static failure of 

composites occurs in two stages: 1) onset of damage and 2) damage evolution that leads 

to final failure. The response of damaged composites depends upon a mixture of 

mechanisms that take place at the micro level, i.e., in the fiber and the matrix. 

Consequently a model is proposed for predicting ultimate strength of composite 

laminates based on the constituent’s properties; the fiber, the matrix, and the interface. 

For onset of damage, the Stassi Equivalent stress model 
,eq m is used for the matrix.  This 

model take cares of different tensile and compressive strengths of the matrix. For the 

fiber, the failure criterion for onset of fiber breakage is related to fiber strength. Once 

failure occurs, gradual degradation of material properties is used, i.e.,      

        
     

  
  . The analysis is carried out on a three dimensional representative unit 

cell of the composite. The ultimate strength predictions were in reasonably good 

agreement with the test data for E-glass/epoxy laminates used in wind turbine blades. 
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4.1 Introduction 

 

The size of wind turbines is increasing to capture more energy and this trend will 

continue into the future [14]. Several multi-MW prototype wind turbines exist for 

offshore applications [15, 16]. The power of a wind turbine scales as square of the rotor 

diameter and the mass of the blade geometrically scales as the cube of rotor diameter. 

The cost of the blade would then also scale as cube of rotor diameter but advanced 

structural concepts reduce its scaling exponent to ~2.5 [17]. Considering these scaling 

laws one might predict that in the end material costs might govern and avert further 

scaling.  Wind turbine blades have two important design constraints. First, blades should 

be stiff enough to resist excessive defection and avoid striking the tower. Second, the 

blades should be strong enough to sustain a number of variable load cycles during its 

lifetime of 20 years according to IEC 61400-1 Ed 3 [19]. A polymer-based composite 

material is a good choice for large structures such as wind turbine blades. The high 

strength-to-density ratio, high stiffness-to-density ratio, good fracture toughness, fatigue 

performance and suitability for use in fast production of large structures makes 

composites a good choice for their use in structural application. The fibres are embedded 

in polymer matrix which not only holds fibres at their place but also takes some axial 

load in proportion to relative stiffness [98]. 

A lot of effort has been put into understanding failure of composite materials in order 

to better use these materials in structural applications. Significant success has been made 

particularly in the aerospace industry. Most of the work done had focused on failure of 

composite materials at the ply or even laminate level. At ply level, most of the failure 

theories treat the ply as a one homogenous system. But, in reality, composites are made 

up of distinct materials that have different mechanical and thermal properties. The work 

by Azzi and Tsai [1] focused on the analysis of thin plies and proposed interaction based 

formulation. Later, Tsai and Wu [43] provide interaction based quadratic failure criterion 

for laminates and they used stresses as failure contributors. This failure criterion is the 

most widely used in industry today due to its easy to application in practice. The different 

failure modes, fibre failure or matrix failure, were identified by the failure criterion given 

by Hashin and Rotem [9]. Hart-Smith used isotropic failure criteria to cover orthotropic 
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cases. He also used strain to characterize the failure rather than stress. Puck [45] used 

Mohr-Coulomb effective stresses to calculate the fracture. 

Most of the existing failure criteria for fibre reinforced composites are at laminate 

level and treat the fibre-matrix system as a whole making it difficult to predict whether 

failure occurs in the fibre or matrix or at the fiber-matrix interface. These theories are 

referred to as macro level theories. These macro level theories apply failure criteria on 

homogenized stiffness and strength properties. This homogenization not only smears the 

fibre and matrix properties but also requires interaction parameters which can only be 

determined from combined stress tests [3]. Thus, in order to understand the detailed 

damage mechanism of composites used in a wind turbine blade, an improved method is 

required that provides information about failure at the constituent level.  

This research proposes the micromechanics based methodology for the failure of 

polymer-based composites that are used in wind turbine blades. This methodology is 

termed the Micro Level approach for Static Failure (M-SaF). The M-SaF is formulated 

using a representative unit cell (RUC) of composite laminate of a structure [48, 99]. The 

methodology is based on the properties of the constituents, i.e. the fiber, the matrix and 

the interface. The fibres are not in a regular pattern in the laminate, however, it is 

appropriate to build idealized fiber array with fibres arranged in some specific pattern. 

Then ply level properties are simulated using M-SaF using RUC. We used Square (SQR) 

and Hexagonal (HEX) RUC in this study. The macro level stresses at laminate level are 

calculated using the Finite Element Method (FEM). The ply level macro stresses are then 

computed using FEM or Classical Laminate Theory (CLT). Micro level stresses are 

computed using ply level macro stresses and with RUC. Failure criterion is then applied 

separately to each constituent to see which constituent is critical under various loading 

conditions. The following sections explain the theory behind this approach.  

This is organized as follows. In section 4.2, the definition of unit cell is explained. A 

comprehensive relation for micro stress calculation using stress amplification factor is 

outlined in section 4.3. Section 4.4 details the failure criterion for each constituent. 

Section 4.5 provides a scheme for progressive damage in composites. Results are 

presented in section 4.6, followed by conclusions in section 4.7.   
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4.2 Theory 

4.2.1 Representative Unit Cell (RUC) Models 

The wind turbine blade structure is made up of polymer-based composite laminates, 

which are in turn made up of plies stacked in a certain sequence. These plies are made up 

of fibre and matrix constituents. All these levels are divided into two main groups: macro 

level and micro level as shown in the Figure 4.1. Customarily, one moves right or left in 

these levels via localization and homogenization. A homogenization procedure provides 

the response of a structure given the properties of the structure’s constituents. 

Conversely, localization method provides the response of the constituents given the 

response of the structure. 

 

 

Figure 4.1: Macro and Micro Levels 

 

The fibres are randomly arranged in the real unidirectional (UD) ply. The far left side 

of the Figure 4.2 shows a cross section of a continuous UD ply [25]. There is no obvious 

regular pattern in which the fibres are arranged. A true representation of the fibre 

arrangement is shown in the middle of the Figure 4.2. To aid computation, and idealized 

fibre arrangement is used, as shown in the far right side of the Figure 4.2. In this study, an 

idealized square (SQR) RUC model is used for probabilistic analysis as shown at the 

bottom of Figure 4.2. Although it is possible with suitable boundary conditions to 

represent a hexagonal arrangement with square unit cell. Other choices for the RUC, such 
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as triangular RUC, could be exploring in the future. The modelling and mesh generation 

of RUC were performed in the finite element code ANSYS Multiphysics [31]. 

 

 

Figure 4.2: Representative Unit Cell Models 

4.2.2 Ply Stiffness Computational Procedure 

The stiffness properties of a unidirectional (UD) ply were calculated from the 

constituent's properties; fibre and resin (or matrix) properties, and with certain fibre 

volume fraction   . In the stiffness properties prediction procedure, it is assumed that in 

an undamaged state both constituents are perfectly bonded everywhere along the length 

of the fibre/resin interface. For a fully reversible linear material domain, the relationship 

between stress and strain is given in Equation 4.1:  

 

      Equation 4.1 

 

Where   and   are the stress and strain components and   is the elastic stiffness tensor. 

The composite material is orthotropic in nature [3, 25]. For the plane stress case, the 

stiffness matrix C is invertible to obtain a compliance matrix S. Their product must 

produce unity matrix, i.e.,          . By definition, ply stiffness properties can be 

computed from the elements of the     matrix [25].  

Glass/Epoxy (200X)*

Cross Section of 

Continuous 

Unidirectional Ply

Square RUC

Idealized Representation Real Representation 

Hexagonal RUC Triangular RUC

x

y

z x

y

z

Periodic arrangement of 

SQR RUCs1

 Sqaure Unit Cell Model                                                         

JAN 16 2013

14:57:08

VOLUMES

TYPE NUM



 

 

86 

4.3 Micro Stresses Calculation Procedure and Stress Amplification Factor (SAF) 

The stresses in the matrix and fibre are related to macro stresses at ply level by Stress 

Amplification Factors (SAF). Another name for these matrices found in literature as 

Stress Magnification Factor [3, 6]. The SAF was determined by the finite element method 

(FEM) using ANSYS. The SAF depends on RUC (fibre and matrix combination) and the 

fibre volume fraction. It is necessary to apply proper boundary conditions (BC) to obtain 

the SAF.  These BC include: (i) nodes at the boundaries of RUC will have the same 

displacements and (ii) the free faces must remains flat as proposed by [6, 29]. For all 

stresses in a Cartesian coordinate system XYZ (or 123), the macro stresses   and 

resultant micro stresses   are related as given in Equation 4.2: 

 

 

 
 
 
 
 
 
  

  

  

  

  

   
 
 
 
 
 
   

 

 
 
 
 
 
 
         

         

         

         

         

         

         

         

         

         

         

          
 
 
 
 
 
   

 
 
 
 
 
 
   
   
   
   
   
    

 
 
 
 
 

 Equation 4.2 

4.4 Failure Criterion for Constituents 

The failure prediction of composite plies or laminates will be made using micro 

stresses in each constituent, i.e., the fibre, the matrix and the interface. There is different 

failure criterion for each constituent. As the matrix is isotropic in nature, a Stassi 

Equivalent stress model [65] was used for the matrix. This model includes different 

tensile and compressive strengths of a material as: 

 

 
      

                     
        

 

  
 

Equation 4.3 

 

Where       is the equivalent stress in matrix,   is the ratio of compressive to tensile 

strength, i.e.,    
   ,    is the first stress invariant, i.e.,            , 

         are the three normal stresses,     is the Von-Misses stress, and the subscript     

denotes the matrix. 
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The Maximum Stress Criteria [25] was used for fibre failure for simplicity. This is 

expressed in Equation 4.4: 

 

             Equation 4.4 

 

Where       is the micro stress in the fibre and       could be either be   , which fibre 

longitudinal tensile strength, or   
  , which fibre longitudinal compressive strength.  

The interface between matrix and fibre plays a role in ply strengths, such as transverse 

tensile and shear strength [67]. Perfect bonding between matrix & fiber is considered here 

however and, thus the interface will not enter in the current analysis.    

4.5 Progressive Damage Scheme 

The physical properties of composite materials including high strength, stiffness, and 

stiffness-to-density ratios are the key properties for wind turbine blade structures. 

Regardless of these attractive properties, these materials are fragile and vulnerable to 

damage from a number of sources, both during initial processing and in service [100]. As 

the damage cannot be avoided completely, the blade structure should be designed to 

function safely despite the presence of flaws. The failure of composites occurs at two 

stages: 1) onset of damage and 2) damage evolution. Here the Stassi Equivalent stress 

model (Equation 4.3) is used to predict onset of damage. The failure index is then 

calculated as given in Equation 4.5 [63]. Where    is the yield strength of the matrix. 

 

    
     

  
 Equation 4.5 

 

There are three conditions that are associated with   ; 1) if     , then material is 

in linear elastic range, 2) if     , then this is damage onset stage, 3) for     

              , then damage accumulates in the matrix and it causes stiffness 

reduction,    is final tensile strength of the matrix. In case of the fibre, the failure 

criterion for onset of fibre breakage is expressed in Equation 4.6 [101]: 
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     Equation 4.6 

 

Where    is the failure strength of fiber, and subscripts   and   denote tension and 

compression, respectively.     
 

 is the maximum stress in the fibre.  

The failure criterion adopted for matrix and fiber assumed that a composite starts to 

fail when either fiber or matrix fails. Once failure occurs, the material may undergo some 

degree of property degradation in the damaged area. This property degradation process 

could be either gradual or instantaneous [102]. Gradual degradation of material properties 

was considered in this research as this more realistic representation of the actual process 

and, for this, the degradation scheme proposed by Huang et al [63] was used. The damage 

in the matrix considered as isotropic and damage is being accumulated inside matrix till 

failure. This SAF based micromechanics approach requires to use reduced or degraded 

matrix modulus only for matrix dominated failure than traditional methods like Tsai-Wu 

where different factors required at ply level for transverse and shear moduli. The damage 

factor,   , is related to failure index,   , in Equation 4.7 or Equation 4.8 respectively as: 

 

                   Equation 4.7 

 

              
     

  
   Equation 4.8 

 

Where       is the maximum stress in the matrix and its value is between    and   . The 

parameter,  , describes the shape of the nonlinear part of stress-strain curve and will be 

available from test data. Final failure occurs when    reaches unity. The overall 

procedure of M-SaF with progressive damage modelling is given in Figure 4.3. 
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Figure 4.3: Progressive Damage Scheme 

 

4.6 Results and Discussion 

4.6.1 Comparison of Shear Stress distribution in Multi-Cell & Unit Cell Model 

The periodic boundary conditions (BCs) devised by Xia [29] are applied to a SQR and 

HEX unit cell FEM model which insures that the composite has the same deformation 

mode and there is no separation between unit cells. The responses of the multi-cell array 
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and the unit cell model were compared for different loading conditions with proper 

periodic boundary conditions. As an example, the comparison of the multi-cell model and 

the unit cell model under shear load is shown in Figure 4.4. It is clear from the Figure 4 

that the stress distributions in the multi-cell model and the unit cell are identical, which 

verifies the boundary conditions used for the unit cell models. 

 

 

Figure 4.4: Shear Stress in Multi & Unit Cell Model 

4.6.2  UD Ply Stiffness Properties 

With M-SaF methodology, the stiffness properties of the E-glass/epoxy UD ply were 

calculated using the SQR and HEX RUC and 60% fiber volume fraction. The E-glass 

fibre and MY750 epoxy was used for this analysis. These properties were calculated in 

linear elastic region. The predictions were compared with test data [7] and were found to 

be in good agreement, as shown in Figure 4.5.  

 

Fiber = E-glass,  Matrix = Epoxy MY750
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Figure 4.5: Comparison of Stiffness Properties from M-SaF with Test Data 

4.6.3 Stress versus Strain Curves of Composite Laminates 

In this section, stress-strain curves of composite laminates determined by M-SaF are 

presented. These laminates are made up from different material systems and having 

various layups (including cross-ply laminates and quasi-isotropic laminates). These test 

cases were taken from the World Wide Failure Exercise [WWFE] [103]. The first test 

case is an E-glass/epoxy MY750 cross-ply laminate [0/90]s subject to uniaxial tensile 

loading. The stress-strain curve            exhibits bilinear behavior. The predictions 

from M-SaF were compared with the test data [103] and found in good agreement. The 

simulation from M-SaF also indicates that the damage initiation, damage propagation, 

and final failure occurred at various locations on stress-strain curve. Results from MCT 

[51] and Tsai-Wu failure criterion were also reported as shown in Figure 4.6. The 

implication of using current M-SaF based failure predictions is loss of multi-linearity in 

the stress-strain curve, even though the bi-linear behaviour was captured due to distinct 

material behaviour of constituents. Also, the sub-plot in Figure 4.6 shows the    and   . 

The slopes for both constituent damages will go from positive to near zero which 

corresponds to final constituent’s material strength. Also, M-SaF evaluates damage at 

specific locations in matrix and fiber, so RUC mesh sensitivity is not playing much role. 
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This will be critical when damage will be evaluated at all locations inside RUC and this 

will explore in future work.    

 

 

Figure 4.6: Stress–Strain curve of Cross Ply Laminate 

 

The second test case was a quasi-isotropic laminate [0/+45/90]s made up from AS4 

fibers and 3501-6 epoxy matrix system with 60% fiber volume fraction. The stress/strain 

test data of this laminate under tensile load is given in Figure 4.7 along with predictions 

from M-SaF using Square and Hexagonal unit cells. Simulations from MCT and Tsai-Wu 

were also plotted. The simulation results from M-SaF were strain controlled and obtained 

in 50 load steps. Matrix failure in the 90
0 

plies initiated at 225 MPa and final failure took 

place at 700 MPa where fiber breakage occurs. One observation can be taken from this 

simulation is that AS4/3501-6 [0/+45/90]s laminate exhibits multi-linear stress/strain 

behavior to final failure but apparently it looks like bi-linear.  This is due to epoxy non-

linearity and epoxy cracking contributes towards laminate stress-strain curve.  
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Figure 4.7: Stress–Strain curve of AS4/3501-6 [0/+45/90]s laminate 

4.6.4 Failure Envelope of Composite Laminates 

The failure envelope of the E-glass/epoxy composite under combined loading system, 

i.e.    versus    were plotted. The test data [104] was superimposed on the same graph 

for comparison, Figure 4.8. The failure envelopes computed by the Tsai-Wu failure 

criterion [25] and Multi Continum Theory (MCT) [51] are also reported together for 

comparison. In the failure envelope, fiber, matrix, and interfacial failure modes appear 

distinctly and determine the biaxial failure loads. The M-SaF is in good agreement with 

the test data in quadrant I and in quadrant IV. In these quadrants, the failure is matrix 

dominated. Also, M-SaF matches well with test data at the coordinates axes with 

excellent accuracy, i.e. parallel and transverse to fibers, fiber and matrix dominated 

failure modes respectively. The lack of variation in the M-SaF quadrant 1 failure 

envelope is a result of the assumption that the matrix strength controls failure in the 

transverse direction. Likewise, the vertical straight line at the right-edge of the M-SaF 

failure envelope predictions is fiber dominant. However, the Tsai-Wu failure criterion 

predicts greater ply strength under biaxial compression. The rectangular failure envelope 

predicted by MCT is similar to one that would be produced by a simple maximum stress 

failure criterion.  
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Figure 4.8: Failure envelope of E-glass/Epoxy in       stress space 

4.7 Conclusion 

In this paper, a methodology for the failure analysis of composite laminates in wind 

turbine blades based on Micromechanics, i.e. the M-SaF (Micro Level approach for Static 

Failure analysis) is used to evaluate the static strength. This approach is based upon 

behavior of the constituents, i.e. the fiber, matrix, and interface. The model determines 

the failure of composites by considering failure of constituents in a micromechanical 

analysis. Good agreement between test data and prediction of failure envelope was 

observed. M-SaF clearly indicates the failure mode of the composites and the stress level 

in each constituent upon failure. This makes it more flexible approach to optimize a 

composite strength by choosing proper constituent materials as well as fiber 

reinforcement/laminate lay-ups. One of the features of     M-SaF is that it provides 

stiffness properties of the UD ply that can be compared directly with test data and found 

to be in good agreement. The concept of using basic constituent properties in the wind 

turbine blade design will help to choose a variety of material combinations. This will not 

only lead to accelerate the design cycle but also reduce a considerable cost of testing. 

 

-200

-150

-100

-50

0

50

100

-1500 -1000 -500 0 500 1000 1500

Biaxial Test [+-85]

UD Test [0]

Tsai-Wu

Max. Stress 

MCT Theory

M-SaF


2

(M
P

a
)

1 (MPa)



 

 

95 

Chapter 5 Fatigue life prediction of Laminated Composites using a 

multi-scale M-LaF and Bayesian Inference 

 

This paper was accepted in Composite Structures Journal in February 2016. 

Mustafa, Ghulam, Afzal Suleman, and Curran Crawford. " Fatigue life prediction of Laminated 

Composites using a multi-scale M-LaF and Bayesian Inference." Composite Structures (2016) 

(doi:10.1016/j.compstruct.2016.02.024) 

 

This chapter is last in a series of analysis for composite structures. The concept of 

Bayesian inference was used to predict probabilistic fatigue life of composite laminates.  

ABSTRACT 

 

This paper presents a probabilistic model for fatigue life estimation of composite 

laminates using a high fidelity multi-scale approach called M-LaF (Micromechanics 

based approach for Fatigue Life Failure). To this end, square and hexagonal 

representative unit cells are introduced to calculate constituent stresses using a bridging 

matrix between macro and micro stresses referred to as the stress amplification factor 

matrix. The M-LaF is based on the constituent level input data that makes it possible to 

predict fatigue life of a variety of laminates with any possible fiber volume fraction. The 

M-LaF model parameters are calibrated as posterior distribution using the Bayesian 

Inference methodology. A reference test data from literature was used for parameter 

calibration. The calculated posterior statistics were then used to calculate probabilistic 

fatigue life estimates of sample laminates. The predicted S-N curves are in good 

agreement with the test data for a range of composite laminas as well as laminates with 

different fiber volume fractions and under diverse stress ratios. As an illustration, the 

above approach was applied to a wind turbine blade to show the effect of multi-axial 

loading on the fatigue life of composite laminates.   
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5.1 Introduction  

Fatigue failure mechanisms in composite materials are different than in metals. In 

general, fatigue in a material is caused by a non-conservative deformation process where 

the creation of new surface area causes the energy loss that leads to failure. In metals, the 

initiation of a single crack and its intermittent propagation until catastrophic failure 

governs the fatigue life of the structure. On the other hand, fatigue in composite materials 

is due to multiple damage mechanisms. There are many factors that govern the damage 

growth in composite materials such as relative stiffness of the fiber and matrix, ply 

stacking sequence, load direction, and loading rate [105].  

The fatigue life of composites can be evaluated using methods that include S-N 

curves, energy based approaches, stiffness based fatigue models, and strength 

degradation models. Hashin and Rotem [106] presented a simple fatigue failure criterion 

expressed in terms of S-N curves obtained by uniaxial cyclic testing of unidirectional 

specimens. Here, the criterion is proposed for unidirectional laminates only. Information 

about stress interaction between laminas in non-unidirectional laminates and its effects on 

failure was lacking. Also, this macroscopic failure criterion did not focus on the 

developing damage during cyclic loading. The critical element concept of Reifsnider and 

Stinchcomb [107] represents a non-linear fatigue life prediction methodology for layered 

composites which accounts for fatigue damage initiation and growth as well as final 

failure. This methodology assumes that a representative volume can be chosen such that 

the stress state in that volume is typical in the laminate, and failure of this element causes 

final failure. To predict fatigue life using the critical element concept, S-N relations of 

unidirectional composites are still needed.  The fatigue life prediction methodology 

developed by N. Himmel [108] requires prior experimental information on the relevant 

fatigue damage and failure processes. Here the critical element model was used as a 

starting point to simulate the fatigue behavior of composites.  

Energy-based criteria incorporate both stresses and strains; the multiplication of these 

components represents energy. In this approach, the damage is related to input energy 

which cannot give any information about the failure mechanism [109, 110]. This energy-

based method is only applicable for unidirectional composites, and it is difficult to extend 

it to multidirectional laminates because calculation of strain energy from stress/strain 
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redistribution in fatigue would be difficult. Additionally, this approach is not appropriate 

for handling fatigue under variable loading. Natarajan et al. [111] proposed a strain 

energy density based fatigue model. That model performs well for tension-tension and 

bending fatigue experiments, but did not investigate the influence of combined loadings 

such as tension-torsion fatigue.  

Composite laminate condition can be assessed by its stiffness condition. This will also 

help to gage fatigue resistance or can be useful in lifetime predictions. The fatigue 

modulus degradation approach was given by Hwang in which fatigue life was calculated 

using strain failure criteria [112]. The concept of fatigue modulus is different than elastic 

modulus; the stiffness is degraded once initial damage occurs. This degradation in the 

stiffness can be noted by reduction in the dynamic modulus (or secant modulus). The 

dynamic modulus is the slope of the extremities of a stress/strain hysteresis loop. The 

damage evolution function and dynamic modulus is based on some assumption or 

experimental results which limits its usage. Also, some difficulties have been found in 

predicting the cumulative damage under stress dependent strain. In the residual stiffness 

model given by Whitworth [113, 114] an equivalent cycles approach for variable 

amplitude loading was used. This methodology relies on the limiting assumption that the 

response of a structure is independent of load history. Additional studies by Hahn and 

Kim [115], Hashin [116], and Yang et al. [117] are among the other researchers that have 

considered the degradation of the fatigue or dynamic modulus as indicators of fatigue 

damage.  

In strength degradation models [118, 119, 120], life is predicted by calculating the 

effect of each load cycle on residual strength, until the load exceeds the remaining 

strength. The expected advantage of this approach is that the sequence effects of random 

loads can be implicitly included. The successful application of the strength-based method 

requires a description of the post-fatigue strength, which entails considerable 

experimental effort. Akshantala [118] assessed the fatigue life of Carbon Fiber 

Reinforced Plastic (CFRP) laminates by employing a micromechanics approach. He 

employed fracture mechanics analysis of micro cracking for fatigue in composites. 

Conventional fracture mechanics analysis of fatigue crack growth normally uses a Paris 

law that relates crack growth rate with applied stress intensity factor. However, in micro 
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cracking, there is no observation of crack growth, but it is feasible to measure the rate of 

increase in crack density per cycle, which is the most computationally expensive part of 

the method.  

Jen and Lee [121] proposed a modified version of the well known Tsai Hill failure 

criterion for plane stress fatigue. This strength-based model does not account for damage 

accumulation and does not consider specific damage mechanisms. This requires prior 

knowledge of fatigue strengths as function of number of cycles, which can only be 

determined experimentally. Recently, Sarfaraz et al. [122] developed a semi empirical 

hybrid formulation for composite materials under constant amplitude fatigue. However, 

they achieved improved model accuracy in both Low Cycle Fatigue (LCF) and High 

Cycle Fatigue (HCF) regimes, but still required power law fitting functions or 

parameters. All these criteria are macroscopic and work at the ply level but do not 

directly take into account the constituents’ failure modes. Also, a large number of 

mechanical properties are required to particularly apply these models for structural 

analysis. 

Despite the fact that so many efforts have been made into predicting fatigue life of 

laminated composite materials, so far there is not a well-established and widely accepted 

approach for life prediction of these materials. Micromechanics is getting attention in 

industry more recently as it requires fewer tests, thus saving time and accelerates product 

development. There are various models proposed to predict the behaviour of composite 

materials based on properties of composite components, such as the rule of mixture 

(ROM), modified role of mixture (MROM), and method of cells (MOC). These 

micromechanics based methods provide response insight into the constituents and help to 

better understand the fatigue mechanisms in composites. The successful implementation 

of this approach requires characteristics of the constituents beforehand which are not easy 

to obtain. Some researchers back-calculated constituent properties from lamina properties 

using a simple rule of mixture [3]. Others calibrated material properties in a deterministic 

fashion with the aid of genetic algorithms and gradient-based techniques [54, 55]. These 

calibrated values are the mean parameters and did not reflect any uncertainty due to the 

materials’ natural variability. In contrast to deterministic approaches, a Bayesian 

approach can provide conditional probability and calibrates parameters with test data [56, 
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57]. Bayesian methods are presently becoming popular in science and engineering as a 

means to calculate probabilistic inference [58]. In these methods, expert opinion or 

previous information is reflected in prior distributions which are basically a wide range of 

possible realistic values of the parameters to be calibrated. These values are updated 

using a likelihood formulation with test data to determine posterior distributions. 

The objective of this work is to estimate the probabilistic fatigue life of laminated 

composites using novel combination of a micromechanics based model for Fatigue Life 

Failure (M-LaF) with a Bayesian inference approach. The aim is to develop a unified 

framework for the representation and quantification of uncertainty present in the fiber and 

matrix properties with the use of the Bayesian inference approach in order to calculate 

probabilistic composite fatigue failure. The proposed framework is applied to glass-fiber 

reinforced composite laminates. The paper is organized as follows. In section 5.2, the M-

LaF framework is described; with an emphasis on explanation of the fatigue failure 

criterion is presented. A comprehensive presentation of the Bayesian inference technique 

is given section 5.3. Section 5.4 details the computational implementation of M-LaF with 

Bayesian Inference approach. Results with discussions are presented in section 5.5. In 

section 5.6, the application to the structural design of a wind turbine blade is presented to 

show the effect of multi-axial loading on the fatigue life. Finally, conclusions and future 

work are summarized in section 5.7.   

5.2 M-LaF Methodology 

5.2.1 Representative Unit Cell (RUC) Models 

Composite structures, such as wind turbine blades and aircraft components are made 

up of polymer-based composite laminates, which are in turn made up of plies stacked in 

an appropriate sequence and orientation according to the detailed design. These plies are 

made up of fibre and matrix constituent materials. All these levels are divided into two 

main groups, the macro and micro levels as shown in the Figure 5.1 [11]. Customarily, 

one moves right or left in these levels via localization and homogenization. A 

homogenization procedure provides the response of a structure given the properties of the 

structure’s constituents. Conversely, the localization method provides the response of the 

constituents given the response of the structure.  
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Figure 5.1: Macro and Micro Levels [11]  

 

The fibres are randomly arranged in the matrix of a unidirectional (UD) ply; the 

current work focuses on laminates from unidirectional plies. The far left side of Figure 

5.2 [11] shows a cross section of a continuous UD ply [25]. There is no noticeable regular 

pattern in which the fibres are arranged. A proper representation of the fibre arrangement 

is shown in the middle of Figure 5.2. To assist in the computation, an idealized fibre 

arrangement is used, as shown in the far right side of the Figure 5.2. In this study, two 

idealized RUC models are used: square (SQR) and hexagonal (HEX), as shown at the 

bottom of Figure 5.2. Other choices for the RUC, such as triangular RUC, could be 

explored in the future. The modelling and mesh generation of RUC were performed 

within ANSYS finite element environment [31]. 

 

Micro-LevelMacro-Level

1

 Sqaure Unit Cell Model                                                         

JAN 16 2013

14:57:08

VOLUMES

TYPE NUM

Representative Unit Cell 

(RUC)
Periodic Array

Structure

Laminate

Ply

1

 Sqaure Unit Cell Model                                                         

JAN 16 2013

15:10:56

VOLUMES

TYPE NUM

Fibre

Matrix

Homogenization

Localization



 

 

101 

 
Figure 5.2: Representative Unit Cell Models [11] 

5.2.2 Boundary Conditions on RUC 

The primary element between the macroscopic and the microscopic scale analyses is 

the homogenization approach which acts as a bridge between these two levels. It consists 

of two steps: 1) calculating local stresses and strains in the constituents; 2) using 

homogenization to obtain global stresses/strains for elastic property calculations. The 

successful implementation of homogenization assumes that the RUC has global repetition 

or periodicity. There are a variety of homogenization approaches to predict the composite 

material behaviour [20, 27]. The homogenization technique given by Sun and Vaidya 

[27] is the most widely used because of its relatively low computational cost and can be 

implemented by applying proper boundary conditions (BCs) that are periodic. The 

displacement field boundary condition on the boundary   of domain   of the unit cell is 

given in Equation 5.1  as stated by Suquet [30]: 

 

                       
            Equation 5.1 

 

where       is the global average strain of the periodic structure and    represents a linear 

distributed displacement field.   
  is a periodic part of the displacement from one RUC to 

another on the boundary surface and, unfortunately, it cannot be directly applied to the 
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boundaries since it is unknown. For a RUC with parallel opposite surfaces (such as SQR 

and HEX) the displacements on a parallel opposite boundaries     and       are expressed 

in Equation 5.2 and Equation 5.3:  

 

   
  

       
  

   
  Equation 5.2 

 

   
  

       
  

   
  Equation 5.3 

 

where   
  is the same on the two parallel boundaries due to periodicity, therefore, the 

difference between the Equation 5.2 and Equation 5.3 is given as: 

 

   
  

   
  

        
  

   
  

         
 
 Equation 5.4 

 

where    
 
 is constant with the known      making the right hand side of the equation 

constant. These displacements constraint equations were implemented in the ANSYS 

finite element code [31]. Additional constraints must be enforced in order to avoid rigid 

body motion of the unit cell. For example, a displacement constraint applied at arbitrary 

point               of the RUC is: 

 

                   Equation 5.5 

 

The composite ply is considered as a homogenous orthotropic material with effective 

stiffness properties. These material properties are, in fact, ‘average’ material properties of 

the composite. The average stress and strain quantities ensure equivalence between strain 

energy from the homogenous RUC with that from heterogeneous one. In order to 

determine the stiffness matrix, different displacement boundary conditions are applied on 

the RUC with appropriate periodicity as determined by Equation 5.1. The graphical 

explanation of these BCs is given in Figure 5.3 [11].  
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Figure 5.3: Boundary Conditions for Calculation of Effective Material Properties of UD [11] 

  

For example, in the case of      , the constrained equations applied on HEX RUC 

are given in Equation 5.6. The Von-Mises stress distribution on the RUC under the BCs 

is given in Figure 5.4. Two important points should be noted from the RUC stress 

distribution. First, stresses at the same location on opposite sides are the same confirming 

the traction continuity condition. The second is that the boundary faces are no longer 

planes.  
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Figure 5.4: Shear boundary conditions on HEX RUC 

5.2.3 Stress Amplification Factor (SAF) Matrix 

The macro stresses under mechanical and thermal loads are related to the micro 

stresses below the elastic limit with the following relation [3, 6, 59, 60]: 
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where matrices      and      denote Stress Amplification Factors (SAFs) for macro 

mechanical stresses and for the macro temperature increment, respectively. This work 

considers only mechanical stresses, so the last term on the right hand side of Equation 5.7 

is excluded. Based on Equation 5.7, the micro stresses in fiber and matrix are related to 

the macro stresses as: 

 

 

              
 

              

Equation 5.8 

 

where      and      represent SAF for fiber phase and matrix phase respectively under 

mechanical loading. These matrices are determined by the finite element method for a 

particular fiber volume fraction and specific fiber-matrix mixture. It is necessary to apply 

proper boundary conditions (BC) to obtain the SAF.  These BC include: (i) nodes at the 

boundaries of RUC having the same displacements and (ii) the free faces must remains 

flat as proposed by [6, 29]. The SAFs are 6 x 6 matrix. For all stresses in a Cartesian 

coordinate system XYZ (or 123), Equation 5.8 can be expanded into Equation 5.9 [59, 

60]. The superscript j represents either the fiber or the matrix phase. 

 

 

 
 
 
 
 
 
  

  

  

  

  

   
 
 
 
 
 
   

 

 
 
 
 
 
 
         

         

         

         

         

         

         

         

         

         

         

          
 
 
 
 
 
   

 
 
 
 
 
 
   
   
   
   
   
    

 
 
 
 
 

 Equation 5.9 

 

The elements of SAF are determined by applying unit macro mechanical loads of 

vector  σ   one at a time. For example, a glass or carbon fiber presents a higher modulus 

of elasticity than the epoxy matrix. This stiffness disparity will reflect once the composite 

material experience the load and show dissimilar stresses due to stress concentration. The 

illustration of this is shown in Figure 5.5 which shows stress distribution in a SQR and 

HEX RUCs under applied unit load      . The stress      is called macro stress. As can 

be seen from the Figure 5.5 that the stresses within the RUCs are no longer unitary.  The 
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stress distribution in the RUC is called a micro stresses. From Figure 5.5, the maximum 

stress concentration, both in the SQR and HEX RUC, occurs at the fiber-matrix interface 

in the direction of the applied macro load, whereas the stress concentration is at its lowest 

value in the matrix region near interface which is perpendicular to the applied macro load 

 

 
Figure 5.5: Stress distribution in RUC subjected to a transverse unit load 

 

Once the stress amplification factors are calculated in RUC, then actual stresses in the 

structure such as a wind turbine blade is amplified with these SAFs to calculate actual 

micro stresses before failure criteria is applied and compared with the critical values as 

shown in Figure 5.6. The time varying in-plane loads in composite laminates, for 

example in case of a wind turbine blade, are calculated using the finite element method 

under particular loading conditions. Then on-axis ply stresses are calculated from the in-

plane loads either using finite element method or Classical Laminate Theory (CLT) [2, 3, 

43]. These on-axis ply stresses are then multiplied with SAFs to get time varying micro 

stresses.  

 

 
Figure 5.6: Time varying micro stresses from macro to micro level 
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5.2.4 Fatigue Models for Composite Material Criterions 

Three constituent regions exist in composite material: the fiber, the matrix and the 

fiber-matrix interface. All  posses distinct material behaviours and behave differently 

under the same load [3], so it is rational to apply appropriate failure criteria to each 

constituent individually. In M-LaF, three different models are employed to treat each 

constituent of the ply differently. The concept of equivalent micro stress was used in 

order to account for multi-axial stresses in each constituent. For the matrix material, a 

modified Von-Misses failure criterion, presented in Equation 5.10, proposed by Ragava 

et al [62] was used in this work. Even though the matrix behaves isotropically, it has 

different tensile and compressive strengths. The modified version of Von-Misses 

criterion considers this aspect of the material:  

 

 
   

  
       

           
  

      
  

  
 

Equation 5.10 

 

where   is a ratio of compressive matrix strength    and tensile matrix strength    , 

first stress invariant:   
     

    
    

 , Von-Mises Stress 
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  are normal micro stresses and   

    
    

  are shear micro stresses in matrix. 

Many researchers [60, 63, 66] used a Maximum Stress Criteria [25] for fibre failure 

for simplicity and as fibres undertake load mostly in their longitudinal direction. This 

model is adopted in this work and is expressed in Equation 5.11. The micro longitudinal 

stress   
 
 is used as equivalent stress in fibre region.  

 

    
 

   
 

 Equation 5.11 

 

Perfect bonding between the matrix and the fiber is assumed here for typical well 

matched fibres/matrix systems. Thus the interface will not enter in the current analysis 

but could be added in the future work.    
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As the constituent micro stresses are changing with time, the equivalent micro stresses 

are varying with time as well. This leads to considering the mean stress effects due to 

fluctuating nature of stresses. This is accounted for the overall M-LaF methodology via 

considering a Constant Life Diagram (CLD). A CLD is a plot of alternating stress versus 

mean stress and is a design tool which represents the stress states corresponding to a 

number of cycles to failure. The CLD is formulated by combining S-N curves at different 

stress ratios. The stress ratio is defined by Equation 5.12.  

 

   
    

    
 

          

          
 Equation 5.12 

 

where     ,     ,       , and      represents minimum stress, maximum stress, mean 

stress and stress amplitude respectively for the time varying stress history.  Figure 5.7 

shows typical S-N diagrams for fatigue data at different stress ratios R. The definitions of 

amplitude and mean stresses for pure sinusoidal cyclic loading are illustrated on the same 

figure as well. The data from S-N curves at stress ratio R = -1, 0, and 0.5 are plotted on a 

Constant Life Diagram. Lines corresponding to these stress ratios are also shown, with 

the vertical axis corresponds to R = - 1 line for fully reversed loading. 

 

 

 
Figure 5.7: SN Curve and Constant Life Diagram 
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Based on the mean and amplitude micro stresses in the constituents, the constituent 

effective stress is obtained using Modified Goodman CLD expressed as:  

 

     
  

   
    

   
      

     
   

  
 Equation 5.13 

 

where i refers to fiber and matrix;   and   represent static tensile and compressive 

strengths of each constituent, respectively. Then with the use of Basquin’s equation , 

represented by Equation 5.14, the number of cycles to failure,   , can be calculated. 

 

          
               Equation 5.14 

 

where A and B are the constituent SN curve parameters.  

Due to the random nature of fatigue loads on the structure, the nature of the fatigue 

damage in composites is very complicated and involves a mixture of matrix and fibre 

damage [123]. The damage is accumulated during each cycle. One of the oldest methods 

for cumulative damage was proposed by Miner [124] and is called Miner’s Linear 

Damage Acculturation Rule. According to this rule, a damage fraction    is defined as 

the fraction of life used up by an event (or cycle) or a series of events (or cycles), i.e. 

damage is the ratio of number of cycles of operations,   , to the number of cycles to 

failure,   
 
, at that load level. Then the total damage factor   (it is equal to unity in 

correspondence of fatigued life) is calculated as: 

 

   
  

  
 

 
  

  
 

 
  

  
 

   
  

  
 

 Equation 5.15 

 

    
  

  
 

 

   

    

 

   

 Equation 5.16 
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5.2.5 Fatigue Life Prediction of Composite Laminates 

The methodology for fatigue life calculation of entire composite laminates is given in 

the Figure 5.8. The in-plane loads,   and  , on each laminate are first calculated from 

the loads and environmental conditions using a macro scale finite element model. These 

in-plane loads are time varying. Then, using either directly the FEM results or Classical 

Laminate Theory (CLT), the on-axis ply stresses are determined in each ply of the 

laminate. In computation of the micro stresses, the M-LaF approach was used with the 

RUC. These time varying micro stresses, and so the equivalent stress      in the matrix 

and the fiber, are then converted into blocks of certain numbers of cycles corresponding 

to constant amplitude and mean values using the Rain Flow Counting (RFC) algorithm. 

Then, with the aid of a S-N curve and Constant Life Diagram (CLD), a fatigue analysis is 

carried out. The CLD used in M-LaF is a Modified Goodman diagram that describes 

cycles-to-failure as a function of mean stress          and alternate stress               

along lines of constant R-values. Finally, fatigue life is estimated using the damage 

accumulation law.  

 

 
Figure 5.8: Flow diagram for fatigue life prediction of composite laminates 
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5.3 Bayesian Inference Methodology for Parameter Uncertainty Quantification  

5.3.1 Bayes’ Rule  

In this section, the Bayesian inference methodology is explained with a view to 

calibrating the mechanical model parameters using available test data. Bayes’ formula 

estimates the degree of belief in the hypothesis based on the evidence by using a 

conditional probability [56]: 

 

                              Equation 5.17 

 

where the term        is a conditional probability of   when   is given. In the scenario 

of estimating the M-LaF model parameters, the conditional probability of model 

parameter   when the test statistics are available can be written as: 

 

            
              

                 
 Equation 5.18 

 

Bayes’ theorem in Equation 5.18 is extended from a probability distribution to a 

probability density function (PDF) as this is more appropriate in the present work and can 

be re-written as: 

 

            
        

        
 Equation 5.19 

 

where            is the posterior PDF representing the updated knowledge about the 

model parameters  ,      is the prior distribution (assumed) of the model parameters   

before the test data is observed,                 represents the likelihood which is a 

conditional probability of observing the test data given the parameter  , and the term 

         =             is the normalizing constant that makes Equation 5.19 a PDF to 

ensure that area under the posterior PDF is equal to unity. 
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5.3.2 Mathematical Model  

The computational mathematical model        represents the set of procedures to 

simulate the values of the            . For example, in the case of M-LaF, the elements 

of        are the fatigue life of composite material constituents. The predictive model 

with known variables   and unknown parameters   is written as: 

 

                    Equation 5.20 

 

In the case of M-LaF, the set of variables   are time varying on-axis ply stresses, the 

RUC model, stiffness properties of the fiber and the matrix materials;   represents the 

vector of parameters. It includes tensile and compressive strength properties of the fiber 

and the matrix,      , and constituent S-N curve parameters,      . The superscript   

refers to either the fiber or matrix material. As the mathematical model        provides 

the approximate solution of physical phenomenon, the true outcome of the test data        

accounts for various sources of uncertainty: 

 

                      Equation 5.21 

 

where    denote the error and could arise from measurement error and/or numerical 

error; this term is sometime referred to as the model discrepancy term [76, 77]. In order 

to predict the mean of        the mean of   , i.e.    
, is set to zero for unbiased model 

analysis which assumes the measurement process is well calibrated [78, 79] which is 

typically should be for composite testing.   

5.3.3 Likelihood Function  

The first building block of the Bayesian approach is to formulate the likelihood 

function of the observed test data      . The likelihood defines the value of   that makes 

the dataset       most probable. The higher the likelihood value is, the more likely it is to 

have obtained the best estimates of the parameters. Given the observed value   of       , 

the likelihood of   for one test data point is defined by [75, 80]: 
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                 Equation 5.22 

 

For statistically independent and identical (iid) error    which is typically Gaussian 

distributed with mean     
   and variance    

 , i.e.,      
      

  , the likelihood 

function follows the form: 

 

 

                     
   

     

 

   

 

                  
 

      
 

     
 

    
 

      
   

       
          

 
  

 

   

 

Equation 5.23 

 

Rearranging, Equation 5.23 becomes: 

 

                       
 
    

     
 

    
 

       
   

       
          

 
 

   

  Equation 5.24 

 

where      
   

 is vector of test data and       
          is a vector of mathematical 

computational model results (computed with M-LaF in this work).  

5.3.4 Prior Distribution of Parameters 

The prior PDF      represents the previous knowledge of the parameter values   that 

is independent of the test data. Many researchers have addressed the issue of specifying 

the priors [81, 82, 83]. There are broadly two categories for prior: conjugate prior and 

non-conjugate prior [84]. A prior is said to be conjugate to a class of likelihood functions 

if the resulting posterior distributions are in the same family as the prior distribution; 

otherwise, it is non-conjugate prior [80]. Suppose we have a Bayesian model with a 

likelihood        and a prior     . If we multiply the likelihood with a prior, we get the 

posterior       .  If the posterior distribution is of the same family as the prior, then 

there exists a conjugacy. In this situation, the prior is conjugate to the likelihood. There 

are two typical prior distributions commonly used for material property parameters: one 

is uniform prior and the other is a Gaussian prior. Both flat (uniform) and Gaussian priors 

will be examined in this work. If little or no information is available, it is appropriate to 

choose a non-informative prior [85].  
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5.3.5 Estimating Posterior Distribution of Parameters 

The prior distribution of the unknowns when combined with the likelihood function 

following the Bayes' theorem gives the posterior distribution            without the 

denominator proportionality constant          as: 

 

 

                    

                 
 
    

     
 

    
 

       
   

       
          

 
 

   

       
Equation 5.25 

 

Equation 5.25 represents the posterior distribution of a parameter once the test data is 

observed. For a complex computational mathematical model like M-LaF, analytical 

solution of posterior distribution is not possible. Therefore, a numerical method to 

approximately calculate the posterior inference of parameters is employed. For this 

purpose, a Markov Chain Monte Carlo (MCMC) [84] technique, in this work the 

Metropolis-Hastings (M-H) algorithm, is used to calibrate the parameters and quantify 

their uncertainty. The M-H algorithm (Metropolis et al.[89]; Hastings et al.[90]) works as 

follows:   

 

For j = 1 to N (where N is number of iterations of the algorithm) 

  

1: Set the initial value of the parameter  , such that            

2: Calculate posterior             using Equation 5.25. This step involves running the 

mechanical model, i.e. M-LaF. 

3: Randomly generate a sample parameter input (or realization),   , from prior 

distribution and calculate         

4: Run         based on   . Then calculate Likelihood 0. 

using Equation 5.24 and finally calculate Posterior             using Equation 5.25 

5: Calculate Acceptance Ratio           

              
           

               
  Equation 5.26 

6: Generate a random value   from a uniform distribution with bounds   and  , i.e. 

         

7: Compare        with   
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Equation 5.27 

8: Increment   and go back to Step # 1. This repetition continues until a sufficient number 

of samples obtained so that the posterior distribution stops evolving or in other words 

Markov chain converges.  

The Markov chain takes some iteration at the beginning of the MCMC run to converge 

to a stationary position. These iterations are called burn-in iterations and are usually 

discarded from generated samples in order to compose the final posterior PDF and to 

calculate statistical moments of the posterior.  

5.4 Computational Implementation  

 

The workflow for M-LaF model parameter estimation using the Bayesian inference 

approach is shown in Figure 5.9. The inputs to and outputs from the M-LaF are given in 

Figure 5.8. In order to calculate the fatigue life of composite materials, the strength 

properties of the fiber and matrix materials             and constituent S-N curve 

parameters             are required. This comprises a vector of unknown parameters 

which have to be calibrated using the Bayesian inference approach. The test data used for 

calibration is taken from the OptiDAT data base [8], World Wide Failure Exersice 

(WWFE) [53], and from other literature results [106, 125]. The model             is M-

LaF where   are the known inputs and   are the unknown parameters. The Bayesian 

approach uses the test data       on the model outputs to update the PDF for the 

parameters. This is done by applying Bayes’ theorem:                             , 

where            is the posterior distribution,      is the prior distribution a,      is the 

likelihood and          is a normalization constant. The prior is combined with the 

likelihood to provide a posterior distribution. The posterior will be narrower and more 

sharply peaked than the prior, indicating that parameter   is calibrated and the parameter 

uncertainty is reduced and properly calibrated to the available test data. The posterior can 

then be used to compute probabilistic predictions of lifetime fatigue behaviour for general 



 

 

115 

composite layups of the same calibrated material base constituents, but arbitrary layup 

schedules. 

 

 

 
Figure 5.9: Workflow for Model Parameters Estimation using Bayesian Inference 

  

5.5 Results and Discussion  

5.5.1 Calibration of Model Parameters 

The Bayesian inference scheme with the M-LaF method was employed to calibrate the 

model parameters and quantify the uncertainties of constituent strength material 

parameters. The test data used for this was from the OptiDaT data base [126] and the 

World Wide Failure Exercise (WWFE) [53]. The ply material used is constructed of the 

e-glass/epoxy material system. The ultimate longitudinal tensile strength,  , of a ply was 

used in calibrating the longitudinal tensile strength of fiber         . It is asserted that 

fibers are the main load bearing constituent in this loading condition. The ultimate 

transverse tensile strength   of a ply was used in calibrating the tensile strength of the 

matrix   . It is believed that the matrix is the main load bearing constituent in this load 
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condition. The prior distribution of     is taken as uniform  [1200, 2800] MPa and    

is also assumed uniform  [20, 150] MPa. The distributions of these parameters are 

calibrated using MCMC sampling with the Metropolis-Hastings algorithm. A random 

value was sampled from the parameter prior distribution in each of MCMC iteration. The 

likelihood function was then calculated from observing test data and the outputs from M-

SaF. This step requires running finite element analyses on the RUC. MCMC simulations 

were carried out for five thousand samples from each prior distribution. 

The results of calibrated parameters   
 
         from the coupled framework 

described in section 5.4 are shown in Figure 5.10. The top row of Figure 5.10 shows 

results for    and the bottom row is for   . The trace plots of both parameters were 

given as well and emerge to be well mixed. The posterior mean of    was used in order 

to calculate     distribution. The first 500 samples were discarded as burn-in samples 

and were not considered in calculating the statistics of the parameters. In the second 

column of Figure 5.10, the posterior distribution of parameters can be seen. The posterior 

mean value is plotted as a blue triangular symbol. The circular red dot shows the fiber 

longitudinal tensile strength provided by the WWFE [7]. The square black dot is the 

value of    used by Huang [52] in order to predict test data. It can be seen clearly that the 

posterior mean is closer to the WWFE value, however the WWFE just provides a single 

point value. Evidently the value used by Huang was far from WWFE and the posterior 

mean. A similar pattern can be found for parameter    . In this case, the posterior mean 

is closer to the WWFE provided value. The calibration accuracy could be further 

improved by utilizing more test data. From the trace plots, the calibrated posterior 

parameters do exhibit good convergence. Similar procedures were implemented to 

calibrate the other M-LaF model parameters. The calibrated posterior of parameters: 

matrix compressive strength    and fiber longitudinal compressive strength    
       

are given in Figure 5.11. These distributions show the narrower band of parameter values 

from prior distributions. 
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Figure 5.10: The posterior distribution of X

f
 (top row)and T

m
 (bottom row) 

 

 
Figure 5.11 : Posterior distribution: (a) matrix compressive strength (C

m
);  fiber longitudinal 

compressive strength (X
f’
) 

 

A similar procedure was adopted to calibrate constituent S-N curve 

parameters            .  The fiber parameters were calibrated based on a unidirectional 

ply with fiber angle     . The test data used from [8] had a stress ratio     and there 

exists three to five data points at each load level. Similarly, the matrix parameters were 

calibrated from       lamina fatigue test data from [125]. The resulting statistics were: 

   (mean = -0.075, C.oV. = 0.0965),    (mean = 3.43, C.oV. = 0.048),    (mean = -

0.087, C.oV. = 0.071), and    (mean = 1.955, C.oV. = 0.063). 

(a) (b)

(c) (d)
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5.5.2 Fatigue Life Prediction of Unidirectional Composite Lamina 

The M-LaF methodology with calibrated parameters was applied to E-glass/epoxy 

laminates subjected to various stress ratios  , and the results were compared with the test 

data of various researchers [106, 125, 127]. These unidirectional laminates were tested as 

flat specimens under cyclic off-axis loadings. A fiber volume fraction of        have 

been used. Figure 5.12 shows the comparison between the predicted and test data [106] 

S-N curves for angled ply laminates subjected to tension-tension (T-T) fatigue with stress 

ratio      . There is reasonably good agreement between the predicted values and the 

test data. The 95% confidence intervals on the mean fatigue curve are also added to the 

plots represented with dotted blue lines. Most of test data falls under the lower and upper 

bonds. In the case of a ply angle      some of the test data falls outside the interval 

bounds. This may be because of a conservative estimation of fiber equivalent stress     
 

. 

This     
 

 value was just considered in the longitudinal direction of the fiber. This can 

further be improved by considering stresses in all directions.   

As the M-LaF handles fiber and matrix constituent separately during the analysis, 

there is some deviation of predictions from the test data in case of fiber dominated 

composites, for example, S-N curves of 5
o
 and 10

o
 laminates in Figure 5.12. As can be 

seen in this figure that the test data falls outside of 95% lower and upper bonds for these 

composites. This will lead to higher safety factor and ultimately adds weight to the 

structure where these laminates will be used. The predictions might be improved 

considering random fiber distribution at computational cost, but there exits scatter in 

these test data too.  Another implication of assuming fibres packed in regular manner is 

not predicting well strain hardening behaviour due to assumed elastic/perfectly plastic 

behaviour as assumed for the matrix. On the other side, this behaviour is quite noticeable 

for randomly distributed fibers in stress-strain curve. This is obviously beyond the scope 

of the present paper but it’s worth mentioning to readers. 
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Figure 5.12: Predicted and experimental S-N curves under T-T fatigue of lamina from 5

o
 to 60

o
 

5.5.3 Fatigue Life Prediction of Multidirectional Composite Laminates 

In order to validate M-LaF for fatigue in multidirectional composites, data for three 

kinds of specimens of E-glass/epoxy laminates were tested at Hanyang University (South 

Korea) [127]. The resin system used in this study was Hexion RIM 135 (L135i) epoxy 

and Hexion RIMH 134 hardener. The E-glass/Epoxy laminates were: BX [±45
0
]S and TX 

[0
0
2/±45

0
]S. The fiber volume fractions were measured according to ASTM D 3171 and 

were 55% in this experiment. The static properties of the laminates were characterized 

using ASTM D 3039 with displacement control mode of 1 mm/min. The fatigue tests 
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were performed following ASTM D 3479 guidelines. All fatigue tests were performed at 

a stress ratio of 0.1. These fatigue tests were conducted under load control mode with a 

test frequency of 1 Hz. The load levels for the fatigue tests were from 50 to 80% of static 

strength. Figure 5.13 shows the test data for the BX and TX laminates along with the 

predictions from M-LaF. The square (SQR) unit cell model was employed to predict the 

fatigue behavior of these laminates. Figure 5.13 shows that predictions made by M-LaF 

using the SQR unit cell model are in good agreement with the test data. Here the mean 

values of the parameters were used for life prediction. For BX, the predicted failure mode 

in the laminate is matrix dominant, which matches the real behavior of this laminate. In 

the case of TX, the initial fatigue failure is [±45
0
], which is matrix dominant. The final 

fatigue failure is [0
0
], i.e. fiber breakage. This shows that the M-LaF predicts not only 

matrix dominant laminate failure but also predicts fiber dominant laminate behavior. 

 

 
Figure 5.13: Fatigue life prediction of the Composite Laminates under T-T Cyclic Loading 

5.6 Application to Wind Turbine Blades 

A case study was carried out to highlight the application of the proposed M-LaF based 

fatigue life prediction methodology to a composite wind turbine blade structure. A wind 

turbine blade can be analyzed as a typical beam-like structure as described by state-of-

the-art design codes [19, 35]. In these design codes, fatigue life calculations are limited to 

only the action of the normal stress component in the beam axis direction. The M-LaF 

life-prediction methodology is used to show the effect of normal and shear stress 

components in determining the fatigue life of a typical wind turbine blade. The 35 m 

GFRP blade is made of a shell and box spar type structure. There are flanges and 
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stiffeners as well. The shell and spars are assumed to carry only shear stresses, and the 

flanges and stiffeners are assumed to carry only axial stresses. The detailed finite-element 

model, material properties and design load case (power production at rated wind speed) 

definitions are reported in reference [128]. The blade consists of different types of 

laminates made of E-glass/Epoxy: biaxial [±45
0
] and triaxial [0

0
2/±45

0
]. The triaxial 

fabric is used in the shell structure along with a PVC core. Biaxial fabric and a PVC core 

is used in the shear webs. The rotor blade is also assumed to be a thin-walled beam 

structure. Thus the resultant tangential stresses in the shell through the thickness are very 

small compared to the axial stresses and are neglected. However, the shear stress is of 

comparable magnitude to the axial stress in areas such as the shear webs and 

leading/trailing edges of the blade. The resulting stresses in the transition section of the 

blade under a typical power production condition are presented based on the results given 

in the reference [128] and are shown in Figure 5.14. As these elements of the blade are 

placed in the confined region, edge effects do not occur and, therefore, the Classical 

Laminate Theory (CLT) is appropriate to calculate on-axis macro ply stresses. For the 

purpose of comparison, the stress ratio R is kept constant at -1. With R = -1, there is no 

mean stress effect that will make the conclusion straightforward. Also, sinusoidal cycling 

load is considered for ease of calculations. 

 

 
Figure 5.14: In-plane Stress State at the section of a 35m blade [128] 
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The M-LaF based life prediction with and without the contribution of the in-plane 

shear stress component demonstrates this stress component is important in reducing 

fatigue life. The mean fatigue life curves of biaxial and triaxial laminates from previous 

section used here for the blade analysis. The fatigue life was calculated based on the 

variation of stresses that are generated during power production [128]. The 

overestimation of the fatigue life prediction under different stress states is shown in 

Figure 5.15 which shows the S-N curve with maximum stress amplitude versus log of 

number of cycles to failure for constant amplitude cyclic loading at R = -1. The number 

of cycles is drastically reduced when in-plane shear stress is considered. This shows that 

life is overestimated when only the axial stress component N1 is taken in the fatigue life 

analysis. It is interesting to note from these fatigue calculations, as shown in Figure 5.15, 

that the shear stress component N6 is about 60% the magnitude of the axial (longitudinal) 

normal stress component N1 (this value is at shear web), but the fatigue life is 

overestimated by a factor of 20 at some load level like 250 MPa. 

 

 
Figure 5.15: Fatigue Life with and without shear stress 
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5.7 Conclusion 

In this paper, a methodology for the failure of composite materials based on 

micromechanics M-LaF was used to evaluate fatigue behaviour. The M-LaF model is 

based on the constituent properties and these properties were calibrated using a Bayesian 

inference approach. The combination of these two approaches made it possible to 

perform probabilistic fatigue analysis. The proposed methodology was validated against a 

range of unidirectional laminas and a variety of composite laminates. The predicted S-N 

curves were in good agreement with the test data. As an illustration, the proposed 

approach was applied to a structural application of a wind turbine laminate blade 

structure and a special case was considered to evaluate the fatigue life under different 

levels of shear stress compared to normal stress. In this practical example, the life was 

reduced by up to 20 times with respect to situations where only the axial normal stress 

component was used in simulations. As an initial step, this verification was performed 

under constant amplitude cyclic loading and at room temperature. It is proposed to extend 

to variable amplitude loading and diverse environmental situations that includes high/low 

temperature and moisture. This constituent based probabilistic fatigue analysis approach 

makes it possible to predict fatigue of a variety of composites with any fiber volume 

fractions which is appropriate for a range of applications that includes but not limited to 

proper material selection, structural layup optimization, different kinds of parametric 

studies, and probabilistic design.    
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Chapter 6 Conclusions and Future Work 

 

The research presented in this dissertation as a collection of various papers provides a 

logical progression toward a novel way to incorporate high fidelity micromechanics with 

stochastic techniques for the design of composite materials under static and fatigue 

loading.   

In summary, the followings are the key significant contributions in this research 

work. 

6.1 Probabilistic Micromechanical Analysis of Composite Material Stiffness 

Properties 

Chapter 2 investigated a coupled approach for stiffness property prediction of 

composite materials used in wind turbine blades using advanced micromechanics and 

reliability-based methodologies. The homogenization approach was used with a unit cell 

to estimate composite material stiffness properties. The predicted results were compared 

with SROM and MROM along with the test data and found to be in good agreement with 

test data and MROM.  The work was then extended to perform the probabilistic analysis 

with Monte Carlo Simulation to incorporate uncertainties in the constituent’s properties. 

Latin Hypercube Sampling was employed to cover most of the input variable design 

space. From the probabilistic analysis, it was found that the equivalent properties of UD 

followed the Gaussian distribution and these properties were affected by variations in 

fiber and matrix properties. The Spearman Rank Order sensitivity analysis gave insights 

into important constituent’s properties and found that the modulus of fiber and matrix has 

more influence on composite properties. In addition, correlations were calculated 

between UD properties which were then used in blade analysis. This probabilistic 

micromechanical approach for composite materials provides a useful tool for performing 

preliminary material design for finalizing material for structural application. From a 

practical point of view, the method was then applied to a 5MW wind turbine blade 

structural analysis. A section of the blade was considered for demonstration purposes. 

The stochastic finite element analysis was performed in ANSYS/Multiphysics using a 

user subroutine in order to simulate probabilistic response of wing box section. Two 
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analyses were simulated with and without correlations between UD properties. There was 

no significant difference between PDFs but ignoring correlations suppressed the 

sensitivities of input variables on the response of wing box. Also, it was found that 

longitudinal modulus and in-plane shear modulus of the composite are the most critical 

material properties that influence deflection of the blade box. Besides this, sensitivity 

analysis screens out unimportant input variables which can be treated as deterministic in 

the further analysis. Furthermore, sensitivity analysis highlights the key material 

properties that most influence the response of the structure and this will eliminate/reduce 

unnecessary time consuming and expensive full testing campaign. 

6.2 Probabilistic First Ply Failure Prediction of Composite Laminates using a 

multi-scale M-SaF and Bayesian Inference Approaches 

In the chapter 3, a methodology for the failure of composite laminates based on 

micromechanics, i.e. Micromechanics based approach for Static Failure (M-SaF), is used 

to evaluate first ply failure. This method is based upon behavior of the constituents, i.e. 

the fiber, matrix, and interface. The model determines the failure of composites by 

considering failure of constituents in a micromechanical analysis. The M-SaF FPF results 

matches well with well known Tsai-Wu failure theory.  Also, the Bayesian Inference 

framework was used to calibrate the M-SaF model parameters from available test data. 

This calibration produced posterior distribution of constituent strength properties. By 

using Metropolis-Hastings MCMC simulation, samples of M-SaF model parameters θ are 

drawn efficiently from prior distribution. The first order statistics of posterior found to be 

very close to the available values from literature. The joint posterior probability density 

function of θ was then used for FPF probabilistic analysis of a variety of laminates. The 

base material for all considered laminates was e-glass and epoxy. But, this will be 

extended to carbon fiber laminates in future. Additional test data will improve the 

accuracy and the bonds of the calibrated parameters. The presented coupled approach 

facilitates to identify the probability density functions of the constituent properties. This 

allows structural designers to incorporate uncertainty in analysis with confidence and can 

benefit reliability based composite structural design and optimization by allowing 

contracted the factor of safety due to improved knowledge on uncertainties in the 

constituent material properties. The next step in this research is to extend presented 
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coupled micromechanics based probabilistic framework to estimate the fatigue life of 

composites. Deterministic values of the constituent stiffness properties are used in the 

present work but these will be calibrated with the Bayesian inference method along with 

constituent strength properties in future work. Finally, there is clearly a need for more 

reporting of statistical test data by experimental practitioners to support further 

development of probabilistic failure models. 

6.3 Damage Initiation and Growth in Composite Laminates 

Chapter 4 demonstrated a methodology for the failure analysis of composite laminates 

in wind turbine blades based on Micromechanics, i.e. the M-SaF (Micro Level approach 

for Static Failure analysis) is used to evaluate the static strength. This approach is based 

upon behavior of the constituents, i.e. the fiber, matrix, and interface. The model 

determines the failure of composites by considering failure of constituents in a 

micromechanical analysis. Good agreement between test data and prediction of failure 

envelope was observed. M-SaF clearly indicates the failure mode of the composites and 

the stress level in each constituent upon failure. This makes it more flexible approach to 

optimize a composite strength by choosing proper constituent materials as well as fiber 

reinforcement/laminate lay-ups. One of the features of  M-SaF is that it provides stiffness 

properties of the UD ply that can be compared directly with test data and found to be in 

good agreement. The concept of using basic constituent properties in the wind turbine 

blade design will help to choose a variety of material combinations. This will not only 

lead to accelerate the design cycle but also reduce a considerable cost of testing. 

6.4 Fatigue life prediction of Laminated Composites using a multi-scale M-LaF 

and Bayesian Inference 

Chapter 5 focused on a methodology for the failure of composite materials based on 

micromechanics M-LaF was used to evaluate fatigue behaviour. The M-LaF model is 

based on the constituent properties and these properties were calibrated using a Bayesian 

inference approach. The combination of these two approaches made it possible to 

perform probabilistic fatigue analysis. The proposed methodology was validated against a 

range of unidirectional laminas and a variety of composite laminates. The predicted S-N 

curves were in good agreement with the test data. As an illustration, the proposed 
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approach was applied to a structural application of a wind turbine laminate blade 

structure and a special case was considered to evaluate the fatigue life under different 

levels of shear stress compared to normal stress. In this practical example, the life was 

reduced by up to 20 times with respect to situations where only the axial normal stress 

component was used in simulations. As an initial step, this verification was performed 

under constant amplitude cyclic loading and at room temperature. It is proposed to extend 

to variable amplitude loading and diverse environmental situations that includes high/low 

temperature and moisture. This constituent based probabilistic fatigue analysis approach 

makes it possible to predict fatigue of a variety of composites with any fiber volume 

fractions which is appropriate for a range of applications that includes but not limited to 

proper material selection, structural layup optimization, different kinds of parametric 

studies, and probabilistic design. 

6.5 Future possibilities of current research work 

Future work to continue this line of research could include the following topics. First, 

the computational framework of M-SaF and M-LaF needs to be extended to include 

environmental (thermal and moisture) effects on the behavior of polymer composites. 

Second, modelling and integration of manufacturing defects at the unit cell level on the 

performance of composites should be added. In addition, implementation of composite 

manufacturing process parameters with micromechanics will be a useful tool for 

preliminary design stages. Third, the stochastic nature of randomly distributed fibers can 

be used with other stochastically calibrated input parameters for structural design. This 

will also include the effects of fiber location and different diameter distribution [129, 

130] on parameter calibration under Bayesian framework. Forth, although a constant ply 

thickness was considered thus far, M-SaF/M-LaF can be broadened by considering the 

variations in the ply thickness as well as at the ply drop-off region. Fifth, the current M-

LaF was validated against a variety of composite fatigue life test data under contact 

amplitude loading. However, composite structures experience random fatigue loading. 

Therefore, variable amplitude loading (sequence effects like high-low or low-high 

loading) should be investigated in more detail along with a non-linear damage 

accumulation fatigue model for composite laminates. Also, results for a particular 
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application from various unit cell models should be compared with each other using an 

extended Bayesian methodology. This will help to identify the best unit cell for structural 

application. In addition to this, unit cells of other composite types like woven composites 

or non-crimp fabrics composites will be used under proposed computational framework. 

Furthermore, currant framework considers un-correlated input priors but the approach is 

certainly be extended to consider correlations between priors as this is common in 

frequentist statistical approach.  

Lastly, the present work could form the base module of more advanced design tools for 

composite structural design optimization with M-Saf/M-Laf and MDO (Multidisciplinary 

Design Optimization). For example, a number of applications could benefit from an 

integrated MDO approach, including wind turbine blades, unmanned air vehicles, 

pressure vessels, storage tanks, etc.  
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