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ABSTRACT

Within a wave energy converter’s operational bandwidth, device operation tends to

be optimal in converting mechanical energy into a more useful form at an incident

wave period that is proximal to that of a power-producing mode of motion. Point

absorbers, a particular classification of wave energy converters, tend to have a relative

narrow optimal bandwidth. When not operating within the narrow optimal band-

width, a point absorber’s response and efficiency is attenuated. Given the wide range

of sea-states that can be expected during a point absorber’s operational life, these

devices require a means to adjust, or control, their natural response to maximize the

amount of energy absorbed in the large population of non-optimal conditions. In the

field of wave energy research, there is considerable interest in the use of non-linear

control techniques to this end.

Non-linear control techniques introduce time-varying and state dependent control

parameters into the point absorber motion equations, which usually motivates a com-

putationally expensive numerical integration to determine the response of the device

- important metrics such as gross converted power and relative travels of the device’s

pieces are extracted through post processing of the time series data. As an alterna-

tive, the work presented in this thesis was based on a closed form perturbation based



iv

approach for analysis of the response of a device with periodically-varying control

parameters, subject to regular wave forcing, in the frequency domain.

The proposed perturbation based method provides significant savings in compu-

tational time and enables the device’s response to be represented in a closed form

manner with a relatively small number of solution components - each component is

comprised of a complex amplitude and oscillation frequency. This representation of

the solution was found to be very concise and descriptive, and to lend itself to the cal-

culation of gross absorbed power and travel constraint violations, making it extremely

useful in the automated design optimization process; the methodology allows large

number of design iterations, including both physical design and control variables, to

be evaluated and conclusively compared.

In the development of the perturbation method, it was discovered that the device’s

motion response can be calculated from an infinite series of second order ordinary dif-

ferential equations that can be truncated without destroying the solution accuracy.

It was found that the response amplitude operator for the generic form of a solution

component provides a means to gauge the device’s response to a given wave input and

control parameter variation, including a gauge of the solution process stability. It is

unclear as of yet if this is physical, a result of the solution process, or both. However,

for a given control parameter set resulting in an unstable solution, the instability was

shown to be, at least in part, a result of the device’s dynamics.

If the stability concerns can be addressed through additional constraints and up-

dates to the wave energy converter hydrodynamic parameters, the methodology will

expand on the commonly accepted boundaries for wave energy converter frequency-

domain analysis methods and be of much practical importance in the evaluation of

control techniques in the field of wave energy converter technology.
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Chapter 1

Introduction

Harnessing and converting the motion of ocean waves into useful energy has long been

a desire of human-kind, with wave energy conversion patents dating back more than

two centuries[1][2]. Interest in wave conversion technology increased during the oil

crisis of 1973, and recent climate change concerns have re-energized the wave energy

sector. This has resulted in the development of a wide variety of conceptual devices,

and methodologies for the analysis of these devices, including the development of

physical or numerical modelling strategies. Despite these efforts, wave energy con-

verter (WEC) design has yet to converge on a commonly accepted optimal design

or optimal control strategy that ensures economically competitive extraction from

ocean waves. A very simplistic view of the operation principles for a select few of the

widely varying design concepts currently being pursued internationally are given in

Figure 1.1. These devices differ greatly in the manner by which water particle mo-

tions are used to excite the device, how each device absorbs energy, and their physical

size and orientation.

Unfortunately for the field of wave energy research, the trial and error develop-

ment of these concepts is not an economically viable option. Alternatively, to achieve

an accurate assessment of the complete device dynamics, for a specified sea-state,

developers are forced to use numerical dynamic simulations or device scaled tank

tests. Both of these approaches can allow for the device’s non-linearities, such as

mooring and frictional forces, to be accurately represented on a repeated basis. Both

approaches are thus important to the development of a device prior to installation

into an ocean environment. Unfortunately, because of the computational time re-

quired to fully characterize these devices in a detailed numerical simulation, the build
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(a) Point Absorber (b) Self-Reacting Point
Absorber

(c) Attenuator

(d) Salter Duck Termi-
nator

(e) Oscillating Water
Column

(f) Over-topping

Figure 1.1: A select few of the differing wave energy converter devices currently un-
dergoing research internationally. The power take-off for these devices is represented
as a viscous dashpot or spinning turbine.

time required to create a representative scaled physical devices and inherent difficulty

properly scaling the physical model these tools are often not exploited early in the

design process.

Rather, high fidelity device numerical models are further idealized to create a

mathematical model that uses linearized approximations of non-linear forces and only

considers the motions associated with power conversion. These simplifications allow

for computational time associated with a single numerical experiment to be signifi-

cantly reduced and allows a large number of device geometries or control techniques

to be evaluated in a short period of time.

Idealized mathematical models can be executed in the time-domain or the frequency-

domain. Time-domain analysis techniques are commonly accepted for providing an

accurate approximation of the transient device response and is the method of choice

for relatively direct analysis of a device’s response to time-varying control parameters.

Although these techniques are significantly faster than a full numerical dynamic simu-

lation, they are computationally heavy in comparison to frequency-domain techniques
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and the detail provided in the solution envelopes a few key performance metrics that

tell the WEC designer much of the design or control concept being considered. As

a result, post-processing of the response is often necessary to extract the meaningful

metrics upon which design decisions can be based. Alternatively, frequency-domain

based techniques are often used to determine the steady-state response of a device

under both regular and irregular waves. These techniques provide a computationally

‘light’ response calculation that requires little to no post processing to interpret. This

allows for a large number of physical designs and control strategies to be evaluated

in a finite time in a robust and automated manner. Frequency-domain models are

often used in conjunction with an optimization algorithm that executes the compari-

son of a multitude of options. Unfortunately, current frequency-domain methods are

incapable of analyzing the transient motion response of a device, such as the device’s

response to changes in control actions. To converge on an optimal control strategy

and optimal physical WEC shape and size prior to executing full numerical dynamics

simulations, or construction of a physical scale model or prototype, frequency-domain

WEC mathematical modelling needs to be improved so that control activity can be

included in mathematical “trial and error” development of early stage concepts.

Widely varying and irregular ocean wave conditions make the selection of a de-

vice’s optimal physical parameters an indetermineant problem. An area of increasing

importance is the means to control a WEC such that the amount of power absorbed

by the device for a particular prominent wave being experienced at any given moment

is maximized. Device control has the potential to both increase year-round device

productivity, as well as reduce the size of a device at a specific nameplate capacity[3].

The control parameters used on a WEC vary widely depending on the type of de-

vice being analyzed; however, devices typically utilize adjustments within a hydraulic

power take-off unit.

Numerous techniques have been proposed to optimally adjust a device’s control

parameters. Linear control techniques consist of adjustments to a device’s control pa-

rameter to follow changes in the prevailing wave spectra on a time-scale of a half hour

or greater. The control parameter changes are considered to occur outside the domain

of the analysis and, because the transient response resulting from these parameter

changes is much shorter than the time-scale in which the adjustments are made,

they are considered to be “time-invariant” system parameters. These techniques can
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be accurately analyzed using both time and frequency domain models, and can be

implemented within an optimization routine with ease. Unfortunately, practical im-

plementation of these techniques are unable to approach the theoretical maximum

limits of power absorption in a real sea-state. Non-linear control techniques consist

of WEC control parameter adjustments on a wave-to-wave time-scale, resulting in

time-varying state-dependent system parameters in the dynamic equations. While

such control is often suggested as a means to drastically improve power production,

the device’s response becomes highly non-linear[4]. Only time-domain methods are

currently used to asses the transient response of the device. As suggested by Price,

“Any model that can suitably represent transients can be adjusted to describe time

varying response. Thus only the time domain wet oscillator is capable of representing

an immersed body with time varying behaviour such as [non-linear] control.”[5].

1.1 Motivation

The main motivation of this work is to refute the idea that the mathematical mod-

elling of a WEC subject to a non-linear control strategy is strictly limited to the

time-domain. If the control parameter is periodically varied in a regular sea-state,

the system should reach a steady-state. Given persisting regular conditions, it is pro-

posed that a frequency-domain analysis should be viable. This work aspires to build

the capacity to analyze a devices response to periodically varied control parameters

within the frequency-domain beginning with a regular wave condition. Literature

in this field is very limited and it is not known if the computational benefits, and

acceptance, of frequency-domain techniques for time-invariant control systems will

translate to the time-variant paradigm. This thesis will provide clarity to that debate.

The proposed frequency-domain methodology could alter how indusry evaluates

WEC concepts at an early stage. First, the technique unifies the treatment of device

shape and control, allowing control parameters to enter into an automated optimiza-

tion process. Since the control of a device is inherently linked to the physical design

of the WEC, the introduced methodology would allow for a large number of WEC

physical parameters and control parameters to be quickly evaluated in unison, on the

basis of maximum power absorption using a global optimization routine. A global

optimization would guide the development of a particular device to converge on a

physical design and an associated control technique that could then later be assessed
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by a full numerical dynamic simulation or tank test.

Second, the technique is not device specific and could be applied to a variety of

control techniques: methods applied for periodic variations of one WEC parameter

could be directly applied to another choice of control parameter. Using a frequency-

domain approach, the steady-state device response will be represented as several

motion components each of a unique frequency, phase, and amplitude. This repre-

sentation of the response, as opposed to a time series that must be post-processed, is

thought to provide a more direct and robust basis for the evaluation of the device’s

performance.

1.2 Thesis Objectives

The high-level objective of this thesis is to expand the accepted domain of WEC

frequency domain analysis so that it encompasses the analysis of control strategies

that employ time-variation of a WEC’s physical control parameter.

Towards that objective, the first task is to develop a set of dynamics equations

that capture the dynamics of a representative WEC device with a single time-varying

physical control parameter. The second task is to develop a new methodology for

obtaining the steady-state motion response of the device in the frequency-domain

and ensure its validity via comparison to numerically integrated time-domain results.

Third, the computational efficiency of the proposed methodology must be evaluated,

and, if needed, steps taken to ensure the methodology maintains the superior com-

putational efficiency relative to traditional time-domain methods; the main benefits

of frequency-domain analysis, its speed and succinctness, cannot be compromised.

Fourth, a means to translate the steady-state motion response information, em-

bedded in a series of individual motion components, into an estimate of the gross

absorbed power of the device must be provided. To be consistent with existing

frequency-domain approaches, the gross power absorption calculation should avoid

subjective post-processing of time series data, and account for losses associated with

the energy required to complete the physical parameter variation under consideration.
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Finally, a closed form means to determine if a device’s physical constraints are

being violated, relative travel constraints for example, should be provided. Again,

to be consistent with existing frequency-domain approaches, it is desired that the

constraint analysis can me evaluated in a closed form manner to avoid post processing

of time-series data.

1.3 Literature Review

1.3.1 Wave Energy Converter (WEC) Technology

Despite the decades of research and progress made in wave energy research, ocean

wave energy conversion technology is still fairly immature. In comparison to other

renewable technologies, such as wind turbines, wave energy has yet to converge on a

commonly accepted method of extracting energy. A WEC’s ultimate goal is to main-

tain a high capture width and survivability in the ocean environment while offering a

competitive capital cost [6]. There are a large number of physical mechanisms through

which ocean wave energy can be harvested: a device proximal to shore experiences

the wave break, while a device offshore uses the water particle motion to excite the

power take-off. Research in the field must narrow in on which devices perform best

in each scenario, and then determine which cenario provides the most opportunity.

As a result of the various different principles of extraction, there are many different

classifications of devices. Early work in the wave energy field lead to a classification

system based around floating WECs [6]. Devices were classified under one of the

three types: attenuator, terminator or point absorber. The classification system was

intended to give an idea as to the geometry of the device and its principle of operation.

Attenuator devices are oriented parallel to the propagation direction of the inci-

dent waves, where as terminator devices are aligned perpendicular to the direction of

propagation. Attenuator devices generally span one or more incident wave lengths.

As an ocean wave passes, sections of a floating body move relative to one another,

as in Pelamis1 shown in Figure 1.3, or floats of an articulated body rise and fall, as

in Wave Star2. If an attenuator is subject to waves perpendicular to the principal

1www.pelamiswave.com
2www.wavestarenergy.com
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Figure 1.2: Classification of Floating Wave Energy Converters[6]

axis of the structure, it does not function as efficiently and the moving structure is

often designed to allow some compliance such that the attenuator can re-orient with

changes in the wave field’s principal direction. Terminators can either be a fixed, as

in overtopping devices, or compliant – the device does not resist the motions induced

by incident waves, as in the Salter Duck array [7].

Figure 1.3: The P2 Pelamis is an attenuator made up of five connected bodies totaling
180m in length and 4m in diameter. Each of the WEC’s joints contain a power take-off
to convert the bodies relative motion into electricity(www.pelamiswave.com).

Overtopping devices, such as the WaveDragon3, are essentially a low-head hydro

system. Large ‘arms’ are used to focus incoming waves towards a central collection

location. The basin collects the water that crashes over top of the basin wall where it

is maintained at a higher elevation than the surrounding ocean surface. This poten-

tial energy is captured as the water falls back to the surrounding ocean surface and

passes through a turbine.

3www.wavedragon.net
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Oscillating water column (OWC) WECs utilize an inverted chamber that holds

an water-air interface with the air captured at the top of the sealed chamber. The

motion of the ocean waves cause the level of water column in the chamber to rise and

fall, this in turn causes the air in the chamber to compress or expand, respectively.

A turbine in series with a small air valve that is actively controlled and captures

the kinetic energy of the air as it enters or escapes the chamber. One such device

is OceanLinx’s MK14 shown in Figure 1.4. OWC devices can be placed on-shore or

off-shore. Though similar in operation principles, OWC on-shore devices are classified

as terminators, where as the off-shore OWC devices are often referred to as members

of the point absorber classification, discussed below.

Figure 1.4: The OceanLinx MK1 was a 500 tonne oscillating water column WEC
installed in Port Kembla, Australia, in 2005(www.oceanlinx.com).

4www.oceanlinx.com
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Point absorbing WECs are a floating body, typically axis-symmetric along the ver-

tical axis, and have a small horizontal cross-section relative to incident wave lengths.

A valuable attribute of point absorbers is their direction independence. Unlike atten-

uators and terminators, the axis-symmetric hull structure of a point absorber ensures

excitation created by waves from different directions is consistent. The simplest form

of a point absorbing device, given in Figure 1.1(a), is a floating single-body device

that drives an ocean floor fixed electromechanical or hydraulic power take-off, as in

Carnegie Wave Energy’s CETO5 shown in Figure 1.5.

Figure 1.5: Carnegie’s CETO III is a one-bodied point absorber located off the
shores of Garden Island in Western Australia (www.carnegiewave.com).

Alternatively, a self-reacting point absorber captures energy by means of rela-

tive motion between two floating bodies, as in Figure 1.1(b). Self-reacting point

absorbers are restrained by a compliant mooring that, in ideal circumstances, doesn’t

5www.carnegiewave.com
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impact the hydrodynamics of the point absorber’s floating components. In the field

of wave energy research, there is some debate on optimal self-reacting point absorber

design[8][9]. One approach, used by the OPT PowerBuoy6 shown in Figure 1.6, is to

use a second body, a spar buoy, with a large damper plate at its bottom end to ap-

proximate a fixed platform for the first body, a float, to react against. Alternatively,

the second body can be used act in counter-phase to the float to generate increased

relative motion, as in WaveBob7. Self-reacting devices are favoured over their fixed

sea-floor counterparts because of their improved ability to survive extreme waves and

naturally compensate for tidal free surface elevation changes via compliance of the

mooring structure. In extreme waves, a self-reacting WEC’s mooring allows poten-

tially damaging waves to pass by without causing large relative travel, and subsequent

end-stop collisions, to occur[10]. As a result, proponents of self-reacting devices claim

less structural strength need be built into device components, providing significant

cost reduction[11].

Figure 1.6: Ocean Power Technologies’ P150 PowerBuoy is self-reacting point-
absorber rated at a capacity of 150kW. The device is shown horizontally prior to in-
stallation off Scotland’s northeast coast in 2011 (www.oceanpowertechnologies.com).

Unlike most other devices, point absorbers tend to have a relatively narrow band-

width where the device effectively absorbs the energy present in the ocean surface. As

a result, a large portion of wave energy literature pertaining to device control focuses

varying the mechanics of point absorbers such that they remain effective over a large

range of sea-states[12][4][13][14]; For point absorbing WECs, the need for wave-to-

6www.oceanpowertechnologies.com
7www.wavebob.com
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wave control is critical, and for this reason the device considered in this thesis is a

representative point absorber concept. The methodology provided within this work

could be extended to other point absorbers provided they can be cast within the

mathematical framework presented in Section 1.3.2.

1.3.2 Mathematical Modeling of Immersed Body Oscillation

In this section the established assumptions that simplify a complete high fidelity rep-

resentation of a point absorber to a reduced order mathematical model are presented.

Two different governing equations for an immersed - surface piercing or floating -

body subject to the free surface oscillations are presented, and their differences and

limitations are discussed. The material presented here will provide background on

modeling the wave excitation forcing, the body hydrodynamics, and the response of

an immersed body subject to a regular wave. This material will be extended in Sec-

tion 2.1 to develop a new methodology for analyzing time-varying control techniques

in the frequency domain.

If the extension of the immersed body in the horizontal plane in the direction of

the incident wave propagation is much smaller than the incident wave length and

the displacements of the immersed body along the vertical axis of motion are small,

the small body approximation can be applied [15]. This approximation neglects any

variation of surface elevation and fluid acceleration over the width of the body in

the horizontal plane, as well as, any pitching motion produced from the form drag

of elliptical water particle motion across the immersed body and, as a result, allows

for any rotation or displacement of the body in the horizontal plane to be neglected.

This results in a heave-constrained model, where only the motion along the vertical

axis is taken into consideration.

The excitation force on an immersed body due to an assumed sinusoidal incident

wave of frequency ω is split into two terms; the Froude-Krylov force and the diffrac-

tion force. The Froude-Krylov and diffraction forces on an immersed body are a result

of the hydrodynamic pressure of an undisturbed incident wave and the forces affili-

ated with the wave diffracted by the body, respectively [6]. Computing these forces

normally requires both volume and surface integration of pressure distributions; how-
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Figure 1.7: Orbital fluid particle motion of Airy waves. The expressions for vertical
particle velocities and accelerations are both time and depth dependent, given by
v(z, t) = ~v(z) cosωt and a(z, t) = ~a(z) cosωt respectively.[16]

ever, the small body approximation neglects the variation of the pressure distribution

along the horizontal plane of the body resulting in much simpler expressions[15]. The

excitation force of a sinusoidal Airy wave on an immersed body along the heave axis

is expressed as:

fe(t) = <
{
~fee

iωt
}

(1.1)

The complex amplitude of the force excitation is given by

~fe(ω) = [(m+ma(ω))~a0 + ca(ω)~v0 + kA] (1.2)

The first term on the right-hand side of Equation (1.2) is proportional to the de-

vices true mass m and is associated with the pressure gradient of the accelerating fluid

in the undisturbed wave integrated over the wetted surface of the immersed body and

represents an effect similar in nature to a buoyancy force. The frequency dependent

added mass, ma(ω), is associated with an additional pressure gradient required to

accelerate the fluid surrounding the immersed body around the impermeable hull[17].
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The velocity dependent term on the right-hand side of Equation (1.2) represents

the cumulative forces acting on the immersed body due to the velocity of the sur-

rounding fluid, ~v, including viscous drag effects and the force due to the radiated

waves which is dependent on the damping coefficient, ca(ω). The final term on the

right-hand side of Equation (1.2) is associated with the hydrostatic pressure changes

over the submerged hull that result from the changing surface elevation of the fluid.

The acceleration and velocity of the fluid particles in the undisturbed wave will

vary greatly depending on the depth of the particle under consideration. This is of

particular importance for devices with components that have a large draft – a charac-

teristic that is wide spread in self-reacting point absorbers. In the linear wave theory

proposed by Sir George Biddel Airy, the water particle accelerations and velocities

can be expressed as a function of the depth, incident wave frequency, wavenumber,

and water depth, as shown in Figure 1.7 [18]. This relationship was found assuming

small amplitudes, linearizing the surface boundary condition, and solving the Laplace

equation for potential flow. His results allow the amplitude of the forcing function

of Equation (1.2) to be expressed at the immersed body’s reference depth, zP – the

depth at which the water particle velocity and acceleration a considered to interact

with the body:

~fe(ω) =

[
−ω2(m+ma(ω))

sinh(kzp + kh)

sinh(kh)
A+ iωc(ω)

sinh(kzp + kh)

sinh(kh)
A+ kA

]
(1.3)

Wet Oscillator Model

The dynamics of the immersed body reacting to the incident wave forcing can be

modelled in two separate ways; using a wet oscillator or a dry oscillator model. Pre-

sented below is a frequency domain wet oscillator model of an immersed body subject

to incident waves.

~fe(ω) = −ω2[m+ma(ω)]ζ(ω) + iω[c+ ca(ω)]ζ(ω) + kζ(ω) (1.4)

This model uses the small body approximation described earlier to assume the

motion of the immersed body is purely along the heave axis of motion, where ζ(ω) is

Fourier transform of the body’s post-transient amplitude heave response. The com-

plex amplitude of the excitation force, ~fe(ω), is as described in Equation (1.3). The

coefficients m, c, and k are the true mass, damping, and stiffness associated with
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heave displacements of the immersed body in quiescent fluid, respectively. For a

simple immersed body the damping coefficient, c, would be set to zero. However,

if the body is to represent a point absorber with a hydraulic power take-off unit,

this term must be present to capture the viscous behaviour of the power take-off

unit. The power take-off unit is often modelled as a linear viscous dashpot[6]; while

a practical implementation of the linear damper is not realistic, several high pressure

accumulators could be used to approximate a continuous linear damper,as suggested

by Babarit in [19].

In the wet oscillator model, the added mass and damping terms, ma and ca re-

spectively, are shown to be functions of the incident wave frequency ω. These terms

represent the waves shed by a heaving body in a quiescent fluid - these waves persist

and effect the body’s motion in the future. To produce a time-domain equivalent of

the wet oscillator model, Equation (1.4) is rearranged to a form where the multipli-

cation of frequency dependent functions are grouped:

~fe(ω) = −ω2[m+m∞]ζ(ω) + iωB(ω)ζ(ω) + kζ(ω) (1.5)

Where

B(ω) = [c+ ca(w)] + iω[ma(ω)−m∞] m∞ = lim
ω→∞

ma(ω) (1.6)

Applying an inverse Fourier transform reveals a time-domain convolution of the

device’s radiation impedance with the velocity of the body through the still fluid,

whereas calculation of the post-transient response with the frequency domain model

requires only multiplication.

fe(t) = [m+m∞]a(t) +

∫ t

0

B(τ)v(t− τ)dτ + kz(t) (1.7)

Equations (1.5) and (1.5) are commonly referred to as the Cummins decomposition

[20].

This convolution correctly models the radiation memory of the device and, as such,

both the frequency domain model presented here and the equivalent time-domain wet

oscillator model with the convolution integral are able to correctly evaluate a body’s
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response to polychromatic waves. In established works, the frequency-domain wet

oscillator model is strictly limited to the post-transient oscillation of the device, while

the time domain model is capable of analyzing the transient response as well[5].

Dry Oscillator Model

Similar to the wet oscillator model of the previous section, the dry oscillator model

given in Equation (1.8) also includes the added mass and damping terms [5]. However,

this model uses added mass and damping coefficients associated with a particular

frequency of oscillation, ωs, and assumes that these coefficients are applicable across

the frequency bandwidth[5].

~fe(ω) = −ω2[m+ma(ωs)]ζ(ω) + iω[c+ ca(ωs)]ζ(ω) + kζ(ω) (1.8)

Unlike the wet oscillator model, the inverse Fourier transform of the dry oscillator

model does not contain a multiplication of two frequency dependent terms and, as a

result, the equivalent time-domain model contains only constant coefficients:

fe(t) = [m+ma(ωs)]a(t) + [c+ ca(ωs)]v(t) + kz(t) (1.9)

Both the time and frequency domain dry oscillator models presented above are

capable of analyzing the post-transient response of the immersed body. However,

as shown, the dry oscillator model does not include the convolution integral present

in the wet oscillator model. As a result, the dry oscillator model is not capable of

correctly modeling the radiation memory of the device. This limits both the time and

frequency domain dry oscillator models to monochromatic waves and limits the time-

domain model to the post-transient response of the immersed body. Price suggests,

“Here correctness is qualitative, rather than quantitative. For [immersed bodies] that

are small compared to typical wave lengths, a dry oscillator may simulate polychro-

matic behaviour to an acceptable degree of accuracy”[5].

1.3.3 WEC Control

A combination of widely varying and irregular ocean wave conditions, and a multi-

tude of WEC designs and WEC control concepts, make the selection of WEC physical

parameters which allow the device to absorb the largest amount of energy an inde-
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terminant problem, and there is yet to be a convergence of modern point absorber

designs.

Within a point absorber’s operational bandwidth, device operation tends to be

optimal at an incident wave period that is proximal to that of a power producing mode

of motion. When not operating within the optimal bandwidth, the WEC’s response is

attenuated. Oscillating attenuators and terminators have the advantage of having a

rather broad operational bandwidth, whereas point absorbing devices tend to have a

narrow bandwidth where the device performs well. As a result of the large variation

in sea-states over the course of a given year, point absorbing WECs will typically

be operating outside their resonant bandwidth[4]. This requires the point-absorber

to utilize control techniques to maximize power conversion, whereas the benefits of

applying control techniques to attenuators and terminator devices, with their larger

resonance bandwidths, may result in only marginal improvements[21].

Linear Control

Optimum control of WECs has long been a subject of a research in the field of wave

energy. Early work was concentrated on linear control, in which the change in control

parameter can be considered time-invarient in the mathematical model: adjustments

are made and then held constant over a 30 minute to one hour period. Linear control

does not result in the introduction of any further frequencies into the response of the

device, and can be analyzed and optimized relatively quickly in the frequency-domain.

Early theoretical studies have shown that for a resonant point absorber in regular

waves the maximum amount of absorbed energy from an incident wave is the energy

associated with a wave-front that is one wave-length divided by 2π wide[22]. To

compare the response given by one set of control parameters to the response given by

another, the metric of average absorbed power by the device is often used. To obtain

optimal power absorption by a single mode, one degree of freedom, device subject to

regular waves, two conditions must be satisfied:

1. The velocity of a device oscillating in one mode must be in phase with the

excitation force.

2. The amplitude of the oscillating device must be such that the destructive inter-

ference between the re-radiated wave and the incoming waves is at its greatest.
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For a single mode device operating in a resonant condition, the first condition is au-

tomatically satisfied. In the existing wave energy literature, it has been shown that

the resonant condition is achieved when the impedance of the power take-off device

equals the complex conjugate of the WEC’s mechanical impedance with respect to

the incident wave[4]. Where the internal impedance is a complex entity comprised

of the body’s mechanical, power take-off loss, and radiation impedances. To achieve

the complex conjugate of the WEC’s mechanical impedance across the power take-

off unit it may be required introduce inverse spring force behaviour into the power

take-off mechanics. As result, the instantaneous power conversion may be reversed

for short periods of time during the oscillation of the device[23]. For this reason this

type of control is called “reactive control”. This short period of time where the power

take-off is operating in reverse will result in a negative power flow; however, it will

theoretically put the device within it’s resonant bandwidth and ideally capture an

increased net power absorption. These theoretical analysis often do not account for

any losses that are present in the power take-off and do not take into consideration

the physical constraints of the device, including the power take-off. As a result, the

constant reciprocation losses of the power take-off may result in a net negative power

absorption over time. Adjustments made to the stiffness, viscosity, and/or inertia of

the power take-off on a 30 minute to one hour basis and, as a result, can be mod-

elled as a steady state system without introducing multiple response frequencies. It

is important to note that these optimal conditions are for a device who’s oscillation

amplitude is unconstrained.

Optimal power absorption for a WEC oscillating with more than one mode, multi-

body or irregular waves, may not follow the same conditions. A self-reacting point

absorber operating in heave is an example of a device with more than one mode of

oscillation, it has the equivalent of a two modes (each body is responsible for a mode

of oscillation). For an axisymmetric self-reacting point-absorber, an equivalent one-

body mathematical model can be created for the two-body system by considering

only the relative heave motion between the bodies. Using this approach for a regular

wave when complex impedence condition is met, it has been shown that equivalent

optimal power absorption conditions for the one mode system hold true for the self-

reacting system and the device could absorb the theoretical maximum of the wave

power associated with a wave-crest that is equivalent length of the wave-length di-

vided by 2π[8].
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For real sea-states, optimizing a devices power take-off impedance for optimal

power absorption at each frequency in a linear manner is not possible. One tech-

nique, sea-state tuning, adjusts the power take-off impedance such that it optimally

absorbs the most power over the incident wave spectra[24][9]. To correctly model the

response of the device in an irregular sea-state, the wet oscillator model presented in

Section 1.3.2 must be used, whereas the a dry oscillator model is suffice for a linerally

controlled device in a monochromatic sea-state.

Non-Linear Control

As presented by Falnes in [4], the use of non-linear control techniques are capable of

drastically increasing the power absorbed by a device. These techniques introduce

time-varying control parameters that result in the introduction of more than one os-

cillation frequency in the response. As a result, to correctly model these devices, a

wet oscillator model should be used.

Position

Figure 1.8: Latching control matches the phase of the forcing wave by holding the
device fixed at the end of an oscillation for a latching period, TL.[25]

One form of non-linear control, proposed by Budal and Falnes for a heaving point-

absorber, is “latching control”[26]. This technique does not fully meet the requirement

conditions discussed above and, as a result, is sub-optimal. However, the benefit of

this technique is that it is passive. That is, it does not require the reversal of power

flow and does not incur the losses associated with reactive control. Latching control
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consists of locking the motion of the device at the exact moment when heaving motion

of the device is at the end of an oscillation and the velocity of the device vanishes. The

device is then held in position until being released at an optimal time to maximize

power absorption, Figure 1.8. This type of control is advantageous when the period

of incident waves is longer than the natural period of the wave energy converter. If

one attempts to minimize device tonnage, this will generally be the case[27]. The

optimal amount of time that the system remains locked is highly dependent on the

sea-state and is an area of continued research in the field of wave energy. In real sea

conditions, irregular waves, it noted that this type of control requires prior knowledge

of the approaching incident waves to make an optimal decision. This type of control

is referred to as “causal”. The duration of the advance knowledge of the wave field

required to make this decision is on the order of half of the eigen period of the wave

energy converter[4].

Similar to latching control, another phase control technique called “de-clutching”

or “un-latching” seeks to enact sudden changes in the power take-off mechanics. Orig-

inally proposed by Salter et al, the de-clutching control technique consists of setting

the power take-off damping to zero for short periods of time, enabling the device

to oscillate more freely with the forcing wave[28]. When an optimal length of time

of free movement has occurred and the device is moving at a desired velocity, the

power take-off is engaged and energy is absorbed[19]. As with latching control, this

technique is sub-optimal and passive. This technique is often implemented when the

incident wave period is shorter than the natural period of the device or in conjunc-

tion with latching control[27]. If latching and de-clutching are used in combination,

the device’s latch is applied with the bodies velocity is zero and released at an opti-

mal time. The device then goes through a relatively short period of power absorption

prior being de-clutched and being allowed to stay within phase with the incident wave.

The relatively simple device geometries used, allowed the analysis these theoret-

ically optimal control strategies to be done analytically. The mathematics involved

in undertaking a similar analysis technique on a device with multiple modes of os-

cillation, or differing control mechanisms, becomes unmanageable. One approach to

analyze these devices is to use a standard time-domain model of the WEC in conjunc-

tion with an optimization algorithm to determine the optimal path for the WEC’s

time-varying control parameter. One such approach was done for a single mode de-
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vice by Gunn et al. in [27]. In which, an optimization technique was used to generate

an optimal input-output relationship between the wave forcing and the power take-

off damping coefficient. Although, this work was used to validate the latching and

de-clutching control techniques for a single mode device, the approach proposed in

that work could be extended to optimize any control strategy.

1.3.4 SyncWave Case Study

The WEC considered in this work is a floating vertically-oriented point absorber

device under development by SyncWave Systems Inc. and the Wave Energy Research

Group at the University of Victoria. This device, shown in Figure 1.9, is a self-

reacting point absorber and extracts energy from incident waves from the relative

motion between the float and spar buoys using a hydraulic power take-off. A unique

characteristic of the SyncWave device is an internal third body located within the

spar. This internal body, a reaction mass, is supported via an elastic element inside

the spar and is kinematically coupled to a variable inertia assembly via a ball screw.

By expanding or contracting the radial position of rotating rigid arms fixed to the base

of the ball screw, the rotational inertia of this assembly can be continuously adjusted.

Due to the kinematic coupling with the reaction mass, the rotational inertia changes

can dramatically affect the heave accelerations of the reaction mass and thus induce

an additional translational inertia, or effective mass, for the reaction mass. The

effective mass can be characterized using the lead of the ball screw, l:

m4 =
J

l2
(1.10)
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Figure 1.9: Schematic of the SyncWave WEC device.

The concept of the variable inertia unit is to ensure a strong tendency for relative

motion of the spar and float, allowing for maximum electricity generation despite

constantly changing frequencies and heights of incident waves. The variable inertia

adjustments provide an additional control lever not found in most WECs. Using the

variable effective mass and variable generator damping of the power take-off unit,

initial performance estimates of the devices frequency response have been carried out

by Beatty et al. [16] and Beatty [10] for regular waves and irregular seas. In those

works an effective mass of the reaction mass and the hydraulic power take-off damp-

ing level, were determined on the basis of fixing the control parameter values for a

persistent regular wave or a wave spectra. This constitutes a linear control action,

and as a result was easily analyzed in the frequency-domain. The studies showed

that the variable effective mass unit increased the power absorption over a simple

two-body equivalent device for the majority of the operational bandwidth considered.

The SyncWave device has been selected as the basis for the development of the

new frequency-domain mathematical modelling methodology as it includes the widest

variety of possible time varying control parameters of the point absorbers considered

in Section 1.3.1. As well, the device’s variable effective mass unit has only been sub-

ject to linear control studies and, as a result, the full benefit of this extra control

parameter is not yet fully understood. The development of this methodology will
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serve as the foundation for future comparisons of the SyncWave device to other de-

vices with non-linear control such as those given in [25] and [19].

It is important to note that the parameters characterizing the device used in this

work are that of a scaled device intended for wave tank testing, differing from those

used in previous studies, such as [16]. The WEC’s parameters correspond to a 1:6

Froude scaled model of a proposed demonstration SyncWave device to be deployed

in Hesquiaht Sound, British Columbia. A table of the scaled models parameters with

corresponding full-scale parameters are given below in Table 1.1.

Table 1.1: Scaled SyncWave WEC Demonstration Device Parameters
Parameter Model Original
Mass (kg)
Float Mass 139.1 25945
Spar Mass 410.2 76540
Reaction Mass 423.9 79100
Generator
Control Range (Ns/m)
Lower Limit 12.81136 1000
Upper Limit 128113.6 1.00E+07
Effective Mass
Control Range(kg)
Lower Limit 2512.932 468885
Upper Limit 13018.86 2429175
Relative
Travel Limits(m)
Spar-Slug Amplitude 0.525 3
Float-Spar Amplitude 0.4375 2.5

In the evaluation of device and control strategy performance it is important to

utilize relevant combinations of wave heights and periods. Using a near-shore wave

modeling software, REF/DIF, directional wave spectra have been computed at a

monthly resolution over the course of a characteristic year for the community of Hot

Springs Cove on the shore of Hesquiaht Sound, British Columbia[29]. This data

has been synthesized and scaled for five off-shore positions located within Hesquiaht

Sound using bathymetric data, shown in Figure 1.10 and Wave Watch 3 archives to

propagate the off-shore data to each of the locations, as described by Hiles in [30].
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Hesquiaht
Sound

Hot Springs
Cove

Figure 1.10: Bathymetric data for Hesquiaht Sound, British Columbia. Labeled are
five potential test sites A-E.[29]

The monthly amplitude spectra for each of the five locations have been converted

into variance density spectra and plotted below in Figure 1.11(a). The wide variation

in the variance densities can be attributed to the dramatic changes in seasonal sea-

state, as well as, the unique bathymetric profiles of each location. The variance

density at each location has been used to determine a significant wave height, Hs, and

energy period, Te, for each month. This was done using the spectral moments of each

locations monthly variance density spectrum, E(f), according to Equation (1.11)[31].

mn =

∫ ∞
0

fnE(f)df for n = ..., -3, -2, -1, 0, 1, 2, 3,... (1.11)
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Hs = 4.004
√
m0 (1.12)

Te =
m−1
m0

(1.13)
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The significant wave heights and energy periods are then used to characterize a

representative sea-state found in Hesquiaht Sound on a monthly basis, Figure 1.11(b).
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Figure 1.11: Variance density spectrum and resulting monthly significant wave height
and energy periods of a characteristic year for five potential test sites, ‘A’ through
‘E’, in Hesquiaht Sound, British Columbia [29].
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1.4 Thesis Overview

For a case study, this thesis has focused its work with the SyncWave wave energy

converter. As discussed in Section 1.3.4, this device was selected because of it’s large

suite of control variables - not only a variable power take-off generator damping, but

also an additional variable effective mass term - and the subsequent ability for the

equations of motion modelling the SyncWave device to encompass most other verti-

cally oriented point absorbers.

In Chapter 2 of this thesis, a mathematical model of a wave energy converter with

a periodically-varying physical parameter is developed. It is shown why this model

cannot be analyzed using standard frequency-domain techniques and a new method-

ology is developed to accurately approximate the response of the device to regular

waves. In Chapter 3 an investigation into the computational efficiency of the method-

ology developed in the previous chapter is given. Techniques to drastically improve

the efficiency of the solution process, with little-to-no loss in response accuracy, are

proposed.

Through the proposed it techniques, it is shown that of the hundreds of solutions

components calculated in Chapter 2, only a small number are required to represent

the device’s motion response. In the final section of Chapter 3, this compressed rep-

resentation of the device’s relative travel is used to develop a closed form expression

capable of evaluating if any physical travel constraint were violated.

Using the same compressed relative travel response representation, Chapter 4 de-

velops the means to assess the absorbed energy through the power take-off in a closed

form manner. The ability to evaluate the amount of energy required to actuate the

inertial arms in the manner required by the desired fluctuation in effective mass con-

trol parameter is also developed in Chapter 4. In doing so, the ability to determine

the average net power absorbed by the device can be analyzed.
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Chapter 2

Mathematical Modelling of WECs

In this chapter a mathematical model is generated to analyze the SyncWave WEC,

a vertically oriented point absorber described in Section 1.3.4, that is representative

of a broader class of WEC concepts. An additional complication of the SyncWave

technology is that a time-variant effective mass parameter exists in the equations of

motion. The variation of this effective mass is akin to the more common variation of

power take-off impedance, whether continuous or discontinuous, and so the process

demonstrated here is not limited to this specific device; the techniques developed

here are equally applicable for addressing the variation of any intrinsic physical prop-

erty of a point absorber. A method for evaluating the steady-state motion of the

time-variant system within the frequency-domain is presented and validated against

a numerically integrated time-domain response for the same regular wave conditions.

In Section 2.3 it is discussed how the current worki s restricted to a periodic variation

of the effective mass parameter subject to regular wave excitation of the WEC.

2.1 Governing Dynamic Equations

A mathematical model for the Sync-Wave device has been previously determined by

Beatty in [10]. However, that model assumes that the WEC physical parameters are

time-invariant, and thus the effective mass control parameter is only included in a lin-

ear manner. With the current investigation of time-variant effective mass behaviour

this assumption is no longer valid, and the mathematical model used to describe the

dynamics of the system must be adjusted.
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Lagrange’s equations provide the most direct route to the WEC’s dynamic equa-

tions. In this analysis, only the variable effective mass term is considered to be

time-variant, while the power take-off damping coefficient is subject to a linear con-

trol strategy, discussed in Section 2.3. Consistent with the small body approximation

described in Section 1.3.2, only the power producing heave motions of the spar and

reaction mass were considered - the float is coupled to this system only by the power

take-off damping and can be added easily to the equations derived for the spar-

reaction mass system. Figure 2.1 shows the mathematical model of the SyncWave

device, as well as, the control volume under consideration in the current variational

analysis. Where the float, spar and reaction mass bodies’ motion and excitation force

are denoted by the subscripts ‘f ’, ‘s’ and ‘r’, respectively.

Figure 2.1: Diagram showing the three-degree of freedom SyncWave device. For the
Lagrangian analysis, a control volume is taken surrounding the spar body and the
enclosed variable effective mass system [10].
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Lagrange’s equations are derived from the scalar quantities of kinetic energy, T ,

potential energy, V , and non-conservative forces, Q, of the system shown in Figure 2.1

and are of the form [32]:
d

dt
(
∂T

∂q̇i
)− ∂T

∂qi
+
∂V

∂qi
= Qi (2.1)

Where

T =
m2żs(t)

2

2
+
m3żr(t)

2

2
+
J(z, t)

2
θ̇2 (2.2)

V =
k3zr(t)

2

2
+
k2(zr(t)− zs(t))2

2
(2.3)

In a real world implementation, variation of the rotational inertia control parameter,

J(z, t), would be a function of both WEC state and time. The rotational velocity

of the variable inertia assembly, θ̇, can be represented using the known kinematic

coupling between the reaction mass and the ball screw:

θ̇ =
żs(t)− żr(t)

l
(2.4)

The non conservative forces, including the forces associated with drag, radiation

damping and the external wave excitation, are given for both the spar and reaction

mass in Equation (2.6). Because the reaction mass is located within the spar body,

no hydrodynamic force is directly applied to body from an incident wave. For the

purposes of this work, the radiation damping and drag forces, as well as the body

mass and added mass, have been modelled as lumped constant coefficients, this ap-

proximation is discussed further in Section 2.2.

Qs = −c2żs(t) + c3(żr(t)− żs(t)) + fe,s(t) (2.5)

Qr = −c3(żr(t)− żs(t)) (2.6)

Substituting Equation (2.2)-(2.6) into Equation (2.1), and carrying out the partial
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differentiation with respect to zs, zr, żs, and żr as per Equation (2.1), yields:[
fe,s(t)

0

]
=

[
m4(z, t) +m2 −m4(z, t)

−m4(z, t) m4(z, t) +m3

][
z̈s(t)

z̈r(t)

]

+

[
ṁ4(z, t) + c2 + c3 −ṁ4(z, t)− c3
−ṁ4(z, t)− c3 ṁ4(z, t) + c3

][
żs(t)

żr(t)

]

+

[
k2 + k3 −k3
−k3 k3

][
zs(t)

zr(t)

]
(2.7)

This variation in effective mass is produced by adjusting the inertia in the variable

inertia assembly and dividing by the ball screw’s lead:

m4(z, t) =
J(z, t)

l2
(2.8)

At this point, one must recognize that the state dependence is a choice of the WEC

designer: the coupling of the effective mass variation to the WEC’s motion is based

on rules proposed by the human designer. In the process of searching for optimal

control parameter variation, a wide range of dependencies should be considered. This

is accomplished here by abandoning any explicit state depenence and considering only

purely time-varying functions, m4(t). If an optimal variation of m4(t) can be found,

one could extract optimal state relationships through observation of m4(t) and z(t).

Adding the dynamics of the simply coupled float and removing control parameter

variation state dependence results in the following matrix form of the WEC motion

equations:

fe(t) = M(t)z̈(t) + C(t)ż(t) + Kz(t) (2.9)
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Where,

M =

 m1 0 0

0 m4(t) +m2 −m4(t)

0 −m4(t) m4(t) +m3

 (2.10)

C =

 c1 + cg −cg 0

−cg ˙m4(t) + c2 + cg + c3 − ˙m4(t)− c3
0 − ˙m4(t)− c3 ˙m4(t) + c3

 (2.11)

K =

 k1 0 0

0 k2 + k3 −k3
0 −k3 k3

 (2.12)

z(t) =

 zf (t)

zs(t)

zr(t)

 (2.13)

Where the regular wave excitation force on each body is represented as follows:

fe(t) =

 fe,f (t)

fe,s(t)

0

 =


|~fe,f |

[
e
i(ωit+θe,f)+e−i(ωit+θe,f)

2

]
|~fe,s|

[
ei(ωit+θe,s)+e−i(ωit+θe,s)

2

]
0

 (2.14)

By dropping the state dependence, the non-linear differential equations presented

in Equation (2.7) become linear. The resulting expression is quite similar to that of

the one found in [10]; however, there are additional terms within the damping matrix

associated with the change in the effective mass through time. These additional terms

in the damping matrix, as well as the time-varying effective mass term in the mass

matrix result in a set linear differential equations with time-varying parameters for

which the steady state response of the system cannot be obtained using traditional

frequency-domain analysis techniques.

The system response could be obtained by numerically integrating the second-

order differential equations with time-varying parameters, allowing sufficient time

to pass such that the steady-state response is revealed. Although the detail of a

time-domain response can be useful, it must be post-processed to extract motion

amplitude, phase, net and gross power values, and it is not ideal for the purposes of
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optimization. Consequently, a closed form frequency-domain solution is desired that

will remove any ambiguity in the response of the WEC to a regular wave input and

a periodic variation of the effective mass.

2.2 Added Mass, Hydrodynamics and Radiation

A constant coefficient added mass and damping model has been adopted for the pur-

poses of this study. The body mass present in Equation (2.11) contains both the

physical mass and estimated added mass terms of the bodies at their respective nat-

ural frequencies, Equations (2.15) and (2.16). The third body, the reaction mass, is

not in contact with the fluid surrounding the spar and, as a result, there are no added

mass or damping terms associated with it.

m1 ' mf +ma,f (ωn,f ) (2.15)

m2 ' ms +ma,s(ωn,s) (2.16)

The damping coefficients c1 and c2 of Equation (2.12) are also a lumped coefficient

containing both the viscous drag coefficient, cvj, and the radiation damping coeffi-

cient, bj, for body j.

c1 ' cv,f + bf (ωn,f ) (2.17)

c2 ' cv,s + bs(ωn,s) (2.18)

Referring to Section 1.3.2, the added mass and damping hydrodynamic coefficients

will exhibit frequency dependence, and to be evaluated correctly a wet oscillator model

should be used. Currently, the frequency dependence of each of the above terms are

being investigated for the SyncWave device using WAMIT; a computer program to

assess the motion and load felt by an offshore structure subject to waves. While the

frequency dependence of these values is not included in this work, the solution method

being developed is formulated in terms of the complete mass and damping matrices

given in Equation (2.11)-(2.12). As such, the method will place no restrictions on

the mij and cij values, and updated frequency dependent coefficients can be applied
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directly in the evaluation process presented at the time they are available.

2.3 Intrinsic Periodically Varying Control Actions

In order for the time-variant effective mass to be analyzed within the frequency-

domain, its variation must be periodic. This is a logical requirement, as the proper

control adjustments should be periodic for a device subject to regular wave forcing.

Beyond this requirement, it is unclear as to what specific effective mass motion will

produce improved power conversion. It is suggested here that the effective mass

variation, m4(t), should be represented as a Fourier series. The Fourier series rep-

resentation provides a suitable compromise between simplicity and flexibility: this

mathematical form expands the range of control parameter wave forms that can be

considered while limiting the definition of m4(t) to a finite parameter set. To consider

a periodic m4(t) within an optimization, the various amplitudes, ε, and phase values,

φ, of the different levels of the Fourier series, as well as, the fundamental control

frequency variation, ωc, become additional design variables in a system optimization:

m4(t) = ε0 + ε1 cos(ωct+ φ1) + ε2 cos(2ωct+ φ2) + ε3 cos(3ωct+ φ3) + . . . (2.19)

For the purpose of methodology development, a truncated form of Equation (2.19)

is sufficient and appropriate. As such, the first two levels of the Fourier series are

examined. That is, the effective mass variation will be governed by a sinusoid with

amplitude ε1, phase φ1, control frequency ωc, and a bias ε0:

m4(t) = ε0 + ε1 cos (ωct+ φ1)

= ε0 + ε1

[
ei(ωct+φ1) + e−i(ωct+φ1)

2

]
(2.20)

This simplifies the process of methodology development while providing a basis

for a further extension of the method to build a Fourier series to describe the change

in effective mass through time. In Appendix A, the process of extending the two-term

Fourier series to a three-term Fourier series is examined.
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Here, m4 is strictly real and can be represented by a phase shifted cosine term.

To simplify the derivation, complex notation of the cosine term is used. Substituting

the form of effective mass variation into the mass and damping matrices results in

the following expressions:

M =

 m1 0 0

0 ε0 +m2 −ε0
0 −ε0 ε0 +m3



+
ε1
2


 0 0 0

0 1 −1

0 −1 1

 ei(ωct+φ1) +

 0 0 0

0 1 −1

0 −1 1

 e−i(ωct+φ1)


= ML +
ε1
2

Q
[
ei(ωct+φ1) + e−i(ωct+φ1)

]
(2.21)

C =

 c1 + cg −cg 0

−cg c2 + cg + c3 −c3
0 −c3 c3



+ iωc
ε1
2


 0 0 0

0 1 −1

0 −1 1

 ei(ωct+φ1) −
 0 0 0

0 1 −1

0 −1 1

 e−i(ωct+φ1)


= CL + iωc
ε1
2

Q
[
ei(ωct+φ1) − e−i(ωct+φ1)

]
(2.22)

K =

 k1 0 0

0 k2 + k3 −k3
0 −k3 k3


= KL (2.23)

Where

Q =

 0 0 0

0 1 −1

0 −1 1

 (2.24)

The subscript ‘L’ indicates the portion of the overall system matrix that would

present if the control technique under consideration were linear (i.e. ε1 = 0 and
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ε0 6= 0) and, as a result, are the the same mass, damping, and stiffness matrices

found in [16].

2.4 Steady State Solution

Over the past few decades there has been enormous growth in computational power

and, as a result, the solution of ordinary differential equations has been drastically ac-

celerated. Consequently, the use of asymptotic approximation methods has dropped

dramatically in favour iterative numerical methods; however, for this particular prob-

lem an asymptotic approximation is of particular interest as it allows for a closed

form representation of the device response.

Perturbation analysis is one example of asymptotic approximation and is widely

used in the physical sciences [33]. Perturbation analysis, as described in [32] and [34],

allows for an approximate solution to the non-linear vibration problem by assessing

the solution to a closely related linear problem and augmenting it with a power series

based on a suitable perturbation parameter. The perturbation parameter quantifies

the deviation from the linear portion of the problem. The perturbation parameter

chosen for this analysis is the amplitude of the effective mass variation, ε1, of Equation

(2.20).

2.4.1 Governing Equations

In the solution of Equation (2.9), z(t), is assumed to be in the form of a perturbation

parameter power series with the leading term in the series being the solution to the

original linear problem and each subsequent term to be a contribution to the deviation

from the linear problem:

z(t) = z0(t) + ε11z1(t) + ε21z2(t) + . . . (2.25)

Where each of the solution levels, zn(t), have units of [kg−nm].

In traditional perturbation analysis, the perturbation parameter is required to be

small (i.e. ε1 < 1). This ensures that the assumed form of the solution is bounded

and thus can converge on a viable solution. The perturbation parameter used in

the evaluation of the SyncWave device is a control design variable and can take on
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any value so long as it does not defy the limitations of the variable effective mass

unit (Table 1.1). To provide a non-negligible effect on the system, the variation in

effective mass must be significant (i.e. ε1 >> 1). Under these circumstances, for the

perturbation method to converge on a solution, each successive term, zi(t), in the

power series solution must decay at a rate greater than the exponential growth of its

corresponding perturbation multiplier.

Substituting Equations (2.21),(2.22),(2.23) and (2.25) into the device’s equation

of motion, Equation (2.9), gives:

fe(t) = ML[z̈0(t) + ε11z̈1(t) + ε21z̈2(t) + . . . ]

+ CL[ż0(t) + ε11ż1(t) + ε21ż2(t) + . . . ]

+ KL[z0(t) + ε11z1(t) + ε21z2(t) + . . . ]
ε1
2

Q
[
ei(ωct+φ1) + e−i(ωct+φ1)

]
[z̈0(t) + ε11z̈1(t) + ε21z̈2(t) + . . . ]

+ iωc
ε1
2

Q
[
ei(ωct+φ1) − e−i(ωct+φ1)

]
[ż0(t) + ε11ż1(t) + ε21ż2(t) + . . . ] (2.26)

If the amplitude of the periodically changing effective mass is set to zero, numerous

terms are nullified and what is left is the linear ordinary differential equation of motion

for the SyncWave WEC found in [10]. Distributing the ML, CL, KL, and Q matrices

over the power series form of z(t) on the right-hand side of Equation (2.26), and

collecting in terms of common powers of ε1, one obtains an infinite series of coupled

ordinary differential equations. Each equation in that series presents as a one degree

of freedom oscillator with constant mass, damping, and stiffness coefficients that are

identical to those observed in the pure linear control case found in [10].

ε01 : MLz̈0 + CLż0 + Kz0 = |~fe|12
[
eiωit+θe + e−iωit−θe

]
ε11 : MLz̈1 + CLż1 + Kz1 = −Q1

2

{[
ei(ωct+φ1) + e−i(ωct+φ1)

]
z̈0 − iωc

[
ei(ωct+φ1) − e−i(ωct+φ1)

]
ż0
}

ε21 : MLz̈2 + CLż2 + Kz2 = −Q1
2

{[
ei(ωct+φ1) + e−i(ωct+φ1)

]
z̈1 − iωc

[
ei(ωct+φ1) − e−i(ωct+φ1)

]
ż1
}

...
...

...

εn1 : MLz̈n + CLżn + Kzn = −Q1
2

{[
ei(ωct+φ1) + e−i(ωct+φ1)

]
z̈n−1 − iωc

[
ei(ωct+φ1) − e−i(ωct+φ1)

]
żn−1

}
(2.27)

Each of the second order ordinary differential equations in Equation (2.27) can be
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solved as a linear system subject to steady forced vibration. The expressions of Equa-

tion (2.27) must be solved sequentially, as the forcing term of any level requires the

solution of the preceding level. For cases where there are two or more forcing terms

with distinct frequencies, superposition can be applied. If a wet oscillator model were

to be used, the frequency dependent mass and damping coefficients would be included

within their respective matrices on the left-hand side of Equation (2.27)in the ML

and CL matrices for each of the superimposed oscillator equations.

The forcing for the zeroth order expression, ε01, has been represented as a cosine

term in phasor form, this ensures that the solution to the expression is strictly real.

Traditionally in frequency-domain analysis, the imaginary portion of the solution is

allowed to remain and is simply ignored; however, doing so in this scenario will re-

sult in complex artifacts occurring on the forcing side on the succeeding expression.

These complex artifacts will combine with the complex term in the control wave form,

the ωc dependence in Equation (2.27), to create incorrect real valued contributions

to zi(t) which then propagate throughout the successive levels of the solution response.

At this stage, it is unknown how many terms in the power series of Equation (2.25)

will be required to converge on the solution. In the following section, a programmable

calculation loop is presented that can be executed to a desired level of the solutions.

To demonstrate the calculation pattern, the process of deriving the solution to the

first three terms of the solution is presented below in Section 2.4.2, and a closed form

expression for any arbitrary level in the solution will be given.

2.4.2 Recursive Procedure

Here, the terminology used in the discussion of the solution process is defined. “The

solution” will refer to the complete motion response of the WEC’s three bodies, z(t).

The solution is found by summing the power series terms found on the right-hand

side of Equation (2.25). Because each of the terms in the power series must be

evaluated sequentially, it is useful to think of each term in the solution as a “level”.

As will be seen, each level may contain more than one “component”-resulting from

the superposition of forcing terms with different frequencies in each level’s second

order ordinary differential equation, shown in Equation (2.27). Figure 2.2 illustrates
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the terminology that will be used.

The Solution

n   Levelth

j    Componentth

Component's Complex
Amplitude

Component's
 Frequency

Component's
Phase

Figure 2.2: Clarification of the terminology used throughout this work.
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Zeroth Level: The zeroth level expression is associated with the group of vari-

ables in Equation (2.27) that do not contain the perturbation parameter:

ε01 : MLz̈0 + CLż0 + Kz0 = |~fe|
1

2

[
eiωit+θe + e−iωit−θe

]
(2.28)

The zeroth level of the solution is unique; it is the only level that depends entirely

on incident wave forcing frequency and contains no information from any subsequent

or proceeding level of the solution. The zeroth level’s expression contains two forcing

terms, built from a complex conjugate pair in the square brackets on the right-hand

side of Equation (2.28). Applying superposition, two ordinary differential equations

are produced.

MLz̈
(1)
0 (t) + CLż

(1)
0 (t) + Kz

(1)
0 (t) = |~fe|12e

i(ωit+θe) (2.29)

MLz̈
(2)
0 (t) + CLż

(2)
0 (t) + Kz

(2)
0 (t) = |~fe|12e

−i(ωit+θe) (2.30)

z0(t) = z
(1)
0 (t) + z

(2)
0 (t) (2.31)

Where the superscripts (1) and (2) identify the components of the zeroth level’s contri-

bution to the overall WEC response to the wave excitation. Each of these components

can then be solved using traditional frequency-domain analysis, by assuming the de-

vice will reach a steady-state oscillation equivalent to that of the forcing frequency,

the device’s acceleration, velocity, and position can be represented as follows:

−ω2
iMLζ

(1)
0 (t) + iωiCLζ

(1)
0 (t) + Kζ

(1)
0 (t) = |~fe|

1

2
eiθe (2.32)

−ω2
iMLζ

(2)
0 (t)− iωiCLζ

(2)
0 (t) + Kζ

(2)
0 (t) = |~fe|

1

2
e−iθe (2.33)

Solving for each component’s complex amplitude of oscillation, ~ζ0:

~ζ
(1)

0 =
[
−ω2

iML + iωiCL + K
]−1 [|~fe|12eiθe

]
(2.34)

~ζ
(2)

0 =
[
−ω2

iML − iωiCL + K
]−1 [|~fe|12e−iθe

]
(2.35)

Both amplitude and phase information for each body of the WEC: the spar, float,

and reaction mass are contained in ~ζ0. To express the device’s motion as a function of

time, these complex amplitudes are then multiplied by their corresponding oscillation
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wave form.

z(1)(t) = ~ζ
(1)

0 eiωit (2.36)

z(2)(t) = ~ζ
(2)

0 e−iωit (2.37)

Both components are phasors rotating in the complex plane at the same frequency

and magnitude, but with different directions of rotation. It can be shown that:

~ζ
(2)

0 = ~ζ
∗(1)
0 (2.38)

and thus:

z
(2)
0 = ~ζ

∗(1)
0 e−iωit (2.39)

Splitting each of the complex amplitudes into their respective real and imaginary

portions and expanding each of the components into their respective sine and cosine

terms results in some cancellation, providing a simplification that can be made to

reduce the number terms used to assemble z0(t).

ζ
(1)
0R = <

{
~ζ
(1)

0

}
ζ
(1)
0I = =

{
~ζ
(1)

0

}
(2.40)

z0(t) =
(
ζ
(1)
0R + iζ

(1)
0I

)
(cos(ωit) + i sin(ωit)) +

(
ζ
(1)
0R − iζ

(1)
0I

)
(cos(ωit)− i sin(ωit))

(2.41)

z0(t) =
(

2ζ
(1)
0R cos(ωit)− 2ζ

(1)
0I sin(ωit)

)
(2.42)

Which is equivalent to:

z0(t) = <
{(

2ζ
(1)
0R + i2ζ

(1)
0I

)
(cos(ωit) + i sin(ωit))

}
(2.43)

z0(t) = <
{(

2ζ
(1)
0R + i2ζ

(1)
0I

)
eiωit

}
(2.44)

z0(t) = <
{

2~ζ
(1)

0 eiωit
}

(2.45)

Finally, the summation of the zeroth level’s two components can be represented by a
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single amplitude multiplied by a cosine term represented in complex notation:

z0 = 2|~ζ
(1)

0 |

[
ei(ωt+θ

(1)

0 ) + e−i(ωt+θ
(1)

0 )

2

]
(2.46)

Where

θ
(1)
0 = atan2

(
ζ
(1)
0I

ζ
(1)
0R

)
(2.47)

As a result, the zeroth level solution, z0(t), can be written using only the output of

Equation (2.34). This saves computational time and also simplifies the forcing input

to the next level of the solution. As a result, the second component of the zeroth level

will be ignored from this point forward. The complex conjugate simplification shown

above is valid for any second order ordinary differential equation in which the forcing

term contains a complex conjugate pair. As will be seen, the number of components

in each level’s solution grows at an exponential rate, and the introduction of this

simplification drastically reduces the number of expressions that must be evaluated.

First Level: Substituting the result of the zeroth level expression, Equation

(2.46), back into the first level expression found in Equation (2.27) results in the

following:

MLz̈1 + CLż1 + Kz1 = Q
2
ω2
[
ei(ωct+φ1) + e−i(ωct+φ1)

]
|~ζ

(1)

0 |
(
ei(ωt+θ0) + e−i(ωt+θ0)

)
+ Q

2
ωωc

[
ei(ωct+φ1) − e−i(ωct+φ1)

]
|~ζ

(1)

0 |
(
ei(ωt+θ0) − e−i(ωt+θ0)

)
(2.48)

Organizing the forcing terms into complex conjugate pairs so that the complex con-

jugate simplification seen in Equation (2.46) can be exploited:

MLz̈1 + CLż1 + Kz1 = Q
2

(ω2 + ωωc)|~ζ
(1)

0 |
[
ei((ω+ωc)t+θ0+φ1) + e−i((ω+ωc)t+θ0+φ1)

]
+ Q

2
(ω2 − ωωc)|~ζ

(1)

0 |
[
ei((ω−ωc)t+θ0−φ1) + e−i((ω−ωc)t+θ0−φ1)

]
(2.49)

Even with the complex conjugate simplification, two forcing terms must be considered
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on the right-hand side of Equation (2.49), requiring the use of superposition:

−(ω + ωc)
2~ζ

(1)

1 ML + i(ω + ωc)~ζ
(1)

1 CL + K~ζ
(1)

1 = Q
2

(ω2 + ωωc)|~ζ0|ei(θ0+φ1) (2.50)

−(ω − ωc)2~ζ
(2)

1 ML + i(ω − ωc)~ζ
(2)

1 CL + K~ζ
(2)

1 = Q
2

(ω2 − ωωc)|~ζ0|ei(θ0−φ1) (2.51)

~ζ
(1)

1 = [−(ω + ωc)
2ML + i(ω + ωc)CL + K]

−1 Q
2

(ω2 + ωωc)|~ζ0|ei(θ0+φ1) (2.52)

~ζ
(2)

1 = [−(ω − ωc)2ML + i(ω − ωc)CL + K]
−1 Q

2
(ω2 − ωωc)|~ζ0|ei(θ0−φ1) (2.53)

The first level’s solution is then given by the summation of the following two compo-

nents:

z1(t) = |~ζ
(1)

1 |
[
ei((ω+ωc)t+θ

(1)

1 ) + e−i((ω+ωc)t+θ
(1)

1 )
]

+ |~ζ
(2)

1 |
[
ei((ω−ωc)t+θ

(2)

1 ) + e−i((ω−ωc)t+θ
(2)

1 )
]

(2.54)

Where

θ
(1)
1 = atan2

(
ζ
(1)
1I

ζ
(1)
1R

)
θ
(2)
1 = atan2

(
ζ
(2)
1I

ζ
(2)
1R

)
(2.55)

Second Level: The evaluation of the second level expression is quite similar to

that of the the first level problem. It will be the last level shown for the purposes of

development of a solution pattern.

Substituting the result of the first level’s expression, Equation (2.54), back into the

second-order expression found in Equation (2.27) results in the following expression:

MLz̈2 + CLż2 + Kz2 = Q
2

(ω + ωc)
2
[
ei(ωct+φ1) + e−i(ωct+φ1)

]
|~ζ

(1)

1 |
(
ei((ω+ωc)t+θ

(1)

1 ) + e−i((ω+ωc)t+θ
(1)

1 )
)

+ Q
2

(ω + ωc)ωc
[
ei(ωct+φ1) − e−i(ωct+φ1)

]
|~ζ

(1)

1 |
(
ei((ω+ωc)t+θ

(1)

1 ) − e−i((ω+ωc)t+θ
(1)

1 )
)

+ Q
2

(ω − ωc)2
[
ei(ωct+φ1) + e−i(ωct+φ1)

]
|~ζ

(2)

1 |
(
ei((ω−ωc)t+θ

(2)

1 ) + e−i((ω−ωc)t+θ
(2)

1 )
)

+ Q
2

(ω − ωc)ωc
[
ei(ωct+φ1) − e−i(ωct+φ1)

]
|~ζ

(2)

1 |
(
ei((ω−ωc)t+θ

(2)

1 ) − e−i((ω−ωc)t+θ
(2)

1 )
)

(2.56)

Organizing the forcing terms into complex conjugate pairs so that the complex con-
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jugate simplification seen in Equation (2.46) can be exploited:

MLz̈2 + CLż2 + Kz2 = Q
2

((ω + ωc)
2 + (ω + ωc)ωc)|~ζ

(1)

1 |
[
ei((ω+2ωc)t+θ

(1)

1 +φ1) + e−i((ω+2ωc)t+θ
(1)

1 +φ1)
]

+ Q
2

((ω + ωc)
2 − (ω + ωc)ωc)|~ζ

(1)

1 |
[
ei(ωt+θ

(1)

1 −φ1) + e−i(ωt+θ
(1)

1 −φ1)
]

+ Q
2

((ω − ωc)2 + (ω − ωc)ωc)|~ζ
(2)

1 |
[
ei(ωt+θ

(2)

1 +φ1) + e−i(ωt+θ
(2)

1 +φ1)
]

+ Q
2

((ω − ωc)2 − (ω − ωc)ωc)|~ζ
(2)

1 |
[
ei((ω−2ωc)t+θ

(2)

1 −φ1) + e−i((ω−2ωc)t+θ
(2)

1 −φ1)
]

(2.57)

Similarly to the zeroth and first level calculations, the complex conjugate simplifi-

cation is applied to the paired forcing functions of Equation (2.57). In this expression

there are four paired forcing functions that must be considered and thus superposition

is again exploited.

−(ω + 2ωc)
2~ζ

(1)

2 ML + i(ω + 2ωc)~ζ
(1)

2 CL + K~ζ
(1)

2 = Q
2

((ω + ωc)
2 + (ω + ωc)ωc)|~ζ

(1)

1 |ei(θ
(1)

1 +φ1)

−ω2~ζ
(2)

2 ML + iω~ζ
(2)

2 CL + K~ζ
(2)

2 = Q
2

((ω + ωc)
2 − (ω + ωc)ωc)|~ζ

(1)

1 |ei(θ
(1)

1 −φ1)

−ω2~ζ
(3)

2 ML + iω~ζ
(3)

2 CL + K~ζ
(3)

2 = Q
2

((ω − ωc)2 + (ω − ωc)ωc)|~ζ
(2)

1 |ei(θ
(2)

1 +φ1)

−(ω − 2ωc)
2~ζ

(4)

2 ML + i(ω − 2ωc)~ζ
(4)

2 CL + K~ζ
(4)

2 = Q
2

((ω − ωc)2 − (ω − ωc)ωc)|~ζ
(2)

1 |ei(θ
(2)

1 −φ1)

(2.58)

Solving for each component’s complex amplitude of oscillation:

~ζ
(1)

2 = [−(ω + 2ωc)
2ML + i(ω + 2ωc)CL + K]

−1 Q
2

((ω + ωc)
2 + (ω + ωc)ωc)|~ζ

(1)

1 |ei(θ
(1)

1 +φ1) (2.59)

~ζ
(2)

2 = [−ω2ML + iωCL + K]
−1 Q

2
((ω + ωc)

2 − (ω + ωc)ωc)|~ζ
(1)

1 |ei(θ
(1)

1 −φ1) (2.60)

~ζ
(3)

2 = [−ω2ML + iωCL + K]
−1 Q

2
((ω − ωc)2 + (ω − ωc)ωc)|~ζ

(2)

1 |ei(θ
(2)

1 +φ1) (2.61)

~ζ
(4)

2 = [−(ω − 2ωc)
2ML + i(ω − 2ωc)CL + K]

−1 Q
2

((ω − ωc)2 − (ω − ωc)ωc)|~ζ
(2)

1 |ei(θ
(2)

1 −φ1) (2.62)

The second level response is then given by the summation of the four component’s

complex amplitudes multiplied by their respective phase shifted waveforms:

z2(t) = |~ζ
(1)

2 |
(
ei((ω+2ωc)t+θ

(1)

2 ) + e−i((ω+2ωc)t+θ
(1)

2 )
)

+ |~ζ
(2)

2 |
(
ei(ωt+θ

(2)

2 ) + e−i(ωt+θ
(2)

2 )
)

+ |~ζ
(3)

2 |
(
e(iωt+θ

(3)

2 ) + e−i(ωt+θ
(3)

2 )
)

+ |~ζ
(4)

2 |
(
ei((ω−2ωc)t+θ

(4)

2 ) + e−i((ω−2ωc)t+θ
(4)

2 )
)
(2.63)
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nth Level: The solution to the each level becomes progressively more involved.

However, within the three levels presented, some patterns begin to emerge that can

be used to automate the process. First, it is noted that at any arbitrary level, the

forcing function that is constructed on the preceding level’s solution will produce two

motion components on the next successive level. As such, the number of portions to

a solution will increase exponentially as the number of levels increase as:

zn = z(1)n + z(2)n + · · ·+ z(M)
n ; M = 2n (2.64)

Next, a relationship between the frequency of oscillation of the solution component

and the frequency of oscillation of the previous levels solution can be programmed. As

stated above, the frequency of oscillation of a preceding level’s solution component,

ω
(j)
n−1, is responsible for producing two solution components on the next successive

level, resulting in two oscillation frequencies ω
(2j−1)
n and ω

(2j)
n . These successive oscil-

lation frequencies must follow:

ω(2j−1)
n = ω

(j)
n−1 + ωc (2.65)

ω(2j)
n = ω

(j)
n−1 − ωc (2.66)
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Where j is the component number on the previous level, n− 1, and could be any

integer value within the following range:

1 ≤ j ≤ 2n−1 (2.67)

Finally, over the first three levels of the solution, a pattern has emerged for how the

preceding level components’s frequencies of oscillation ω
(j)
n−1 and phase θ

(j)
n−1 present in

the nth level. As stated above, each component of the preceding level is responsible

for the construction of two components on the next successive level. However, the

pattern for each of the newly constructed components is different. The frequency

coefficients in front of the forcing function and the phase of the forcing function differ

by a sign for each component. This pattern has been described in Figure 2.3 and

shown in expression is given for the first and jn−th components for an arbitrary level

n below:

!
! ! ! !

! ! ! ! !

Figure 2.3: The frequency and phase coefficients for an arbitrary level, n, are mapped
from a component in the previous level’s solution, z

(j)
n−1(t). The preceeding level’s

component is responsible for generating two components on the nth level. Note: the
generated components share similar coefficient mapping, but differ by a sign.
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MLz̈n + CLżn + Kzn = Q
2

((ω
(1)
n−1)

2 + ω
(1)
n−1ωc)|~ζ

(1)

n−1|
[
ei((ω

(1)
n−1+ωc)t+θ

(1)

n−1+φ1) + e−i((ω
(1)
n−1+ωc)t+θ

(1)

n−1+φ1)

]
+ Q

2
((ω

(1)
n−1)

2 − ω(1)
n−1ωc)|~ζ

(1)

n−1|
[
ei((ω

(1)
n−1−ωc)t+θ

(1)

n−1−φ1) + e−i((ω
(1)
n−1−ωc)t+θ

(1)

n−1−φ1)
]

...
...

+ Q
2

((ω
(jn)
n−1)

2 + ω
(jn)
n−1ωc)|~ζ

(jn)

n−1|
[
ei((ω

(jn)
n−1+ωc)t+θ

(jn)

n−1+φ1) + e−i((ω
(jn)
n−1+ωc)t+θ

(jn)

n−1+φ1)

]
+ Q

2
((ω

(jn)
n−1)

2 − ω(jn)
n−1ωc)|~ζ

(jn)

n−1|
[
ei((ω

(jn)
n−1−ωc)t+θ

(jn)

n−1−φ1) + e−i((ω
(jn)
n−1−ωc)t+θ

(jn)

n−1−φ1)
]

(2.68)

Where jn corresponds to the last component in the previous level’s solution:

jn = 2(n−1) (2.69)

The patterns described in Equations (2.64)-(2.68), allow for each component’s com-

plex amplitude to be evaluated at any arbitrary level in a closed form expression as

follows:

~ζ
(1)

n =
[
−(ω

(1)
n−1 + ωc)

2ML + i(ω
(1)
n−1 + ωc)CL + K

]−1
Q
2

((ω
(1)
n−1)

2 + ω
(1)
n−1ωc)|~ζ

(1)

n−1|ei(θ
(1)

n−1+φ1)

~ζ
(2)

n =
[
−(ω

(1)
n−1 − ωc)2ML + i(ω

(1)
n−1 − ωc)CL + K

]−1
Q
2

((ω
(1)
n−1)

2 − ω(1)
n−1ωc)|~ζ

(1)

n−1|ei(θ
(1)

n−1φ1)

...
...

~ζ
(2jn−1)
n =

[
−(ω

(jn)
n−1 + ωc)

2ML + i(ω
(jn)
n−1 + ωc)CL + K

]−1
Q
2

((ω
(jn)
n−1)

2 + ω
(jn)
n−1ωc)|~ζ

(jn)

n−1|ei(θ
(jn)

n−1+φ1)

~ζ
(2jn)

n =
[
−(ω

(jn)
n−1 − ωc)2ML + i(ω

(jn)
n−1 − ωc)CL + K

]−1
Q
2

((ω
(jn)
n−1)

2 − ω(jn)
n−1ωc)|~ζ

(jn)

n−1|ei(θ
(jn)

n−1−φ1)(2.70)

The patterns have been carefully investigated and have been found to hold true

for any level with the exception of the zeroth-order solution. These rules allow for a

series of conditional, computational loops to be programmed such that the solution

can be evaluated to any desired level. Upon each iteration level it is required that the

frequency of oscillation, amplitude, and phase of each component of the solution be

stored in memory, such that it can be used in succeeding level’s solution. The motion
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can then be represented as follows:

z(t) = |~ζ
(1)

0 |
[
ei(ω

(1)
0 t+θ(1)

0 ) + e−i(ω
(1)
0 t+θ(1)

0 )

]
+

Nmax∑
n=1

εn1

jn∑
j=1

{
|~ζ

(2j−1)
n |

[
ei(ω

(2j−1)
n t+θ(2j−1)

n ) + e−i(ω
(2j−1)
n t+θ(2j−1)

n )

]
+ |~ζ

(2j)

n |
[
ei(ω

(2j)
n t+θ(2j)

n ) + e−i(ω
(2j)
n t+θ(2j)

n )

]}
(2.71)

A visual representation of a solution’s components, and the construction of the

components into a response, can be found in Figure 2.4.2 and Figure 2.5, respectively.

Physical parameters for this case are given in Table 2.1 in Section 2.5. As shown,

each level’s components get progressively less significant, suggesting the method will

converge on a solution. A convergence analysis will be given in Section 2.5.
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(c) Reaction mass

Figure 2.4: The construction of the solution for an example case. The magnitude of
each level’s components are shown in relation to their position in the solution array.
Physical parameters for this simulation are given in Table 2.1
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Figure 2.5: Construction of the spar response using the perturbation method.
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2.5 Convergence Analysis

For the closed form perturbation method to converge on the device’s motion the fol-

lowing criteria must be met: the rate of which each level’s component amplitudes

decays must be greater than the exponential growth exhibited by perturbation pa-

rameter:

lim
n→∞

εn1zn(t) = 0 (2.72)

If the solution does indeed converge, the next task is to determine at which level

the solution can be truncated without losing any pertinent detail. To verify con-

vergence and to determine an adequate number of levels, the perturbation method

response is compared to a numerically integrated time-domain response to the motion

equations of Equation (2.9).

A sample case based on the device parameters of the Froude scaled SyncWave

demonstration device outlined in Section 1.3.4 is given in Table 2.1. For the pur-

pose of consistency, the physical control parameters and wave characteristics used in

the convergence analysis example will also be used throughout the remainder of this

work. The regular forcing wave under consideration has a height and frequency of 0.4

meters and 1.725rad
s , respectively. This regular wave would be similar to a significant

wave found in the month of November in Hesquiaht Sound, British Columbia as per

Figure 1.11(b).The physical control parameters used in this demonstration case were

chosen to create a significant disturbance to the linear response, so as to ensure that

a significant number of levels would be required. These control parameters are a dis-

tinguishing feature of the case study and have also been tabulated below in Table 2.1.

A time-domain simulation was evaluated over an extended period of time to ensure

the response had reached steady-state. This response is compared against the time-

series motion response evaluated from the closed-form perturbation method approxi-

mation – found using the programmed pattern arrived at in Equations (2.70) and (2.71).

To evaluate the convergence of the motion responses, there is a need for a quanti-

tative scalar measure that depicts the difference between the two solutions at each

level of the closed form perturbation method. For this purpose, the following 2-norm

function is used to define the accumulaion of the differences between each body’s

numerically integrated position and the position extracted from the closed form per-

turbation analysis.
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Table 2.1: Wave and physical control parameters used in demonstration case.

Parameter Name Units Value
Hs Significant Wave Height [m] 0.4

ωi Incident Wave Frequency
[

rad
s

]
1.725

cg Generator Damping
[

Ns
m

]
3000

ε0 Effective Mass Bias [kg] 10000
ε1 Effective Mass Amplitude [kg] 2000
φ1 Effective Mass Phase [rad] 0

ωc Effective Mass Control Frequency
[

rad
s

]
0.2

∆ =
||ztime−domain(t)− zperturbation(t)||

||ztime−domain(t)||
500s ≤ t ≤ 1000s (2.73)

The two calculated responses were compared over the region of time where the

body’s motion was at a steady-state, 500s≤ t ≤1000s, to neglect any expected dif-

ferences in the responses during the transient phase. To ensure both responses were

compared at equivalent times, the time vector provided by the numerical integrator

was used to synthesize a time-series of WEC motion for the results of the perturba-

tion method. The wave forcing on the spar and float in both cases contain the same

frequency and phase information and, as a result, both the time-domain and pertur-

bation method motion responses should be in phase when the steady-state condition

is achieved in the numerically integrated solution.

The results of this particular convergence test are shown in Figure 2.6. In this

example, it is shown that the frequency-domain approximation converges to the time-

domain motion in an exponentially decaying manner. Truncating the solution after

the 30th level would appear to give an accurate motion response with minimal dif-

ferences between the numerically integrated time-domain response and the response

extracted from the perturbation method.
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Figure 2.6: The convergence of perturbation method motion response to the time-
domain simulation is measured using the norm of the difference between the two
responses. z(t), 500s≤ t ≤1000s, was calculated using the time-domain integration
approach and the perturbation approach outlined in this chapter.
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(c) Reaction mass motion

Figure 2.7: Time-series motion for each of the device’s bodies are shown at different
perturbation method solution levels in grey, and compared to the motion of the time-
domain simulation shown in black. Physical parameters for this simulation are given
in Table 2.1
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As an alternative measure of convergence, the motion responses of the bodies have

been visually compared in time, Figure 2.7. Both the numerically integrated position

and the position extracted from the closed form perturbation analysis are given for a

short period of time, 545s≤ t ≤585s, at various truncation levels to depict the visual

convergence between the two solutions.

In this example case, the total response differs greatly from the purely linear re-

sponse – the motion achieved with the ε1 term set to zero. This is shown on the

zeroth level’s time-motion response for each body where the linear response is ex-

tracted from the perturbation method and shown in gray. The complete numerically

integrated time-domain response is shown black. This suggests that the manner in

which the effective mass parameter is varied, as descried in Table 2.1, has had a

significant impact on the system’s response. As the number of levels used in the

perturbation method increases, its response begins to converge on the time-domain

response. In this particular scenario, the spar’s motion is the last to converge. For a

different case in which the chosen physical control parameter variation does not sig-

nificantly effect the system, the linear problem will match the actual response quite

closely and very few levels will be required to converge on the proper motion response.

As a result, the extra information added by the higher levels of the perturbation

analysis may not be needed. A suitable level to truncate the approximation at will be

dependent on the intended use of the solution. In Section 4.2 a suitable level is deter-

mined for the above problem based on the convergence of the WEC’s absorbed power.

One could argue that it if the run time to evaluate the response of the WEC

with a particular control input was sufficiently fast, the truncation level could be set

to a very high, practically unlimited, value to ensure convergence using brute force.

Unfortunately, the methodology, as presented in its current form, is unable to effi-

ciently evaluate the response with a large number of levels, and an intelligent means

to detect convergence and curtail the solution is needed to meet the objective of a

computationally efficient calculation. Figure 2.8 gives the amount of computational

time and memory required to run the perturbation method versus the selected trun-

cation level. For reference, the computational time required to evaluate the response

in the time-domain using numerical-integration for 1000 seconds is provided.
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Figure 2.8: Computational efficiency comparison between the perturbation method
and tradition time-domain numerical integration. The evaluation speed and memory
required for the proposed methodology, in its current state, is much too demanding
past the level of N=13.

In Figure 2.8, the amount of computational time required to evaluate the WEC’s

response with the closed form perturbation method described in this chapter grows at

an exponential rate with the number of levels required in the solution. After a trunca-

tion level of 13, the computational time required to evaluate the perturbation method

becomes greater than that of the time-domain response. For the 13th level solution,

there is still a benefit to using the proposed perturbation method as it presents the so-

lution as a closed form expression that is favoured for use in an optimization problem.

However, soon after this point, the exponential growth in the computation time nul-

lifies the advantages of having the closed form expressions obtained. For a truncation

level of N=22, the method takes a period of greater than a week to produce a solution.

In Chapter 3, the reasoning behind the exponential growth in computational time

is investigated and some adaptations to the methodology presented in this chapter

are made to drastically reduce the evaluation time.



57

Chapter 3

Computational Efficiency

One of the major incentives in moving to a frequency-domain model of a WEC is the

robustness and utility of a closed form solution. Unfortunately, these traits, for the

perturbation analysis presented in the previous chapter, are compromised by exces-

sively long calculation times. The enormous amount of computational time needed for

the perturbation method of Chapter 2 to converge on the motion of the WEC device

can be attributed to an exponentially increasing number of linear oscillators equations

that are solved on each successive level. In addition, the exponential growth of the

number of components within each level of the solution, zn(t), and the subsequent

storage of each component’s frequency, amplitude, and phase, consumes an amount

of memory that is disproportionate to the level of detail that is seen in a complete

response: when reviewing the waveforms of Figure 2.7, there should not be a need for

a Mb of data in the solution (Figure 2.8). At this point, the number of levels one can

include is limited by amount of memory available. Growing at an exponential rate,

the array size for a truncation level of N=20 would 3× 20× 220. Even with memory

pre-allocated, this memory requirement results in a very inefficient solution procedure.

In this chapter the inadequacies of the perturbation method are investigated and

drastic improvements are made by reducing the number of component evaluations

on each level of the solution. This is done by combining components with shared

frequencies, as well as, identifying and eliminating components with negligible con-

tribution to the overall solution.
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These time savings strategies present a new way to represent a complete solution

with far fewer solution components. As shown in Section 3.3, this improved solution

representation permits the development of a closed form expression to gauge the

relative travel between the bodies of a WEC.

3.1 WEC Motion Response Calculation

To demonstrate what portions of the solution are essential in producing an accurate

response and which components of the solution are superfluous, all of the compo-

nents calculated in the 20 level solution of the perturbation method are visualized

in Figure 3.1 for the system parameters given in Table 2.1. The bar chart of Fig-

ure 3.1 displays the absolute magnitudes of each component in the solution versus

their respective level and oscillation frequency. It should be noted that the absolute

magnitudes displayed in Figure 3.1 contain the εn1 scalar multiple corresponding to

each components respective level. By including the perturbation parameter, a dimen-

sionally consistent comparison of component magnitudes is ensured: the scale of the

vertical axis is in meters.

Figure 3.1 shows that the amplitudes of oscillation for the components decay to-

wards a negligible magnitude as the level of the perturbation method is increased. As

such, at least for the example case considered, the solution process is stable and given

a sufficient amount of computational time and memory, the method should converge

on a bounded solution.
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(c) Reaction mass motion components

Figure 3.1: Absolute motion components for each body – the phase information
for each component has been removed. All solution components with equivalent
frequencies are summed in complex form. Physical parameters for this simulation are
given in Table 2.1
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3.1.1 Perturbation Method with Shared Frequency Improve-

ments

In the formation of Figure 3.1, components within a specific level that share an os-

cillation frequency are combined to form a single complex amplitude of oscillation.

Analyzing various levels of the solution, it is found that many of the components’

oscillation frequencies were repeated both within a level and between levels of the

solution. This can be attributed to the fact that each motion component in a pre-

ceding level produces two forcing terms in the subsequent level, each differing by the

addition or subtraction of the control frequency (for example see Equation (2.66)).

These resulting components will then give rise to four new components on the next

succeeding level, two of which will be at a frequency that is the same as that which

originated the chain of calculations. The difference between the two methods is shown

in Figure 3.2 and 3.3.

ωN level=i
↙ ↘

ωN + ωc ωN − ωc level=i+1
↙ ↘ ↙ ↘

ωN + 2ωc ωN ωN ωN − 2ωc level=i+2
↙ ↘ ↙ ↘ ↙ ↘ ↙ ↘

Figure 3.2: The formulation of each subsequent level’s oscillation frequencies without
the summation of amplitudes of components with equivalent oscillation frequencies

ωn level=i
↙ ↘

ωn + ωc ωn − ωc level=i+1
↙ ↘ ↙ ↘

ωn + 2ωc ωn ωn − 2ωc level=i+2

Figure 3.3: The formulation of each subsequent level’s oscillation frequencies with the
summation of amplitudes of components with shared oscillation frequencies

In either case, only two new unique frequencies present themselves on each succes-

sive level, one on each end of the frequency spectrum. This suggests that a mathemat-

ical equivalent of the current methodology, which currently grows exponentially from
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level-to-level, could be created that exhibits linear growth from level-to-level. This

simplification can be executed by summing the complex amplitudes of repeated fre-

quency components of each level before proceeding to the next level. This realization

results in some very large computational savings, both in the number of computations

saved and the memory required to evaluate a high number of levels.

As shown in Figure 3.1, there is also recurrences of oscillation frequency between

the levels. This realization results in two further simplifications: one to the solution

process itself and another to the representation of the complete solution with a min-

imal number of terms.

As discussed in Section 2.4.2, a component’s complex amplitude can be evaluated

at any arbitrary level of the solution using expressions found in Equation (2.70). The

“complex impedance” matrices being inverted on the right-hand side of these expres-

sions contain the same mass, stiffness, and damping components, but differ in the

oscillation frequency under consideration for a particular component. Performing the

complex impedance matrix inversion for each individual component’s frequency is a

repeated process performed at a significant computational cost over the duration of a

full solution process. Alternatively, if the matrix inversion for a specific frequency is

stored in memory, it can be accessed for any subsequent component sharing the same

oscillation frequency. Since, only two new unique frequencies are introduced on each

successive level, this bookkeeping of the inverted complex impedance is possible, and

amounts to substantial computational savings. If the number of levels required for

a converged solution are known, along with the incident wave frequency and control

frequency parameters, these matrix inversions can be pre-processed, resulting in fur-

ther savings.

The combined efficiency improvements, resulting from the summation of complex

amplitudes sharing oscillation frequency and the bookkeeping of complex impedance

matrix inversions, will here after be referred to as the perturbation method with shared

frequency improvements. The computational savings resulting from these improve-

ments are drastic, and computational time and memory storage requirements have

been tabulated for various solution truncation levels in Table 3.1. As shown, the

improved method is capable of evaluating the device’s response in a fraction of the

time required by traditional time-domain techniques. This is a drastic improvement
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over the original method presented in Chapter 2, where the time required to evaluate

to a truncation level of N=20 has been reduced from a week (or more) to a fraction

of a second.

Table 3.1: Computational time and memory storage requirements of WEC device
response evaluation for both a Runge-Kutta-Fehlberg numerical integration time-
domain method and perturbation method with shared frequency improvements.

Time-Domain Numerical Integration
Time Span Computational Time Memory Storage

[s] [s] [bytes]
600 8 288048

Perturbation Method with Shared Frequency Improvements
Truncation Level Computational Time Memory Storage

[s] [s] [bytes]
5 0.05 408
10 0.07 1368
15 0.09 2928
20 0.11 5088
25 0.14 7248
30 0.18 11208
35 0.22 15168
40 0.26 19728
45 0.30 24888
50 0.35 29488

3.1.2 Solution Representation Simplification

In an effort to reduce the number components required to accurately model the final

device response, the shared oscillation frequencies of components between levels are

again exploited. The complex amplitudes of these components can be added together

so long as each complex amplitude has been pre-multiplied by their level’s corre-

sponding scalar multiple of the perturbation parameter, εN1 . The three-dimensional

bar chart of Figure 3.1 can then be projected onto an amplitude and oscillation fre-

quency plane, as shown in Figure 3.4. Where the summed complex amplitudes are

differentiated from their level dependent counter parts with the symbol that is inde-

pendent on solution level, ~ζ(ω).
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Figure 3.4: Absolute motion components for each body. All solution components with
equivalent frequencies, both within and across levels of the solution, are summed in
complex form and then reported as amplitudes. Physical parameters for this example
problem that generated the solution are given in Table 2.1

This simplification does not produce any computational benefit in the component

evaluation process, rather it compresses all the components within the solution al-

lowing it to be represented as a superposition of far fewer components. The following

can be used in place of Equation (2.71) to define the WEC motion, here after referred
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to as the compressed solution representation:

z(t) =
2Nmax∑
j=1

{
2|~ζ(ωj)| cos(ωjt+ θ(ωj))

}
(3.1)

Where

ωj = ωi − ωj(Nmax − j) (3.2)

At first glance, this simplification may seem to have limited benefit, as it does not

provide any computational savings to the perturbation method itself; however, it has

implications in the synthesis of a time-motion response of the WEC, the absorbed

power calculation that is presented in Section 4.1, and the relative travel constraint

analysis presented in Section 3.3.

The combination of components with equivalent oscillation frequencies across the

levels, results in the computational time required to evaluate the power absorption

expressions presented in Section 4.1 to be greatly reduced. Instead of evaluating

(2N − 2)2 combinations of relative amplitude components using the definite integral

expressions presented in that section, the compressed solution representation requires

only 2N2 −N function evaluations. When a high number of levels are required for a

converged solution, the savings are quite large: for a solution with a truncation level

of N=20, the number of terms in the gross power calculation drops from 1.1×1013 to

780. This is of particular importance when employing the methodology in an iterative

optimization routine that depends on numerous evaluations of the converted power

to guide the selection of physical specification and control inputs.
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3.2 WEC Response Bandwidth Limitation

One observation drawn from Figures 3.1 and 3.4, is that there is a relatively narrow

bandwidth exhibiting non-negligible component amplitudes. This is to be expected,

as point-absorbing WECs typically perform optimally over a relatively narrow band-

width. As a result, it is expected that substantial computational savings can be

achieved by identifying that bandwidth and limiting the calculations to frequencies

within it.

To assess an appropriate bandwidth limitation, the device’s heave response am-

plitude operator is believed to be a suitable metric. A response amplitude operator,

or RAO, is effectively a transfer function used to gauge the response of the device

to a particular forcing frequency and shape. The forcing shape is the combination of

complex force applied to the WEC’s three bodies; the float, the spar and the reaction

mass. For the zeroth level component, the RAO can be found by evaluating the right

hand side of Equation 2.34 and dividing by its magnitude.

[−ω2ML + iωCL + K]
−1
[
|~fe|12e

iθe
]

|| [−ω2ML + iωCL + K]−1
[
|~fe|12eiθe

]
||

(3.3)

Where the zeroth level’s forcing shape is as follows:

~fe

||~fe||
(3.4)

A common forcing shape for all other components of the solution can be found by

evaluating the right-hand side of Equation (2.68). This is shown for a single arbitrary

solution component ~ζ
(j)

N below in Equation (3.5). Where ‘const’ corresponds to the

remaining scalar multiples found on the right-hand side of Equation (2.70) for the jth

component. 0 0 0

0 1 −1

0 −1 1


 ζ

(j)
f,N

ζ
(j)
s,N

ζ
(j)
r,N

× const =

 0

ζ
(j)
s,N − ζ

(j)
r,N

ζ
(j)
r,N − ζ

(j)
s,N

 =

 0

1

−1

× const (3.5)
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The chosen control parameters, ε0 and cg, are then inserted into the mass and

damping matrices, ML and CL, as per Equations (2.11) and (2.12) to form the

complex impedance matrix below:

[
−ω2ML + iωCL + KL

]
(3.6)

The response amplitude operators can evaluated by multiplying the inverted dynamics

matrix by the normalized forcing shape and scaling by the effective mass variation, ε1,

as shown in Equation (3.7). This multiplication by ε1 ensures that the RAO remains

dimensionless and is necessary to properly represent how the previous level’s solution

component - captured within the forcing shape - translates into magnitude of the

current level’s component.

RAO(ω) = ε1
[
−ω2ML + iωCL + K

]−1  0
1√
2

− 1√
2

 (3.7)

The results of the RAO calculation, for the particular set of control variables con-

sidered in Table 2.1, are shown in Figures 3.5(a), 3.5(c) and 3.5(e) on the oscillation

frequency-component magnitude plane. As shown, the RAO is symmetrical about

the vertical axis - the device will react in the same manner to an equivalent phasor

rotating in the opposite direction. From these figures, it is noted that there are no

significant component magnitudes below corresponding to negative frequencies. This

is to expected, as the RAO’s value between the two RAO lobes is small enough that

all components propagating from the positive frequencies decay a rate such that they

are negligible when the second lobe reached in the ω < 0 range.

There is a strong correlation between the RAO and the magnitudes of compo-

nents at their respective oscillatory frequencies. For these frequencies where the

RAO approaches zero, the magnitude of the corresponding components are found to

be negligible. This would suggest that the solution process can be restricted to the

range of frequencies where RAO values are significant. This results in the elimination

of a large number of superfluous linear oscillator equations being evaluated.
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While the RAO provides a guideline for a low and high frequency cutoff, care must

be taken in selection the cutoff values. Though a solution component’s frequency of

oscillation may appear to be in a region where the component will have a negligible

effect on the overall solution, each component will be responsible for generating new

components on subsequent levels which could propagate towards a region where the

frequency of oscillation is non-negligible. If a component is sufficiently far outside

the region where the RAO is non-negligible, the subsequent components will die out

before getting to a frequency in the RAO where a significant magnitude could be

produced. To determine at what upper and lower frequency the solution’s bandwidth

could be limited to without significantly effecting the solution, a test was done. The

lower bandwidth limit was varied from the most negative frequency of a complete

solution, evaluated to the 45th level and known to be converged from Figure 2.6, up

to the incident wave forcing frequency. A normalized 2-norm error, Equation (3.8),

was determined by comparing the time-series response of the WEC of the bandwidth

limited solution, zband−lim, to the converged 45 level solution, ztrue, shown by �’s

in Figures 3.5(b), 3.5(d) and 3.5(f). This process was then repeated for the upper

bandwidth limit, represented by ×’s in the same figures.

∆ =
||ztrue − zband−lim||

||ztrue||
(3.8)
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Figure 3.5: The solution components that are most important in creating an accu-
rate time-motion response are visually evaluated by comparing the solution compo-
nent magnitudes to their RAO (a),(c) and (e). The 2-norm errors associated with
bandwidth limitation are shown in (b),(d) and (f).
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The results of the bandwidth limiting test show that, for this particular test, the

solution can still be adequately represented with a components that are limited to a

much smaller oscillation frequency bandwidth than what has been suggested by the

development of the perturbation method. This results in significantly fewer compo-

nents required to be evaluated and stored in memory to produce an accurate device

response.

The manner in which the response of the device is evaluated does not allow for the

bandwidth cut off to be different for each of the device’s body. As a result, the limits

must be set such that the response of each of the device’s bodies are not compro-

mised. Examining Figures 3.5(b), 3.5(d) and 3.5(f), there appears to be a frequency

limit on each side of the incident wave forcing frequency where the response error

starts to increase rapidly for each of the device’s bodies - approximately 0 rad
s for the

lower frequency limit and 5 rad
s . These frequency limits roughly correspond to an

RAO value of 0.04 and 0.004 for the lower and upper frequency limits, respectively.

By precalculating the RAO for a particular parameter selection and determining the

frequencies that correspond to the RAO limit values, 0.04 and 0.004, the components

making up the solution can be limited to a bandwidth associated with that particular

parameter selection. The RAO limits found above should act as a good guideline

for other device parameter selection; however, without extensive testing the validity

can’t be known.

To display the computational benefits of limiting the bandwidth a comparison

case was done where the component oscillation frequency bandwidth was limited to

the range given above, 0 rad
s
≤ ω ≤ 5 rad

s
. These results were then compared to the

perturbation method with shared frequency improvements presented in Section 3.1.1,

the results are shown in Table 3.2.
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Table 3.2: Computational time and memory storage requirements of WEC device
response evaluation for the improved perturbation method and the improved pertur-

bation method with limited bandwidth, 0rad
s ≤ ω ≤ 5rad

s .

Perturbation Method with Shared Frequency Improvements
Truncation Level Computational Time Memory Storage

[s] [s] [bytes]
5 0.017 3848
10 0.026 12328
15 0.035 25608
20 0.059 43688
25 0.072 66568
30 0.095 94248
35 0.143 126728
40 0.182 164008
45 0.241 206088
50 0.278 252968

Perturbation Method with
Shared Frequency Improvements and Bandwidth Limitation
Truncation Level Computational Time Memory Storage

[s] [s] [bytes]
5 0.017 3848
10 0.024 11256
15 0.036 20176
20 0.039 27432
25 0.047 33912
30 0.063 40392
35 0.072 46872
40 0.075 53352
45 0.087 59832
50 0.094 66312

The results given in Table 3.2 show that there are significant computational sav-

ings to be had by using bandwidth limitation in conjunction with the shared frequency

improvements of Section 3.1.1. Although the RAO does act as a guide for bandwidth

truncation, no formal rule has been found to determine appropriate bandwidth trun-

cation for all cases. As a result, the expressions presented in the remainder of this

thesis will assume the device’s response is represented using the full frequency band-

width.
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(c) Reaction mass motion components

Figure 3.6: Absolute motion components for each body for the bandwidth limited
improved perturbation method. Solution components have been limited to oscillation
frequencies within 0 rad

s
≤ ω ≤ 5 rad

s
. Physical parameters for this simulation are given

in Table 2.1
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3.3 Significant Relative Travel

In the preceding sections a methodology was presented to evaluate the WEC motion

response induced by regular wave forcing and periodic variations of an intrinsic con-

trol parameter. Given that the evaluation process is fast, robust and programmable,

it can be embedded in an optimization routine used to search for optimal amplitude

and phase of the control parameter. In that process, the obvious choice of objective

function is the negative of the average absorbed power and the calculation of that

metric is presented in Chapter 4. However, the WEC’s motion response for a particu-

lar variation of the control parameters must not violate real world travel limitations.

In keeping with the use of closed form expressions to this point, this section presents

a closed form expression to gauge the relative travel between the bodies of a WEC

and compe it to allowable levels.

As presented in Section 3.1.2, assuming a complete solution, the device’s response

can be adequately represented with significantly fewer solution components than that

of the raw methodology presented in the previous chapter. This compressed solution

representation, shown in Equation (3.1), can be easily modified to describe the rel-

ative motion between the WEC’s bodies by evaluating relative travel component

amplitudes, ~ζ f
s
(ω) and ~ζ r

s
(ω):

~ζ f
s
(ω) = ~ζf (ω)− ~ζs(ω) (3.9)

θ f
s
(ω) = atan2

=
{
~ζ f
s
(ω)
}

<
{
~ζ f
s
(ω)
}
 (3.10)

~ζ r
s
(ω) = ~ζr(ω)− ~ζs(ω) (3.11)

θ r
s
(ω) = atan2

=
{
~ζ r
s
(ω)
}

<
{
~ζ r
s
(ω)
}
 (3.12)

The maximum absolute relative travel could be evaluated by constructing a time-

series from these relative travel components and obtaining its maximum, according

to Equation (3.14) and (3.16).



73

z f
s
(t) =

2Nmax∑
j=1

{
2|~ζ f

s
(ωj)| cos(ωjt+ θ f

s
(ωj))

}
(3.13)

z f
s
max = max

{
|z f

s
(t)|
}

(3.14)

z r
s
(t) =

2Nmax∑
j=1

{
2|~ζ r

s
(ωj)| cos(ωjt+ θ r

s
(ωj))

}
(3.15)

z r
s
max = max

{
|z r

s
(t)|
}

(3.16)

Where ωj are the discrete component frequencies governed by:

ωj = ωi − (Nmax − j + 1)ωc (3.17)

Constraint violations could be evaluated by comparing this singular maximum

value against its respective travel limitation given in Table 1.1. However, this tech-

nique would be problematic if it were introduced into an automated optimization -

a beneficial control parameter setting may be completely disregarded if a travel con-

straint was violated very infrequently. In actuality, any physical device would have

some mechanical means for preventing travel constraint violations, or end-stop colli-

sions, and it is entirely reasonable that such minuscule violations would be effectively

mitigated. As such, what is desired here is a manner to quantify the magnitude of

the violation and the level at which it persists. This condensed summary, a statis-

tical description, must be capable of describing the extent of the violation without

excessive computations.

The statistical description of the relative travel is similar to the definition of

wave height in an irregular sea: the wave component magnitudes and frequencies

are known, and the exact displacement from equilibrium is only attained through a

time series expansion[31]. The main difference in the problem at hand is that the

phase of the relative travel components are known, whereas they are assumed to be

random, or Gauss distributed, in sea-state analysis. In sea-state analysis, a simple

closed form expression using a probabilistic based approach is used to evaluate wave

height metrics, avoiding the generation, storage, and analysis of a detailed time-series.

A common wave height metric used by ocean engineers is a significant wave height -

the average of the highest one-third of the waves produced by a given sea-state.
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(b) Spar-Reaction Mass

Figure 3.7: Relative motion response. Physical parameters for this simulation are
given in Table 2.1.

Because of the similarity between the problems, the sea-state analysis techniques

will be used to guide to generate a useful relative travel metric. To do so, two

assumptions about the relative motion solution components must made:

1. The relative travel components are assumed to be within a narrow bandwidth.

2. The known component phases must be neglected and the components phases

will be assumed to be random.

The first assumption ensures that the majority of local maxima and minimas associ-

ated with the relative travel of the WEC’s bodies remain above and below the zero

crossing, respectively. This is a valid assumption, as shown in Figure 3.3, and dis-

cussed in Section 3.2: the motion components which are of a significant amplitude

tend to fall within a relatively narrow bandwidth.

The second assumption allows for the variance of each component to be summed

together to obtain the variance in the overall travel. As shown in Figures 3.8(a) and 3.8(b),

the relative travel component phases are not Gaussian; however, by neglecting the

known phase and assuming a Gaussian distribution, this particular device response is

encompassed by all the possible device responses created with relative travel compo-

nents of the given magnitude. The random phase assumption enables one to determine

the probability that, for the given relative travel component magnitudes, the relative

motion exceeds a particular height.
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(b) Spar-Reaction Mass

Figure 3.8: Relative motion component magnitudes and phases. Physical parameters
for this simulation are given in Table 2.1. Note: the component magnitudes have been
multiplied by two to adhere with the complex conjugate simplification introduced in
Section 2.4.

With these assumptions the probability density function for the WEC bodies’ rel-

ative travel heights, Hr, can be modelled as the Rayleigh distribution given below[31]:

p(Hr) =
Hr

4m0

e

(
− H2

r
8m0

)
(3.18)
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This probability density function is solely dependent on one parameter, the zeroth-

ordered moment of the solution components’ variance density spectrum:

m0 =

∫ +∞

−∞
|~ζ(ω)|2dω

= ωc

2Nmax∑
j=1

|~ζ(ωj)|2 (3.19)

Where the width of the discrete variance density spectrum is ωc.

lim

Pr(H  > H    )limr
_

Figure 3.9: The Rayleigh probability density function for relative motion between
a WEC’s bodies. An area calculated under this function can be used to find the
probability that the relative motion, Hr, exceeds a certain height, Hlim, shown here
in grey.

An example Rayleigh distribution of the probability density function has been

plotted in Figure 3.9. From this distribution the probability of relative travel motion

exceeding a particular height can be found for a given set of relative travel compo-

nents. This is done by integrating the probability density function from a lower-limit

of the relative travel height of interest, Hr = Hlim, to the upper-limit of Hr = H∞,

as seen in Equation (3.20).
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Pr(Hr ≥ Hlim) =

∫ +∞

Hlim

p(Hr)dHr

=

∫ +∞

Hlim

Hr

4m0

e

(
− H2

r
8m0

)
dHr

= e
−
(
H2
lim

8m0

)
− e−

(
∞2

8m0

)

= e
−
(
H2
lim

8m0

)
(3.20)

With this result, a simple and succinct measure of probability that the WEC bodies’

relative travel will exceed a certain motion height, Pr(Hr ≥ Hlim), has been found.

To ensure that the relative travel constraints given in Table 1.1 are not exceeded,

their limits are placed into Equation (3.20) as the lower limit of integration. For the

case study given in Table 2.1, the probability that the float-spar and spar-reaction

mass relative travel motions exceeded their limits was found to be essentially zero,

as shown in Figure 3.10. This result is expected as the inflated absolute maximum

relative travel height that could occur, found by summing the set of relative motion

amplitudes given in Figure 3.3, is even less than the physical constraint.

This closed form approach gives a good indication whether or not the relative

motion constraints are likely to be violated, but it remains to include this measure

include this measure in an automated search for a good control parameter selection.

At this point, it is unclear what probability level would be acceptable. A very conser-

vative approach would be to disregard any design iterations with any probability of

a travel constraint violation; however, this would possibly eliminate some design it-

erations that have promising power absorption and managable travels. Alternatively,

what is suggested here is a sliding penalty function that would incrementally penalize

any design with incremented increases in the probability of constraint violation. A

preliminary expression for the sliding penalty function is given in Equation (3.21);

however, further investigation is needed to assess whether it is too lenient or too

strict.

Pnet = Pnet (1− αPr(Hr ≥ Hlim)) (3.21)
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Another approach could be setting a constraint on the probability of the relative

travel violating the physical travel limits. If the probability of surpassing the physical

travel limit, Pr(Hr ≥ Hlim), were to exceed the constraint, Prmax, the design iteration

would be disregarded.

H
lim

(a) Float-Spar

H
lim

(b) Spar-Reaction Mass

Figure 3.10: Physical relative travel constraints are shown over the probability den-
sity function. The relative height travel constraints, Hlim, were taken as twice the
amplitude constraints given in Table 1.1. Physical parameters for this simulation are
given in Table 2.1
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Chapter 4

Net Power Absorption

In the previous chapter, the perturbation method was improved by exploiting known

repetition in some of the calculations, and an ability to limit the extent of calcula-

tions in the frequency domain. With these improvements, the motion response of a

WEC, subject to regular waves and periodically varying control parameters, can be

evaluated in a timely manner. However, to determine the benefits of a particular

control strategy, there remains a need for a fast, accurate calculation of power that

can be used as a metric for comparison of control strategies. In Section 4.1, a means

to calculate average gross power absorption by the power take-off unit is investigated.

Unfortunately, this does not provide a complete image of the net power absorption

of the device; to produce the desired effective-mass variation control, energy must be

consumed. In Section 4.3, a means to accurately quantify the average power con-

sumed to actuate the effective mass for any given control wave form is provided.

This provides the user with the ability to accurately analyze the net benefit asso-

ciated with the addition of a periodically varying effective mass term, and provides

a valuable tool to quantify the desirability of a particular control scheme within an

optimization.
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4.1 Gross Power Absorption Expression

For the purposes of this study, the power take-off has been modeled as a linear vis-

cous dashpot. The force applied over a linear viscous dashpot is equal to the relative

velocity of the float and spar multiplied by the dashpot’s damping coefficient.

As suggested in Section 3.1.2, once the solution is complete, all levels’ compo-

nents can be compressed – terms with like frequencies are combined and the solution

is expressed as a single summation across an array of frequency-dependent terms.

This solution compression results in a significant reduction in the number of com-

ponents required to accurately represent the relative motion of the device, and will

significantly reduce the computational requirement of the power-absorption function.

A compressed expression for the relative displacement and velocity of the float and

spar bodies are given below in Equations (4.1) and (4.2). Here, ωj corresponds to

the component oscillation frequency under consideration with amplitude 2|ζ f
s
j| and

phase θ f
s
j, which are a result of the complex summation of all the level’s components

with an oscillation frequency equivalent to ωj.

z f
s
(t) =

2Nmax∑
j=1

{
2|ζ f

s
(ωj)| cos(ωjt+ θ f

s
(ωj))

}
(4.1)

ż f
s
(t) =

2Nmax∑
j=1

{
2ωj|ζ f

s
(ωj)| sin(ωjt+ θ f

s
(ωj))

}
(4.2)

Where

ωj = ωi − ωj(Nmax − j) (4.3)

~ζ
(j)
f
s
,N

= ~ζ
(j)
f,N − ~ζ

(j)
s,N (4.4)

θ
(j)
f
s
,N

= atan2

=
{
~ζ
(j)
f
s
,N

}
<
{
~ζ
(j)
f
s
,N

}
 (4.5)
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The energy dissipated over the linear viscous dashpot is then the time integration

of the force applied over the dashpot multiplied by the relative velocity between the

float and spar.

E =

∫
f(t)ż f

s
(t)dt (4.6)

=

∫
cgż

2
f
s

(t)dt (4.7)

The average power dissipated over the linear dashpot is analogous to the average

power absorbed by a WEC’s power take-off, and is found by dividing the total energy

dissipated over the dashpot by the device’s oscillation period, T :

Pavg =
cg
T

∫ T

0

ż2f
s

(t)dt (4.8)

Substituting Equation (4.2) in Equation (4.8) results in:

Pavg =
cg
T

∫ T

0

[
2Nmax∑
j=1

{
2ωj|ζ f

s
(ωj)| sin(ωjt+ θ f

s
j)
}]2

dt (4.9)

The relative velocity squared in Equation (4.9) results in each component being mul-

tiplied by each other component in the compressed solution, producing 4N2
max terms

in the integrand. Each of these terms can be categorized into three definite integral

types based on their oscillation frequency and phase. The first type occurs when a

portion of the motion response is multiplied by itself:∫ T

0

sin(at+ b)2dt =
T

2
+

sin(2b)− sin(2b+ 2aT )

4a
(4.10)

The second type occurs when a portion of the motion response is multiplied by another

portion of the response with a different oscillation frequency and phase:∫ T

0

sin(at+ b) sin(ct+ d)dt = −a(cos(b+ aT ) sin(d+ cT )− cos(b) sin(d))

a2 − c2

+
c(cos(d+ cT ) sin(b+ aT ) + cos(d) sin(b))

a2 − c2
(4.11)
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Finally, the third type occurs as a special case of the second type where the two

multiplied responses oscillate at the same frequency but have a differing direction of

phasor rotation. The solution provided below eliminates the possibility of having a

zero in the denominator of Equation (4.11).∫ T

0

sin(at+ b) sin(−at+d)dt =
sin(b− d+ 2aT )− sin(b− d)

4a
− T cos(b+ d)

2
(4.12)

The power associated with each relative motion component is evaluated by it

being multiplied by all of the components making up the solution; the oscillation

frequency and phase of the components being multiplied are then used to determine

the definite integral type and the average power associated with the term is evaluated.

By summing each of these averaged absorbed power terms, the gross average power

absorption by the WEC can be found.

4.2 Gross Power Absorption Convergence Analy-

sis

To have a true average power, the time over which the definite integral of Equa-

tion (4.9) is evaluated should be a full period of periodic relative motion between the

float and the spar, T . To determine this period for a device response with a large num-

ber of oscillatory components is extremely difficult. As a result, an approximation of

Equation (4.9) is used to generate an accurate estimate of the average power absorbed.

To verify this approximation, the average absorbed power is first found for a rela-

tive motion time-series created using traditional time-domain based techniques. First,

a time-domain simulation for the case study described in Table 2.1 is evaluated for an

extended period of time – where there is little doubt that the motion has converged

on steady state motion. Second, the end time of the simulation is set to the upper

limit of the integration interval, while the lower limit of the integration interval is

varied. The size of the interval will be dependent on how far the back in time the

lower limit is taken. In doing so, the power is calculated at multiple different interval

sizes to determine an adequate size at which the absorbed power converges. In this

process, a trapezoidal numerical integration technique is used.
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Figure 4.1: Convergence on a true average power. A numerically integrated average
power for the time-domain’s motion response is shown in black, where the lower limit
of the integration interval was extended from the end of the simulation to time zero.
A series of definite integrals were carried out for the perturbation method simulation,
where the upper-limit of integration was varied from time zero to the end of the
time-motion response.

As shown in Figure 4.1, the average power absorbed by the linear viscous dashpot

begins to converge on a average value with an integration interval greater than a thou-

sand seconds. As shown, an insufficiently large interval could result in an inaccurate

estimate of the absorbed power – the oscillatory motion exhibited in the convergence

of the average absorbed power in can be attributed to an under- or over-estimate

of the device’s full period. As the size of the time interval is increased, the portion

of the response below or above an incomplete period becomes less significant, and

the average absorbed power begins to converge. If the lower limit of the interval is

extended too far, the integration begins to pick up the transient response, resulting

in inaccurate estimate of the average power absorbed.
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The approximation of the average absorbed power for the perturbation method

solution components can be found using a similar technique. The solutions of the

definite integrals found in Equations (4.10)-(4.12) require only the upper limit of in-

tegration to be set. If the upper limit is set to a sufficiently long time, the motion

response between the float and spar are expected to have gone through a significant

number of cycles, making the influence of a partially completed cycle become increas-

ingly smaller. Shown in Figure 4.1, any upper limit of integration larger than 1000

seconds will provide a reasonably accurate approximation to the average absorbed

power. Because the average absorbed power is a closed form expression, it does not

require a time-series response. As a result, the upper-limit of integration can be set

to a very long period of time to ensure the definite integral approaches the correct

absorbed power at no additional computational cost.

The power absorption calculation is, however, heavily dependent on the number

of levels used to approximate the motion response in the perturbation method. Con-

tinuing with the example problem of Section 2.5, the power absorption was evaluated

using an upper-limit of integration of a thousand seconds at each of the levels used

to provide the approximate motion response. As displayed in Figure 4.2, the pertur-

bation method average power absorption approximation approaches the value found

by the time-domain results in a exponentially decaying manner. This was found to

be the case in all tests done where the periodically varying variable inertia unit had

a non-negligible effect on the response of the system.

The result obtained by the perturbation method is quite similar to that of the

value determined by the time-domain approximation. Because both of these values

are approximations of the average absorbed power, one cannot say which is the true

value. However, it is a good indication that the approximations are valid if their

results are close in magnitude.

In the instance shown in Figure 4.2, the average power absorbed with the zeroth

level alone, equivalent to a linearally controlled system, has a smaller absorbed power

than the converged value over many levels. This suggests that the amount of power

absorbed by the system is increasing as a result of the periodically varying effective

mass for this particular scenario. This would suggest that there is indeed a benefit

to periodically varying the effective mass in that particular scenario; however, the
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Figure 4.2: The number of levels required in the motion response to convergence on
a true average power for the perturbation analysis. A series of definite integrals were
carried out upon each level, where the upper-limit was set to a value of 1000 seconds.

power required to provide the inertial arms actuation associated with the variation

in the effective mass may result in no net benefit. In Section 4.3 the average power

associated with the inertial arm actuation is investigated.
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4.3 Variable Effective-Mass Unit Kinematics & En-

ergy Consumption

To this point, a methodology has been developed to evaluate both the motion re-

sponse and the average absorbed power of three-body wave energy converter with a

periodically varying effective mass term. To accurately analyze the net benefit asso-

ciated with the addition of a periodically varying effective mass term, it is required

to accurately quantify the energy consumed providing the effective mass variation.

In Section 4.3.1, a basic design concept for a variable effective-mass unit is pre-

sented. This design concept provides the foundation for a kinematic analysis, which,

in turn, allows the calculation of consumed power to be completed. Although the

analysis presented is specific to one particular design concept, the methodology used

could be adapted for variations on that concept.

The kinematic analysis of the variable effective-mass unit presented in Section 4.3.2

provides a means to translate the device’s motion response, z(t), and effective mass

variation, m4(t), into a complete description of the inertial arm’s radial motion. Sec-

tion 4.3.3 provides a kinetic analysis to evaluate the instantaneous torque required

actuate the inertial arms. Finally, in Section 4.3.4, the various ways in which the

variation of effective mass could consume power are identified and measured for a

particular case study.

4.3.1 Control System Design Concept

As described in Section 1.3.4, the SyncWave wave energy converter uses both variable

power take-off damping and a variable effective-mass unit as control levers to tune

the device. Up to this point, a particular wave form of the effective mass term has

been prescribed without any concept of how the inertial arms of the device would

actuate in time in order to provide this variation. In this section, a possible physical

design of the variable effective-mass unit is provided.

The variable effective-mass unit design is subject to some physical constraints, as

well as some parameters that have been previously specified by Beatty et al in [16].

Device parameters from this work, such as the maximum effective mass, ball screw
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Figure 4.3: Variable effective-mass unit parameter design

lead, and spar hull radius, have been Froude scaled and presented in Table 1.1. Other

device parameters have yet to be specified and will be derived for the design concept

presented here.

The inertial arm(s) of the unit are assumed to rotate about a fixed pivot connected

via a bracket to the ball screw. To allow the for a full 90◦ of rotation, the length of

the inertial arm has been taken as the radius of the spar hull less the ball screw and

inertial arm radii, Equation (4.13).

L = R− rbs − rrod (4.13)

The elevation angle exhibited by the inertial arm is in accordance with the prescribed

effective mass. A maximum inertia, or effective mass, that can be provided by the

unit corresponds with a inertial arm elevation of 90◦. If the scaled maximum effective

mass of Table 1.1 is used, the maximum inertia required by the unit can be found by

multiplying by the square of the ball screw’s lead, l.

Jmax = mmaxl
2 (4.14)
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To determine the size and mass parameters of the inertial arm(s), a specific simple

cross sectional shape is assumed. For this hypothetical design, it is assumed the shape

of the inertial arm(s) is a slender cylindrical rod. In the position where the inertial

arm is perpendicular to the ball screw’s rotational axis, the mass of the rod required

to achieve the maximum inertia value can be found according to Equation (4.16).

Jmax = Narmmrod

[
L2

3
+ (rbs + rrod)

2

]
(4.15)

mrod =
mmaxl

2

Narm

1[
L2

3
+ (rbs + rrod)2

] (4.16)

Where Narm is the number of inertial arms, rbs is the outer-most radius of the ball

screw, and R is the radius of the spar hull. The mass of each rod can be related to

the rod’s radius, rrod, by specifying a material density, ρ:

mrod = ρπ(R− rbs)r2rod (4.17)

Although any number of inertial arms are theoretically possible, practical imple-

mentation may not allow sufficient space for the rods to descend fully towards the

ball screw (i.e. θ = 0, Figure 4.4). For the purposes of this study, four equally sized

inertial arms have been selected. To ensure that a practical implementation of the

four inertial arms is possible, the following inequality must hold true:

Figure 4.4: Top view of variable effective-mass unit with contracted inertial arms
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rrod <
rbs

1− 1√
2

(4.18)

This ensures that each inertial arm can expand and contract freely without con-

tact with the other inertial arms. Lead was selected as the material of choice for the

inertial arms for its high density. Equations (4.16) and (4.17) were used to evaluate

the required radius of each inertial arm and the physical parameters defining the

variable effective-mass unit are given in Table 4.1.

Table 4.1: Froude scaled variable effective-mass unit physical parameters.

Parameter Model
Ballscrew
Lead [ m

rad
] 0.006228

Radius [m] 0.013
Inertial Arm
Length [m] 0.2636
Radius [m] 0.0234
Number 4
Effective Mass
Control Range
Lower Limit [kg] 850
Upper Limit [kg] 13000

The moment of inertia of each inertial arm can be found using an inertial arm fixed

frame of reference located at the pinned point A, shown in Figure 4.6 for one arm.

Each inertial arm is modeled as a slender rod rotating about its end. Equation (4.19)-

(4.21) give the moments of inertial relative to that choice of reference point:

Ixx =
mrodL

2

3
(4.19)

Iyy =
mrodL

2

3
(4.20)

Izz =
mrodr

2
bs

2
(4.21)

Each of these moments of inertia can then be rotated and shifted using the parallel

axis theorem onto a fixed frame reference. The inertial arm angle, θ, can be repre-
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sented as a function of the pre-prescribed desired change in effective mass through

time, Figure 4.5. The effective mass at any angle can be shown to be:

m4(t) =
J

l2
(4.22)

m4(t) =
Iyy sin θ(t) + Izz cos θ(t) +mrodr

2
rb

l2
(4.23)

m4(t) =
Iyy(1− cos2 θ(t))1/2 + Izz cos θ(t) +mrodr

2
rb

l2
(4.24)

Organizing Equation (4.24) in powers of cos θ results in a quadratic function.

(I2zz + I2yy) cos2 θ(t)− 2(m4(t)l
2 −mrodr

2
rb)Izz cos θ(t) + (m4(t)l

2 −mrodr
2
rb)

2 − I2yy = 0

(4.25)

Solving for θ results in four possible solutions, one in every quadrant, as would be

expected.

θ(t) = cos−1
[
2(m4(t)l2−mrodr2rb)Izz±

√
4(m4(t)l2−mrodr2rb)2I2zz−4(I2zz+I2yy)((m4(t)l2−mrodr2rb)2−I2yy)

2(I2zz+I
2
yy)

]
(4.26)
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Figure 4.5: Inertial arm rotation angle as a function of the prescribed variation of the
effective mass.
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4.3.2 Variable Effective-Mass Unit Kinematics

The variable effective-mass unit has several degrees of freedoms, all oscillating with

the motion of the spar. To determine an accurate measure of the energy required

to actuate the effective mass in time, it is necessary to consider all of these motions

that will have an effect on the torque required to adjust the rotational position of the

inertial arm. In this analysis, two different coordinate systems will be used. These

coordinate systems have been shown in Figure 4.6.

R

x
yz

X
Y

Z

A

Figure 4.6: Coordinate systems for derivation of energy required to actuate the rota-
tional position of the inertial arms. Note: in the orientation shown, both the x and
X coordinates are pointing out of the page.
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The angular velocity of the inertial arm about point A on the device can be

attributed to the change in rotational position of the inertial arm about its x-axis

and the angular velocity about the Z-axis due to the rotational motion of the ball

screw.

~ωA(t) = Ω(t) ~K + θ̇(t)~i (4.27)

To add these terms together properly, it is required that the both terms be rep-

resented in the same coordinate system. Rotating the ball screw’s angular velocity

onto the inertial arm fixed frame:

~ωA(t) = θ̇(t)~i+ Ω(t) sin θ(t)~j + Ω(t) cos θ(t)~k (4.28)

Similarly, the angular acceleration of the inertial arm about point A can be at-

tributed to the change in rotational velocity of the inertial arm about the x-axis, the

change angular velocity about the Z-axis due to the rotational motion of the ball

screw, and the rotational velocity of the inertial arm multiplied by the change in the

x-axis through time resulting from the ball screw motion.

d~ωA(t)

dt
= ~αA(t) = θ̈(t)~i+ Ω̇(t) ~K + θ̇(t)~̇i (4.29)

The change in the x-axis through time can be represented as the cross-product of

the ball screws angular velocity and the ~i unit vector.

~αA(t) = θ̈(t)~i+ Ω̇(t) ~K + θ̇(t)(Ω(t) ~K ×~i) (4.30)

All terms along the Z-axis are then rotated onto the inertial arm fixed frame, resulting

in the angular acceleration of the inertial arm about each axis of the body fixed frame

given by Equation (4.31).

~αA(t) = θ̈(t)~i+ (Ω̇(t) sin θ(t) + θ̇(t)Ω(t) cos θ(t))~j + (Ω̇(t) cos θ(t)− θ̇(t)Ω(t) sin θ(t))~k

(4.31)

4.3.3 Variable Effective-Mass Unit Kinetics

Using Euler’s three equations, the net torque about each axis of a rotating rigid body

can be related to the moment of inertia tensor and the time-rate of change of the
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angular momentum of the body, as in Equations (4.32)-(4.34). The net torque about

the x-axis can be attributed to the force due to gravitational effects and the force

required to maintain the desired rotational position of the inertial arm. The torque

about the other axes are the torques applied to the structural linkage. Although the

second and third expression are useful in evaluating the structural strength required in

designing the inertial arm linkages, it is the torque required to maintain the rotational

position of the inertial arm about its x-axis, τA, that is of particular interest.

τx = τA(t)− mrodgL

2
sin θ(t) = Ixx

dωx(t)

dt
+ (Izz − Iyy)ωy(t)ωz(t) (4.32)

τy = Iyy
dωy(t)

dt
+ (Ixx − Izz)ωz(t)ωx(t) (4.33)

τz = Ixx
dωz(t)

dt
+ (Iyy − Ixx)ωx(t)ωy(t) (4.34)

This form of Euler’s equation only applies if the point A, about which moments

are taken, is stationary. The variable effective-mass unit is enclosed within the spar

and, as a result, the entire unit will accelerate with the heave motion of the spar,

z̈s. This requires the addition of a mrod~rG/A × ~aA(t) term to the right hand side of

Equation (4.32). Where ~rG/A is the distance to the centre of mass relative to point

A and ~aA is the acceleration of the spar. For the orientation shown, this is half the

length of the inertial arm along the z-axis.

τA(t)−mrodgL

2
sin θ(t) = −mrodL

2
~k×z̈s(t) ~K+Ixx

dωx(t)

dt
+(Izz−Iyy)ωy(t)ωz(t) (4.35)

Solving for the required torque:

τA(t) =
mrodgL

2
sin θ(t) +

mrodL

2
z̈s(t) sin θ(t)Ixx

dωx(t)

dt
+ (Izz − Iyy)ωy(t)ωz(t) (4.36)

The resultant torque required is a function of the inertial arm’s position, angular

velocity, angular acceleration, the heaving acceleration of the spar body, and moment

of inertia tensors. The inertial arm’s elevation, angular velocities, and acceleration

– found using Equations (4.26), (4.28), and (4.31), respectively – can be substituted

back into the required torque expression with a time series heave motion of the spar

and evaluated using the methodology outlined in Section 3.1.2, to give an expression
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of the torque required to maintain the inertial arm’s radial position at any instant in

time:

τA(t) =
mrod(g + z̈s(t))L

2
sin θ(t) + Ixxθ̈(t) + (Izz − Iyy)Ω2(t) sin θ(t) cos θ(t) (4.37)

The angular velocity of the ball screw, Ω(t), is a result of the relative motion

between the spar and reaction mass:

Ω(t) =
żs(t)− żr(t)

l
(4.38)

τA(t) =
mrod(g + z̈s(t))L

2
sin θ(t) + Ixxθ̈(t) + (Izz − Iyy)

(żs(t)− żr(t))2

l2
sin θ(t) cos θ(t)

(4.39)

Substituting Equation (4.26) and its second derivative back into Equation (4.39)

results in a torque expression that depends solely on the response of the spar, the

reaction mass, and the variable effective-mass control parameters. Unfortunately, this

substitution results in Equation (4.39) becoming heavily non-linear. Unlike the previ-

ous motion response analysis, the torque required to maintain the rotational position

of the inertial arms can not be modeled as the super position of oscillatory compo-

nents. Instead, the analysis requires a time-series response of the spar and reaction

mass to evaluate the torque at every time-step. This does not nullify the benefit of

the perturbation method, as the time-series response of these bodies can be produced

from the perturbation method’s components much quicker than a numerically inte-

grated time-domain equivalent.

4.3.4 Variable Effective-Mass Unit Average Power Consump-

tion

The instantaneous power required to maintain the inertial arms path of motion at

any given moment can then be evaluated by multiplying the instantaneous torque by

the rotational velocity of the inertial arm about point A, Equation (4.40).

P1(t) = τA(t)θ̇(t) (4.40)

This model assumes that if the torque required to maintain the inertial arms’

position is positive and the angular velocity of the inertial arm is negative, or vice
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versa, that the device is capable of absorbing energy. Depending on the electrome-

chanical device design, this may not be true. Two other scenarios are presented as

possibilities. First, the device is not capable of absorbing energy during braking and

it is assumed to be lost.

P2(t) =

{
τA(t)θ̇(t) τA(t)θ̇(t) ≥ 0

0 τA(t)θ̇(t) < 0
(4.41)

Second, the system can not be back-driven and, as a result, instead of absorbing

that power, the unit is required to input the power to adjust the inertial arms.

P3(t) = |τA(t)θ̇(t)| (4.42)

A plot showing the instantaneous torque and the three different instantaneous

power scenarios through time is given for the case study used through the duration

of this thesis in Figure 4.7.

To determine an appropriate measure of average power required to actuate the

inertial arms, it is required to take the mean instantaneous power over its period. The

average power to actuate the inertial arms is not solely dependent on the rotation

of the inertial arm in time, but also the motion of the spar and the relative motion

between the spar and reaction mass. As a result, a closed form expression for the

instantaneous power’s period is not easily found. To approximate the true average

power, the time series over which the instantaneous power is evaluated is extended

in time and the mean is taken of its values. Given a sufficiently long time series, the

effect of an additional partial cycle on the overall mean will become negligible. A

plot showing the convergence to a true average power for each of the actuation power

scenarios discussed above has been displayed in Figure 4.8.

The average net power absorbed by the device can then be evaluated as the average

actuation power subtracted from the gross average power absorbed by the power take-

off unit given in Section 4.1.
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Figure 4.7: Instantaneous torque and power requirements of the variable effective-
mass unit for the case study parameters given in Table 2.1. Three different power
requirement scenarios are given according to possible physical designs.
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Chapter 5

Conclusions & Future Work

5.1 Main Findings

The work presented in this thesis has provided a new means of evaluating the re-

sponse of a WEC device subject to regular wave forcing and a periodically varied

intrinsic physical parameter. The methodology developed provides the response as a

closed-form expression using a perturbation method based approach. This technique

streches the commonly accepted bounds of WEC frequency-domain analysis methods

and is of much practical importance in the evaluation of control techniques in the

field of WEC technology.

Prior to this work, the analysis of a WEC’s time-varying physical control param-

eters was strictly limited to the use of time-domain numerical integration. The work

presented in this thesis provides a new computationally efficient means of analyzing

the response of these devices and provides all the necessary components required for

a design optimization. This allows for any point absorbing WEC with unique device

geometry and/or control parameters to be refined at the conceptual level in a com-

putationally efficient manner. A potential optimization process, using the functions

provided in this thesis, is presented below in Figure 5.1.
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Figure 5.1: A flowchart depicting a potential automated optimization routine using
the functions provided in this thesis.
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For the developed methodology to have an advantage over existing techniques, the

computational speed and memory required to evaluate the device’s response must be

comparable, or better, than that of traditional numerically integration analysis. This

objective was achieved by providing a closed-form expression to evaluate the device’s

response in the frequency-domain. This closed-form solution provides a robust and

concise description of the WEC motion. After ensuring the closed-form solution was

accurate, as demonstrated in Figure 2.6, and applying essential time-saving tech-

niques, it was found that the developed methodology does drastically reduce both

computational time and memory required to evaluate the device’s steady-state re-

sponse, Table 3.1.

The perturbation based approach allows for the bodies response to be represented

in a finite set of solution components, each defined by a complex amplitude and

frequency, rather than a time-series containing hundreds or thousands of states as

required in conventional techniques. This solution representation was used to create

a closed form expression to determine the likelihood that resulting relative motion

between bodies of the WEC exceed a given height limit. This expression was used to

assess the probability that a WEC’s physical travel constraints would be violated for

a given regular input and control parameter variation. The method provides a much

more computationally efficient means of evaluating constraint violations than a time-

series based approach. In addition, it is easily adjusted to reflect a WEC designers

confidence in the mechanical and electrical devices that manage end-stop collissions.

To quantitatively compare the desirability of a particular design iteration, a means

to translate the steady-state motion response information into an estimate of the de-

vice’s average gross absorbed power was developed. This calculation is consistent

with existing frequency-domain approaches in that it provides an closed form expres-

sion that does not require processing time series data to evaluate gross power. To

determine the average net-power absorbed by the WEC an estimate of the energy

required to actuate the effective-mass term was created by considering a conceptual

design for the effective mass device. Unfortunately, due to the nature of the prob-

lem, this expression requires the use of a time-series motion response to determine

the energy required. However, the creation of a time-series motion response with the

developed perturbation method is quite computationally efficient and the process of

evaluating the net-power in this manner, rather than with a numerically integrated
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approach, is still computationally advantageous.

The closed form nature of the device’s motion response given by the perturbation

method, as well as the closed form expressions used to charactize the device’s response

for the gross absorbed power and constraint violation metrics, bring a great deal of

benefit to development process of a device’s control technique design. The closed

form representation facilitates direction calculation of response, constraint violation,

and power absorbed.

In terms of time savings, consider the following factors that determine the compu-

tational time required for a global optimization technique, a particle swarm algorithm,

to converge on an optimal effective mass variation waveform:

• The number of initial particles, m4(t) parameter sets, would be around 100.

• 1000 iterations of the particle swarm optimization routine would be required to

drive each particle toward a global maximum of the device’s average absorbed

power.

• As such, for 100 initial particles, 100,000 total control parameter design itera-

tions could be required.

• Considering the more than 7 second advantage of the proposed perturbation

methodology over a time-domain analysis, there is a 700,000 time savings that

could, considerably, be seen. In addition, the time required to post-process the

time-series information to provide gross absorbed power and constraint violation

metrics, would add to the savings realized.

• The 700,000 seconds of computational time translates to roughly 8 days of

waiting time for the human designer. Using the perturbation method outlined

in this work, roughly 4 hours would be needed to determine the optimal control

parameter variation for a single regular wave.

• If the technique is extended to irregular eas, several (8-16) regular waves would

have to be considered further exacerbating the time difference between the two

approaches.
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With these results, the work presented in this thesis has provided all the neces-

sary required elements for a design optimization routine; a means to evaluate the

motion response of a device, the net energy absorbed by the device, and the ability

to assess constraint violations. The functions created have drastically reduced the

computational time required to evaluate a potential design iteration and provide an

advantageous alternative to traditional WEC analysis techniques. However, to ex-

pand the range of control circumstances that can be investigated, there are additional

steps that need to be taken. These additional steps are outlined in the Section 5.2.

5.2 Future Work

5.2.1 Stability Analysis

The case study control parameter setting used throughout this thesis, given in Ta-

ble 2.1, is only one of an infinite number of generator damping and variable effective

mass pairings. Other control parameter settings have been tested and were found

to converge on the appropriate solution. Unfortunately, some settings resulted in an

unstable response evaluation and were unable to converge on the appropriate solution.

To demonstrate this instability and discuss the causes of it, two solution evalua-

tion scenarios are given; one remains stable, while the other demonstrates an unstable

solution process. The first scenario, is that of the case study considered throughout

the thesis and described in Table 2.1. The second, and unstable, scenario uses a

similar set of parameters as the stable case study, but with a larger effective mass

variation amplitude, ε1. The complete parameter set for the unstable second scenario

is given in Table 5.1.

Although the two scenarios have similar control parameter settings, the response

evaluation produces two very different results. The component construction of the

reaction mass response has been given for the first eight levels of the solution for both

scenarios in Figures 5.2 and 5.3. Also included in these figures are the reaction mass’

response amplitude operator (RAO), Equation (3.7), plotted over the compressed

representation of each scenario’s solution - constructed from the components ~ζ(ωj)
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Table 5.1: Wave and physical control parameters used to demonstrate an unstable
response evaluation case.

Parameter Name Units Value
Hs Significant Wave Height [m] 0.4

ωi Incident Wave Frequency
[

rad
s

]
1.725

cg Generator Damping
[

Ns
m

]
3000

ε0 Effective Mass Bias [kg] 10000
ε1 Effective Mass Amplitude [kg] 3000
φ1 Effective Mass Phase [rad] 0

ωc Effective Mass Control Frequency
[

rad
s

]
0.2

As shown in Figure 5.3, the components of the unstable evaluation process con-

tinually grow at each successive level. The growth of these components appears to

originate at the component with a oscillation frequency of ωj = 1.725rad
s

, which then

begins to affect the growth of neighbouring components. In the stable solution, Fig-

ures 5.2, this trait is not seen and the solution component magnitudes continually

decrease upon each successive level.

The instability of the second case is best explained using the device’s response

amplitude operator(RAO), first introduced in Section 3.2 in Equation (3.7). It is

first noted that the RAO for the unstable scenario is significantly higher than the

stable solution’s RAO. This is a result of the direct relationship between the RAO

and the effective mass variation amplitude, ε1, Equation (3.7). This effects the peak

value of the RAO and also scales the magnitude of the RAO at any frequency. The

construction of the solution, as described in Section 2.4.2, is a recursive pattern in

which each level’s solution amplitude provides a portion of the forcing applied to the

two neighbouring components on the succeeding level’s equations of motion. The

RAO acts as a transfer function between the solution components at each level and,

as a result, if the product of two neighbouring component’s RAO value is greater

than unity, the magnitude of the preceding level’s component will grow rather than

decay and will result in the solution response becoming unstable.
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Figure 5.2: A stable perturbation approach solution evaluation. Physical parameters
for this simulation are given in Table 2.1
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Figure 5.3: An unstable perturbation approach solution evaluation. Physical param-
eters for this simulation are given in Table 5.1. Note that the vertical axis’ scale for
borth plots is quite different from the corresponding polots in Figure 5.2.
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For example, consider the evaluation of component ω = 1.725 rad
s

in the unstable

scenario shown in Figure 5.3. For a given input component motion, the output mo-

tion grows by a factor of 3.52. This new term will drive the input of a succesive level

at a frequency of 1.725 rad
s
− ωc = 1.525 rad

s
. The RAO plot of Figure 5.3 shows that

this component will be 36.1% of its input. This output will then provide an input

for a component back at ω = 1.725 rad
s

(ω = 1.725 rad
s
− ωc + ωc). At that stage the

original component has grown by 352% and then contracted by 63.9% leavig an input

that is 127% of the original component. This then repeats across the next levels.

In the stable case, the product of neighbouring RAO values, at ω = 1.725 rad
s

and

ω = 1.525 rad
s

, is less than unity and a stable evaluation process results.

It is important to note that the effective mass variation parameter does not effect

the shape of the RAO - it is only responsible for its magnitude. On the other hand,

the remaining two control parameters, generator damping cg and the effective mass

bias ε0, greatly effect the shape of the RAO. Figure 5.4 shows how the selection of

generator damping can change not only the peak magnitude of the reaction mass’

RAO, but also the shape.

c  = 20,000 Ns/mg

c  = 10,000 Ns/mg

c  = 5,000 Ns/mg

c  = 2,500 Ns/mg

Figure 5.4: RAO shape changes with varied generator damping. Other physical
parameters can be found in Table 5.1.

It is believed that these high RAO values are, in part, due to an improper repre-

sentation of the added mass, the radiation damping, and an unrealistically low value
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of damping on the reaction mass. As discussed Section 2.2, a constant coefficient

model was adopted. This model does not take into the frequency dependence of the

added mass and radiation damping parameters. The frequency dependence of these

terms, as well as a higher level of damping on the reaction mass, is expected to re-

sult in peak reductions on the RAO and possibly limit the domain of cg, ε0, and ε1

combinations that lead to instability. As shown in Figure 5.5, the unreasonably low

reaction mass damping coefficient of 10Ns
m

is largely responsible for the high RAO

values and consequently, the unstable nature of the solution. At this point no idus-

trial design exists for the effective mass system, and the true value of the damping

remains speculative.

The travel constraint analysis presented in Section 3.3 is capable of assessing a

penalty or disregarding solutions that do go unstable. However, the current dynamics

model is believed to be too restrictive and would eliminate, on an artifical concern,

a great deal of potential control strategies. Further work is needed to determine the

appropriate values of reaction mass damping, as well as the frequency dependent

added mass and damping coefficients.

c  = 800 Ns/m3

c  = 400 Ns/m3

c  = 200 Ns/m3

c  = 10 Ns/m3

c  = 1000 Ns/m3

Figure 5.5: RAO shape changes with varied reaction mass damping. Other physical
parameters can be found in Table 5.1.
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5.2.2 Perturbation Methodology Extension

The effective mass variation described in Section 2.3, used throughout the work pre-

sented in this thesis, was limited to a two-term Fourier series. Although, this variation

extends upon the time-invariant control parameter studies done on the SyncWave de-

vice in [9] and [16], the variation wave form is still quite limited. To converge on the

optimal effective mass variation wave form, more Fourier series components describ-

ing the wave form must be added, allowing for a wider range of possible wave forms

to be generated by the Fourier series included within an optimization routine. In Ap-

pendix A, the means to evaluate the response of the device for a three-term Fourier

series is given to demonstrate the ability of the perturbation method to be extended.

Future work is needed to further extend the perturbation method to a larger Fourier

series and to evaluate the extended perturbation method’s important device response

characteristics; average absorbed power, net absorbed power, and travel constraint

violation.
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Appendix A

Methodology Extension to a Three

Term Control Input

The methodology developed in Chapter 2 allowed for the response of a WEC with a

periodically varying physical parameter to be evaluated. To allow for methodology

development, the wave-form of the periodically varied parameter was limited to the

first two terms of a Fourier series–a single sinusoidal wave with a bias, as described

in Section 2.3.

Although the truncated Fourier series allowed for methodology development, the

absorbed power benefit resulted from the truncated series is limited. As it stands, it

remains unknown as to the type of parameter variation that will allow for maximum

energy absorption for the device. As to not limit the possible wave-forms that can be

analyzed with the methodology developed, it is desired that variation of the physical

parameter be extended to the first three terms of the Fourier series. Although the

number of terms in the Fourier series is still relatively small, this process will show

that the methodology developed to handle the two-term series is capable of being

extended.

m4(t) = ε0 + ε1
[
ei(ωct+φ1) + e−i(ωct+φ1)

]
+ ε2

[
ei(2ωct+φ2) + e−i(2ωct+φ2)

]
(A.1)

In extending the effective mass variation to a three-term Fourier series, only two

new control parameters are introduced; an amplitude term of ε2 and a phase off-set

of φ2. By adding this additional term, the matrix form of the mass and damping

matrices of Equations (2.11) and (2.12) will need to be adjusted:
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M = ML +
ε1
2

Q
[
ei(ωct+φ1) + e−i(ωct+φ1)

]
+

ε2
2

Q
[
ei(2ωct+φ2) + e−i(2ωct+φ2)

]
(A.2)

C = CL + iωc
ε1
2

Q
[
ei(ωct+φ1) − e−i(ωct+φ1)

]
+ i2ωc

ε2
2

Q
[
ei(2ωct+φ2) − e−i(2ωct+φ2)

]
(A.3)

As shown, the linear portion of the mass and damping matrices remains un-

changed, but there is an additional non-linear term added. This added non-linear

term found in the mass and damping matrices will result in the presence of additional

forcing functions and solution components. To properly account for this change, the

assumed form of the solution for the perturbation method must be adjusted:

z(t) = z0(t) + ε1z1(t) + ε2z2(t) + ε21z3(t) + ε1ε2z4(t) + ε22z5(t) + . . . (A.4)

Substituting both the extended mass and damping matrices, Equations (A.3) and (A.3),

and the assumed form of the solution back into the device’s equation of motion, Equa-

tion (2.9), gives:

f e(t) = ML[z̈0(t) + ε11z̈1(t) + ε12z̈2(t) + . . . ] + CL[ż0(t) + ε11ż1(t) + ε12ż2(t) + . . . ] + KL[z0(t) + ε11z1(t) + ε12z2(t) + . . . ]

− ε1
2
Q
[
ei(ωct+φ1) + e−i(ωct+φ1)

]
[z̈0(t) + ε11z̈1(t) + ε12z̈2(t) + . . . ]

− iωc
ε1
2
Q
[
ei(ωct+φ1) − e−i(ωct+φ1)

]
[ż0(t) + ε11ż1(t) + ε12ż2(t) + . . . ]

− ε2
2
Q
[
ei(2ωct+φ2) + e−i(2ωct+φ2)

]
[z̈0(t) + ε11z̈1(t) + ε12z̈2(t) + . . . ]

− i2ωc
ε2
2
Q
[
ei(2ωct+φ2) − e−i(2ωct+φ2)

]
[ż0(t) + ε11ż1(t) + ε12ż2(t) + . . . ] (A.5)

Expanding the newly defined equation of motion and collecting in terms of common

εi’s, including mixed products, one obtains an infinite series of coupled ordinary

differential equations that present as one degree of freedom oscillators:
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ε01 : MLz̈0 + CLż0 + Kz0 = |~f e|12
[
eiωt+θe + e−iωt−θe

]
ε11 : MLz̈1 + CLż1 + Kz1 = −Q1

2

{[
ei(ωct+φ1) + e−i(ωct+φ1)

]
z̈0 + iωc

[
ei(ωct+φ1) − e−i(ωct+φ1)

]
ż0
}

ε12 : MLz̈2 + CLż2 + Kz2 = −Q1
2

{[
ei(2ωct+φ2) + e−i(2ωct+φ2)

]
z̈0 + i2ωc

[
ei(2ωct+φ2) − e−i(2ωct+φ2)

]
ż0
}

ε21 : MLz̈3 + CLż3 + Kz3 = −Q1
2

{[
ei(ωct+φ1) + e−i(ωct+φ1)

]
z̈1 + iωc

[
ei(ωct+φ1) − e−i(ωct+φ1)

]
ż1
}

ε11ε
1
2 : MLz̈4 + CLż4 + Kz4 = −Q1

2

{[
ei(ωct+φ1) + e−i(ωct+φ1)

]
z̈2 + iωc

[
ei(ωct+φ1) − e−i(ωct+φ1)

]
ż2
}

−Q1
2

{[
ei(2ωct+φ2) + e−i(2ωct+φ2)

]
z̈1 + i2ωc

[
ei(2ωct+φ2) − e−i(2ωct+φ2)

]
ż1
}

ε22 : MLz̈5 + CLż5 + Kz5 = −Q1
2

{[
ei(2ωct+φ2) + e−i(2ωct+φ2)

]
z̈2 + i2ωc

[
ei(2ωct+φ2) − e−i(2ωct+φ2)

]
ż2
}

...
...

...

εn1ε
m
2 : MLz̈N + CLżN + KzN = −Q1

2

{[
ei(ωct+φ1) + e−i(ωct+φ1)

]
z̈a + iωc

[
ei(ωct+φ1) − e−i(ωct+φ1)

]
ża
}

−Q1
2

{[
ei(2ωct+φ2) + e−i(2ωct+φ2)

]
z̈b + i2ωc

[
ei(2ωct+φ2) − e−i(2ωct+φ2)

]
żb
}

...
...

...

(A.6)

Where

N =
(n+m)(n+m+ 1)

2
+m a = N − (n+m) b = N − (n+m)− 1 (A.7)

Each of the second order ordinary differential equations in Equation (A.6) can be

solved as a linear system subject to steady forced vibration in the same manner out-

lined in the previous section. To ensure that the required forcing terms associated

with previous level’s solutions are present in the current expression being evaluated,

the order in which these expressions are evaluated slightly differs than the sequential

format given in Chapter 2. For the three-term problem, the ordering of the assumed

form of the solution, shown in Equation (A.4), has been given in a manner that will

allow for “sequential” evaluation. This ordering is not the only manner in which

these expressions can be solved; however, to ensure the required solution components

from previous levels are present each subsequent layer, Pascal’s triangle for complete

polynomials must be evaluated sequentially.

As shown in Figure A.1 and Equation (A.6), the extension of the methodology

to allow for a three-term Fourier series representation of the periodically varied pa-
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ε0, z0

ε1, z1 ε2, z2

ε21, z3 ε1ε2, z4 ε22, z5

ε31, z6 ε21ε2, z7 ε1ε
2
2, z8 ε32, z9

ε41, z10 ε31ε2, z11 ε21ε
2
2, z12 ε1ε

3
2, z13 ε42, z14

...
...

...
...

Figure A.1: Pascal’s pyramid for complete polynomials. The solution components
have been ordered in such a way that they can be solved sequentially.

rameter is indeed possible with some slight modifications to the evaluation ordering

and memory storage. Further added terms to the Fourier series representation will

again result in the addition of another dimension to the multinomial expansion (i.e. a

three-term Fourier series representation results in the binomial construct of Pascal’s

triangle, four-term representation results in a trinomial construct of Pascal’s tetra-

hedron, etc.). This results in a need for large number of component evaluations and

novel approach to memory storage that is beyond the scope of this work.
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