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ABSTRACT

Research into advanced wind turbine design has shown that load alleviation strate-

gies like bend-twist coupled blades and coned rotors could reduce costs. However

these strategies are based on nonlinear aero-structural dynamics providing additional

benefits to components beyond the blades. These innovations will require Multi-

disciplinary Design Optimization (MDO) to realize the full benefits.

This research expands the MDO capabilities of Horizontal Axis Wind Turbines.

The early research explored the numerical stability properties of Blade Element Mo-

mentum (BEM) models. Then developed a provincial scale wind farm siting models

to help engineers determine the optimal design parameters.

The main focus of this research was to incorporate advanced analysis tools into an

aero-elastic optimization framework. To adequately explore advanced designs with

optimization, a new set of medium fidelity analysis tools is required. These tools

need to resolve more of the physics than conventional tools like (BEM) models and

linear beams, while being faster than high fidelity techniques like grid based compu-

tational fluid dynamics and shell and brick based finite element models. Nonlinear

beam models based on Geometrically Exact Beam Theory (GEBT) and Variational

Asymptotic Beam Section Analysis (VABS) can resolve the effects of flexible struc-
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tures with anisotropic material properties. Lagrangian Vortex Dynamics (LVD) can

resolve the aerodynamic effects of novel blade curvature.

Initially this research focused on the structural optimization capabilities. First, it

developed adjoint-based gradients for the coupled GEBT and VABS analysis. Second,

it developed a composite lay-up parameterization scheme based on manufacturing

processes.

The most significant challenge was obtaining aero-elastic optimization solutions

in the presence of erroneous gradients. The errors are due to poor convergence prop-

erties of conventional LVD. This thesis presents a new LVD formulation based on

the Finite Element Method (FEM) that defines an objective convergence metric and

analytic gradients. By adopting the same formulation used in structural models, this

aerodynamic model can be solved simultaneously in aero-structural simulations. The

FEM-based LVD model is affected by singularities, but there are strategies to over-

come these problems. This research successfully demonstrates the FEM-based LVD

model in aero-elastic design optimization.
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Chapter 1

Introduction

This chapter starts by explaining the motivation of this research in section 1.1. Wind

turbine development is an established field and many researchers have already made

important contributions to the field, which are discussed in section 1.2. In section 1.3

the author lays out the research vision that underpins the contributions made in this

work. These contributions are summarized in section 1.4. This chapter closes with a

outline of the thesis in section 1.5.

1.1 Background and Motivation

An inexpensive and reliable energy supply is an important necessity for any developed

society. The conventional sources of energy are largely carbon based fuels and to a

lesser extent, hydro-electricity and nuclear. There are increasing concerns over these

conventional sources. A combination of increased demand and dwindling supply is

increasing the cost of carbon based fuels. The Heavy pollution in large population

centers is another unattractive consequence. The potential threat of climate change

is increasingly seen as a risk associated with fuel combustion. Further growth in

hydro-electricity is limited because most viable sites are already developed. Increased

utilization of Nuclear energy is possible, however disasters in Chernobyl, Three Mile

Island and more recently, Japan, highlight the risk associated with nuclear energy.

Wind turbines are increasingly becoming a popular alternative source of electricity

generation [1, 2]. Wind turbines rely on a renewable resource to generate electricity,

thus are insensitive to the supply issues plaguing carbon based energy. Furthermore

extensive research into the life-cycle costs of wind turbines have demonstrated that
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wind turbines generate their embodied energy within 4-8 months of operation with

negligible Carbon Dioxide (CO2) emissions (a major contributor to climate change)

[3]. The research by Lenzen and Munksgaard demonstrated that reduced energy and

CO2 emissions are possible by pursuing ever larger turbines. Currently, wind energy

is a mature technology in terms of technical reliability, with several corporate entities

building and managing wind farms [1]. Research by Tavner et al. has demonstrated

that the reliability of wind turbines is similar to modern gas turbines and approaching

that of steam turbines [4].

There still remain some challenges to future growth [2, 1]. The uncertainty of

wind forecasting and other technical issues prevent wide-spread integration into the

electricity grid. Environmental issues associated with noise emissions limit where

turbines can be built. The economic cost of wind energy also remains a major im-

pediment [1]. Research by Greenblatt et al. [5] demonstrated that natural gas will

remain a less expensive energy source even when carbon emissions are taxed. To

address the cost issue, the technology of wind turbines must be improved.

Rasmussen and Madsen state that the first and second priorities for wind energy

researchers are cost reduction and offshore wind energy respectively [1]. A similar

article by Thor and Weis-Taylor state that improved models for aero-elastic stability

and adaptive structures should be a high priority for research, both in the short and

long-term, in order to achieve the cost reductions [2].

The focused development of modern wind turbine technology started during the

1970s. Since then, many configurations have been tested, including vertical axis con-

figurations and two-bladed horizontal axis turbines [6]. The three-bladed horizontal

axis “Danish” wind turbine has proven to be the most cost effective and reliable

configuration [7].

Initially, commercial turbines were designed for maximum coefficient of power

(CP , ratio of power generated vs. power available) at a single wind speed [6]. To

reflect the variability in the wind resource, designers moved to maximizing the An-

nual Energy Production (AEP) [6]. With larger and larger turbines being built, the

cost of the structure has become increasingly more important. Current turbine de-

signs are being designed based on the minimum Cost Of Electricity (COE) to include

structural aspects [6]. The cost of a wind turbine is attributed to the material used

to maintain structural integrity, while the electricity generated is strongly dependent

on the aerodynamic design. Turbine design based on COE minimization is therefore

evolving towards a multidisciplinary approach. The scope of the cost models is not
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just limited to the initial capitol costs. Recent work by National Renewable Energy

Laboratory (NREL) has developed comprehensive cost models that incorporate man-

ufacturing costs, operation and maintenance, along with the balance of plant costs

[8, 9].

The driver of minimum COE is affecting wind turbines in a number of ways.

One effective way of reducing turbine cost has been increasing the size of the turbines

themselves, thereby increasing the energy produced for every foundation and electrical

connection [10, 11]. Considering the amount of wind energy available to a turbine at

a given wind speed is fixed [12], reductions in COE will come from a mix of better

structural designs and utilizing sites that have better wind resources. The search

for better wind resources has prompted increasing interest in offshore wind farms

[10]. When developing offshore sites, the economics change considerably and in these

cases, the foundations and electrical transmission become the most significant costs

[10]. These increased costs have made the economies of scale in wind turbines more

substantial. A crucial limit to the size of turbines is structural integrity. Not only

will improved structural design reduce the overall cost, it will enable developers to

take advantage of sites with better wind resources.

In summary, wind energy is a relatively benign source of electricity available at

a reasonable cost, where the winds are strong. Yet, it is important that further cost

reductions are achieved. The evolution of turbine design is moving to a more multi-

disciplinary approach. Economies of scale and interest in offshore wind farms are

driving designers to produce larger turbines. To continue this progression, efficient

nonlinear analysis tools are required to create more effective aero-structural designs

that are inherently more flexible than current designs [13]. These trends are the

primary motivation behind developing improved analysis tools for use in multidisci-

plinary design optimization.

1.2 Previous Work

This section outlines the contributions that have been made to develop larger more ef-

ficient turbines that utilize innovative structural design and multi-disciplinary design

optimization. The literature indicates that wind turbine designs are getting larger

and the design process is becoming more multi-disciplinary (see section 1.2.1). To

achieve larger turbines, engineers need to incorporate load alleviation into the design;

section 1.2.2 discusses these contributions. One of the challenges of adopting these
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innovative concepts in commercial designs is that conventional analysis techniques

are inadequate. Typically, the innovative concept is based on a geometry or property

(e.g. curved and flexible blades), that is assumed not to exist in the conventional anal-

ysis (e.g. Blade Element Momentum (BEM) theory assumes straight blades, linear

beam theory assumes stiff blades). Section 1.2.3 discusses the conventional analysis

techniques along with more advanced methods that could overcome these limitations.

Multidisciplinary design can have compounding complexity that makes it difficult for

engineers to develop optimal designs. Optimization can help engineers navigate this

complexity; accordingly many researchers have already made contributions to wind

turbine Multi-disciplinary Design Optimization (MDO). These MDO contributions

are discussed in section 1.2.4.

1.2.1 Historical Trends in Wind Turbine Design

Historical trends in wind turbine design show that turbines are likely to increase in

size in the future [14]. Historically, this growth has occurred for several reasons: there

are economies of scale, the larger turbines are higher and have access to a better wind

resource, and larger turbines allows wind farm designers to capture more wind at

exceptional locations (e.g. at the top of a hill). Although they are starting to reach

size and weight limits for onshore installations [15], their growth is sure to continue

for offshore applications [10].

Capturing more energy is only one aspect of wind energy development. As outlined

in section 1.1, the most important driver is costs. Thus increased energy capture is

only beneficial when it is only associated with limited increases in cost. The power

of the wind turbine scales with the square of the rotor diameter, while the weight

of structurally similar rotors scale with the cube of rotor diameter [15]. Considering

these scaling laws one would expect that eventually material costs would dominate

and prevent further scaling. However, studies have shown that commercial designs

are becoming more efficient and have managed to maintain close to quadratic scaling

of weight [14].

Initially, designers adopted more accurate analysis tools that allowed for less con-

servative designs [11]. More recently, the drive for further improvement has prompted

many studies into alternative materials to achieve the desired weight, strength and

stiffness properties [16, 17, 18]. At the current scale, limited use of carbon fiber is

used to achieve the desired stiffness without the weight penalty of increased material
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usage [15] and many manufacturers are turning towards stronger versions of Glass

Reinforced Plastic (GRP) for the rest of the blade [14].

These trends show that innovative structural design is an important component

to achieving overall COE reductions through larger rotor designs. Further increases

in scale will require further innovations in design, prompting much research into

advanced design concepts [14, 15] (see section 1.2.2 for more details).

This coupling between increased energy capture and innovative structural design

highlights the system interactions that are driving wind turbine design. Jackson et al.

notes much attention has been given to aerodynamic optimization (e.g. [19]) while

little MDO is applied in practice [15]. Both Veers et al. and Jackson et al. state that

aero-elastic tailoring and other load alleviation strategies increasingly deserve more

research attention [14, 15]. Accordingly, there has been increasing research given to

system engineering [9] and MDO (see section 1.2.4).

1.2.2 Load Alleviation in Wind Turbines

When designing wind turbines, the most stringent constraint is either the fatigue

loads or the ultimate loads. Several experiments have demonstrated that unsteady

aerodynamics is a strong contributor to this detrimental loading [20]. The actual de-

sirable loads (power-producing rotor torque) compose a small proportion of the overall

loads imparted on the machine. Thus there is great potential to reduce the unde-

sirable loads without reducing the overall energy capture [21]. The loads generated

at the rotor are applied to all the other turbine components (drive-train, tower and

foundation). Barlas and Van Kuik [21] note that the potential cost reductions from

load alleviation are small in the blades alone, however, considering the drive-train

and tower, the potential is significant, again motivating MDO of the system.

When looking at load reduction, there are two approaches: active control and

passive control [22]. The former employs sensors to measure the loads or estimate

a future loading state. These measurements are used by a controller to give the

appropriate signal to an actuator to alleviate undesirable loading. The work by

Barlos and Van Kuik [21] gives an excellent summary of the state of the art in this

field. Currently, collective and individual blade pitch control is common, but is too

slow to effectively attenuate turbulent loading [21]. Barlos and Van Kuik [21] cite

large research projects in Europe that have investigated many different strategies

and assessed their potential with numerical simulations. Overall, the authors found
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that active flaps were most effective. In some cases the researchers were able to

demonstrate potential reduction in fatigue loads by up to 90% in numerical studies.

Wind tunnel investigations confirmed many of the conclusions of the numerical work.

An investigation by Johnson et al. [22] looked into the different methodologies

that could be employed for active control. In this work they focused on flaps, micro-

tabs, plasma jets and boundary layer control. The authors cited flaps and micro-tabs

as having the greatest potential for load alleviation. The authors demonstrated that

small, efficient and simple micro-tabs can generate nearly the same control authority

as flaps. The research by this group lead to the SMART rotor project [23]. In this

project researchers outfitted a 1.1 MW wind turbine with flaps on the outer portion of

the blades. The investigation employed a combination of accelerometers, fiber optic

strain gauges, pressure sensors and pitot tubes for feedback.

One of the major issues with active control strategies is the weight, reliability, cost

and engineering resources that are required to employ them in commercial designs.

For these reasons, a lot of attention has been paid to passive approaches. The passive

strategies rely on applying sophisticated design to engineer a desirable blade response

to wind gusts and turbulence. One example is the DAMPBLADE project in Europe

[24], in which the authors looked at the potential of materials that exhibited increased

damping properties and developed enhanced analysis capabilities for rotors designed

with these materials.

Another approach that has received much attention is using coned rotors [25, 26,

27]. The idea behind this concept is that a hinged rotor would eliminate the root

bending moments. During gusts, the blades would passively cone in to reduce the

projected area and the structural loads. This would enable larger rotors that could

capture 55% more energy in low wind situations [25]. Yet several challenges exist for

controlling these types of turbines, analysis by Crawford and Platts demonstrated

power control cannot be achieved through pitch control. Instead, speed control is

required to control the degree of coning. Due to changes in the moment of inertia,

the control demands excessive torque from the generator [26].

Conventional analysis tools assume a straight blade. Studies into swept blades

have found desirable aero-elastic effects. By sweeping the blade, a gust in the wind will

induce a twist towards feather and reduce the loads. A field test by Sandia National

Laboratories in conjunction with Knight and Carver demonstrated that sweep twist

adaptive blades could be larger without exceeding the bending loads of smaller blades

[28]. The field test demonstrated 10-12% more energy than conventional turbines.
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A detailed numerical study by Hansen looked at the aero-elastic behavior of swept

blades [29]. In this research the author found that the blades attenuated the flap-

wise force response in the frequency range around the rotational speed. However,

the blade exhibited less damping in the edge wise mode, increasing the potential for

aero-elastic instability.

The potential success of sweep-twist coupling has lead The General Electric com-

pany (A major wind turbine manufacturer) to patent in-plan blade curvature [30].

The patent is based on mixing both for and aft sweep in the blade to control both

the elastic twist for load alleviation, while limiting the total torsion loads at the root

of the blade.

A numerical investigation by Dwyer and Bennett [31] looked at improving the

aero-elastic response of small turbines with bend twist coupling and sweep twist

coupling. Their work was severely hampered by inadequate design tools and could

only conduct a series of trade studies. They concluded that there is great potential

for aero-elastic tailoring but better analysis tools are required. This work justified

the need to develop improved analysis tools.

Bottasso et. al. conducted an MDO study into elastic bend-twist coupled blades.

Here the anisotropy of blade material is used to cause the blade to feather when-

ever a gust creates large bending loads. One of the challenges of elastic bend twist

coupling is reduced bending stiffness of biased fibers. This reduced stiffness forces

the designer to add more material to compensate, which in turn increases the blade

weight. They found that applying biased fibers in the skin instead of the spar-cap,

bend-twist coupling could be achieved with a smaller weight penalty. Furthermore

they found that biased fiber only need to be incorporated in the inner regions of the

blade to achieve the desired coupling with the minimum weight overall. Applying

a multidisciplinary approach revealed an additional benefit of bend twist coupling.

By passively attenuating the loads there was a reduced amount of pitch actuation in

the control of the machine. This work is an example of how MDO can reveal system

benefits of advanced concepts.

A detailed numerical investigation of aero-elastic coupling was carried out by

Wetzel [32]. In this study, 40 paper designs were developed and analyzed in detail.

The author focused on using elastic coupling to achieve bend twist coupling and found

that maximum coupling is achieved with a modest fiber angle of 20◦. A more detailed

investigation into the internal stress found in-plane shear exceeded yield limits. The

author found a smaller bias angle of 7◦ gave the best coupling without exceeding
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stress limits. The work of Dwyer and Bennett [31] along with Wetzel [32] highlight

the importance of advanced analysis tools for engineering load alleviation strategies.

It is interesting to note the work of Maheri et al. in developing different design

strategies for turbines utilizing load alleviation [33]. In this work the authors ex-

plored the use of induced twist as a design variable. This effectively decouples the

aerodynamic and structural analysis.

1.2.3 Wind Turbine Design Analysis Methods

In the early days of wind turbine development, the blades were sufficiently stiff that

many designers relied on linear beam models [13, 34]. Linear analysis allowed further

simplifications by reducing the model complexity through modal analysis [13, 35].

This involves an eigen-value analysis in which the analyst would select the first 3-6

modes and develop the equivalent mass, damping and stiffness matrices for the re-

duced model (assuming mode shapes do not vary with operating conditions). Interest

in large offshore wind turbines is driving engineers to apply nonlinear analysis and

more sophisticated aero-elastic models [13].

The work by Zhao et al. [36] is an example of some of the research into higher

fidelity models without excessive complexity. Here, the author modeled the blade as

a chain of rigid bodies connected by cardonic joints. Another example is the work of

Yan [37], where a panel code was used for the aerodynamics and a linear shell model

for the structure.

Other authors are trying to improve the fidelity in structural design without resort-

ing to complicated FEM models. The work by Malcom and Laird [38] is particularly

innovative, where the authors represent the full turbine blade in a three dimensional

FEM model. The blade is subjected to a set of fundamental deflections. The result-

ing force solution is used to determine the equivalent cross section properties. These

properties are then used in a simple beam analysis. However, this work suffers from

uncertainty associated with the extensive use of statistical analysis.

A more rigorous example of efficient high fidelity analysis is given by Otera and

Ponta [39]. Here, the authors applied Variational Asymptotic Beam Section (VABS)

analysis to determine the cross section properties. The work is similar to the work

used this research, VABS is described in greater detail in chapter 2. This particular

work applied some statistical methods where a more rigorous asymptotic analysis

could have been applied [40].
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A considerable amount of research has addressed structural stability. In response

to helicopter aero-elastic experiences, many researchers have examined the possibility

of flutter in wind turbine rotors [6]. This subject has received some recent atten-

tion for large multi-MW wind turbines. Lobitz [41] used the Theodorsen function

to perform a classical flutter analysis and found that flutter would occur at twice

the nominal operational speed. This conclusion was confirmed by Hansen [42] with

the more sophisticated Beddoes-Leishman dynamic stall model. It should be noted

that research cited by Rasmussen et al. [43] demonstrated that interacting modes

could compromise the flutter stability of large wind turbines. Full turbine analysis is

required to resolve this behavior [43].

One issue that is actually quite serious is “stall flutter”; this occurs when the

vibration direction is aligned in such a way that the negative lift slope of the blade

in stall amplifies the vibrations [43]. Riziotis et al. performed a detailed analysis

of this issue and found significant edge-wise instability in large stall regulated wind

turbines. In this study, variable speed wind turbines were also investigated, where the

damping in the generator was found to be sufficient to stabilize the edge-wise modes.

Rasmussen et al. does highlight that hysteresis in the drive-train can also excite some

edge-wise modes. Hansen [42] is credited with developing a simple analytical model

for stall vibration that is used to engineer vibration modes that are not sympathetic

to stall. These issues are more serious in either constant pitch stall regulated ma-

chines or pitch to stall regulated machines. This has prompted commercial turbine

manufacturers to use pitch to fine (reduced angles of attack) to regulate the power.

Looking at the blades in isolation gives an unrealistic assessment of turbine dy-

namics and there is increasing interest in performing full turbine analysis [43]. This

is achieved by applying multi-body dynamics [13]. The stability analysis is still based

on linearized models, where the Coleman transfer is used to express the blade dy-

namics in an inertial reference frame [13]. The reader is referred to Bir [44] for more

details on the Coleman transfer. One example of this analysis is the work by Hansen

[45]; the author developed a nonlinear co-rotational beam model based on the Hamil-

tonian principle. First, a steady state solution is found for the nonlinear model, then

the model is linearized about this solution. The linearized model is augmented with

a state space model for the dynamic stall1. An eigen value analysis is applied to

1Airfoils undergoing dynamic stall are known to exhibit temporal hysteresis in loading [46].
Consequently, models for both aerodynamic [47, 48] and structural [49] applications have been
developed.
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determine the various modes and their stability properties. It should be noted that

Rasmussen et al. [43] cites research demonstrating that wake interaction gives some

impetus for full wind farm modeling to asses turbine dynamics.

The majority of stability research is based on linear models, although interest in

nonlinear dynamics is growing [13]. Nonlinear dynamics are assessed with Lyapunov

exponents and to a lesser extent Floquent analysis [50, 13, 43]. In this area Larsen

[50] developed custom structural models for the specific purpose of nonlinear stability

analysis. The author demonstrated how regions of stability could be identified within

a range of potential operational conditions.

In addition to analysis methods, there are several notable efforts in advancing de-

sign methods. Conventional turbine design is based on sequential optimization where

the aerodynamic aspects are optimized first, followed by structural optimization. For

this framework, Bir [51] developed a tool automating preliminary structural design.

The LEXPOL project by Collani et al. [52] developed a stochastic model for long

term turbine loads that could be used to give better results than the traditional safety

factor approach. Finally the experimental work of Jensen [53] demonstrated that sec-

ondary failure modes (Brazier effect) occur in highly optimized structures and require

secondary reinforcement.

This section will conclude with a brief discussion on fatigue methods. In the early

years, fatigue evaluation was performed through a frequency analysis [11]. A brief

introduction to these methods can be found in an article by Halfpenny [54]. This ap-

proach is much more efficient than the current accepted practice of running multiple

time domain simulations [55]. However, nonlinear effects have compromised the valid-

ity of the frequency approach [11]. The increased complexity associated with offshore

applications has prompted renewed interest in these methods; the TURBU program

by Van Engelen [56] is an example. Albeit, the target application is highly nonlin-

ear structures, frequency methods could be applied to develop a surrogate model for

fatigue. A simplistic example of this is given by Fuglsang et al. [57, 58, 59]. Alter-

natively, the nonlinear effects can still be incorporated through nonlinear frequency

domain techniques [60, 61, 62].

1.2.4 Wind Turbine Design Optimization

Optimization has been an important tool for turbine design for many years [6]. The

approach to wind turbine design has evolved with the technology. In the early days,



11

design optimization was discipline specific and focused on engineering performance

metrics. For example, in aerodynamic design engineers would focus on maximizing

the coefficient of power at a design wind speed [6]. The system performance of a wind

turbine is highly coupled, thus, single discipline optimization can lead to suboptimal

designs. For example, a small increase in aerodynamic performance may lead to a

large increase in costs in the structural design.

It is only recently that multi-disciplinary approaches are being considered in com-

mercial turbines. With larger turbines, structural aspects became increasingly impor-

tant; to give a more realistic performance metric, designers began aiming to minimize

the COE [6]. Given that power generation is based on aerodynamic performance,

while the costs are based on material usage and structural considerations, minimiz-

ing this objective is inherently multi-disciplinary. Furthermore, incorporating costs

into the design objectives leads to more balanced designs that are closer to the opti-

mal overall design. The interest in multidisciplinary design optimization is not just

limited to aero-structural optimization. Recently, the NREL has started a systems

engineering group to look at wind turbine design in the context of community impact,

environmental impact and grid integration [9].

The complexity of taking a multi-disciplinary approach is a common topic in

academic literature. An early example is given by Fuglsang and Madsen, where

BEM was coupled to a simple modal structural model to evaluate the COE [57]. In

this work, the author used a combination of sequential linear programming and the

method of feasible directions to find the minimum COE solution. A novel approach

presented there was a simplistic surrogate model for fatigue loads that was tuned with

a full time domain simulation after a set number of optimization iterations. The cost

model was based on a combination of structural loads and component weight.

The work of Xudong et al [63] coupled a BEM model with a structural model

based on modal analysis. Then applied gradient based optimization algorithms to

find the minimum COE solution [63]. The work used component weight to evaluate

costs and interpolation curves to approximate the shape of the blade. The use of

interpolation curves helped reduce the dimensionality of the problem.

Soren Hjort et al [64] presented the most comprehensive framework to date for de-

sign optimization. Here, the author attempted to optimize the airfoil profile, the rotor

blade chord, twist and thickness, the pitch and speed control schedule and the inter-

nal structural design considering aerodynamics, structural mechanics, noise emissions

and economics. The author stressed the large dimensionality in play when perform-
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ing such a comprehensive optimization. To reduce the dimensions of the design space

for each optimization loop, the author used a combination of sequential and multi-

level optimization. This resulted in problems with increased noise in the gradient

calculations and compromised their application of gradient based optimization.

The work of Crawford et al. [65] is another example of a more comprehensive

approach to design optimization. As with many other optimization works, the author

used BEM for aerodynamics and linear beam models for structural mechanics. This

work is unique in attempting to optimize small wind turbines for distributed gener-

ation. In off-grid applications, turbine start-up is an important performance metric.

Here, the author developed a generator model to evaluate this metric.

An interesting application of MDO is in multi-objective optimization. This allows

the user to evaluate the trade-off between different measures of merit. An example of

this is given by Benini and Toffolo [66] where it is argued that maximum AEP density

is more desirable for building wind farms. The authors applied genetic algorithms

with BEM and a simple structural model to evaluate the Pareto front between these

quantities.

Site specific design is a popular MDO topic for wind turbine design. The ear-

liest example of site specific design is given by Collecutt and Flay on finding the

optimal configuration for turbines in New Zealand [67]. In this work, the authors

used semi-empirical studies to determine the rotor diameter and tower height that

would minimize COE. Another example of using semi-empirical models is given by

Diveux et al., where genetic algorithms were used to evaluate the potential of site

specific tailoring [68]. Recently the work of Kenway and Martins [69] applied gradi-

ent based optimization with XFoil, BEM and linear beam models to show that 3-4%

improvement in AEP is possible when site specific optimization is applied.

The work of Thomsen et al. [70] along with Fuglsang et al [58, 59] performed

a detailed investigation on the potential for site specific design. Thomsen et al.

performed aero-elastic simulations of a single turbine design at 6 different locations

to show the wide range of AEP and fatigue loads [70]. Simultaneously, Fuglsang et

al. developed an optimization code for the purpose of site specific tailoring [58]. The

framework used for this work is similar to a framework proposed by Fuglsang and

Madsen [57] in 1999. This optimization framework was then applied to site specific

turbine designs for the same six sites to determine the best group of design variables

for site specific optimization [59].
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The work by Jockson et al. shows the potential of site specific optimization when a

more comprehensive economic model is applied for the region [71]. Here, the authors

looked at the California electricity market and found that time of day electricity

pricing presented a strong case for building wind turbines with over-sized rotors [71].

A powerful feature of MDO is the ability to fully evaluate different design concepts.

Without knowing the optimal performance it is difficult to know for certain the value

of a novel concept. Giguere et al. coupled BEM with a simple linear beam model to

evaluate the most appropriate type of airfoils for stall regulated wind turbines [72].

Including the structural aspects was important to show that a larger blade resulted

in less material overall.

Another example of evaluating novel design concepts is given by Crawford and

Platts [26]. Allowing the rotor to cone in with gusts and strong wind is an attractive

load alleviation strategy. Here, the authors applied a modified BEM simulation along

with a linear beam model to evaluate the potential of this concept. By taking a multi-

disciplinary approach, the authors were able to identify an undesirable interaction

between the rotor and generator.

Due to the iterative nature of design optimization, many applications of opti-

mization used computationally efficient BEM to model the aerodynamics [57, 63, 64,

65, 66, 69, 70, 58, 59, 72, 26]. Accordingly, there has been work in improving these

methods for design optimization. The work by Lanzafame and Messina investigated

various empirical models for airfoils in stall [73]. Clifton-Smith investigated differ-

ent tip loss models for optimization applications [74]. More recently McWilliam and

Crawford investigated the numerical stability of different solution algorithms for BEM

[75].

BEM is not the only aerodynamic model applied in optimization work. Potential

flow methods are attractive because they are much more efficient than Reynolds

Averaged Navier Stokes (RANS) yet accurately resolve the full three dimensional

flow. This has lead several authors to apply vortex methods to find the maximum

coefficient of power solution for a wind turbine rotor [76, 77, 78]. In all cases the

authors had to make many assumptions on the structure of the wake to make the

optimization tractable for analytical optimization. An interesting conclusion from

Chattot is that the maximum energy condition given by Betz does not have to be

met at all stations and only has to be met on average [77]. Each author gives the

conclusion that vortex methods give a better optimal solution than the BEM methods

by Gluaert [76, 77, 78]. This shows that higher fidelity methods have the potential
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to produce better turbines overall. Unlike BEM theory, potential flow analysis is not

limited to straight blades without coning, furthermore, these methods are not plagued

by the many correction factors required in BEM. Overall potential flow methods are

more predictive and suitable for advanced blade concepts that utilize curvature.

The potential of higher fidelity methods has inspired the use of numerical potential

flow methods for MDO. By resolving the three dimensional wake structures, one

can evaluate the effect of novel geometry. Advanced methods are also considered

for the structural model. Here we look at nonlinear beam models with cross section

analysis that considers the full anisotropy of the fiber-reinforced material. By applying

advanced models the full potential of many advanced blade design concepts can be

determined.

1.3 Research Vision

It is clear by historical trends that wind turbine designs are getting larger. To over-

come the challenges of larger turbines, researchers have proposed several concepts

(e.g. bend twist coupling, curved blades, etc.) that cannot be simulated efficiently

with existing analysis methods (i.e. linear beams assume stiff blades, BEM theory

assumes straight blades without coning). Single discipline studies with either grid-

based Computational Fluid Dynamics (CFD) or 3 dimensional FEM models could

simulate these concepts, yet these tools come with increased development costs (i.e.

more operator time setting up the models along with greater computational resources

to solve the models). To incorporate these advanced concepts into commercial designs

there is a need for efficient analysis tools with higher fidelity.

The literature also shows wind turbine design is becoming increasingly more multi-

disciplinary. Load reduction in the blades may not just improve the blade structural

design, but could provide benefits to the drive-train, tower, control system and even

the electricity grid (e.g. flexible blades could dampen undesired power fluctuations).

When considering the system it may become apparent that more expensive blades will

yield the greatest benefits. To realize these potential benefits, MDO techniques should

be utilized to couple multiple analysis modules. To help the designer navigate the sys-

tem complexity, optimization algorithms should be applied. In the context of MDO,

expensive analysis techniques become even more expensive (i.e. mesh generation

needs to be automated because many more solutions are required in optimization),

thus MDO increases the need for medium fidelity tools.
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This begs the question “given these needs, what MDO framework is required to

improve wind turbine design?”. First, we need aerodynamic analysis tools that can

handle non-straight blades with arbitrary curvature and we need structural models

that can resolve material anisotropy and flexible blades. These tools should require,

at most, only simple meshes that are easy to generate automatically. These analy-

sis tools should be efficient so they can be used in optimization without prohibitive

computational costs. The models should easily couple to form system models that at

the very least enable aero-structural analysis, but ideally include control, drive train,

tower and possibly, the electricity grid. These tools should provide steady state solu-

tions for estimating AEP. Then, to evaluate extreme loads and fatigue damage, there

needs to be efficient ways of simulating unsteady processes within iterative analysis

like optimization. All these models should be coupled with optimization algorithms to

navigate the system complexity. Finally, to objectively evaluate the costs and benefits

of various design features, the optimization should be based on comprehensive cost

models that incorporate manufacturing and the optimal environmental conditions in

which these turbines will be installed.

It is in the context of this research vision that this author has attempted to improve

the engineering design capabilities of wind turbines. Given the expanded scope of

system analysis, along with the fastidious attention needed to develop new analysis

methods, it is unreasonable to expect this research vision to be accomplished by one

person in one PhD. Instead this author has looked to make incremental contributions

to this overall goal. To simplify the problem, the author has focused on steady state

analysis of aero-structural analysis, with some considerations for the larger system.

Despite the simplifications, the contributions of this author can later be extended to

larger system analysis with unsteady effects. This later work represents the future of

this research and is beyond the scope of this thesis.

1.4 Research Contributions

The overall objective of this research was to expand the MDO capabilities for Hor-

izontal Axis Wind Turbines (HAWTs). The field of MDO is far-reaching, including

adapting established analysis techniques for optimization (e.g. investigating the nu-

merical stability of BEM theory listed below), to expanding the scope of engineering

design through systems engineering (e.g. wind farm siting listed below). The follow-
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ing is a list of contributions toward an enhanced wind turbine MDO capability that

have been made over the course of this thesis work:

Numerical stability of BEM: BEM is an attractive aerodynamic model for opti-

mization due to computational speed. This research discovered how BEM has

multiple solution and numerical instabilities that can spoil the numerical con-

vergence (see section 2.3.1 of chapter 2). This research investigated numerical

strategies to avoid the instabilities. This work was published in Wind Engineer-

ing [75].

Wind farm siting: For a turbine design to be truly optimal it needs to be designed

for the environmental conditions of the installation site. Yet turbines are typ-

ically designed before sites are identified, thus the engineer is forced to make

assumptions a-priori that may not reflect the actual site conditions. Section

5.1 of chapter 5 presents a totally new model for finding the optimal location

for wind farms in a large area. This will allow engineers to gather statistics

on the most likely conditions for their designs. This models differs from con-

ventional turbine siting models in that it is looking at regions on the scale of

500, 000km2, using the wind resource, electrical transmission network, popula-

tion density and economics to find the optimal sites. This work was published

in Renewable Energy [79].

Most of the analysis techniques in recent HAWT optimization literature utilize

simplistic analysis tools that are not capable of simulating advanced turbine designs

with flexible, non-straight blades and composite layups introducing structural cou-

pling. Accordingly, this research emphasizes the use of medium-fidelity tools. Origi-

nally this work was meant to focus on structural aspects using Geometrically Exact

Beam Theory (GEBT) and VABS along with a conventional LVD to simulate the

aerodynamics. This structural research lead to the following contributions:

Structural sensitivity analysis: Two-stage structural simulations using VABS anal-

ysis and nonlinear GEBT is attractive for optimization due to the speed and

moderate fidelity. To improve the speed for optimization this author developed

analytic adjoint based gradients for both GEBT and VABS theory and then

combined them to form a coupled GEBT and VABS structural gradient. This

work was used for structural optimization. The gradients and the optimization
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is presented in section 5.2 of chapter 5. This work was presented at the AIAA

2012 Structures, Dynamics and Materials Conference [80].

Manufacturing based structural parameterization: In section 5.3 of chapter 5,

a new parameterization scheme is presented based on the manufacturing process

of wind turbines. This scheme is based on defining slabs of the material similar

to the process of carbon/glass fiber layups. Solutions with this scheme lead to

well defined designs for manufacturing. This work was presented at the AIAA

2013 Aerospace Sciences Meeting [81].

There are many challenges using conventional LVD methods in design optimiza-

tion. First Lawton and Crawford [82] demonstrated that conventional LVD fails to

give robust and accurate gradients for design sensitivity. Later, the author of this

thesis demonstrated that iterative convergence criteria along with slow convergence

can lead to significant error in conventional LVD solutions (see section 3.2.1). Section

5.4 documents this thesis author’s attempt at MDO with conventional LVD, demon-

strating how these problems stalled the progress of the optimization. This work was

presented at the 2013 AIAA Aerospace Sciences Meetings [83]. To overcome these

challenges this author developed a completely new approach to LVD specifically for

aero-elastic optimization. This development lead to several more contributions to the

field:

FEM-based LVD: The FEM was used to develop a novel mathematical model for

LVD. Unlike conventional LVD, the FEM is used to develop a kinematic de-

scription of the wake, where the flow field fidelity is decoupled from the pa-

rameterization and computational effort. This allows for local refinement by

increasing the number of elements, while at the same time increasing the com-

putational speed by reducing the number of control points. Under certain con-

figurations the new FEM-based LVD is significantly faster than conventional

LVD. The FEM is used to develop an objective measure of convergence. This

eliminates the uncertainty associated with time-marching LVD and leads to ad-

ditional contributions listed below. This work is discussed in chapter 3 and has

been presented at the AIAA 2013 Structures, Dynamics and Materials Con-

ference [84]; a more updated version was presented at the Science of Making

Torque conference and published in Journal of Physics: Conference Series [85].

Currently, two journal publications based on this work are being prepared for
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submission. The first presents the method in detail with basic cases and the

second explores the various tuning parameters and novel configurations that are

capable with this model for wind turbine simulations.

Aero-elastic analysis with LVD: Chapter 4 investigates different algorithms for

solving coupled aerodynamic and structural problems with both conventional

and FEM-based LVD. This research demonstrates two fixed-point solution al-

gorithms for aero-structural simulations with conventional LVD. Yet these con-

tributions only serve to highlight the advantages of FEM-based LVD. Due to

the similarity with structural FEM, the FEM-based LVD model can be tightly

coupled with structural FEM problems and solved simultaneously. This avoids

the additional iterations associated with the fixed point solution algorithms

and makes the FEM-based LVD significantly faster than conventional LVD. A

journal paper on this contribution is currently under preparation.

Multi-disciplinary design optimization with LVD: By avoiding time marching

and defining an objective measure of convergence, analytic gradients can be de-

fined for FEM-based LVD. These gradients are faster and significantly more

accurate than those obtained from finite differencing of conventional LVD. The

advantages of FEM-based LVD and the details of the analytic gradients are pre-

sented in section 5.5 of chapter 5. Here, the new FEM-based LVD was used in

both aerodynamic and aero-elastic optimization. The aerodynamic optimiza-

tion demonstrated how the accurate gradients lead to optimization solutions

with high levels of optimality. Due to the accurate gradients, aero-elastic op-

timization solutions can be obtained with the FEM-based LVD model. This is

a significant improvement over conventional LVD where aero-elastic optimiza-

tion was not possible. A journal paper on this contribution is currently under

preparation.

Figure 1.1 summarizes how these contributions fit into the overall effort to obtain a

full, unsteady, medium fidelity, MDO framework. The work started with preliminary

studies in MDO. Afterward, the structural analysis tools were developed. Originally,

the plan was to incorporate the conventional LVD code developed by Cline and Craw-

ford [86] and Lawton and Crawford [87]. The plan assumed that coupling this model

into an MDO framework would not be difficult and this research could proceeded

directly to developing unsteady analysis capabilities. However, convergence problems
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in the conventional LVD forced the author to abandon these plans. In response to

these difficulties, this research developed a totally new LVD formulation based on the

FEM specifically for aero-elastic optimization. The remaining tasks to complete the

full, unsteady, medium fidelity, MDO framework and the studies therein, represent

the future work of this research.

Preliminary
MDO

Medium
Fidelity

Structural
Tools

Conventional
LVD

Steady-state
MDO

McWilliam

Cline and
Lawton

Full Unsteady
Medium

Fidelity MDO
Studies

Unsteady
Analysis

1) BEM Stability
2) Wind Farm
Siting

3) GEBT-VABS
Gradients
4) Lay-up
Optimization

Original Plan:
Proceed to
Unsteady
Analysis

Convergence
Problems

FEM-Based
LVD

Singularities
5) Aerodynamics
6) Aerostructural
Analysis
7) Aerostructural
Optimization

Future Work

Stages:

Problems
Contributions

&

Figure 1.1: Road map of research contributions

1.5 Thesis Outline

This thesis presents work in improving current design methodologies and exploring

the design concepts these methods enable. This research emphasizes the development

and implementation of medium-fidelity tools that are efficient for optimization, yet

with enough fidelity to explore advanced wind turbine design concepts. Chapter

2 outlines different tools that were considered and gives a detailed explanation of

the theory behind those tools. The structural aspects are modeled using nonlinear

beam theory, several candidate models were investigated and GEBT was selected for

this work. The nonlinear beam theory requires cross section stiffness properties. To

obtain these properties from cross section geometry and material properties, VABS

analysis was employed. This work started by using an existing vortex model for the

aerodynamics. This eventually became an important topic in this research so chapter

2 gives a discussion on conventional vortex theory and some of the limitation in
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optimization. Chapter 2 closes with a discussion on MDO, where the different MDO

frameworks are explained along with the theory behind the sensitivity analysis.

Originally, this research was meant to explore the structural and MDO aspects

of optimal wind turbine design. Yet it became apparent that there are significant

challenges in applying conventional vortex aerodynamics for numerical wind turbine

design optimization. These methods are not widely used in wind turbine engineering

and have not matured to the robustness that is required for gradient based optimiza-

tion. Conventional LVD is typically solved using pseudo time marching algorithms

and cannot be converged to arbitrary levels. This makes aero-structural optimization

difficult for two reasons. First, the pseudo-time marching solution algorithms used

in conventional LVD are not compatible with the solution algorithms in steady state

structural models. Thus, aero-elastic coupling requires nested iteration by wrapping

a fixed point iteration around the two models to satisfy consistency constraints. The

second challenge is conventional LVD does not have a well defined convergence condi-

tion; without a convergence condition an analytic gradient cannot be easily defined.

Instead, finite differencing must be used. Since conventional LVD cannot be converged

to arbitrary levels of precision there is significant error in these gradients. This re-

search shows how these problems made it difficult to obtain converged optimization

solutions with LVD.

To overcome these problems, chapter 3 presents a completely new LVD aerody-

namic model based on the FEM, suited to gradient based aero-elastic optimization.

The new model uses shape functions to describe the configuration in the wake. In

steady state these shape functions offer a second definition for velocity, which is used

in an objective measure of convergence. This new aerodynamic model can be lin-

earized and solved with the same solution algorithms used for nonlinear structural

FEM problems. This chapter presents multiple validations of this method along with

grid convergence studies and comparisons with conventional LVD.

Chapter 4 demonstrates how the new FEM-based LVD model is coupled with

structural models and used to solve aero-structural problems. The similarity with

structural FEM enables the FEM-based LVD to be solved simultaneously with the

structural model. This chapter presents comparisons that show this approach is

significantly faster than fixed point iteration with conventional LVD.

The overall goal for this research work was design optimization; this work is pre-

sented in chapter 5. Several design optimization studies were conducted in this re-

search, each focused on expanding the MDO capabilities for HAWT. The first study
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looked at how optimization could be used to find the optimal locations for wind farms.

These results could be used to develop optimal turbine designs for a region. The next

study developed adjoint based gradients for GEBT and VABS analysis, then applied

them in structural optimization. Manufacturing is an important consideration in tur-

bine design; the next study presents a new lay-up parameterizations based on the

slabs of material that are layered in the production of a blade. The first attempt at

aero-elastic optimization coupled a conventional LVD model with GEBT and VABS

in an MDO framework. The optimization failed to produce converged optimization

solutions and demonstrated the difficulty of using conventional LVD in optimization.

Finally, this chapter is closed by demonstrating the new FEM-based LVD model in

optimization. Unlike conventional LVD, analytical gradients are easy to define which

eliminates the noise in the sensitivity analysis. These gradients are presented in this

chapter along with a simple optimization study demonstrating the efficacy of the new

FEM-based LVD for aero-structural design optimization for wind turbines.

Finally, conclusions and recommendations for future work are given in chapter 6.
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Chapter 2

Engineering Analysis Tools

The original intent of this research was to couple together established medium fidelity

analysis tools for engineering design of wind turbines to create a multi-disciplinary

analysis framework. The structural model was based on beam theory, discussed in

section 2.1, with an emphasis on nonlinear beam theory to account for the affects of

large deformation. Many nonlinear beam theory candidates were investigated; these

are discussed in section 2.1.2. The nonlinear beam model requires stiffness properties

for a given cross section geometry and materials; these stiffness properties are provided

by cross-section analysis, explained in section 2.2. Solving the coupled aerodynamic

forces is important for structural optimization. This work explored two options, the

first being BEM. Due to the limitations of BEM theory, conventional LVD was

used in the initial optimization studies discussed in section 5.4 of chapter 5. These

aerodynamic methods are discussed in section 2.3. Optimization was used extensively

in this work. There are many considerations when applying MDO techniques: first

is the framework (i.e how the optimization algorithm interacts with the analysis

modules); second the actual algorithm (i.e. gradient based vs. heuristic algorithms);

finally, in the case of gradient based algorithms used in this work, the sensitivity

analysis. These optimization topics are discussed in greater detail in section 2.4.

The majority of this chapter is devoted to analysis methods that have already been

established in the literature. The investigation of BEM theory discussed in section

2.3.1 uncovered some new insights into the numerical behavior of BEM. These new

insights were published in Wind Engineering [88].
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2.1 Structural Beam Theory

Beam theory is applicable to long, slender structures where the cross section dimen-

sions are much smaller than the overall length. The theory simplifies the structural

analysis by aggregating the cross-section distributed forces and deformations into in-

tegrated cross section quantities. Shell and brick based FEM models will resolve

the details of the cross section deformation and forces by introducing many more

degrees of freedom. The higher fidelity of these methods come with an additional

computational costs to solve these additional degrees of freedom. Since wind turbine

blades are very slender, beam theory should give adequate results, while the additional

computational costs of high fidelity methods should only provide marginal benefit.

Furthermore section 2.2 explains how advanced cross section analysis can introduce

the high fidelity cross section effects like warping into beam theory. The ability to

efficiently solve the structural dynamics, while maintaining a high level of fidelity has

lead to the application of beam theory for the structural models. This research used

a combination of linear beam theory discussed in section 2.1.1 and nonlinear beam

theory discussed in section 2.1.2.

2.1.1 Linear Beam Theory

Linear beam theory is commonly used in wind turbine design optimization. Ac-

cordingly, there are several examples of MDO of HAWT using linear beam theory

[57, 59, 13]. The linear structural model can be simplified further through modal

analysis. This calculates a family of deflection modes, many of which modes can be

ignored, leading to a reduced order model with a small number of state variables.

Reduced order models of only 4-6 modes have been shown to give good agreement

for wind turbine deformation [13].

The conventional linear Euler-Bernoulli beam theory was applied in this research

to understand how advanced aerodynamic models would function in aero-elastic cal-

culations. This model is well established and widely documented in text books; most

of the details on this model will not be documented here. The reader should refer to

Logan [89] for more details.

This section documents an interpolation scheme for the kinematic description of

state. This scheme was required to make the linear beam model compatible for aero-

elastic analysis with the advanced aerodynamic models. This scheme will provide the
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deformed position and orientation to the aerodynamic model at arbitrary locations

along the beam.

Before the interpolation scheme is presented, some definitions need to be given.

Element based quantities like reference frames (λe), span parameters (se) and element

lengths (le) are all identified with the subscript •e. In the case of tensor quantities the

•e subscript denotes the element reference frame, and the •g subscript denotes the

global reference frame. Numerical subscripts (•1 or •2) refer to the element nodes and

over-bars (•̄) denote quantities in the undeformed configuration. Many of the vector

quantities are defined in the element reference frame. It is necessary to translate these

vectors between this frame and the global frame. This is done through the element

rotation matrix λ̄E with equation (2.1) where ae is an arbitrary vector in the element

reference frame and ag is the same vector in the global reference frame. The element

reference frame defines the undeformed orientation of the element where the element

x axis is aligned with the element and, in the case of aerodynamic blades, the y axis

is aligned with the chord direction.

ae = λ̄Eag (2.1)

In linear beam theory the position at the nodes is given by equation (2.2a), where

x is the deformed position, x̄ is the undeformed position and ue is the deflection.

xe = x̄e + ue (2.2a)

Positions in the element reference frame are tranformed to the global reference

frame with equation (2.2b).

xg = x̄1 + λ̄TExe (2.2b)

Angular deflection is given in Euler rotation angles (θxe, θye, θze). The angles

are defined in the beam element’s reference frame. The deformed orientation (λe),

defined in the element coordinates, can be calculated from the original undeformed

orientation (λ̄e) and the angular deformation with equation (2.3a). This definition is

only valid with small deflections that occur with stiff beams.

λe = λezλeyλexλ̄e (2.3a)

where
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λex =




1 0 0

0 cos θxe − sin θxe

0 sin θxe cos θxe


 (2.3b) λey =




cos θye 0 sin θye

0 1 0

− sin θye 0 cos θye


 (2.3c)

λez =




cos θze − sin θze 0

sin θze cos θze 0

0 0 1


 (2.3d)

Equation (2.3e) will transform rotation matrices in the element coordinates to the

global reference frame.

λg = λ̄TEλeλ̄E (2.3e)

The axial deflection and twist are interpolated linearly between the two nodes.

The Euler-Bernoulli beam theory is based on a small angle approximation where

the angular deflection is equivalent to the gradient of the transverse displacement.

The interpolation for both the transverse deflection and rotation is based on Hermite

interpolating polynomials and the gradients thereof respectively. This leads to the

interpolation equations (2.4a) and (2.4b), where the prime (i.e. •′) denotes a gradient:

ue = Ph1(se)ue1 + lePh2(se)θe1 + Ph3(se)ue2 + lePh3(se)θe2 (2.4a)

θe =
1

le
P ′h1(se)ue1 + P ′h2(se)θe1 +

1

le
P ′h3(se)ue2 + P ′h3(se)θe2 (2.4b)

where

se =
s− s1

le
(2.4c)

ue =

{
uy

uz

}
(2.4d) θe =

{
−θy
θz

}
(2.4e)

Ph1(s) = 1− 3s2 + 2s3 (2.4f) Ph2(s) = s− 2s2 + s3 (2.4g)

Ph1(s) = 3s2 − 2s3 (2.4h) Ph2(s) = −s2 + s3 (2.4i)
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2.1.2 Nonlinear Beam Theory

Multiple nonlinear beam theories exist within the literature. The reader is referred

to Shabana [90] for a comprehensive review on most of them. For aero-elastic appli-

cations it is crucial that any nonlinear beam theory is accurate in resolving the twist

deformation. In addition Jung et al. [91] demonstrates the importance of resolving

shear deformation, cross section warping and material anisotropy in beam dynamics.

The fidelity to resolve these effects was used as a criteria in selecting three potential

candidates for this work; each will be described below.

The classic nonlinear beam theory is referred to as co-rotational formulation or

floating frame of reference formulation [92]. In this formulation beam, deflection

is defined within a floating reference frame that follows the rigid body motions of

the beam. The deflection is either defined in terms of displacements in the local

reference frame or by defining a set of “natural modes”. Figure 2.1a shows the

kinematics for the natural mode approach. When the displacement approach is taken,

the equations of motion become very complicated [93, 50] and suffer from error in

various approximations for the beam [93]. The natural modes for simple straight

prismatic beams are well known, while for beams with arbitrary curvature and twist

it is unclear.

The second theory is Absolute Nodal Coordinate Formulation (ANCF) pioneered

by Shabana and Yakoub [94, 95]. The ANCF uses the absolute position of the nodes

and gradients of position at the nodes for state variables, see figure 2.1b. There are

two versions of this theory. The first uses a three dimensional shape function to

define the position of points within the three dimensional volume of the beam [96].

From here, continuum mechanics is applied to determine the deformation gradient

and hence strain. With the appropriate constitutive relationships, the stress is then

found. Finally, integrating the stress yields the resulting forces. The second version

avoids the continuum mechanics approach and uses a one dimensional shape function

to define a Frenet frame [97]. From this, the traditional strain measure of a beam is

defined and used to determine the resulting forces [98]. Overall, ANCF is attractive

because various mathematical decompositions can be applied to make it very efficient

for dynamic analysis [99].

The third theory considered here is called Geometrically Exact Beam Theory

(GEBT). This theory was originally developed by J. C. Simo [100] and further ex-

tended for computer implementation by Simo and Vu-Quoc [101]. In this theory the
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Figure 2.1: Nonlinear beam kinematics

beam is represented by the position (φ) of a reference curve and the orientation of

the cross sections (ϑ). An example of the beam kinematics is given in figure 2.1c,

where θ is the initial orientation of the cross section.

Another notable version of this theory is the intrinsic equation given by Hodges

[102]; these equations are independent of the kinematic and constitutive relationships.

Although generality is a desirable quality, Hodges et al. [103] demonstrate that

the computer implementation leads to many additional equations to incorporate the

kinematics and constitution.

By representing the full three dimensional orientation of the beam exactly, the

error inherent in approximating curvature is eliminated [102, 93]. The mathematics

of three dimensional finite rotations complicates the implementation of GEBT in a
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FEM framework [104]. This is due to the fact that rotations are not commutative1

and do not admit a linear space2 [104].

At this point, many of the issues associated with finite rotations have been solved

[106]. The field of GEBT can be considered mature. Lens and Cardona [107] give

an example of a modern computer implementation of GEBT that incorporates an

interpolation and integration scheme that does not suffer from the problems of classic

GEBT. The implementation in this work is similar. A detailed description of GEBT

is deferred to the latter half of this section.

It should be noted that there exists an alternative representation that forgoes much

of the complexity of finite rotations by using three three-dimensional orthonormal

vectors for the state variables. These vectors describe the axes of the cross section

orientation [108, 109]. These additional vectors lead to many redundant degrees

of freedom. Betsch and Steinmann [109] use Lagrange multipliers to include the

orthonormal constraints into the governing equations, leading to many more equations

to solve than classic GEBT. Romero and Armero [108] incorporate the orthonormal

constraints directly into the governing equations, maintaining the same dimensionality

of classic GEBT. With Romero and Armero’s approach, the state variables lose their

ortho-normality when descretized and interpolated to intermediate locations. Due

to a lack of ortho-normality or the additional complexity of solving more equations,

these approaches were not pursued in this work.

Several comparisons have been made between the three different beam theories

presented here. Overall, many authors report that locking is a major problem in

ANCF beams [106, 110]. Locking occurs when the shape functions do not admit

all the required deformation modes. Locking occurs in the other theories, however,

simple solutions for both geometrically exact and co-rotational theories have been

discovered [92].

Multiple locking issues with ANCF lead to the conclusion that twice as many

degrees of freedom are required for ANCF to achieve the same accuracy as the GEBT

[106]. Similarly, the article by Schwab and Meijaard [110] compared the co-rotational

beam formulation with ANCF and found that alternative ANCF derivations using

some subjective judgments are required to get similar accuracy in ANCF. A follow-

1To say that rotations are not commutative is to say a rotation of α then β is in general not the
same as a rotation of β then α [105]. They are commutative only when α and β are co-axial [105].

2To say that rotations do not admit a linear space is to say that a rotation of α then β is in
general not equivalent to a total rotation of α + β [105]. Only when α and β are co-axial can the
total rotation be given by α+ β [105].
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up comparison was made by Dibold et al. [111] that refuted many of these claims.

However, only the planar version3 of ANCF was presented in this comparison. These

simplifications lead to a very computationally efficient formulation. Furthermore, the

comparisons were made with the analysis of cables exhibiting a significant magnitude

of high frequency deformation modes.

The comparisons in the literature [106, 110, 111] demonstrate many inaccuracies

with ANCF [106, 110] and generally find that the potential computational efficiency

is only realized when simulating bodies with the flexibility of cables [111]. Within the

co-rotational formulation, there is an element of subjective judgment when developing

the strain energy equations [92]. This lack of objectivity detracts from this theory

and so will not be used in this work. Due to the objectivity [92], overall accuracy

[106] and computational efficiency [106] GEBT has been applied in this work.

Geometrically Exact Beam Theory

This section summarizes the GEBT original proposed by Simo [100]. Figure 2.2a

shows the basic kinematic description of a geometrically exact beam. The first state

variable is the position (φ) of the reference curve in the inertial reference frame at any

given point in time and along any generalized position (s) along the curve. The second

is the pseudo vector for the cross-section orientation (θ) in the inertial reference frame

at any given point in time and position. The direction of the pseudo vector gives the

axis of rotation, while the length is the angle in radians.

In geometrically exact beams there is a material reference frame (ei) attached to

the beam cross-section. The rotation tensor Λ rotates a vector from the cross-section

reference frame to the inertial reference frame (Ei). The rotation tensor Λ can be

determined directly from the orientation vector θ with equation (2.5). The n by n

identity matrix is denoted by In. The notation of β× is defined as a skew symmetric

matrix based on the vector β as shown in equation (2.6).

Λ = exp (θ×)

= I3 +
sin |θ|
|θ| [θ×] +

1− cos |θ|
|θ| [θ×]2 (2.5)

3The planar version ignores twist, out-of-plane deformation and only rotation about the out-of-
plane axis. Thus, only three modes of deformation are free in this version.
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Figure 2.2: Geometrically exact beam kinematics

β× =




0 −β3 β2

β3 0 −β1

−β2 β1 0


 (2.6)

Figure 2.2 shows various cross-section kinematics. If the Bernoulli assumption

(rigid and normal cross-section) is applied, then the material reference frame is a

Frenet frame of the reference curve as shown in figure 2.2b. If the normal assumption

is relaxed to give a Timoshenko beam model, then the normal vector of the cross-
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section no longer corresponds to the tangent vector of φ (thus ei is no longer a

Frenet frame), as shown in figure 2.2d. When the cross-section is assumed rigid, then

the material never displaces within this frame. Consequently, the three dimensional

strain can be derived based on the position and orientation of the cross-section alone

and the problem is fully determined. Finally, if the rigid cross-section assumption is

relaxed, the cross-section material is permitted to warp as shown in figure 2.2c. This

introduces additional degrees of freedom that need to be constrained by the cross-

section analysis. For this work Variational Asymptotic Beam Section (VABS) will be

applied.

Simo [100] gives the governing equations in (2.7), where R is the residual; n and

m are the internal force and moment stress respectively; n̄ and m̄ are the applied

distributed forces and moments respectively. Note the d/ds denotes a square diagonal

matrix where the derivative is taken at the diagonal. In a block matrix, an n by n

matrix of zeros is denoted by 0n; similar notation is used for vectors.

R =

[
d
ds

03

−dφ
ds
× d

ds

]{
n

m

}
−
{

n̄

m̄

}
(2.7)

The strain energy function Ψ accounts for the blade material and structure. The

Laplace of Ψ gives a linearized model relating internal stress and strain in equation

(2.8).

{
n

m

}
=

[
Λ 03

03 Λ

]
[
∇2Ψ

]
{
γ

κ

}
(2.8)

For geometrically exact beam theory the strain measures in equation (2.9) define

the deformation of the beam. The undeformed configuration is represented by Λ0, φ0

and θ0.

{
γ

κ

}
=

{
ΛT dφ

ds
− ΛT

0
dφ0
ds

ΛT dθ
ds
− ΛT

0
dθ0
ds

}

=

[
ΛT 03

03 ΛT

][
d
ds

03

03
d
ds

]{
φ

θ

}
−
{

ΛT
0
dφ0
ds

ΛT
0
dθ0
ds

}
(2.9)

Together with equation (2.7) we get the complete residual expression in equation

(2.10) in terms of the the state variables φ and θ.
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R =

[
d
ds

03

−dφ
ds
× d

ds

][
exp (θ×) 03

03 exp (θ×)

]
[
∇2Ψ

]

([
exp (−θ×) 03

03 exp (−θ×)

][
d
ds

03

03
d
ds

]{
φ

θ

}
−
{

ΛT
0
dφ0
ds

ΛT
0
dθ0
ds

})

−
{

n̄

m̄

}
(2.10)

GEBT relies on three dimensional orientation as a state variable. Several schemes

have been presented in literature to represent these rotations [108, 109, 92, 105, 112].

There are two common approaches. The first approach is to represent the orientation

with quaternion or pseudo vectors [92, 105, 112]. In either case, updating the state

variable is complicated because rotations are not communicative and do not admit

a linear space [104]. In both cases, a set of update formulas have be developed to

transition from state to state [92, 105]. When applying these formulas, care must be

taken to avoid singularities [105].

In finite element theory the state variables need to be interpolated to intermediate

points. However, finite rotations do not admit a linear space [105]. To overcome

this, several authors have proposed various interpolation schemes [104]. The original

schemes by Simo and Vu-Quoc [100] suffered from a lack of objectivity and path

dependence [113]. Jelenic and Chrisfield [114] developed a scheme that exhibited

objectivity and path independence using a co-rotational approach. For each node an

incremental orientation is defined and then interpolated.

For steady state simulations the angular velocity of the rotor is a specified constant

and the inertial effects from rotation are represented as an external force dependent

on radial position. This eliminates the need to resolve additional speed state variables

and a variational for the kinetic energy. In these cases, the Newton-Raphson algorithm

is employed to solve the state data. In this case, the matrix K is simply the tangent

stiffness and the residual vector r is augmented with an extra term (rl) for load

control.

Load control is employed to determine solutions in the presence of structural

instabilities (e.g. buckling). When load control is applied, the force vector is scaled

by λ. The load parameter λ is an additional state variable governed by a user-specified

load control equation. An example of a load control equation is given in (2.11). In
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this example an outer iteration loop is needed to solve C such that λ is 1.0 for the final

solution. For this work it is unlikely any structural instabilities will be encountered.

For more information on load control the reader is referred to Krenk [92].

rl = xTx + C(λ2 − 1) (2.11)

2.2 Cross Section Analysis

The goal of cross section analysis is to develop a relationship between beam deforma-

tion and force measures. The classic approach is based on assuming that the cross

section is a rigid plane, solving the strain field, solving the stress field and finally

integrating to get the resulting force measures. Hansen [45] gives an example in wind

turbine applications. Li [115] demonstrates this procedure for initially curved and

twisted beams.

The rigid cross section assumption breaks down for anisotropic or heterogeneous

beams [116, 91]. It is widely known that warping (both in-plane and out-of-plane

deformation) will occur, affecting the overall force response. Resolving this warping

is crucial for aero-elastic applications [91]. Hodges gives a review of many of the dif-

ferent methodologies for solving warping in beams [116]. One can group the different

theories into two categories: the analytical or finite element approaches. The ana-

lytical approaches attempt to define an “equivalent” simple cross section for a given

general cross-section and then apply detailed analytical analysis on the simple cross

section [116]. These approaches lack the objectivity and generality inherent in the

finite element approaches. It is for these reasons that none of the analytical methods

were considered in this research.

When the beam is built with thin laminates, it can be analyzed with classical

laminate theory [91, 117]. Jung et al. [91] gives a review of the different applications

of classical laminate theory for cross section analysis. These approaches are based

on the laminates being thin, an assumption that can break down in wind turbine

applications near the root of the blade.

A novel approach is given by Malcom and Laird [38], using a three dimensional

finite element model of a beam to extract equivalent beam properties. The approach

relies on statistical methods to extract beam properties and suffer from uncertainty

therein. For this research, this approach was not considered because of the uncertainty
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in the analysis. Furthermore, the complexity and computational cost of developing a

three dimensional model for every cross section evaluation is undesirable.

Finally, a notable example of the finite element based cross section analysis is

given by Giavotto et al. [118]. The author applied virtual work principles to develop

a variational for an infinitesimal section of the beam. The variational resulted in

a second order homogeneous ordinary differential equation. The final solution is a

series of Eigen functions. For practicality, the series must be truncated, with no way

of determining what terms to truncate to achieve a desired level of accuracy. The

presence of more rigorous approaches in the literature ruled out this theory from

consideration. What is interesting about this theory, is it demonstrates how surface

traction at the ends of the beam affect the warping solution, thus giving insight into

the Vaslov beam theory [119, 120].

Hodges and Yu [121] recently introduced Variational Asymptotic Beam Section

(VABS), a general finite element based cross section analysis tool for wind turbines.

The theory of VABS was developed by Hodges [40] and colleagues [122, 123, 124] and

is based on the Variational Asymptotic Method (VAM) [125]. Another notable contri-

bution is by Popescu et al. [126], which shows how VAM could be applied to oblique

cross sections. The theory is based on approximating the solution to the warping

function with a finite element representation of the cross section. Minimizing the full

variational for the cross-section requires solving a differential matrix expression. To

simplify the problem VAM is used to neglect high order terms and then build up

further approximations by adding the next order of terms. For a detailed explanation

of the theory, refer to section 2.2.1.

Extensive validation has been performed for VABS making this a well-validated

method to adopt. The work of Yu and Hodges [127] demonstrate that VABS can

reproduce the well-known elasticity solutions for prismatic isotropic homogeneous

beams. For more general anisotropic heterogeneous beams, Yu et al. [128] provided

a comparison of VABS with three dimensional FEM models in ABAQUS, along with

competing theories in literature. In all test cases there was excellent agreement be-

tween the VABS solution and the ABAQUS model. Furthermore, the authors demon-

strated that the competing theories failed to resolve one phenomenon or another.

These conclusions are reinforced by Volovoi et al. [129] demonstrating that tradi-

tional beam theory and VABS are sufficient for modeling heterogeneous anisotropic

beams. Finally, the work of Hodges and Yu [121] validates VABS for wind turbine

applications.
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The work of Chen et al. [130] compared VABS with many available cross section

analysis tools for several different types of beams. The comparison found that VABS

gave excellent results in all comparisons. Many of the alternatives failed to consis-

tently give reliable results. It is for these reasons that this research work is based on

the theory of VABS.

2.2.1 Variational Asymptotic Beam Section Theory

The cross-section analysis involves the strain energy function Ψ. This function can be

given in terms of continuum mechanics as shown in equation (2.12a). Note the defi-

nition in equation (2.12b) and the vector ε contains the components of the Jauman-

Biot-Cauchy strain tensor as shown in equation (2.12c), where J is the determinant

of the metric tensor (otherwise known as the Jacobian) and D is a tensor that relates

the stress and strain tensors. The strain energy function includes all the geometric

and material information for the beam cross-section.

Ψ =
1

2

〈〈
εTDε

〉〉
(2.12a)

where

〈〈•〉〉 ≡
∫

A

•
√
JdA (2.12b)

and

ε ≡
{
ε11 2ε12 2ε13 ε22 2ε23 ε33

}T
(2.12c)

The continuum mechanics strain vector is related to the beam strain measures

ε̄ ≡ {Γ1,K
T} and the cross-section warping w as shown in equation (2.13). Note that

Γ1 is extension strain and K contains the twist and bending strain measures. The

vector θ is the pseudo rotation vector that describes the initial curvature.

ε = Baw + Bεε̄+ BRw + Bl
dw

ds
(2.13a)

where
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Ba ≡




0 0 0
∂
∂x2

0 0
∂
∂x3

0 0

0 ∂
∂x2

0

0 ∂
∂x3

∂
∂x2

0 0 ∂
∂x3




(2.13b)
Bε ≡

1√
J




1 0 x3 −x2

0 −x3 0 0

0 x2 0 0

0 0 0 0

0 0 0 0

0 0 0 0




(2.13c)

BR ≡
1√
J




θ1

(
x3

∂
∂x2
− x2

∂
∂x3

)
−θ3 θ2

θ3 θ1

(
x3

∂
∂x2
− x2

∂
∂x3

)
−θ1

−θ2 θ1 θ1

(
x3

∂
∂x2
− x2

∂
∂x3

)

0 0 0

0 0 0

0 0 0




(2.13d)

Bl ≡
1√
J




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0




T

(2.13e)

To develop an accurate model for equation (2.12a), a solution for the warping

function w is required. Finite element methods can be used to represent the warping

as nodal displacements V and shape functions S on a two dimensional area mesh of

the cross-section as shown in equation (2.14).

w = SV (2.14)

With this definition of warping, the strain energy function can be expressed as a

quadratic equation, as shown in (2.15).

2Ψ = VT (Eaa + 2EaR + ERR) V +
dV

ds

T

Ell
dV

ds
+ εTEεεε

+ 2

(
VT

(
(Eaε + ERε) ε+ (Eal + ERl)

dV

ds

)
+
dV

ds

T

Elεε

)
(2.15a)
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where

Eaa ≡
〈〈

STBT
aDBaS

〉〉
(2.15b) Eaε ≡

〈〈
STBT

aDBεS
〉〉

(2.15c)

EaR ≡
〈〈

STBT
aDBRS

〉〉
(2.15d) Eal ≡

〈〈
STBT

aDBlS
〉〉

(2.15e)

Eεε ≡
〈〈

STBT
ε DBεS

〉〉
(2.15f) ERR ≡

〈〈
STBT

RDBRS
〉〉

(2.15g)

Ell ≡
〈〈

STBT
l DBlS

〉〉
(2.15h) ERε ≡

〈〈
STBT

RDBεS
〉〉

(2.15i)

Elε ≡
〈〈

STBT
l DBεS

〉〉
(2.15j) ERl ≡

〈〈
STBT

RDBlS
〉〉

(2.15k)

The warping solution V is determined by minimizing equation (2.15a) with respect

to V subject to the constraints given in equation (2.16). These constraints suppress

rigid body displacement and axial rotation of the cross-section.

〈〈SV〉〉 = 0 (2.16a)

〈〈x3SV2 − x2SV3〉〉 = 0 (2.16b)

Minimizing the full form of equation (2.15a) is a formidable task and is not nec-

essary. Many of the parameters in equation (2.15a) are sufficiently small that they

could be ignored. This is where the Variational Asymptotic Method (VAM) is ap-

plied. First, an ordering scheme is applied to identify the most significant terms. The

truncated functional given in equation (2.17) is solved for the first approximation of

V0.

2Ψ0 = VT
0 EaaV0 + 2VT

0 Eaεε+ εTEεεε (2.17)

The simplified form in equation (2.17) allows for analytic optimization. The Euler-

Lagrange equation for this problem is given in equation (2.18a).

EaaV0 + Eaεε = HΥξ (2.18a)
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where

H ≡
〈〈

STS
〉〉

(2.18b)

and Υ represents the null space of Eaa which corresponds to the constraints given

in equations (2.16). The matrix ξ is a Lagrange multiplier used to enforce the con-

straint. Solving for ξ gives the problem in equation (2.19), which can be solved using

standard methods of linear algebra.

EaaV
?
0 = −NTEaεε (2.19a)

where

N ≡ I−Υ
(
ΥTHΥ

)−1
ΥTH (2.19b)

The role of N ensures that the source term is orthogonal to the null space of

Eaa. This allows the matrix Eaa to be made invertible by adding Υ ⊗ ΥT without

affecting the final solution. In practice, however, round-off error can cause large errors

if Υ⊗ΥT is not sufficiently large. This problem is rectified by scaling this additional

term to have the same trace as Eaa.

The solution of (2.19a) may still violate equation (2.16). To enforce this constraint

the solution is multiplied by N to get the final solution for V0

V0 = V̂0ε = NV?
0 (2.20)

This solution is used to give the first approximation to the strain energy in equa-

tion (2.21). Note that the VT
0 EaaV0 is sufficiently small that it can be neglected.

The term in the brackets gives the constitutive matrix for the beam.

2Ψ0 = εT
(
V̂T

0 Eaε + Eεε

)
ε̄ (2.21)

Improved solutions for the constitutive matrix can be achieved by perturbing the

solution by V1 and solving another variational. The second approximation is used to

develop the generalized Timoshenko model, which will account for initial curvature

and axial gradients of strain. This second model is much more complicated than the

first approximation. The second order model was not extensively used in this work,

and for the sake of brevity it will not be presented here. The reader is referred to Yu

et. al. [131].
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Neglecting the generalized Timoshenko model introduces a compatibility problem.

The GEBT equations rely on a 6x6 constitutive matrix C, while the first approxi-

mation (given in equation (2.21)) is based on Euler-Bernoulli strain measures. The

constitutive matrix is augmented by giving large stiffness (100C11) for the shear strain.

With a large stiffness, the shear strain will approach 0 and the Euler-Bernoulli model

is recovered.

Once the beam problem is solved, VABS can be used once again to determine the

three dimensional strain of the problem. Equation (2.22) can be used to estimate the

strain at any point in the cross-section. This three dimensional strain can then be

used in any failure model to enforce stress and strain constraints.

ε =
(
BaV̂0 + Bε

)
ε̄ (2.22)

2.3 Aerodynamic Models

For wind turbine aerodynamics there are two established methods used in industry.

The first is BEM theory and the second is grid-based CFD. BEM theory is accurate

and efficient, but relies heavily on correction factors and can only simulate simple

blade geometries. Section 2.3.1 presents a review of the BEM literature along with

investigations that revealed how BEM can have multiple solutions and numerical

instabilities that could be detrimental for design optimization.

Grid-based CFD can provide high fidelity solutions for wind turbine flows. These

methods are based on creating a grid in the fluid domain and solving a discrete

form of the governing equations (e.g. the Navier Stokes equations) [132]. These

methods are attractive because they can simulate any blade geometry and provide

high fidelity solutions. However, grid-based CFD is not well suited for efficient MDO.

The computational demands are quite high and most of these methods require cluster

computing just to obtain a single solution. Considering that unsteady loads are

important in wind turbine design, these computational costs are further exacerbated

by the need to perform unsteady analysis. For more information on grid-based CFD

in wind turbine research see section 2.3.2.

Established aerodynamic methods are not suitable for efficient MDO of advanced

blade designs. BEM does not have the fidelity, while grid based CFD is too expen-

sive. To overcome this limitation a third option is needed. In the early years, the

aeronautical industry successfully applied potential flow methods to design aircraft.
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Several methods were developed from Nonlinear Lifting Line Theory (NLLT) to panel

methods [133]. The simplest of these approaches is NLLT [134, 135, 136, 137] where

sectional lift coefficients are used to calculate the bound circulation distribution on

the blade. Several authors have applied this technique successfully to simulation wind

turbines [138, 139, 86, 140, 141, 142, 143, 144, 145]. This theory is discussed in detail

in section 2.3.3.

2.3.1 Blade Element Momentum Aerodynamics

The work presented in this section is adapted from a Wind Engineering publication

by the author:

Michael McWilliam and Curran Crawford. The Behavior of Fixed Point Iteration

and Newton-Raphson Methods in Solving the Blade Element Momentum Equations.

Wind Engineering, 35(1):17–31, December 2010

This publication has contributed to further improvement in the BEM methods by

Ning [146].

Blade Element Momentum (BEM) theory is widely used to model the aerody-

namic performance of wind turbines. The efficiency of these methods has made them

common in many design codes. Despite their inherent simplicity, these methods have

proven reliable enough for design and certification. Consequently, there is still active

research into design methods based on BEM theory [147].

Despite their widespread use, these methods have several shortcomings. Owing

to the basic assumptions, they are not suitable for out-of plane blade geometry, like

coning and wing-lets. Furthermore, the assumption of radial independence between

the sections undermines their validity in unsteady flows. Thus, the methods are

limited for modeling yawed flow and highly stalled conditions, often seen in turbine

operation. Several models have been proposed in recent history to deal with these

issues.

The work of Du and Tangler has addressed the problem of stall delay [148, 149].

Shen has provided alternative models for the tip loss effects [150]. Other researchers

have focused more on problems regarding the momentum model. Chaney et al. de-

veloped a method for incorporating the effects of an expanding wake [151]. Madsen et

al. compared BEM to actuator disc models to develop two correction models for devi-

ations in the local power coefficients [152]. Haans et al. developed an advanced model
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for yawed flow [153]. The work of Crawford gave a novel way of modeling coned rotors

[154]. Finally, Sharpe incorporated wake rotation effects play in the axial momentum

equations [155, 156]. Martinez et al. has used the momentum model developed by

Sharpe, along with airfoil post stall corrections, to give improved predictions for stall

regulated wind turbines [157].

Due to its efficiency, BEM theory is being applied in turbine optimization tools.

Xudong et al. have successfully applied BEM based optimization to design several

wind turbines of various sizes [63]. The early work of Fuglsang et al. created a MDO

framework with BEM, structural and fatigue models. The objective was to minimize

the cost of electricity, with sequential linear programming and the method of feasible

directions [57]. The work of Clifton-Smith et. al. applied genetic algorithms with

BEM to optimize energy capture and startup time [158, 74]. The work of Benini et

al. is another example of applying genetic algorithms, in this case it was applied to

the multi-objective optimization of a stall regulated wind turbine [66]. The work of

Crawford et al. applied BEM with a generator model and a low frequency noise model

to optimize the turbine for minimal cost of electricity and minimum energy pay back

period, with gradient based techniques [65]. Another work by Crawford et al. applied

gradient based techniques with advanced BEM methods to optimize a unique rotor

design that had hinged rotor blades [26]. The importance of convergence is touched

upon by Lanzafame, who demonstrated why sources of numerical instability must be

reduced in optimization applications [73]. Similarly, the work of Hjort et al. showed

how poor convergence introduces noise into the optimization. This noise compromised

the gradient calculations, thus, undermining any gradient based methods in their

study [64].

The typical approach to solving the momentum equations is to analytically re-

formulate the expression as a fixed point function. Here, the induction at a future

iteration is expressed as a function of induction at the current iteration. For the

basic BEM equations, this method is both fast and accurate. However, the benefits

of a fixed point scheme are diminished in many of these advanced BEM models. The

work by Crawford showed that applying the out-of-plane correction models in un-

steady simulations slowed the convergence [27]. Furthermore, the implicit definition

of induction in the momentum equations given by Sharpe makes it difficult to for-

mulate a fixed point iteration function [155]. Thus, the fixed point iteration scheme

may not be suitable as a general solver for all forms of BEM. It is clear that other
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numerical techniques need to be investigated to enable the use of all advanced BEM

based methods.

When a method is applied in an optimization application, the numerical method

must be both stable and efficient for it to be practical [73, 64]. This defines the

criteria for evaluating an alternative method. The Newton-Raphson technique has

very fast convergence, however it also comes with known instabilities. Fortunately,

these instabilities can be detected and dealt with by other methods. Overall, this sec-

tion investigates numerical methods for solving the BEM equations. First, it explores

analytically the predicted behavior of the BEM equations in section 2.3.1. The stabil-

ity of two numerical methods is then quantified over a range of parameters in section

2.3.1, followed by recommendations for the application of these methods. Speed is not

the focus of this investigation; the numerical methods under consideration are fast

for most problems, thus we assume that each method already meets the efficiency

criteria.

Blade Element Momentum Theory

The approach taken here explores a basic form of the BEM equations. This allows

the major trends of the equations to be identified quickly and simply. The equations

selected here will have a similar form to the more advanced forms that motivated

this work. This similarity will make the conclusions drawn here applicable to other

forms of BEM. Many of the conclusions from this study will apply to any monotonic

momentum equation. The conservation of momentum requires any such model to

be monotonic, hence, these conclusions are universal. Furthermore, only the axial

momentum equation is explored, with a simple turbulent wake correction model.

Neglecting the tangential component of BEM theory is justified since it has a small

influence of the final solution.

The key parameter in solving the momentum equations is the induction at the

rotor plane. This affects the angle of attack and all the aerodynamic forces on the

blade. The induction solution is achieved when the thrust coefficient of the axial

momentum equation (2.23) equals the thrust coefficient of the blade element equation

(2.24).

Ctm = 4a (1− a) (2.23)
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Ctb = σ

(
W

V∞

)2

cn (2.24)

Both equations give the coefficient of thrust Ct, which is a non-dimensional thrust

parameter. The induction is given by a; its effect on equation (2.24) is not obvious but

will be shown in the definition of the terms in equation (2.24). The effect of blade size

is captured in the solidity term (σ); this is the ratio of blade area to swept area. The

effect of the airfoils is captured by the normal force coefficient; this parameter is found

with equation (2.25). Here, the sectional coefficient of lift (cl) and sectional coefficient

of drag (cd) are dependent on the angle of attack (α), which is the difference between

the local flow angle (φ) and the twist angle (θ) - see equation (2.26) and figure 2.3.

The local flow angle is governed by equation (2.27), where λ is the local speed ratio,

which is the ratio of the blade speed to the undisturbed wind velocity. The effect of

the rotors angular speed is captured by the velocity ratio (W/V∞); this is the ratio of

air speed relative to the blade, to the undisturbed wind speed. This parameter can

be given in terms of model variables with either expression (2.28) or (2.29). For the

remainder of the discussion, only the first version (2.28) will be considered.

Figure 2.3: Geometric convention for blade element theory

cn = cl cosφ+ cd sinφ (2.25)
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α = φ− θ (2.26)

tanφ =
1− a
λ

(2.27)

W

V∞
=

1− a
sinφ

(2.28)

W

V∞
=

λ

cosφ
(2.29)

The domain of the axial momentum equation (2.23) is limited to low values of

thrust before a turbulent wake state is entered. When the thrust is too high, the

turbulent wake function (equation (2.30)a) is used instead. The function given here is

not strictly based on experimental data or models presented in literature, but selected

for its simplicity to illustrate the numerics of the methods. The analytic study will

not look at the turbulent wake state leaving its examination to the numerical study

in section 2.3.1.

Ctw =
5.2a+ 0.8

3
(2.30)

These equations only give a summary of BEM theory for more details the reader

is referred to Burton et. al. [156], Manwell et. al. [34] and Hansen [35].

Analytic Investigation of BEM Stability

The residual expression, equation (2.31), is given by subtracting equation (2.24) from

equation (2.23). This equation is used by a Newton-Raphson iteration algorithm to

find a solution for a. Numerical instabilities will occur when the slope of this equation

approaches 0. The circumstances for this condition to occur can be investigated by

differentiating equation (2.31), to yield equation (2.32).

R(a) = 4a (1− a)− σ
(

1− a
sinφ

)2

cn (2.31)
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dR

da
=

I︷ ︸︸ ︷
4− 8a+

II︷ ︸︸ ︷

σ




2 (1− a) cn︸ ︷︷ ︸
A

+λ




i︷ ︸︸ ︷
dcl
dα

cosφ+

ii︷ ︸︸ ︷
dcd
dα

sinφ+

iii︷ ︸︸ ︷
cd cosφ−

iv︷ ︸︸ ︷
cl sinφ




︸ ︷︷ ︸
B




(2.32)

Term I in equation (2.32) is the gradient of the momentum equation. This term is

always positive for any realistic model, including turbulent wake models. The source

of the instability is the blade element gradient, labeled as term II. An important

property is that solidity acts as an amplifier for this term, thus any negative quantity

for the right hand side of II can yield an instability if solidity is scaled properly.

Further insight can be gained by looking where the sum of terms A and B are

negative. Term A accounts for the effect of changing W/V∞. The first component of

this term will only be negative when the turbine is reversing the flow. The second

component has similar trends and will only be negative when the blade element is

applying forces that accelerate the flow. Thus, this term can only contribute to

instability when the rotor is operating in off-design conditions. For a well designed

turbine, this instability is rare.

The B term accounts for variation in the blade force term. The first variable

in this term is the local speed ratio. Like solidity, this term can be considered an

amplifier. The remaining terms are dependent on the blade element state. Here the

angle of attack has a strong influence. This would give strong coupling to the blade

twist and local speed ratio. The first two terms account for the change in lift and

drag coefficients. The remaining terms account for variation in the direction of blade

forces.

The first term (i) shows that a negative lift slope can lead to instability. This

will occur when the blade is stalling at either positive or negative angles of attack.

The second term (ii) shows that variation in drag contributes to stability at positive

angles of attack, and is detrimental elsewhere. The third term (iii) shows that the

actual drag force has a stabilizing effect overall. The fourth term (iv) shows that

the lift force can have a stabilizing effect at negative angles of attack, but introduce

instability as the flow angle increases and lift forces are high.
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The fixed point iteration function for the BEM equations is developed by assuming

the flow angle is constant, then solving equations (2.31) for R (a) = 0. The fixed point

iteration function for the version of BEM presented here is given in equation (2.33).

ai+1 = f (a) =
1

4 sin2 φ
σcn

+ 1
(2.33)

By explicitly defining induction as a function of blade conditions, the only source of

instability is in the lift and drag response of the blade itself. A fixed point iteration

will diverge whenever the gradient of the function f (a) has a magnitude of 1 or

greater. This condition was applied to equation (2.33) to define the conditions for

stability given by equation (2.34). The reader should be aware that both equation

(2.33) and (2.34) are invalid beyond the onset of turbulent wake conditions.





dcn
dφ

>

I︷ ︸︸ ︷
cosφcn−

II︷ ︸︸ ︷(
λ2 + (1− a)2

λ

) (
4 sin2 φ+ σcn

)2

4σ sin2 φ
for sin2 φ

dcn
dφ

> sin (2φ) cn

0 <
(
4 sin2 φ+ σcn

)2
for sin2 φ

dcn
dφ

= sin (2φ) cn

dcn
dφ

< cosφcn +

(
λ2 + (1− a)2

λ

) (
4 sin2 φ+ σcn

)2

4σ sin2 φ
for sin2 φ

dcn
dφ

< sin (2φ) cn

(2.34)

The inequality given in equation (2.34) shows three conditions. Which equation

is active is dependent on a domain constraint. The middle condition can be ignored,

as this will only be active when turbulent wake conditions occur and this expression

is not valid in any case. The left hand side of all the inequalities is dependent on the

variation of the normal force coefficient. Note that dcn
dφ

is related to airfoil coefficients

through equation (2.35). The right hand side of all the conditions is a function of

the normal force coefficient. Inspection of equation (2.34) shows that the stability

condition is similar to the domain constraint. This means it is likely that the favorable

condition will be active, giving a bias towards stability.

dcn
dφ

=
dcl
dα

cosφ+
dcd
dα

sinφ+ cd cosφ− cl sinφ (2.35)

Stability cannot be guaranteed however, since the first condition can be active

whenever the normal force gradient is relatively large. Under these conditions, diver-
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gence occurs when the normal force coefficient is still large enough that term II is

similar in magnitude to term I. This may occur over a wide range of flow angles.

Another source of instability is in the turbulent wake functions. Each turbulent

wake model can form a residual expression that could be solved to develop a fixed

point function. For the turbulent wake model used here, the fixed point function

resembled the quadratic formula. For the equation used in this study, the domain

is bounded, and the range is unbounded. Both of these qualities would lead to a

diverging solution. Other turbulent wake models would have a different form, with

their own unique stability characteristics.

An important point to note is that in a Newton-Raphson iteration, the stabil-

ity is independent of the momentum model, and strongly dependent on the airfoil

characteristics. The stability characteristics of a fixed point scheme are far more

complicated and unique for every momentum model or turbulent wake model.

Numerical Investigation of BEM Stability

To expand on the analytic investigation, a set of numerical results were analyzed. The

first goal was to identify a) whether multiple solutions to the BEM equations could

exist, then b) regions of numerical instability and finally c) how well these regions

correlated with the angle of attack. The role of airfoil drag is debatable. Some

researchers propose that it should not be used to determine the induction, since the

effect of drag in the momentum balance is limited to a narrow region of the wake [34].

Other researchers assume an azimuthal averaged loss of momentum, that includes the

effect of drag [27]. To explore the effect of these assumptions, a second set of data

was generated, without using the drag coefficient.

The theory described in section 2.3.1 was implemented in a computer program.

The theory has four independent variables: blade twist (θ), the local speed ratio (λ),

solidity (σ) and axial induction (a). The first three variables are effectively design

parameters fixed by section location, rotor speed and inflow conditions, while the last

one is a state variable that would be iterated on by a numerical solver.

For a given set of design parameters, the code sampled induction values a between

-0.25 and 1.0 inclusive with a step size of 0.001. From that, the code determined the

values of equation (2.31) and equation (2.33) at each point. To evaluate stability, finite

differencing was applied to obtain the slope of each equation. Locations where the sign
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of the residual expression changed were counted as a solution to the BEM equation.

These calculations were then applied over a large range of design parameters.

The code used the lift and drag data from eight S800 series airfoils (S801, S809,

S810, S812, S813, S814, S815 and S825). The airfoils were chosen for the availability

of experimental data over a wide range of angle of attack [159, 160, 161, 162, 163,

164, 165, 166]. A second set of data for a rough leading edge was also used for each

airfoil. To prevent angle of attack domain errors, the airfoil data was extrapolated

to ±180◦ using methods proposed by the National Renewable Energy Laboratory

(NREL) [167]. This extrapolation is common practice in turbine design. Linear

interpolation was applied for intermediate α points.

For every airfoil, both clean and rough, regardless of whether drag was used or

not, there were regions within the design space where multiple induction solutions

existed. Most had 3 unique solutions but some points had up to 5. The regions where

multiple solutions exist is given by figure 2.4. Each contour plot is defined by two

design variables, while the value is defined by the maximum number of solutions for all

the points of the remaining design variable. Figures 2.4a through 2.4c are typical for

most airfoils in the study. Here, the results show that the region of multiple solutions

is nearly planar within the 3-dimensional space defined by the design parameters.

In this region, the design parameters allow the blade element model to follow the

momentum model. The BEM equations with the clean S812, rough S814 and rough

S815 have multiple solutions over a much wider range of the design space. An example

of this is given by figure 2.4d. Thus, no assumptions can be made on where multiple

solutions will exist.

Figure 2.5a shows an example of how the thrust models varied with induction to

produce multiple solutions. As expected, when multiple solutions occur, it is because

the blade element model follows the momentum model for an interval. The slight

variations in the airfoil data for this interval result in multiple solutions. The small

slope of the residual function could produce unbounded results close to the solution.

Figure 2.5b shows how the fixed point function would vary for the same point. As

expected, the fixed point function lies on the y = x line. Here, the slope is close to

unity, consequently, the solver would exhibit either slow convergence, or divergence.

Neglecting drag in the calculations had little effect on the number of solutions

found. Including drag merely altered the region in the design space where multiple

solutions could be found. Inspection of these regions showed similar trends to those
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shown in figure 2.5. Accordingly, the effect of drag has a minor role in the existence

of multiple solutions.

Overall, the blade element equation (2.24) is decreasing with increasing drag and

lift, thus multiple solutions only occur when there is a decreasing lift coefficient from

stall. The validity of the airfoil data here is in question. First, stall is known to give an

unsteady force response. Second, the nature of stall can vary widely due to turbulence

and various other conditions. Finally, for wind turbines in particular, the rotational

effects are known to delay stall. Thus these regions of multiple solutions coincide with

the regions of greatest uncertainty in the actual physics of the aerodynamic models.

Multiple solutions occur when the blade forces vary with induction, similar to how

induction (from the wake structure) varies with forces. In other words, the magnitude

and slopes are similar, for both the blade element model and the momentum model.

Regardless of the uncertainty in the modeling, these situations could occur in reality.

Under these circumstances, the induction is weakly dependent on the blade state and

the induction would be more strongly affected by local flow conditions. For example,

with all other things being constant, after a gust, the flow would settle into a low

induction state, while after a lull, a high induction state. Similarly, variation in the

stall forces would also cause changes in the induction state. This weak dependence

could be a source of error and uncertainty in modeling turbines when the blades are

stalling. Along the interval of multiple solutions, the range of induction is between 0.2

and 0.4, with a variation of lift coefficient between 0.7 and 1.0. This causes significant

variations in the blade forces. Given the importance of using stall to regulate some

wind turbines and in predicting loads during the turbulent conditions when stall is

entered, this could be an important insight for the design of wind turbines.

A Newton-Raphson iteration scheme will produce unbounded solutions when the

slope approaches 0. The fraction of points that had a residual slope magnitude less

than 0.02 was used as a measure of instability. Similarly, when the magnitude of the

fixed point function slope is unity or greater, the method will diverge. The percentage

of points that exhibited this behavior was used as a measure of instability for the fixed

point iteration scheme. Selected results are tabulated in table 2.1. Note the stability

measures of each method are not directly comparable, as the nature of the instability

is different.

To quantify the various effects present, the average stability of the appropriate set

is given in table 2.2. From this data it is clear that the Newton-Raphson iteration

stability is sensitive to grit roughness. This is expected, as a roughened leading
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Table 2.1: Stability results for selected profiles

Mean Instability Mean Instability
Rough Ignoring Drag Newton-Raphson Fixed Point

S825 Yes No 14× 10−6 0.18
S809 Yes No 50× 10−6 0.21
S813 Yes No 329× 10−6 0.21
S815 Yes No 414× 10−6 0.18
S809 No Yes 472× 10−6 0.22
S813 No No 840× 10−6 0.20
S825 No Yes 858× 10−6 0.18

edge leads to a more gradual stall, confirming the analytical conclusion that this

is beneficial to the stability of Newton-Raphson methods. Comparing the effect of

including drag in the calculations shows that it has a minor role in stabilizing the

calculations. Overall, the stability of the fixed point function has weak dependence

on airfoil properties.

Table 2.2: Stability of selected data sets

Mean Instability Mean Instability
Data Set Newton-Raphson Fixed Point

Clean Leading Edge 553× 10−6 0.20
Rough Leading Edge 270× 10−6 0.19
Using Drag 400× 10−6 0.20
Ignoring Drag 423× 10−6 0.20

The location within the design space where instability occurred is shown in figure

2.6. The figure shows contour plots for the Newton-Raphson stability measure. At

each point within the contour plot, two design variables are fixed; the plotted value

is the average stability for all points of the remaining free design variable. Drag was

included in the calculations for all these results. Figure 2.6b shows that instability

occurs in a small region defined by both the local speed ratio and solidity. This

confirms the importance of these two parameters, as discussed in section 2.3.1. The

remaining figures show that high twist is also associated with instability. Here, term

A of equation (2.32) is starting to contribute to instability.
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Figure 2.6: Mean stability measure for Newton-Raphson method with S813 airfoil

The results given in figures 2.6a through 2.6c are an example of relatively low

stability. When the S813 profile has leading edge roughness, the stability improves

significantly. The stability region of the roughened S813 profile with respect to local

speed ratio and solidity is given in figure 2.6d. Here, the location of the instability is

less broad, and shifted towards increased local speed ratio and solidity.

The regions within the design space where the instability occurs for the fixed point

iteration function is given in figure 2.7. As before, each sub-figure is a contour plot

showing the average stability across the remaining free variable. The plots shown

here were generated with rough S813 data, and are typical for the other airfoils.

The results show that the fixed point iteration function has increased stability for

small angles of twist and low solidity. The plot shows increased stability for low local

speed ratios. When solidity or twist is also low, then increased stability is present at

higher local speed ratios. This region of increased stability corresponds well to design
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Figure 2.7: Mean stability measure for fixed point method with the rough S813 airfoil

parameters expected in well designed turbines. Despite the seemingly poor stability,

this shows that a fixed point scheme is still acceptable for most design applications.

However, it is common for most optimization algorithms to test areas in the design

space far from the optimum. Accordingly, this algorithm may not be suitable for

optimization applications.

To understand how airfoil data affected stability, the angle of attack where in-

stability occurred was recorded for every case. Figure 2.8a shows the frequency of

Newton-Raphson instability conditions at various angles of attack for the S813 airfoil.

This figure is typical for other profiles. It is clear from these figures that there is a

strong correlation to the angle of attack. This confirms that term B is dominant in

equation (2.32). The greater frequency for negative angles of attack show that term

A from equation (2.32) is also contributing to instability.

The frequency results for the roughened S813 are given in figure 2.8b. It is clear

that instability is confined to specific angles of attack. The difference between clean
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Figure 2.8: The frequency of instability for the S813 airfoil

and rough profiles is the magnitude of the frequency and more importantly, the angles

where frequency is high. Referring to the lift polar given in figure 2.8c, it is clear that

the high frequency of occurrences correspond with negative lift curve slope.

The data for the fixed point iteration scheme showed that the instability would

occur for a wide range of angles of attack. The results for the rough S813 airfoil,

including drag, are given in figure 2.8d. The instability is strongest for negative

angles of attack. This would correspond with the instability region of large twist and

high local speed ratio in figure 2.7c. It is important to note that the region of fixed

point instability could not be correlated to airfoil polar data.

It was demonstrated in section 2.3.1 that for a Newton-Raphson scheme, the

stability had a minor dependence on the momentum equation. Provided that this

equation is monotonic, the same stability qualities will exist. Any momentum model
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that is not monotonic with respect to induction, violates conservation of momentum,

hence it is safe to assume that these stability characteristics are universal.

When applying a fixed point iteration scheme, several algebraic manipulations

are applied to both the blade element model and the momentum model. A different

fixed point function will be developed for each momentum model and choice of ana-

lytic manipulation. This fixed point function will then have its own unique stability

characteristics. Thus, for the fixed point iteration scheme, it is difficult to draw any

conclusions that apply universally.

The results here show that the Newton-Raphson iteration scheme is more stable

for solving BEM equations than the more widely used fixed point iteration scheme.

Yet, these results neglect the nature of the instability. The behavior at the instability

has similar importance in selecting the appropriate numerical scheme.

When a Newton-Raphson scheme falls into an unstable region, an unbounded re-

sult is produced. This demands techniques for handling these exceptions. A common

practice is to limit the maximum change in subsequent solutions. To prevent oscil-

lations in the predicted solution, relaxation could be applied. The detriment here is

the difficulty in creating an effective technique for handling these exceptions.

Alternatively, when a fixed point scheme is in an unstable region, it is unlikely

to give an unbounded prediction. Instead, the scheme will bounce around a range

of reasonable values. Under these circumstances, the common practice is to lag the

solution after a given number of iterations. The detriment here is that many iterations

must pass for these lagging methods to be activated. For a more unstable fixed point

function, the method would be much slower.

In both methods, the algorithm must be able to detect when the method is failing

and have techniques to handle these situations. The results here show that the sta-

bility of the Newton-Raphson scheme is tightly tied to the airfoil profile performance

data, and is in a well defined region within the design space. This gives the algorithm

many other possibilities to detect unstable regions for the Newton-Raphson scheme.

Section 2.3.1 showed the difficulty in identifying the stability characteristics for a

fixed point iteration scheme. For the fixed point function here, the user is forced to

iterate a set number of times to detect whether the solution needs lagging. Thus, odd

designs will significantly slow this method.

This author did not formally investigate any strategies to improve the stability.

However, Ning [146] has taken this work further and developed strategies to eliminate

the instabilities completely. The conventional BEM equations are based on two inde-
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pendent variables (i.e. the axial and tangential induction). Ning showed you could

cast the problem as a one dimensional parameter search over the flow angle. Guar-

anteed convergence is achieved through the intermediate value theorem, once two

points with opposite sign in the residual are identified. In these cases, the solution is

bounded by these two points and convergence is guaranteed merely by reducing this

interval down to below the solution tolerance.

2.3.2 Grid-Based Computational Fluid Dynamics

Simulating wind turbines with grid based CFD is an active area of research. These

methods are based on a mesh in the fluid domain and solving descretized partial

differential equations (see Ferziger [132] for more details). The grid based approach

has been applied to solve the Euler equations [69], vorticity transport equations [168]

and the RANS equations [169] for wind turbine flows. Refer to White [170] for more

information on these governing equations. These methods usually employ various

schemes to resolve turbulence. The complexity of simulating turbulence has prompted

some researchers to simply ignore it [168]. A more common approach is to apply

simple eddy viscosity models [171]. When turbulent effects are important, researchers

have applied Large Eddy Simulation (LES) [172]. Some researchers have successfully

applied Direct Numerical Simulation (DNS) by using artificially high viscosity to limit

the computational requirements in simulating the wind turbine. See Pope [173] for

more details on various turbulence modeling techniques.

Grid-based CFD studies can be divided into two groups based on the focus of the

research: far-wake flows and near-wake flows. The former group is focused on tur-

bine wake interactions to maximize wind farm efficiency and to understand unsteady

loading; the later research is more important for turbine design due to the focus of

detailed flow phenomenon at the rotor [174].

One of the challenges in grid-based CFD is the computational effort required to

get solutions. This can be controlled through different rotor representations [175].

The simplest is actuator disk models, where the rotor geometry is ignored and the

rotor forces are smeared across a disk at the rotor plane. Sorensen et. al. [168]

presents an actuator disk model based on the vorticity transport equations; the study

investigated the different high thrust wake states. An interesting result was the

simulation predicted that flow reversal would occur at thrust levels much lower than

seen in experiments.
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Actuator disk models cannot resolve finite blade effects, prompting much research

into actuator line methods [176, 177, 172, 178]. Like the actuator disk models, the ac-

tuator line approach still ignores the detailed blade geometry. It differs from actuator

disk models by concentrating the blade forces on a line where the blade would exist.

Despite neglecting detailed geometry, the actuator line method requires a finer mesh

at the actuator line to properly resolve the flow at the blade [178]. These models have

lead to several detailed studies in wake aerodynamics. Ivanell et. al. [177] presented

a DNS simulation with artificially high viscosity that captured the discrete vortex

structure in the wake. Troldborg et. al. [172] developed an actuator line model

with an LES model for turbulence. They investigated the effects of rotation speed on

the wake stability and found high Tip Speed Ratio (TSR) lead to wake instabilities.

Ivanell et. al. [176] used an actuator line model with LES to investigate the stability

properties of the tip vortex.

The last class of grid-based CFD are those that resolve the detailed turbine geom-

etry. These models are the most expensive because very small grid cells are required

to resolve the boundary layer and a large domain is required to resolve far-field effects

[175]. Gomez-Iradi [179] gives an early validation of this approach by simulating the

NREL Phase VI rotor over a range of operator conditions. Later, Bechmann et. al.

[180] simulated the MEXICO experiments over a range of operating conditions. Most

of the grid-based CFD studies are focused on investigating three dimensional flow ef-

fects on the various wind turbine components. Johansen et. al. [181] used grid-based

CFD to investigate the benefits of aerodynamic hubs. Johansen and Sorensen [182]

used CFD to investigate the effects of wing-lets. Zahle et. al. used the overset grid

method to investigate rotor-tower interactions. A common topic of study is the three

dimensional flow field effects on airfoil loading. Hu et. al. [183] performed a numeri-

cal study on stall delay and validated this work with hot-wire measurements of a wind

tunnel experiment. Johansen and Sorensen [169] developed a method for extracting

aerofoil characteristics from three-dimensional flow solutions that can later be used

in simple BEM models. Sorensen [184] developed a laminar-to-turbulent transition

model for simulating boundary layer flows for wind turbines.

Due to the complexity of generating meshes and the computational requirements,

these approaches are rarely seen in wind turbine MDO. One example is given by

Kenway and Martins [185]; they employed MDO for site specific shape optimization

with the Euler equations.
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2.3.3 Lagrangian Vortex Methods

Theory of Lagrangian Vortex Methods

The aerodynamic models used in this research are part of a broad class of methods

that will be referred to here as ‘super-position methods’. Super-position methods are

applicable to incompressible flows that exist at Mach numbers below 0.3 [170]. When

a flow is incompressible, it is also divergence free [170]:

∇ · u = 0 (2.36)

With the property in equation (2.36), vector identities can be used to derive the

Poisson equation in equation (2.37) [186]:

∇2u = −∇× ω (2.37)

Where the vorticity (ω) is defined in equation (2.38):

ω ≡ ∇× u (2.38)

Given that equation (2.37) is linear, multiple elementary solutions can be com-

bined in super-position [133]. Typically the elementary solutions used are based on

Green’s functions [186]. For flows with line vortices, this leads to the Biot-Savart law

in equation (2.39) [133], which describes the influence of vortex filaments in the flow

field.

u =
Γ

4π

∫
ds× d
‖d‖3

(2.39)

These methods can be simplified further by assuming the flow is also irrotational

as defined by equation (2.40) [133]. The irrotational assumption is not too restrictive

considering that the vorticity only exists in a very small region defined by the wake

of the wing.

∇× u = 0 (2.40)

This transforms equation (2.37) into a Laplace equation, where the solution can

be described by a potential field [133]. Vorticity is still present in this formulation

by assuming that it exists at the boundaries of this Laplace equation [133]. Potential

flow leads to additional elementary solutions like sources and doublet’s.
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The Lifting-Line and Other Wing Representations

What differentiates the different super position methods, is the way that the lifting

surfaces are represented. The simplest being lifting-line theory which has been used

extensively in this research. Accordingly it deserves an expanded explanation.

Lifting line theory was first used by Ludwig Prandtl [134, 135]. It is based on

the Kutta-Joukowski theorem in equation (2.41) that relates how the lift force (L)

on the wing is related to a bound circulation (Γb) [133]). This allows the wing to

be represented as a bound vortex with a given strength (Γb). This representation is

acceptable for long slender wings with high aspect ratio.

L = ρV Γb (2.41)

Given that circulation is a conserved quantity [170], this generates trailed vorticity

in the wake as it varies along the span (see equation (2.42)) [133]. For unsteady flows,

additional shed vorticity is generated due to the temporal change in bound vorticity.

The work presented in this research focused on steady flows, hence shed vorticity will

be ignored.

Γt =
dΓb
ds

(2.42)

Lifting line theory uses the Biot Savart law in equation (2.39) to determine how

the vorticity in the wake induces the flow near the lifting line. The problem is closed

by the fact that this induced flow dictates the magnitude of the bound circulation.

The different lifting line methods vary by how the induced flow is used to define the

bound circulation. In the original work by Prandtl, a Dirichlet boundary condition

was used to enforce no flow passing through the wing at the 1/4 chord position [133].

Prandtl ignored the influence caused by the bound vortices, this limited the theory

to wings without sweep or dihedral. Later, Weissenger extended this theory by using

the same boundary condition, but moving the control point to the 3/4 chord position

[136]. At this position, the control point is affected by the bound vorticity, which

made the approach applicable to wings with both sweep and dihedral [136]. These

two approaches led to simple models that could be solved analytically with series

solutions.

The Dirichlet boundary condition is only acceptable when the wings are at small

angles of attack, where stall and other inviscid phenomenon is negligible. A more
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modern adaption is given by Phillips and Snyder [137], where the sectional lift coeffi-

cients (cl) are used in conjunction with Kutta-Joukowski theorem to define the bound

circulation in equation (2.43). This creates a nonlinear lifting line model where the

induced velocity is used to calculate the angle of attack. The angle of attack then de-

fines a sectional lift coefficient, which gives the bound circulation. The effects of stall

and other inviscid phenomenon are incorporated through the sectional lift coefficients

when they are based on either experiments or numerical methods that include viscous

effects. Phillips and Snyder show that this method is acceptable for problems with

multiple lifting surfaces that have both sweep and dihedral, making this a general

method for simulating systems of slender wings [137].

Γb =
ccl‖w‖

2
(2.43)

A notable example of the Phillips Snyder model is given by Fluck and Crawford

[187], where it was applied to bird wings to evaluate how tip feathers limit induced

drag. The lifting line model was composed of multiple branching line segments to

represent the main wing and the tip feathers. Viscosity effects were incorporated

by using experimentally measured sectional lift coefficients. Despite the complexity

of the bird wings the authors were able to demonstrate excellent agreement with

experiments.

Lifting line methods are limited to wings with high aspect ratios. For low aspect

ratio wings, one needs to take into account the distribution of loading along the chord-

wise direction. This is achieved by replacing the single bound vortex with a lattice

of vortices distributed along the mean chord line. Each of the vortex elements in the

wing have their own independent strength, which is controlled by multiple control

points on the wing surface [133]. This method is similar to the lifting line method

in that the influence of the vorticity from both the lifting line and wake are used to

calculate the flow at the lifting surface. Then, the circulation strength is based on

Dirichlet boundary conditions applied to control points on the wing [133].

To consider the effect of wing thickness, one can turn to panel methods [133]. Panel

methods are based on a set of source and doublet entities distributed across the wing.

The source terms will push the flow out to create a region that is not penetrated by

the flow. In panel methods, the Dirichlet boundary condition is applied at the surface

of the wing. As before, superposition is used to determine the effects of the wake and
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wing, which in turn, are used to determine the strength of the sources and doublets

[133].

Wind turbine blades are based on long slender wings with high aspect ratios. The

extra complexity of either lattice or panel methods is unlikely to give significantly

improved solutions. The lifting line methods used in this research are based on the

lifting line theory of Phillips and Snyder [137]. Figure 2.9 shows an example of a

free-wake lifting line code to simulate a wing and a wind turbine. The wind turbine

simulation had three blades, but only one is shown for clarity. The cylinders in figure

2.9b indicate the starting location of a semi-infinite vortex cylinder model.

(a) Elliptical Wing (b) Wind Turbine

Figure 2.9: Visualizations of FEM based LVD simulation results

Free-Wake Representations and Instabilities

All the super-position methods depend on some sort of geometric representation of

the wake. Most of the classic methods assume a flat vortex lattice system aligned with

either the chord direction or undisturbed flow direction [133]. For simple wings, this

representation gives good results [133]. By ignoring the flow effects on the wake, one

could develop efficient analytical solutions to the bound vortex system [134, 135, 136],

or simple nonlinear systems that can easily be solved with Newton iteration [133].

In reality, the vorticity in the wake is a material element and will follow the flow-

field [186]. These effects become important when considering novel geometry like

wing-lets, or large deflections associated with flexible blades. All the classic super-

position methods can be improved by letting the wake evolve with the flow field.

These versions are often referred to as ‘free-wake’ or ‘force-free wake’ models. This

introduces a new complexity to the problem: the position of the wake is dependent
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on the local flow field in the wake; which is in turn dependent on the position of the

vorticity in the wake. Solving this circular dependency is the greatest challenge in

free wake super-position methods.

Typically, this circular dependency is resolved using a time marching algorithm

(otherwise known as a fixed point) [133, 188]. At each time step the influence is

calculated at all the control points in the wake, then based on that influence and a

numerical advection scheme (e.g. first order forward Euler in equation 2.44), the wake

positions are updated for the next time step. When a steady state solution is desired,

the same time marching algorithm is used. In this case it evolves in pseudo time

where shed vorticity is ignored and updates to the bound circulation strength apply

to the whole wake immediately. A steady-state solution is achieved when changes in

state between iterations falls below a specified tolerance. This is referred to as an

iterative convergence criteria.

xi+1 = xi + ui∆t (2.44)

Free-wake models take considerably more computational effort to solve than fixed

wake models. This is because every control point in the wake requires an influence

calculation from every other element in the system. This leads to a O(N2) com-

putational scaling. This can be improved to O(N logN) by lumping distant vortex

elements with the fast multi-pole method [86, 87].

All the free-wake methods in the literature known by this author apply a time

marching algorithm [86, 87, 145, 189, 190, 191, 192, 188, 140, 141]. This highlights

the uniqueness of the FEM-based LVD contribution given in chapter 3. This approach

manages to solve the free-wake configuration without time evolution. It introduces

a new way of accelerating the influence calculation by lumping the control points in

the wake. The details of this model will be deferred to chapter 3.

Time evolution is complicated by the many instabilities in the wake. The first

difficulty is the fact that point vortices and vortex sheets are singular at the core

[192, 133]. Without careful treatment a wake element can get too close to the core

of another vortex element and be pushed into highly distorted and unrealistic config-

urations [193]. This singularity can be eliminated by considering that viscosity will

distribute the vorticity. These core flows are typically based on simple models. One

example is given by Van-Garrel [145], who solved the induction from a simple line

element in figure 2.10, with equation (2.45). Equation (2.45) is based on the ana-



63

lytical solution to (2.39) for a line element, this analytical solution is given in Katz

and Plotkins [133] and is simplified further by Phillips and Snyder [137]. Van-Garrel

incorporated a core model by adding a core radius term (dc) in the denominator,

eliminating the singularity. The Van-Garrel kernel function is used extensively in this

research. Other kernel functions exist that employ different core models, these alter-

native models were not explored in this work because the effect of the core model was

considered secondary compared to the challenge of adapting LVD for optimization.

Γ

d2

d1

u

xp

x2

x1

Figure 2.10: Vortex line geometry

u =
Γ (‖d1‖+ ‖d2‖) (d1 × d2)

4π
(
‖d1‖‖d2‖ (‖d1‖‖d2‖+ d1 · d2) + (dcl)

2) (2.45)

The instabilities are not limited to just the kernel function. Pure vortex systems

are fundamentally chaotic [186]. Furthermore it is known that helical vortex structure

(i.e. a wind turbine wake structures) can be unstable under different conditions

[144, 143, 176]. This has lead to many studies into the stability. Okulov [144] has

analytically derived the stability criterion for helical vortex structures with arbitrary

number of filaments. Walther et. al. [143] gives a numerical investigation where the

stability is evaluated based on the vortex pitch, core radius, and the wave number

of the perturbation. They concluded that all helical vortex systems will become

unstable when the core growth causes the helical vortices to merge (this leads to a

Kelvin-Helmholtz instability [186]). Ivanell et. al. [176] performed a similar study

with grid-based CFD simulation with a LES model for the turbulence. They found

the turbulence intensity has an effect on the stability.

These instabilities are problematic for time-marching algorithms because the evo-

lution automatically inherits the natural chaos associated with vortex systems [186].

Many authors have noted the difficulty of obtaining converged solutions due to these

instabilities [191, 192, 190, 189, 82, 83]. One could argue given that chaos is natural to

vortex flows, that these instabilities should be considered part of the solution. How-
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ever, the numerical error caused by the discretization (in both time and space) acts as

a perturbation that would not exist in reality [189]. Investigations into the stability

of numerical vortex systems have concluded that this numerical error amplifies the

chaotic motion beyond levels seen in experiments [189].

This problem has prompted many authors to explore higher order advection

schemes. The first was Bagail and Leishman [189], who developed a high order

scheme that uses numerical damping to attenuate the high frequency disturbances.

Later, Bhagwat and Leishman [190] created a pseudo implicit scheme based on a

predictor-corrector approach. Recently, Lawton and Crawford [87] have developed

a second order viscous splitting algorithm. Ramos-Garcia et. al. [191] successfully

applied the Adams-Bashforth algorithm along with the Adams-Bashforth-Moulton

predictor-corrector algorithm. Each of these methods are explicit; further improve-

ments could be made by employing implicit methods like the Crank-Nicholson scheme

developed by Lawton and Crawford [194].

The difficulties of evolving vortex systems in time highlights the value of the FEM-

based LVD contribution presented in chapter 3. By avoiding time evolution, it avoids

the problems of instabilities.

Lagrangian Vortex Methods in Wind Energy

Many of the Lagrangian vortex methods have been successfully applied to simulate

wind turbine flows. Chattot [77] used a lifting line model with a prescribed wake

to optimize the power of wind turbine subjected to a thrust constraint. This work

demonstrated the advantages of vortex methods over BEM by showing that the opti-

mal vortex solution will locally exceed the Betz limit, but still preserve the limit over

the whole rotor disc.

Lee [142] notes that BEM is not suitable for non-straight blades. In this work,

a lifting line model was used for inverse design, where the flow behavior is specified

and the lifting line model is applied to calculate the blade shape to produce that

behavior. The wake in this model was still constrained, but varied the pitch based

on the coefficient of power.

The conventional LVD model used in this research is similar to the free-wake lifting

line model given by Van-Garrel [145]. The model developed by Van-Garrel used the

core model given in equation (2.45) and evolves the wake with a time marching

algorithm using first order forward Euler shown in equation (2.44).
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Despite the instabilities, the time marching algorithm is well suited for simulating

unsteady flows. This effect is more pronounced in floating offshore wind turbine appli-

cation due to wave motion being amplified at the rotor. This will produce irregular

shaped wakes that cannot be properly resolved with BEM theory. This prompted

Sebastian and Lackner [188, 195, 196] to develop a lifting line code specialized for

floating offshore applications. An interesting result of this research is that the au-

thors were able to show a wind turbine could extract wave energy due to this motion.

Lifting line models are also well suited for simulating novel blade geometries. An

example of this is given by Maniaci [192], where a lifting line model with distributed

vortex elements in the wake was used to explore winglet design. This work is unique

in the use of distributed vortex elements, which distribute the vorticity over a surface.

The advantage here is improved solutions to the induced velocity on the blade and

the vortex singularity associated with line elements is eliminated.

Many of the other super-position methods have been successfully applied to wind

turbine flows. Dossing [141] used a vortex lattice and a panel method with a free-wake

to explore the effect of winglets on wind turbines.

Another example is an aero-elastic panel method by Roura et. al. [140]. The

wind turbine blade was rigid, structural deflections were incorporated into the model

using a stiff hinge at the root to introduce a flapping and torsion motion.

A common misconception with super-position methods is that viscous effects are

ignored. However, in many cases, the important effects can be included through

models. Ramos-Garcia et. al. [191] shows how the effects of the boundary layer can

be incorporated into a panel method for wind turbine simulations. The effect of the

boundary layer is to displace the inviscid flow away from the surface. A boundary

layer model is used to calculate the displacement thickness, then the control points

of the panel method are shifted up to the boundary surface between the viscous and

inviscid flows.

Schmitz and Chattot [197] developed a coupled Navier-Stokes/Vortex-Panel solver.

A grid-based CFD code is used to solve the Navier-Stokes equations near the blade.

Then outside the grid-based CFD domain, a panel method is used to simulate the

wake flow. This approach is able to go beyond viscous-inviscid matching because it

is able to resolve the effects of stall that are important when turbines are operating

at low tip speed ratios.

All of these approaches rely on incorporating an additional model to account for

the effect of viscosity. However, super-position methods can be developed to im-
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plicitly resolve viscous effects [186]. Taking the curl of the Navier stokes equations

yields a transport equation for vorticity that includes a diffusion operator dependent

on viscosity [186]. This diffusion operator can be transformed into a Lagrangian

representation for vortex particles, which is referred to as the particle strength ex-

change method [186]. This approach leads to a super-position method with fidelity

comparable to Navier-Stokes based CFD.

One example of a high fidelity vortex method applied to wind turbine flows is given

by Chatelain et. al. [198]. The model uses vortex methods to give a solution to the

Navier-Stokes equations. Unlike grid-based approaches, this model uses Lagrangian

vortex particles to simulate the flow. A Lagrangian update is used to solve the

advection. The influence calculation is replaced by a Eulerian fast Poisson solver.

This model is capable of LES since vortex elements naturally resolve the large scale

turbulent fluctuations, then a particle strength exchange model resolves the sub-grid

turbulence.

Limitation of Conventional LVD

Initially, the conventional LVD model used in this research was based on libAero

developed by Cline and Crawford [86] and later improved by Lawton and Crawford

[87]. The model uses the lifting line representation developed by Phillips and Snyder

[137] and the free-wake model developed by Van-Garrel [145]. Like similar codes, this

model was affected by the natural instabilities inherent in vortex methods, which had

an adverse effect on the sensitivity analysis.

Lawton and Crawford [82] explored both the finite differencing and complex step

gradient algorithms for LVD. Both of these methods are based on perturbing the

design vector and calculating a new solution for comparison. Figure 2.11 shows the

histogram of gradient values for the same design variable and the same simulation.

The different gradient values are from taking gradients at different iterations in the

simulation. This shows that both the gradient algorithms had significant variation

from one iteration to the next and the mean of the two algorithms differed consider-

ably.

Figure 2.12, given by Lawton and Crawford [82], shows that this variation is

not due to the convergence of the simulation but to the chaotic evolution of vortex

systems.
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Figure 2.11: Variation in design sensitivity [82]

The challenges of consistently obtaining accurate gradients is tied to the uncer-

tainty of iterative convergence metrics and the chaotic evolution of vortex systems.

This is discussed further in section 3.2.1 in chapter 3. In aero-elastic applications, the

motion of the blade adds to the instability further degrading the robustness of the

gradients and compromising the convergence of the optimization, this is discussed in

greater detail in section 5.4 of chapter 5.

2.4 Optimization Methods

For this work, the role of the optimization algorithm is to determine the design

parameters that minimize a cost function subject to a set of constraints. The selection

of the algorithm is dependent on the nature of the objective function. In a noisy space

the objective could exhibit many local minima. In these circumstances, heuristic

algorithms (e.g. evolutionary algorithms and simulated annealing) work well because

they sample regions far from the best known solution in trying to improve [199]. This
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Figure 2.12: Gradient value vs. Iteration [82]

robustness comes at a cost. Typically these algorithms require many more function

evaluations than gradient based methods. Consequently, this work will apply gradient

based methods.

Gradient based methods use gradient information to determine the direction to

search for the optimal solution [200]. Once a direction is known, a one dimensional line

search is used to find the optimal solution [200]. Introducing constraints require more

sophisticated algorithms. The one being used in this research is Sequential Quadratic

Programming (SQP) [200]. The algorithm will use subsequent function evaluations

to build an estimate of the Hessian matrix. When the Hessian is sufficiently built

up, the algorithm approaches second order convergence [200]. In SQP the constraints

are represented by linear functions. The reader is referred to Vanderplaats [200] and

Hestenes [201] for more reading on optimization algorithms for structural applications.

The SQP algorithm used in this work has been developed by Lawrence et al. [202],

this implementation is referred to as the CFSQP algorithm.
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2.4.1 MDO Optimization Frameworks

Two optimization frameworks were used in this work. The first is called Single Dis-

cipline Feasible (SDF), the algorithm is given in figure 2.13a. In the analysis stage

of SDF only one discipline is considered at one time. This creates two optimization

loops where only design parameters specific to a particular discipline are optimized at

any given time. The alternative is to employ the Multiple Discipline Feasible (MDF)

as shown in figure 2.13b. In this algorithm, both aerodynamic and structural disci-

plines are considered simultaneously. In the analysis, a full aero-elastic solution is

achieved in a nested iteration loop. All the design parameters are considered in the

outer optimization loop.

Retrieve Initial/New
Design Parameters

Aerodynamic
Analysis

Sensitivity
Analysis

Maximum
AEP?

Minimum
Weight?

Structural
Analysis

Retrieve Initial/New
Design Parameters

Sensitivity
Analysis
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Complete

No Yes

NoYes

(a) Single-Discipline Feasible
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(b) Multi-Discipline Feasible

Figure 2.13: The algorithms of various optimization frameworks

The algorithms in figure 2.13 are given in abstract terms. Each of the analy-

sis modules has multiple alternatives. For example, the sensitivity analysis could

employ finite difference, complex step or adjoint methods. Evaluating different meth-

ods within the same framework will demonstrate the relative merits of the different

analysis methods.

The algorithms presented in figure 2.13 are not the only frameworks available in

MDO literature. The reader is referred to Park [203] for more information on the
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different frameworks. For the current application, the MDF framework is a natural

fit. Explorations with any other framework is beyond the scope of this work and is

unlikely to afford any advantage.

2.4.2 Sensitivity Analysis

The simplest approach for approximating a gradient is the finite difference method,

see equation (2.46). This method is based on a truncated Taylor series expansion.

The magnitude of step parameter h must be selected carefully. If it is too small the

two terms in the numerator begin to approach similar values, and subtraction errors

enter the computation. This source of error is referred to as rounding error. If h is

too large, then the error of neglecting the second term (O (h2)) begins to dominate.

This error is referred to as truncation error. The uncertainty in an optimal size of h

forces practitioners to conduct studies to determine an acceptable value of h [204].

df

dx
=
f (x+ h)− f (x)

h
+O

(
h2
)

(2.46)

To overcome the problem of an optimal selection of h, researchers have developed

alternative methods [204] as given in (2.47). Similar to (2.46), this method is based

on a series expansion and introduces truncation error. By eliminating the subtraction

operation, this method does not suffer from rounding error. Thus, h only needs to

be small enough (typically less than 10−5) to make truncation error negligible [204].

To apply this method, the user must define several transcendental functions (like log)

for complex types. See the thesis by Martins [204] for more details.

df

dx
=
Im {f(x+ hi)}

h
+O

(
h2
)

(2.47)

The Taylor series expansions in the imaginary domain can lead to approximations

to second derivatives, however these approximations introduce a subtraction error.

To address this problem, Fikes and Alonso [205] developed another method based on

Dual and Hyper-Dual numbers. Dual numbers are similar to complex numbers except

i2 = 0. For first order gradients, the formula (2.47) still applies. The benefit of this

method is that the real component holds the function value without any error from

the complex part, obviating the need for two function evaluations. In their paper

[205], all the elementary mathematical operators are defined for this number type.
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For second order derivatives, hyper dual numbers are needed. For this work, second

order derivatives are not required, thus are not discussed here.

The adjoint method was pioneered by Jameson [206, 207, 208]. In sensitivity

analysis, there is a user defined objective or constraint function J . In sensitivity

analysis the objective and constraint function receive the same treatment, thus these

terms will be used interchangeably. The function J is dependent on generalized state

variables (x) and generalized design variables (y). When the system is constrained by

the governing equation in (2.48), the sensitivity of the objective to a design variable

is given by equation (2.49).

R (x, y) = 0 (2.48)

dJ

dy
=

∂J

∂y
+

∫ {
∂J

∂x

}T {
dx

dy

}
dD (2.49a)

=
∂J

∂y
+

∫ {
∂J

∂R

}T [
∂R

∂x

]{
dx

dy

}
dD (2.49b)

=
∂J

∂y
+

∫ {
∂J

∂R

}T {
∂R

∂y

}
dD (2.49c)

The ∂R
∂x

term is a linearization of the governing equations with respect to the state

equations. In general, this is a second order tensor that is a differential operator. For

the remainder of this section, it will be denoted as ∇R. The integral is taken over the

domain D, where R is defined. The vector
{
∂J
∂R

}
is typically referred to as the adjoint

vector or Lagrange multiplier. In this thesis it is denoted as ψ for short. Similarly,
dx
dy

will be denoted as χ.

When calculating gradients in the forward mode (equation (2.49a)), one is ac-

counting for the governing equations by solving (2.50) for every design variable.

∇Rχ =

{
∂R

∂y

}
(2.50)

For problems where the number of design variables is much greater than the

number of objectives, this can be very expensive. The alternative is to propagate

the gradient information backwards using equation (2.49c). When propagating the

gradients backwards, the governing equations are accounted for by solving the adjoint

equation (2.51) denoted as ∇R∗.
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∇R∗ψ =

{
∂J

∂x

}
(2.51)

If R is a linear equation, then the adjoint is merely a transpose of ∇R. In linear

structural analysis, ∇R is typically self-adjoint. In these cases the derivation of the

adjoint operator is trivial [204]. However if R is nonlinear or differential, then the

process is more complicated. Giles and Pierce [209, 210] demonstrate adjoint methods

using the concept of duality. First the governing equations are linearized, in this case,

standard rules of calculus apply for the linearization. Taking the adjoint is performed

by proving (2.52), when R is nonlinear or differential the equations cannot be written

out in matrix form as they are here. In these cases, the term on the right hand side of

[∂R/∂x] are distributed within the linearized equation. The goal is to isolate χ from

∇R such that it could be expressed as an inner product resulting in χT∇R∗ψ result.

At this point, there is a differential operator on the left hand side with ψ distributed

within.

∫
ψT∇RχdD =

∫
χT∇R∗ψdD (2.52)

When ∇R is differential, integration by parts must be applied to isolate χ. This

introduces the boundary terms (B) when differential in space and the initial and

terminal terms (T ) when differential in time. For the proof in equation (2.52) to

be valid these terms must vanish. This vanishing condition is used to define the

boundary, initial and terminal conditions of the adjoint equation ∇R∗. An example

is in inviscid flow, here the only free variable at the boundary is pressure. Thus, any

boundary objective can only be expressed as functions of pressure. Both Giles and

Pierce along with Jameson discuss this extensively [209, 208].

When applying this method to unsteady problems the approach is similar. One

can treat time as an additional independent variable of the domain and apply equation

(2.52) [211]. In deriving the adjoint equation, additional terminal conditions are

created. The user then integrates the adjoint equation backwards in time to solve the

adjoint variables.

In general, the computational effort for solving the adjoint is similar to the physical

equation. The benefit of the adjoint method is that those solutions can then be applied

for every term in the gradient vector. If there are more design variables than objective

and constraint expressions, this method is superior to the methods described above.
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In aero-elastic optimization there are multiple constraints for material stress and

strain throughout the entire blade. Applying a separate constraint for every point

on the blade would introduce many more objectives than design variables. To aggre-

gate these constraints, the Kreisselmeier-Steinhauser (KS) function can be applied to

approximate the maximum stress and strain [212]. With the KS function the num-

ber of design variables (approximately 100-300) will exceed the number of objectives

(approximately 3-5) making the wind turbine blade optimization problem ideal for

adjoint methods.

The derivation of the adjoint equation can be based on the continuous or discrete

versions of R giving the continuous and discrete version of the adjoint equation re-

spectively [213]. Nadarajah and Jameson [213] compared the two approaches for an

inviscid flow problem. In this example, both methods gave satisfactory results, how-

ever the continuous adjoint equation contributes to faster convergence in optimization

applications. Bueno-Orovio et al. [214] applied the discrete boundary equation to

the Burgers Equations and discovered that it could introduce non-physical behavior.

For the linear structural problem, the application of the adjoint method is almost

trivial [204]. The adjoint equation is merely the transpose of the stiffness equation.

For nonlinear structural dynamics, Trier et al. [215] demonstrated that the linearized

equations of motion can be used to derive the adjoint equations. The resulting ad-

joint equation is dependent on the point of linearization, thus needs be continuously

updated as the state evolves. Wang and Yu [216] have made progress in deriving the

adjoint equation for a simplified form of GEBT.

The thesis by Martins [204] demonstrates the application of the adjoint method

for coupled systems. When applying the adjoint for a coupled system of equations

(e.g. aero-elastics), multiple sets of governing equations and associated state variables

are involved. In the case of aero-elastics there is an equation and state data for

both the aerodynamic and structural aspects. Here the sensitivity is dependent on

the solution of (2.53). The symbols A and S represent the governing equations for

aerodynamics and structural dynamics respectively. Similarly, the variable xa and xs

are the aerodynamic and structural state data respectively.

[
∂A
∂xa

∂A
∂xs

∂S
∂xa

∂S
∂xs

]{
dxa
dy
dxs
dy

}
= −

{
∂A
∂y
∂S
∂y

}
(2.53)
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The adjoint can be derived by treating the matrix in equation (2.53) as the ∇R
operator in (2.52). Giving the adjoint equation in (2.54), where ψa and ψs are the

adjoint variables for the aerodynamic and structural equations.



[
∂A
∂xa

]T [
∂S
∂xa

]T
[
∂A
∂xs

]T [
∂S
∂xs

]T



{
ψa

ψs

}
= −

{
∂J
∂xa
∂J
∂xs

}
(2.54)

Martins [204] demonstrated that the coupled adjoint equations can be formulated

as shown in equation (2.55). The last terms on the right-hand side could be based

on previous iterates of the other equation in a lagged fashion. This showed that

equation (2.54) can be solved with the same algorithm used to solve coupled governing

equations.

[
∂A
∂xa

]T
ψa = − ∂J

∂xa︸ ︷︷ ︸
Aerodynamic Adjoint Equation

−
[
∂S
∂xa

]T
ψs

(2.55a)

[
∂S
∂xs

]T
ψs = − ∂J

∂xs︸ ︷︷ ︸
Structural Adjoint Equation

−
[
∂S
∂xs

]T
ψa

(2.55b)
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Chapter 3

Finite Element Method Based

Lagrangian Vortex Dynamics

An early version of the work presented in this chapter was presented at the 2013

AIAA Structural Dynamics and Materials conference:

Michael K. McWilliam, Stephen Lawton, and Curran Crawford. An implicit model

for lagrangian vortex dynamics for horizontal axis wind turbine design optimization.

In AIAA 2013 Structures, Dynamics and Materials conference, 2013

Stephen Lawton is credited in the AIAA publication for providing results demon-

strating the poor convergence properties of conventional LVD. These results were not

used in this chapter. Later, an improved version was presented at the 2014 Science

of Making Torque from Wind:

Michael K McWilliam and Curran Crawford. Finite element based lagrangian vor-

tex dynamics model for wind turbine aerodynamics. Journal of Physics: Conference

Series, 524(1):012127, 2014

The work presented in this chapter has improved the model further since the

Journal of Physics: Conference Series publication.

This chapter presents a new Lagrangian Vortex Dynamics (LVD) formulation

based on the Finite Element Method (FEM). The motivation for this work is to

address several limitations with conventional LVD listed below.
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1) High computational complexity: The computational complexity1 is due to

coupling between the time step and the element size since the physical size

of the influencing elements is governed by the time-step. Thus, small elements

require small time steps and vice-versa. This scaling is further exacerbated since

the required number of time steps for a given wake length scales with 1/∆t.

2) Inherent uncertainty with iterative convergence: If a simulation exhibits

slow convergence it will end prematurely with an erroneous solution.

3) The numerical evolution in time is fundamentally unstable: Pure vortex

systems are fundamentally chaotic [186]. Time marching algorithms adopt this

chaotic behavior and numerical error in the discretization amplifies it further.

4) Multiple solutions are required in aero-elastic simulations: LVD requires

lifting line positions from the structural model, while the structural model re-

quires the aerodynamic forces from LVD. Ideally these two models could be

converged simultaneously, yet in practice, this introduces more noise [83]. In-

stead the user is forced to solve multiple alternating aerodynamic and structural

solutions in a Gauss-Siedel iteration.

5) Path dependency prevents fast convergence in iterative schemes: In

most optimization and Gauss-Siedel routines previous numerical solutions are

used to accelerate the convergence of simulations. Yet the solutions of time

marching algorithms exhibit path dependency that, in practice, will foul the

convergence of these methods.

6) Numerical noise produces erroneous gradients: In optimization and design

applications it is useful to gather sensitivity information. Conventional numeri-

cal schemes such as finite differencing tend to amplify the error in the noise [82],

while the use of a time marching evolution with iterative convergence criteria

makes it difficult to derive compatible analytic gradient schemes.

The presentation of the new FEM-based LVD will show how this formulation

addresses each one of these limitations.

1Computational complexity is how the computational effort scales with the number of elements.
In conventional LVD it scales cubically with the number of elements. First, the Biot-Savart cal-
culation has O(N2) complexity and must be executed every time step. Then, the algorithm must
execute a minimum of N time steps for the full length of the wake. Overall this leads to O(N3)
complexity
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This chapter starts by describing the new LVD formulation in section 3.1. Unlike

conventional LVD, the new FEM-based LVD approach has separate mesh parameters

for the trailing vorticity streak-lines and influencing elements. Section 3.2 presents

several convergence studies to show how all these parameters affect the speed and

accuracy of wind turbine simulations. This model is validated with the classical ana-

lytic solution for an elliptically loaded wing, experimental measurements of multiple

wings and a wind turbine in section 3.3.

3.1 The Improved Finite Element Formulation

The new FEM-based LVD is not a new mathematical theory for fluid mechanics, it is

still based on the same governing equations used in conventional LVD. For the sake

of brevity, these equations will not be repeated here. The reader should refer back

to section 2.3.3 in chapter 2. What sets this method apart from conventional LVD is

the numerical parameterization and the algorithms used to solve the system.

The new formulation is based on a nonlinear lifting line vortex model with a

free wake. The lift coefficients for the lifting line are based on either experimental

measurements or computational results for two dimensional lift coefficients for a range

of attack angles and Reynolds numbers. The induction is calculated with the Van-

Garrel vortex element given in equation (2.45). This formula incorporates a core

model with a radius dc, which is initially set to the airfoil thickness and then grows

at a constant rate. The resident time of the vorticity in the wake is so short that the

effect of the core radius growth is negligible.

The formulation presented here is for steady state solutions, where only the trailing

vorticity is considered. However, this formulation can easily be extended for unsteady

simulations.

The formulation is based on two new innovations that together create a totally new

numerical scheme for simulating vortex dominated flows. First, is a Finite Element

(FE) description of state discussed in section 3.1.1 that decouples the spatial and

temporal discretization and allows for local refinement. The next contribution is the

use of an error function to define the convergence. Gradients of this error function

can then be used to solve the equations discussed in section 3.1.2. The linearized

system is defined in section 3.1.3. Finally, section 3.1.4 describes how all the relevant

equations are combined in a solution algorithm to solve the model. Together these

innovations address many of the issues of conventional LVD.
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3.1.1 The Finite Element Description of State

The first deficiency of conventional LVD is addressed by adopting a different kinematic

description for the wake structure (see figure 3.1). Instead of focusing on individual

influencing element end-points, the set of three-dimensional streak-lines are param-

eterized using a FE description based on a set of shape functions ηj(τ) and control

points Xxj for any vortex age τ . The position along the streak-line is related to the

vortex age through equation (3.1a). These streak-lines are broken up into sections

and share end points with adjacent sections. These sections will be referred to as

‘basis sections’ while the control points Xxj will be referred to as ‘points’. This FE

description gives the user two ways of refining the streak-line; the user can chose to

use many short basis sections with simple shape functions or longer basis sections

with high-order shape functions. In steady state flows this description also provides

a definition for the vortex velocity shown in equation (3.1b).

Basis Section

Points

Influencing element

Node for an influencing element
where x =

∑

j
ηj(τ )Xxj

(Biot Savart law)

defined by the function ηj(τ )

defines Xxj

(a) Chain of quadratic bases with 3 influence elements

(b) A refined influence configuration with
more elements

(c) Reduced number of state variables with a
chain of linear bases

Figure 3.1: Influencing elements (black-solid) connected to basis sections (grey-
dashed)

x =
∑

j

ηj(τ)Xxj (3.1a) ẋ =
∑

j

η̇j(τ)Xxj (3.1b)
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The shape function is meant to approximate the solution and can have a large

influence on the final configuration. In addition to the order of the interpolating

polynomial, one can select different types of polynomials. The Lagrange polynomial is

the simplest; it is based on interpolating between points. One problem with Lagrange

polynomials is they only enforce C0 continuity at the end-points. This can lead

to a kink at the basis section end-points. Hermite interpolating polynomials are

parameterized by both position and gradients. This enables C1 continuity to be

enforced at the end points of the basis sections. For a more detailed investigation on

these effects the reader should refer to section 3.2.3.

For the special case of rotating wings (i.e. wind turbines), the wake will form into

a helix with cylindrical geometry. In this special, case the solution can be improved

by performing the FEM interpolation in a cylindrical coordinate system. The control

points Xij give the axial, radial and angular position coordinates. Equations 3.1a

and 3.1b are applied as usual, and then these results are transformed to a Cartesian

coordinate system for the various other calculations. This approach is advantageous

because it preserves the cylindrical curvature of the helix. Section 3.2.3 gives a de-

tailed discussion on the benefits of cylindrical interpolation.

The theoretical foundation of FEM is the use of shape functions to approximate

the solution. This implies it is the space curve in equation (3.1a) (not the influ-

encing elements) that describe the locations of vorticity. This leaves open different

approaches for calculating the influence associated with this curve. The challenge

is integrating (2.39) over an arbitrary space curve, which is something not easily

achieved analytically and was not attempted. Another approach, which forgoes the

use of elements completely, would simply apply numerical quadrature of equation

(2.39) directly. This essentially lumps the vorticity onto points, which can be viewed

as an approximation of the original space curve (i.e. a smooth curve can be rep-

resented by a sequence of points). The influence calculation could be improved by

approximating the space curves with line segments. Then the influence can be cal-

culated with the analytical solution in (2.45). It is only through the application

of this line-segment approximation that the model incorporates the influencing ele-

ments shown in figure 3.1. Here, the space curve in equation (3.1a) is defining the

end-points of the influencing elements. This improves upon the point approximation

by distributing the vorticity along the line, but ignores the effects of curvature.

Decoupling the influence element discretization from the control point discretiza-

tion gives another opportunity for accelerating the computational speed. It is well
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known that structural models with a FE parameterization can be accelerated by us-

ing an optimal set of basis functions; this has lead to very fast reduced order models

based on modal analysis. By introducing the FE parameterization here, there is now

a potential that LVD models can be accelerated in a similar way once an optimal

set of basis functions is identified. Section 3.2.2 discusses the potential of applying a

basis function approach to accelerating the convergence.

3.1.2 The Error Function

The second innovation in this new model is the use of an error function to define

and solve the problem. The error function associated with the bound circulation

strength on the blade (shown in equation (3.2a)), is based on Weissigner Lifting Line

Theory (WLLT). Equation (3.2a) is defined for the whole lifting line, but is currently

evaluated at the mid-point of each lifting line element (see equation (3.2b)). This

could be extended by defining an integral along the lifting line and evaluating it with

numerical quadrature.

rΓ ≡ Γ− ccl‖w‖
2

(3.2a) RΓi = rΓ|s=middle (3.2b)

The error function for the wake is based on the fact that vortex elements follow

the local flow field (i.e. are force-free). This means the velocity of any fluid element

must be equal to the local flow field; any difference is an error in the solution. This

error is shown mathematically in equation (3.3a) in a rotating reference frame where

Ω describes the angular velocity of the rotor, x0 is a point on the rotation axis, u∞

is the wind speed and uγ is the influence from all the vorticity in the flow field.

rx ≡ ẋ+ Ω× (x− x0)− u∞ − uγ (3.3a)

The error function in equation (3.3a) is defined continuously for every point along

the trailing filaments (i.e. basis sections). This error is mapped to scalars by applying

the Galerkin projection (see equation (3.3b)) of the error (i.e. rx(τ)) onto the weight-

ing function ζj(τ); typically the shape function for state (i.e. ηj(τ)) is used for the

weighting function. Equation 3.3b gives a corresponding error for each control point,

where the subscript j refers to the control points. The integral is approximated with

numerical integration. The integration points and the associated weights are denoted

by τk and wk respectively. In this work the integrals are approximated with Gauss
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quadrature2 (see Logan [89] for more details). One point quadrature was used with

linear basis sections3, while three point quadrature gave best results for quadratic

and cubic basis sections.

Rxj =

τf∫

τ0

ζj(τ)rx(τ)dτ ≈
∑

k

ζj(τk)rx(τk)wk (3.3b)

3.1.3 The Linearized System

To solve and/or take gradients of the system, it is necessary to define a linearized

version of the system that takes the form given in (3.4a), where the state vector (X)

is defined in equation (3.4b), the residual vector (R) is defined in (3.4c) and the

Jacobian ([J ]) is defined in (3.4d). The overhead bar denotes a linear approximation.

Due to nonlinearity in the system (e.g. the airfoil lift curves, influence kernel function,

etc.) the linearized system needs to be updated whenever the state vector is changed.

R̄ = R|X0 + [J ] ∆X (3.4a)

X ≡ ( Γ1 Γ2 · · · XT
x1 XT

x2 · · · )T (3.4b)

R ≡ ( RΓ1 RΓ2 · · · RT
x1 RT

x2 · · · )T (3.4c)

[J ] ≡ ∂R

∂X
(3.4d)

Before the derivation of the linearized residual is given, some notation needs to be

introduced. A 3-component column vector a defines a skew-symmetric matrix [a×]

according to:

[a×] =




0 −a3 a2

a3 0 −a1

−a2 a1 0


 (3.5)

2Gauss quadrature will give an exact solution to the integral of a polynomial of specified order
with a minimum number of sampling points [89]

3This is equivalent to mid-point rule in simple integration and implicit Crank-Nicolson for tem-
poral integration in time marching codes
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The derivative of the column vector magnitude with respect to the vector itself is

given by:

∂‖a‖
∂a

=
aT

‖a‖ (3.6)

The derivation of the Jacobian will be split into two parts: First the linearization

of the strength residual ([JΓi]), then the linearization of the advection residual ([Jxj]).

Both of these Jacobian matrices are linearized with respect to the state vector which

contains both the vortex strength on the lifting line and the control point positions

the free wake. Together these matrices are combined to give the system Jacobian (i.e.

[J ] =
[
JTΓi JTxj

]T
). The linearization of the strength residual is based on taking

the gradient of equation 3.2b:

[JΓi] =
∂RΓi

∂X
=
∂rΓi

∂X

=
∂Γ

∂X
−
( c

2

)(
‖w‖∂cl

∂α

∂α

∂w
+

(
∂cl
∂Re

(
ρc

µ

)
+

cl
‖w‖

)
wT

)
∂w

∂X
(3.7a)

The relative velocity w = u∞ + u − v includes u∞ the undisturbed fluid veloc-

ity, u the influence and v the velocity of the blade. Assuming that u∞ and v are

independent of state, then the linearization can be simplified further.

[JΓi] =
∂Γ

∂X
−
( c

2

)(
‖w‖∂cl

∂α

∂α

∂w
+

(
∂cl
∂Re

(
ρc

µ

)
+

cl
‖w‖

)
wT

)
∂u

∂X
(3.7b)

Given that ĉ and t̂ are unit vectors in the chord and thickness direction respec-

tively, ∂α/∂w is given by:

∂α

∂w
=

(
t̂ ·w

)
ĉT − (ĉ ·w) t̂T

(
t̂ ·w

)2
+ (ĉ ·w)2

(3.7c)

The first term in equation (3.7b) is simply a row vector of 0’s with a 1 at the

appropriate entry because the strength Γ is contained in the state vector X. All

that remains is the linearization of the influence u; since the influence also affects the

residual in the wake that derivation will be deferred for now.

The derivation for the linearized advection residual proceeds as follows, where Ω

is the rotation rate when simulating rotating wings (i.e. wind turbines or propellers):
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[Jxj] =
∂Rxj

∂X
=
∑

k

ζj(τk)
∂rx(τk)

∂X
wk

=
∑

k

ζj(τk)

(
∂ẋ

∂X
+ [Ω×]

∂x

∂X
− ∂u

∂X

)
wk (3.8)

The linearization of x and ẋ are based on equations (3.1a) and (3.1b) respectively:

∂x

∂Xxj

= ηj(τ) (3.9a)
∂ẋ

∂Xxj

= η̇j(τ) (3.9b)

The linearization of the flow field is based on linearization of the Biot-Savart

Law shown below, where ∂u/∂X|n is the linearization of the influence from a single

element.

∂u

∂X
=

N∑

n=1

∂u

∂X

∣∣∣∣
n

(3.10a)

In this system only the Van Garrel elements (defined in equation (2.45)) are used;

its linearization is given in (3.10b) where the subscript n denotes an individual element

and the numeric subscripts denote the vectors in figure 2.10.

∂u

∂X

∣∣∣∣
n

=
∂un
∂Γn

∂Γn
∂X

+

(
∂un

∂‖d1n‖
∂‖d1n‖
∂d1n

+
∂un
∂d1n

)(
∂d1n

∂x1n

∂x1n

∂X
+
∂d1n

∂xpn

∂xpn
∂X

)

+

(
∂un

∂‖d2n‖
∂‖d2n‖
∂d2n

+
∂un
∂d2n

)(
∂d2n

∂x2n

∂x2n

∂X
+
∂d2n

∂xpn

∂xpn
∂X

)

+
∂un
∂‖ln‖

∂‖ln‖
∂ln

(
∂ln
∂x1n

∂x1n

∂X
+

∂ln
∂x2n

∂x2n

∂X

)
(3.10b)

Many of the terms are expressed below in equations (3.10c) through (3.10j).

∂un
∂Γn

=
(‖d1n‖+ ‖d2n‖) (d1n × d2n)

4π
(
‖d1n‖‖d2n‖ (‖d1n‖‖d2n‖+ d1n · d2n) + (dcn‖ln‖)2) (3.10c)
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∂un
∂‖d1n‖

=
Γn (d1n × d2n)

4π
(
‖d1n‖‖d2n‖ (‖d1n‖‖d2n‖+ d1n · d2n) + (dcn‖ln‖)2) (3.10d)

−Γn‖d2n‖ (2‖d1n‖‖d2n‖+ d1n · d2n) (‖d1n‖+ ‖d2n‖) (d1n × d2n)

4π
(
‖d1n‖‖d2n‖ (‖d1n‖‖d2n‖+ d1n · d2n) + (dcn‖ln‖)2)2

∂un
∂d1n

=
−Γn (‖d1n‖+ ‖d2n‖) [d2n×]

4π
(
‖d1n‖‖d2n‖ (‖d1n‖‖d2n‖+ d1n · d2n) + (dcn‖ln‖)2)

− Γn‖d1n‖‖d2n‖ (‖d1n‖+ ‖d2n‖) (d1n × d2n)⊗ d2n

4π
(
‖d1n‖‖d2n‖ (‖d1n‖‖d2n‖+ d1n · d2n) + (dcn‖ln‖)2)2 (3.10e)

∂un
∂‖d2n‖

=
Γn (d1n × d2n)

4π
(
‖d2n‖‖d1n‖ (‖d2n‖‖d1n‖+ d2n · d1n) + (dcn‖ln‖)2) (3.10f)

−Γn‖d1n‖ (2‖d2n‖‖d1n‖+ d2n · d1n) (‖d2n‖+ ‖d1n‖) (d1n × d2n)

4π
(
‖d2n‖‖d1n‖ (‖d2n‖‖d1n‖+ d2n · d1n) + (dcn‖ln‖)2)2

∂un
∂d2n

=
Γn (‖d1n‖+ ‖d2n‖) [d1n×]

4π
(
‖d1n‖‖d2n‖ (‖d1n‖‖d2n‖+ d1n · d2n) + (dcn‖ln‖)2)

− Γn‖d1n‖‖d2n‖ (‖d1n‖+ ‖d2n‖) (d1n × d2n)⊗ d1n

4π
(
‖d1n‖‖d2n‖ (‖d1n‖‖d2n‖+ d1n · d2n) + (dcn‖ln‖)2)2 (3.10g)

∂un
∂‖ln‖

= − Γn2d2
cn‖ln‖ (‖d2n‖+ ‖d1n‖) (d1n × d2n)

4π
(
‖d2n‖‖d1n‖ (‖d2n‖‖d1n‖+ d2n · d1n) + (dcn‖ln‖)2)2 (3.10h)

∂d1n

∂xpn
=
∂d2n

∂xpn
=

∂ln
∂x2n

= I (3.10i)

∂d1n

∂x1n

=
∂d2n

∂x2n

=
∂ln
∂x1n

= −I (3.10j)

3.1.4 The Solution Algorithm

Figure 3.2 shows an example of how computational elements are arranged to simulate

the flow around a single wind turbine blade. In this figure the blade is modeled by
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four lifting line elements of strength Γi. The error RΓi of these elements is evaluated

at the mid-points shown by the squares. A basis section (shown as a grey dashed line)

is trailing from the end point of each lifting line element; the position of these basis

sections is governed by the control points Xxj, which are associated with error Rxj.

A set of influencing elements (shown by the black solid lines) are attached to each

basis section (see figure 3.1 for the different ways basis section are combined with

influencing elements). The primary state variables are the lifting line strength Γi and

the control points Xxj, each with a corresponding error RΓi and Rxj respectively.

Lifting Line Elements (Γi → RΓi)

Control Points (Xxj → Rxj)

Influence

Element

Basis
Section

Turbine Blade

Figure 3.2: Schematic of an FEM based LVD simulation

By defining error functions (i.e. equation (3.2b) and (3.3b)) one can formulate

the system as a root finding problem as shown in equation (3.11) where the goal is

to solve the state vector X such that the error R is 0.

R(X) = 0 (3.11)

The most compelling feature of this new formulation is the fact that the problem

can be formulated in the form of equation (3.11). Many problems across multiple

disciplines are formulated as a nonlinear root solving problem like this. As such

there is already a large body of research for different types of algorithms for problems

of this form, the most important being the solution algorithms. Many algorithms
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were explored, but the most effective has been the Newton iteration with adaptive

relaxation shown in algorithm 1.

The Newton algorithm relies on an optimal relaxation parameter β. To calculate

the optimal relaxation, a search algorithm shown in algorithm 2 is employed. This

algorithm is similar to the Armijo back-tracking line search. The standard Armijo

algorithm assumes that residual evaluations are relatively expensive and it is better

to expend computational effort on finding a better search direction [202]. However

in the FEM-based LVD model all elements affect all the other elements which leads

to expensive Jacobian evaluations. Instead, the line search algorithm used here uses

many residual evaluations to get the best solution. When relaxation is required, the

algorithm uses a back-tracking search to find the interval that contains the optimal

solution. Once the interval is identified, previous function evaluations can be used

to define a quadratic approximation. The minimum of that quadratic approximation

is then taken as the solution. For more information on line search algorithms see

Vanderplaats [200].

In general algorithm 1 is not capable of efficiently solving all problems. This

algorithm performed poorly when there were a large number of elements on the blade

causing influencing elements in the wake to be in close proximity. Simulations with

large element spacing could still give poor solver performance when the length of the

wake was very long.

To understand the source of the difficulties an in-depth study was conducted on

a series of problems that consistently exhibited poor solver performance. Figure 3.3

shows one of these examples. In this case 16 elements were used to represent the rotor

from the MEXICO experiments [217]. Then each trailing filament was simulated with

120 18◦ elements (i.e. 6 rotor revolutions), with 120 linear basis sections in a Cartesian

reference frame. No far-wake model was employed in this simulation. In figure 3.3

‘Search Fraction’ refers to β used in the line search and the ‘Solution Length’ refers

to the norm of ∆X (i.e. solution of the linearized system).

Figure 3.3 shows two distinct intervals (i.e. around iteration 75 and between

iterations 300 and 750) where the solver was making negligible improvement in the

system residual. It is clear that in these intervals the search fraction is very small

in response to a large solution vector. The large search vector suggests the Jacobian

4The optimal relaxation parameter β is solved with one parameter optimization shown in algo-
rithm 2.

5Quadratic minimum is based on the minimum point in a quadratic curve fit
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Algorithm 1 Newton iteration with adaptive relaxation for FEM based LVD

Select the initial guess X(0)

R(0) ← Calculate Residual(X(0))
while ‖R(i)‖ > ε do

[J ]← Calculate Jacobian(X(i))
Solve the linear system [J ] ∆X = −R(i) for ∆X
Update the state vector with optimal relaxation4 X(i+1) = X(i) + β∆X
R(i+1) ← Calculate Residual(X(i+1))

end while

function Calculate Residual(X)
for all lifting line elements do
u← Calculate Influence(x) . x is a lifting line position
Calculate the angle of attack (α) and Reynolds number (Re)
Based on α and Re interpolate experimental data to get cl
Calculate the error with equations (3.2a) and (3.2b)
Assign the error to the corresponding entry in the vector R

end for
for all control points in the wake do

Initialize corresponding entries in the vector R to 0
for all integration points (i.e. τj) in equation (3.3b) do
u← Calculate Influence(x) . Position x based on equation (3.1a)
Calculate the velocity of the flow element ẋ . using equation (3.1b)
Calculate the local error with equation (3.3a)
Calculate the weighted error according to equation (3.3b)
Add the weighted error to the corresponding entries in the vector R

end for
end for
return the fully populated error vector R

end function

function Calculate Influence(x)
u← u∞ . Initialize with the free stream wind velocity
for all influencing elements do

Calculate uγi at x with equation (2.45)
u← u+ uγi

end for
return the influence u

end function
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Algorithm 2 Optimal line search algorithm

Given X0, ‖R0‖, ∆X and βi . Initial β is the last solution or 1
Solve β where ‖R(X0 + β∆X)‖ is minimum
β1 ← βi
R1 ← ‖R(X0 + β1∆X)‖
if βi = 1 and R1 < 0.5‖R0‖ then

return βi . Un-relaxed Newton solution is acceptable
end if
if β1 < 1 then . Start search in larger β

β2 ← min(β1α, 1.0) . Golden ratio is used for expansion ration α
R2 ← ‖R(X0 + β2∆X)‖
if R2 < R1 and β2 < 1 then . Optimal solution at larger β

β3 ← min(β2α, 1.0)
R3 ← ‖R(X0 + β3∆X)‖
while β3 < 1 and R3 < R2 do . Continue search with larger β

β1 ← β2, R1 ← R2, β2 ← β3, R2 ← R3

β3 ← β2α
R3 ← ‖R(X0 + β3∆X)‖

end while
if β3 = 1 and R3 < R2 then . Solution interval found

return 1
else

return Quadratic Minimum(β1,R1,β2,R2,β3,R3)5

end if
end if
β3 ← β2, R3 ← R2, β2 ← β1, R2 ← R1

else
β3 ← β1, R3 ← R1

β2 ← β3/α
R2 ← ‖R(X0 + β2∆X)‖

end if
repeat . Search smaller β values

β1 ← β2/α
R1 ← ‖R(X0 + β1∆X)‖
if R1 > R2 then . Solution interval found

return Quadratic Minimum(β1,R1,β2,R2,β3,R3)
end if
β3 ← β2, R3 ← R2, β2 ← β1, R2 ← R1

until β1 < βmin
return Failure Code
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Figure 3.3: Example of poor solver performance

is nearly singular. For 10 different iterations the condition number of the Jacobian

was calculated with a singular value decomposition. The condition number ranged

between 7, 500 and 1.5 · 106 which shows the Jacobian can be nearly singular, but

with double precision number types would still give acceptable solutions.

To understand what parts of the system contribute to the large search vector, the

system was divided into partitions. One for the lifting line strength and another for

each trailing filament. Figure 3.4 shows the proportion each partition contributes to

the total search vector. It is clear that in these stalled intervals the solver is only

making significant changes on a small part of the system.

Concentrating the solver on a small portion of the system would be acceptable if

the residual in these regions decreased. However this is not the case. The optimal line

search algorithm is based on finding the minimum system residual. At that optimal

search length there will be regions where the residual is decreasing, and other regions

where it is increasing with respect to β. Figure 3.5 shows how the residual for the

different partitions varies with search length when a near singular solution is used in

the search. The figure shows that at the optimal search length for the system, the

residual in the partitions associated with the singular mode actually increased beyond

the original level. The effect of near singular conditions is to move residual from the

system to the regions of associated with the singularity. This in-turn will exacerbate

the singularity further.
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Figure 3.4: The proportions of the solution vector

Singular value decompositions of the Jacobian were computed to gain further

insights on how the near singular Jacobian affects the system. One example is given in

figure 3.6 where the state vector associated with the smallest singular value was added

to the original configuration. Comparing figures 3.6b with 3.6a shows the singular

mode is associated with the same partitions in figure 3.4. This confirms the role

of near singular conditions leading to poor solver performance. Many near singular

conditions were visualized in the same way. In general the singularity occurred at the

end of the wake near filaments with large strength. Furthermore, the singularities

would occur more often around the strong root filament than the tip filament. To

obtain accurate results on the blade only a short portion of the wake needs to be

resolved. However, truncated wakes introduce distortion. Using far-wake models

with short resolved wakes has helped avoid singularities due to long wakes. There are

limits though, very short resolved wakes can lead to errors in the solution.

The role of singularities in solver stall suggests the solver can be improved with

algorithms that are not sensitive to singularities. One attractive algorithm is the

Levenberg-Marquardt update [218, 219] shown in equation (3.12). It is clear that

singularities can be eliminated from the system by increasing the numerical tuning

parameter γ. When γ is small, the search direction is similar to a Newton update,

when it is large the search direction is similar to a steepest descent update. However,

in practice this algorithm would only make good progress in the first few iterations

and then quickly the performance would drop-off. Unlike the full Newton update the
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Figure 3.5: Search performance with near singular solutions

Levenberg-Marquardt algorithm was never able to find the solution to any problem.

Furthermore the Levenberg-Marquardt algorithms tended to push the system into

configurations where the condition number in the Jacobian had increased. In these

cases further improvements with either the Levenberg-Marquardt or the full Newton

algorithm was nearly impossible. Thus, in general best performance is achieved when

the full Newton algorithm is used throughout the solution process.

∆X =
[
JTJ + γI

]−1
JTR (3.12)

Since Levenberg-Marquardt algorithm performed poorly, solver performance can

only be improved by avoiding near singular conditions. A Jacobian will have a small

singular value when changes in the state in a particular direction will only produce

small variations in the residual. The key to avoiding singular conditions is to under-

stand all the different scenarios where this condition will arise and to have strategies

to avoid them.

The singular mode visualizations showed that all singularities occurred in the

wake, indicating that equation (3.3b) is the source of these near singular conditions.

There are three components to equation (3.3b): the velocity of the element, the state

independent flow field (i.e. the wind), and the state dependent flow field (i.e. the

influence calculation from Biot-Savart law). Since state independent contributions

are ignored in the Jacobian, the singularities are born out of interactions between
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(a) Original configuration

(b) Original with singular mode

Figure 3.6: The singular mode of the solution vector

the element velocity and state dependent flow-field. In other words, the solver can

reduce the residual by aligning the element velocity to the flow field or it can adjust

the influence configuration such that the flow field is aligned to the element. When

the system is in a configuration where the changes due to these two strategies are in

nearly equal and opposite in direction then singularities occur.

One example where the solver is faced with opposing effects is in the strength state

on the lifting line. The residual on the lifting line will force strength to change in

a particular direction, however this strength is an important parameter in the Biot-

Savart law for the advection residual. This singularity can be removed by solving

the wake separately from the lifting line strength. This algorithm involves making a
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small change to the lifting line strength, then solving the wake configuration before

making another update to the lifting line strength. This is similar to the load-stepping

algorithms used in the nonlinear structural FEM problems.

Separating the lifting line strength update from the wake update is still not suf-

ficient to avoid all singularities. Due to the velocity term, the position of the down

stream elements depend on the positions of upstream elements. There is a tendency

where updates are integrated down the length of the wake. Singularities can arise

when updates in the near wake oppose the updates in the far-wake. To overcome

these singularities the wake is broken up into partitions by filament age. Since resid-

ual tends to move downstream, best performance is achieved by updating the near

wake first, then moving down stream. The partitions need to be overlapped to sup-

press distortions at the partition boundaries.

Again partitioning the wake will not completely eliminate singularities. The sin-

gularities seem to be strongly associated with Biot-Savart based influence, which

produces a strong influence very close the to the element. The near-field influence

can be attenuated by increasing the core radius (dc in equation (2.45)). This has led

to singular conditions being suppressed in stubborn problems. In this case the influ-

ence calculation will only use an enlarged core-radius when calculating the influence

at a position in the wake. This way the influence on the lifting line is not directly

effected by the enlarged radius, only indirectly due to a different wake configuration

at the solution. Attenuating the near-field influence should not affect the axial induc-

tion over a large region, but it will reduce the degree of vortex roll-up around strong

filaments. Vortex roll-up is not important in wing simulation [133] and should not

be important in wind turbine simulations. When near-field effects are desired, the

original small-core radius solution can still be recovered from the large core-radius

solution because the solution of the large core-radius simulation is a good initial guess

for the original small core-radius simulations. With this initial the original small core

solution can be obtained with little difficulty.

Without the singularity avoidance strategies only small simple problems can be

solved with algorithm 1 on the full system. When algorithm 1 fails to solve the full

system, the next best approach is to apply the circulation strength stepping algorithm.

When algorithm 1 fails to solve the wake, then the wake is partitioned and updated in

parts. Finally, when singularities occur in the wake solve the core radius is enlarged.

At the time of writing all problems that have originally failed without singularity

avoidance, could be solved once these strategies were applied to varying degrees.
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Each of these strategies will speed up the analysis for near singular problems,

however in cases where no singularities occur these strategies slow down the analysis

due to unnecessary iterations. For obtaining single solutions the user can simply

employ these additional strategies as necessary. However in optimization this process

needs to be automated. The solver can detect near singular conditions when the

β solution to algorithm 2 falls below a specified value. This has been successfully

applied to automatically transition from the full system to the strength stepping

algorithm. Then again to transition from the full wake solve to a partitioned wake

solve. In iterative schemes where the solver is starting from a previous solution, these

two strategies are sufficient to avoid singularities.

The automated scheme does not work for all problems. Sometimes the line search

for a full system update will find the minimum system residual at a high relaxation

factor. As shown in figure 3.5 this can lead to increases in the residual for a small

region and force that part of the system into strange configurations that neither

singularity avoidance strategy can over-come. In these cases the solver must re-started

from the beginning and use the circulation strength stepping algorithm throughout

the whole solution process.

3.1.5 Advantages of the new formulation

The new formulation addresses the limitations of conventional LVD listed at the be-

ginning of this chapter. The kinematic description described in section 3.1.1 addresses

the first limitation:

1) Independent number of control points and influence elements: Since a po-

sition on a streak-line can be evaluated at any age, this parameterization places

no restrictions on the number of influencing elements used to represent a vortex

filament (e.g. figure 3.1b). Similarly since the nodes of the influence element

are not constrained to the control points defining the streak-line, control points

can either be added for improved path fidelity or removed to accelerate the

computations (e.g. figure 3.1c). Overall this leads to reduce computational

complexity compared to conventional LVD6.

The error function described in section 3.1.2 addresses the second limitation:

6The number of control points in conventional LVD is coupled to the number of elements. By
decoupling these quantities the computational scaling is improved. For more details see section 3.2.2.
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2) The level of convergence is well defined: The model is considered solved when

the algorithm finds a set of lifting line strengths (i.e. Γi) and control point

positions (i.e. Xxj) where the error in equation (3.2b) and equation (3.3b) ap-

proaches 0 for all lifting line elements and control points respectively. There is

no uncertainty in a convergence criteria defined by equations (3.2b) and (3.3b)

because it is only dependent on the current state.

Adopting the Newton based solution algorithms described in section 3.1.4 ad-

dresses many more deficiencies:

3) The instabilities are eliminated by avoiding time evolution: The instabil-

ities of conventional LVD are rooted in the chaotic time evolution of vortices.

Since the solution is evolved based on the Jacobian (instead of the time evolu-

tion) these instabilities are eliminated7.

4) The aerodynamic and structural models can be solved simultaneously:

Both linear and nonlinear structural models take the same form as equation

(3.11). Typically a relaxed Newton iteration similar to the one shown in algo-

rithm 1 is used to solve nonlinear structural models. Thus this new aerodynamic

formulation can be tightly coupled8 to the structural model and solved in a sin-

gle Newton iteration. This improves upon conventional LVD by eliminating the

additional Gauss-Siedel iteration required to resolve consistency constraints.

5) Faster convergence without path dependency: Since the solution in the new

formulation is defined by equation (3.11) the solver should arrive to the same

solution regardless of initial guess. This is beneficial in optimization routines be-

cause previous numerical solutions can be used as the initial guess in algorithm

1 and reducing the number of iterations required to get the next solution9.

7It may seem counter-intuitive that the FEM-based LVD is stable while the underlying governing
equations are not necessarily stable. The Newton algorithm simply finds a solution where the
configuration should not change in time d • /dt = 0 (where • is some arbitrary state variable).
However, this does not guarantee that the solution is stable in time, if d2 • /dtd• ≥ 0 then the
solution will easily diverge from the solution. In contrast, given that a solution where d • /dt = 0
may exist, there is no guarantee that the time evolution of the system will approach this solution
from an arbitrary configuration. See Khalil [220] for more details on stability theory.

8When the aerodynamic and structural models are tightly coupled the state vectorX and residual
vector R contain terms from both the aerodynamic and the structural model. This leads to a
formulation where the fully coupled system takes the form in equation (3.11) and can be solved as
a single system.

9In gradient based optimization the changes in the system become small where previous solutions
are very close to the next solution
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The items 3 and 5 above should improve accuracy for gradient calculations based

on finite differencing. Yet finite differencing requires a solution to equation (3.11) for

every design variable. This fact highlights another benefit of casting LVD into the

form in equation (3.11):

6) Fast and analytic gradients can be obtained: When the system is expressed

in the same form as equation (3.11) adjoint based gradient algorithms can solve

all the design sensitivities by solving a linear system similar to the Jacobian.

For more details on adjoint methods see section 2.4.2 in chapter 2 or Giles and

Pierce [210]. This is a dramatic improvement over finite differencing where

algorithm 1 is executed for each design variable which in-turn requires multiple

solutions to the Jacobian.

In summary the overall advantages to this new formulation is it provides the

required reliability for optimization with several options to make the overall process

faster. The reliability comes from the ability to locally refine the model for accuracy; a

well defined error measure; and a solution algorithm that is not based on chaotic time

evolution. The solution algorithm adds extra computational loads since it requires

solutions to the Jacobian. Yet this formulation can be accelerated by reducing the

number of control points in less critical regions. When considering the overall aero-

elastic optimization process further efficiencies can be found by tightly coupling the

aerodynamic and structural model; using previous numerical solutions to accelerate

convergence; and relying on adjoint methods to calculate design sensitivities.

3.2 Wind Turbine Results

This work was motivated by the challenges of incorporating conventional LVD into

gradient based optimization. To demonstrate these challenges sections 3.2.1 demon-

strates how error evolves with conventional solution algorithms and gives an estimate

of the error associated with iterative convergence.

The remaining sections are devoted to demonstrating the capabilities of the new

FEM based LVD method. Section 3.2.2 presents several convergence studies to un-

derstand the effects of many of the grid parameters in the new FEM-based LVD

method. The FEM interpolation is controlled by the choice of basis functions and

coordinate system, section 3.2.3 compares Lagrange and Hermite interpolating poly-

nomials within both Cartesian and Cylindrical coordinate systems. Section 3.2.4
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demonstrates the different ways a FEM based LVD model can be terminated with

far-wake models and fixing the physical length of the wake10. Section 3.2.5 demon-

strates how the FEM-based LVD method uses a merged vortex filament model to have

highly resolved flow fields along the blade with only minimal amount of elements in

the wake.

All the simulations in this section are based on the MEXICO wind tunnel exper-

iments [217]. The Mexico experiments tested a 4.5m diameter rotor and collected

surface pressure and Particle Image Velocimetry (PIV) measurements that tracked

the tip vortex positions making this data set ideal for validating LVD simulations.

The experiments provided measurements for several operating conditions, this section

only simulated the design conditions at 15m/s, additional operating conditions are

presented in the the validation section (see section 3.3.3).

3.2.1 Residual of Conventional LVD

A system residual can be defined for conventional LVD simulation by taking the

norm of equations (3.2b) and (3.3b) applied to all lifting line elements and wake

nodes respectively. The node locations for the time marching solution are taken to

be control point locations in an equivalent FEM parameterization (i.e. a linear basis

section for each element). Figure 3.7 shows the residual of a time marching simulation

that had 8 span-wise elements on the lifting line. Initially, the wake had no elements;

for the first 1000 iterations 5◦ elements were added to the wake. After the wake stops

growing, the solver evolves the positions of a finite length wake.

Initially, figure 3.7a shows the residual growing because elements are being added

to a transient flow field. Once the wake stops growing, the error decays for approx-

imately 300 iterations. The effects of numerical noise is apparent from the small

chaotic fluctuations throughout the simulation. For the first 1300 iterations this er-

ror has no impact on the overall trend. However, after 1300 iterations, large chaotic

fluctuations begin to appear and eventually the simulation is overwhelmed and begins

to diverge. This shows that large conventional LVD simulations cannot be converged

arbitrarily. Furthermore, the small scale noise that is present throughout can lead

to erroneous gradients, because typical gradient algorithms like finite-differencing are

very sensitive to small variations.

10Fixing the physical length is something that can not be easily achieved with conventional LVD
methods
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(a) Residual behavior over solve (b) Zoom of residual decay

Figure 3.7: Conventual LVD residual for growing (1000 iterations) then iterating wake

The residual decay through iteration 1000 to 1300 demonstrates best-case per-

formance of the conventional algorithm. From figure 3.7b a decay rate of 0.4% was

estimated with an exponential curve fit. Assuming that convergence metrics follow

a similar exponential trend, an expected error can be estimated for solutions defined

by iterative convergence. First, it is assumed that the evolution of the convergence

metric can be approximated by (3.13a) where C is the convergence metric, C0 is the

initial value and C∞ is the true solution.

C = C∞ + C0 exp rcn (3.13a)

In conventional LVD with iterative convergence a solution is obtained when con-

dition (3.13b) is met.

dC

dn
< εc (3.13b)

Combining (3.13a) and (3.13b) an upper bound estimate for the error can be

defined in terms of the tolerance and decay rate.

C0rc exp rcn < εc

rc(C − C∞) < εc

C − C∞ <
εc
rc

(3.13c)
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Assuming similar decay rates for the convergence metrics, the error in the final so-

lution for this simulation would be approximately 250 times the iterative convergence

tolerance. This suggests smaller iterative error tolerance is required to overcome the

additional error due to slow decay. Yet, the presence of small scale noise gives a lower

bound to this tolerance, otherwise the condition in (3.13b) would never be met. Fur-

thermore, equation (3.13c) shows that the numerical behavior of the solver will affect

the final solution. This can be problematic in optimization or design applications

when different configurations with different decay rates are being compared. Since

these simulations cannot be converged arbitrarily, it is difficult to control or limit the

error to ensure different solutions are comparable.

Smaller LVD simulations, with fewer vortex elements in the wake, show improved

behavior. Figure 3.8 shows the residual for a simulation identical to the one in figure

3.7, except that it is started with 288 elements in the wake, in a helical configuration,

with no additional elements added. As before, the simulation shows an initially

growing residual; in this simulation this is caused by the growth of initial transient

motion of the wake. The peak residual occurs at time step 283 after which the error

decays as the transients advect out of the simulation. The simulation settled into a

stable oscillation after 360 iterations (the full simulation completed 2000 iterations).

Smaller simulations exhibit better stability overall, however, the numerical noise is

relatively more significant leading to increased error in the gradient calculations.

Again, this makes it very difficult to use these models in design and optimization

applications.

Figure 3.8: The residual of conventional LVD with a static wake of 288 elements
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3.2.2 Convergence Studies

Influencing Element Size Convergence Study

Figure 3.9 shows the results for a study that varied the size of the elements from 2

degrees to 24 degrees. The wind turbine simulation used 8 elements on the blade, 4

revolutions in the resolved wake, a cylindrical far-wake model and 24 basis sections

with Hermite interpolating polynomials. Figure 3.9a shows improved agreement with

smaller elements. Figure 3.9c and 3.9d show this improvement is due to improved

agreement in the bound circulation near the tip and wake expansion respectively.
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Figure 3.9: Element size convergence study

Figure 3.9b shows the time required to solve these simulations. Power law regres-

sion of the trend lines in figure 3.9b confirms that the FEM simulation time scales

linearly with the number of elements, which is a significant improvement over conven-

tional LVD simulations with cubic scaling. Without an objective convergence metric
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in conventional LVD, it is difficult to compare solution times directly. The results

in section 3.2.1 demonstrate that the residual will increase until the solver completes

the same number of time steps as elements in the truncated wake. This suggests that

the number of time steps required to achieve optimal convergence in a conventional

LVD simulation is proportionate to the number of elements in the truncated wake.

In place of a defined solution time, the ratio of time steps completed by the solver vs.

the number of elements in the wake is used as an estimate to the level of completion

in a conventional LVD simulation. Figure 3.10 shows the time step ratio achieved

within the solution time of the equivalent FEM based LVD simulation. Two differ-

ent conventional LVD configurations were compared, the first started with a growing

wake, the second started with a pre-initialized wake. These configurations were com-

pared with FEM based LVD simulations with a variable number of basis sections.

The numbers in the series name indicate the number of basis sections used in the

FEM-based LVD simulation. The results in figure 3.10 show that FEM based LVD

simulations are much faster than conventional LVD simulations when small elements

are used.
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Figure 3.10: Completion comparison vs. element size

The linear complexity proves that the FEM formulation reduces the computational

complexity with the number of elements. Unlike conventional LVD which has O(N3)

scaling with the number of elements, the FEM-based LVD model has improved scaling

in two ways. First, the Biot-Savart calculation is not required at every element in

FEM-based LVD. Instead it is only required at M integration points, where the

number of integration points scale with the number of control points. This leads

to O(NM) complexity every iteration where M < N . Second, since the solution

algorithm does not rely on time marching, the number of iterations required does
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not necessarily scale with the number of elements. The linear complexity in figure

3.9b shows the number of solver iterations is insensitive to the number of elements.

However, the wake length convergence study will show this reduced complexity is not

universal. When more elements are added to achieve a physically longer wake, more

control points are required and the solver requires more iterations to solve the larger

wake; thus cubic scaling still occurs.

Basis Section Convergence Study

Figure 3.11 shows the effect of varying the number of basis sections in a simulation.

The FEM-based LVD simulations had 8 elements on the blade and resolved 4 rev-

olutions of the wake with 288 influencing elements for each trailing filament. The

basis sections used Hermite interpolating polynomials. The wake was terminated

with a vortex cylinder far-wake model. Figure 3.11a shows that the number of basis

sections only effects the results when there are less than 15 basis sections and there

are not enough control points to properly resolve the solution. Figure 3.11b shows

that using a small number of basis sections can improve the solution times dramati-

cally. Improvements in solver speed are very important in optimization when multiple

functions evaluations are required.
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Figure 3.11: Basis section convergence study

Wake Length Convergence Study

Figure 3.12 shows the effects of varying the length of the resolved wake. These

simulations had 8 elements on the span. In the wake, 6 basis sections with Hermite

interpolating polynomials were used for each rotor revolution. The elements in the
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wake are 18◦ in size, which corresponds to 20 elements per wake revolution. The

simulations employed a cylindrical far-wake model to compensate for the truncated

wake. Figure 3.12a shows that increasing the length of the resolved wake past 3 rotor

revolutions does not have a significant effect on the flow at the rotor. Figure 3.12b

confirms that the near wake flow is preserved when a shorter resolved wake is used

with a far-wake model. Figure 3.12c shows the simulation time scales with the cube

of the number of elements according to power law regression.
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Figure 3.12: Wake length convergence study results

Span-wise Convergence Study

The number of elements along the blade was varied to give the results in figure 3.13.

The greatest variation in bound circulation strength occurs near the root and the

tip of the blade. To adequately capture these effect, it is common practice to use

a cosine spacing on the blade. However, in FEM-based LVD simulations this can
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lead to singular conditions. To avoid this, these simulations used regular spacing in

all cases. Each trailing filament in the free wake was modeled with 80 influencing

elements to resolve 4 rotor revolutions. All the simulations used 16 basis sections

for each trailing filament with Hermite interpolating polynomials. The free wake

was terminated with semi-infinite vortex cylinders in the far-wake. Figure 3.13a

shows that the CP convergence is achieved with 23 elements. Adding elements to the

blade did not give improved CP agreement because the overall magnitude in bound

circulation (figure 3.13c) and wake expansion (figure 3.13d) seems insensitive to span-

wise resolution. Figure 3.13b shows how the simulation time varies with the number

of elements, A power law curve fit shows O (n2.6) scaling in time. Hence the majority

of the additional computation time is due to the increase in both integration points

and influencing elements. The effect of more elements is noticed in the strength

distribution in figure 3.13c, where more elements give improved resolution in the

bound circulation. Starting at 23 elements, it is clear that the tip loss is starting to

be resolved. With tip loss, there are multiple vortices in the tip region with significant

strength causing roll-up to be resolved as waves in figure 3.13d.

3.2.3 Vortex Position Interpolation

Large basis sections in wind turbine simulations can introduce significant error in

the vortex position due to the FE interpolation in the wake. To demonstrate these

errors several simulations with different interpolation schemes were used to model 4

revolutions of a wake without a far-wake model. The Lagrange results in figure 3.14a11

exemplify the errors introduced with quadratic Lagrange polynomials in a Cartesian

reference frame. The plot shows that with larger basis sections, large oscillations start

to form and the mean radius is reduced. Figure 3.14b shows that this error prevents

grid converged CP solutions until 24 basis sections.

The dips are caused by interpolation in a Cartesian reference frame12, while these

dips are exacerbated by the C1 discontinuities at the boundaries of the basis sections.

These discontinuities are caused by the first and second terms of equation (3.3a)

(the two dominant terms). The second term resembles a sinusoid which is easily

approximated by the first term when C1 continuity is not enforced at the boundaries

of the basis sections.

11The distortions are exaggerated by the unequal scaling on the axis
12A straight line in a Cartesian space connecting two points on a circle has a radial position less

than the radius of the circle.
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Figure 3.13: Span-wise convergence study results

The Hermite results in figure 3.14 show the same simulation except C1 continuity

is enforced with Hermite interpolating polynomials. The Hermite data in figure 3.14a

show reduced distortion in the vortex position. The Hermite results in figure 3.14b

show the CP starts to diverge at the same grid resolutions as the Lagrange polynomial,

but the level of divergence is significantly less.

The Cylindrical results in figure 3.14 show the effect of interpolating quadratic

Lagrange polynomials in a cylindrical coordinate system. Figure 3.14a show no dis-

tortion in the position when interpolating in a cylindrical coordinate system and the

cylindrical results in figure 3.14b shows significantly less CP divergence at the larger

grid spacings. However, solving the system in the cylindrical coordinate system is

more expensive for the solver because the solver must use circulation strength step-

ping strategy to overcome solver stall.
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Figure 3.14: Errors due to vortex position interpolation

Interpolation with Lagrange polynomials in a Cartesian reference frame produces

large distortions in the wake and poor grid convergence. Interpolation with Hermite

interpolating polynomials can reduce the distortions and give better grid convergence

but errors still exist. For best results, interpolation within a cylindrical reference

frame removes all distortions, however, simulations with Cylindrical interpolation

can be slower. Thus most simulations used Hermite interpolating polynomials in a

Cartesian reference frame.

3.2.4 Free Wake Termination

Figure 3.15 shows results for the different ways the resolved wake can be terminated

in the FEM based LVD model.

The simple termination case is where no far-wake model is used and the axial

positions are free to float. Figure 3.15a shows that the CP solution can be improved

by using a vortex cylinder model (see [27] for vortex cylinder solution) attached at the

ends of the vortex filaments. The vortex cylinder solution is based on the resolved

vortex pitch, which is calculated using linear regression. Figure 3.15a shows the

number of regression points has little impact on CP , but figure 3.15b shows more

points adds to the solution time.

Figure 3.15c shows that the transition from a discrete vortex element to a diffuse

vortex cylinder can introduce a small distortion in the vortex position. This distortion

can be mitigated by introducing a small vortex spiral between the resolved filament

and the cylinder model. Figure 3.15b shows this spiral transition is expensive.
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Figure 3.15: Comparison of wake termination cases

Another potential source of distortion is caused by the axial induction in the wake,

which leads to mid-span filaments terminating early. The conditions that follow these

filaments (i.e. a far-wake model or the absence of vorticity) could negatively influence

the remaining resolved wake. The FEM based LVD model allows one to fix the axial

position where filaments are terminated; in these cases the age of the vortex filament

becomes a free variable. Figure 3.15d shows a vortex filament solution with a fixed

termination at 7m. Figures 3.15a and 3.15c show fixed termination has little impact

on the results. Figure 3.15b shows this condition complicates the solution process

and requires many more iterations, making this approach unattractive.

Overall, the results in figure 3.15 show the best configuration for accuracy and

solution time is a vortex cylinder model with 2 pitch regression nodes and no spiral

transition.
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3.2.5 Merged Filaments

In wind turbine wakes it is common for the strong vorticity trailed at the wake to

roll-up into a single cloud of vorticity. Simulating that cloud with multiple filaments

is expensive and offers little advantage in resolving the flow at the blade. The sim-

ulations can be improved by merging the filaments and only simulating a pair of

filaments. This is possible in conventional LVD, however, in this case the elements

are merged in discrete operation that could effect the evolution of the wake. By

avoiding time evolution the FEM-based LVD method avoids these discrete changes

to the wake and solves the system, while maintaining the same merged filament con-

figuration throughout.

The starting position of the merged filament (xm) is based on a strength weighted

average of the end positions of the source filaments (xi) as shown in equation (3.14).

The weighting used in the average must be positive to ensure the merged position

is near all the other positions13. It has been observed that the filaments will roll up

around the strongest filament. To achieve this in the merging, the weights have been

squared. Another benefit of this weighting function (as oppose to |Γi|) is the absence

of discontinuities when the system is linearized.

xm =

∑
Γ2
ixi∑
Γ2
i

(3.14)

The strength is merged simply by summing all the contributions of the merged

filaments, as shown in equation (3.15). This approach is only valid when all the

filaments in the sum (Γi) are of the same sign because merging a mix of positive and

negative filaments will reduce the total amount of vorticity, which violates Helmholtz

laws of vorticity conservation [186]. This is an acceptable limitation for simulating

existing design because the maximum strength is typically in the center of the blade

and decreases monotonically to either end. However this can be a problem when

simulating strange configurations required by an optimization algorithm.

Γm =
∑

Γi (3.15)

An important variable for employing merged filaments is the distance downstream

where merging is initiated. Too short and there is error, too long and the solver

becomes slow. The MEXICO wind turbine, at design conditions, was used to evaluate

13A mix of positive and negative weights would cause the merged position to approach the origin
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the effect of this variable. Fifteen elements were use on the blade. Then sixteen

trailing filaments were then merged into two filaments and the elements in the wake

were 15◦. The distance downstream where merging was initiated was varied from

1/6, up to 19/6 of a revolution. Sixty degree quadratic Lagrange polynomial basis

sections were used for all the filaments. The merged filaments extended far enough

back to resolve a total of 4 rotor revolutions. The wake was terminated at a vortex

cylinder model. Figure 3.16 shows a visualization of one solution.

Figure 3.16: Visualization of merged filaments

Figure 3.17a shows a comparison with selected merged filament simulations with

MEXICO measurements. Overall the results are very close to a highly resolved wake,

which together gave good agreement with MEXICO. All the merged simulation results

are within 2% of each other. The results show there is an improved solution by moving

the merge location from 1/6 to 1/2, but merging further downstream has a diminished

effect.

The effect on solver time is shown in figure 3.17b. For short fully resolved portions,

the effect of additional elements is modest. However, when the fully resolved wake

starts to approach 3 revolutions, solver stall starts to have a more dramatic affect on

the solution speed. Thus merged filaments are beneficial not only for reducing the

number of computational elements, but also for avoiding solver stall.
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Figure 3.17: Merged trailing filament results

3.3 Validation

This section gives a series of validation test cases where the FEM based LVD sim-

ulation is used to simulate an elliptically loaded wing (section 3.3.1), several exper-

imentally tested wings (section 3.3.2) and a wind turbine under different operating

conditions (section 3.3.3).

3.3.1 Elliptical Wing

The new FEM based LVD method was used to simulate a 20m wing with an elliptical

circulation distribution, with a center span circulation strength of 3m2/s, in a 15m/s

flow. The semi-span was simulated with 40 regularly spaced elements along the

span. Symmetry was used to resolve the effect of the other half of the wing. The

simulated wake was 40m long, with 250 regularly spaced elements for each trailing

filament in the wake. The wake had a varying number of Hermite polynomials for

the basis sections to explore the potential of reduced order models. Figure 3.18a

shows all the simulations produced the same constant downwash as expected with

an elliptical distribution [133]. The deviations near the tip are due to the lack of

lifting line elements. The results show little difference between the different basis

section solutions, suggesting that 4-5 basis sections are sufficient to resolve the flow

field along the wing.

Two different conventional LVD configurations were used to simulate the wing for

comparison purposes. The first starts with no elements in the wake and then grows

the wake until it is fully populated, after which the algorithm evolves a fixed length
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Figure 3.18: FEM based LVD simulation results of an elliptical wing

wake. The second conventional configuration starts with full wake initially flat and

adds no additional elements. The time step was chosen to give the same element

length as the FEM based LVD simulation. The growing version of the conventional

LVD simulation required a minimum of 250 iterations to fully grow the wake and expel

the initial transients. When the conventional LVD simulation starts with an initial

wake, 250 time steps are still required for the initial transients to advect out of the

system. Both conventional configurations produced similar results. Only the growing

wake solution is shown in figure 3.18. The conventional LVD produced results similar

to the FEM-based LVD solution, with a negligible under-prediction of the down-

wash solution when compared with the FEM-based LVD results. Since both the

conventional and the FEM simulations are based on the same governing equations,

this confirms that the deviations at the tip from the FEM-based LVD are not due to

the FEM formulation itself, but due to the poor grid resolution.

Figure 3.18b gives the time required to obtain each solution. Without a well

defined convergence metric in conventional LVD, it is difficult to compare solution

times between the FEM based LVD model and the conventional solution algorithms.

Instead table 3.1 gives the number of iterations obtained with the conventional so-

lution algorithm within the wall time of the simulation in figure 3.18b. The table

shows that all the FEM solutions with less than 25 basis sections are faster than the

conventional growing wake simulations, and all the FEM simulations are faster than

the conventional static wake simulations.



112

Table 3.1: Iterations completed in the conventional LVD simulations within FEM
solution times

Conventional Conventional
FEM Basis Section Count Growing Wake Static Wake

4 172 26
5 160 21
8 190 36
16 239 72
25 291 123
40 350 182

3.3.2 Experimental Validation with Wings

The FEM based LVD simulation was compared with two wind tunnel experiments

with wings. The first comparison, shown in figure 3.19a, shows good agreement be-

tween the simulation and experimental measurements by Mcalister and Takahashi

[221] which measured the coefficient of lift using pressure taps on an untwisted rect-

angular wing. The different measurements were due to multiple tests with different

tip geometries, which maintained the same rectangular plan-form, but modified the

shape when viewed from the front. The FEM-based LVD model cannot resolve three

dimensional geometry, so it is compared to all the measurements simultaneously. The

simulation of this wing used experimental airfoil lift coefficients given by Sheldahl and

Klimas [222] for a wide range of Reynolds number and angle of attack. The FEM-

based LVD used 14 elements along the span. Each trailing filament use 60 influencing

elements with 8 basis sections with Hermite interpolating polynomials.

Figure 3.19b shows acceptable agreement of a twisted, tapered, swept wing sim-

ulation with experiments by Mendelsohn and Brewer [223]. This simulation used 21

elements along the span. Each filament in the wake was modeled with 90 influencing

elements on 4 basis sections with Hermite interpolating polynomials. The simulation

used airfoil coefficients from XFoil. Error in the lift coefficients from XFoil would lead

to circulation strength error, which would further exacerbate the lift coefficient errors

due to errors in the downwash.
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Figure 3.19: Comparison of FEM based LVD simulation with wing experiments

3.3.3 Experimental Validation with Wind Turbines

The primary application of this code is to simulate wind turbines. For wind turbine

validation the MEXICO wind tunnel experiments [217] provide an excellent collection

of data for validation. The FEM-based LVD model was used to simulate the MEX-

ICO rotor at 3 different wind speeds. The first is 10m/s representing high thrust

conditions; the second is 15m/s, the design wind speed and represents optimal con-

ditions; the third is 24m/s, a high velocity for the rotor and will lead to stall on the

blade. Each of the FEM-based LVD simulations used 16 elements on the blade. Each

trailing filament in the wake was 4 revolutions long, with 80 influencing elements

and 36 basis sections in the wake with Hermite interpolating polynomials. The wake

terminated with a vortex cylinder far-wake model.

The simulations are compared to experimental results in figure 3.20. Overall, the

simulations show good agreement with the experiments. However, the simulation

tends to over-predict the CP and CT slightly, whereas the over-prediction in CP at

10m/s is significant. At high thrusts, wind turbine wakes are known to break down

into a turbulent state [168]. Since a steady flow field is implicitly enforced in the for-

mulation, the simulation is not able to adequately resolve the turbulent wake state.

This error is acceptable considering turbines are designed to avoid extreme turbulent

wake states. This simulation showed excellent agreement in the bound circulation,

except at 24m/s, where the blade is stalled over most of the span. The lift coeffi-

cients used in the simulation were based on 2-D experimental measurements without

rotational effects. The source of the error could be due to rotational effects, which are

known to change the stall behavior [224, 183, 225, 226]. Overall, the simulation was
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able to match the wake expansion in the near wake; further downstream, the simula-

tion under-predicted the wake expansion. This discrepancy is common in many other

simulations of the MEXICO rotors with both grid based CFD and other lifting line

codes [227]. Despite these errors the comparison shows the FEM-based LVD gives

adequate predictions of wind turbine performance.
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Figure 3.20: Wind turbine validation
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Chapter 4

Aero-Elastic Analysis

One of the objectives for developing an FEM based LVD model was to avoid Gauss-

Seidel iteration to obtain a coupled aerodynamic structural solution with LVD. The

new FEM based LVD method was coupled with a linear beam model and used to

solved the steady state aero-elastic solution of a wind turbine. As a comparison the

same problem is solved with two different fixed point iterations with conventional

LVD.

4.1 Theory

This section is devoted to extending the theory given in chapter 3 to develop a coupled

model of an aero-structural system.

4.1.1 Aero-Structural Coupling

The structural model defines how the blade will deform based on applied forces and

structural properties. The aerodynamic model contributes to the applied forces thus

the coupled structural model is dependent on aerodynamic state variables. Similarly,

since the bound circulation strength is dependent on angular deformation and the

trailed vortex system is dependent on the blade positions, the aerodynamic model is

also dependent on the structural model. This section will show how this coupling is

introduced in the simulations.

The structural model is assumed to provide a position and orientation at any point

along the span. These results are defined by equation (4.1a) for the positions and



116

equations (4.1b) through (4.1d), which give the direction vector for the cross section

reference frame.

x = bx (s) (4.1a) ĉ = bc (s) (4.1b)

t̂ = bt (s) (4.1c) ŝ = bs (s) (4.1d)

In the purely aerodynamic model, the lifting line positions (Xp) were assumed

constant; in the coupled model, these positions are substituted with equation (4.1a).

The angle of attack was calculated based on the relative flow vector and the cross

section reference frame. The effect of angular deformation is introduced into the

aerodynamic model by using the cross section reference frame given in equations

(4.1b) through (4.1d).

The linearized aerodynamic model in chapter 3 is not affected by using (4.1a) since

this model is already linearized about the vortex positions. However, the linearized

angle of attack needed to be modified as shown in equation (4.2) to account for

variations in the cross section reference frame.

∂α

∂X
=

(
t̂ ·w

)
ĉT ∂w

∂X
− (ĉ ·w) t̂T ∂w

∂X
+ (ĉ ·w)wT ∂t̂

∂X
−
(
t̂ ·w

)
wT ∂ĉ

∂X(
t̂ ·w

)2
+ (ĉ ·w)2

(4.2)

The aerodynamic model affects the structural model through the aerodynamic

forces. Equation 4.3 gives the aerodynamic forces per length, where l̂ and d̂ are the

directions of the lift and drag forces respectively.

fa =
1

2
ρw2c

(
Cll̂ + Cdd̂

)
(4.3)

The lift and drag directions are defined by equations (4.4) and (4.5):

l̂ = t̂ cosα− ĉ sinα (4.4)

d̂ = ĉ cosα + t̂ sinα (4.5)

Similarly, the coefficient of pitching moment is used to get the distributed torsion

on the blade as shown in equation (4.6).



117

ma =
1

2
ρw2cCmŝ (4.6)

Equation 4.7 shows how these distributed forces and moments are integrated over

the beam with shape functions to get the equivalent nodal forces and moments.

Fa =

∫
η (s)

{
f

m

}
ds (4.7)

The linearized forces are given in equation (4.8):

∂Fa
∂X

=

∫
η (s)

{
∂f
∂X
∂m
∂X

}
ds (4.8)

where the distributed forces and moments are linearized as follows:

∂fa
∂X

= ρwc
(
Cll̂ + Cdd̂

) ∂w
∂X

+
1

2
ρw2c

((
l̂
∂Cl
∂α

+ d̂
∂Cd
∂α

)
∂α

∂X
+

(
l̂
∂Cl
∂Re

+ d̂
∂Cd
∂Re

)
ρc

µ

∂w

∂X

)

+
1

2
ρw2c

(
Cl

∂ l̂

∂X
+ Cd

∂d̂

∂X

)
(4.9)

∂ma

∂X
= ρwcCmŝ

∂w

∂X
+

1

2
ρw2c

((
∂Cm
∂α

∂α

∂X
+
∂Cm
∂Re

ρc

µ

∂w

∂X

)
ŝ+ Cm

∂ŝ

∂X

)
(4.10)

4.1.2 Solving the Aero-structural system with conventional

LVD

To demonstrate the advantages of the FEM based LVD model over conventional

LVD models for aero-elastic problems, the conventional LVD was used to solve aero

elastic problems. The coupling described in section 4.1.1 still applies for conventional

models, the differences lie in the solution algorithm. This section explains the solution

algorithm of solving the conventional LVD model simultaneously.

Since the solution algorithm differs for the structural model, the two are models

solved separately within a fixed point iteration as shown in figure 4.1. The simulation

starts by calculating the forces and updating the beam configuration. Then, the new
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Figure 4.1: Schematic of the aero-elastic fixed point iteration for conventional LVD

lifting line configuration is passed to the aerodynamic model where the aerodynamic

state is either updated or solved completely. The full system is considered solved

when the difference in state between subsequent steps is within acceptable tolerance.

For flexible beams this solution algorithm is prone to unstable oscillations where

the beam will oscillate back and forth between iterations. To overcome this problem

relaxation is applied to the structural update. The aerodynamic model can either

be solved completely or stepped one iteration at a time. When solved completely

the oscillations are mitigated, but relaxations can still be used to accelerate the

convergence. Updating the aerodynamic configuration with a single iteration can

be less stable, however it can also lead to faster simulations.

4.1.3 Solving the Aero-structural system with FEM based

LVD

The advantage of the FEM based LVD is the similarity to structural FEM problems.

Solving the coupled system relies on defining a linearized aero-structural system model

that can be solved with the solution algorithms explained in section 3.1.4. This section

discusses how the structural system augments the aerodynamic system.

The beam model is based on a set of structural state variables (Xs). The structural

state variables augment the aerodynamic state variables (Xa) to define a system state

vector given in equation 4.11.

X =

{
Xs

Xa

}
(4.11)
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The structural model is assumed to have nonlinear residual function (Rs) which

augments the aerodynamic residual (Ra) to give a residual for the full aero-structural

system as shown in equation (4.12).

R =

{
Rs

Ra

}
(4.12)

To solve this full system in a single Newton iteration a system Jacobian is needed.

It is assumed that the structural model defines a Jacobian with respect to structural

state variables (Jss) this is used to augment the purely aerodynamic Jacobian (Jaa)

defined in chapter 3 as shown in equation (4.13).

J =

[
Jss Jsa

Jas Jaa

]
(4.13)

In the coupled system there are two more Jacobian terms, the first Jsa is the

linearization of the structural residual with respect to aerodynamic state variables, the

second Jas is the linearization of the aerodynamic residual with respect to structural

state variables. These additional terms are a result of the coupling between the two

models. Equation (4.13) are equation (4.2) are combined to define Jas with respect

to lifting line positions and reference frames orientations. The Jsa Jacobian is defined

by equation (4.8). Note equation (4.8) also includes additional terms to Jss due

to linearization with respect to lifting line positions and the cross section reference

frames.

Together equations (4.11), (4.12) and (4.13) defines a linearized system in equation

(4.14) that can be solved with the solution algorithms explained in section 3.1.4.

When the circulation strength stepping algorithm is used in a aero-elastic simulation,

the updates to the beam occur with the updates in strength.

R = R0 + JX (4.14)

Coupling with a linear Euler Bernoulli beam model

The linear beam model used in this work is taken from Logan [89], it is based on

Euler Bernoulli beam theory for isotropic materials. This is a classic beam model

and the full detail will not be presented here. This is a linear model and it has a

constant stiffness matrix (K) for strain, this is used in the residual definition given
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in equations 4.15. Since the aerodynamic forces depend on a nonlinear aerodynamic

model, the coupled structural residual is nonlinear.

Rs = KXs − Fs (X) (4.15)

The structural Jacobian for the residual definition in (4.15) is given in equation

(4.16).

Js = K − ∂Fs (X)

∂X
(4.16)

4.2 Results

Both the conventional and the FEM-based LVD models were used to solve the steady

state deformed aero-structural solution of the NREL 5MW reference wind turbine

[228]. This turbine is merely a paper design that defines both aerodynamic and

structural properties. In both cases the rotor was represented by 32 elements on the

blade. The wake had 96 15◦ elements in the wake to resolve 4 rotor revolutions and

terminated with a cylindrical far-wake model. In the FEM-based LVD simulations

the wake had 96 Hermite interpolating basis sections defined in a cylindrical reference

frame. In all cases the linear beam model was used for the structural model.

Section 4.2.1 evaluates the convergence behavior of conventional LVD in aero-

structural analysis. Then in section 4.2.2 aero-structural analysis is demonstrated

with the FEM-based LVD model.

4.2.1 Aero-Structural analysis with conventional LVD

The two aero-structural analysis algorithms were applied to solve the NREL 5-MW

wind turbine. Figure 4.2 shows the iterative convergence of the beam state, strength

state and the wake state. For comparison the plot shows the convergence of conven-

tional LVD without a beam. The ‘Aero-Struct Step’ trend lines are from the algorithm

where the aerodynamic model is merely updated once between structural updates, in

this case the beam and aerodynamics are co-evolved. The ‘Aero-Struct Solve’ trend

lines are from the algorithm where the aerodynamic state was reinitialized and solved

completely after each beam update. Since the wake is reinitialized the beam cannot

introduce distortions in the wake.
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Figure 4.2: Iterative convergence of aero-structural conventional LVD

The strength solution for all simulations would settle into a stable oscillation at

the inboard stations. Increasing the strength at the root filament decreased the angle

of attack in the adjacent station. Due to the lower angle of attack the next iteration

would updated that station with a lower strength. The induction from the root

strength would drop off and the angle of attack would increase again. Fluctuations in

strength would drive similar fluctuations in stations further out until the azimuthal

component of the flow was strong enough to suppress this oscillation. To suppress this

effect relaxation was applied to the strength updates, however relaxation only served

to delay the onset of the oscillation. Visualization showed this strength oscillation

has a minor impact the wake updates.

Comparing the iterative convergence in the wake between the ‘Aero-Only’ and

‘Aero-Struct Step’ trend lines shows the influence the beam has when the two models

are co-evolved. The changes in the beam state are very small, however the chaotic

nature of LVD tends to amplify these small disturbances, leading to poor convergence

in the wake overall.

Changes in the beam state in the ‘Aero-Struct Solve‘ simulations fell to 0.0 after

4 beam updates, however it still took nearly 600 iterations to reach this point. This
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algorithm is best for structural convergence, but also the most expensive. Despite

the good convergence for the structural model, this algorithm would still be plagued

by the same convergence problems in the aerodynamics.

4.2.2 Aero-Structural analysis with FEM-base LVD

Figure 4.3 shows the FEM-based LVD solution with the deformed blade. It is clear

that the blade is bent backwards and the vortex system has adjusted to this defor-

mation.

Figure 4.3: FEM-based LVD aero-structural visualization

Figure 4.4 compares the aerodynamic results of a FEM-based LVD simulation

with and without the structural model, they are labeled as ‘Aerodynamic Only’ and

‘Aero-Structural’ respectively. The aero-structural solutions from the conventional

LVD simulations are included for comparison. The ‘Classic Step’ trend lines are

from the conventional LVD simulation where the beam is co-evolved and the ‘Classic

Solve’ trend lines are from the conventional LVD simulation where the aerodynamics

are reinitialized and solved completely after each beam update.

Figure 4.4a shows when the structural effects are included, the power increases at

the inboard sections. It seems the beam deformation is causing the axial induction
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Figure 4.4: FEM-based LVD aerodynamic results from aero-structural simulation

to drop off at these stations. However, for the outboard stations the blades are

no longer normal to the flow and the power is reduced. Figure 4.4c demonstrates

the importance of aero-structural analysis. The aerodynamic model imparts a small

torsion force onto the blades due the coefficient of moment from the airfoil (i.e. cm).

In these simulations it was assumed the shear center is located at the quarter chord

point. The results shows this torsion leads to a twist deformation of 1◦ at the tip

where the most power is generated. The aerodynamic forces are highly sensitive to

the angle of attack, so this small torsion leads to a noticeable increase in circulation

strength shown in figure 4.4d.

The results in figure 4.4 of the two conventional LVD simulations shows almost

identical solutions. However there are differences between the conventional and FEM-

based solutions. The effect of oscillations in the flow-field at inboard sections is clearly

present in all the results. At outboard sections the conventional LVD gives good
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agreement with the aero-structural FEM simulations. However, the conventional

LVD simulations predicted higher angles of attack which translates into higher CP

and circulation strengths.

Figure 4.5 shows the structural results from all the LVD aero-structural simulation.

The aero-structural results for the conventional LVD simulations are included with

the same naming convention as before. Figures 4.5a and 4.5b shows that the thrust

forces dominate over the torque forces. Both plots clearly show that structural de-

formation affected the aerodynamic forces, confirming the importance of aero-elastic

analysis in wind turbine design. In this simulation gravity forces are ignored because

they cannot be included in axis-symmetric simulations. If gravity was included the

azimuthal forces would be significantly larger when the blade was horizontal. Due the

large thrust forces and the lower flap-wise bending stiffness figure 4.5c shows blades

experience much larger deformation in the downstream direction. Finally 4.5d shows

the internal moments in the beam. Note that flap-wise and edge-wise refer to the

moments in the cross-section reference frame, due to twist in the blade some of the

outboard flap-wise moment becomes edge-wise in the inboard sections. The internal

moments are the loads that can lead to material failures in the blade, most of these

moments are concentrated at the root where the cross sections are made extra thick

to mitigate the stress.

Comparisons between the FEM-based and conventional LVD simulation results in

figures 4.5a and 4.5b shows similar trends as before. The two conventional simulations

produced nearly identical results; the effects of the flow field oscillations is clearly

present; the force magnitudes are greater at the outboard sections due to a higher

angles of attack. Comparing the beam deflections and internal moments there is little

difference between either conventional or FEM-based LVD simulations.

Figure 4.4b compares the solution time of all the aero-elastic simulation methods.

The conventional LVD simulations lack an objective convergence metric, instead the

solution time is estimated based on the number of time steps. For the ‘Classic Step’

simulation the wall time is based on 192 updates to both the beam and the aerody-

namics. For the ‘Classic Solve’ simulation the wall time is based on 192 aerodynamic

updates after the 4th structural update. The figure shows the co-evolving conven-

tional LVD simulation is the fastest of all the algorithms, however it gives the poorest

convergence. With a low number of basis sections the FEM-based LVD simulations

solved within a similar wall time as the ‘Classic Solve’ conventional LVD simulation.

With increasing number of basis sections the FEM-based LVD simulations become
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Figure 4.5: FEM-based LVD structural results from aero-structural simulation

significantly more expensive compared to the conventional simulations. This shows

the importance of using a reduced number of basis sections to obtain solutions quickly.

The figure shows the FEM-based LVD simulation without the beam is slower than

with the beam. Both the FEM based simulations relied on circulation strength step-

ping algorithms with partitioned wakes. The aerodynamic only simulations required

more circulation strength updates to converge the simulation. This shows the struc-

tural model is relatively inexpensive and introduces a beneficial interaction between

the structural and aerodynamic model in the solver algorithm.



126

Chapter 5

Multidisciplinary Design

Optimization

This chapter presents multiple advancements in wind turbine Multi-disciplinary De-

sign Optimization (MDO). MDO is more than simple design optimization of a single

component with a single discipline, there are two important aspects. First is the

multi-disciplinary design analysis. Wind turbines operate in a system where design

decisions in one discipline or component will impacts on other disciplines and com-

ponents. To understand these effects MDO tries to expand the scope of the analysis.

The first study in section 5.1 is an example of expanding the scope by applying op-

timization in conjunction with geographic information to identify the optimal sites

for wind farms. To reduce transportation costs wind turbine manufacturers already

build multiple facilities around the world. It is only natural for each of these facilities

to build wind turbines specific for the region. The wind farm siting model could help

designers identify the region specific parameters for the facilities wind turbine design.

An expanded scope introduces complexity, which leads to the second aspect of

MDO, the use of optimization to navigate this complexity. Optimization is used in

MDO to automatically find optimal configurations. When applied to the full system,

optimization can identify system benefits and take advantage of inter-disciplinary

interactions that are not always obvious. Yet, optimization introduces additional

challenges in adapting analysis methods for optimization. Section 5.2 is one example

where adjoint based gradients were developed for the structural analysis. Then in

section 5.3 structural optimization was adapted to consider manufacturing aspects.
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This chapter closes with two examples of MDO where aero-structural optimization

was applied to design optimal wind turbine blades. The first is given in section 5.4

where conventional LVD aerodynamic analysis was coupled to the GEBT and VABS

structural analysis. The study serves as an example of the challenges of MDO. Both

the aerodynamic and the structural models were used successfully in single discipline

optimization. Yet, when combined the inter-disciplinary interactions lead to increased

errors in the gradients that prevented convergence in the optimization. This lead the

development of FEM-based LVD model presented in chapter 3. The second MDO

study in section 5.5 evaluated the new FEM-based LVD model in MDO. The focus

of this study was how the new FEM-based LVD would behave in aero-structural

optimization. To simplify the analysis a simple linear beam model was used for

the structural model. The analytic gradients of FEM-based LVD lead to excellent

convergence in the optimization. However the FEM-based LVD model suffers from

occasional singularities in the Jacobian that prevents convergence in the analysis.

This caused the delays in the optimization due to singularity avoidance strategies

outlined in chapter 3.

5.1 Regional Scale Wind Farm Siting Model

The work presented in this section is adapted from a Renewable Energy publication

by the author:

M. K. McWilliam, G. C. van Kooten, and C. Crawford. A method for optimizing

the location of wind farms. Renewable Energy, 48:287–299, June 2013

Wind energy development is sensitive to environmental factors such as the wind

resource, access to the electrical grid and the population distribution. Understanding

how these factors may affect wind farm development is important for policy makers,

electricity system operators, developers and wind turbine manufacturers who want

to design wind turbines specifically tailored for a given region. The ability to predict

the location of future wind farms will benefit each of these stake-holders.

Voivontas et al. [229] and Varela et al. [230] demonstrate the importance of

Geographic Information Systems (GIS) in wind farm development. Planning organi-

zations use GIS to develop Decision Support Systems (DSS) to determine whether

a proposed wind farm development should be approved or not. Many of these sys-

tems are based on research by Baban and Parry [231] who conducted a survey to
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understand the important factors for wind farm development. This work has inspired

many similar studies. Rodman and Meentemeyer [232] created maps of California to

protect sensitive ecosystems from development. Lejeune and Feltz [233] developed a

decision support system for wind policy development in Belgium. Rasado et al. [234]

give an example of a very sophisticated approach to developing a DSS, where wind

resource assessment tools like WASP and sophisticated logic is used to develop the

maps. These examples are only a small sample of studies applying GIS in assessing

the impact of wind farm development.

The application of GIS as a predictive tool is most common in wind farm design.

Ozturk and Norman [235] represented the wind farm space as a grid and used a greedy

improvement heuristic methodology to find the turbine placement that maximized

profit. Grady et al. [236] applied genetic algorithms and the Jensen wake model [237]

to maximize production with the least number of turbines, while Mora et al. [238]

used evolutionary algorithms to select the turbine, tower and location that maximized

the net present value. Marmidis et al [239] applied multi objective optimization and

Monte Carlo simulations to determine turbine locations that maximized production

and minimized installation costs.

DSS and the wind farm design models represent two similar bodies of work that

only differ in scale and application. The former is used for large regions but neglects

to seek out optimal locations while the latter optimizes wind farm configuration over

a small region. The current study combines the contributions of both bodies of

research and develops a model that will optimally place wind farms within a large

region. As with other DSSs we assess multiple factors to the suitability of a proposed

wind farm location in a large region. Our approach differs by incorporating these

factors into an overall economic cost function; accordingly not all factors typically

included in other DSSs can be included. Similar to the wind farm design models, we

employ optimization algorithms. However the shear scale of the problem makes the

same heuristic methods in wind farm design models impractical. Instead this work

employed gradient based methods to find optimal solutions. The computational load

is further reduced by making assumptions on individual turbine placements.

The purpose of this work is to provide a new approach to wind farm siting at a large

scale, as a preliminary screening tool. Later stages of wind park design could then use

more detailed models to optimize the placement of individual turbines within a farm.

The mathematical models used for each aspects are presented in section 5.1.1. The

province of Alberta Canada is used as a case study in section 5.1.2. The case study
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is used to evaluate the model sensitivity to the wind resource, population density

and the transmission network. The research is meant to illustrate how the model

can be applied to evaluate energy policy and explore region specific turbine design

optimization.

5.1.1 The Wind Farm Siting Model

The goal of the wind farm siting model is to predict the latitude (φ) and longitude

(θ) within a large region where a wind farm should optimally be built. The locations

of previous optimal wind farm solutions can be included to determine the location of

next best wind farm. In addition, the model predicts the optimal wind farm radius (R)

and the spacing between installed turbines (Xt). The underlying assumption is that

wind farm developers will build the project that will produce electricity at minimum

cost. This assumption casts the prediction into an optimization framework.

Gradient based optimization algorithms are employed. An important criteria of

these algorithms is the existence of continuous gradients with respect to the state

variables. While gradient based algorithms are highly sensitive to local minima, we

develop mathematical models specifically to guarantee smooth derivatives and have

mechanisms to limit local minima solutions.

Wind Farm Geometry

When studying a large region, with potentially large wind farms, care is needed to

account for earth curvature effects and the distribution of environmental properties

within the wind farm. It is assumed that a wind farm will occupy a circular region.

The wind farm radius will vary throughout the solution process because the radius

is a state variable in the optimization. When the wind farm radius is large the

geographic variation of various properties within the wind farm will influence the

cost. Furthermore outer portions of the wind farm may encroach on the region of

interest boundary. To account for the effect of a large wind farm region various

wind farm properties are calculated at many points within the region. The relative

locations of these internal points is shown in figure 5.1. Similarly, the points around

the border in figure 5.1 are used to ensure the whole wind farm stays within the region

of interest.

The relative distance between points is constant and scales with the wind farm

radius. The set of points in figure 5.1 are denoted as (xi, yi). These points need to
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Figure 5.1: Border and integration points within a wind farm

be related to corresponding latitude (φi) and longitude (θi) through equations (5.1)

where Rs is the radius of the earth. The curvature of the earth effects the distance

given by an increment in longitude. As the position approaches a pole a unit of

longitude approaches zero distance. To account for this effect the cosine function in

equation (5.1b) reflects the surface distance associated with increments in longitude.

φi = φ+
180yiR

πRs

(5.1a)

θi = θ +
180xiR

πRs cos
(
πφ
180

) (5.1b)

Geographic Information

This work assumes that geographic information can be represented by a grid of points

{(φgi, θgi)}. Each of these grid points will have a set of attributes to describe the wind

resource, population or any other geographic information.

The constraint of continuous derivatives limits the way geographic information is

represented. A typical approach would involve developing piece-wise smooth interpo-

lation functions between points of known information. This approach fails to give any

mechanisms to smooth out local minima. Instead the weighted average in equation

(5.2) is used to determine the generalized attribute a at a location of interest. Here ai

denotes the attribute defined at grid point i with the corresponding weight wi. The
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solution is made continuous by making a dependent on the attribute values at every

grid point.

a =

∑
aiwi∑
wi

(5.2)

The weighting function (wi) biases the result to the nearest point as shown in

equation 5.3 where r is the distance between the grid point and the point of interest.

The influence of local minima is controlled by varying the numerical constants P and

Q. The role of these parameters is discussed further in section 5.1.1.

wi = exp

(
−
(
ri
Q

)P)
(5.3)

The distance is given by equation (5.4) where the •̂ terms represent the point of

interest. This definition of distance is based on a tangent plane defined at a latitude

of φ̃, where in general φ̃ = φ̂. This definition of ri maintains the same physical unit

as the Rs parameter.

ri =

√√√√√


Rsπ cos

(
πφ̃
180

)(
θ̂ − θgi

)

180




2

+



Rsπ

(
φ̂− φgi

)

180




2

(5.4)

Region Definition

The region of interest is defined by the outer border of the region, within that region

there may be an area where wind farms could not be built. These sub-regions could be

lakes, existing wind farms or reserved land. The region of interest cannot be defined

by a simple path because of the presence of these sub-regions. Instead equation (5.2)

is used to define the region of interest. The generalized attribute for the border is

denoted by bi, where i denotes grid points. The points where a turbine can be built

are valued −1 and all other points are valued 1.

The result of equation (5.2) is bj where j denotes a specific boundary points in

figure 5.1. The model is constrained such that the largest bj value is less than 0. To

avoid multiple inequality constraints the Kreisselmeier-Steinhauser function shown in

equation (5.5) [212] is used to lump the constraints. Here the parameter % is used to

control how close equation (5.5) approximates the maximum.
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max (bj) ≈
1

%
log
(∑

exp (%bj)
)

(5.5)

In the optimization problem the region constraint is as follows:

1

%
log
(∑

exp (%bj)
)
≤ 0 (5.6)

Wind Farm Cost Model

The cost of the electricity (c) is a common metric for wind farm development. This

metric is the ratio of annualized cost (Ca) to annual energy production (Ea):

c =
Ca
Ea

(5.7)

The annualized cost is given by equation (5.8), where Ci is the initial cost, r is

the expected annual rate of return for the project, L is the life time in years and Co

is the annual operation and maintenance cost.

Ca = Ci
r (1 + r)L

(1 + r)L − 1
+ Co (5.8)

For wind farm projects a bulk of the cost is associated with the initial development.

The initial cost is further broken down into components as shown in equation (5.9).

The fixed cost component (Cf ) accounts for things like the wind resource study, legal

fees and other preliminary development work. Then there is a cost proportional to the

number of turbines (N) that accounts for the turbine purchase and the construction

costs, the proportionality is denoted as (Ct). The electrical transmission cost between

the wind farm and the electricity grid is dependent on the distance (Re) and the

proportionality constant (Ce). The effect of installed capacity on the transmission

cost is neglected in this work. Finally, there is a cost associated with the electricity

infrastructure within the wind farm. This cost is proportional to the number of

turbines, desired turbine spacing and the proportionality constant Cx.

Ci = Cf + CtN + CeRe + CxNXt (5.9)

The economic equations demonstrate how the environmental conditions affect

the cost. Each will be discussed in turn in this section starting with the annual
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energy production calculation, the transmission distance model and finally how the

population density affect the number of turbines built through a micro-siting model.

Annual Energy Production

The Annual Energy Production (AEP) is based on the product of average turbine

power and hours in the year. The average power is based on the probability that

the turbine will experience various wind speeds and the power output at those wind

speeds. To get an accurate prediction the calculation needs to be corrected for turbine

height and wake effects. These corrections are discussed first.

The height of the turbine will influence energy production. Turbines placed at

a higher elevation experience a stronger wind, and thus are more productive. This

influence is referred to as wind shear. A common model for wind shear is the power

law in equation (5.10) [34]. Here Vt is the wind speed experienced by the turbine, V0

is the wind speed at the wind resource height, Ht is the height of the wind turbine

and H0 is the defined height for the wind resource. The shear exponent S defines the

severity of the wind shear, with a value of 1/7 acceptable for most ground surfaces.

Vt
V0

=

(
Ht

H0

)S
(5.10)

Proximity to other turbines also influences turbine output. The wake of upstream

turbines will reduce the apparent wind for downstream turbines. These wake effects

are dependent on the desired turbine spacing parameter. The wake model by Jensen

[237] provides an explicit model for the wind deficit deep within a wind farm. This

model is given in equation (5.11), where D is the turbine diameter and α is a turbu-

lence parameter. For most wind farms a turbulence parameter of 0.1 is acceptable.

The equation gives the ratio of the wind speed for a downstream turbine (Vf ) to the

undisturbed wind speed (V0).

Vf
V0

= 1− 2D2

3 (D + 2αXt)
2 −D2

(5.11)

Equations (5.10) and (5.11) are used to modify the probability distribution. For

most wind resources the Weibull distribution has been found to be good approxima-

tion over annual yearly time scales [156]. The modified Weibull distribution is given

in equation (5.12) where Vi is a wind speed of interest. The distribution is defined by

the scale parameter λj and the shape parameter κj.
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Φij =
κj
λj


 Vi(

Vt
V0

)(
Vf
V0

)
λj



κj−1

exp


−


 Vi(

Vt
V0

)(
Vf
V0

)
λj



κj
 (5.12)

The shape and scale parameters define the wind resource and are geographically

distributed. This distribution is represented in a similar way as the region definition.

Here a shape and scale attribute is assigned to each of the grid points. Equation (5.2)

is then used to calculate the shape and scale parameter for a given location.

The annual energy produced is dependent on the power (Pi), which is defined for

each wind speed of interest. This power is used with equation (5.12) to define the

average power with equation (5.13).

P̄j =
∑

ΦijPi (5.13)

To account for different P̄j within the wind farm, the average of all the integration

points is calculated with equation (5.14) where Ni is the number of integration points.

P̄ =

∑
P̄j

Ni

(5.14)

Given average power, AEP is given by equation (5.15) where the assumed number

of hours in a year is based on a four year average.

Ea = 8766NP̄ (5.15)

Electrical Transmission Network

The influence of the electrical transmission network is defined by Re the minimum

distance between the wind farm and a transmission line. First a model is needed to

define the distance between a given transmission line and the wind farm. Then an

analytical formula is used to determine the transmission line that gives the minimum

distance solution.

The electrical transmission network is defined by a set of line segments. Each line

segment is defined by a start point (Tθ, Tφ)0i and end point (Tθ, Tφ)Ei. The distance

to the start point of a given line segment can be decomposed by a parallel component

(r‖) and a perpendicular component (r⊥) through equations (5.16).
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r‖ =
πRs

(
cos
(
πφ̃
180

)
(θ − Tθ0i) (TθEi − Tθ0i) + (φ− Tφ0i) (TφEi − Tφ0i)

)

180
√

(TθEi − Tθ0i)2 + (TφEi − Tφ0i)
2

(5.16a)

r⊥ =
πRs

(
cos
(
πφ̃
180

)
(θ − Tθ0i) (TφEi − Tφ0i)− (φ− Tφ0i) (TθEi − Tθ0i)

)

180
√

(TθEi − Tθ0i)2 + (TφEi − Tφ0i)
2

(5.16b)

The distance metric is based on a tangent plane that is defined at the latitude φ̃.

For transmission distance φ̃ is defined by equation (5.17).

φ̃ =
φ

2
+
Tφ0i

4
+
TφEi

4
(5.17)

The actual distance of the transmission line to the wind farm will have the same

perpendicular component. However, when the wind farm is directly perpendicular the

line segment, no parallel component is needed. Thus when r‖ is less than the segment

length ‖T‖, the actual parallel component is zero. Similarly, when r‖ is greater then

the segment length, the connection only needs to be made at the end of the segment.

In this case the parallel component is reduced by the segment length.

Equations (5.16) along with the piece-wise treatment of the parallel component

introduce a discontinuity into the gradient. To smooth over these discontinuities the

parallel and perpendicular components are approximated as shown in equation (5.18).

Here ε is numerical smoothing parameters that should be small; for this work it is

0.01.

R‖ =
1

2

(√
r2
‖ + ε−

√(
r‖ − ‖T‖

)2
+ ε− ‖T‖

)
(5.18a)

R⊥ =
√
r2
⊥ + ε (5.18b)

These equations contribute to the actual transmission length in equation (5.19).

Rei =
√
R2
‖ +R2

⊥ (5.19)
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The weighted average formula in equation (5.2) is used to find the minimum

distance Re. In this calculation the attribute variable ai is replaced by Rei, the

distance ri in the weighting function (5.3) is also replaced with the distance Rei.

Micro-siting

The micro-siting model is meant to approximate the number of turbines that could

be built within the wind farm region. This depends on the turbine spacing and

the locations of sensitive noise receptors. Wind farm developers must place turbines

sufficiently far away from these receptors that the noise is kept within acceptable

limits. This in effect removes land adjacent to residential areas that could otherwise

be considered for wind farm development and thus limits the number of turbines that

could be built.

The influence of noise receptors is dependent on how they are distributed. It is

unreasonable or impractical for all receptor locations to be known within a very large

region. Instead the population density is used to estimate the number of receptors in

a given region. The population density is represented by attributes attached to grid

points. For each integration point, equation (5.2) is used to calculate the density.

The density of all the integration points is then averaged to get the effective density

for the wind farm.

In general people tend to cluster. More than one person will live in a house, and

multiple houses will be built within close proximity. This effect will make the number

of noise receptors less than the number of people. The assumed cluster factor is a

parameter that can be tuned to calibrate the model. For this study, it was assumed

that the receptor density was equal to the population density.

The micro-siting model is based on the assumption that both the wind turbines

and noise receptors will be distributed in a close pack configuration. This assumption

allows one to define a unit cell as shown in figure 5.2. The unit cell is defined by

the triangle. A noise receptor is located at the vertices of the triangle. The large

circles around the vertices represent the required setback distance. The turbines are

placed in the center of the smaller circles, the diameter of the smaller circles is the

desired turbine spacing. The micro-siting model assumes increased likelihood that

the turbines in the center of the cell will be built, while those within the setback

circle will not be built.
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Figure 5.2: A unit cell within the micro-siting model

It is assumed that the relative position of receptors and turbines within one unit

cell is repeated throughout the entire wind farm. The total number of turbines is then

based on the product of turbines within a unit cell and the number of unit cells within

the wind farm. Thus, the micro-siting model is based on predicting the number of

turbines within one unit cell (n).

To simplify the problem a non-dimensional noise distance (s) and a non-dimensional

turbine spacing (d) are defined by equations (5.20) and (5.21) respectively. This def-

inition is based on an assumed receptor spacing given by equation (5.22), where ρ is

the receptor density for the wind farm.

s ≡ Xs

Xp

(5.20)

d ≡ Xt

2Xp

(5.21)

Xp =

√
2√
3ρ

(5.22)

The micro-siting model is based on three scenarios. The first is assumes a densely

populated area where the land is relatively crowded and any turbine built would likely

be within a noise offset limit. This scenario occurs when s is greater than 1/
√

3.

Assuming that no turbines will be built in this case would introduce a discontinuity

in the derivative. Instead it is assumed that there is still a probability that a single
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turbine will be built in the center of the unit cell. The turbine built in the city

of Toronto Canada is an example that turbines can be built in densely populated

regions. The probability (Ψ) this turbine will be built is based on the cumulative

normal distribution given in equation (5.23). The standard deviation parameter σ is

another parameter that can be used to tune the micro-siting model.

Ψ =
1

2

[
1 + erf

(
1−
√

3s√
6σ

)]
(5.23)

In sparsely populated areas there are two more scenarios. The first assumes the

spacing of turbines is sparse enough that noise limits would not affect the develop-

ment. This scenario is likely true for many developments and occurs when d is greater

than s. In these circumstances, it is assumed that the noise receptors will not prevent

the construction of a single turbine. In this situation n is based on a ratio of effective

area per turbine and unit cell area.

Finally there is a case where it is desirable to pack turbines very close together.

In these circumstances the noise offset limits will prevent some turbines from being

built. The number of turbines built is still based on the ratio of effective turbine area

to unit cell area. This ratio is then multiplied by a ratio of unit cell area to available

development area. The available development area is equal to the unit cell area minus

the area within the offset limits. The available development area solution is based on

three geometric scenarios, resulting in a piece-wise solution.

A micro-siting model based on multiple piece-wise geometric models is not ac-

ceptable for optimization. In this case, the number of turbines and the gradients are

both discontinuous. To overcome this problem, an approximation based on a set of

geometric parameters, shown in equations (5.24) through (5.27), is used.

s̃ =
bnd

(√
3s
)

√
3

(5.24)

d̃ = s̃ bnd

(
d

s̃

)
(5.25)

ϑ̃ = arccos

(
bnd

(
1

2s̃

))
(5.26)

ϕ̃ = arccos

(
bnd

(
tan ϑ̃

2d̃

))
(5.27)
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The bnd operator is 0 when the argument is less than 0, 1 when the argument is

greater than 1, and takes the value of the argument when the argument is between 0

and 1. The formal definition is given in equation (5.28) with the approximation given

in equation (5.29). As before the ε parameter is a numerical constant and is set to

0.01 for this work.

bnd (x) ≡





0 : x < 0

x : 0 ≤ x ≤ 1

1 : 1 < x

(5.28)

bnd (x) ≈ 1

2

(√
x2 + ε−

√
(x− 1)2 + ε+ 1

)
(5.29)

These approximated parameters are used in equation (5.31) to determine the unit

cell solution for the whole s and d domain. Note that the probability Ψ is still based

on the original definition of s given in equation (5.20).

n =
Ψ3

2
√

3d2
(5.30)

×
(√

3

4
−
(π

2
− 3ϑ̃

)(
s̃− d̃

)2

− 3 tan ϑ̃

4
+

(
3π

2
− 3ϑ̃− 3ϕ̃+

3

2
sin (2ϕ̃)

)
d̃2

)

The result from equation (5.31) is used to determine the total number of turbines

with equation (5.31).

N =
4nπR2

√
3X2

p

(5.31)

Optimization

The optimization algorithm is meant to solve the problem in equation (5.32). The

first constraint ensures that all solutions are within the region of interest. The second

constraint reflects the fact that most projects are subjected to capacity constraints

due to regulation, electrical transmission capacity, financing limits or numerous other

reasons. The problem was solved using Sequential Quadratic Programming (SQP),

which is a gradient based algorithm provided by Lawrence et al. [202].



140

Minimize Cost of electricity (equation (5.7))

Subject to Region constraint (equation (5.6))

Capacity constraint N ≤ 10

(5.32)

Numerical Smoothing

The goal for any optimization problem is to determine the global minimum. When

the objective function contains many local minima, there is no algorithm that can

guarantee a globally optimal solution. The best that can be achieved is merely ap-

proaching a solution close to the global optimum.

Gradient based methods are particularly sensitive to local minima. In general the

algorithm will find the nearest local minima to the start point. When the objective

function is particularly noisy, the final solution will be highly sensitive to the starting

point. Without the appropriate numerical conditioning these algorithms do not give

acceptable solutions.

When the objective is noisy, heuristic methods like tabu search or evolutionary

algorithms are known to perform well. These methods rely on an element of ran-

domization to prevent the algorithm from getting trapped at a local minima. By

neglecting gradient information the algorithm requires many more function evalua-

tions for the randomization to eventually locate a converged solutions. This quality is

undesirable because of the excessive computational resources. Numerical smoothing

is applied so efficient gradient based algorithms are still applicable.

Numerical smoothing suppresses small scale variation in the objective function.

When the small scale variations are suppressed, the algorithm will respond to large

scale variations and find the general area where the global minimum is likely to

occur. When this area is identified, multiple solutions started from this area should

give results that are close to the global optimum.

The weighting function (5.3) in equation (5.2) controls the level of numerical

smoothing. The Q parameter is an effective length scale, all the points within Q

will be weighted considerably higher than all other points. The variations that occur

within Q will be averaged out. Any local minimum created by this variation would

be suppressed.

In equation (5.3) the exponent P controls how strongly the data within Q are

averaged. When P is small then the closest point is selected, when P is large then
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nearly all points within Q are weighted equally. For this work P takes on values of 1

or 2.

5.1.2 Application of the Optimal Wind Farm Model

The province of Alberta in Canada was chosen to demonstrate the wind farm siting

model. In Alberta the electricity market is de-regulated providing much information

about the electricity grid. In the South a strong wind resource has prompted many

developers to build wind farms. Accordingly, this is a good case to investigate how

well this model performs.

The entire province is region of interest. Land along the southwest border is

mountainous and not appropriate for wind farm development, and thus removed from

the region of interest. The Canadian wind atlas was used to obtain wind resource

data at 50m shown in figure 5.3 [240]. Figure 5.3 shows the mean wind energy density

calculated by the wind atlas. The data are provided as wind speed histograms. An

optimal Weibull probability distribution curve fit was used to determine the scale and

shape parameters from the histograms.

Figure 5.3: Map of average wind resource, ranges between 0W/m2 (black) to
300W/m2 (white)
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Population data for Alberta are available by census divisions from Statistics

Canada [241]. This data along with the geographic definition of the census division

were used to create the population density map given in figure 5.4.

Figure 5.4: Alberta population density (darker shades indicate increasing density)

The geographic location of the electrical transmission network in Alberta was

obtained from the Alberta Electric System Operator [242], which divides the province

into six regions. Maps of these regions were used to generate the electrical tranmission

map shown in figure 5.5.

Given that our purpose is primarily to demonstrate the method developed above,

wind turbine performance and various economic parameters were chosen arbitrarily.

Figure 5.6 shows the wind turbine power curve used in this work. Table 5.1 gives the

parameters for the various cases used in this study.

For each case listed in table 5.1 several solutions were obtained, depending on

the values of the Q and P parameters used in the Weibull scale and shape factor

calculations. The the Q parameter took values of 5, 28, 150 and 794 km, while P took

values of 1 and 2. The Q and P values used for all other calculations were 5 km and

1 respectively. Solutions also differed by starting location, for each case simulations

were started from either a common Northern, Eastern, Southern or Western point.

The different combinations of parameters led to a total of 32 simulations for each

case.
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Figure 5.5: Alberta transmission
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Figure 5.6: Wind turbine power curve
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Table 5.1: Optimization parameters by case, (Differences from the base case given in
bold)

Case Base AEP Transmission Noise

Lifetime (L) 20 years 20 years 20 years 20 years
Annual Interest Rate (r) 10% 10% 10% 10%
Wind Farm Overhead Cost (Cf ) $5 mil. $5 mil. $5 mil. $5 mil.
Cost per turbine (Ct) $3 mil. $3 mil. $3 mil. $3 mil.
Transmission Cost per km (Ce) $100,000 $1,000 $1 mil. $100,000
Spacing Cost per km (Cx) $10,000 $10,000 $10,000 $10,000
Annual Cost (Co) $50,000 $50,000 $50,000 $50,000
Offset Limit (Xs) 450.0 m 100.0 m 450.0 m 550.0 m
Turbine Diameter (D) 80.0 m 80.0 m 80.0 m 80.0 m
Turbine Height (Ht) 80.0 m 80.0 m 80.0 m 80.0 m

Numerical Smoothing

This section addresses the effectiveness of numerical smoothing in avoiding local at-

tractors. Numerical smoothing is built into the weighting function (5.3). The param-

eters Q and P control the level of numerical smoothing with Fourier analysis applied

to quantify how various values of Q and P suppress local minima.

Any spatially distributed discrete set of quantities (eg. average power P̄j) can be

represented by an average quantity added to a series of trigonometric functions; see

equation (5.33). The Fourier transform is used to solve the amplitude (Aij) of the

sine terms. The set of sine magnitudes reveal the frequency content of variations. A

general region of good wind is strongly dependent on the low frequency components,

while the local minima are governed by the high frequency components. The goal

of the numerical smoothing is to suppress the high frequency components, while

preserving the local frequency content.

f (x, y) = f̄ +

Ni∑

i

Nj∑

j

Aij sin (ωxix+ φxi) sin (ωyjy + φyj) (5.33)

The wind resource affects the average power of the turbines which in-turn affects

the annual energy production (ie AEP). To evaluate the spatial distribution of the

wind resource equation (5.13) was evaluated over several points.
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To get a better understanding of numerical smoothing a frequency based study

focused on an area in the South East corner of Alberta. The area is approximately

212 km East to West and 334 km North to South. A 512 by 512 grid of points

was sampled with various values of Q and P for the scale and shape factors. The

approximate grid spacing is 534m. Figure 5.7 shows a typical result of a Fourier

transform, darker colors represent a smaller amplitude. High frequency content is

represented in the top right and low frequency content in the lower left.

(a) 5 km for Q and 1 for P (b) 794 km for Q and 2 for P

Figure 5.7: Fourier contour plots

The Fourier analysis was applied to 34 combinations of Q and P . Every result

produced a plot similar to that given in figure 5.7. To get a better understanding of

the filter parameters the Fourier solution where ωxi = ωxj are plotted in figure 5.8.

Overall, the figure confirms that larger values of Q give increased attenuation and for

larger P values reduced attenuation.

It is interesting to note that the solution is approaching A = A0k
−1 for increasing

values of Q. This solution corresponds to a tilted plane; thus the filtering successfully

removes any local minima and maxima. The peaks in the Q = 5 series demonstrate

the existence of local extrema in the solution. Comparing the P = 1 and P = 2 at

Q = 5 shows that higher values of P preserves more of the low frequency content.

Figure 5.9 shows the Alberta wind resource subjected to various levels of filtering.

Figure 5.9a gives a high level of fidelity, while increasing values of Q effectively blur

the resource further and further. At Q = 150 km there are only 2 local maxima and

at Q = 794 km all local maxima are filtered away confirming the results of the Fourier

analysis.
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Figure 5.8: Frequency amplitude at common wave number

Discovering the optimal wind farm configuration is based on a sequence of phases,

each with one or more wind farm siting simulation, where each subsequent phase

is based on less aggressive numerical smoothing. When nothing is known about a

region the the filtering in figure 5.9d or 5.9c would direct the optimization to the

south from nearly any starting point. Subsequent optimization based on the filtering

in figure 5.9b would refine the solution further. The final solution would be based on

the filtering in figure 5.9a where distortion is minimized. When the model is used to

gather a family of strong possibilities a collection of unique starting points about the

last solution could be used in the latter phases to seek out multiple solutions. This

phased approach will be demonstrated in articles that discuss the various applications

of this model.

The effect of numerical smoothing is demonstrated by comparing the solutions of

the base case and the AEP case. In the AEP case significantly cheaper transmission

cost and permissive noise limits make the wind farm profitability more dependent on

the AEP than all other factors. It is expected that these solutions will seek out regions

of maximum AEP. Since the Q parameter was varied only for the Weibull shape and

scale parameter the numerical smoothing would only affect the AEP calculations.

Thus numerical smoothing should have a greater impact on the AEP case.

Four different starting points were selected, they are shown in figure 5.10 with

green icons along with red icons for the final solution. It is clear that many of the
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(a) Q is 5km, P is 2 (b) Q is 28km, P is 1

(c) Q is 150km, P is 1 (d) Q is 794km, P is 1

Figure 5.9: Alberta wind resource in W/m2 with filtering

solutions based on the AEP case (figure 5.10b) moved towards the southeast corner

of the province. Figure 5.9 shows that this area has a good resource under most

applications of numerical smoothing. When the base case parameters are used, the

local minima are influenced by the transmission lines and population distribution.

Since these parameters are not smoothed the solution is still affected by local minima

and does not travel far distances.

To demonstrate this difference in smoothing sensitivity the linear curve fit of the

distance between the starting and end points is graphed against Q in figure 5.11. The

slope of this curve fit is taken as the smoothing sensitivity parameter given in table

5.2. It is clear that the AEP seeking case is much more sensitive. Figure 5.11 shows

that the distance decreases in the base case for values of Q greater than 150km. Figure
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(a) Base Case (b) AEP Case

Figure 5.10: Wind farm locations, lines connect starting positions in green to solutions
in red

5.8 shows that all variation is attenuated equally past Q = 28, with increasing Q the

wind resource solution approaches the mean everywhere. This mean approaching

trend is evident by comparing figure 5.9c and 5.9d. As the wind resource approaches

the mean everywhere the optimal location has decreased dependence on the wind

and becomes more sensitive to other factors. This demonstrates the importance of

suppressing other factors when using aggressive numerical smoothing.

One may be tempted to apply the same numerical smoothing to population den-

sity. The influence of population is highly nonlinear, once the density reaches a certain
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Figure 5.11: Solution distance vs. Q

Table 5.2: Smoothing sensitivity

Cases P = 1 P = 2

Base Case 0.128 -0.017
AEP Seeking 0.479 0.553

threshold the number of turbines allowed approaches zero and the wind farm costs

become asymptotic. If the population for the region is large enough that the average

population density is above this threshold, then the solution becomes highly sensitive

to people and moves away from crowded regions. In this case the “blurring” effect

of numerical smoothing on population is concealing pockets where an optimal wind

farm could be located. In the early phases it is recommended that optimization is

based on AEP (equation (5.13)) or economic parameters are selected to suppress the

influence of population and possibly transmission.

Sensitivity to Transmission

To evaluate the sensitivity to transmission infrastructure the cost of transmission was

increased from $100,000 per km to $1,000,000 per km. All other parameters were

identical to the base case. Figure 5.12b shows the new solutions with the expensive
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transmission along with the transmission lines. Figure 5.12a shows that the base case

solutions typically converged on top of a transmission line. With less expensive trans-

mission the base case optimization was able to seek better solutions in regions further

from the starting point. Increasing the transmission cost increases the model sensitiv-

ity to the local minima along the transmission lines; thus increasing the importance

of numerical smoothing for transmission effects.

(a) Base Case (b) Tranmission Case

Figure 5.12: Wind farm locations, lines connect starting positions in green to solutions
in red

The differences between the base case and transmission case cannot be attributed

local minima alone. Within the results there are cases where the expensive trans-

mission solutions achieved a shorter transmission line at the expense of improved
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AEP. When four outliers are neglected from the results, the expensive transmission

case decreased the minimum distance to a transmission line by 16%. On average the

AEP of the expensive transmission results were 10% lower, thus transmission cost is

preventing the optimization from seeking better wind resources.

In the four outliers the expensive transmission solution is significantly further

from transmission than in the base case. These discrepancies occur when there is

a stronger wind resource in the opposite direction of the transmission line nearest

to the starting point. In the base case the optimization was able to move in the

direction of the stronger wind resource and eventually find a converged solution at a

different tranmission line. While the expensive transmission solution failed to reach

any transmission line because the costs of a decreasing wind resource prevented further

movement towards the nearest transmission line.

Sensitivity to Population

To evaluate the sensitivity to population, the noise offset limit of the base case was

increased from 450m to 550m. Comparison between figures 5.13a and 5.10a show

clearly that the optimal solutions are kept away from the densely populated south-

ern region. The solutions from the only Southern starting point move towards the

mountains where the population is reduced.

On average the optimal solutions were located in regions with an 8% reduction in

receptor density. By cutting off regions that had a slightly higher population, there

was a 1% reduction in the AEP leading to a 3% increase in wind energy cost.

These results demonstrate how this model could be applied to evaluate noise reg-

ulations or the potential performance of new turbine designs. However these conclu-

sions are dependent on the assumptions of the micro-siting model. The micro-siting

model needs to be calibrated with existing wind farm developments before any reliable

conclusions can be drawn.

Sensitivity to Wind Resource

To confirm the model sensitivity to wind resource a set of optimization solutions were

solved based on an objective of maximum average power (equation (5.13)). Those

solutions are given in figure 5.13b. Comparison with figure 5.10b demonstrates that

when all other influences are suppressed the optimization approaches the maximum
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(a) Noise Case (b) Maximum AEP

Figure 5.13: Wind farm locations, lines connect starting positions in green to solutions
in red

power solution. The comparison also demonstrates that the small influence of trans-

mission and population does affect the model enough to give different results.

5.2 Structural Optimization with Adjoint Gradi-

ents

The work presented in this section is adapted from a 2012 AIAA Structural Dynamics

and Materials conference paper:
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Michael K. McWilliam and Curran Crawford. Adjoint Based Sensitivity Analy-

sis for Geometrically Exact Beam Theory and Variational Asymptotic Beam Section

Analysis with Applications to Wind Turbine Design Optimization. In 53rd AIAA

Structures, Structural Dynamics and Materials Conference, April 23-26 2012, Hon-

olulu Hawaii, April 2012

Currently several advanced wind turbine design concepts are being explored by

researchers. In general these concepts are based on reducing damaging fatigue loads

by creating adaptive blades. There are strategies that apply sweep [28, 29], coning [25,

26, 27] and biased fiber orientations [31, 32] to aero-elastically tailor blades in order

to minimize structural loads. Tools more advanced than Blade Element Momentum

(BEM) methods and linear structural analysis are required to properly study these

concepts in wind turbine design analysis.

To model the wind turbine blade, the Geometrically Exact Beam Theory (GEBT)

pioneered by Simo [100] is well suited to capture geometric nonlinearity crucial in

many load alleviation strategies. Currently GEBT is a mature theory now that issues

associated with objectivity [104, 113] and temporal integration have been resolved

[243, 244, 245]. Multi-dimensional Finite Element Methods (FEM) are capable of

resolving the nonlinear dynamics, however the methods require considerably more

degrees of freedom to resolve similar fidelity. Accordingly the computational cost

detracts from this approach consequently is not considered for this work.

Industrial wind turbine blades are made from fiber reinforced plastic. These mate-

rials have anisotropy that can be engineered to give desirable cross section properties.

To accurately determine the effect of material anisotropy the cross section warping

needs to be solved. Variational Asymptotic Beam Section (VABS) analysis has been

developed by Hodges and colleagues [40, 39, 121, 246, 126, 126, 124, 122, 123] to

account for the affect of warping. Others have evaluated the accuracy compared to

full three dimensional finite element models and analytical solutions [40, 128] demon-

strating excellent agreement. Similarly VABS was compared with other cross section

analysis methods and found in all cases it was superior [130]. For these reasons VABS

has been incorporated into the optimization framework presented here.

These advanced design concepts rely on an expanded design space presenting a

challenge to design optimization and analysis. The computational cost of sensitivity

analysis based on forward propagating algorithms (e.g. finite difference) scale with

the number of design variables. The work of Hjort et al. [64] demonstrated that
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the computational cost of finite difference methods limited the sophistication and

complexity that could be incorporated in design optimization.

Adjoint methods pioneered by Jameson [206] manipulate the physical governing

equations of systems so that gradient information is propagated backwards from the

objective equation to the design variables. The benefit of these methods is that

the computational cost is proportional to the number of objectives and relatively

insensitive to the number of design variables. The challenge is manipulating the

governing equations to admit adjoint based sensitivity analysis. Trier et al. [215]

has demonstrated how these methods are applied for nonlinear structural dynamics.

Triers contribution did not address the challenges of finite rotations present in GEBT.

Recently Wang and Yu [216] have developed the adjoint equations for two dimensional

GEBT. Again by simulating the plane problem the challenges associated with three

dimensional finite rotations are avoided.

The work presented here demonstrates the development of the adjoint equations

for the fully nonlinear, three dimensional GEBT. The GEBT adjoint equations rely

on intermediate gradients that depend on the cross section model. To alleviate com-

putational loads in these models the adjoint equations for VABS has been derived.

Special attention has been given to sensitivity analysis typical in wind turbine design.

This work is based on GEBT and VABS described in section 2.1.2 and section 2.2.1

of chapter 2 respectively. The adjoint methods are described in section 2.4.2 of chapter

2. Section 5.2.1 describes how the analysis tools are combined to obtain the weight,

stress and deflection. This section then gives the derivation of the adjoint sensitivity

for both GEBT and VABS analysis. The algorithms were applied to determine the

minimum weight design of a wind turbine blade at a single operating point. The

algorithms were compared against the finite difference algorithm for computational

speed and the final optimization solution in section 5.2.2.

5.2.1 Methodology

Objective Evaluation

Figure 5.14 demonstrates the flow of information to calculate the objective and con-

straint information. First the mesh module will use the design variables to solve the

blade weight and generate the E matrices. Then VABS will use this information to

determine the warping function and constitutive matrix. Then GEBT will use the

constitutive matrix to determine the beam deflection and beam strain. Next VABS
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will use the warping solution and the beam strain to determine the three dimensional

strain. Finally, the failure model uses the three dimensional strain to calculate a

failure metric (σ̂).

Design Variable (y)

Mesh Generation

VABS Warping Solver

GEBT

Failure Model

VABS Strain Recovery

Failure Metric (σ̂)

Mesh Information (E)

Constituitive Matrix (C)

Beam Strain (ǭ)

Blade Weight (W)

Deflection (u)

Warping (V )

3D Strain (ε)

Figure 5.14: The algorithm for function evaluations

Adjoint Based Sensitivity Analysis

Adjoint based sensitivity analysis is broken into three sub-topics. First, the adjoint

equations for GEBT are derived. Then the adjoint equations for VABS are derived.

Finally, this section closes by discussing the two ways these equations can be coupled

to solve the design sensitivities.

The adjoint sensitivity is based on the adjoint theory presented in section 2.4.2 in

chapter 2. The following sections will derive the adjoint based sensitivity for GEBT

and VABS theory. The general steps taken are as follows:

1. Linearize the governing equations, as shown in section 5.2.1.

2. Derive the adjoint equation as shown in section 5.2.1 and 5.2.1.
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3. Determine the objective sensitivity to state variables. This is the source term

in the adjoint equation (2.51) and is required before an adjoint solution can be

found. Central differencing was used to calculate this gradient.

4. Solve the adjoint equation. All the adjoint equations are linear and can be

solved with standard methods in linear algebra.

5. Once the adjoint solution is found, the sensitivity of the residual expression

is required to solve the final sensitivity with equation (2.49c). Again central

differencing was used to calculate this gradient.

Adjoint Equations for Geometrically Exact Beam Theory

Since GEBT is a nonlinear theory the derivation of the adjoint equations is given

in two steps. The first step linearizes the equations; then the adjoint equations are

derived from the linear model.

Geometrically exact beam theory is a nonlinear model based on finite rotations.

The perturbations of the state variables could be defined in multiple ways [112], each

resulting in different linearized equations.

The linearization is complicated by the presence of finite rotations. Finite rota-

tions do not admit a linear space, that is to say a rotation of θ then a perturbation ϑ

does not result in a final orientation vector of θ+ϑ. The linearization can be applied

in terms of the orientation parameters directly (i.e. ∂R/∂θi) or an incremental pertur-

bation (i.e. ∂R/∂ϑi). Linearization in terms of ϑ is more intuitive as these directions

are configuration independent. To be consistent a perturbation of u is applied on φ,

in this case the final position is φ+ u.

Simo and Vu-Quoc [101] give the linearization of the internal energy. They define

the linearization of strain as equation (5.34).

{
δγ

δκ

}
=

[
d
ds

dφ
ds
×

03
d
ds

]{
δu

δϑ

}
(5.34)

This leads to the material tangent stiffness equation in (5.35).

Km =

[
d
ds

03

−dφ
ds
× d

ds

][
Λ 03

03 Λ

]
[
∇2Ψ

]
[

ΛT 03

03 ΛT

][
d
ds

dφ
ds
×

03
d
ds

]
(5.35)
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Similarly Simo and Vu-Quoc [101] give the geometric stiffness as (5.36).

Kg =

[
d
ds

03 03

03
d
ds

I3

]


03 03 −n×
03 03 −m×
n× 03 n⊗ dφ

ds
−
(
n · dφ

ds

)
I3







d
ds

03

03
d
ds

03 I3


 (5.36)

Together these equations give the linearized model as shown in equation (5.37).

δR = (Km + Kg) δε (5.37)

The development of the adjoint equations is similar to the approach taken by

Trier et al. [215]. Before the adjoint can be derived for equation (5.37) the adjoint

operator for each sub-matrix needs to be defined. Most of the matrix terms in the first

matrix of equation 5.37 are algebraic where the adjoint is simply the transpose. The

contributions of Km (equation (5.35)) and Kg (equation (5.36)) make K a differential

operator. The adjoint of these matrices and respective boundary terms are given in

equations (5.39) and (5.40).

∫
ψTKmχdD =

∫
χTK∗mψdD + Bm (5.38)

=

∫
χT
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− d
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ψdD

and

∫
ψTKgχdD =

∫
χTK∗gψdD + Bg (5.39)

=
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ψdD

Together these equations lead to the definition of K∗ in equation (5.40) which is

simply the transpose of the tangent stiffness matrix.

K∗ = K∗m + K∗g (5.40)
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The adjoint equation is shown in equation (5.41).

K∗ψ =
∂J

∂x
(5.41)

Once ψ is solved, equation (2.49c) can be used to get the sensitivities.

Adjoint Equations for Variational Asymptotic Beam Section Analysis

This section derives the adjoint equations for VABS analysis. There are two interme-

diate objectives of VABS analysis, each requiring a unique set of adjoint equations.

The first set calculates the design sensitivity of the constitutive matrix. The second

set calculates the design sensitivity of the three dimensional strain. This second set of

equations has dependency on state variables of GEBT. In general the VABS adjoint

equations would have to account for variations in the beam state variables. However,

when integrated with the GEBT adjoint equations this variation can be ignored.

The derivation of the adjoint equations proceeds first by defining the objective

equation for C (equation (5.42)).

C = ET
aεNV?

0 + Eεε (5.42)

Second, we define the residual expression for VABS analysis (equation (5.43)).

RC = EaεV
?
0 + NTEaε (5.43)

Next, we define the three supporting gradients, ∂C/∂y in equation (5.44),

∂C

∂y
=
∂Eaε

∂y
NTV?

0 + Eaε
∂N

∂y

T

V?
0 +

∂Eεε

∂y
(5.44)

∂R/∂y in equation (5.45)

∂RC

∂y
=
∂Eaa

∂y
V?

0 +
∂N

∂y

T

Eaε + NT ∂Eaε

∂y
(5.45)

and ∂C/∂V?
0 in equation (5.46)

∂C

∂V?
0

= ET
aεN (5.46)

Applying the identity (2.52) gives the adjoint equation as shown in equation (5.47).
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Eaaψ = NTEaε (5.47)

By equation (2.19a) it is clear the solution for ψ is −V?
0. Substituting these results

in equation (2.49c) gives the final sensitivity solution in equation (5.48).

dC

dy
= V?T

0

∂Eaa

∂y
V?

0+
∂Eεε

∂y
+

(
∂ET

aε

∂y
NV?

0 + V?T
0 N

∂Eaε

∂y

)
+

(
ET
aε

∂N

∂y
V?

0 + V?T
0

∂NT

∂y
Eaε

)

(5.48)

The derivation of the adjoint equations will be based on the objective in equation

(5.49a) because it allows for a simple definition of the ∂J/∂V gradient.

Φ = BaNV̂?
0 + Bε (5.49a)

ε = Φε̄ (5.49b)

The governing equation and supporting gradient ∂R/∂y have already been defined

in equations (5.43) and (5.45) respectively. Next, the supporting gradient ∂Φ/∂y is

defined in equation (5.50),

∂Φ

∂y
=
∂Ba

∂y
NV̂?

0 + Ba
∂N

∂y
V̂?

0 +
∂Bε

∂y
(5.50)

and the other supporting gradient ∂Φ/∂V̂?
0 is defined in equation (5.51).

∂Φ

∂V̂?
0

= BaN (5.51)

Applying the identity in equation (2.52) leads to the adjoint equation in (5.52).

Eaaψ
? = NTBT

a (5.52)

Solving the solution of (5.52) directly will result in errors because the matrix Eaa

has a null space. This means that ψ? will have a deterministic component (particular

solution) and an indeterminant component (homogeneous solution). Equation (5.53)

is used to suppress the indeterminant component.

ψ = Nψ? (5.53)
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The ψ solution and the other supporting gradients can be substituted into equation

(2.49c) to the get sensitivity with equation (5.54).

dΦ

dy
=
∂Ba

∂y
NV̂?

0 + Ba
∂N

∂y
V̂?

0 +
∂Bε

∂y
− ψT

(
∂Eaa

∂y
V?

0 +
∂N

∂y

T

Eaε + NT ∂Eaε

∂y

)
(5.54)

In general, variations in ε̄ would have to be incorporated into the sensitivity anal-

ysis. However, in this application dε/dy sensitivity calculation is an intermediate

step where the GEBT state variables are held constant. Under these circumstances,

variations in ε̄ can be ignored giving the final sensitivity in equation (5.55).

dε

dy
=

(
∂Ba

∂y
NV̂?

0 + Ba
∂N

∂y
V̂?

0 +
∂Bε

∂y
− ψT

(
∂Eaa

∂y
V?

0 +
∂N

∂y

T

Eaε + NT ∂Eaε

∂y

))
ε̄

(5.55)

Finally, this strain sensitivity can be used to find the sensitivity of a failure metric

σ̂ using a Frechet derivative for dσ̂/dε and shown in (5.56).

dσ̂

dy
=
dε

dy

dσ̂

dε
(5.56)

Coupled Adjoint Sensitivity Analysis

The objective of adjoint based sensitivity analysis is to reduce the dependency of

computational load on design variables. The work presented here gives two sets of

adjoint equations; the first is for the beam; the second for the cross section analysis.

This presents two possible algorithms.

The first will shift design variable dependency out of the beam model. The benefit

of the first algorithm allows the model to perform cross section analysis at many

locations along the blade without having a large impact on the design sensitivity.

However, this algorithm is still sensitive to the number of design variables in a given

cross section.

The second algorithm retains the GEBT adjoint equations and further shifts the

design variable dependency out of the beam cross-section analysis. This eliminates

the design variable sensitivity both along the blade and within the cross-section. This

algorithm enables rich cross section descriptions at many locations along the blade.
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Figure 5.15 shows the flow of information when performing GEBT adjoint based

sensitivity analysis. Finite difference (as indicated by the dashed and dotted lines) is

still used extensively throughout the framework. In this algorithm the VABS analysis

will still calculate the expensive warping solution for every design variable.

Mesh Generation

VABS Warping Solver

GEBT (nonsolving)

Failure Model

VABS Strain Recovery

dσ̂
dy

dE
dy

dC
dy

dW
dy

du
dy

dV
dy

∂ε
∂y

GEBT Adoint Sensitivity Analysis

∂σ̂
∂y

∂R
∂y

δy

δx
∂u
∂x

Analytic Result

δy Finite Difference

δx Finite Difference

∂ε̄
∂x

∂ε
∂x

∂σ̂
∂x

Figure 5.15: The algorithm for GEBT adjoint based sensitivity

The key benefit is the nonlinear implicit equations of GEBT do not have to be

solved for every design variable. In theory, eliminating nested iteration loops can

have a strong benefit to performance. However, this iteration converges rapidly from

the small perturbations of finite difference, so this benefit is limited.

The second algorithm (Figure 5.16) tries to overcome the computational expense in

the VABS analysis. Here the VABS adjoint equations are included into the framework.

This eliminates the need to solve multiple solutions for the warping function.

The governing equations of VABS analysis provide simple analytic expressions

for gradients with respect to the warping. Finite difference algorithms are still used

extensively throughout the framework. Simple finite difference algorithms can be used

to calculate gradients based on design variables (δy) and beam state variables (x)
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Figure 5.16: The algorithm for GEBT and VABS adjoint based sensitivity

directly. Sensitivities dependent on ∂C/∂y and ∂ε/∂y are evaluated with directional

finite difference as shown in equation (5.57).

∂f (α)

∂y
≈ lim

h→0

f
(
α + h∂α

∂y

)
− f (α)

h
(5.57)

5.2.2 Results and Discussion

The finite difference gradient algorithm and the algorithms given in figure 5.15 and

5.16 were implemented in a C++ program. Gradient calculations were performed on

multiple problems with varying number of design variables. The computational load

of the various operations is discussed in section 5.2.2. These algorithms were used in

simple optimization problems to evaluate differences in performance, this is discussed

in section 5.2.2.

Computational Load of Gradient Evaluations

Figure 5.17 shows the gradient evaluation time for the different algorithms. All the

algorithms seem to have a strong dependence on the number of design variables. The
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results of a linear regression are given in table 5.3. The results show that the GEBT

adjoint algorithm has the largest sensitivity while the FULL adjoint algorithm has

the smallest sensitivity.

Figure 5.17: Computation time of gradient algorithms

Table 5.3: Curve fit results

Algorithm Slope [s] Intercept [s]

Finite Difference 76.8 15.7
GEBT Adjoint 69.7 163.9
Full Adjoint 77.5 174.3

The results in table 5.3 show that all algorithms have significant dependence on the

number of design variables. All algorithms rely on finite difference gradients applied

to the mesh generation, linking the VABS elements to the new mesh, calculating all

the E matrices and the N matrix. Table 5.4 shows the time and percentage of time

consumed by these steps for the largest gradient calculation. It is clear that most of

the numerical work is consumed calculating the N matrix. This calculation involves

a matrix product of a 4 × n and n × 4 matrices and a triple matrix product of a

n × 4, 4 × 4 and 4 × n matrices where n is the number of state variables in the

VABS calculation. These multiplications are performed by a matrix library that is

much less efficient than other libraries like BLAS [247]. Calculating the E matrices
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involves a significant amount of computational time. These calculations use the same

inefficient library and create unnecessary copies of intermediate results. In future

implementations the computational cost of calculating the E and N matrices will be

reduced by using optimized code.

Table 5.4: Computation time of selected calculations

Calculation Finite Difference [s] GEBT Adjoint [s] Full Adjoint [s]

Mesh Calculation 24 ( 0.5%) 24 ( 0.5%) 24 ( 0.6%)
Mesh Linkage 7 ( 0.1%) 7 ( 0.1%) 8 ( 0.2%)
Calculating E 824 (16.7%) 823 (16.0%) 793 (18.4%)
Calculating N 1796 (36.3%) 1826 (35.6%) 1917 (44.4%)
Solving (2.19a) 2233 (45.1%) 2236 (43.6%)

Another factor contributing to a similar performance is the reduced time in a

GEBT calculation during finite difference gradient calculations. Figure 5.18 shows

the average computation time for the GEBT module in both a function evaluation

and the gradient calculations. The results show a large difference between function

evaluation time and the gradient evaluation time. The GEBT time decreases with

an increasing number of design variables. This is based on the initial residual of

the GEBT equations. For the function evaluation, the initial residual is large and

requires many iterations to converge. In a finite difference perturbation it is small and

converges much faster. Increasing the number of design variables introduced variables

that had diminishing affect on the initial residual, causing further increases in speed.

Overall, the finite difference algorithm performed better than expected because of

faster convergence.

The timing results can still demonstrate the potential benefits of adjoint methods.

Figure 5.19 shows the computation time in the GEBT module for all the algorithms.

The finite difference algorithm requires multiple solutions to a linearized equations,

while the adjoint algorithms only need to solve a similar system of equations twice.

Figure 5.20 shows the computation time in the VABS module for each of the al-

gorithms. Since the finite difference algorithm is used in the GEBT adjoint algorithm

there is no difference in the computation time. Comparing these algorithms to the

FULL adjoint algorithm demonstrates the benefit of cutting out the VABS matrix

solution. All the algorithms exhibit sensitivity to the number of design variables be-
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Figure 5.18: Computation time of GEBT calculations

cause the timing results include the calculations of the E and N matrices as discussed

in section 5.2.2.

The adjoint equations improve the speed by cutting out some of the iterative

methods and the matrix solutions. However these methods require additional com-

putations. The timing results from the two largest adjoint methods are presented in

table 5.5.

Table 5.5: Computation time of additional adjoint calculations

Calculation GEBT Adjoint Full Adjoint [s]

GEBT Adjoint Source Term (∂J/∂x) 179s 181s
Solving the GEBT Adjoint Equation 84.4ms 85.4ms
Calculating the final GEBT Sensitivity 2.24ms 2.29ms
Solving the VABS Adjoint Equation 2.43s
Performing the Frechet Gradients 1.98s

Table 5.4 shows that the additional costs of the GEBT adjoint source term is about

6 times greater than the cost savings of eliminating the multiple matrix solutions.

The cost of the finite difference algorithm in calculating the adjoint source term is far

more expensive because the number of GEBT state variables is much greater than

the number of design variables. This additional cost can be reduced by using analytic

gradients, which will discussed further below.
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Figure 5.19: Computation time within the GEBT module

There is no additional cost calculating the source term for the VABS adjoint

equation because they are intermediate results in the function evaluation. Overall

the additional costs of the VABS adjoint algorithm are insignificant compared to

the savings from avoiding the VABS solution. This net benefit contributes to the

improved timing of the full adjoint algorithm.

Improving the calculation time of the ∂J/∂x source term will improve both adjoint

algorithms. Finite difference algorithms were used for these calculations, however

these calculations admit an analytic solution. First the source term for the deflection

objective is trivial, it is merely a vector filled with zeros except for a 1 in the deflection

coordinate of interest. The source term for the failure metric is given in equation

(5.58). The last two matrices ([∂ε/∂ε] and [∂ε/∂x]) are intermediate results from the

function evaluation. The first matrix can be derived by linearizing the failure model.

∂σ

∂x
=

[
∂σ

∂ε

] [
∂ε

∂ε

] [
∂ε

∂x

]
(5.58)

Optimization Results

The sensitivity algorithms were applied to a simple structural optimization problem

based on the MEXICO experiments [217]. The original rotor was made from machined

aluminum and had a peak power coefficient at 15m/s. Commercial wind turbines are

made from glass reinforced plastic and operate at peak power coefficients at wind
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Figure 5.20: Computation time within the VABS module

speeds of approximately 7m/s. The optimization algorithm was used to solve the

optimal commercial equivalent.

The objective for the optimization is to minimize the weight of the blade. This

solution is subjected to two constraints. The first limits the tip deflections to 3.5cm

and the second applies the Tsai-Hill [248] failure model to avoid material failure. The

assumed lay-up is uniaxial glass fiber reinforced plastic. The optimization neglected

all the IEC 61400 [249] load cases and only considered steady operation in a 7m/s

wind. The measured forces of the MEXICO experiment were scaled by a factor

of 72/152. The internal structure is based on an ‘I-Beam’ cross section as shown

in Figure 5.21. The optimization problem was solved with a Sequential Quadratic

Programming (SQP) algorithm by Lawrence et al [202].

Figure 5.21: ‘I-Beam’ cross-section

The design variables specified the cross section geometry at specific locations

along the blade. These design parameters were interpolated along the blade using

cubic splines. Design variables were added by increasing the number of locations

along the blade and the number of variables in the cross section.
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The cross-section analysis was applied at multiple locations along the blade. The

results of this analysis were then interpolated to intermediate locations. Applying

VABS analysis at multiple locations gives better results at the expense of increased

computational load. To explore this trade-off, cases with two, four and eight eval-

uation points were explored. Cases where the number of design variables exceeded

the number of cross-sections were ignored because every local minimum would have

multiple solutions.

The average optimal weight for a common number of design variables is given in

figure 5.22. In the ‘GEBT Adjoint’ algorithm, only the GEBT adjoint equations were

incorporated into the sensitivity analysis. In the ‘Full Adjoint’ algorithm both the

GEBT and VABS adjoint equations were incorporated into the sensitivity analysis.

These algorithms were compared to the ‘Finite Difference’ algorithm, where central

differencing was applied to the function evaluation as discussed in section 5.2.1. Figure

5.22 shows that more design variables will improve the solution. The results show

that all sensitivity algorithms give similar results. Table 5.6 shows that any difference

in the adjoint algorithms is either lower or negligible.

Figure 5.22: Average weight vs. number of design variables

Most design variables converged on the specified boundary (side constraint) that

gave the minimum weight. The only exception was the spar-cap thickness. Figure

5.23 shows the spar cap thickness solution for selected problems. The number of

cross sections indicate the number of VABS calculations along the span, the number

of variables indicate the number of span-wise locations where design variables were
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Table 5.6: Average weight difference compared to finite difference

Number of Design Variables GEBT Adjoint Full Adjoint

2 −1.53× 10−8 −6.91× 10−9

4 1.50× 10−8 3.19× 10−6

8 −4.47× 10−4 −4.94× 10−4

16 2.14× 10−10 1.24× 10−9

32 5.34× 10−11 1.22× 10−10

specified. The solutions with more than two design variables show an increasing

thickness until r/R ≈ 0.2 then decreasing to the minimum thickness. At the root,

the chord length is reducing. To maintain adequate stiffness the spar cap thickness

must increase. The effect of increasing design variables is evident in the qualitative

differences between solutions.

Figure 5.23: Optimal spar-cap thickness

Figure 5.24 reports the average CPU time vs. the number of design variables. The

trend lines indicate that for a large number of design variables the full adjoint algo-

rithm is the fastest. Surprisingly, the trend shows that the GEBT adjoint algorithm

will be faster than finite difference algorithms with more than 35 design variables.
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Figure 5.24: Optimization time vs. number of design variables

5.3 Composite Lay-up Optimization

The work presented in this section is adapted from a 2013 AIAA Annual Sciences

Meeting conference publication:

Michael K. McWilliam and Curran Crawford. Composite lay-up optimization for

horizontal axis wind turbine blades. In AIAA 51st Aerospace Sciences Meeting, 2013

Design optimization is an attractive tool to help improve structural design [6].

Within literature there exist numerous design optimization studies, however, little

attention has been given to structural aspects [15]. Some of the simplest studies

looked at turbine configuration parameters like rotor diameter and hub height; these

studies avoided physical models by using statistical curve fits of existing turbines

[67, 68]. Several studies neglected structural considerations completely and focused

on aerodynamics [71, 76, 77, 78, 19]. Other studies neglected structural aspects

in the modeling but estimated the blade cost based on the root bending moments

and a simple cross section strength model [72, 66]. Then other studies incorporated

structural dynamics in the physical model but still base structural properties on

existing turbines [57, 58, 59, 63]. Only a minority of optimization studies included

structural design variables into the set of decision variables for optimization [26,

185, 65, 64, 250, 251]. Finally, there are examples of design optimization based on

structural mechanics alone; these studies are possible when the surface geometry and

a design loads are prescribed [252, 253, 80].
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In design optimization there is a trade-off between model fidelity and computa-

tional efficiency. Several MDO studies would use a modal representation of the blade

to minimize the degrees of freedom [57, 58, 59, 63]. Another approach is to neglect

time domain analysis and use linear beam models with iso-tropic cross-section analy-

sis [26, 185, 65]. Applying MDO techniques to divide the optimization makes higher

fidelity methods feasible [64, 251]. Bottasso was able to use unsteady nonlinear beam

theory along with three-dimensional shell models using multi-level optimization tech-

niques [250, 251].

The work of Buckney et al [252] and Pirrera et al [253] were able to show that

improvements could be made by rotating the neutral axis to be better aligned with

the dominate load. The topology based optimization of Buckney et al [252] showed

there is a case for trailing edge reinforcement. The higher fidelity shell model of

Pirrera et al [253] demonstrated that buckling constraints push the spar towards the

trailing edge on inboard sections.

Within wind turbine literature there are many design concepts that rely on unique

composite lay-ups. Design studies of large multi-megawatt wind turbines by both

Joosse et al [16] and Griffin and Ashwill [17] concluded that Carbon Fiber Reinforced

Plastic (CFRP) can potentially reduce the cost of wind turbines. These results have

prompted Paquette et al [254] to perform physical and field testing on CFRP blades.

Coupling has been shown to reduce fatigue damage with little impact on the AEP

[255]. This coupling is introduced into the blade by laying up fibers at an angle away

from the blade axis [32, 256]. A notable example is given by Bottasso et al [250]

where a MDO framework revealed that bend-twist coupling reduces the actuation on

the pitch motors.

The the structural design parameterization scheme affects what type of designs

can be resolved in the optimization. Within the wind energy literature there lacks

parameterization schemes suitable for lay-up optimization. There are two common

schemes, the most common is using Bezier splines [26] or polynomial splines [185,

251, 250] to smoothly distribute geometric parameters (eg spar-cap thickness) along

the blade with minimal number of design variables. There are several limitation with

this approach; this scheme does not allow an intermediate transition location to be

a decision variable, instead it is set as a fixed parameter and multiple optimization

solutions are required [251]. There is difficulty in controlling the taper ratio a-priori

(ie the distance between ply-drops, see Samborsky et al [18] for more details) instead

multiple solutions are required to find feasible designs [251]. Finally this method is not
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well suited when multiple layers are under consideration because these interpolated

splines do not commonly admit regions of constant span-wise thickness.

A second less common approach is specifying design parameters at fixed locations

along the blade [64]. With careful implementation this scheme can specify layer by

layer properties across multiple span-wise locations. However this comes at a cost;

for the same design resolution this scheme requires many more design variables than

the interpolation curves. When gradient based optimization is used this approach

fails to give accurate gradients with respect to variations in the span-wise locations

of various transitions.

The problem of lay-up optimization is not unique to wind turbines, this is an

active research area in itself [257, 258, 259, 260, 261, 262]. There are two dominate

approaches to parameterizing lay-up schedules [260]. The first (referred to as the

‘layer-by-layer’ approach) is directly specifying the thickness and fiber angle at each

layer directly. The second relies on classical lamination theory where laminate prop-

erties can be expressed as “lamination parameters” [257] which are integrals integrals

of layer geometry and angles alone. The lamination parameter approach gives a con-

vex space with at most 12 design variables for the lay-up optimization. Yet solutions

based on this scheme require an inverse calculation to determine the lay-up schedule

that gives the equivalent parameters [260]. Then by lumping the laminate properties

it is difficult to assess the strength in the optimization [260].

The layer-by-layer approach has some limitations; first there are many more de-

sign parameters; second this approach is known to yield multiple local optima [260].

The large number of design variables can be compensated by using gradient based

optimization [260, 259] or using response surfaces [260, 258]. When the problem is

computationally inexpensive then heuristic techniques (eg genetic algorithms) can be

applied to avoid local optima [261, 262].

This section explores a new lay-up parameterization scheme specifically developed

for wind turbine lay-up design optimization. This new scheme is inspired by wind

turbine manufacturing techniques and bears some similarity to the ‘layer-by-layer’

approach. The two dimensional cross section mesh is always aligned with the laminate

plies. The position along the span of any transition can easily be made a decision

variable. The number of design variables is reduced by lumping layer properties

together. Finally an analytic description of the geometry has been developed to give

continuous gradients.
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The numerical model used to simulate and optimize wind turbines is described

in section 5.3.1. Section 5.3.1 describes the parameterization scheme where the issue

of local optima is discussed. Section 5.3.2 presents optimization results with the

parameterization scheme..

5.3.1 Methodology

The structural model used in this section is based on the nonlinear beam model dis-

cussed in section 2.1.2 coupled with the cross-section analysis discussed in section

2.2.1 discussed in chapter 2. The optimization algorithm used in this study is the

CFSQP algorithm provided by Lawrence et al [202]. It is a gradient based SQP

algorithm. In the sensitivity analysis adjoint methods are used to limit the compu-

tational load due to numerous design variables. Adjoint algorithms are sensitive to

the number of objectives so the KS function [212] in equation (5.5) is used to lump

stress and strain constraints. Additional details of the optimization algorithms are

discussed in section 2.4 in chapter 2.

Lay-Up Parameterization

There are two aspects to the lay-up parameterization. The geometry at various cross-

sections needs to be meshed for VABS analysis. A geometry and meshing algorithm

for VABS analysis has been developed where the mesh is aligned with the layers

to avoid the smearing of material properties seen in other work [39]. The second

component is parameterizing the geometry and material throughout the blade.

The cross section geometry is based on a curvilinear coordinate system as shown

in figure 5.25. The offset distance (ζ) from the outer mold line is the first ordinate

to this system. Curves of constant offset are aligned with the composite plies. The

position on the curve is given by the ratio (η) of distance from the trailing edge to

the total length of the path.

ζ

η

Figure 5.25: Cross-section coordinate system
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This coordinate system becomes degenerate when ζ becomes too large. At this

point two offset curves have collided. In reality this is impossible because this would

require two regions of material to be coincident. Solving the maximum ζ is calculated

a-priori by calculating successive offsets until a collision occurs. This introduces a

geometric constraint where all offsets are constrained to be less than ζmax.

This coordinate system is used to define the mesh of the skin and spar caps. Shear

webs are created by connecting opposite points with two parallel lines. The mesh in

this region is composed of intermediate parallel lines and connecting regularly spaced

points along those lines.

Calculating the offset curves is not trivial and a subject of much research [263, 264,

265, 266]. The approach taken here uses the points that define the outer mold line

to define a polygon. The offset curves are based on polygons that approximated the

offset polygon from the outer polygon. These polygons are approximate because the

true offsets have vertex collisions that give discontinuous gradients. Instead smooth

analytic relationships are used to define how the edge lengths vary with offset. Finally

the offset polygon is transformed into a smooth curve by interpolating points with

splines.

The cross section design is based on a predefined topology based on boxes. These

boxes can be parameterized based on height and position within the ζ and η coordi-

nate system. Once the box configuration is set, the mesh is generated with a regular

grid of points within the ζ and η coordinate system.

Figure 5.26 shows an example of the airfoil cross section mesh near the root of

the blade. Figure 5.26a gives the full view, with a close-up near the spar-cap and

trailing edge in figures 5.26b and 5.26c respectively. In this example the spar-cap

used two separate layers with a different thickness, but the same number of cells in

the mesh to demonstrate how the algorithm respects material boundaries in figure

5.26b. Overall the algorithm gave high quality meshes, however near the trailing edge

the geometry changes dramatically over a small η leading to the distortions in figure

5.26c. This distortion would have a small effect on the edge-wise bending stiffness,

however typically the trailing edge is not used for structural reinforcements, thus this

distortion is acceptable.

All that remains is the defining the thickness, position and material properties of

the box. This is where the lay-up parameterization scheme comes into play.

The parameterization scheme is inspired by the natural geometry of fiber rein-

forced parts. In wind turbines long slender sheets are layered to create spar-caps or
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(a) Full view

(b) Spar-cap close-up (c) Trailing edge close-up

Figure 5.26: Airfoil cross section mesh

shear-webs. Variable thickness along the blade is achieved by tapering the material

through ply-drops at either end of the sheets. Viewed from the side the lay-up would

look like a set of trapezoids stacked upon each other as shown schematically in figure

5.27a.

Each trapezoid can be parameterized by the span-wise locations of the inboard

and outboard tapered (ply-drop) regions, and the thickness as shown in figure 5.27b.

Any limits on the taper ratio can be enforced by ensuring the corners on either side

of a taper are separated by a distance proportional to the thickness.

Since the composite sheets can be shaped before being placed the spar-caps can

have a smooth variation in width and chord wise position. This design freedom is

controlled by splines (gi0(r) and gi1(r)) as shown in figure 5.27c.

A second set of parameters are needed to describe the material properties as shown

in figure 5.28. Span-wise variation is controlled by the start and end of the angled

transition line. Unlike the layer by layer scheme, this scheme is not parameterizing

individual layers, instead it is grouping layers together to have a common angle def-

inition. The fiber angle can be specified as a constant through the thickness or as a
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Locations of Fixed Computation Points

Locations of Floating Computational Points

(a) Side view schematic

li0

li1

li2

li3

ti

(b) Trapezoid parameterization

gi1(r)

gi0(r)

(c) Width parameterization

Figure 5.27: Structural geometry parameterization

function as thickness as shown in figure 5.28. To prevent fiber cracking layers of ±45◦

are inserted into intermediate locations. Initially it is not necessary that the ±45◦

layers in the numerical model correspond to layers in the real lay-up. Instead they

are present to to resolve their influence. Since this lay-up is merely representative

the relative thickness of the layers does not change. Then as converged solutions are

obtained the layers can be rearranged to correspond to realistic lay-ups.

0◦ 10◦

z

Fiber Angle

li4

li5

Material A

Material B

±45◦ Crack Prevention

Figure 5.28: Constitutive parameterization
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The typical approach of calculating the stiffness of a blade involves cross section

analysis at each of the fixed locations shown at the top of figure 5.27a. This approach

fails to accurately calculate how changes in span-wise locations will affect the objec-

tives. A set of floating calculations points (bottom of figure 5.27a) are introduced to

capture this affect. These calculation points move with the transition points. The

results of the cross-section analysis is interpolated to intermediate locations.

The higher fidelity of this scheme is meant to refine existing designs. A limitation

of this scheme is the number of trapezoids and their constitution needs to specified

a-priori. This topology can be selected based older designs, optimization results us-

ing simpler parameterization schemes and/or engineering judgment. In this research

optimization results based on interpolating splines is used to define the topology.

As with other layer-by-layer type parameterization schemes this parameterization

is expected to have local optima. The local optima are typically 90◦ apart in fiber

angle. Existing designs and other studies [32, 256] are evidence that the global optima

is close to blade aligned fibers. Thus the problem of local optima is not expected when

the initial fiber angle is 0◦. Another local optimal can occur if too many trapezoids

are used. This local optima is avoided by grouping the layer properties within a

trapezoid section thus minimizing the number of trapezoids.

5.3.2 Optimization Studies and Results

Each investigation will involve optimization. To explore the challenges of larger blades

the Sandia National Laboratories have developed a paper design of a 100m blade

that meets all the International Electrotechnical Commission (IEC) 61-400 design

constraints [267]. The authors concluded that the blade is too heavy to be econom-

ically competitive. This design represents an excellent design case to explore new

concepts. Both investigations explored the design of the spar cap. The spar cap was

manufactured with a base layer of uni-axial glass fibers.

The original design used a box spar in the outer portion of the blade. At the

inboard locations an extra shear web was added at the trailing edge. The design

specified a mix of uni-axial and ±45◦ layers for the main structural components.

For the initial exploration of this parameterization scheme the lay-up design was

simplified. In this work a box spar was used throughout the whole cross section. For

the skin and shear webs only uni-axial fibers were used.
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In all studies the objective was to minimize the volume of the blade. The analysis

looked at a single operating point of steady wind at 8m/s. A Lagrangian Vortex

Dynamics code was used to solve the aerodynamic forces. These forces were solved

once for the original configuration and held constant in the optimization. A 1.4m tip

deflection constraint was applied to all the problems. The root bending moment stress

was constrained with a safety factor of 10. The spar cap geometry was constrained

to fit within the blade.

Spar Cap Thickness

The first optimization study compares the performance of the new parameterization

scheme to the conventional spline based parameterization. For all cases the material

had not fiber bias and only glass-epoxy was used. The only thing that was varied was

the thickness of the spar caps.

Increasing the number of design variables will lead to better designs. To explore

this effect a low and high resolution design was developed. The low resolution spline

design used only 4 points while the high resolution spline had 8 points. The low

resolution spar cap design had two slabs with 4 design variables as shown in figure

5.29a. While the high resolution design had three slabs with 9 design variables as

shown in figure 5.29b.

h0
h1

x0
x1

(a) Two slab parameterization

h0
h1
h2 x0

x1 x2 x3 x4 x5

(b) Three slab parameterization

Figure 5.29: Parameterization for slab based thickness optimization

Table 5.7 shows the optimal volume of each optimization result. The results show

that the slabs managed to find better design giving volumes less than the best spline

based result. Surprisingly the two slab optimization result is better than the three

slab result. The three slab parameterization becomes the two slab when the third
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thickness is minimized. This indicates additional slabs introduce local minimum in

the design space. This is something that needs to be explored in future work.

Table 5.7: Spar-cap thickness optimization results

Parameterization Volume [m3]

4 Variable Spline 175.4
8 Variable Spline 175.1
Two Slab (4 Variables) 125.4
Three Slab (9 Variables) 144.3

Figure 5.30 shows the thickness solution for the optimization. The spline based

optimization tends to add extra material mid-span and removes material at the root.

However the slab based parameterization is showing that keeping material at the root

allows for less material at the outer portions giving a smaller blade overall. The three

slab optimization was initialized with a thick third slab to mimic the spline based

optimization results. Since that slab started out thick it worked on the span wise

position instead of adjusting the thickness. Thus, the local minimum are introduced

because the thickness can be adjusted in two ways.
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Figure 5.30: Slab thickness solution

Fiber Angle Optimization

Classic parameterization schemes cannot easily specify different material properties at

different locations within the laminate. Since this parameterization scheme is based

on stacked slabs of material it naturally handles this. To demonstrate this property

optimization was applied to determine the optimal fiber angle and material thickness

for a blade with bend twist coupling. The optimization was based on the two slab
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parameterization. Two additional design variables were added for the fiber angle in

the top and bottom slabs as shown in figure 5.31. To maintain bend-twist coupling

the average coupling was constrained to 0.2 as shown in equation (5.59).

h0
h1

x0
x1 θ1

θ0

Figure 5.31: Fiber angle parameterization

γ =
1

L

∫
C45√
C44C55

dx = 0.2 (5.59)

There are two challenges in the bend-twist coupled design. The first is maintaining

the coupling coefficient constraint in equation (5.59). The second is maintaining the

tip deflection constraint. These two goals are mutually exclusive. Table 5.8 shows

the optimization achieved these goals by having one slab with a large bias angle to

give the coupling, while the other slab has a low bias angle to maintain the stiffness.

To meet both constraints figure 5.32 shows that extra material was required.

Table 5.8: Fiber angle optimization results

Volume [m3] 148.9
Bottom Slab Angle [degree] 12.3
Top Slab Angle [degree] 2.8
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Figure 5.32: Fiber angle optimal blade thickness
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Glass-Carbon Blade Optimization

The parameterization scheme allows material properties to be varied in a span-wise

direction. To demonstrate this capability we investigated the optimum design of a

glass carbon fiber hybrid blade. The spar cap was made with carbon fiber at the outer

portion of the blade. Two additional design variables were introduced to control the

span-wise location of the glass to carbon transition in both the top and bottom blade.

This parameterization is shown in figure 5.33. Carbon fiber is introduced into a blade

to increase the stiffness. To explore this case optimization was performed over a range

of small tip deflection constraints. To account for the relative difference in cost, the

volume of carbon was penalized four times more than the volume of glass.

h0
h1

x0
x1

b0 b2

Figure 5.33: Glass-carbon blade parameterization

Table 5.9 shows that carbon can make the blade smaller and stiffer. With the 1m

tip deflection the overall volume is less than all other optimization results. Figure

5.34a shows that this spar cap is smaller than the two slab solution. More glass could

be added to this design thus the optimizer demonstrates there is value to adding

carbon. Figure 5.34a shows that a mix of carbon and glass is optimal at mid span

locations. The results based on the 0.55m tip deflection (figure 5.34) are an extreme

example. The tip deflection constraint is so small the blade is made from mostly

carbon. The overall volume is much larger than any of the other blade designs. This

shows the limitations for making stiffer blades economically from carbon.

Table 5.9: Glass-carbon blade optimization results

Deflection Constraint 1m 0.55m

Total Volume [m3] 91.2 183.6
Carbon Volume [m3] 58.7 132.1
Glass Volume [m3] 32.5 51.6
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Figure 5.34: Glass-carbon spar cap thickness

5.4 MDO with Conventional LVD

The work presented in this section is adapted from a 2013 AIAA Annual Sciences

Meeting joint publication between this author and Stephen Lawton:

Michael K. McWilliam, Stephen Lawton, and Curran Crawford. Towards a frame-

work for aero-elastic multidisciplinary design optimization of horizontal axis wind

turbines. In AIAA Annual Sciences Meeting, 2013

The results and discussion on the aerodynamic gradient noise and aerodynamic

optimization is the work of Lawton. This thesis authors contribution to the aerody-

namic optimization work is in the MDO code that was used to connect the optimiza-

tion algorithm to the analysis code. The author of this thesis developed the coupled

aero-elastic analysis and the coupling code that enabled aero-elastic optimization.

The structural models were developed by the author and aerodynamic models were

developed by Cline [268] and Lawton [87]. The author of this thesis performed all

the aero-elastic optimization and aero-elastic gradient studies that are presented in

the later half of the discussion.
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MDO can imply the combination of many different disciplines such as aerody-

namics, structural mechanics, aero-acoustics, electro-magnetics, controls, economics

and many others. However, the aerodynamic and structural considerations bear the

greatest impact on turbine performance and are also the most complicated to an-

alyze. This section presents an initial step to developing an MDO framework that

incorporates only aerodynamic and structural analysis capabilities.

For the aerodynamic analysis the conventional LVD simulation code developed by

Cline [268] and Lawton [87] was used, for more details see section 2.3.3 in chapter

2. The structural calculations are performed with a GEBT code and VABS analysis

developed by the author. The theory behind GEBT and VABS is discussed in chapter

2, sections 2.1.2 and 2.2.1 respectively.

The success of any MDO framework is highly dependent on the optimization

algorithms applied. It is expected that the design space does not have multiple local

minima, accordingly this problem is well suited for the more computationally efficient

gradient based methods. The CFSQP optimization algorithm [202] was used for all

the optimization in this section.

Gradient based optimization methods require coupled sensitivity information about

the objective and constraints. For each of the two analysis codes several gradient al-

gorithms were implemented. Lawton [87, 82] implemented the finite differencing and

complex step algorithms into the aerodynamic analysis code, while the author imple-

mented both a finite differencing and adjoint based sensitivity analysis in the struc-

tural models. Due to the circular dependency of the two disciplines the fully-coupled

system derivatives can only be computed using finite difference techniques.

This work presents single discipline aerodynamic optimization using SDF frame-

work and aero-structural optimization using the MDF framework. For more details

on these optimization topics refer to section 2.4 of chapter 2. Chapter 4 gives two

fixed point algorithms for converging the couple aero-structural model. At the time

of this study the poor convergence properties of the co-evolving algorithm were not

known. The aero-elastic analysis presented here is based on that algorithm due to

the potential speed of the analysis.

5.4.1 Results and Discussion

The aerodynamic model relies on an explicit pseudo time-marching algorithm that

has been found to have poor convergence behavior. This is likely owing to the explicit
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convection scheme which is not based on a strict residual minimization of physical

governing equations. The result is that the algorithm cannot be arbitrarily converged.

This issue has persisted despite the use of 2nd order accurate advection schemes, vis-

cous core models to avoid singularities, and various under-relaxation schemes. Numer-

ical noise is therefore inherently present in the final aerodynamic solution. Obtaining

converged optimization results with the aerodynamic model proved to be difficult

primarily because of noise in the gradients. Despite the noisy gradients, pure aero-

dynamic optimization was achieved for a small rotor with a relaxed wake. Coupling

the aerodynamic model with the structural model increased the numerical noise. To

overcome this problem, aero-elastic optimization was performed with a fixed wake.

Each of these topics are discussed in-turn.

Aerodynamic Gradient Noise

Finite differencing was used to calculate gradients of power in the aerodynamic model

with respect to chord and twist. The gradient was found to be quite sensitive to the

chosen step size. When the step size is too large, truncation error will dominate;

when it is too small, round-off error will dominate. The optimal range of step sizes

was found by taking the same gradient with different step sizes. Figure 5.35 shows

the gradient results for a range of step sizes. The region between 10−7 and 10−12

where the gradient values are constant is where both truncation and round-off error

is minimized. Within this region there was still some variation in gradient as the step

size was changed.

The explicit algorithm used to solve the aerodynamic model is known to exhibit

instabilities [13]. Initially small perturbations owing to numerical errors occur, af-

ter many iterations they begin to dominate the evolution of the flow and the results

become unreliable. This prevents the aerodynamic model from being converged to

an arbitrary level. It is difficult to determine the optimal number of iterations to

converge the model in a general sense as the convergence behavior with number of

iterations is not regular or monotonic. Figure 5.36 shows the large variation in re-

laxed wake gradient results from iteration to iteration. Furthermore, the simulation

exhibited chaotic behavior where a small change in the design would result in sig-

nificantly different levels of error at the same iteration. Since this error does not

vary smoothly with the design parameters it violates the assumptions of the finite

difference approximation which require at least C1 continuity.
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Figure 5.35: Example of gradients with respect to 3 different design variables
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Several attempts were made at trying to improve the gradient calculation. The

chaotic oscillations can be attenuated by averaging the results of several iterations.

To improve the gradient calculation this was applied separately to the objective values

and the finite difference gradient values. However none of these approaches were able

to reliably produce fully converged gradients.

The conventional first-order advection scheme was found to initially converge and

then diverge after a sufficient number of iterations. To overcome this problem a

second-order scheme was implemented that avoided the divergent behavior of the

first order scheme. Unfortunately the second order scheme could not be converged to

arbitrary levels. Instead these second order simulations would settle into a chaotic

oscillations that would still have the same detrimental effects on the gradients.

Complex step aerodynamic derivatives were computed using the template func-

tionality in the LibAero code. These gradients were somewhat better in terms of

convergence to a fixed value, however the complex step derivatives were different

than the mean finite difference gradients. In most cases, the difference was more

than the standard deviation of the finite difference gradients. This suggests that the

complex step derivative is in fact computing gradients in a complex numerical space

quite different to the numerics of the real-number simulation. Note that the LibAero

complex step derivatives were verified to be exact for fixed-wake test cases, so that

these findings represent artifacts of the wake convection scheme.

Aerodynamic Optimization

Maximum coefficient of power optimization was performed with the aerodynamic

model to assess the effect of the noisy gradients. A small 2.25m blade similar to the

Mexico rotor [269] was optimized for a single operating point at a tip speed ratio of 7.

The chord and twist distributions were represented with 4 design variables each. The

optimal chord and twist distribution is shown in the table below. This blade achieved

a coefficient of power of 0.541, an improvement on the original power coefficient of

0.458.

The step size for the gradients was varied between 10−3 and 10−15. Many of the

optimization attempts failed to converge due to poor gradient information. However

the optimization with finite differencing step sizes between 10−9 and 10−6 did converge

to solutions. In all cases the optimization was able to improve the original design,

despite the issues with the gradients and convergence.
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Table 5.10: Optimal aerodynamic solution

Blade r/R Chord [m] Twist [deg.]

0.142 0.1374 4.654
0.284 0.1432 12.56
0.429 0.1485 11.36
0.571 0.1435 11.43
0.714 0.1432 11.11
0.857 0.1256 9.56

Aero-Elastic Optimization

The aero-elastic optimization is based on the all-glass 100 m blade designed by Sandia

National Laboratories [267]. The optimization maximized the ratio of the coefficient

of power to blade volume by varying the chord, twist and spar cap thickness for a single

wind speed. The blade design was constrained by a root bending stress with a safety

factor of 10 to account for extreme loads and fatigue damage. The tip deflection

was constrained to 1 m to avoid a tower strike under extreme loads. The chord

was constrained to ±10% the original chord. The deviations from the original twist

distribution was constrained to ±5◦. The spar cap thickness was constrained to be

greater than 5 mm and less than the maximum thickness that could be accommodated

by the outer mold line.

The original Sandia 100 m blade had a third shear web at the in-board portion

of the blade to limit panel buckling in edge-wise bending. The code used in this

optimization cannot resolve buckling, so this constraint was ignored. Furthermore

the design in this optimization did not include the third shear web and instead used

the traditional box spar through the full length of the blade. The lay-up in the skin

was tri-axial, ±45◦ was used in the shear-webs and uniaxial material was used in the

spar caps. The blade was made with a S-Glass-epoxy laminate.

Numerical instabilities in the relaxed wake simulations prevented the optimization

algorithm from converging. To overcome this challenge, optimization was performed

with a fixed rotor wake. With a fixed wake, the location of the filaments is held

constant throughout the whole optimization and is determined a priori according

to a simple helical wake model, with first-order corrections for wake expansion and

induction. Only the circulation along the blade and in the trailing filaments changes

in the function evaluations.
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Table 5.11 shows the optimal chord and twist distribution from the fixed wake

optimization. The optimization improved the CP to volume ratio from 1.51 · 10−3 to

3.87 · 10−3. This optimal coefficient of power is 0.37. While this is lower than the

power coefficient of the initial design, the power per unit cost has increased. At the

optimal solution no constraints are active. Figure 5.37 shows the convergence of the

optimizer towards a solution, demonstrating good progress throughout.

Table 5.11: Optimal fixed wake aero-elastic solution

Spar cap Chord Deviation from
thickness [mm] [% original] initial twist [deg.]

Root 33.8 90 -5.0
Mid-span 26.5 90 1.880
Tip 5.0 110 0.779
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Figure 5.37: Plot of objective function value against CFSQP iteration

Fixing the wake dramatically accelerated the simulations and improved the gradi-

ents. A single relaxed wake function evaluation requires at least 10 minutes of CPU

time at a reasonable resolution. The equivalent fixed wake simulation requires around
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Figure 5.38: Aero-elastic gradient deviation from the mean

a minute of CPU time. Much of the instability was removed by fixing the wake, this

indicates that most of the numerical issues arose from the relaxed wake.

Initially the aero-elastic optimization with a relaxed wake was based on the suc-

cessful aerodynamic optimization. Accordingly these simulation used the same range

of step sizes in the finite differencing algorithm. However all these optimization at-

tempts failed. To understand the cause figure 5.38 shows how the gradient varies

with step size with respect to three different design variables. Unlike in figure 5.35,

there is not a broad region where the gradient values are stable.

The coupled fully relaxed wake aero-elastic optimization was repeated with the

step size in the optimal range for that particular design variable. Under these con-

ditions the optimization was able to improve the design. The optimizer was able to

complete several iterations and improve the objective from 1.082 ·10−3 to 1.793 ·10−3.

However it was unable to meet the optimization convergence criterion. The objective

function values are shown in figure 5.39, it is clear after 10 iterations the optimization

is stalled. This is a symptom of erroneous gradients, it is likely that the optimal step
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Figure 5.39: Plot of objective function value against CFSQP iteration

size is dependent on the design itself and when optimization improved the design it

was no longer able to obtain reliable gradients.

The chord twist and spar-cap thickness distribution at the final CFSQP iteration

is shown in table 5.12. The effect of erroneous gradients it clearly seen by the small

spar-cap thickness in the root.

Table 5.12: Optimal relaxed wake aero-elastic solution

Spar cap Chord Deviation from
thickness [mm] [% original] initial twist [deg.]

Root 5.43 109 0.4273
Mid-span 26.9 110 -0.1759
Tip 46.5 109 -3.177

In summary one can obtain optimization results with a relaxed wake LVD simu-

lation, albeit with some difficulty. However when the relaxed wake simulations are

coupled to a structural model then optimization becomes impossible. The failure to

obtain converged optimization results in this case shows the structural model has an

adverse affect on the optimization. When the structural model is coupled to a fixed
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wake aerodynamic simulation then optimization results can be obtained with little

difficulty. Thus, the problem is due to an interaction between the structural model

and the relaxed wake in the aerodynamic model. The fixed point iteration algorithm

that is used to converged the coupled aero-structural simulation will generate changes

to the blade shape each time the structural model is updated. This in-turn intro-

duces a large perturbation in the wake. Distortions in the filament chain can be

self-perpetuating as they exert an influence on itself and can lead to further insta-

bility. The affect of this instability is increased noise in the gradients that adversely

affects the optimization.

These adverse interactions are confirmed in chapter 4. One solution would be to

completely solve the aerodynamics after every beam update. For the linear beam

model, the structural model converged after 4 updates. With a nonlinear beam

model, this would require many iterations from both the aerodynamic and structural

model. Without analytic gradients in the aerodynamic analysis, this would make the

optimization very expensive in both function evaluations and sensitivity analysis.

Overall this demonstrates the difficulties of aero-elastic optimization with relaxed

wake simulations. These problems are due to difficulties converging the wake of the

aerodynamic model while simultaneously updating the beam configuration. These

convergence issues will only be resolved with better algorithms. This has prompted

research into the FEM-based LVD model. See chapters 3 and 4 for more details on

this model and section 5.5 for it application in aero-elastic optimization.

5.5 MDO with FEM based LVD

The FEM-based LVD model was developed in response to the difficulties of aero-

elastic optimization with conventional LVD outlined in section 5.4. Conventional

LVD is limited in three way: it cannot be converged to arbitrary levels; it requires

a fixed point iteration to converge the full aero-elastic solution; finally, the inability

to converge conventional LVD to arbitrary levels caused erroneous gradients that

interfered with aero-elastic optimization. Chapters 3 and 4 has demonstrated how

the FEM-based LVD addressed the first two limitations respectively. This section

outlines how the FEM-based LVD formulation leads to an analytic definition to the

design sensitivities in section 5.5.1. Then section 5.5.2 demonstrates the FEM-based

LVD and the analytic gradients in both aerodynamic and aero-elastic optimization.
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5.5.1 Sensitivity Analysis

There are two components of the design sensitivity outlined in equation (5.60). The

first term is the direct sensitivity of the objective to the design variable, the second

term is the indirect sensitivity through variations of state.

dJ

dY
=
∂J

∂Y
+
∂J

∂X

dX

dY
(5.60)

Analytic design sensitivity cannot easily be defined for conventional LVD due to

the difficulty of predicting how the state will change with respect to design variables

(i.e. dX/dY ). By defining a convergence metric in equation (3.11) of chapter 3 one

can calculate the sensitivity through state as shown in equation (5.61).

dX

dY
= −

[
∂R

∂X

]−1
∂R

∂Y
(5.61)

Equation (5.60) and (5.61) are combined to give the final sensitivity in equation

5.62.

dJ

dY
=
∂J

∂Y
−
{
∂J

∂X

}T [
∂R

∂X

]−1
∂R

∂Y
(5.62)

Equation (5.62) shows that four matrices need to be obtained to calculate the

design sensitivity: {∂J/∂Y }, {∂J/∂X}, {∂R/∂Y } and finally [∂R/∂X]. The def-

inition of the last matrix is the Jacobian already given in section 3.1.3 of chapter

3. The remaining terms are specific to the objective and the design parameteriza-

tion for a particular optimization formulation. However many objectives will rely on

terms already defined in section 3.1.3 of chapter 3. For example the linearization of

aerodynamic forces will depend on the linearized influence given in equation (3.10)

in chapter 3. With the most of the complicated terms already defined in chapter 3,

many of the analytic definitions can easily be obtained and will not be given here.

The reader should note that the definition in (5.62) is identical to the forward

propagating version of design sensitivity given in equation (2.49a) of chapter 2. Simi-

larly, one can define the adjoint version using the same four matrices used in equation

5.62. The relative advantage of the two approaches depend on the number of objec-

tives vs. the number of design variables. When there are more objectives then the

forward propagating approach is more attractive. In the optimization presented in

this section the number of objectives and design variables was small and unlikely
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to give either algorithm a significant advantage. Thus, equation (5.62) was used

throughout.

5.5.2 Optimization Results

The optimization is presented in three parts. The first is a simple optimization study

where the power was maximized by varying the chord. This study is meant to validate

the FEM-based LVD model in optimization and to explore design variable parame-

terization. This section is followed by demonstrating aerodynamic optimization of

the MEXICO and NREL 5 MW rotor. Finally this chapter closes by demonstrating

the FEM-based LVD in aero-elastic optimization.

Power vs. chord optimization

An important aspect of optimal rotor design is developing a blade that produces the

optimal axial thrust and axial induction. The amount of energy extracted from a

given flow is proportional to the thrust, while too much thrust will deflect the wind

away from the turbine and limiting the amount of energy available to the rotor.

Axial Momentum Theory (AMT) suggests the optimal thrust coefficient is 8/9, with

an induction factor of 1/3 and a coefficient of power of 16/27. A simple optimization

study was conducted to determine whether optimization with the FEM-based LVD

code would give similar solutions.

The study optimized the MEXICO rotor for maximum power by varying only the

chord distribution. In all cases 8 elements were used on the blade, then 3 revolutions

of the wake was simulated with 60 influencing elements and 15 basis sections in

a Cartesian coordinate system. The wake terminated with a cylindrical far-wake

model. The optimization maximized power by varying the chord distribution. Three

optimization solutions will be presented here. The first represents the base case where

the chord at each lifting line element is taken as a design variable. This optimization

case produced an unexpected solution. Two additional test cases were explored to

understand the best strategy for avoiding this anomaly. The second test case explored

increased model fidelity, it used the same design variables as the base case but used

216 influencing elements to simulate 3 wake revolutions with basis sections defined

in a cylindrical coordinate system. Additional test cases not shown here increased

the wake length and far-wake model resolution, but these changes had a negligible

affect on the optimization solution. The third test case looked at using quadratic
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polynomials to control the chord with the same model model parameters as the base

case.

Table 5.13 shows the final CP , Karush-Kuhn-Tucker norm and the active con-

straints for each of the optimization solution. In all cases the optimization was able

to improve the solution. The Cp estimation depends on the model accuracy and

resolution, which means the CP in the high fidelity optimization is not directly com-

parable. All the optimization solutions were able to achieve very small Karush-Kuhn-

Tucker norm. The Karush-Kuhn-Tucker norm is dependent on the solution tolerance

in the simulation code which itself is limited by the machine precision (Round-off

error gives a lower limit on the final residual of solutions). The ability of FEM-based

LVD model to converge to arbitrary levels allowed the optimization to achieve high

levels of optimality.

Table 5.13: Power vs. chord optimization results

Case CP K-T Norm Notes

Original 0.473
Base 0.523 7.22 · 10−3 Maximum Tip Chord Constraint Active
High Fidelity 0.491 1.60 · 10−2

Spline 0.509 5.35 · 10−2 Chord Slope Constraint Active

Figure 5.40 shows the optimization results along the blade. All optimization cases

found the original solution had too little thrust and increased the chord to maximize

the power. The final solution show thrusts slightly greater than the optimal for

AMT and the axial induction slightly less, yet all solution showed a coefficient of

power close to the Betz limit. Overall optimization with FEM-based LVD reproduced

solutions similar to those given by AMT, however the solutions appear to violate

AMT. Unlike BEM theory, vortex methods take into account radial interactions so

some local deviations are acceptable. However it is clear there is a small overall

violation due to numerical errors, a detailed discussion is given below.

The base case and high fidelity case in figure 5.40a shows a strange solution where

the tip chord is enlarged at the tip and then reduced at the next in-board station.

This variation in the chord distribution causes the optimal solution to deviated from

AMT near the tip. The constrained polynomial solution managed to reproduce the

optimal solution without producing an un-realistic chord distribution. Constraining
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Figure 5.40: Power vs. chord optimization solution

the solution like this limits the predictive abilities of the optimization but is necessary

to compensate for limitations in the analysis codes.

Sensitivity analysis was performed to understand why the optimization enlarged

the tip chord. The sensitivity analysis was performed on the base case and only

looked at the sensitivity of varying the tip chord. Figure 5.41 shows the results, it is

clear by figure 5.41a that increasing the tip chord has a negative influence on power

at the tip, but a positive influence on the rest of the blade. As expected figure 5.41b

shows a large increase in strength at the tip due to the variation in chord. It also

show an increase across the blade which can only be due to increased angle of attack

from reduced inductions. The reduced induction is confirmed in 5.41d. It is clear

these plots show increasing the tip chord improves the power at inboard stations by

reducing the induction.



197

0.4 0.8 1.2 1.6 2
Radius [m]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

C
P
 G

ra
d

ie
n

t 
[-

/m
]

(a) Gradient of CP

0.4 0.8 1.2 1.6 2
Radius [m]

0

5

10

15

20

Γ
 G

ra
d
ie

n
t 

[m
/s

]

(b) Gradient of Γ

0.4 0.8 1.2 1.6 2
Radius [m]

-2

-1

0

1

2

3

4

C
T
 G

ra
d

ie
n

t 
[-

/m
]

Simulation
AMT Prediction

(c) Gradient of CT

0.4 0.8 1.2 1.6 2

Radius [m]

0

5

10

15

A
x
ia

l 
In

d
u
c
ti

o
n
 G

ra
d
ie

n
t 

[-
/m

]

Simulation

AMT Prediction

(d) Gradient of Induction

Figure 5.41: Power vs. chord sensitivity analysis

The conservation of axial momentum theory should be preserved in the sensitivity

analysis. The gradient of AMT can be used to predict the sensitivity of thrust with

respect to axial induction and vice versa. These predictions are plotted in figures

5.41c and 5.41d. Figure 5.41c shows an increase in thrust due to an increase in the

angle of attack. AMT predicts this should lead to an increase in the axial induction,

yet figure 5.41d shows the opposite trend. This shows that increasing the chord at

only one station leads to a large deviation to AMT. This proves there is no benefit to

increasing chord at the tip, and the perceived benefit is due to errors in the analysis.

Figure 5.41b gives some clues in understanding the source of the errors. Increasing

the chord at the tip dramatically increases the circulation strength of that station

relative to the rest of the blade. This would lead to a increased strength at the

tip trailing filament which would have a positive contribution to axial induction,

and decreased strength at the second inboard trailing filament which would have a
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Figure 5.42: Wake configuration sensitivity

negative contribution to induction. In an infinite vortex cylinder the induction in

any annular region is based on the sum of azimuthal circulation strength for all the

outer cylinders. If helical vortex systems behave the same, the variation in induction

from the two filaments should cancel, yet it is clear the affect of the second inboard

filament is dominating.

The error in induction is not due to errors in the strength but in errors in how

that strength contributes to induction. A helical filament will contribute to axial

and tangential induction. With increased pitch, the axial induction is reduced, while

the tangential induction is increased. Figure 5.42 shows how the wake configuration

changes with changes in the tip chord. The arrows show how the influence changes

with increasing tip chord. The results show that the second inboard filament has a

large contraction relative to the rest of the wake. Due to the reduced axial induction

inboard, the rest of the wake stretches out axially. The analysis shows that the pitch

for the second inboard filament is being reduced too much from the tip filament. Since

this filament has negative vorticity it contributes to a stronger negative induction

when the pitch is small.

The source of this erroneous contraction is due to errors of lumping vorticity on

a line element. In reality the trailed vorticity of this second inboard filament would
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be distributed radially. Only the outer portion of this vorticity would experience the

full effect of the tip filament. Further inboard, the affects of that tip filament would

be attenuated by the distributed negative vorticity. Thus, it is more realistic that the

pitch of the second trailing filament is only reduced by half of what is predicted here.

This suggests the error can be reduced by increasing the resolution along the blade.

However this usually leads to solver stall in FEM-based LVD.

Aerodynamic Optimization

The FEM-based LVD model was used in aerodynamic optimization of both the MEX-

ICO rotor [217] and the NREL 5 MW wind turbine [228]. The objective was to

maximize the power by varying the chord and twist. In both cases the chord and

twist were represented by quadratic polynomials. To avoid the problems outlined

above the chord control points were constrained to be monotonic. The inner-most

stations of both blades have cylindrical cross-sections, since these cross-sections do

not contribute to the power the chord there is kept constant.

The simulations were based on three different span-wise resolutions: 8, 16 and 32

elements. The wake was represented by 96 influencing elements per trailing filament

with 96 basis sections with Hermite interpolating polynomials in a cylindrical coor-

dinate system. The resolved wake was terminated with a cylindrical far-wake model.

Optimization solutions were obtained for all cases except the NREL 5MW with 32

elements on the blade. This case appeared to run well but failed to complete due to

time limits on the cluster.

Figure 5.43 shows the optimization solution for the MEXICO rotor with 32 ele-

ments. Figure 5.44 shows the optimization solution for the NREL 5 MW rotor with

16 elements on the blade. In both cases the optimizer found a blade geometry where

the power generated on the blade approached the Betz limit across the aerodynamic

region of the blade. For the MEXICO rotor the optimizer increased the chord at all

regions to increase the thrust, while at the outboard region the optimizer decreased

the twist to give higher angles of attack and lift. The optimizer made similar changes

to the NREL 5 MW rotor, except the chord was only increased at the in-board stations

and the twist was reduced by the same amount at all stations.

The smaller changes for the NREL 5 MW wind turbine are expected since this case

is based on a commercial design that would have been extensively optimized. Despite

this, the optimization was still able to improve the design because this optimization
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Figure 5.43: 32 element MEXICO optimization solution

did not have to consider the economics, extreme loads and fatigue constraints that

are required to produce a certified design. Figure 5.44a shows the benefit of a large

root chord is small, however this larger chord would contribute significantly to higher

costs. Furthermore the reduced twist would increase likelihood of stall in unsteady

winds. To account for these effects the MDO framework would need to be extended

to include economics and unsteady analysis. This will be a subject of future work.

The effectiveness of the FEM-based LVD model in optimization is demonstrated by

showing how the CFSQP algorithm performed in the optimization. Figures 5.45 and

5.46 shows this performance for the MEXICO and NREL 5 MW cases respectively.

In both cases the figure 5.45a and 5.46a shows the optimization algorithm was

able to make large improvements early in the optimization. Overall the final solution

was obtained in a small number of iterations. It appears the optimization algorithm

is stalling in the late stages, however figure 5.45b and 5.46b shows the optimization



201

0 10 20 30 40 50 60
Radius [m]

-0.2

0

0.2

0.4

0.6

C
P

Original
Optimal

(a) Coefficient of power

10 20 30 40 50
Radius [m]

2

3

4

5

6

7

C
h
o
rd

 [
m

]

Original
Optimal

(b) Chord

10 20 30 40 50
Radius [m]

0

5

10

15

T
w

is
t 

[d
eg

.]

Original
Optimal

(c) Twist

Figure 5.44: 16 element NREL 5 MW optimization solution

is achieving very high levels of optimality during these iterations. This is something

that would be difficult if there were errors in the gradients.

One advantage of the FEM-based LVD formulation is the ability to use previous

solutions to accelerate the convergence. Figures 5.45c shows that FEM-based LVD

solver became progressively faster as the optimization took smaller steps in the pro-

cess. However the same plot (figure 5.46c) for the NREL 5 MW case demonstrates

the challenges of the FEM-based LVD in optimization. In this case solver stall was

more problematic and the solver had to be configured to use the strength stepping

singularity avoiding strategy for all function evaluations.

Aero-elastic Optimization

This section demonstrates the FEM-based LVD model in aero-elastic optimization.

The purpose of this section is to merely demonstrate the feasibility of using the
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Figure 5.45: 32 element MEXICO optimization

FEM-based LVD in aero-elastic optimization. To avoid unnecessary complication,

the GEBT and VABS models are not included in this study, instead the linear beam

model is used for the structural deformation.

Cross section design aspects are still included in this optimization through a cross

section scaling model. The model scales the geometric properties like area and mo-

ments of area according to chord c and a thickness parameter h as shown in equations

(5.63). This model assumes the blade geometry remains similar with varying chord

and the cross-section geometry is based on thin shells where h� c.

A = A0

(
h

h0

)(
c

c0

)2

(5.63a) Iy = Iy0

(
h

h0

)(
c

c0

)4

(5.63b)

Iz = Iz0

(
h

h0

)(
c

c0

)4

(5.63c) J = J0

(
h

h0

)(
c

c0

)4

(5.63d)
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Figure 5.46: 16 element NREL 5 MW optimization

The real goal of optimal turbine design is to maximize power and minimize costs

simultaneously. This is typically achieved by minimizing the COE [6]. COE mini-

mization requires a suitable cost model to accurately reflect the costs of various design

decisions. For the purpose of demonstrating the FEM-based LVD in aero-elastic opti-

mization this optimization forgoes a cost model and introduces a pseudo cost metric

based on the volume of the blade in equation (5.64). In equation 5.64 V is the volume

of the blade and F is a fixed cost component, F is set to 4 times the original volume

to reflect the fact that turbine blades typically represent 20% of the total turbine cost

[8].

C = V + F (5.64)

The NREL 5 MW wind turbine was used again in this optimization. The objective

was to maximize the ratio of power to the pseudo cost metric. The optimization use
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quadratic splines to vary the twist, chord and a thickness scaling parameter (i.e.

h/h0) along the length of the blade. An important consideration in turbine design

is the thrust of the rotor, this can lead to excessive stresses on the drive-train and

tower. To account for this limitation the rotor thrust was not allowed to exceed the

thrust in the original design. In upwind wind turbines the tip of the blade can strike

the tower and cause damage to both components if the blade is allowed to deflect

too much. To avoid this problem the tip deflection was constrained not to exceed the

deflection of the original design. The additional load calculations (i.e. root bending

moment, unsteady loads, etc.) that would be required in commercial design have

been neglected here for demonstration purposes.

The aerodynamic model used 16 elements on the blade with 96 15◦ influencing

elements in the wake. Each filament was parameterized with 96 Hermite interpolat-

ing polynomials in a cylindrical coordinate system. The wake was terminated with

cylindrical far-wake model.

The CFSQP optimization algorithm required many more function evaluations to

navigate the tip deflection constraint. This prevented the optimization algorithm from

reaching a converged solution within the maximum allowed time on the computing

resources. However near the end of the computation the optimizer was only able to

make a 0.005% improvement in the objective over the last 5 iterations. Thus, it is

unlikely the optimization would have been able to make significant improvements if

it was allowed to continue.

At the final iteration the optimization managed to improve the power to pseudo

cost ratio from 7.89 · 104 to 8.08 · 104. The CP improved from 0.528 to 0.532, while

the biggest source of improvement was due to a reduction in volume from 1.712m3 to

1.558m3.

Figure 5.47 shows the optimal solution for the design variables. Due to the con-

straints the optimization was only able to make small changes to the chord. Figure

5.47c shows the biggest change was a reduction in the cross section thickness scaling

at inboard stations. Figure 5.47b shows the inboard twist solution is similar to the

aerodynamic optimization then at the tip the twist is increased. The reason for the

increase is due to the tip deflection constraint explained below.

Figure 5.48 shows how the optimization improved the objective. Figure 5.48a

shows the optimization had increased the CP at inboard sections as it did in the aero-

dynamic optimization. Then figure 5.48b shows the majority of the volume reduction

also occurred at the inboard sections.



205

10 20 30 40 50 60
Radius [m]

0

1

2

3

4

5

6

7

C
h

o
rd

 [
m

]

Original
Optimal

(a) Chord

10 20 30 40 50 60
Radius [m]

0

2

4

6

8

10

12

14

T
w

is
t 

[d
eg

.]

Original
Optimal

(b) Twist

10 20 30 40 50 60
Radius [m]

0.85

0.9

0.95

1

1.05

T
h

ic
k

n
es

s 
S

ca
li

n
g

Original
Optimal

(c) Thickness scaling

Figure 5.47: 16 element NREL 5 MW aero-elastic optimization design variables
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Figure 5.48: 16 element NREL 5 MW aero-elastic optimization objectives

In the optimization the tip deflection constraint was active and appeared to be the

dominant constraint in the optimization. Figure 5.49 shows the important parame-
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ters that affect the tip deflection. It is clear by the deflection shown in figure 5.49a

and the flap-wise moment of area shown in figure 5.49b that the reduced thickness is

making the blade more flexible at the inboard sections. Despite the reduced stiffness,

figure 5.49c shows that the optimization is satisfying the tip deflection constraint by

decreasing the axial force at the tip. The optimization managed to reduce the coeffi-

cient of thrust from 0.867 to 0.8641. Figure 5.48a shows the azimuthal forces are held

constant. This explains why the optimization increased the twist at tip, by increasing

the twist the angle of attack decreases. This would lead to lower lift and drag forces

which both contribute to the axial forces, however drag has a negative affect while lift

has a positive affect on the azimuthal forces. It seems that the reduction in drag is

enough to compensate for the reduced lift forces and azimuthal forces are maintained.

The optimization was able to reduce the thrust without affecting the power, leading

to improved aerodynamic efficiency.

The final optimization solution is affected by the load constraints. This optimiza-

tion ignored many of the constraints that would have been required. For example the

reduced material near the root could have lead to increased stress. The improvements

found here may not be possible when the full set of load constraints are included in

the optimization.

Overall the aero-elastic optimization was able to find a better solution by improv-

ing the power and material usage near the root. The optimization was able to satisfy

the tip deflection constraint by reducing the thrust at the tip with reduced twist.

1This indicates that only the tip deflection constraint was active. In this case it appears that
only the tip deflection constraint is required to limit the thrust. Furthermore, the reduced thrust
force at the tip shows the root bending moment is also reduced by the tip deflection constraint.
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Figure 5.49: 16 element NREL 5 MW aero-elastic optimization deformation solution
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Chapter 6

Conclusions

The research presented in this thesis expands the Multi-disciplinary Design Opti-

mization (MDO) capabilities of Horizontal Axis Wind Turbine (HAWT) in many

ways. Numerical optimization is a powerful tool to automatically navigate compli-

cated problems, however optimization cannot tolerate faults and analysis tools need to

be made robust enough for automatic analysis. Section 6.1 outlines work to improve

the reliability of BEM models. This work contributed to a BEM model developed by

Ning [146] with guaranteed convergence.

MDO is a field that involves expanding the scope of the optimization by including

additional disciplinary models. One example is the wind farm siting model discussed

in section 6.2. This model can be used to help design engineers identify the optimal

design parameters for region-specific optimal designs.

Wind turbines continue to grow in scale, larger turbines benefit from economies of

scale and better wind resources. To continue the growth of wind turbines, designs will

need to incorporate load alleviation. Conventional design analysis tools like BEM and

linear beams are not suitable for these advanced designs. This research explored the

use of advanced tools like GEBT for nonlinear beam dynamics and VABS analysis

for beam stiffness properties based on anisotropic materials. Section 6.3 discusses

the development of adjoint-based gradients for the coupled GEBT-VABS analysis for

use in gradient based optimization. To incorporate manufacturing effects section 6.4

summarizes the conclusions from a composite lay-up parameterization scheme based

on the manufacturing process.

To improve the fidelity of the aerodynamic simulations, this work investigated

LVD. Pure vortex systems are fundamentally chaotic, these chaotic effects cause

conventional LVD simulations to exhibit erratic convergence and in some cases di-
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vergence. The noise in the convergence leads to erroneous gradients. Despite the

noise, aerodynamic optimization is possible, however aero-elastic analysis seems to

amplify the noise and prevent aero-elastic optimization from converging. To over-

come this problem this research developed a totally new formulation based on the

Finite Element Method (FEM). This contribution is discussed in section 6.5.

This section closes with a discussion on future work given in section 6.6.

6.1 Numerical stability of BEM

BEM theory is an attractive aerodynamic model for wind turbine design because it

is fast and gives accurate results. The model is based on converging two equations

for the axial and the tangential momentum. The typical approach is to apply a fixed

point iteration until the model converges. Despite the simplicity, there are cases

where this approach will fail to produce a converged solution.

The research presented in section 2.3.1 of chapter 2 conducted an analytical and

numerical investigation into the stability of both the fixed point algorithm and a

Newton algorithm. The research found the BEM equations lead to numerical insta-

bilities in the Newton algorithm when the blades elements approach stall. Where

as the fixed point algorithm exhibited instabilities over a wide range of conditions.

Furthermore this research identified many situations where multiple solutions existed

and the solution would become indeterminate.

This research lead to a new development by Andrew Ning [146] where the BEM

model was parameterized by the inflow angle and solved with an algorithm with

guaranteed convergence.

6.2 Wind farm siting optimization

The profit generated by a wind turbine is based on the power generated, the costs of a

wind turbine are dependent on the fatigue and extreme loads. Both of these outcomes

depend on the site where the wind turbine will be built. Wind farm developers will

select the best wind turbine for their site, for manufacturers to be successful their

turbine needs to be optimized for that site. The problem of developing the optimal

turbine is determining the properties of the sites a-priori. Section 5.1 of chapter 5

presents a wind farm-siting model capable of exploring provincial scale regions to help

designers identify potential sites.
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The model is sensitive to the local wind resource, transmission lines, the popula-

tion density, the turbine density and noise regulations. Several case studies demon-

strated how the model reacted to scenarios where AEP was prioritized, transmission

costs were increased and where noise regulations became more stringent. The AEP

seeking model successfully identified the region in Alberta where most wind turbines

are built.

The model was based on coarse geographic data and a simple micro-siting model.

Wind farm developers take advantage of fine-grained local effects to maximize the

yield of the wind farm. To obtain an accurate representation of the optimal site

conditions this model will need to include information at higher resolution to capture

the same local effects used by wind farm developers.

6.3 Adjoint based gradients for coupled GEBT and

VABS analysis

The coupled GEBT-VABS structural analysis starts with VABS to solve the cross

section stiffness properties. These properties are fed to GEBT model to determine

the nonlinear deformation for a given loading. The deformation in the beam is then

fed back to the VABS analysis to recover the stress in the materials.

In section 5.2 of chapter 5 this research explored how adjoint based gradients could

be incorporated into the coupled analysis. Despite the complexity, this research found

a way in which the adjoint equations for both GEBT and VABS could be coupled

together and solved to find the structural design sensitivities. These gradients were

compared to finite difference and found to give good agreement. Both the finite

difference and adjoint based algorithms solved the gradients in roughly the same

time. This is due to the fact that the nonlinear beam solver only needs one iteration

when the system is perturbed by a small step. The adjoint based gradients relied on

finite differencing for many of the partial gradient terms. There is evidence that if

these partial gradients are replaced by analytic gradients, the speed of the gradient

calculation can be made nearly independent of the number of design variables.

Both the adjoint and finite difference gradients were applied in structural opti-

mization. Both gradient algorithms lead the optimization to the same solution.
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6.4 Composite lay-up optimization

Most structural optimization schemes in literature are based on cross section geometry

at specific positions along the blade. The cross section design variables are then

represented by splines defined along the length of the beam. This parameterization

ignores the manufacturing process of wind turbines. In manufacturing, the cross-

section geometry is built-up by stacking laminates of composite material along the

length of the blade. The geometry and material properties between different span-

wise locations are inherently coupled by this process. In section 5.3 of chapter 5 the

composite lay-up optimization explored a parameterization scheme based on slabs of

material defined along the blade in a similar way that the blade is manufactured.

The slab based parameterization was applied successfully in cross-section design

optimization. The slab parameterization scheme was able to find an optimal thickness

distribution that used less material than the spline based parameterization. For blades

made with both glass and carbon fiber, it was used successfully to find the optimal

mix. The parameterization can also include biased fibers in the parameterization.

This configuration was used successfully to find the optimal amount of biased fibers

for a prescribed bend-twist coupling.

When many slabs are introduced into the optimization, there are multiple ways the

thickness can be increased and local minima are introduced. Due to the local minima

this scheme cannot be used for high-fidelity optimization alone. A good starting point

is required to avoid local minima, further research is needed to determine whether

solutions from a convex parameterization scheme could be used as a starting point to

a slab based optimization.

6.5 FEM-based LVD

The FEM-based LVD model was developed in response to the limitations of con-

ventional LVD. At the heart of the problem is the lack of an objective convergence

metric. The Galerkin projection is used to define an objective convergence metric for

the wake and lifting line. The definition of an objective convergence metric solves

many of the problems of conventional LVD. First noisy convergence is avoided be-

cause the model no longer needs to be evolved in time to obtain a solution. Instead,

the Newton algorithm can be used to find a solution that eliminates the residual. The

Newton algorithm is used in nonlinear FEM, by using the same solution algorithm
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the FEM-based LVD model can be converged simultaneously with structural mod-

els. Finally, the convergence metric gives insights into how the state will change in

response to changes in the design variables. This leads to an accurate definition of

analytic gradients for optimization.

The FEM method was applied to develop a new parameterization scheme for the

wake based on interpolating polynomials called basis sections. This parameterization

scheme allows the user to locally increase the number of elements in the wake to im-

prove the fidelity. Then to reduce the computational effort the user can independently

reduce the number of control points and apply high-order basis functions.

There are three components to the FEM-based LVD research. First section 6.5.1

presents the conclusions from an extensive study into the aerodynamic analysis ca-

pabilities given in chapter 3. Then section 6.5.2 gives the conclusions from a study of

the aero-elastic capabilities of both the conventional and FEM-based LVD given in

chapter 4. Finally the main goal of this model was to obtain aero-elastic optimization

results. Section 6.5.3 gives the conclusions from the optimization studies in section

5.5 of chapter 3 that applied FEM-based LVD in both aerodynamic and aero-elastic

optimization.

6.5.1 Aerodynamic analysis

Conventional LVD typically relies on iterative convergence to indicate how well a

simulation is converged. This metric could be misleading if the convergence happens

to be slow. The FEM-based LVD defines an objective convergence metric that was

applied to explore the convergence behavior of conventional LVD. The study explored

multiple conventional configurations and found in all cases the error in conventional

LVD models is increasing until the wake is truncated and the initial transients advect

out of the system. After this point the error will drop off. Then after enough iteration

one of two scenarios will arise. For smaller simulations the system will settle into

a stable oscillation but never converge completely. In larger systems with many

influencing elements the noise starts to increase and eventually dominates causing

the simulation to diverge. The research found that in the region where the error does

decay, an iterative convergence metric would under-predict the true error by a factor

of approximately 250. Since conventional LVD cannot be converged to arbitrary

levels, there is little one can do to compensate for errors in iterative convergence.
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The FEM-based LVD model gives the aerodynamicist many options to configure

the model. The classic approach to controlling fidelity and computational speed

is to vary the size of the elements. In conventional LVD the computational costs

scale according to the cube of the number of elements. However in FEM-based LVD

the computational costs scale linearly. Due to the lack of an objective convergence

metric in conventional LVD simulations it is difficult to compare the simulation times

directly. The results in the convergence study suggest that FEM-based LVD model

is faster than the conventional LVD model when the elements are less than 8◦ in size

for wind turbine simulations.

FEM-based LVD is based on interpolating polynomials. Selecting the right type

and the correct number can influence both the cost and the accuracy. For wind turbine

simulations the interpolation should be performed in a cylindrical reference frame. In

some cases cylindrical interpolation can be costly to solve. To suppress the distortions

and avoid cylindrical interpolation, Hermite interpolating polynomials should be used

to enforce C1 continuity at the basis section end-points. Reducing the number of basis

sections will reduce the computational cost. In wind turbine simulations, cubic basis

sections larger than 60◦ started to introduce errors into the solution.

Without a far-wake model, there is a tendency for the wake to contract at the

end. A far-wake model based on vortex cylinders will maintain monotonic expansion

with little additional computational effort. With the far-wake models, the resolved

wake can be as short as 3 rotor revolutions before significant error is introduced into

the CP solution.

In some cases the FEM-based LVD model can be highly sensitive to the number

of elements on the span. This is due to singularities that tend to occur when elements

are too close to one another. The problem of singularities is discussed further below.

In cases where singularities do not occur, the computational load scales quadratically

with the number span-wise elements. Convergence studies show that at least 16

elements are needed on the blade to get an accurate estimate for the coefficient of

power. With 23 or more elements, tip-loss and wake roll-up effects are resolved.

The FEM-based LVD model was validated against the classic elliptically loaded

wing. The simulation was able to reproduce the expected constant down-wash for

most of the span. The solution deviated near the tip where there were not enough ele-

ments to properly resolve the elliptical distribution. The FEM-based LVD simulation

was used to simulate a rectangular wind and a backward swept wing. In both cases

the simulation showed good agreement with experimental measurement. The airfoil
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coefficients for the rectangular wing were based on experiments, while the coefficients

for the swept wing were based on XFoil. The improved agreement achieved with the

rectangular wing demonstrates the importance of accurate airfoil coefficients for LVD

simulations. Finally the FEM-based LVD was validated for wind turbine simulations

using the MEXICO experiments. These experiments give the circulation strength

on the blade along with the location of the tip-vortex. The FEM-based LVD model

was used to simulate the MEXICO turbine in low-speed winds, design conditions and

high-speed winds and demonstrated good agreement with measurements in all cases.

Solving the FEM-based LVD relies on solving a Jacobian. In some cases the

Jacobian can become near singular and cause the solver to stall. This problem tends

to occur more often when small elements are used on the lifting line. Small span-

wise elements cause free-wake elements to be very close and strongly affected by

the influence kernel function. Furthermore these singularities occur more often with

longer wakes. Due to the connectivity, updates are integrated down the trailing

filament and can lead to strange configurations in the far-wake.

Three strategies have proven successful for avoiding these problems. The first

is to solve the strength and the wake configuration separately. This algorithm is

similar to load stepping in structural FEM, in this case the strength is updated in

small increments, then the wake is solved between updates. For problems with long

wakes, singularities can be avoided by partitioning the wake by age. Updating the

partitions in a downstream sequence has proven most effective at reducing the overall

residual while avoiding singularities. Finally the singularity seems strongly associated

with the Biot-Savart influence where the influence is strongest close to the element.

Attenuating the near-field influence by increasing the core radius has been effective at

removing singularities. The original small-core solution can still be obtained without

singularities by using the large-core solution as a starting point to the small-core

simulation.

The strategies to overcome solver stall require more computational time to com-

plete the additional iterations. Some progress has been made in developing automatic

algorithms to apply these strategies only when necessary. However they do not seem

to work universally. To develop a solver algorithm that is both fast and robust more

research is needed to properly identify the scenarios when these different strategies

need to be applied.

The current FEM-based LVD is for steady state analysis. The same formulation

could be extended for unsteady and periodic analysis. The unsteady aerodynamics
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will be required to evaluate the extreme loads, while the periodic analysis can account

for the effects of wind-shear and other periodic phenomenon.

6.5.2 Aero-elastic analysis

Both the conventional and FEM-based LVD models were used for aero-elastic anal-

ysis with a linear beam. Since the FEM-based LVD model uses the same solution

algorithms used in structural FEM, it is straight-forward to simultaneously converge

both the aerodynamic and structural models. The solution algorithm for conventional

LVD is very different from structural models, to obtain mutually converged solutions

the two models had to be converged in a fixed point iteration. There are two ways to

apply the fixed point algorithm; in the first version the models are co-evolved, where

the aerodynamic model completed a single update after each beam update; in the

second configuration the aerodynamic model is reinitialized and solved completely

after each beam update.

The research explored the convergence properties of the two aero-elastic algo-

rithms for conventional LVD. It has already been shown that the convergence of

conventional LVD for purely aerodynamic analysis leads to a erratic and sometimes

divergent convergence. The research found that when the aero-structural models were

co-evolved, the small motion caused by the beam updates were amplified in the wake

and lead to increased noise. The only way to eliminate this effect was to reinitial-

ize and completely solve the aerodynamics after each beam update. In this scenario

the beam fully converged and noise in the wake was similar to the pure aerodynamic

analysis. However, this approach took 4 times more iterations to adequately converge

the beam than the co-evolution algorithm.

The analysis demonstrated that the FEM-based LVD algorithms was applied suc-

cessfully to obtain coupled aero-structural solutions. Including the beam in the New-

ton algorithm did not introduce any difficulties in the solution algorithms, in fact

the solution speed increased. The simulation showed how the deformation moves

the wake back allowing the inboard sections to experience reduced induction and

improved performance. However due to the same deformation, the outboard section

were no longer normal to the flow and produced less power.
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6.5.3 Aerodynamic and aero-elastic optimization

In section 5.4 of chapter 5 aero-elastic optimization was applied with conventional

LVD. This study failed to obtain converged optimization results due to noise in the

gradients. This difficulty was impetus to developing the FEM-based LVD model. An

important advantage of the FEM-based LVD is the ability to obtain accurate analytic

gradients.

An objective convergence metric is necessary to predict how the state will vary

with changes to the design variables. Since the FEM-based LVD defines an objective

metric, one can now define analytic gradients for LVD models. The analytic gra-

dients were verified with finite difference. Several simple optimization studies were

performed and in all cases the optimization showed excellent progress and managed

to converge to levels with very small Karush-Kuhn-Tucker norms. This indicates the

gradients are producing excellent sensitivity information to the optimization.

The LVD models are based on lumping the vorticity onto line elements. A con-

sequence of this assumption is large amount of vorticity is sensitive to single in-

fluence calculations. In reality there would be a distributed vorticity, where some

self-influence would attenuate the influence of other regions of vorticity. The opti-

mizer was able to exploit this error to find unrealistic designs that only appeared

to be an improvement. This error can be suppressed by using splines for the design

variables and enforcing monotonic constraints on the control points.

The FEM-based LVD model was used in aerodynamic optimization of both the

MEXICO rotor and the NREL 5 MW rotor. In both cases the optimization was

able to find a converged solution with improved power output. This was achieved

by enlarging the chord at inboard stations and decreasing the twist to give a more

aggressive angle of attack.

Finally the FEM-based LVD model was used in aero-elastic optimization of the

NREL 5 MW rotor. In this optimization the chord and twist were design variables.

Structural aspects were introduced into the optimization through a cross section stiff-

ness scaling model based on the chord and a ‘thickness’ design variable. The opti-

mization did not include a cost model, instead a simple cost metric based on the

blade volume was used in the optimization. This cost metric included a fixed cost

component to reflect the other components of the wind turbine. The objective in

the optimization was to maximize the ratio of power to cost. This optimization was
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constrained to not increase the thrust and axial tip deflection beyond the original

design.

The tip deflection constraint was active throughout the optimization. This re-

quired the optimization to make many more function evaluations than required in

the aerodynamic optimization. The aero-structural optimization could not be fully

converged in the time available on the cluster. Before the optimization was canceled

the optimization was only making small improvements to the objective with every

iterations. This suggests the optimization was close to a final solution when the

calculation ended.

The final solution did manage to simultaneously improve the power output and

reduce the volume of the blade. The tip constraint plays an important role in the

optimization. The volume was reduced near the root. To compensate for the reduced

stiffness, the optimization found a more aerodynamically efficient design at the tip

that reduced the thrust forces while maintaining the same power.

Overall the FEM-based LVD was applied successfully in aero-elastic optimization.

This proves the new FEM-based LVD has successfully overcome the problems of

conventional LVD.

In this investigation the nonlinear beam model was not used. The purpose of the

study was to validate the FEM-based LVD in aero-elastic optimization. One could

argue the problems in the conventional LVD aero-structural optimization are due to

the nonlinear beam model. Yet, chapter 4 showed that the linear beams will still

increase the noise in the wake.

Further work is still needed to confirm whether the FEM-based LVD will give

converged aero-elastic optimization solutions with the coupled GEBT-VABS analysis.

The solver and gradient algorithm used in the FEM-based LVD optimization should

work equally well with nonlinear beam models. Thus, it is expected that this model

will still perform well with coupled GEBT-VABS analysis. This will be a topic of

future research.

6.6 Future Work

The future work for this research is discussed in three broad categories. The FEM-

based LVD solver algorithm; unsteady analysis with FEM-based LVD; further progress

in the MDO framework.
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The current solver algorithm for the FEM-based LVD was sufficient to obtain

optimization results. However, due to singularities the algorithm can be quite slow

when the singularity avoidance is required for every function evaluation. An impor-

tant justification for using LVD is faster function evaluations when compared to grid

based CFD. The solver algorithm needs to be improved for FEM-based LVD to be

faster than grid based CFD in all cases. This is discussed in section 6.6.1.

Unsteady analysis is important in wind turbine design to evaluate fatigue damage

and extreme loads. The medium fidelity analysis tools explored in this framework

need to be upgraded for unsteady analysis for a complete MDO framework to be

realized. Section 6.6.2 proposes how these tools can be upgraded.

Finally the final objective of this research is to create a MDO framework for

HAWTs capable of optimizing advanced designs that exploit load alleviation strate-

gies. Section 6.6.3 discusses what additional work is needed to expand the MDO

capabilities further.

6.6.1 Improvements to the FEM-based LVD Solver

Solving the FEM-based LVD model is challenging due to singularities. It is desirable

to simulate wind turbines with high span-wise resolution, however these singularities

become more common in these cases. Strategies have been developed to avoid these

problems, however the algorithms need further improvement.

First the source of the singularities is not fully understood. One of the factors

could be locking in the basis sections. The highly nonlinear flow field of a Biot-Savart

influence may require the basis sections to deform into configurations that are not

possible with the basis functions. There have been some cases where the singularity

was removed simply by adding more degrees of freedom. Further understanding

into this issue will require detailed analysis of singular conditions. The basis section

strongly associated with the singular modes need closer inspection to confirm how

well the basis sections can approximate the local flow field.

Another potential source of singularities could be due to how the residual is in-

tegrated in the wake. When the residual is calculated in the wake, the influencing

elements are shifted such that an element end-point lies on the integration point and

self-influence is avoided. However, this approach produces a different flow field for

each shifted configuration. Yet, a single basis section configuration needs to be aligned

to each of these different flow fields. The same detailed analysis on the singular basis
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section would shed light on this problem as well. Another approach would involve

exploring different integration schemes. Instead of shifting the elements they could

be held static, self influence could be removed by ignoring any connected elements

in close proximity to an integration point. Ignoring the near field influence could be

a solution on its own given the similarity to attenuation by an enlarged core-radius.

Another integration scheme would eliminate the Van-Garrel elements completely and

apply numerical integration on the Biot-Savart law in equation (2.39) directly.

The singularity seems to occur more often when the wake is pushed into strange

configurations. These strange configurations are due to the line search where the

residual will increase in a small local region because the solver is still able to decrease

the system residual. These local increases could be avoided by modifying the line

search algorithm. There are two possible approaches, the first is simply based on

finding the minimum of higher-order residual norm. This approach would require

little modification to the current line search algorithm. For aero-elastic solutions

the residual is composed of force imbalances from the beam, circulation strength

errors from the lifting line and velocity errors from the wake. Differences in the

units makes the solver more or less sensitive to different components of error. A

better strategy may involve making the line search sensitive to each of these domains

independently. Instead of finding the system minimum, it may seeks out the smallest

β where a domain minimum is found. Overall, these strategies aim to avoid strange

configurations by developing a robust line search algorithm the ensures the residual

is reduced over a wider region in the problem.

Enlarging the core radius in the influence calculation for the wake has proven

successful for avoiding singularities. Furthermore, using large core-radius solutions as

a starting point for small core-radius simulations has led to small core-radius solves

without singularity problems. The current solver requires the user to manually run

simulations with an enlarged core-radius. If the user desires the small core-radius

solution a new simulations needs to be set-up and executed manually. This strategy

could be automated and implemented in the solver so the core is automatically en-

larged during difficult conditions and then reduced back to the original size before

the solver finishes.

The problem of singularities was less of a problem in optimization because many

of the function evaluations required only small changes to the system. In these cases

the solver could be executed in a faster more aggressive configuration. In the cases

where singularities arose, the solver would automatically invoke one or more of the
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singularity strategies. However, there were situations where the solver was too ag-

gressive and subsequent attempts to avoid singularities failed. Better methods are

required to detect these situations early and avoid them automatically. All of the

aforementioned solver improvements could contribute to the goal of a more robust

automatic singularity avoidance algorithm.

Singularities occur more often when the solver must make large changes to the

configuration. This suggests that the steady-state FEM-based LVD formulation is not

ideal as a stand-alone solver. The FEM formulation solves the convergence problem

of time marching schemes, but introduces solver stall. The advantages of both formu-

lations could be combined. A time marching simulation could be used to get close to

the steady state solution. Then when no further progress can be made with the time

marching algorithm, the steady state FEM-based LVD could be used to finish the

problem. Figure 3.10 shows the steady state FEM-based LVD solution algorithm can

be faster than conventional algorithms with small elements due to improved scaling

properties. This advantage can be maintained in a time marching code by develop-

ing a similar FEM formulation for unsteady LVD. More details on this are given in

section 6.6.2.

6.6.2 Unsteady Analysis with Medium Fidelity Tools

Optimizing the performance of a wind turbine at a single operating point is not

sufficient to produce optimal wind turbine designs for the real world. Wind turbines

operate over a range of weather conditions and need to be optimized for the range of

wind speeds that are most common. The current framework could easily be extended

to solve steady state solutions over multiple wind speeds. These solutions could then

be used to estimate the AEP for a given wind speed distribution.

Neglecting fatigue and extreme loads will produce overly optimistic designs. The

IEC 61400 design standards requires manufacturers to design their wind turbines to

withstand multiple load cases with different combinations of extreme gusts, extreme

changes in direction and faults in the electricity grid. These events are transient

and require unsteady analysis, which in-turn requires upgrades to the current set of

analysis tools.

The cross section properties predicted by VABS are time-invariant, so only the

nonlinear beam model needs to be updated for unsteady structural analysis. GEBT
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is a mature model and several authors have already explored the best algorithm for

unsteady analysis [245, 243, 244].

Updating the FEM-based LVD model for unsteady analysis is still an open and

unexplored topic. First shed vorticity would need to be incorporated into the analysis,

which should be straightforward. The FEM parameterization can be extended for

unsteady analysis by adding time dependence to the finite element interpolation in

equation (3.1). This transforms the 1 dimensional basis sections defined over space

alone to 2 dimensional basis section defined over space and time.

Further considerations are required on how the FEM description is used to cal-

culate the velocity of material points in the flow field. A Lagrangian interpretation

assumes the fluid particles are attached to the basis section at a constant spatial

position. In this interpretation the velocity of the fluid is merely the time rate of

change of basis section. The simulation would be creating basis sections much in the

same way that conventional time stepping algorithms create elements in a growing

wake. The growing wake configuration in conventional LVD has proven to be the

more efficient approach as oppose to solving pre-initialized wake. The growing wake

approach in the FEM formulation could be the most efficient way of obtaining a good

first guess for steady-state analysis.

An Eulerian interpretation is an alternative interpretation of the unsteady FEM

formulation. This approach assumes spatial positions in the basis section correspond

to a constant age in the trailing vortex filaments. In this interpretation the fluid is

moving through the basis sections. The velocity of the flow is based on a combination

of the time rate of change and the spatial tangent of the basis sections. This approach

is most similar to the parameterization described in chapter 3. The parameterization

could easily be extended for periodic analysis by defining the basis sections with

sinusoidal functions in time. The periodic analysis can incorporate unsteady effects

like wind shear and gravitational loads, this analysis could replace the steady state

estimates of CP and provide efficient surrogate models for other unsteady effects.

Majority of the fatigue damage in wind turbines is caused by small fluctuations in

the wind speed during regular operation. The conventional approach to estimating

the fatigue damage is to run unsteady simulations for 10 minutes of operation in a

turbulent flow field. Since the magnitude of turbulent fluctuations vary with wind

speed, multiple 10 minute solutions are required over a range of wind speeds. The

turbulent flow fields are numerically generated based on turbulence statistics. These

flow fields are not unique, multiple flow fields that each produce different fatigue
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loads can be generated with the same statistics. To improve the fatigue estimate the

analysis is conducted over multiple flow-fields. Overall, evaluating the fatigue damage

is computationally expensive. Efficient alternatives are required to incorporate fatigue

analysis into the optimization.

There are several approaches for incorporating fatigue loads into the optimization.

The first example is given by Fuglsang and Madsen [57] where a simple surrogate

model based on steady-state root bending loads was used to estimate fatigue. The

model had to be updated and tuned with unsteady analysis at multiple points in the

optimization. Another example is a multi-fidelity multi-level optimization approach

is given by Bottasso et. al. [251] where unsteady analysis with high-fidelity tools

is used to define the equivalent loads for low fidelity steady-state analysis within an

inner optimization loop.

Each of these approaches rely on steady-state analysis as a surrogate for unsteady

phenomenon. In these cases the optimizer is insensitive to how unsteady dynamics

could affect the fatigue loads. These approaches would not be suitable for finding

the optimal design for load alleviation strategies that rely on large unsteady nonlin-

ear deformation. Efficient periodic analysis could incorporate the dynamics into the

optimization without adding significant computational time. One approach is the

nonlinear frequency domain technique developed by Jameson et. al. [60, 62, 61] for

grid based CFD. This technique could be adapted for the periodic version of FEM-

based LVD. These periodic solutions could then be used in a more accurate higher

fidelity surrogate model for fatigue damage.

6.6.3 Progress towards the Complete MDO Framework

The MDO presented in this thesis only incorporated aero-structural design in the

optimization. To fully realize the benefits of advanced wind turbine design the dis-

ciplinary scope of the optimization needs to be expanded. An obvious example is

to combine all the tools presented in this thesis. First the optimal parameters from

the wind farm siting model could be used to define the optimization formulation in

the turbine design. The new FEM-based LVD model still needs to be coupled to the

medium fidelity analysis tools. It is unlikely the nonlinear beam model will introduce

further complications, yet this remains to be confirmed.

The aero-structural optimization relies on cost models to properly prioritize aero-

dynamic and structural improvements. The optimization presented here used a sim-
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ple cost model based on the blade volume and a fixed cost for the remainder of the

turbine. A better cost model is already provided by Fingersh et. al. [8] based on

regression of existing turbine designs. This model is based on older designs and may

not be suitable for advanced turbines. Furthermore, the loads for the rotor can affect

the costs and performance of other components. A physics based cost model would

have wider application to advanced wind turbine design optimization. The more so-

phisticated the cost model is, the more capable the optimization is for maximizing

the system benefits.

Another important consideration in wind turbine design is the noise emissions.

Regulations constrain noise emissions for the comfort of local residents. These con-

straints limit the maximum speed of the rotor and can lead to reduced performance.

Accordingly aero-acoustics is an active area of research in wind energy [270, 271, 272],

with several researchers developing noise models that can easily be incorporated into

optimization [273, 274, 275].

The overall design could be improved by expanding the design space to additional

components like the drive-train, tower and balance of plant. Each of these compo-

nents would require physical models, component specific constraints and cost models.

Another attractive application of MDO is offshore wind energy. For shallow waters

specialized foundations must be included into the design. The high cost of these

foundations could be reduced if the foundation design and costs were included in the

optimization. The loads on these structures are affected by waves and would require

additional models for the hydro-dynamics. For deeper waters, researchers are looking

at developing floating wind turbines, in this case the foundation is replaced by buoys

and mooring lines. For these turbines the hydro-dynamics take on greater importance

as these effects have a greater influence on the turbine motion and loads.

Expanding the disciplinary scope of MDO can become very complicated with mul-

tiple models. To simplify the process there needs to be additional software to manage

the MDO framework, the analysis and the gradient calculations in an efficient man-

ner. Several researchers have already made progress in this area. The first example

is pyMDO by Martins et. al. [276]. This inspired the OpenMDAO project by Gray

et. al. [277]. The OpenMDAO framework has already been applied for wind tur-

bine design optimization [278, 279]. The tools developed in this thesis need to be

extended along with any additional tools to work with the OpenMDAO framework.

The OpenMDAO-based WISEDEM framework developed by Dykes et. al. [279] is

open source and openly available. Adapting the current tools to fit into this frame-



224

work would endow this MDO framework with the additional cost and disciplinary

models that have already been incorporated into WISEDEM.

There is inherent uncertainty in the many of the numerical models used for wind

turbine design analysis. One example is the airfoil coefficients that are used in the

aerodynamic models. It is widely known that wind tunnel testing can produce slightly

different results for the same airfoil [280], furthermore rotational effects can alter

the performance further. Another source of uncertainty is the material properties.

One example are composite materials that can be highly variable in stiffness and

strength due to variations in fiber volume fraction. Finally defects can occur in the

manufacturing. To incorporate these effects into the optimization, one can adopt

uncertainty analysis and robust optimization techniques [281]. In this approach the

performance of various designs are penalized based on the level of uncertainty. This

leads to strong designs that will still perform well despite the different sources of

variability.
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