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This thesis presents novel algorithms and a revised modeling framework to evaluate residential 

aggregate electrical demand response performance under scenarios with limited device-state 

feedback. These algorithms permit the provision of balancing reserves, or the smoothing of 

variable renewable energy generation, via an externally supplied target trajectory. The responsive 

load populations utilized were home heat pumps and deferred electric vehicle charging. As fewer 

devices in a responsive population report their state information, the error of the demand response 

program increases moderately but remains below 8%. The associated error of the demand response 

program is minimized with responsive load populations of approximately 4500 devices; the 

available capacity of the demand response system scales proportionally with population size. The 

results indicate that demand response programs with limited device-state feedback may provide a 

viable option to reduce overall system costs and address privacy concerns of individuals wishing 

to participate in a demand response program.  
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1 Introduction 

1.1 Motivation. 

As global warming and GHG emissions are becoming a critical issue around the world, there is 

increasing investment in renewable electrical generation technologies and a shift to electrification 

of transportation [1]. While there has been a strong push in the development of renewable 

generation facilities, particularly solar photovoltaic, wind turbine generation, and micro-hydro or 

run-of-river generation technologies, the infrastructure to support the integration of such inherently 

variable generation resources is struggling to keep up [2]. Electric utilities must ensure that reliable 

electricity is constantly available to users when they desire it, and as the penetration of variable 

renewable generation increases, the stress put on the conventional generation and distribution 

systems can be pushed to its limits [3]. Further complicating the problem is that electrical demand 

continues to increase, with BC Hydro projecting a 1.7% annual increase in demand over the next 

20 years [4]. 

One area that exhibits considerable flexibility in addressing the variability of renewable 

generation, as well as conventional power systems operating requirements, is demand response 

(DR). Rather than treating electrical loads as strictly must-serve entities, the integration of demand 

response programs via the smart grid enables the deferral of certain electrical loads to more 

opportune times. Generally demand response programs are deployed utilizing large commercial 

and industrial loads as they are of sufficient size to easily integrate into a conventional electrical 

power system [5], [6]. However, recent work has been completed to show that an aggregate 

population of residential scale loads, specifically home heating using air source heat pumps, and 

electric vehicle charging loads, are capable of providing significant ancillary services capacity to 

electrical system operators [7], [8]. One of the key considerations in this work is that consumer 

comfort constraints and end-use functionality of the individual appliances must remain a primary 

objective of the controllers. This ensures that consumers will be willing to participate in the 

demand response program, and minimizes the inconvenience caused to individual consumers 

while still maintaining a robust demand response system to the power systems operator. 
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One of the major hurdles to widespread adoption of residential demand response programs is the 

cost of communications infrastructure, coupled with individual privacy concerns related to the 

device-state information being used in the demand response control algorithms [9]. This thesis will 

examine the ability to implement a demand response program for aggregate populations of 

residential deferrable loads using limited device-state information from a portion of the 

participating population. In this manner, it is hoped that widespread adoption and participation in 

demand response programs will be possible with reduced communications infrastructure costs, and 

the ability for a subset of a population to participate in the demand response program without 

reporting any device-state information, thus alleviating privacy concerns. 

1.2 Main Contributions 

Many control strategies have been implemented in previous works, but some of the most promising 

appear to be centralized control using aggregators, similar to that described in Parkinson [7]. This 

thesis will focus on centralized control DR algorithms based on Parkinson’s previous work, 

employing a similar DR control system to provide power systems operators with virtual generation 

capable of providing ancillary services or renewable energy smoothing. The need for full 

information of all participating loads is investigated, with an aim to reduce the instrumentation and 

knowledge requirements for successful DR control. In particular, this thesis offers the following 

main contributions: 

1. The development of a refined computational model capable of simulating various DR 

algorithms for populations of any number of residential heat pumps and plug-in electric 

vehicles using either a de-centralized or centralized controller, as well as optimal dispatch 

among multiple populations for unlimited time periods.     

2. A preliminary evaluation of the capacity that load communities of heat pumps and plug-

in-vehicles are capable of providing to the grid when employed as regulating reserve virtual 

generation, and when employed to smooth wind generation injections into the grid. 

3. A novel control strategy to accurately manage multiple populations of electrical loads to 

provide ancillary services to the power system, incorporating limited knowledge of a 

portion of the population’s device-states within the system. This system maintains the 

ability to simultaneously balance grid-side objectives with the customer comfort-
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constraints commonly expected by consumers on the demand-side, while further 

addressing the privacy concerns of the population.  

4. An investigation into the effects of limited device-state information from a sub-group of a 

load community on its ability to provide effective demand response, and the impacts of the 

number of responsive loads recruited into such a load community on the available capacity 

of the demand response program. 

1.3 Thesis Structure 

This thesis proceeds as follows: Chapter 2 provides an overview of conventional power systems 

operation. This chapter identifies a number of challenges associated with the increased penetration 

of distributed renewable generation resources, and some of the techniques used to address them. 

In particular, emphasis is placed on demand response programs, including the introduction of a 

novel demand response approach proposed by Parkinson [7], as it is the theoretical basis for the 

work presented in this thesis. Chapter 3 describes the models used to simulate participating loads 

employed in the subsequent demand response programs. The participating loads modeled are 

residential heat pumps, and plug-in electric vehicle charging. Chapter 4 introduces the concept of 

providing user-constrained demand response capabilities with limited knowledge. A 

computational framework is developed that permits the provision of ancillary services via demand 

response from an aggregate load community, even under scenarios where full knowledge of 

individual load-states is unavailable. The provision of ancillary services, as well as smoothing of 

wind energy injections into the grid are investigated. Chapter 5 presents the results of various 

simulations utilizing these demand response control algorithms, as well as an analysis of the 

available capacity these load communities can contribute to power systems operation. Chapter 6 

concludes the thesis, providing a summary of key findings and recommendations for future work.  
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2  Aging Infrastructure and Increasing Demand 

The current electrical generation and distribution systems are optimized for large, 

dispatchable generation facilities that are able to respond to fluctuations in electrical power 

demand in real-time through frequent throttling of available fast-acting generation 

resources. This arrangement has worked successfully for many years, however with the 

increase in non-dispatchable generation it is being pushed to its limits and not operated in 

the most efficient manner possible [7], [10]. Not only does the operation of generation 

resources in this manner reduce equipment lifetime, it also results in inefficient operations 

and increased GHG emissions. 

2.1 Conventional Electrical Generation Resources 

Canada has a fairly clean energy portfolio, with over 60% of electrical generation being 

produced from clean sources [11]. However, in order to meet increasing demand additional 

generation projects will be required in the coming years [4]. The costs associated with a 

variety of modern generation technologies are summarized in Table 2.1 [7], [12], [13]. 

Table 2.1 - Cost and Emissions Data for Large-scale Generating Technologies [7], [12], [13]. 

Technology Overnight 
Capital Cost      

[$/kW] 

Fixed O&M 
Costs [$/kW-yr] 

Variable 
O&M Costs 

[$/MWh] 

Emissions 
[tCO2/MWh] 

Hydroelectric $2936 $14.13 0.00 0.009 

Nuclear $5530 $93.28 $2.14 0.012 

Coal $3591 $45.65 $5.85 0.980 

CCGT $825 $7.19 $12.91 0.450 

OCGT $970 $14.27 $3.44 0.650 

Wind $2213 $39.55 $0.00 0.015 

Solar PV $4028 $26.22 $0.00 0.061 

 

As shown in Table 2.1, wind generation has one of the largest initial construction costs of 

generation technologies, however fuel costs are non-existent and O&M costs are among 

the lowest. Although both nuclear and hydroelectric generation produce slightly less 



 

5 

lifetime emissions, their initial construction costs are extremely high. Furthermore, there is 

political, environmental, and societal opposition to both nuclear and large-scale 

hydroelectric generation projects [14], [15]; and, few feasible locations to implement large-

scale hydroelectric projects remain un-utilized throughout Canada [16]. One particular 

large scale hydroelectric project currently under consideration is the Site C Dam on the 

Peace River in Northeastern British Columbia. The Site C Dam is one of the last feasible 

locations for such a project in the Province, and preliminary cost estimates have reached as 

high as $7000/kW of installed capacity [17]. In addition to higher than average construction 

costs, there is significant opposition to the Site C Dam project on account of environmental 

and societal grounds. 

These factors, coupled with increased public and political pressure to reduce GHG 

emissions of new generation projects has resulted in significant increases in development 

of new renewable energy projects [4], [18]. In particular, BC Hydro has been mandated to 

increase overall grid system efficiency, with a focus on renewable energy generation 

projects as a part of the BC Clean Energy Act [4]. However the majority of renewable 

energy generation technologies being considered are inherently variable in nature, 

requiring additional investment in infrastructure to ensure reliable integration with the 

electrical grid. 

2.1.1 Renewable Energy: Variable Generation Resources 

One of the primary challenges that arises from increased renewable generation into the 

electrical grid is that it both variable and non-dispatchable. Many renewable generation 

technologies (solar, wind, tidal, wave, etc.) only produce electricity during periods when 

their associated resource flux is available – generation output depends on the solar 

insolation, wind speed, tidal flow, or wave action, respectively. They will generate 

electricity when the natural resource is abundant, but will reduce or cease to generate any 

electricity during periods of reduced resource availability. This non-dispatchable 

generation requires power systems operators to balance load with additional generation by 

throttling other dispatchable generation resources to compensate. As a result, increased 

variable renewable energy generation requires significant dispatchable generation capacity 

to be in place at all times, regardless of whether it is running or simply in standby mode. 
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One example of the variability of renewable generation, and the resultant temporal 

mismatch between renewable generation and load profile is shown in Figure 2.1[19]. 

 

Figure 2.1 – BPA Balancing Authority Load & Total Wind, Hydro, and Thermal Generation 16 Oct 

2014 – 23 Oct 2014 [19]. 

As shown in Figure 2.1, there is no guarantee that the renewable generation will occur at 

the same time as periods of increased demand. As a result, it is necessary to either store 

excess energy when it is produced for use at a later time, or to curtail generation when it 

exceeds demand and rely on dispatchable generation to top-up renewable generation when 

it does not meet demand. Not only is this operating approach expensive, but it is also 

inefficient and results in additional GHG emissions from dispatchable generation operating 

outside of optimal efficiency parameters to match electrical demand and renewable energy 

generation [7]. 

2.2 Conventional Power System Operations 

The process used by modern utility operators to achieve the required balance between 

generation and demand is a highly regulated and complex process, spanning operations at 

the millisecond level up to generation planning studies looking multiple decades into the 

future. Long-term planning operations are necessary to ensure that adequate generation 

resources are built to meet anticipated future demand, while daily and hourly bidding 

operations are used to optimally dispatch available generation resources while reducing 

operating costs and maintaining system stability. 
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Electrical generation is generally categorized as one of the following three types to permit 

modern electrical operations and planning [20]:  

1. Base-load generation – the slowest responding and largest capacity generation, 

suitable to provide large quantities of stable power over long time periods. 

Generally these are large thermal generation facilities, large scale hydroelectric, or 

nuclear power plants. These facilities run uninterrupted throughout the year with 

the exception of maintenance shutdowns. 

2. Intermediate generation - runs essentially continuously, but only during certain 

periods of the year. It provides additional power to the electrical grid to account for 

seasonal variations in electrical consumption. And, 

3. Peak generation - the generation capacity to respond to daily variations in 

electrical demand. It is fast acting and able to rapidly ramp up and down, but is 

typically the most expensive generation to operate. 

With the integration of variable renewable energy into the electrical grid, the dispatch of 

peak generation resources becomes more variable to ensure system generation can meet 

demand. The scheduling and economic dispatch of generation assets within an electrical 

grid is in itself a complex subject, with many factors affecting the price paid for generation 

depending on the purpose and capabilities of the generation resource. Typically, however, 

fast-acting generation resources that can respond to rapid variations in electrical demand 

are the most expensive generation to purchase at the wholesale level. These resources are 

commonly referred to as regulating or balancing reserves, and are required due to variations 

in electrical demand ranging from 1 to 30 minutes – very similar timescales to the 

commonly observed short-term variability of wind, solar, and wave energy generation [22]. 

As a result, increased penetration of renewable generation into an electrical grid can result 

in the need to dispatch greater amounts of regulating or balancing reserves, increasing 

overall operating costs and GHG emissions [7].  

2.3 Addressing Increased Variability of Renewable Generation  

There are a number of potential solutions to address the variability that comes with 

increased renewable generation in the electrical grid, each with its own unique benefits and 

challenges. Operating dispatchable generation resources to firm-up renewable generation 
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is effective, but results in additional GHG emissions and increases the costs of renewable 

generation projects when firming power capacity is taken into consideration [22]. The 

primary solutions that are robust enough for wide-scale grid integration of variable 

renewable generation are dedicated energy storage resources, and demand response 

programs [23], [24]. The following sections will briefly discuss both of these potential 

solutions as well as some of their benefits and limitations. 

2.3.1 Energy Storage Resources 

Energy storage resources have seen a surge of development in the last century, resulting in 

feasible solutions for long-term storage and fast-acting short term storage technologies; 

however they remain expensive to purchase and operate at utility-scale capacities [25], 

[26]. Table 2.2 provides a summary of the costs of common storage technologies, as well 

as their respective round-trip energy efficiencies. 

Table 2.2 - Cost of Various Storage Technologies [25]. 

Technologies Energy Cost 

[$/kWh] 

Power Cost 

[$/kW] 

Balance of Plant Cost 

[$/kW or $/kWh] 

O & M Cost 

[$/kW] 

Efficiency 

[%] 

Lifetime 

[years] 

CAES 10 450 160 $/kW 6 70 30 

PHS 12 2000 2 $/kWh 3 80 40 

Pb-acid 300 450 100 $/kW 10 75 6 

Li-ion 1500 1500 100 $/kW 10 93 15 

Flywheels 1,000 350 100 $/kW 18 90 15 

SMES 10,000 300 1,500 $/kWh 10 95 20 

EC 30,000 300 100 $/kW 13 95 30 

 

One common theme among grid-scale energy storage technologies is a relatively high 

combined cost of storage, and a less than ideal efficiency of energy conversion resulting in 

considerable round-trip energy losses. In addition, these storage facilities must be designed 

for the largest variations in renewable energy fluctuations, resulting in significant idle 

storage capacity during normal operation [25]. Despite these limitations, distributed 

storage has emerged as a viable solution to addressing issues related to variability of 

renewable generation and grid-side ancillary services [27], [28]. 
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2.3.2 Demand Response Programs 

Demand response programs are not new – in fact, they have been implemented historically 

by power systems operators as a last resort through the practice of systematic load shedding 

to prevent blackouts [29]. Modern demand response programs have become more elegant, 

taking into consideration the impacts of the program on end-users, coupled with operating 

principles to achieve the greatest benefit to the electrical system operator without 

interfering with the end-use function of the participating. These programs can be broken 

down into two categories depending on how they interact with participating loads: indirect 

demand response (price signals), and direct demand response. Each of these types of 

demand response system can be implemented using a distributed or centralized controller, 

depending on the system performance desired and operating constraints of the program. 

Indirect DR provides control of participating loads without specific knowledge of 

individual device-states or operating characteristics - one common example being time of 

use (TOU) pricing schemes, where the cost of electricity is variable throughout the day in 

response to demand and availability of generation resources. Despite not knowing the 

specific device-states of participating loads, it is possible for a utility operator to estimate 

the resultant system response to a specific price signal. This approach can be effective at 

influencing the demand curve, particularly for peak-shaving or valley-filling objectives 

[30], [31], however it is often difficult to accurately predict the system response to a change 

in price signal as it depends on a number of independent and difficult to predict variables 

[32]. Recent work has been undertaken on this particular issue by Pacific Northwest 

National Labs, wherein the price signal is incorporated into an autonomous control system 

using proprietary thermostats and communications infrastructure [20]. This approach 

interfaces very well with conventional time-of-use utility pricing schemes, while 

improving the accuracy of the response obtained from an indirect DR program. 

Direct demand response provides a much more predictable system response to a control 

signal by directly influencing device behaviors based on known device-state information. 

As a result, direct demand response programs require that participating loads are equipped 

with sufficient communications devices to transmit and receive device-state data and 

control signals from the demand response system operator. The advantage to direct DR 

systems is that the response of the participating population is much more accurately known, 
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and can be controlled to a high degree of precision [33]. The cost of this high degree of 

predictability and control is that the end-use functionality of the participating devices is 

more likely to be disrupted if not carefully controlled – customer comfort constraints must 

be clearly indicated and compensated for in the control algorithm development to ensure 

the DR program does not produce unacceptable device behavior [34]. 

Both direct and indirect demand response programs exhibit considerable advantages when 

compared to energy storage systems for grid-scale applications:  

1. The round-trip efficiency of demand response programs can approach 100%, as the 

deferred energy is stored as the end-use product (home heat, or EV battery charge, 

for example). This contrasts energy storage systems that have inherent 

inefficiencies in the energy storage process itself [7], [25].  

2. The costs of demand response programs are much smaller than similarly sized 

energy storage systems, as the loads themselves are utilized as storage mediums. 

The only additional costs are associated with the communications infrastructure, 

and is largely already available as smart meters and smart grids are rolled out across 

North America [34]. 

3. Demand response programs, particularly aggregate residential load demand 

response programs are easily scalable, and can be expanded as required by 

recruiting additional loads to participate in the program [8].  

These factors make demand response programs a leading candidate to aid power systems 

operators in dealing with variable renewable generation, as well as to provide conventional 

ancillary services to electrical grid operations. It should be noted, however, that while 

demand response programs are well-suited to provide balancing reserves, they do not 

provide net energy to the electrical grid, nor are they suitable to directly provide substantial 

grid stability services at this point in development [20].  

In addition to the selection of the type of demand response program, be it direct or indirect, 

selection of an appropriate control structure is also important in establishing DR resources. 

Aggregate controllers reduce computational complexity and individual hardware 

requirements for participating loads, as the computationally intensive portion of the control 

system is located at a central area. Distributed control, on the other hand, requires 

individual device controllers to determine the optimal dispatch of each device 
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independently of other participating loads. This has the advantage of reducing the overall 

computational complexity of the control system, and distributing tasks among multiple 

agents in the system, however it comes at the expense of processing time and individual 

device controller costs. 

It may be possible to strike a balance between indirect and direct control through the use 

of an aggregate control structure in a direct control setting under limited information 

scenarios. If a sample of a participating population is sampled to determine the anticipated 

system response, it may be possible to maintain full control authority of the non-reporting 

loads in the population. This would serve to reduce the instrumentation requirements of a 

direct demand response approach, while maintaining the benefits of predictable system 

response. 

2.3.3 Demand Response Applications 

Demand Response programs have a wide variety of applications in the operation of the 

electrical power system. The rapid variation of electrical loads is useful from a system 

balancing perspective, reducing the amount of conventional balancing reserves that must 

be dispatched to maintain overall energy balance of the grid. In addition to basic energy 

balance operations, it is also possible to use demand response programs to improve system 

operations and planning models. A group of responsive loads from a similar geographical 

area could be used to maintain maximum utilization of transmission lines, as well as to 

protect distribution equipment from overload conditions. With the correct control 

algorithms, it is possible to utilize demand response programs for ancillary services, grid 

stability and security operations, and targeted localized transmission system operation [36]. 

Even in places like British Columbia, where 90% of generation is from highly dispatchable 

hydroelectric facilities, demand response programs can be utilized to optimize the 

transmission and distribution grid assets, as well as provide greater flexibility in optimizing 

the water levels in reservoirs at hydroelectric facilities than is currently available. 

2.3.4 Privacy Concerns in Demand Response Systems 

For a load to participate in a direct demand response program, certain details regarding the 

device-state information must be transmitted to a load aggregator to properly determine the 
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demand response control signal required to achieve the target objective. Some individuals 

have privacy concerns associated with providing device-state information to power 

systems operators or load aggregators, as was particularly evident when BC Hydro began 

implementing a smart meter program; Some BC Hydro customers were opposed to smart 

meter infrastructure based on health or privacy concerns and refused to have smart meters 

installed on their homes [37]. Similar opposition is likely to be encountered in the 

implementation of direct demand response programs, and is one of the primary motivations 

for work in this thesis on demand response algorithms under limited feedback scenarios. 

In addition to privacy concerns, algorithms developed to dispatch a demand response 

program with limited feedback could also aid in reducing the instrumentation costs for the 

system, as only a portion of the population would require two-way communication 

infrastructure. 

2.4 Identifying suitable loads for Direct Demand Response 

 The primary goal for any DR program is increased load flexibility, thus the most important 

consideration is the types of loads recruited for participation in the program. Loads 

participating in a DR program must be capable of deferring their operation to opportune 

times, such as when excess renewable generation is available or during periods of reduced 

total system demand [7]. In addition, the deferral of load operation must result in minimal 

impacts on customer comfort constraints to ensure that participants are willing to engage 

in the demand response program. Identifying loads that meet these criteria, and have 

sufficient capacity to provide useful demand response capabilities, is the first step in 

implementing demand response programs.  

As most demand response programs are aimed at providing ancillary services to power 

systems operators, or minimizing the variability of renewable generation resources, they 

must be of a sufficient capacity to participate in these markets [38]. The California 

Independent System Operator (CAISO), for example, requires participants in the regulating 

reserve market to provide a minimum of 1 MW of capacity. As most residential loads are 

an order of magnitude lower than this threshold, it is necessary to recruit and control 

multiple aggregated loads to achieve these minimum capacity requirements. In addition to 
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this threshold value, a sufficiently large population is necessary to ensure sufficient load 

diversity to permit effective control of the aggregate population [39]. 

Two primary types of load have been identified as having significant potential for 

participation in residential scale aggregate demand response programs: Thermostatically 

controlled loads, and energy-constrained storage [7], [29]. The following sections will 

investigate the specific operational constraints of these loads, as well as the relative 

usefulness they offer for demand response programs. 

2.4.1 Thermostatically controlled loads 

Thermostatically controlled loads comprise a large portion of the residential and 

commercial demand profile [38]. Common examples of residential thermostatically 

controlled loads include refrigerators, heat pumps, air conditioners, and hot water heaters. 

These loads operate by switching a machine capable of converting electrical energy to heat 

energy, and are generally controlled with a thermostat to maintain a user-specified 

temperature of a conditioned space. Once the initial setting of the thermostat is defined, 

user-interactions with the devices are relatively rare, and the devices operate autonomously 

[7].  

Thermostatically controlled loads are generally operated in a binary manner, switching 

between the active- and inactive-states repeatedly in response to thermostat control signals. 

The operational state of the TCL is described by n, and when active, the device operates at 

its full power rating Pr. This operational pattern results in a load demand trajectory 

described by equation (2.1): 

 8(9) = ;(9)8< (2.1) 

  

Cycling of TCLs between the active and inactive states occurs when the heat transfer rate 

from the conditioned thermal system �*5�� is less than the rated heating power of the device 

[7]: 

 %|8<| > |�� ����| (2.2) 

 

Where η is the coefficient of performance, or efficiency, of the device. This deferrable 

operation of TCLs makes them ideal candidates for demand response programs, as the 

thermal energy stored in the conditioned space is generally sufficient to permit ‘coasting’ 
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through prescribed intervals with minimal deviations to the resultant space temperature 

profile [7].  

While most TCLs are suitable for demand response programs, residential HVAC systems 

show the greatest promise of typical residential loads: They are typically among the largest 

loads in a home, and as such the communications and instrumentation costs would be lower 

on a per-unit energy basis than other smaller TCLs. Further, electrically powered HVAC 

devices, such as heat pumps and baseboard electric heaters, are extremely common in 

temperate climates such as the Pacific Northwest of North America [39]. One drawback to 

the use of home HVAC devices in demand response programs is that their operation is 

directly dependent on outdoor air temperature conditions. In the case of TCLs primarily 

utilized for heating a conditioned space, their flexibility will be reduced during warmer 

seasons or during periods when the outdoor air temperature approaches the thermostat 

temperature setting. This could be partially countered through the recruitment of a 

population of TCLs used for both heating and cooling, such as heat pumps, however there 

will still remain certain environmental conditions during which the loads show reduced 

opportunities for deferral. Despite this limitation, TCLs remain one of the most appealing 

loads for recruitment into a demand response program. 

2.4.2 Energy storage as a deferrable load 

Another load class that exhibits significant promise for use in demand response programs 

is energy storage, such as the charging of device batteries or the production of an alternative 

fuel [7]. The primary function of such loads is to provide a desired level of stored energy 

at the end of a charging cycle. Further, these loads are rapidly becoming more common, 

ranging from consumer electronic devices to plug-in electric vehicles. The charging 

trajectory, E, of such devices can be described by equation (2.3): 

 ?(@�) = A %8<;(9)B9@�
C ≥ ?E;    ?(C) = C (2.3) 

 

where η is the one-way conversion efficiency associated with the storage unit, Pr is the 

rated power of the charger, n is the device operational state at time t, and Ts is the charging 

cycle duration [7]. From this equation it can be shown that it is possible to fully charge the 

device in less time than the user specifies if the charger capacity is sufficiently large: 
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 %8< > ?E@� (2.4) 

 

Like TCLs, this characteristic permits deviations from the standard operational-state 

trajectory, providing the ability to modify the demanded load of the device over the user-

set charging-horizon, without affecting device functionality. 

Once again, owing to their relatively large capacity, plug-in electric vehicle charging is the 

most promising residential scale energy-constrained storage load for demand response 

programs [7], [40]. Significant research has been conducted on the potential of PEVs to 

provide ancillary services, particularly with respect to vehicle-to-grid energy services [41], 

[42]. However with current battery technologies, the losses associated with round-trip 

conversion efficiencies, and the accelerated degradation of battery performance from 

increased cycling, makes vehicle-to-grid programs less appealing to consumers [7]. 

Previous research on the use of PEVs in the provision of ancillary services has found that 

vehicle-to-grid operation is not required to achieve appreciable results; simple deferral of 

charging processes can provide significant benefits on its own, with increased efficiency 

owing to only one-way conversion and no detrimental effects on battery performance [7]. 

Furthermore, BC Hydro projects the market share of PEVs to increase steadily, 

approaching 5% in 2020 and 20% by 2028 [4]. Another significant advantage to utilizing 

PEV charging as a demand response resource is that there are only minor variations in 

driving usage patterns throughout the year [43], resulting in a load population that should 

maintain diversity and availability regardless of the season. 

2.4.3 Hysteresis control of deferrable loads 

Device level control of both TCLs and PEV charging is required to ensure that user comfort 

preferences are maintained, and machinery operational constraints and duty cycles are not 

exceeded when incorporated into a demand response program.  

In the case of TCLs, device level control is typically achieved through the use of a 

thermostat. As temperature measurements are often accompanied by a considerable amount 

of volatility, thermostats frequently employ a hysteresis control logic [7]. Hysteresis 

control involves the definition of a deadband space, or a region of end-use measurements, 

where no change to the operational state of the device will occur. Measurements outside of 
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the deadband space will result in a transition from either the active or inactive device state, 

depending on the current device state. This approach minimizes the frequency of cycling 

of the device, preventing premature degradation of the machine while maintaining user-

defined comfort constraints.  

This hysteresis control can be represented mathematically for heating operation as [44]: 

 ;GH + JK = L J MGHK ≤ M�C MGHK ≥ M�;GHK �9OP<QR�P (2.5) 

 

Where � is the normalized end-use state measurement, �� is the lower deadband boundary, ��is the upper deadband boundary, and k is the thermostat sampling index [7]. If the 

deadband width is defined as δ, the deadband boundaries are defined as: 

 M± = ± TU (2.6) 

 

The normalized end-state for heat pumps is defined as: 

 MGHK = VWGHK − V�GHKT  (2.7) 

 

where θa is the indoor air temperature measurement, and θs is the user-defined temperature 

set-point. When a measured end-state value is outside the deadband region, the controller 

will switch the operational state of the TCL. Specifically, for end-state measurements less 

than �� the controller will cause TCLs in the inactive-state to transition to the active-state; 

end-state measurements greater than �� will cause the TCLs in the active-state to transition 

to the inactive-state [7]. 

Callaway and Hiskens have suggested that device-level hysteresis controllers can also be 

used to control Energy-constrained storage [45]. Analogous to sampling the temperature 

of the conditioned space in TCLs, controllers for energy-constrained storage must sample 

the current charge level with respect to the minimum charging trajectory that will ensure 

the device is fully charged at the end of the user-defined charging period. This charging 

trajectory Es can be defined according to equation (2.8) [7]: 

 ?�GH + JK = ?�GHK + ?E@� @;       ?�GCK = C (2.8) 
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Comparison between the charging trajectory Es and the actual device state-of-charge E 

permits the application of a hysteresis controller to govern the operational-state of the 

charger. The normalized end-state measurement for energy-constrained storage charging 

can be determined by equation (2.9): 

 MGHK = ?GHK − ?�GHK?E  (2.9) 

 

2.5 Managing Aggregate Load Demand  

It is important to consider a framework for the organization and management of aggregate 

load communities engaged in demand response programs. As an aggregate load community 

is necessary to address the technical requirements of ancillary services when recruiting 

residential scale loads, an intermediary agent to oversee operation of the aggregate load 

community in the context of the overall power systems operations is necessary. As 

described by Parkinson, the intermediary should display four attributes to be successful: It 

must be non-invasive, secure, profitable, and ecological [7]. Load management programs 

that exhibit these four attributes will be more appealing to both recruited loads and power 

system operators. 

While it would be relatively straightforward to permit power systems operators to take 

responsibility for operating these intermediaries, Parkinson argues that separating the 

intermediary at the community-level is a superior approach [7]. This approach greatly 

simplifies network privacy, as individual device-state information need not be transmitted 

to the power systems operator directly and is only send to the level of the load aggregator. 

In addition, it would provide a distinct separation between the service provider (the load 

aggregator), and the power systems operator that is directly benefiting from the services of 

the demand response program. Further, previous work has shown that the error associated 

with multiple smaller communities is essentially equivalent to the error observed in a single 

larger community [8] – however the multiple smaller community approach has the added 

benefit of reduced network congestion and decreased computational time at each time-step 

[7]. As a result, a balance must be struck to ensure load communities are sized to ensure 

computational time is maintained below the time-step employed in the demand response 
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program while producing a large enough aggregate capacity to be useful in power systems 

operations.  

A group of recruited loads participating in a demand response program, herein referred to 

as the load community (LC), would be organized by an intermediary agent to provide 

ancillary services to the power systems operator. This intermediary is referred to as a load 

aggregator (LA), and would coordinate interactions between the LC to achieve the 

contracted response desired by the power systems operator [7]. The LA provides a specified 

deviation from the steady-state load trajectory of the LC at the request of the power systems 

operator in a format similar to conventional generation. This operation is referred to as a 

virtual generator model (VGM) throughout this thesis, and preserves the separation 

between the individual loads in the LC from the power systems operator. 

2.5.1 Controlling Load Community Dynamics 

While the previously described component-level controls ensure normal device operation 

is maintained for both TCLs and EV charging, it is necessary to implement a system-level 

strategy to manage these large populations of participating loads effectively. The approach 

utilized by Parkinson for system-level control is implemented in this thesis, as described in 

the following section [7]. 

In this formulation, device-level hysteresis controllers maintain normal operating limits of 

TCLs and energy-constrained storage devices. This system-level approach eliminates the 

need to track individual device operating constraints, significantly reducing complexity and 

communications requirements. Aggregate population dynamics are then described by the 

power density distribution functions for the active and inactive machine-states, ϕ1 and ϕ0, 

respectively. The aggregate load is thus defined by the total power existing in the active 

state, and can be related to the total power in the current responsive population Pcap and a 

capacity factor Φ as [7]: 

 8(9) = Y 8<,R A ZJ(M, 9)BM = 8EW�(9)[(9)\
�\

]R(9)
R^J  (2.10) 

 

It is shown by Parkinson that, due to a discontinuity introduced by the device-level 

hysteresis control logic given in (2.5), that it is possible to control the capacity factor 
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according to equation (2.11) through a perturbation u to the end-use state comparison [7], 

[45]. 

 _`a9b∗ →9∗ [(e, 9�∗ ) = _`a9f∗ →9∗ L A ZC(M, 9�∗ )BM +Mf�e(9f∗ )
�\

A ZJ(M, 9�∗ )BMMb�e(9f∗ )
�\

g (2.11) 

 

This control is achieved by modifying the state-transition boundary locations, and requires 

that each element within the targeted population is equipped with suitable communications 

hardware, such as programmable communicating hysteresis controllers (PCH) [45]. This 

effectively modifies the device-level hysteresis control logic introduced in (EQ) to the form 

given by: 

 ;RGH + JK = L J MGHK ≤ M� + eGHKC MGHK ≥ M� + eGHK;RGHK �9OP<QR�P  (2.12) 

 

By synchronizing loads near state-transition boundaries, the controller is able to influence 

aggregate population dynamics. This approach ensures that in the case of deferrable energy 

storage, energy is never extracted from the unit to achieve the desired response [7].  

To enable this control, each participating load equipped with a PCH provides the LA with 

its current power-state vector zi. The loads then wait for the system-level set-point decision 

prior to evaluating the revised hysteresis control logic of (2.12). This sequence of events 

ensures that individual device sampling intervals are synchronized to the same central 

clock, permitting the system-level controller to schedule these loads in real-time. The 

power state vector, zi, reported by individual loads to the system-level controller includes 

the device state, the normalized end-state measurement value, and the power rating of the 

device: 

 hRGHK = i;RGHKMRGHK8<,R
j (2.13) 

 

Which, when multiple loads are participating in the demand response program, results in 

the LA receiving a set of power-state vectors Z from the participating loads: 

 kGHK = lhJGHK, hUGHK, … , h]RGHKn (2.14) 

 

This control approach results in the closed-loop control strategy depicted in Figure 2.2[7]. 
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Figure 2.2 - Closed-loop control strategy implemented. 

For this control strategy to be successful, the delay-time between the LA signal broadcast 

and LC response must be considerably less than the PCH update time. This delay-time is 

directly related to the number of participating loads, network quality, and efficiency of 

system-level decision-making [7]. This is another factor influencing the preference for 

multiple moderately sized LCs as opposed to a single LC with a very large number of 

participating loads. 

Provided that the device-level controllers operate at the same measurement resolution, ℛ, 

it is possible to determine the populations demand response as a function of the end-use 

state comparison perturbation us: 

 8EW�Gp + JK[Ge�, H + JK = Y 8<,R
]R

R^J i Y ZCGM, HKe��Mf
�\ + Y ZJGM, HKe��Mb

�\ j (2.15) 

 

Where us may only take on values according to the device-level controller measurement 

resolution within a specified range (|	GqK| ≤ r 4⁄ ) to prevent rapid cycling of devices, and 

discretized according to the device-level controller resolution as in (2.15): 

 
eGHK = − Tu + v TUw    ;    w ∈ ℕ v = C, J, U, … , w 

(2.16) 

 

The resultant function (2.17) is convex, and as such it can be implemented by the LA into 

a deviation minimization problem [7]: 

 zR;(8∗GH + JK − 8EW�Gp + JK[Ge�∗, H + JK)U (2.17) 
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Where the optimal perturbation us
* will result in an aggregate responsive load demand 

equivalent to the specified target P*. To ensure the desired response of the aggregate 

responsive load population is achieved, the specified target must exist within the feasible 

region defined by: 

 

�,+�Gq + 1K ≤ �∗Gq + 1K ≤ �,�|Gq + 1K �,�|Gq + 1K = ����Gq + 1KΦG	,�|, q + 1K �,+�Gq + 1K = ����Gq + 1KΦG	,+�, q + 1K 
 

(2.18) 

This feasible region defines the limitations of the VGM, corresponding to the virtual 

generator ramp-rate at each time-step. As the load populations are dynamically evolving in 

time, it is necessary to implement a closed-loop control strategy to ensure the LA can 

accurately report the LCs capabilities as a VGM for each time-step. 

2.5.2 Dispatch of multiple loads 

The tracking error associated with multiple smaller LCs is found to be roughly equivalent 

to the error associated with a single large LC containing the same total number of individual 

loads [8]. This phenomenon, in conjunction with the need to maintain low computational 

time of the system-level controller, provides incentive for a LA to distribute recruited loads 

into multiple smaller VGMs rather than a single large model for each load type. 

Furthermore, if a LA intends to manage different types of loads, it can reduce complexity 

and improve system performance by developing individual VGMs for each type of load. 

However, when operating multiple VGMs the LA must determine the optimal dispatch of 

each VGM to achieve the global LA target response. It is preferable for the LA to minimize 

the variability and magnitude of the end-use state comparison perturbation u [7]. 

Minimizing the magnitude of the perturbation serves to reduce the deflection from the 

customers’ set-point values, and minimizing the variability of the perturbation accelerates 

the dispersion of end-use states within the system-level equivalent deadband space. Greater 

dispersion of end-use states results in a larger feasible space for the VGM, providing 

additional flexibility in achieving the desired response of the power system operator. 

By assuming that the amplitude of the control signal will be proportional to the amplitude 

of the deflection of the LC from the uncontrolled trajectory, computational time can be 

reduced by implementing a linear programming approach [7]. The uncontrolled trajectory 
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is equivalent to a trajectory with a perturbation of us[k] = 0, and also represents the lowest 

variability and amplitude control signal possible: 

 8CGH + JK = 8EW�GH + JK[G(e� = C), H + JK (2.19) 

 

Denoting the controlled deviation from P0 as ΔP*, and dropping the time-dependence, the 

responsive load trajectory is given by: 

 8∗ = 8C + }8∗ (2.20) 

 

The boundary conditions that govern the controlled deviation from the uncontrolled 

trajectory are based on the maximum allowable set-point changes defined previously to 

prevent rapid cycling of machines: 

 

Δ�∗(	 = 0) = 0 Δ�∗(	 = r 4⁄ ) = �,�| − �/ Δ�∗(	 = − r 4⁄ ) = �/ − �,+� 

 

(2.21) 

Although the relationship between these boundary conditions may not be linear, a 

reasonable first-order approximation is to assume the deflections in either direction are 

proportional to the ratio of the controlled deflections and their maximums [7]: 

 

	 = r4 Δ�∗�,�| − �/ �� > Y �/(�)��

�^0
	 = r4 Δ�∗�/ − �,+� �� < Y �/(�)��

�^0
 

 

(2.22) 

Where PT is grid-side objective target for a LA dispatching Np responsive load communities 

within the control area. The LA may then attempt to minimize control signal deflections, 

while attempting to meet the grid-side objective target without violating any individual 

VGM ramp constraints. Depending on the magnitude of the grid-side objective target, and 

the aggregate uncontrolled trajectory of all participating loads, one of two linear 

programming formulations are utilized: 
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�`� Y }8∗
8vW�(�) − 8C(�)

]�

�^J
�. �.      Y }8∗(�) = 8@ − Y 8C(�)]�

�^J
]�

�^J}8∗(�) ≤ 8vW�(�) − 8C(�)
}8∗(�) ≥ C ∆8∗(�)8@ = 8vW�(�) − 8C(�)
∑ (8vW�(�) − 8C(�))]��^J

 (2.23) 

 

When PT is greater than the aggregate uncontrolled trajectory, and: 

 

�`� Y }8∗
8C(�) − 8vR;(�)

]�

�^J
�. �.      Y }8∗(�) = 8@ − Y 8C(�)]�

�^J
]�

�^J}8∗(�) ≤ 8C(�) − 8vR;(�)
}8∗(�) ≥ C ∆8∗(�)8@ = 8C(�) − 8vR;(�)
∑ (8C(�) − 8vR;(�) )]��^J

 (2.24) 

 

When PT is less than the aggregate uncontrolled trajectory. 

Solving the linear programming formulation for the controlled deviations of each 

population will ensure that the desired grid-side objective target can be attained, while 

simultaneously minimizing the amplitude of the control signal u across each load-type. It 

is imperative that the grid-side objective target is feasible for the participating LCs to 

ensure a valid solution to the linear programming formulation is possible.  
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3 Computational Modeling Framework 

This chapter describes the specific computational models that are employed to simulate the 

various loads that comprise the load communities participating in the demand response 

program. 

3.1 Demand-side: Load Models 

Demand-side load models must be capable of accurately simulating individual device 

dynamics with minimal computational power. The following sections explain the dynamic 

load models used to simulate the targeted end-use devices: Residential air-source heat 

pumps, and plug-in electric vehicle charging. 

3.1.1 Heat Pump Equivalent Thermodynamic Parameter Model 

The study of building heating systems, such as air-source heat pumps, and their interactions 

with building characteristics commonly results in the application of detailed multi-physics 

approaches [7]. Due to the computational complexity of such simulations, they are not 

suitable for modeling large populations of individual buildings as required for demand 

response programs utilizing residential scale loads. A simplified model structure 

commonly employed in such demand response simulations is the equivalent thermal 

parameter (ETP) model [7], [8], [46].   

The ETP model represents each building as a combination of thermal masses, which are 

linked to one another via their related coefficients of heat transfer. Previous works have 

employed a simple ETP model incorporating two coupled thermal masses to represent 

small- to medium-sized buildings such as residential homes in North America [47]. This 

coupled thermal system divides the home into two thermal masses: the thermal mass of the 

air inside the dwelling Ca, and the thermal mass of the building structure Cm. These thermal 

masses are then permitted to interact with the outdoor air temperature θa through the 

building envelop thermal resistance Rao. The resulting temperature trajectories of the two 

thermal masses are then coupled through the following linear dynamic system 

representation:  
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 � ����a� � = � � ���a� + � ����� � (3.1) 

 

Where θm is the building contents temperature, and the system inputs are represented by 

the outdoor air temperature θo, and the heat input	q� . The heat input used in this model is 

based on the heating power of the heat pump	�� ��, and the operational state of the heat pump 

is determined by the hysteresis controller presented in section 2.4.3.  

 �� : ;�9��� ���9� (3.2) 

 

The state- and input- transformation matrix, A and B, are determined from the structure of 

the ETP, which is presented below in Figure 3.1 [7]. 

  

Figure 3.1 - ETP Schematic [7].  

a00 : X � 1R��C� I 1R��C��					a0� : 1R��C� 								a�0 : 1R��C� 								a�� : X 1R��C� 

b00 : 1R��C� 					b0� : 1C� 					 		b�0 : 0						b�� : 0				 
� : �a00 a0�a�0 a��� 								� : �b00 b0�b�0 b��� 							� : � ���a� 							  : ����� � 

 V� : ¡V I ¢£ (3.3) 

 

A solution to the resultant discrete-time version of (3.3) under steady inputs is [48]: 

 

VGH I JK : ¤VGHK I ¥£GHK Ω : exp�¡©� 

Γ : A ¤¢ª«�
/  

(3.4) 

Where Ω is the state-transition matrix, and Γ is the input-transition matrix. Because the 

diurnal variations of outdoor temperature that affect device-level duty-cycles are much 

longer than typical thermostat sampling frequencies, the utilization of temperature data 
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with a 1-minute resolution is reasonable [7]. Additional system internal gains and losses 

(such as opening and closing doors, solar gains, air infiltration, and the operation of other 

loads) are modeled with a white noise term, e, which is assumed to be normally distributed 

with variance σ, and included in the component model utilized in this thesis according to 

equation (3.5): 

 VGH I JK : ¤VGHK I ¥£GHK I PGHK (3.5) 

 

3.1.1.1 Heat Pump Unit Sizing 

To accurately model a representative population of homes, the heat pump unit sizing must 

be suitable for the houses being simulated. To ensure reliability, the approach presented by 

Parkinson was used for heat pump unit sizing [7]. This technique incorporates worst-case 

scenario estimates of the parameters of the ETP model, in combination with the most 

extreme environmental temperatures anticipated for the desired study area, to size heat 

pumps for each modeled home. This is accomplished by balancing the heat flux from the 

house that occurs under these conditions to maintain the indoor air temperature set-point 

with the design heating power of the heat pump, and an appropriate oversizing factor. As 

such, the design heating power of the heat pump can be determined using equation (3.6), 

where γ is the over-sizing factor, θs is the thermostat set-point temperature, and θd is the 

heating design temperature. 

 �� B : ¬ �V� X VBW� � (3.6) 

 

The variable efficiency of air-source heat pumps was addressed by fitting a third order 

polynomial to the air-temperature efficiency curves from a manufacturer’s datasheet [49]. 

As a result, the power rating of individual units can be determined using the efficiency of 

the heat pump at the design temperature, ηd: 

 8O : �� B%B (3.7) 

 

From equation (3.7), the required electrical power to produce the design heating power is 

Ph. This value was then rounded up to the nearest 0.5 kW to account for discretization 

between units and conventional air-source heat pump availability [7], [49]. Under all but 

the most extreme cold temperatures for the region, the heat pump will thus have excess 
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available capacity, and will cycle between the on and off states to maintain the indoor air 

temperature according to equation (3.8). 

 �� O : %GHK8O (3.8) 

 

A fan is used to circulate the heat produced by the heat pump throughout the building, 

which also contributes to the operational capacity of the device. As a result, the operational 

heat flux from the heat pump is the sum of the heat from the heat pump, and the additional 

energy imparted by the operation of the fan. 

 �� ��GHK : �� OGHK I �� ®W; (3.9) 

 

Assuming that the fan operates at an ideal efficiency, the total electric power associated 

with the operational heat pump is then calculated by: 

 8< : 8O I 8®W; (3.10) 

 

3.1.1.2 Heat Pump ETP Model Example 

A simple example considering a single building is presented to demonstrate the device-

level dynamics of the ETP model. The parameters implemented in the model can be found 

in [50] and [51], and are summarized below in Table 3.1 [7]. 

Table 3.1 - Parameters implemented in the heat pump ETP model. 

Parameter Description Value 

C Average thermal capacitance 10 kWh/°C 

Cm Indoor contents thermal mass 75% of C 

Ca Indoor air thermal mass 25% of C 

Rma Indoor heat transfer resistance 0.5°C/kW 

Rao Envelope thermal resistance 2°C/kW 

�®W;�  Heating power of fan 500 W 

θs Temperature set point 20°C 

δ Temperature deadband width 1°C 

T Sampling time interval 1 minute 

e Noise standard deviation 0.01°C s-1/2 
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The outdoor air temperature profile is shown in the top panel of Figure 3.2; the building 

air- and contents-temperatures in the middle panel, and the device power requirements in 

the bottom panel.  

 

Figure 3.2 - Example of the ETP model response under the displayed outdoor temperature profile. 

It is clear from this figure that the device cycles between on- and off-states in response to 

the indoor air temperature traversing the deadband region. The transition of the building 

air temperature through the deadband region is influenced by the outdoor air temperature, 

traversing the deadband region more quickly during periods of colder temperatures. 

3.1.2 Plug-in Electric Vehicle charging Model 

The electrical demand associated with plug-in electric vehicle (PEV) charging is directly 

related to the travel history of the vehicle, which can vary widely among potential users 

due to a multitude of social factors. This large variance in travel history produces 

significant variability in electric vehicle charging electrical demand, however once the 

charging time and energy requirements are defined, a simple linear charging model can 

identify real-time electrical demand for PEV charging. The three key parameters required 
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for such a model are the desired battery charge capacity, the time that charging begins, and 

the duration of time available before the desired battery charge capacity is required 

(charging time).  

By neglecting the travel history of the vehicle, and representing it simply as the required 

battery charge capacity (which can be extrapolated to travel history), it is possible to model 

the plug-in electric vehicle charging using a simplified linear model [7].  

To determine the aggregate electrical load for a community of PEVs, a quasi-steady state 

model of the charging reaction was implemented to simulate the device-level charging 

controller. To account for the intrinsic heat loss to the environment during charging, a 

defined charging efficiency, %, is employed. The resultant state-equation for the charging-

trajectory is thus: 

 ?GH + JK = ?GHK + ;GHK%8<@ + PGHK (3.11) 

 

Where the error term, e, is included to represent all un-modeled physical phenomena 

(ambient temperature changes, transient electrochemical effects, etc.) and takes on a 

magnitude of constant variance σ [7]. 

3.1.2.1 PEV Charging Model Example 

A simple example considering the charging of a single plug-in electric vehicle is presented 

to demonstrate the device-level dynamics of the EV charging model. The parameters 

implemented in the model are based on average values from CPEVS survey data [52] and 

previous work by Parkinson [7], as summarized in Table 3.2. 
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Table 3.2 - Parameters implemented in the EV charging model. 

Parameter Description Value 

Pr Rated power of the charger 5 kW 

η Charging efficiency 0.95 

Ec Desired charging capacity 11 kWh 

Ts Desired charging duration 6 hours 

δ Hysteresis control deadband 0.0025 

T Sampling time interval 1 minute 

e Noise standard deviation 0.01 kW 

The hysteresis controller defined in section 2.4.3 provides device level control, resulting in 

a duty-cycle-based charging rate and the resultant staggered charging trajectory [7]. The 

selection of the device deadband width governs the duration of the active charging periods, 

and with δ=0.025 in this example the operational periods last between about 20 and 30 

minutes. The charging trajectory using the above parameters is shown in the top panel of 

Figure 3.3. The middle panel shows the end-use state values of the hysteresis controller, 

and the bottom panel shows the electrical demand from the charger. 

 

Figure 3.3- Example of the EV load model. 
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The PEV charging model also includes parameters to simulate vehicles joining and leaving 

the load community, as well as access to daytime charging. Daytime charging is simulated 

by creating a second ‘virtual’ PEV participant, with charging capacity equivalent to 50% 

of the total charging capacity of the vehicle. 

3.2 Supply-side: Power System Model 

As one of the primary interests of this work is the compensation for the variability of wind 

generation injected into the grid, a model to simulate wind generation is necessary. This 

section introduces the modeling framework for wind energy generation and the basis for 

calculation of wind generation from meteorological data. 

3.2.1 Wind Energy Generation 

Modern wind turbines are extremely complex machines, extracting energy from the wind 

that passes over the turbines blades, producing lift which spins the turbine blades and in 

turn an induction generator to generate electricity. Due to the large number of components, 

and relative complexity of the wind generation system, it is generally preferable to develop 

a simplified transfer function between wind speed input and power output [7]. 

In its simplest form, the transfer function is defined by a conversion from wind speed to 

mechanical power imparted to the turbine hub, and a second conversion from the 

mechanical power imparted to the turbine hub into useful electrical power. A quasi-steady 

state function defining the mechanical power imparted to the wind turbine Pm as a function 

of wind speed uw is given by [53]: 

 8v : J̄ °��±GHK, ²GHK�³´µUeQGHK¶ (3.12) 

 

Where D is the rotor diameter, ρ is the air density, and Cp is the turbines coefficient of 

performance as a function of tip-speed ratio λ and blade pitch angle β. A valid 

approximation of Cp data, as used in previous works [7], [54], is the relation shown in 

Equation. 
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°�GHK

:
·̧̧
¹
¸̧º

C                                                                                    eQ < eER°�,v �J − »J � eveQGHK − J�U − »U � eveQGHK − J�¶� eER ≤ eQGHK ≤ e<
°�,< � e<eQGHK�¶                                                            e< ≤ eQGHK ≤ eE�C                                                                                    eQGHK > eE�

 
(3.13) 

 

Where the turbine cut-in speed (uci) is the speed at which the turbine begins to generate 

power, and the turbine cut-out speed (uco) is the speed at which the turbine furls and ceases 

to generate power. Cp,m is the maximum turbine coefficient of performance, defined at the 

wind speed um. The turbine rated speed, ur, is the speed at which Cp,r is defined by the 

manufacturer. The coefficients F1 and F2 are derived from the boundary conditions, namely 

Cp = 0 at uw = uci and Cp = Cr at uw = ur. 

As in previous work by Parkinson, it is assumed that a gearbox with S stages is 

implemented in the transmission of mechanical power to the electrical generator. 

Consequently, the mechanical power available to the generator is further reduced by the 

efficiency of the gearbox ηg[k] according to equation [55]. The piecewise equation is 

necessary to ensure that the gearbox efficiency remains positive throughout the operating 

regime of the wind turbine. 

 %¼GHK = ·¹
º C. J 8vGHK ≤ ½8<9¾CJ − C. CJ½8<98vGHK �9OP<QR�P  (3.14) 

 

Where Prt is the rated power of the turbine at the rated wind speed, ur. Additional electrical 

inefficiencies are not explicitly modeled, but are accounted for via the inclusion of an 

additional electrical efficiency term ηe in the determination of electrical power provided to 

the grid according to equation [7]. 

 8¿GHK = %P%¼GHK8vGHK (3.15) 

 

The input parameters used throughout this thesis for the wind generation model are 

summarized in  

Table 3.3, and are specified to represent a generic 1.5 MW system [7].  
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Table 3.3 - Parameters implemented in the wind energy system model [7]. 

Parameter Description Value 

Prt Rated power of the turbine 1.5 MW 

D Rotor diameter 82.5 m 

uci Cut-in wind speed 4 m/s 

uco Cut-out wind speed 26 m/s 

ur Rated wind speed 12 m/s 

Cp,r Rated coefficient of performance 0.250 

Cp,m Maximum coefficient of performance 0.300 

um Wind speed at Cp,m 7 m/s 

S Number of stages in the gearbox 3 

ηe Efficiency of the electrical components 0.95 

 

Sample wind generation data is shown in Figure 3.4 based on NREL 80 m metrological 

tower wind data for a one-day period [56].

 

Figure 3.4 - Sample wind speed data (top panel) and resultant model wind generation data (bottom 

panel). 
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As one of the primary objectives of this thesis is to reduce the variance in the wind 

generation injected into the grid, no consideration was given to the effects of multiple 

turbines or distributed wind generation from multiple locations. Both of these effects 

generally serve to reduce the variance of wind generation themselves, and thus ignoring 

them represents a worst-case scenario.  

3.3 Selecting the Simulation Time-step 

The complete system model, incorporating each component model, requires the ability to 

capture the dynamics of the load models and wind generation profile, while preserving the 

accuracy of the system simulations. As in previous works on demand response [7], [8], a 

one-minute sampling time (T = 1 min) provides sufficient accuracy while permitting 

transient population dynamics to dissipate. This time-step also permits participation in 

ancillary service markets such as regulating reserve; services that generally take place on 

intervals of 5 to 15 minutes [7], [20]. Further, a smaller sampling time could introduce 

error, as it has been shown that below 1 minute generation does not exactly follow the load 

[48].  

In addition, the 1 minute time step also permits loads to freely enter into and leave the load 

community – this is particularly important for PEV charging, as users can freely leave the 

demand response population with minimal impact on overall system performance [7]. 

Further, the device level controller may not be compatible with longer simulation time-

steps and aliasing errors could arise. For these reasons, a 1 minute time-step was selected 

for all simulations in this thesis. 
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4 Demand Response Algorithms 

The algorithms presented in section 2.5 are now adapted to account for limited reporting 

of device-state information by a subset of the total participating population of loads in the 

DR program. The underlying hysteresis control structure is unchanged, however the system 

response must be calculated based on a limited number of devices reporting device-state 

information. 

4.1 Accounting for Limited Knowledge of Load States 

When only a subset of the total participating population is reporting device-state 

information, the determination of the population capacity factor, and resultant system 

response must be modified from the algorithms presented in section 2.5. The capacity 

factor under these limited information scenarios must be determined from only the 

reporting loads, according to equation (4.1): 

 [�RvR9PBGe�, H I JK : Y ZC,<GM, HKe��Mf

�\
I Y ZJ,<GM, HKe��Mb

�\
 (4.1) 

 

The capacity factor determined from device-state information of the reporting loads is then 

multiplied by the total capacity of the population, including loads that are participating in 

the DR program but do not report state-information. The resultant response of the system 

can be determined by equation (4.2): 

 8EW�Gp I JK[�RvR9PBGe�, H I JK : 8EW�GH I JK Y ZC,<GM, HKe��Mf

�\
I Y ZJ,<GM, HKe��Mb

�\
 (4.2) 

 

The underlying assumption with this control algorithm is that the sampled subset of the 

total population is representative of the whole population. The VGM limits under limited 

knowledge scenarios must also be calculated based on the subset of the population 

reporting device-state information, according to equation (4.3): 

 
�,+�Gq I 1K = Φ*+,+-'�G	,+�, q + 1K����Gq + 1K �,�|Gq + 1K = Φ*+,+-'�G	,�| , q + 1K����Gq + 1K (4.3) 
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These calculations once again rely on the assumption that the sampled subset of loads 

reporting device-state information is representative of the total population. Further 

refinement of this control algorithm under limited device-state information are possible by 

sampling the actual population response and comparing it with the expected response based 

on equation (4.3). In this manner, a correction factor could be applied to subsequent time-

step calculations to reduce the error between anticipated and actual DR population 

response. 

4.2 Control Performance Metrics 

The power tracking performance at each one-minute time step was tracked throughout 

simulations to determine controller performance. To ensure consistent results across all 

scenarios tested, the systems were initialized at approximately steady state conditions. Two 

metrics were used in the evaluation of system performance: 1) The root mean squared 

power tracking error, and 2) The load flexibility and under-utilization factor. These 

evaluation criteria are explained in detail below.  

4.2.1 RMS Error % 

The Root mean squared power tracking error (RMSE) is calculated for the duration of the 

simulation under consideration according to equation (4.4): 

 z½? = À∑ (8WE9eW� − 89W<¼P9)UÁH^J Á  (4.4) 

 

The RMSE is then normalized with respect to the steady state power consumption of the 

population as shown below 

 ]z½? = z½?vPW;(8C) (4.5) 

 

This metric allows the comparison of various scenarios relative to a standard baseline, and 

has been used in previous demand response work as a performance criteria [8]. 
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4.2.2 Load Flexibility/Under-Utilization Factor 

In addition to the power tracking performance of the system, it is important to determine 

the load community flexibility and the un-utilized capacity at each time step. Load 

flexibility is calculated according to equation (4.6), and is analogous to the generator ramp 

rate of conventional generation resources [7]. Due to the nature of the load community, the 

load flexibility or ramp-rate is essentially equivalent to the available capacity of the system. 

 Â(�)GHK = 8vW�(�) GHK − 8vR;(�) GHK (4.6) 

 

In addition, a measure of the available excess capacity available in each load community 

for each time step was also calculated. Both up- and down-regulation capacity are evaluated 

separately, resulting in two under-utilization factors for each time-step. These values are 

calculated according to equation: 

 
ÃB�Q;GHKÃe�GHK = a`� ((8vW�GHK − 8CGHK), (8vW�GHK − 8WE9eW�GHK))a`� ((8CGHK − 8vR;GHK), (8WE9eW�GHK − 8vR;GHK))  (4.7) 

 

where Pactual is the measured power dispatched from the load community for each time step, 

P0 is the steady-state power required by the load community, Pmin is the minimum feasible 

target power of the load community, and Pmax the maximum feasible target power of the 

load community. The minimization operator ensures that actual dispatched capacity is not 

considered part of the un-utilized capacity available. It is important to note that due to the 

dynamic nature of the simulations, usage of the un-utilized capacity from one time step 

will inherently affect the load community for subsequent load steps – however it is a valid 

measurement of the utilization of the load for offline review. Finally, the total energy 

dispatched from each VGM population is determined according to: 

 ?µ(�) = YÄ∆8(�)GHKÄ@]H
H^J  (4.8) 

 

Where up- and down-regulation dispatched are considered equivalent contributions to total 

energy dispatched by a VGM model. 
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4.3 Model Input Data 

The validity of model input data can greatly influence the results of simulations, thus real 

world historical datasets relevant to the proposed simulation scenarios were employed. As 

in previous work [7], the recruited load communities are intended to be representative of a 

suburban or rural community connected to a single distribution system, or approximately 

2000 customers [58]. For the purposes of this thesis, it was assumed that initial populations 

of 1500 heat pumps and 1500 PEVs could be recruited from this community [7].  

To ensure a realistic representation of the loads, populations were intentionally generated 

to be heterogeneous – this will ensure that the device diversity expected in typical 

communities is represented. This heterogeneity is achieved by selecting normally 

distributed values for the individual component models based on representative data for 

each of the populations under consideration. 

4.3.1 Environmental Data - Air Temperature & Wind Speed 

Outdoor air temperature and wind speed data were obtained from the National Renewable 

Energy Laboratory (NREL) database. Specifically, data was obtained from the National 

Wind Technology Centre M2 Tower, located about 11 km west of Broomfield, and 8 km 

south of Boulder, Colorado (Latitude: 39° 54' 38.34" North; Longitude: 105° 14' 5.28" 

West; Elevation: 1855 meters AMSL). 

Air temperature measurements are taken at 2m elevation, while wind speed measurements 

are taken at 80 m elevation. Sample air temperature and wind speed data are shown in 

Figure 4.1, representing a 24 hour period beginning August 1, 2014 [56]. 

 

Figure 4.1 - Representative outdoor air temperature and wind speed data from NWTC M2 tower. 
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In this thesis environmental datasets were selected for the period of October 2013, as this 

represents a moderate heating demand on the heat pumps, without the requirement to also 

model cooling loads. During periods of cooler weather, home air temperatures will traverse 

the deadband region more rapidly than during periods of warmer weather, resulting in 

greater availability to participate in the demand response program. 

4.3.2 Thermodynamic Data - Heat Pump Sizing and ETP Values 

For the purposes of simulations in this thesis, parameters used in the ETP model were 

selected to represent typical single-family homes in the Pacific Northwest. While work is 

currently ongoing to determine specific ETP parameters to represent a wide variety of 

buildings [47], there are a number of works that employ the ETP model to represent average 

homes in the Pacific Northwest [7], [46], and [59].  

The ETP model parameters utilized throughout this thesis are summarized in Table 4.1 

[59].  

Table 4.1 - ETP Model Input Parameters. 

Parameter Description Value 

C Average thermal capacitance 10 kWh/°C 

Cm Indoor contents thermal mass 75% of C 

Ca Indoor air thermal mass 25% of C 

Rma Indoor heat transfer resistance 0.5°C/kW 

Rao Envelope thermal resistance 2°C/kW �®W;�  Heating power of fan 500 W 

θs Temperature set point 20°C 

δ Temperature deadband width 1°C 

T Sampling time interval 1 minute 

σ Noise standard deviation 0.01°C s-1/2 

 

σp Standard deviation of lognormal 
distributions as a fraction of the mean 
value, for R, C, and P, unless noted 
otherwise 

0.2 
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Load community populations were then derived from this data by selecting lognormal 

distributed values from this data, resulting in a homogenous load community as shown in 

Figure 4.2. Lognormal distributions were chosen primarily to ensure that all parameters 

remain positive Figure 4.2. 

 

Figure 4.2 - Scatterplot showing selected ETP parameters for a population of 1500 heat pumps. 

4.3.3 PEV Data - Vehicle Sizing & Charging Schedules 

Previous work incorporating Plug-in Electric Vehicle (PEV) charging loads have generally 

relied upon estimates of charging schedules and parameters [7]. To increase the accuracy 

of the PEV load community, results from a survey conducted by SFU of personal driving 

habits and PEV integration were used to create representative load communities. Survey 

data included detailed driving parameters of 1754 individuals across Canada, with 538 

respondents from BC [52]. Based on this survey data, it was possible to derive the 

distributions of the parameters required for the PEV charging models employed in this 

thesis – Specifically the charging start time, charging duration, and required charge 
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capacity of the vehicle, as summarized in Table 4.2. The rated power of chargers was 

specified such that the population had an average value of 5 kW, with a standard deviation 

of 0.5 kW, which are representative of widely available Level 1 chargers. 

Table 4.2 - PEV Charging Model Input Parameter Distribution Data 

Parameter Description Average Value Standard Deviation 

Tstart Charging start time 17:10 hrs. 235 minutes 

Ts Desired time to accumulate Ec 1018 minutes 313 minutes 

Pr Rated power of charger 5 kW 0.5 kW 

Ec Desired charging capacity 11.3 kWh 2 kWh 

Statistical analysis of the survey data showed that the correlation coefficients among 

charging start time, charging duration, and required charge capacity were all less than 0.1, 

indicating weak- or no-correlation. As a result, populations of plug-in electric vehicles were 

generated by selecting random values from these normal distributions. The distribution of 

charging start and end times from a sample population of 1500 Plug-in electric vehicles is 

shown in Figure 4.3. 

 

Figure 4.3 - Scatterplot showing PEV charging start and end times. 
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It is evident from Figure 4.3 that there are two predominant charging windows – the 

daytime charging window, indicated by the upper diagonal cluster of points, and overnight 

charging, as indicated by the lower diagonal cluster of points. Further, the availability of 

daytime charging access was included in the survey data, which was extrapolated to 

determine the proportion of the population that would have access to daytime charging as 

shown in Figure 4.4 [52]. 

 

Figure 4.4 - Recharge access by time of day (BC only, n=528, 3-day driving diary) [52]. 

Approximately 30% of survey respondents had some form of access to charging stations 

throughout the day, which forms the basis for the percentage of individual loads permitted 

daytime charging in simulations throughout this thesis.  

4.3.4 Target Trajectory 

The control algorithms implemented in this thesis are designed to dispatch the participating 

load communities to meet an externally specified target trajectory provided to the load 

aggregator. However, if the specified target trajectory exceeds the capabilities of the 

participating load communities, the target trajectory will be truncated to achieve the largest 

response possible given the current state of the load communities according to equation 

(4.9): 
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 8@ : Å8vR; 8@ < 8vR;8vW� 8@ > 8vW�8@ P��P  (4.9) 

 

Where Pmin and Pmax are determined based on the maximum permitted control signal 

magnitude δ/4, previously defined in section 2.5.1.  

In scenarios with limited knowledge, however, the value of the capacity factor is calculated 

based only on the reporting loads. The population is split into two categories: reporting 

loads (inactive-state, ϕ0,r and active-state ϕ1,r), and participating loads. Under these limited 

knowledge scenarios, the calculation of Pcap is the same as the full knowledge scenarios; 

however the calculation of the capacity factor is based solely on the reporting loads: 

 

[�RvR9PBGe�, H I JK : Y ZC,<GM, HK}Me��Mf

�\
I Y ZJ,<GM, HK}Me��Mb

�\
 

�,�| : ����Gq I 1KΦ*+,+-'�Gr4 , q + 1K 
�,+� = ����Gq + 1KΦ*+,+-'�G− r4 , q + 1K 

(4.10) 

 

A target trajectory for the participating loads is thus defined as: 

 8∗GHK = @W<¼P9GHK + Y 8C(�)GHK]�

�^J  (4.11) 

 

This aggregate participating load target, P* must fall within the range of feasible targets 

 8vR; ≤ 8∗ ≤ 8vW� (4.12) 

 

If the aggregate participating load target falls outside of this range, the controller truncates 

the load target to either the maximum of minimum value that can be achieved by the 

populations. 

In this thesis, two target load trajectories are implemented: a regulating reserve dispatch 

signal from a utility operator, and a self-generating signal to reduce the variability of wind 

generation from a wind turbine. These target trajectories are described in detail in the 

following sections. 
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4.3.4.1 Regulating Reserve Dispatch Signal 

In order to test the demand response system to provide regulating reserve ancillary services 

to the power systems operator, a target trajectory was specified based on historical 

regulating reserve capacity dispatched in the BPA balancing authority area [19], as shown 

in Figure 4.5. 

 

Figure 4.5 - BPA Balancing Reserves Available & Dispatched July 31 - Aug 7, 2014 [19] 

The target trajectory was then generated by scaling the balancing reserves dispatched 

values for a 24-hour simulation period, and inverting the sign to ensure a request for 

generation results in a decrease in demand. As this portion of the balancing reserves are 

then served by the demand response program, the resultant balancing reserves required by 

the balancing area to be supplied from conventional generation resources will be reduced. 

The frequency distributions of one year’s worth of BPA balancing reserves dispatched data 

is shown below in panel 1 of Figure 4.6, which closely resembles the frequency distribution 

of the 24-hour simulation period balancing reserves deployed used as a basis for the target 

trajectory for simulations in this thesis.  
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Figure 4.6 - Frequency distribution of BPA balancing reserves dispatched data from 2014 (left panel) 

and 24-hour simulation period (right panel). 

The similarities among the frequency distributions of the data for balancing reserves 

dispatched in Figure 4.6 shows that the 24-hour simulation window is representative of 

annual balancing reserves dispatched. The target trajectory was scaled down to 0.5% of the 

total balancing reserves dispatched in the BPA network, to ensure that it was within the 

feasible region for populations of 1500 homes and 1500 EVs.  

4.3.4.2 Reducing Variability of Wind Generation Target Signal 

As described in section 3.2.1, wind energy generation exhibits considerable variability at a 

one-minute resolution time-step, especially when considering an individual wind turbine 

or single wind farm. It is possible to utilize demand response programs to modify the 

demand curve in response to variations in wind generation, thus resulting in a significant 

reduction in variability to the net power required from the electrical grid. For the purposes 

of this thesis, a target trajectory to smooth wind generation injections from a single 1.5 

MW wind turbine is employed. The target trajectory attempts to the net power injections 

into the grid according to the 15 minute moving average wind generation profile according 

to equation (4.13): 

 @W<¼P9GH I JK : 8QR;B,JÆ a`� WÇ¼GHK X 8QR;B,WE9eW�GH I JK (4.13) 
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Where the 15 minute moving average is calculated according to equation (4.14): 

 8QR;B,JÆ a`� WÇ¼GHK : JJÆ Y 8QR;B,WE9eW�GH I vKC
v^�JÆ

 (4.14) 

 

This target trajectory assumes that the next time-step wind generation is known, however 

this is not an unreasonable assumption given the accuracy of conventional persistence 

modeling and advanced meteorological modeling [59]. A target trajectory based on sample 

wind speed data is shown in Figure 4.7. 

 

Figure 4.7 - Sample target trajectory and net grid power injections based on wind generation profile 

from section 3.2.1. 

As shown in Figure 4.7, the demand response target will always supply the difference in 

generation at each time step from the 15 minute moving average, smoothing the net impact 

of variable generation injected into the grid. Figure 4.8 shows the frequency distribution of 

wind speed at the NREL meteorological tower [56] for the past year (left panel), and for 

the 24-hour simulation period under consideration (right panel) 
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Figure 4.8 - Frequency distribution data for NREL wind speed data from 2014 (left panel) and 24-

hour simulation period (right panel). 

While seasonal variations will exist with respect to wind speed data and the resultant wind 

generation injections into the grid, the 24 hour sample period provides a representative 

sample of the major short-term variability to be expected from a demand response program 

operating to smooth wind energy generation injections. The target trajectory was specified 

to simulate smoothing the power injections to the grid from a 3 MW wind turbine to ensure 

that it always remains in the VGM feasible regions for 1500 Homes and 1500 EVs.  
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5 Model Results 

This section will present simulation results, initial analysis of the VGM population 

dynamics, and draw conclusions with respect to the observed performance of the proposed 

demand response system. In all scenarios, simulations were run for a 2-day period (2881 

minutes). The first 24-hours (1440 minutes) of the simulation results were discarded to 

ensure any transient response from initializing the demand response program did not affect 

the results of the simulations, and all analysis was conducted on the data from the remaining 

24-hour simulation period. 

5.1 Provision of Wind-Generation Smoothing Services 

A second scenario was considered for the demand response system, utilizing the VGMs to 

smooth wind generation injections into the electrical grid. Historically, increased 

penetration of wind generation into the electrical grid has necessitated additional 

dispatchable power capacity to firm-up the variable power injections from wind generation 

[12]. In the wind-firming scenario, rather than relying on conventional dispatchable 

generation to firm wind power injections, demand response populations are utilized to 

adjust demand in real-time in response to variations in wind power generation. In this 

scenario, the target trajectory is specified according to the procedure indicated in section 

4.3.4.2, and shown in Figure 5.1. 

 

Figure 5.1 - Wind Generation Smoothing Target Trajectory 
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This target trajectory results in a net injection to the electrical grid equivalent to the 30-

minute moving average of the wind generation values, rather than the highly variable real-

time wind generation profile shown in Figure 5.2.  

 

Figure 5.2 - Wind Generation over 24-hour Simulation Period. 

As a result, the variability of power injections into the grid are greatly reduced, reducing 
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the wind farm capacity was scaled such that the target trajectory remains within the feasible 

region throughout the simulation period, as shown in Figure 5.1.  
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Figure 5.3 - Demand Response System trajectories. 

Similarly to the scenario providing ancillary services in the previous section of this thesis, 

the Heat Pump VGM exhibits greater flexibility, once again owing to the transient nature 

of EV Charging vehicles connecting to and disconnecting from the system throughout the 

day. The individual VGM flexibilities and under-utilized capacities are shown in Figure 

5.4. 
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Figure 5.4 - Individual VGM flexibility and under-utilization factors. 

Power density distributions for each of the VGMs are also similar under the wind-firming 

scenario as they are in the regulation reserve scenario, as shown in Figure 5.5. 
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Large magnitude control signals result in synchronization of loads within each of the 

VGMs, however this load synchronization rapidly dissipates naturally throughout the 

populations due to the heterogeneous populations modeled.   

Again, owing to the larger available capacity of the Heat Pump VGM compared to the EV 

charging VGM, the Heat Pump VGM dispatched almost twice the energy throughout the 

simulation period, as shown in Table 5.1.   

Table 5.1 - Performance of Load Resources Performing Wind Smoothing Services. 

Load Type Dispatched 

Energy 

[MWh] 

Mean VGM 

Flexibility 

[MW] 

Mean Control Signal 

Magnitude  

[% of umax] 

Control Signal 

Standard Deviation  

[% of umax] 

Heat Pumps 6.04 4.35 0.43 20.49 

EV Charging 0.182 1.186 0.68 3.30 

 

The magnitude of the mean control signal for both populations was very small, primarily 

due to the large variations in wind generation power over short time periods, coupled with 

extended periods of zero wind generation. As the target trajectory was scaled to ensure it 

was always within the feasible region of the VGMs, the utilization of the VGMs during 

non-peak target trajectory periods is rather low. If conventional balancing resources were 

utilized to cover the large spikes in target trajectory, a much larger amount of energy could 

be dispatched from the demand response program. It would thus be possible to employ the 

demand response system to provide additional services concurrently with wind-generation 

smoothing during the periods of zero or low wind generation. 

5.1.1 Limited-knowledge Population Dynamics 

In order to test the effects of limited knowledge on the demand response system, and the 

individual VGM population dynamics, eleven additional scenarios were considered with 

progressively less device state information. Simulations were conducted with reduced 

knowledge, ranging from 100% knowledge to 20% knowledge, to determine the effects on 

overall system response when providing wind generation firming services using the same 

target trajectory as shown in Figure 5.1. The overall load trajectories of these simulations, 



 

53 

as well as the actual system response under various limited device-state information 

scenarios are shown in Figure 5.6. 

 

Figure 5.6 - System response and Target trajectory under limited-knowledge simulations. 

As shown in Figure 5.7, the error associated with the VGM response increases as device-

state information is decreased, as would be expected. However, even at very low state-

information levels the normalized root mean squared error associated with the demand 

response system remains below 10%. Once again, this error is largely attributed to 

discretization of the deadband region, and quantized device-level power ratings; although 

the reduced information scenarios amplifies these effects noticeably.  
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Figure 5.7 - NRMSE associated with varying levels of device-state knowledge for wind-firming target 

trajectory. 

The response of the individual load communities, as well as the feasible regions, are shown 

in Figure 5.8 for the 100%, 80%, and 50% knowledge scenarios. 

 

Figure 5.8 - Individual VGM response for 100%, 80%, and 50% knowledge scenarios. 

100 90 80 70 60 50 40 30 20 10
0

1%

2%

3%

4%

5%

6%

7%

% of Devices Reporting State Information

N
R

M
S

E

0

2000

4000

6000

8000
100% Knowledge

H
e
a
t 

P
u
m

p
 L

o
a
d

 [
k
W

]

 

 
80% Knowledge 50% Knowledge

07:0007:00
0

1000

2000

3000

4000

E
V

 C
h
a
rg

in
g
 L

o
a
d
 [
k
W

]

07:00

Target Actual Min Boundary Max Boundary



 

55 

It is apparent from Figure 5.8 that the heat pump VGM provides the most consistent 

response for all device-state knowledge scenarios, as the individual participating loads of 

the EV population are once again connecting and disconnecting from the system 

throughout the day. This additional uncertainty in the EV population results in greater error 

under limited knowledge scenarios, as shown in Figure 5.9. 

 

Figure 5.9 - NRMSE associated with individual VGM populations for various knowledge levels. 

Once again, the error increases more rapidly for the EV charging VGM due to the transient 

nature of electric vehicles participating in the DR program. This effect could be minimized 

by including sensors to detect if an EV is attached to a charging station, particularly for 

public or workplace charging stations where the privacy concerns would be alleviated by 

the public nature of the charging stations. This would eliminate the uncertainty associated 

with EV users plugging into and unplugging from charging stations to utilize their vehicles, 

bringing the error associated with the VGM closer to that of the heat pump VGM. 

5.1.2 Capacity Determination for Wind-Generation Smoothing 

The effects of population size on available demand response capacity, and overall energy 

dispatched when providing wind-generation smoothing services were evaluated by running 

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%
0

2.5%

5%

7.5%

10%

12.5%

15%

Population Reporting State-Information

N
R

M
S

E

 

 

Heat Pump VGM

EV Charging VGM



 

56 

simulations of populations ranging in size from 500 devices to 6000 devices. 

Heterogeneous populations of equal numbers of heat pumps and EV charging loads were 

paired with iteratively scaled target trajectories to ensure that the populations were never 

over-dispatched. Simulations of each population size (500, 1000, 1500, 3000, 4500, and 

6000) were conducted under 100% knowledge scenarios, and the resultant mean VGM 

capacities and net energy dispatched was evaluated. Figure 5.10 shows the energy 

dispatched by the DR program for various population sizes, as well as the mean available 

capacity of the VGMs of varying sizes. 

 

Figure 5.10 - Energy Dispatched by VGMs (top panel) and Mean Available VGM Capacity (bottom 

panel) for Various Load Community Population Sizes. 

As the population size of the VGMs is increased, the dispatched energy from the DR 

program increases proportionally. In addition, the available mean capacity of the DR 

program increases proportionally with the population size. Each VGM responds similarly, 

with the heat pump VGM remaining the largest contribution to the demand response 

program in these scenarios. 

0

0.5

1

1.5

2

2.5
x 10

4

T
o

ta
l 

E
n

e
rg

y

D
is

p
a
tc

h
e
d

 [
k
W

h
]

 

 

Heat Pumps EV Charging

500 1000 1500 3000 4500 6000
0

0.5

1

1.5

2

2.5
x 10

4

M
e
a
n

 A
v
a
il

a
b

le

C
a
p

a
c
it

y
 [

k
W

]

Load Community Population Size [# Units]

 

 

Heat Pumps EV Charging



 

57 

The effects of scaling population sizes on the available mean capacity would be useful for 

utility systems operators to determine how many responsive loads they would need to 

recruit to achieve a desired capacity from the DR program. In all scenarios, the mean 

control signal magnitude and the control signal standard deviation remained within 1% of 

one another, and within 2% of one another, respectively. This implies that the 

inconvenience of the DR program on end-user functionality is not significantly affected by 

VGM population size. 

5.2 Provision of Regulating Reserve Ancillary Services 

To simulate the provision of balancing reserve ancillary services to a power systems 

operator, a target trajectory corresponding to the BPA historical balancing reserves 

dispatch history was created as described in section 4.3.4.1. This target trajectory was then 

iteratively scaled to a point where it remains entirely within the feasible region of the VGM 

of home heat pumps and PEV charging, as shown in Figure 5.11. This scaled trajectory 

represents 0.5% of the total balancing reserves dispatched by the BPA over a 24-hour 

period [19]. 

 

Figure 5.11 - Scaled target trajectory & VGM feasible region boundaries. 

00:00 06:00 12:00 18:00 00:00
-3000

-2000

-1000

0

1000

2000

3000

4000

5000

Simulation time [mins]

P
o
w

e
r 

[k
W

]

 

 

Target Trajectory Maximum Aggregate Load Available Minimum Aggregate Load Available



 

58 

 Heat pump and PEV charging populations were selected to represent a small suburban or 

rural community connected to a single distribution system, resulting in populations of 1500 

heat pumps and 1500 PEVs [58]. To represent the diversity of real-world populations, heat 

pump and PEV charging parameters were drawn from normal distributions of parameters 

as described in the previous sections.  

With the model inputs defined, two preliminary scenarios were considered: The first, 

without any intervention by the demand response system to represent the uncontrolled 

trajectory of the load populations; and the second with the demand response system applied 

under the assumption of full device-state knowledge. The resultant load trajectories under 

both scenarios, as well as the individual VGM responses, are shown in Figure 5.12. 

 

Figure 5.12 - Uncontrolled and Controlled Population Response. 
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plots showing the individual VGM responses, as well as the feasible region, are shown in 

Figure 5.13 

  

Figure 5.13 - Individual VGM Feasible Regions, Target Trajectory, and Actual Response. 
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Figure 5.14 - VGM Flexibility and under-utilization factors. 

This represents the maximum feasible region within which demand response services are 

achievable for the VGMs, as well as the effective ramp-rate that each VGM is capable of 

achieving in the next time-step. It is important to note that the feasible region is constantly 

evolving in response to the dispatched power from previous time-steps as devices transit 

the deadband region and replenish the population flexibility. There are a few instances 

throughout the simulation period where the incremental capacity of the VGMs approaches 

saturation, however these regions of saturation rapidly replenish when the output demanded 

of the VGMs is reduced. This can clearly be seen in Figure 5.14 above for the Heat Pump 

VGM between the hours of 22:30 and 23:30. The resultant power density distributions of 

all devices within the VGM are shown in Figure 5.15. 
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Figure 5.15 - Load Community Power Distributions. 

The cumulative power density of units at each individual end-use state is shown over the 

discretized 2δ-deadband region, as well as both the controlled and uncontrolled state-

transition boundaries over the plotted simulation period. Limited state-transition boundary 

overshoots are observed infrequently throughout the simulation period, and can be 

attributed to devices in the preceding interval diffusing into the state-transitioning regions, 

which are then adjusted during the next time-step management operation. Regions where 

the VGM output nears the feasible region boundary in Figure 5.13 correspond to events in 

which the control signal lies along its minimal level as defined by equation 4.3. These 

occurrences of maximal control signal magnitude result in transient device-state 

synchronization, most clearly visible in the EV Charging –inactive state panel of Figure 

5.15 shortly before 18:30 hrs. The EV Charging VGM exhibits greater device 

synchronization than the Heat Pump VGM, but dissipates quickly as the populations are 

heterogeneous enough to maintain load diversity.  

Both VGMs exhibit a band of device-state synchronization at the lower boundary of the 

active-state regions. This synchronization is rapidly dissipated due to the heterogeneous 

populations of devices within each load group, and is the result of the binning of all devices 

above and below the state-transition boundaries being grouped into the same state-bin at 
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the limits of the discretization. This aggregation is necessary to maintain user-comfort 

constraints despite a heterogeneous population, and does not introduce any detrimental 

system operating effects. 

The Heat pump VGM exhibits the greatest flexibility to quickly damp disturbances in state 

diversity and maintain distribution uniformity. This is further evidenced by the fact that the 

Heat Pump VGM maintains the greatest flexibility throughout the simulations, as shown 

in Figure 5.14.  

The dispatched power from each VGM population, as well as the mean flexibility of the 

VGM is presented in Table 5.2.  

Table 5.2 - Performance of Load Resources Performing Balancing Services. 

Load Type Dispatched 

Energy 

[MWh] 

Mean VGM 

Flexibility 

[MW] 

Mean Control 

Signal Amplitude  

[% of umax] 

Control Signal 

Std Dev  

[% of umax] 

Heat Pumps 1.68 4.26 6.4 24.1 

EV Charging 0.72 1.18 0.4 24.6 

 

The heat pump population is dispatched for the most energy, while the EVs provide less 

energy largely due to their dynamic population size as they are connected and disconnected 

from the VGM throughout the day to be driven. The dispatch algorithms will dispatch both 

VGM populations based on their total available capacity, and as a result the Heat Pump 

population generally provides a larger portion of the total energy dispatched in the demand 

response system. A more aggressive target trajectory would result in greater utilization of 

the VGM populations, however care must be taken to ensure that the target trajectory 

remains within the feasible region of each VGM. 

5.2.1 Limited-Knowledge Population Dynamics 

In order to test the effects of limited knowledge on the demand response system, and the 

individual VGM population dynamics, eleven additional scenarios were considered with 

progressively less device state information. Simulations were conducted with reduced 

knowledge, ranging from 100% knowledge to 20% knowledge, to determine the effects on 
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overall system response when providing regulating reserve ancillary services using the 

same target trajectory as shown in Figure 5.11. Figure 5.16 shows the overall load 

trajectories of these simulations for an increasing portion of the participating loads not 

reporting device-state information. 

   

Figure 5.16 – Aggregate system response under limited-knowledge simulations. 

As shown, in scenarios with less than full device-state knowledge, the demand response 

program frequently under- or over-dispatches the VGMs in response to a specified target 

trajectory. The NRMSE associated with the increased portion of the population devices not 

reporting state-information is shown in Figure 5.17. 
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Figure 5.17- NRMSE for Different Levels of Device-State Reporting. 

As shown in Figure 5.17, the error associated with the VGM response increases as device-

state information is decreased, as would be expected. However, even at very low state-

information levels the normalized root mean squared error associated with the demand 

response system remains below 8%. Once again, this error is largely attributed to 

discretization of the deadband region, and quantized device-level power ratings; although 

the reduced information scenarios amplifies these effects considerably. The response of the 

individual load communities, as well as their feasible regions, are shown in Figure 5.18 for 

the 100%, 80%, and 50% knowledge scenarios. 
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Figure 5.18 - Individual VGM response for 100%, 80%, and 50% knowledge scenarios. 

It is apparent from Figure 5.18 that the heat pump VGM provides the most consistent 

response for all device-state knowledge scenarios, as the individual participating loads of 

the EV population are once again connecting and disconnecting from the system 

throughout the day. This additional uncertainty in the EV population results in greater error 

under limited knowledge scenarios, as shown in Figure 5.19. 

  

Figure 5.19 - NRMSE associated with individual VGM populations for various knowledge levels. 

It is evident that the error associated with the EV Charging VGM increases more quickly 

than the error of the Heat Pump VGM. This is due to the dynamic population size of the 
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EV Charging VGM; As a result, the controller must estimate the number of devices in the 

population that are available and predict their device states, whereas the Heat Pump VGM 

must only estimate the device states as they are always connected to the load control 

system. Further system improvements could be realized by having EV charging stations 

indicate if a vehicle is currently drawing power from the grid, reducing the uncertainty for 

the EV Charging VGM. This would be particularly suitable for public charging stations, as 

it would provide no information regarding the individual user – only the presence or 

absence of any EV charging at the station. 

Under moderate uncertainty scenarios, where the majority of devices are reporting device-

state information, the resultant system error increases at a rate of approximately 1% for 

every 10% of devices not reporting state information. It is important to note, however, that 

the difference between full device-state knowledge and 90% device-state knowledge 

results in a significant increase in demand response system NRMSE of approximately 

1.75%.   

5.2.2 Capacity Determination for Ancillary Service Provision 

Further simulations were conducted to determine the effects of population size on available 

capacity, total energy dispatched, and the control signal amplitude and variability of the 

demand response program. This is crucial information for utility systems operators as they 

must determine how many responsive loads to recruit to provide a required amount of 

capacity for ancillary services. In addition, this will provide utility operators with insight 

into the instrumentation requirements to establish a demand response program with their 

desired level of accuracy and capacity. 

To achieve this, heterogeneous populations of equal numbers of heat pumps and EV 

charging loads were simulated, ranging from 500 devices up to 6000 devices per VGM. In 

each scenario the target trajectory was iteratively scaled to ensure that the demand response 

program could achieve the desired output throughout the entire simulation period. As 

expected, the energy dispatched by the demand response program scaled linearly with 

population size. This is due to the fact that the target trajectory was scaled linearly, and 

identical constraints were given to determine the magnitude of the target trajectory – 

specifically that the demand response program never be over-dispatched beyond feasible 
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target values. Figure 5.20 shows the energy dispatched by the DR program for various 

population sizes with 100% device-state information. 

 

Figure 5.20 - Energy Dispatched vs Population Size for 100% Knowledge Scenarios. 

Once feasible target trajectories had been established for the evaluated populations of 

devices participating in the DR program, additional simulations were conducted to evaluate 

the impacts of limited device-state knowledge. For each population size, simulations were 

conducted ranging from 100% device-state knowledge down to 50% device-state 

knowledge in 10% increments. The associated NRMSE for each device-state knowledge 

scenario is summarized in Figure 5.21. 
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Figure 5.21 - NRMSE of Responsive Load Populations of Various Sizes under Limited Device-state 

Information Scenarios. 

As shown in Figure 5.21, the error associated with the reduction in device-state knowledge 

follows the same trend as was established in Section 5.2.1, with a marked increase in error 

when departing from the 100% device-state knowledge scenario, but remaining less than 

5% NRMSE even when device state-knowledge was limited to 50% of the responsive 

populations. However, the NRMSE associated with the demand response program began 

to increase slightly when population sizes reaches 6000 devices per VGM. These large 

populations result in a crowding of the discrete bins used by the controller when 

dispatching the VGMs, and as a result the increments between bins are larger and not as 

likely to match the target trajectory exactly. The use of more bins in the control algorithms, 

or splitting a larger population into two independent smaller VGMs could address this 

increased error. Figure 5.22 shows the mean available capacity, or flexibility, of the VGMs 

for the various population sizes investigated.  
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Figure 5.22 - Mean Available Capacity of VGMs vs Population Size. 

The mean available capacity of the demand response program shows a linear correlation 

with population sizes, with slight overestimation of available capacity of the EV Charging 

VGMs in the reduced device-state knowledge scenarios for larger populations. Despite this 

overestimation of the available capacity, the demand response controller is able to provide 

ancillary services functionality with similar error levels for all population sizes 

investigated, with only minor increases in error for the largest populations tested. The 

primary cause of the increased capacity of the EV Charging VGM under reduced device-

state knowledge scenarios is the requirement of the controller to estimate whether a vehicle 

is plugged into a charger or being used by a customer. 

Finally, the disruptiveness of the demand response program on end-user functionality was 

investigated with respect to population size through the mean control signal magnitude and 

control signal standard deviation for each population size, as summarized in Figure 5.23. 
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Figure 5.23 – Heat Pump VGM control signal magnitude and variability for various population sizes 

and device-state knowledge scenarios. 

The magnitude and variability of the control signal do not change significantly with 

increases in population size for either VGM, both differing by less than 2% across all 

simulations conducted. There is a slight trend towards a reduction in control signal 

magnitude and variability as population size is increased, but this variation may be largely 

attributed to minor differences in the distribution of load power ratings among the 

populations.  

Based on this analysis, it can be shown that as the number of participating loads increases 

the available capacity and energy dispatched by the demand response program will scale 

linearly if the target trajectory is scaled in the same manner. As population sizes reach 6000 

devices per VGM, the associated NRMSE begins to increase slightly. Additionally, the 

increase in computational time required once populations of participating loads were 

increased beyond 6000 devices per VGM, indicates a potential limit on individual VGM 

population size. However, this could be alleviated by dividing larger populations of 

participating loads into multiple smaller VGMs, permitting distribution of computational 

requirements and concurrent calculations to be completed. This approach has the added 

benefit of allowing a utility operator to utilize individual VGMs for different services as 

required. 
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Another interesting observation from Figure 5.23 is that under the current target trajectory 

the VGMs are generally under-utilized for all but a few minutes of the simulation when the 

target reaches the feasible VGM boundary. While this serves to further minimize the 

inconvenience on end-user functionality of the participating loads, it is also inefficient for 

utility operators. It may be possible to achieve greater utilization with minimal impacts on 

end-user functionality by truncating the target trajectory signal to eliminate the large peaks 

in demand, effectively allowing the utility operators to request increased amounts of 

dispatched energy over the same operational period. This would, however, necessitate the 

operation of conventional generation resources, or additional DR programs, to meet the 

portion of the target trajectory that was truncated in the first place. Real-world experience 

in the operation of DR programs would provide utility operators with further opportunity 

to refine DR target determination to optimize the system utilization while ensuring end-use 

comfort constraints are not affected. Further, analysis of the system response under 

prolonged saturation of the VGMs must be investigated to ensure undesirable behavior is 

not inadvertently initiated.  
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6 Conclusions 

6.1 Main Contributions  

This thesis has examined the effectiveness of aggregate demand response programs 

utilizing residential scale loads under varying levels of device-state information. The 

development of a new simulation tool to model residential scale loads, as well as a demand 

response control framework to test various control algorithms, was created to facilitate the 

investigation. The simulation models thermostatically controlled heating loads of 

residential homes using an equivalent thermal parameter approach, and electric vehicle 

charging loads using a quasi-steady state formulation. 

A number of control algorithms were implemented to determine the effectiveness of 

demand response programs, culminating in a series of case studies using demand response 

to provide ancillary services to power systems operators, and to smooth wind generation 

injections into the electrical grid. In addition, the model was adopted to allow the operation 

of the demand response program when a portion of the participating loads do not provide 

any device-state information to the centralized controller. From these case studies, it was 

found that: 

• The model works for multiple target trajectories, population sizes and 

compositions, over any specified time period. When simulations with reduced 

device state-information were evaluated, only small increases in the response error 

were noted. Specifically, the NRMSE associated with the demand response 

program increases approximately 1% for every 10% decrease in device-state 

knowledge in the VGM populations. As a result, even for cases with a device-state 

knowledge of 50% of the populations, the associated NRMSE remains below 5%. 

This holds true for VGM population sizes ranging from 500 devices to 6000 

devices. Further reductions of the NRMSE associated with reduced-knowledge DR 

scenarios could be achieved via additional error-correction algorithms integrated 

into the DR control algorithms. 

• While both investigated loads (Home heat pumps and EV charging) were 

successfully implemented as VGMs, the home heat pump loads provided the 
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greatest degree of flexibility in all simulations. This is largely due to the fact that 

the heat pump loads are available and participating in the demand response program 

throughout the simulation period, while the EV charging loads are regularly 

entering and leaving the load community as they are driven by end-users. However, 

EV charging loads are not significantly affected by seasonal temperature variations, 

whereas the home heat pump loads become less effective as outdoor air 

temperatures approach the thermostat set point temperature. For this reason, EV 

charging loads exhibit the greatest year-round potential for utilization in demand 

response programs. 

• The utilization of the demand response resource under the proposed target 

trajectories was very low – approximately 15% or less of the potential resource 

available over the simulation period. However, this was necessary to ensure that 

the highly variable target trajectories remained within the VGM feasible regions 

throughout the simulation. It may be possible to better utilize the demand response 

resources via optimization of the target trajectory, and optimal dispatch of demand 

response resources in conjunction with conventional generation resources. 

• Short-duration target trajectories that call upon the full available capacity of the 

demand response population do not appear to produce any undesirable behavior 

from the system. Some device-level synchronization was observed when the target 

trajectory reached the feasible limits of the VGMs, however device-state diversity 

rapidly restored without any intervention from the controller when the peak 

trajectory was reduced. The effects of long-duration VGM maximum output were 

beyond the scope of this thesis. 

• The available demand response resource scales proportionally with the population 

size of the participating VGMs. Doubling of the participating population of a 

particular load type results in a similar doubling of the available capacity and the 

energy dispatched by the DR program, provided a similarly scaled target trajectory 

is specified. This information will provide a valuable baseline to utility systems 

operators when considering how many loads to recruit for a demand response 

program. 
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• The error associated with VGMs decreases as the population size is increased to a 

certain point, however when the population size reaches 6000 loads per VGM the 

associated error begins to increase again. This effect is further amplified in the case 

of reduced device-state information scenarios. In addition, with population sizes of 

6000 units and larger the associated computational time increases substantially.  

The demand response algorithms and the modeling framework developed in this thesis 

should be useful in further studies of demand response programs, both at the control 

systems level to determine optimal control hardware for participating loads, quantifying 

the transient response from a demand response control program, and in large-scale planning 

of utility systems operation. 

6.2 Recommendations for Future Work 

Further development of appropriate algorithms for demand response programs of aggregate 

residential scale loads could be carried out in several areas. One key area of improvement 

is the implementation of a feedback mechanism to further reduce the error associated with 

reduced device-state information scenarios. A simple PID controller could be implemented 

to correct for differences between the anticipated response to a given control signal and the 

actual response of the system, and applying a gain factor to iteratively tune the controller 

for the next time-step. 

Another opportunity for future work lies in establishing a rational and economic model to 

provide incentives for devices to participate in demand response programs and to quantify 

the benefits to the end-user for their participation. 

The individual device models used in the simulations provide adequate fidelity for 

evaluating the aggregate demand response of the system, but the EV charging model could 

be updated to better account for device-level charging phenomenon that are beyond the 

scope of the quasi semi-state framework used in this thesis. In addition, inclusion of 

vehicle-to-grid functionality would provide insight into the potential of EV charging loads 

to provide demand response services beyond what is possible with only deferred charging. 

Further, an investigation into the effects of the battery charging trajectory specified by the 

demand response program on battery performance and health is necessary prior to 

implementation of such a system on actual EVs. 
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As the specified target trajectories in this thesis resulted in low utilization of the demand 

response resources, further research into optimal target trajectory formulation would 

provide significant value to utility systems operators. This could be completed in 

conjunction with work to reduce the computational complexity of the control algorithms 

for large population VGMs, as well as large-scale implementations of the simulations to 

include multiple VGMs of similar load types. In addition to improving the utilization of 

the demand response resource, this would enable to evaluation of much larger DR programs 

by recruiting many loads into multiple VGMs, eliminating the associated increased error 

and computational requirements of large population VGMs. Furthermore, it is necessary to 

investigate the effects of a controller requesting the maximum (or minimum) feasible 

output from a VGM for a prolonged period of time. It may be possible to drive the system 

to saturation if maximum output is requested for a sufficiently long time, and a recovery 

period may be required prior to the VGM being available to provide DR services 

immediately following such a request. 

Finally, development of consumer-friendly hardware to enable demand response 

participation of residential scale loads, and the underlying control structure of such devices 

is necessary to bring the simulated demand response programs into the real-world 

environment. A discrete control algorithm, similar to the one used by Chassin [20], may be 

necessary to fully characterize the control system transfer function and transient response 

of the DR system. 
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