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ABSTRACT

Advancing towards ‘better’ wind turbine designs engineers face two central challenges:

first, current aerodynamic models (based on Blade Element Momentum theory) are

inherently limited to comparatively simple designs of flat rotors with straight blades.

However, such designs present only a subset of possible designs. Better concepts

could be coning rotors, swept or kinked blades, or blade tip modifications. To be

able to extend future turbine optimization to these new concepts a different kind of

aerodynamic model is needed. Second, it is difficult to include long term loads (life time

extreme and fatigue loads) directly into the wind turbine design optimization. This is

because with current methods the assessment of long term loads is computationally

very expensive – often too expensive for optimization. This denies the optimizer the

possibility to fully explore the effects of design changes on important life time loads,

and one might settle with a sub-optimal design.

In this dissertation we present work addressing these two challenges, looking at

wing aerodynamics in general and focusing on wind turbine loads in particular. We

adopt a Lagrangian vortex model to analyze bird wings. Equipped with distinct tip

feathers, these wings present very complex lifting surfaces with winglets, stacked in

sweep and dihedral. Very good agreement between experimental and numerical results

is found, and thus we confirm that a vortex model is actually capable of analyzing

complex new wing and rotor blade geometries.

Next stochastic methods are derived to deal with the time and space coupled

unsteady aerodynamic equations. In contrast to deterministic models, which repeatedly

analyze the loads for different input samples to eventually estimate life time load

statistics, the new stochastic models provide a continuous process to assess life

time loads in a stochastic context – starting from a stochastic wind field input

through to a stochastic solution for the load output. Hence, these new models allow

obtaining life time loads much faster than from the deterministic approach, which

will eventually make life time loads accessible to a future stochastic wind turbine

optimization algorithm. While common stochastic techniques are concerned with

random parameters or boundary conditions (constant in time), a stochastic treatment

of turbulent wind inflow requires a technique capable to handle a random field. The

step from a random parameter to a random field is not trivial, and hence the new

stochastic methods are introduced in three stages.
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First the bird wing model from above is simplified to a one element wing/ blade

model, and the previously deterministic solution is substituted with a stochastic

solution for a one-point wind speed time series (a random process). Second, the wind

inflow is extended to an n-point correlated random wind field and the aerodynamic

model is extended accordingly. To complete this step a new kind of wind model

is introduced, requiring significantly fewer random variables than previous models.

Finally, the stochastic method is applied to wind turbine aerodynamics (for now based

on Blade Element Momentum theory) to analyze rotor thrust, torque, and power.

Throughout all these steps the stochastic results are compared to result statistics

obtained via Monte Carlo analysis from unsteady reference models solved in the

conventional deterministic framework. Thus it is verified that the stochastic results

actually reproduce the deterministic benchmark. Moreover, a considerable speed-up

of the calculations is found (for example by a factor 20 for calculating blade thrust

load probability distributions).

Results from this research provide a means to much more quickly analyze life

time loads and an aerodynamic model to be used a new wind turbine optimization

framework, capable of analyzing new geometries, and actually optimizing wind turbine

blades with life time loads in mind. However, to limit the scope of this work, we only

present the aerodynamic models here and will not proceed to turbine optimization

itself, which is left for future work.
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Chapter 1

Introduction

Climate change is obvious. Moreover, as the famous Canadian science broadcaster and

environmental activist David Suzuki puts it, climate change is “one of the greatest

challenges humanity will face this century. Confronting it will take a radical change in

the way we produce and consume energy” (Suzuki, 2014). Producing a large portion

of our electricity from renewable energies may be such a radical change. With its wide

availability, positive impact on the local economy and potential to create local jobs1,

and little ‘costs’ to society2, wind power is a promising candidate among the multiple

forms of renewable energy. Decision makers in politics and industry have realized the

potential of wind energy, thus spurring an increase in wind energy installation. For

2015 this led to installation of 63 GW of new wind capacity, a 17.1 % cumulative

capacity growth rate (GWEC, 2015). This trend is expected to continue for the next

years. From now up to 2020 GWEC (2015) expects an annual installed capacity

growth rate of around 5 %.

This growth is driven by a rapid progress in wind turbine technology, leading

to larger turbines and the ability to harvest wind energy at less favorable locations.

However, as wind power takes over an increasing share of electricity production,

stability of the electrical grid becomes a concern. With an increasing amount of wind

1 The British government for example recognizes that “the offshore wind sector has the potential
to become one of strategic economic importance to the UK [...]. In 2020/21, under a strong growth
scenario, the sector could deliver in the order of £ 7 bn Gross Value Added to the UK economy
(excluding exports) and support over 30,000 full time equivalent UK jobs.” (HM Government, 2013).

2 Stiesdal (2013) adds various social, political and economic contributions to the levelized cost of
energy (LCOE) to arrive at the “Society’s Cost of Electricity”, or SCoE, a cost that is supposed to
reflect the ‘real costs’ of electricity produced by a certain source. For the UK in 2025 he finds wind
power to have the lowest SCoE.
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power generated from large turbines, some of them in increasingly less favorable sites

(i.e. less windy, more turbulent sites) the dynamic fluctuations in the wind power

production (driven by unsteady wind) increases, too. This variable input is becoming

a challenge for the electricity utilities, which are trying to balance power supply and

demand (Altın et al., 2010; Zhang et al., 2010; Heier, 2014). To sustain ongoing growth

in wind power production several questions have to be addressed, all revolving around

three central trends: larger turbines, less favorable sites, and grid stability issues with

increased wind power generation.

The research project presented in this dissertation aims at one factor that impacts

all three of these core trends: unsteady turbulent wind. In the following we will look

at:

� How unsteady turbulent wind is modeled as a source term in engineering analyses;

� The way unsteady effects of turbulent wind are currently dealt with in engineering

analysis;

� The reasons why these unsteady effects are of growing importance for the design

of the next generation of wind turbines;

� The deficiencies of the current methods to deal with unsteady effects of turbulent

wind;

� An alternative approach to deal with unsteady effects of turbulent wind.

Many of the findings presented in this dissertation are not specific to wind turbine

engineering; instead, they are applicable to multiple fields of wind engineering and

sometimes beyond. We will mention these other applications in places, but keep our

main focus on wind energy applications.

1.1 Background and motivation

Wind in the atmospheric boundary layer is highly turbulent, with wind speeds inher-

ently unsteady quantities varying considerably in space and time on various scales

(Emeis, 2012). Wind turbines typically operate within this atmospheric boundary layer,

although certain geographical and meteorological conditions exist where modern wind

turbines operate at least partially above the atmospheric boundary layer. Naturally,
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the wind speed fluctuations a turbine blade encounters transfer to fluctuating blade

forces, fluctuating structural loads and finally a highly fluctuating power output. Milan

et al. (2013) for example found in an eight month data set wind speed changes of up to

11 m/s within only 8 s. For the 2 MW turbine regarded in this study they also found

turbine power changes of 82.5 % within these 8 s. This indicates that short term wind

speed variations do have a considerable influence on turbine performance and load.

Zhou et al. (2016) show that the peak power fluctuation for wind turbines (estimated

by twice the rms values) can reach 22% of its average. These strong fluctuations in

wind forcing and resulting turbine loads are not without consequences, particularly

when looking at current trends in wind turbine design.

1.1.1 Current trends in wind turbine design

We identify the following current trends in wind turbine design:

Trend towards harvesting wind power at less favorable sites: As the in-

stalled wind power capacity increases globally, the best sites are quickly occupied,

leaving only less favorable sites or moving off-shore. To enable further on-shore

development and to make second tier sites economically attractive wind turbines have

to become (technically and economically) more efficient, because electricity has to be

generated under worse conditions but at similar cost. ‘Worse’ often means ‘less mean

wind speed’ and/ or ‘more fluctuations’. Thus, this directly leads to the second trend.

Trend towards larger turbines: To capture more power from less wind at second

tier sites the turbine rotor diameter is increased to capture more wind. Moreover,

larger turbines, with stronger generators, are also favored at top tier sites and off-

shore to harvest more energy while simultaneously reducing the cost of electricity

through economy of scale. For larger turbines, however, blade elasticity is of growing

importance to correctly predict fundamental design parameters such as tower clearance

and fatigue loads (Zhang and Huang, 2011). Since blade vibrations, a major source

of fatigue, are mainly driven by turbulent wind effects, the accurate translation of

unsteady wind loads to unsteady blade forces becomes increasingly crucial. Moreover,

increased blade motions add another unsteady term (viz., the relative wind velocities

due the the blade motion) to the apparent wind3 equation. Thus, for large turbine

3 Borrowed from sailing terminology, apparent wind is used to denote the flow as the blade ‘sees’
it, including all blade motion and wake induced velocities as well as (tower) blockage effects.
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blades including unsteady aerodynamics becomes increasingly relevant.

Rising grid stability issues: With increasing wind power grid penetration the

impact on grid stability from the variable and uncontrollable wind source increases.

Unsteady wind is again the driving cause as it is the unsteady power generation

that threatens grid stability. This is certainly true for longer time scales of wind

speed fluctuations (over ten minutes), where wind speed changes can still be treated

quasi steady. But, as shown by Milan et al. (2013), wind speed fluctuations at much

higher frequencies are also transferred to output power fluctuations. If and how these

higher frequency fluctuations affect grid stability is still unclear. At the same time

considerable research effort is directed to developing smart grid technologies (Holttinen

et al., 2011) to meet fluctuations on the generation side by controlled changes on

the demand side (Williams et al., 2013; Broeer et al., 2014). Although power and

grid electronics is certainly out of the scope of this project, modeling the relation

between real (higher frequency) wind speed fluctuations and output power fluctuations

correctly is essential to analyzing its influence on the grid and devising appropriate

smart grid strategies. Thus, assessing the unsteady aerodynamic loads correctly is

fundamental to possibly designing future wind turbines, which enhance grid stability

rather than compromising it.

1.1.2 The need for unsteady optimization considering life

time loads and unsteady power output

In order to offer the ‘best’ wind turbine possible its design has to be optimized for the

conditions it is working in. This includes considering different wind speeds and the

turbulent wind conditions over the period of the turbine’s life time. With the trends

discussed above, unsteady optimization becomes essential to correctly account for the

dynamic loads and unsteady power output. Once considering both on a life time scale

the optimum design may shift to different aerodynamic shapes, different structural

layouts, and different controller designs, resulting in a different cost of electricity.

Moreover, regarding growing grid stability issues it can be expected that the

optimization objectives and with it wind turbine controller design objectives have to

be revisited in the future. Will the current version, solely driven by narrow economic

considerations focused on the total power generation, still hold in the next years?
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What are the real costs to be minimized? Will we rather have to turn to a more global

optimization, including power grid stability and market effects?

Regardless what the answer to these questions will be, including unsteady effects

in future optimization routines will be essential, whether to predict the impact on grid

performance or to minimize LCOE for the wind as it is out there: unsteady. However,

unsteady optimization is limited at this moment.

Currently wind turbines are usually optimized based on time stepping simulations

run for relatively short (e.g. 600 s) wind samples, often these simulations are even fed

only with mean wind speeds or mean wind speed distributions. The aerodynamic equa-

tions are usually solved through a Blade Element Momentum (BEM) model (Burton

et al., 2011; Bladed, 2012; Hansen, 2008). This results in two challenges, which are be-

coming increasingly relevant with the trends identified above. Firstly, BEM solvers are

inherently limited to planar rotor designs. This neglects more complex, possibly more

advantageous geometries. Secondly, basing wind turbine optimization on one or at

best a few short samples neglects long term dynamic effects. The wind turbine design

standard IEC 61400-1, Ed. 3 (2005) is indicative for this process: it bases the turbine

(life time) load analysis on multiple unsteady 600 s simulations, for multiple different

design load cases (DLCs), analyzed at many different mean wind speeds superimposed

with turbulent fluctuations, every one repeated several times with different realizations

of the turbulent fluctuations, each generated from a different random seed. This

results in a large number of analyses. The computational costs associated with this

multitude of analyses obviously present a challenge to optimization, where additionally

many different candidate designs have to be evaluated. Moreover, extrapolation from

a limited data set to life time extreme loads is a delicate exercise and results can vary

greatly (Moriarty, 2008; Burton et al., 2011; Tibaldi et al., 2014; Zwick and Muskulus,

2015). This poses an additional challenge for wind turbine optimization, particularly

when concerned with gradient-based methods, where obtaining reliable design variable

gradients is vital.

As a result of these challenges, wind turbines are usually ‘optimized’ first, and life

time unsteady loads are assessed afterwards via the analysis of the DLCs from IEC

61400-1, Ed. 3 (2005)). However, relying on BEM and not considering life time loads

is obviously sub-optimal, because:
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A) BEM based solvers cannot explore unconventional, but potentially beneficial

new designs such as winglets, ailerons, swept or downwind coning rotors, etc.,

and

B) the optimization is blind to the important (Kareem, 2008) cost savings of modi-

fied long term loads and power production from different blade designs operating

in unsteady conditions.

So far only very few multidimensional optimization (MDO) frameworks have been

presented, which try to address the second point and include life time loads into the

optimization (Bottasso et al., 2012; Ashuri et al., 2014; Chew et al., 2016; Bortolotti

et al., 2016). However, these tools typically only assess a few selected DLCs and/ or

rely on nested aero-structural loops. While in principle any number of DLCs could

be analyzed and a large number of iteration could be performed to converge the

nested optimization loops, the limiting factors are the substantial computational costs.

These costs lead to long solution times, which are not too problematic in academic

research, but are problematic for industry applications, where over night results are

vital. Merz (Merz, 2015a,b) and Lupton (2014), on the other hand, develop a frequency

space model and thus are able to consider significantly more DLCs at much lower

computational cost. However, both still relay on BEM for the aerodynamic modeling,

and thus do not address point (A). Moreover, their frequency domain approach brings

the usual challenges with respect to non-liner effects.

Lagrangian vortex models (LVM) based on Prandtl’s lifting line theory (Prandtl,

1918, 1919) are an attractive solution to (A), see for example Junge et al. (2010);

McWilliam et al. (2013b); McWilliam (2015). They are relatively fast to solve, and – as

we will show later (Chapter 2) – flexible enough to handle unconventional geometries.

Point (B), on the other hand, is more demanding, particularly when employing LVM

equations to assess new geometries. These equations are more time consuming to

solve then BEM, especially in unsteady conditions. Hence, time stepping through

multiple LVM solutions to obtain data for extrapolation to long term loads is not an

option within the time budget of any practicable optimization program. To resolve

this, we suggest a fundamental shift in how we approach unsteady loads.
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1.1.3 A new perspective on unsteady analysis

Unsteady wind turbine blade loads are caused by the unsteady aerodynamic forcing

during the turbine’s life time of some 20 years. However, calculating turbine loads for

a time series of 20 years of wind data is difficult. This is too long a time span for a

conventional model with a high enough temporal resolution to capture all relevant

frequencies. Hence one usually resorts to the (well known, but unsatisfactory) process

summarized in Fig. 1.1: extracting several short samples out of the 20 year wind speed

time series, analyzing each sample individually, and subsequently populating a load

probability distribution (PDF) to extrapolate life time loads. This is a deterministic

approach. Each wind speed sample represents one specific time series of wind data.

And each load solution is the (deterministic) solution to one of these specific samples.

There is no randomness in the analysis, and statistics of the life time loads (e.g. return

periods, probabilities of exceedance) are obtained via a Monte Carlo kind of analysis

from multiple deterministic solutions.
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Figure 1.1: Comparison deterministic vs. stochastic approach.

Alternatively the unsteady wind forcing can be regarded as a stochastic process:

random, but highly correlated in time and space. What we called a ‘short wind speed

sample’ thus becomes one wind speed realization. From this point of view rotor loads

are the output of a system excited by a random process. Hence the loads are a random

process, too, and the loads we calculated for one wind speed sample, i.e. one wind
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speed realization, become one specific realization of the stochastic loads. Once we

have adopted this stochastic view, how about we try to treat the problem as such,

too: a stochastic problem, driven by a random input, yielding a random output?

This means replacing the deterministic steps in Fig. 1.1 with a direct stochastic

analysis as called for by the input. This view opens the door to a new approach

to deal with unsteadiness – now viewed as randomness – in wind turbine aerodynamics.

In this dissertation we will first briefly look at Lagrangian vortex models and

study their suitability for analyzing and thus optimizing new and unconventional wind

turbine blade geometries. We then will turn towards the new stochastic view to assess

unsteady loads. This new approach will allow us to extract long term loads from one

single stochastic solution. In the sequel we will focus on unsteady aerodynamic wind

turbine blade loads. However, the approach can be similarly applied to e.g. bridges

under wind load, or offshore structures under (possibly combined wind and) wave

loads.

1.2 Objective

Tackling the above identified deficiencies in current wind turbine optimization is a

bigger task than manageable in a single PhD student life. Accordingly, the scope

of this dissertation includes only a selected set of tasks from a more comprehensive

research endeavor geared towards advanced wind turbine optimization, capable of

expanding rotor design towards new blade geometries (Cline et al., 2011; Lawton and

Crawford, 2012, 2013, 2014; McWilliam, 2015; Ghulam, 2016; Karimi et al., 2017).

The principal objective the work presented here is:

Develop a method to assess unsteady turbulent wind loads to be used in a new

wind turbine design optimization framework.

This objective yields three tightly interconnected challenges:
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1. To work with an aerodynamic model capable of handling the unsteady aerody-

namic loads introduced through turbulent atmospheric wind on various time

scales.

2. To choose time scales such that “life time loads” are captured appropriately. For

wind turbine design these are usually the most extreme loads (ultimate loads)

and the worst combination of fatigue loads to be expected over the turbines life

time. Hence time scales from fractions of seconds (the highest relevant structural

vibration excitation frequency) to 20 or 25 years (the turbine life time) have to

be assessed.

3. To develop a method employable in a (future) optimization framework, i.e. one

that is fast enough that the analysis of life time loads is feasible for hundreds or

even thousands of candidate designs with reasonable computational effort.

With the Lagrangian vortex model a promising candidate to tackle (1) is available.

However, this needs to be verified. Points (2) and (3) is where the crux hides. Because

a life time load assessment is expensive, point (2) is usually addressed after the turbine

optimization, often with Monte Carlo like analysis based on wind input generated

from multiple random seeds, see Section 1.1.2. However, a Monte Carlo approach

often poses problems for optimization routines, point (3), because with these methods

the design evaluation is not only dependent on design variable changes, but also on the

specific random seed used. Particularly with a limited number of random seeds (i.e. a

limited set of wind speed samples analyzed) the effects from the seeds can override

design variable effects, and hence render optimization very difficult (Moriarty, 2008;

Tibaldi et al., 2014; Zwick and Muskulus, 2015). To address points (2) and (3), and

to make the life time load assessment accessible to an optimization routine, requires a

shift in perspective and a fundamentally different approach.

As indicated above, stochastic methods provide this new approach. It is the objec-

tive of this dissertation to summarize the development of these stochastic methods, to

present their application to the problem at hand (wind turbine aerodynamics), and to

give an outlook onto the relevance of the new models to wind turbine optimization.
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1.3 Work flow and dissertation outline

Chaos Expansion

stochastic methods basic

stochastic wing

stochastic rotor

stochastic wind models
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Legend: previous work our work future workFigure 1.2: Research work flow underlying this dissertation.

This dissertation is composed of a collection of six independent (but connected)

articles which are published or submitted for publication in peer reviewed academic

journals. Each of the central chapters presents one article. Thus each chapter is self

contained, including its own introduction, literature review, specific objectives, meth-

ods, results and discussion, as well as its own abstract and conclusions. This allows

the reader to specifically select the chapters most relevant to them without having

to work though the whole dissertation. The nomenclature is generally similar in all

chapters, but (due to different journal standards and a limited set of symbols available)

not completely identical. A nomenclature overview is included in most chapters, in
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others the terms are defined in the text. This was driven by the standards of the

journal, which a specific chapter was published in. In any case the full nomenclature

and all terms are completely explained within each chapter.

The work flow of the underlying research is summarized in Fig. 1.2. It comprises

three major building blocks:

1. Leaving blade element momentum theory and moving to a more flexible aerody-

namics model to be able to analyze new turbine blade geometries.

2. Leaving the world of deterministic analyses and turn towards stochastic models

to provide a means to efficiently assess unsteady aerodynamic loads within

the turbine optimization loop.

3. In order to successfully implement (2) turbulent atmospheric wind had to

be looked at as the main source of stochasticity in the system at hand.

These three blocks translate to the dissertation structure as follows:

Chapter 1 sets the stage, gives an overview of the background of the conducted

research, provides the motivation behind it, presents this outline of the disser-

tation, and concludes with an overview of the central research contributions

achieved.

Chapter 2 looks at complex wing geometries. It is our goal to extend the design

space for wind turbine optimization to new geometries (e.g. swept blades, wing

tip modifications). Aerodynamic models based on Blade Element Momentum

theory are fundamentally limited to straight, planar rotor blades. Lagrangian

vortex models on the other hand do not face this constraint. In this chapter

we adopt a Lagrangian vortex model, in the form of an extended and modified

version of Prandtl’s lifting line formulation (Prandtl, 1918, 1919). Through the

analysis of bird wings, featuring a geometry far more complex than most of their

engineering complements, we not only provide new insight into some details of

bionic drag reduction, but also show that a vortex model is indeed capable of

analyzing very complex non-planar geometries, and thus new wind turbine blade

shapes as well.
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Chapter 3 and Chapter 4 are concerned with the stochastic modeling of turbulent

atmospheric wind in two steps. These two chapters are based on the wind model

developed by Veers (1988) and implemented in TurbSim (Jonkman and Kilcher,

2012).

Concerned with turbulent wind and looking at numerical wind turbine analysis

we find that interpolation of tabulated wind speed data (a ‘block of frozen

wind’) is often necessary. In Chapter 3 we show that the default choice (linear

interpolation) is erroneous – it distorts the spectrum of the wind inflow and thus

alters the resulting turbine load statistics. To tackle this issue we introduce a

more accurate alternative based on stochastic wind speed increments.

In Chapter 4 we advance Veers’s model to a formulation requiring significantly

fewer random variables. This step was necessary because the stochastic models

used later on (Chapters 6 and 7) have trouble handling a large number of random

variables, a fact well known as the ‘curse of dimensionality’. For the reduced

order model derived here we pick up the ideas from Chapter 3 and again use

stochastic increments, this time applied to the random phase angles.

Chapter 5, Chapter 6 and Chapter 7 form the core of this dissertation, the

derivation and validation of a stochastic method for modeling unsteady wind

turbine aerodynamics. We develop this method in three steps:

First, we derive stochastic model for aerodynamic loads driven by unsteady

wind. This step is based on the theory of polynomial chaos expansion, as

used in previous work and initially introduced by Ghanem and Spanos (1991).

However, while previous work was concerned with with stochastic but constant

(in time) boundary conditions or system parameters (e.g. unknown but constant

temperature, material properties, oscillation amplitudes), we now extend the

theory to models driven by stochastic wind input, i.e. a random process correlated

in time and space. We start with a basic introduction of the new theory by

picking up the lifting line model that was used before (Chapter 2), but simplifying

it to a basic one element wing in unsteady inflow. We limit the model to linear

equations, neglect spatial correlation, and focus on correctly capturing the

(temporal) one-point statistics (i.e. the auto-correlation) of wing loads caused

by stochastic inflow. This leads us to two different, but similar stochastic

aerodynamic models: the (now time resolved) polynomial chaos model, and

the Fourier-Galerkin model. Both models are introduced and validated in



13

Chapter 5. Moreover, the stochastic projection, used to obtain the coefficients

of the stochastic solution, is presented.

In the second step we remain with linear equations, but extend the lifting line

model to n spanwise wing elements on a translating blade. The challenge here

was to extend the stochastic model such that it correctly captures not only the

(temporal) one-point, but also the (spatial) two-point statistics (cross-correlation,

covariance, cross-spectrum) of the aerodynamic loads. Based on the Fourier-

Galerkin model introduced before (Chapter 5) this step is presented in Chapter 6.

Here, we also pick up the results from Chapter 4 to model the wind inflow field

with few enough random variables to be manageable for the stochastic model.

In the third and final step we eventually extend the stochastic method to

analyzing wind turbine blade loads in rotationally sampled wind field. We

include non-linear equations and discover that a polynomial chaos basis is not

an ideal choice for the stochastic series expansion, and that the Fourier Galerkin

method as introduced in Chapter 5 becomes challenging for non-linear equations.

We thus introduce a combination of both previous approaches (polynomial chaos

and Fourier-Galerkin), and arrive at a new method. This new methods is uses

a stochatic series expansion (like polynomial chaos) but on a stochastic space

spanned by multivariate complex exponential functions (like the ones used for

Fourier-Galerkin). We call this an exponential chaos expansion, and find that

now the stochastic expansion collapses to a multidimensional discrete Fourier

transform in the stochastic space. In Chapter 7 this new stochastic expansion is

introduced and validated. We show that one stochastic solution can produce

similar rotor blade load results as multiple solutions from the conventional

deterministic model.

To not introduce too much complexity at once we decided to revert to the

well established and more simple Blade Element Momentum model (Bladed,

2012; Burton et al., 2011; Hansen, 2008) for this third step. The goal was

to show the feasibility of the stochastic model for wind turbine rotor analysis

including non-linear effects. This could be achieved with the Blade Element

Momentum equations, without having to deal with the extra complexity of vortex

models. Moving to a stochastic formulation of Lagrangian vortex equations

will eventually follow the same route as described in this chapter for the Blade

Element Momentum model. However, this step is left for future work.
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Chapter 8 wraps up this dissertation with a summary of the main conclusions

drawn from each of the three building blocks as well as an outlook onto future

work.

Our long term goal is to arrive at an advanced wind turbine optimization platform.

This dissertation presents major steps towards this goal. However, our time is limited

– as always. Hence, eventually arriving at a stochastic wind turbine optimization

framework, including structural response and controller actions, is left for future work.

1.4 Research contributions

The research presented in this dissertation yielded the following contribution to the

current knowledge:

1. We modified and implemented a Lagrangian vortex model to assess unconven-

tional, non-planar wings (Chapter 2).

(a) We showed that vortex models are capable of accurately assessing aero-

dynamic lift and drag even for complex and strongly interacting lifting

surfaces.

(b) We studied birds wings and gained insight into bionic methods to enhance

wing performance.

2. We developed new stochastic methods applicable to turbulent wind.

(a) We showed that the current method of linearly interpolating turbulent

wind data (available with the common grid resolution) is erroneous. We

provided an alternative solution (Chapter 3).

(b) Current wind models are not suitable for stochastic methods. We developed

a better suited alternative (Chapter 4).

3. We introduced new stochastic methods for unsteady aerodynamics.

(a) We adopted polynomial chaos expansion such that not only random param-

eters, but also random processes can be dealt with (Chapter 5).
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(b) We applied two different kinds of stochastic series expansion to aerodynamic

vortex equations in order to analyze wing loads in the stochastic domain

(Chapters 5 and 6).

(c) We substituted polynomial chaos basis functions with multivariate com-

plex exponential functions and introduced exponential chaos expansion

(Chapter 7).

(d) We analyzed unsteady wind turbine blade loads in the stochastic domain

(Chapter 7).

The following chapters will present details to each of these contributions.
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Chapter 2

A Lifting Line Model to Investigate

the Influence of Tip Feathers on

Wing Performance

This chapter was first published as:

Fluck, Manuel and Crawford, Curran: “A lifting line model to investigate the influence

of tip feathers on wing performance”, Bioinspiration & Biomimetics, IOP Publishing,

2014, 9; DOI: 10.1088/1748-3182/9/4/046017

It was questionable if Lagrangian vortex models are actually a good choice to extend

the wind turbine design space from flat rotors with straight blades to unconventional

shapes (e.g. with winglets, ailerons, or sweep). In this paper we apply an extended

lifting line model (a special type of Lagrangian vortex model) to analyze bird wings.

Thus we:

A) proof that vortex model are actually capable to analyze very complex wing

geometries.

B) gain insights into bionic ways to decrease induced drag and/ or increase maxi-

mum lift.

See Appendix C.1 for further information regarding the C++ code used to generate

results for this section.

http://dx.doi.org/10.1088/1748-3182/9/4/046017
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Abstract

Bird wings have been studied as prototypes for wing design since the beginning of

aviation. Although wing tip slots, i.e. wings with distinct gaps between the tip feathers

(primaries), are very common in many birds, only a few studies have been conducted

on the benefits of tip feathers on the wing’s performance, and the aerodynamics behind

tip feathers remains to be understood. Consequently most aircraft do not yet copy

this feature.

To close this knowledge gap an extended lifting line model was created to calculate

the lift distribution and drag of wings with tip feathers. With this model, is was

easily possible to combine several lifting surfaces into various different birdwing-like

configurations. By including viscous drag effects, good agreement with an experimental

tip slotted reference case was achieved. Implemented in C++ this model resulted in

computation times of less than one minute per wing configuration on a standard

notebook computer. Thus it was possible to analyse the performance of over 100

different wing configurations with and without tip feathers.

While generally an increase in wing efficiency was obtained by splitting a wing tip

into distinct, feather-like winglets, the best performance was generally found when

spreading more feathers over a larger dihedral angle out of the wing plane. However,

as the results were very sensitive to the precise geometry of the feather fan (especially

feather twist) a careless set-up could just as easily degrade performance. Hence a

detailed optimisation is recommended to realize the full benefits by simultaneously

optimizing feather sweep, twist and dihedral angles.

This is an author-created, un-copyedited but slightly corrected version of an article accepted for

publication in Bioinspiration & Biomimetics. IOP Publishing Ltd is not responsible for any errors or

omissions in this version of the manuscript or any version derived from it. The Version of Record is

available online at 10.1088/1748-3182/9/4/046017.

http://dx.doi.org/10.1088/1748-3182/9/4/046017
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2.1 Introduction

The effect of end-plates on the performance of aircraft wings was studied in early

aeronautics (e.g. Nagel (1924); Reid (1925)) and its positive influence has been rec-

ognized for at least a half century Hoerner (1952). Classical end plates are simply

vertical plates fitted to wing tips. Later refinements used cambered airfoils with

toe-in and sweep, leading to the winglets commonly seen on today’s passenger aircraft

(e.g. Whitcomb (1976); Kirk and Whitcomb (1995)). Modern winglets are essentially

vertically-oriented wings implemented to enhance the performance of redesigned or

limited-span wings. To mitigate transonic effects sweep is often incorporated. As

fuel economy becomes increasingly important and new manufacturing techniques are

developed, aircraft manufactures are revisiting winglet technology to further reduce

wing drag and hence improve fuel efficiency. Examples are Boeing’s new “Advanced

Technology” and “Split Scimitar” winglets used with the 737 and 737 MAX families.

With both of these new types the winglets are set no longer vertical but at a dihedral

angle to the main wing. Birds on the other hand do not have end-plate like vertical

winglets but often feature primary feathers, which spread horizontally and vertically to

form distinct wing tip gaps. Thus, following the ideas of bio-inspiration, it is intriguing

to learn if moving further from conventional winglets to tip feather like winglet fans

contributes to further benefits for aircraft wings.

Various analytic and experimental studies have been conducted on the effects of

primary feathers and it is understood that these generally reduce induced drag and

increase stability for wings of limited span (Lockwood et al., 1998; Norberg, 1990;

Sachs and Moelyadi, 2006; Swaddle and Lockwood, 2003; Withers, 1981). From wing

drag experiments with Harris Hawks (Parabuteo Unicinctus) 10 – 30 % drag reduction

was found with tip-slotted primary feathers (Tucker et al., 1995). This reduction is

explained by the tip slots breaking up and spreading the tip vortex. Moreover, a

clear superiority of vertically spread (Hummel, 1980) and flexible feather-like winglets

(Tucker, 1993) over planar wing tip extensions has been reported.

The concept of spread tip feathers and slotted wing tips has been transferred to

experimental aircraft designs by equipping wings with multiple (feather like) winglets

(Eberhardt, 2011) and a few experimental reports demonstrate that benefits from

artificial feather like winglets do exist for aircraft applications. Here again up to 30%
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increase in wing efficiency (i.e. lift to drag ratio), up to 20% more lift, or 30% less

drag were found for wings equipped with winglets (Cosin and Catalano, 2009; Hossain

et al., 2011; Smith et al., 2001). However, the experiments had some difficulty in

varying parameters independently, e.g. adding winglets changed the total wing area

(Hossain et al., 2011).

The above mentioned studies provide strong evidence that wing tip feathers or tip

slotted wings improve the efficiency both for bird wings and aircraft. Although the

standard Prandtl lifting line analysis is cited to loosely explain the benefits of wing

tip slots (Tucker, 1993; Tucker et al., 1995), profound understanding of the underlying

physics has not been provided. Yet, to take full advantage of the benefits wing tip slots

offer, it is vital to understand how these devices work and how to best arrange them.

Hence this paper aims to contribute towards a better understanding of the processes

that lead to a reduction in induced drag for tip-slotted wings. Therefore special

attention is paid to the wing’s vortex system. The vertical (out of wing-plane) vs.

horizontal (in wing-plane) spreading of vorticity by a winglet fan and the influence of

the geometric arrangement of the tip feather assembly on induced drag is studied. This

extends well beyond the few cases presented by Hummel (1980). It is also recognized

that adding winglets or tip slots will increase the viscous drag; hence a viscous drag

model in included. The goal is to give fundamental guidelines for bio-inspired design

for improved wing performance.

2.2 Calculation method

Considering the goals stated above it was concluded that a full CFD calculation would

be too complex with too little flexibility for studying the vortex system of tip slotted

wings across a wide range of parameter variations. Even a vortex lattice approach

was considered inappropriate for this case, since the prime interest was in spanwise

properties such as the spanwise distribution of induced drag and vorticity. Hence the

method of choice was an extended lifting line calculation. This method is known to

give realistic results for high aspect ratio wings like the ones considered in this study

(Schlichting and Truckenbrodt, 2000). The validation case (see Section 2.3) showed

that the current model produces good agreement with a tip feathered experimental test

case. Moreover, by employing a lifting line model it was possible to focus on the vortex

system and its properties, while neglecting airfoil-dependent chordwise quantities such
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as chordwise pressure distribution, pitching moment, or center of lift. The calculation

routine was constructed such that different wing-winglet configurations could easily

be studied.
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Figure 2.1: The lifting line system (right) compared to a generic bird wing shape (left)
including naming conventions and coordinate system.

To suit the tip feather calculations, i.e. representing a main wing and multiple

feathers (Figure 2.1), several modifications to the standard lifting line method (see

e.g. Phillips and Snyder (2000)) were implemented:

(i) For each lifting surface (i.e. the main wing and each feather) a separate lifting

line with its own wake was defined. Each lifting line was discretized by ns spanwise

elements along the 1/4-chord line of the wing or feather respectively. The bound

circulation Γi of each element i is determined by Kutta-Joukowski’s theorem based on

the local sectional lift coefficient cl(αe(y), Re(y)) and the free stream velocity v∞:

Γi =
1

2
|v∞ +wi| cl (αe(yi), Re(yi)) c(yi). (2.1)

Here c(y) is the chord of the section at the spanwise position yi, αe(yi) is the effective

angle of attack of that section resulting from the geometric and the induced angle

of attack, and Re(yi) is the local Reynolds number. Finally wi =
∑

jwij is the

component of induced velocity normal to the lifting line at element i, obtained as
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the sum of all downwash wij computed via the Biot–Savart law from the influence of

each vortex element j at the position i. The local lift coefficients cl(α(y), Re(y)) were

extracted from look-up tables (Sheldahl and Klimas, 1981; Doenhoff and Abbot, 1959).

(ii) To include viscous drag into the model, together with its lift coefficient cl the

local sectional drag coefficient cd(α(y), Re(y)) was identified from the same lookup

tables for each lifting line element at its respective angle of attack and Reynolds num-

bers. Thus the total viscous drag of a wing configuration was obtained by integrating

the local viscous drag cd along the whole wing configuration. For this it was critical

to supply accurate cl and cd tables far into the airfoil’s stall region for a wide range of

Reynolds number. The latter was necessary, since slim tip feathers often operate in

different Reynolds number regimes compared to the main wing, possibly on the other

side of the critical Reynolds number. The accurate representation of the post stall

behaviour was necessary to correctly model wing-winglet interactions and associated

additional drag. Since this component of drag is created by the proximity of two

lifting surfaces, it can be understood as drag caused by large induced velocities, which

drive wing sections close to the wing-feather junction into stall. Hence, rather than

defining empirical induced drag correction factors for the wing-feather connections, the

influence of large induced velocities was directly included into the lifting line model.

This was achieved by correctly accounting for the increased drag of stalling sections

close to the connection point.

Although this approach for capturing viscous drag is based purely on sectional airfoil

data and thus neglects spanwise flow, the good agreement of the numerical results

with experiments (see Section 2.3) justifies its application. Hence it is understood

that this model indeed is a good representation of the viscous drag with both its

constituents, profile as well as wing-winglet interaction drag.

(iii) The wake was assembled from chordwise trailing elements and spanwise

shed elements (see Figure 2.2) to include the possibility of unsteady calculations.

As usual, the strength of the wake elements was determined by Helmholtz’ second

theorem. For the steady-state analysis presented here, the circulation of the shed

elements vanished. To obtain a better representation of the wing and feather geometry,

the first segment of spanwise wake is aligned with the wing’s trailing edge, while

the chordwise bound wake elements connect the lifting line with the trailing edge

in the direction of the local chord (Figure 2.2). Downstream of the trailing edge
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the wake is aligned with the free stream. Thus, the wing was actually modelled by

vortex panels with a chordwise resolution of one panel on each wing or winglet element.

(iv) To avoid numerical instabilities, special care had to be taken at the connection

point of two or more lifting surfaces. Here only one common trailing filament is shed

(instead of several coinciding ones). The circulation γt of that shared filament is set

such that γt = ∆γb, where ∆γb is the difference in circulation of adjacent lifting line

elements on the right and left of that connection point.

(v) Equation (2.1) together with wing and wake geometry and the wake strength

constitutes the typical extended lifting line non-linear system of equations, which

defines the strength of each vortex element Γi uniquely. This system was solved via

an iterative Gauss–Seidel pseudo time stepping algorithm, where wij and αe,i are

updated after each time step:

Γ
(n+1)
i = ω ·

(
1

2

∣∣∣v∞ +
∑

j
(wij)

(n)
∣∣∣ cl(y, α(n)

e,i )c(y)

)
+ (1− ω) · Γ(n)

i (2.2)

For better convergence, an under relaxation factor ω is included. To improve solution

times ω was dynamically adapted such that ω ∈ [0.01, 1].

(vi) To improve the stability of the method with finer resolution a core radius

model as proposed by Van Garrel (2003) was included in the Biot–Savart equations.

The validation revealed, however, that increasing the vortex core resulted in inaccurate

representation of the close interaction of vortex elements in the tip feather region. This

was particularly true for the cases with larger numbers of feathers. Hence the core

radius was set to a negligible 0.0001% chord of the main wing to only desingularize

the equations, but not compromise the results.

Eventually lift and viscous drag results were obtained directly by summing sectional

lift (as obtained from cl(αe(yi), Re(yi))) and drag (as obtained from cd(αe(yi), Re(yi)))

at each lifting line element. The induced drag could be directly calculated at the

wing from each section’s circulation Γi and the induced angle of attack αi. However,

this only yielded stable results for planar wing configurations. For highly non-planar

configurations a Trefftz plane analysis (Schlichting and Truckenbrodt, 2000) was found
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Figure 2.2: The lifting line assembly together with the wake layout in top view. For
clarity only the right half wing is shown and only a single tip feather is included.

the better choice to obtain the induced drag component.

The extended lifting line model described above was implemented in a C++ code

and used for the numerical experiments. The relative residual R of the equations for

wing load distribution was monitored as a convergence criteria. For Nll lifting line

elements the relative residual Rn at time step n is defined by

Rn =
1

Nll

Nll∑
i

∆Γi,n
Γi,0

(2.3)

where ∆Γi,n is the change in circulation at element i from time step (n−1) to (n), and

Γ0,i = αiπv∞ci is the reference circulation of that wing segment from two dimensional

theory (chord length ci, free stream speed v∞, and geometric angle of attack αi or

αi = 1◦ for an element at zero geometric angle of attack).
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2.3 Convergence and validation

To assess the quality of the model, the convergence behaviour and two validation cases

were studied.

The basic validation of the lifting line model was obtained by comparing results

for a wing of elliptical platform. In this case an analytical solution for the lift and

induced drag coefficients exists (Schlichting and Truckenbrodt, 2000):

CL =
cl

1 + 2
Λ

CD =
C2
L

πΛ
. (2.4)

Table 2.1 compares the results for such a wing with flat cross section (cl = 2πα),

aspect ratio Λ = 5, wing area S = 10 m2 and angle of attack α = 0.05 rad = 2.9◦ at

v∞ = 10 m/s and ρ = 1.2 kg/m2 to the results from the lifting line model with 25

cosine spaced spanwise elements and a quasi semi-infinite wake. As can be seen the

presented lifting line calculation reproduces the analytic results for the inviscid case

well.

Table 2.1: Comparison of lifting line predictions to analytic results.

analytic Eq. (2.4) lifting line error

CL 0.224 0.226 0.54%
CD 0.00321 0.00316 -1.5%

With an increasing number of iterations the model was found to converge in a

roughly log-linear fashion in the residual Rn. Figure 2.3, on the other hand, shows

the glide ratio results for an increasing number of cosine spaced spanwise elements,

for a wing at α = 5◦ with five tip feathers spread over δ = 30◦ dihedral. The wing

was discretised consistently with half as many elements on each feather as on the

main wing. As can be seen from Figure 2.3 the results are fairly independent of the

resolution for about 100 to 500 spanwise elements (L/D = 33.1± 1.2%). Yet, when

pushing to very high resolutions, the results become less consistent. Considering the

fact that virtually no core radius was used this is not surprising: beyond a certain

resolution the control points of some lifting line elements will be very close to the core
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of some trailing filaments. As the mutual influence grows with 1/r, the hyperbolic

variation in induced velocity will be increasingly resolved leading to non-monotonic

convergence. Fortunately, this region of unstable resolutions could easily be avoided

as a large region of resolution-independent results exists. For the following results

the resolution was set to 30 elements on the main wing and 15 on each feather (180

elements total).

Figure 2.3: Grid convergence for L/D
results for a wing with five tip feathers. Figure 2.4: Comparison of simulation

(marker) to experimental results (Hum-
mel, 1980) for a wing with three feathers.

To further validate the developed extended lifting line model especially for non-

planar wing configurations (e.g. wings with winglets or tip feathers), results were

compared with an experimental study by Hummel (1980). Four different wing config-

urations were compared:

(1) a rectangular wing of aspect ratio AR = 4.

(2) a planar tip-slotted wing with three feathers, but without any feather twist or

dihedral.

(3) a tip-slotted wing with three feathers at τ = [−10,−5, 0]◦ twist, no dihedral.

(4) a tip-slotted wing with three feathers at τ = [−10,−5, 0]◦ twist and δ = [20, 0,−20]◦

dihedral.

As in the experiments a NACA0015 airfoil was used for wing and winglets. The

required 2D lift and drag coefficients were extracted from tables published by Sheldahl

and Klimas (1981).

As shown in Figure 2.4, below stall the lifting line code reproduces experimental

results well. Once the main wing reaches stall (at CD ≈ 0.08) the numerical results
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diverge from the experimental data. This is, however, not surprising: when the wing

stalls, complex three-dimensional flow governs the wing load. Naturally, the model

based on two-dimensional input can not fully capture these effects.

The drag at zero lift, on the other hand, is reproduced well. This demonstrates

that the chosen model generates the right viscous profile drag (the only drag con-

stituent at zero lift). Moreover, the fact that the increased drag experienced with

the plain tip-slotted wing (configuration (2)) is reproduced well by the calculations

shows that this model is capable of analysing tip-slotted configurations and captures

wing-winglet interaction drag penalties. Closer inspection of the local angles of attack

at the tip feathers revealed that the increased drag mainly results from partial stall

at the feathers. The non-planar configurations, cases (3) and (4), again matched the

experimental results closely. This shows that non-planar and wing-winglet interaction

effects are also reproduced well.

Overall, this validation exercise shows that the proposed extended lifting line

model is well suited to investigate phenomena and trends influencing the performance

of a bird wing like, tip-slotted wings.

2.4 Parametric study results

The presented model allows for quickly studying various configurations of multiple

(bird) wing assemblies. Therefore, over 100 cases of different tip feather dihedral,

sweep, and twist configuration were analysed. In this section a summary of the results

is presented. If not otherwise stated, 30 spanwise elements on the main wing and 15

spanwise elements on each feather were used for the computations. The wake was

modelled with straight line elements extending 500 chord lengths downstream. The

Trefftz plane was located half-way along the wake. Convergence was assumed to be

reached at a residual Rn < 10−5. Depending on the number of feathers, computing

the results for one configuration at one angle of attack took a few seconds to a few

minutes on an Intel i5 quad core processor with four cores in parallel. Since this

study is inspired by bird wing design, primarily small aircraft (possibly unmanned

aerial vehicles - UAV) at sizes only slighter bigger than birds were investigated. The

Reynolds number was set to Re = 1.3 · 106, based on the main wing chord. The

attempt to study lower Reynolds numbers was abandoned, since no adequate airfoil
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coefficients were available.

An elliptic load distribution is known to give best performance (i.e. minimum

induced drag) for planar wings. Hence, the results obtained for two different bird wing

configurations (rectangular main wing with two and five tip feathers respectively) are

compared to a wing with elliptic chord distribution with b = 10 m span and aspect

ratio Λe = b2/A = 10 (A denoting the wing area). For both bird wing cases the feather

length was set to bf = 1 m with a feather taper ratio λf = 0.5, while the main wing

length was reduced to bm = 8 m. Thus the total span (i.e. span of the main wing plus

double the feather length) was held constant bt = bm + bf = 10 m. Moreover, to be

able to compare the configurations on a similar basis, the main wing chord cm was set

such that total aspect ratio Λ = b2
t/At = 10 (At now denoting the total wing area of

main wing and all feathers) did not change either. NACA632-415 airfoil data from

Doenhoff and Abbot (1959), extrapolated to ±180◦ with NREL’s AirfoilPrep (2014),

was used for all lifting surfaces.

In the following, the results for sequentially varying the feather dihedral, sweep,

and twist angles (see Figure 2.1) are presented. The connection points xf,i of each

feather to the main wing were spread along the main wing tip chord cm according to:

xf,n = xm +

(
0.7 · n− 1

N − 1
− 0.15

)
cm for n ≥ 2 (2.5)

Here xm denotes the terminal point of the main wing lifting line at 0.25cm. No vertical

stacking was introduced. However, in the case of non-zero angle of attack the feathers

appear offset with respect to the inflow as a result of the inclined main wing chord

line (see front view in Figures 2.5 - 2.6).

In the following sections, both wing performance CL – CD polars and glide ratio

(L/D – α) curves are presented to evaluate performance.

2.4.1 General remarks on tip feathers

Splitting a wing tip into several feathers first of all introduces a viscous drag penalty

and distorts the ideal elliptical load distribution (Figures 2.5 - 2.7). For very low wing

loadings these effects always resulted in decreased glide ratio L/D. At medium wing
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loadings some feather configurations were found to overcome the increase in induced

drag to perform better than the planar elliptical wing. At very high wing loadings the

L/D of the tip feathered wings often decreased again. For all cases L/D gains were

more pronounced with five feathers. On the other hand, the maximum achievable

lift (CL,max) was usually higher with fewer feathers. Moreover, some cases (especially

with fewer feathers) seem to have a beneficial effect on post-stall performance. Figures

2.5 - 2.7 show that the post-stall decline in lift is often less steep for the feathered

wings than for the elliptic baseline case. This indicates that the feathers help mitigate

stall. The slower onset of stall provides an early warning and helps to fly transient

manoeuvres in partial stall. This may reduce the demands on flight control. The

increased CL,max increases manoeuvrability by extending the flight envelope to higher

wing loadings. All this indicates that, for a given mission profile, there might be an

ideal number of feathers. Below this the L/D benefits of more feathers are not fully

exploited; with too many feathers the reduction of CL,max is too disadvantageous and

the wing becomes overly susceptive to detrimental feather effects.

2.4.2 Twisted tip feathers

Twisted feathers deteriorated wing L/D significantly if all feathers were set to the

same twist angle (constant along each feather), see Figure 2.5. However, CL,max was

increased in these cases and the post-stall decline in lift is less steep than for the

elliptic wing.
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Results for twisting each of N feathers at an individual twist angle

τn = τ

(
−1 +

2n

N

)
(2.6)

are shown in Figure 2.6. In contrast to setting all feathers to the same twist angle

(Figure 2.5), successively increasing the twist at each feather (τ = [−10...10]◦ and

τ = [−5...5]◦) improves the wing glide ratio for most angles of attack. However, the

maximum glide ratio still slightly decreases. Moreover, a clear loss in post-stall lift is

now found.
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2.4.3 Swept tip feathers

Several configurations with N feathers swept forward and aft were tested as well. Each

feather was set such that its sweep was σn = σ
(
−1 + 2n

N

)
, see Figure 2.1. However,

moderate feather sweep had little influence on the wing L/D and the the best glide

ratio was always found for the straight arrangement with all feathers parallel. This

is reasonable, since swept feathers only reduces the effective aspect ratio, while ac-

cording to Munk’s theorem (Munk, 1923) in-plane stagger does not change the load

distribution nor the induced drag. Therefore, it is unlikely that the birds’ tip feather

sweep, which is commonly seen in nature, is directed toward an improved glide ratio.

As shown by Sachs and Moelyadi (2006) though, sweep can be important for yaw

stability, and as suggested by others (Withers, 1981; Hummel, 1980; Tucker, 1993)

might be important for for roll stability as well.
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2.4.4 Tip feathers with dihedral

Spreading the feathers in dihedral can bring significant benefits regarding the wing

performance. For the numerical experiments the dihedral angle δn of each of the N

feathers was set such that:

δn = δ

(
−1 +

2n

N

)
(2.7)

Although the viscous drag penalty associated with adding tip feathers reduces wing

performance at very low wing loadings here as well, L/D increased at some dihedral

angles δ (see Figure 2.7). Again, the effects are more pronounced for five feathers: at

δ = ±[0, 30, 60]◦ the maximum achievable L/D exceeds the peak L/D of the elliptic

wing considerably. But again, the maximum lift achieved with five feathers is less

than with two. Moreover, for two feathers δ = ±30◦ yields more L/D than δ = ±60◦.
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Figure 2.7: Glide ratio and CL – CD polars for an elliptical wing (baseline) and
different feather dihedral angles δ.

The maximal achievable glide ratio as a function of dihedral is analysed next.

For passenger aircraft the wing span is usually restricted by the established airport

infrastructure and/or structural limitations; for UAVs transportability often limits the

span. For birds, the required agility given a certain habitat constrains the wingspan.

Hence, the projected span bp (i.e. the horizontal distance from wing tip to wing

tip) is now kept constant, instead of the aspect ratio as above. For two feathers

this meant increasing the main wing span (and accordingly the wetted wing area

At) with increasing feather dihedral such that bm = bp − bf cos δ. For five feathers

the middle feather always remains horizontal and projected span and total wing area

are constant independently of feather dihedral. The geometry of each feather was

kept the same as above. Figure 2.8 shows the maximum glide ratio achieved for a

wing with two and five feathers per side, tilted according to equation 2.7 from δ = 0◦
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(planar) to δ = ±90◦. Here δ < 0 indicates the leading feather is angled upwards,

while δ > 0 indicates the leading feather is angled downwards. The L/D curves were

evaluated at ∆α = 0.2◦ increments in angle of attack. To decrease computational time

and to avoid instabilities in the solution at high dihedral angles, the spanwise reso-

lution was reduced to 15 lifting line elements on the main wing and five on each feather.

It was already shown that a wing with two feathers (which at δ = ±90◦ dihedral

resemble conventional winglets) reaches its maximum L/D at δ < 60◦, not at δ ≈ 90◦

as with the usual winglets on aircraft. Figure 2.8 reveals that for two feathers even

with constant projected span the best L/D is achieved at δ ≈ 20◦. For five feathers, on

the other hand, the glide ratio actually increases continuously with increasing dihedral.

The reason for this is attributed to the complex processes of the vertical spreading

of vorticity around the wing tips. Moreover, for the two feather wing the wetted

area At increases faster with dihedral than the projected (i.e. the lift generating)

area Ap. Thus an optimum in dihedral seems reasonable. For five feathers, on the

other hand, it is interesting to note that increasing dihedral and thus reducing the lift

generating area still increases L/D. Again, the reason for this can be found in the

positive effects of vertically spreading tip vorticity, where the larger spacing between

individual feathers at larger dihedral seems beneficial. The L/Dmax = 43.2 of this

configuration is 21% greater than the maximum glide ratio (L/Delliptic,max = 35.6)

of the elliptic wing. This increase in performance may appear overly large, but is

actually within the range found by others in previous experiments (Tucker et al., 1995;

Smith et al., 2001).

Figure 2.8 shows a direct comparison of the performance gains achievable by two

vs. five feathers. The trend found above is confirmed: five feathers can achieve

significantly more gain in L/D than two feathers. But figure 2.8 also reveals that this

extra gain is only reached once the feathers are spread over a sufficiently large dihedral.

For both cases differences between angling the leading feather upwards (δ < 0) or

downwards (δ < 0) are present, but negligible.

2.4.5 Circulation distribution

To assess the mechanisms behind wing performance improvements with tip feathers Fig-

ure 2.9 shows an example for the non-dimensional circulation distribution at the right
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wing tip as obtained from Equation 2.1. The wing with the best glide ratio (five tip

feathers with δ = 60◦, no sweep, no twist) was analysed at α = 2◦ angle of attack. The

same feather geometry as above was used 4. For comparison the circulation distribution

of a planar wing with similar tip taper (λtip = 0.5) as the case with feathers is included.

  

0.8

planar
0.8

feathers

Figure 2.9: Lift distribution on a wing with five tip feathers (α = 2◦, δ = 60◦).

The effect of mutual up-/downwash influences between feathers and the main wing

is clearly evident. While the circulation on the planar wing decays slowly towards

4Note that with δ = 60◦ the feathers appear of different length only in the projection of Figure 2.9,
while they are actually of equal length bf = 1 m.
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the tip (mainly due to the decreasing chord), the wing with feathers experiences a

significant increase in circulation on the main wing due to the upwash from the leading

feathers. The strong gradient in circulation at the feather roots indicates that here

strong root trailing vortices are shed. These feather root trailing vortices in turn

induce a strong influence on the feather’s load distribution and cause very different

circulation levels on the different feather roots. Depending on the exact wing and

feather geometry this can cause an increase in L/D or maximum lift.

Although all the shed tip and root trailing vortices strongly influence the load

distribution on the wing, it is important to note that in this case the combined

root circulation of all feathers (the cross mark in Figure 2.9) is almost equal to the

circulation at the end of the main wing. According to Helmholtz’ second theorem this

implies that the sum of all vorticity trailing from the main-feather connection point

vanishes behind the wing. This, in turn, is important since additional vorticity shed

at the connection point would lead to increased induced drag.

While tip feathers increase the wing loading (i.e. the circulation) on the inner

parts of the wing, the tip load on the feathers is in-turn reduced by splitting the wing

up into distinct feathers. This leads to weaker tip vortices and thus less induced drag.

However, it is vital to acknowledge that all three effects mentioned above – increased

main wing load, no extra shed vorticity and reduced load at the tips – are strongly

dependent on the precise wing geometry. While the configuration presented in

Figure 2.9 is the best performing configuration found in this parametric study, other

configurations resulted in different circulation distributions.

2.5 Discussion

The results of the current study point to physical reasons for the evolution of tip

feathers:

� Stall mitigation reduces the complexity of flight control and reduces sensitivity

to flight control errors.

� The increase in maximum glide ratio with tip feathers spread vertically improves

gliding capabilities even under wing span limitations (imposed by habitat or

inertia constraints e.g. for take-off capabilities)
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� The increase in maximum achievable lift at high wing loads seems particularly

valuable when occasional high manoeuvrability is required (e.g. for raptors).

Since this study was carried out to shed light on the biomimetic applications of

tip feather devices, a more throughout discussion of the implications of tip feather

aerodynamics for birds is left to the biologists’ examination.

For aircraft wing design the significant increase in wing efficiency L/D (21% over

the value for an elliptic wing) is the most important finding. However, an increase in

L/D was never associated with an increase in maximum lift. While birds combine

both, increasing L/D and maximum lift by adjusting their tip feather geometry to

the instantaneous flight conditions, aircraft are usually limited to one fixed tip config-

uration. As a result, further investigation into flexible or actuated tip feathers seems

a promising avenue for fully exploiting the potential benefits of tip feathers.

Based on numerical studies, Smith (1996) reported considerable wake interaction

for highly non-planar wakes and found another 6% efficiency increase for relaxed wake

calculations over fixed wake ones. Additional tests were run with relaxed wakes in

the current model, using moderate length wake elements (≈ 10 % main chord). These

investigations did not, however, reproduce the influence found by Smith. It is possible

that discretizing the wake with much finer elements might reveal more wake relax-

ation influence. As this would have increased the computational effort significantly

and thus would have compromised the ability to investigate various different winglet

configurations, no further work in this direction was pursued.

Although the chosen lifting line model neglects most effects of chordwise load

distribution, the validation against experimental results showed that this model is

reasonably capable of reproducing tip feather effects and wing-winglet interaction,

as well as viscous drag components. Moreover, with its fast solution times of only a

few seconds to minutes, the model is perfectly suitable for preliminary design studies

and to investigate fundamental trends. This enabled a study of over 100 different

configurations. Considering the huge and complex design space even this represents

only a few isolated samples. In order to find the “best” configuration under the

constraints of a given flight mission clearly the effort of a full optimisation is required.

However, since the primary scope was limited to an initial investigation of possible

benefits, important trends, and physical explanation of tip feathers, this optimisation
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effort is postponed to future work.

2.6 Conclusions

Based on an extended lifting line model, the performance of tip slotted wings, similar

to bird wings equipped with distinct wing tip feathers, was studied in a set of numerical

experiments. It was shown that introducing multiple tip feathers, vertically spread

through varying dihedral to create a non-planar tip slotted wing, can be beneficial.

Gains were found in wing efficiency (i.e. the obtained glide ratio L/D), stall behaviour,

and/ or maximum achievable lift. Five main conclusions regarding a beneficial layout

of tip feathers can be drawn:

1. More feathers only seem beneficial if they are spread far enough in dihedral,

i.e. if additional feathers are not packed into the same volume but spread out

further.

2. There exists a feather dihedral with a maximum glide ratio. For two winglets

this is not ≈ 90◦ as common winglet design suggests.

3. Twist is a very sensitive parameter: ideally twist would be adjusted to the

point of operation to ensure maximised benefits. Only with twist varying for

each feather (τ successively increasing from forward to aft feathers) cases of

slightly increased max L/D were found. Yet, twist may have further benefits in

combination with dihedral.

4. A simultaneous increase in maximum lift and maximum glide ratio L/D with

the same configuration was never found. This suggests difficulties finding an

ideal wing for a variety of different flight requirements without active geometry

control.

5. Sweep was never found to reduce drag or increase lift. However, sweep might be

necessary for a physical wing design to arrange an increased number of feathers

appropriately. Moreover, other resources suggest sweep may increase stability

and is of course important for higher Mach number flight.

As an example the circulation distribution over the wing with the highest glide ratio

was studied. From this examination of circulation distribution the performance gains

found could be attributed to the tip feathers increasing the main wing load and

decreasing the tip circulation while not shedding extra vorticity from the main-feather

junction. Overall, the feathers were found to reduce the total shed vorticity.
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Although only a few wing configurations were analysed in the current work and no

optimisation was performed, it was shown that for certain configurations (e.g. five tip

feathers spread over δ = 90◦ dihedral) a 21% efficiency improvement over an elliptic

wing of same aspect ratio but with no tip feathers was achieved. This number is

expected to increase further when actually optimising a specific feather geometry.
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Chapter 3

Minimizing Errors in Interpolated

Discrete Stochastic Wind Fields

This chapter is a slightly corrected version of a paper first published as:

Fluck, Manuel and Crawford, Curran: “Minimizing Errors in Interpolated Discrete

Stochastic Wind Fields”, Journal of Wind Engineering and Industrial Aerodynamics,

2016, 152, 15–22; DOI: 10.1016/j.jweia.2016.02.007

In this paper we realize that the method currently used to map tabulated wind

speed data, e.g. an (earth fixed) ‘block of frozen wind’, onto rotating blades is er-

roneous. As a remedy we introduce a new method based on stochastic wind speed

increments.

See Appendix C.2 for further information regarding the Matlab code used to

generate results for this section.

http://dx.doi.org/10.1016/j.jweia.2016.02.007
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Abstract

For many unsteady processes (e.g. turbulent wind, electricity demand, traffic, financial

markets, space physics, etc.) data is only available at discrete points, be it due to data

storage or data gathering limitations. However, derived forms of that data are often

used in further studies where the discretization may be different from the discretization

of the original data. This paper addresses the question of how to obtain values between

discrete data points, for example when sampling turbulent wind. Linear interpolation

is often the standard answer. Yet, it is shown that this is a poor choice for unsteady

processes where the sample step size is significantly larger than the fluctuation scale.

An alternative employing probability density functions of data increments is suggested.

While this new method does not require much more effort than linear interpolation, it

yields significantly more accurate results. Unsteady wind is used to exemplify this:

turbulent wind speeds on a (rotating) wind turbine blade are synthesized from a coarse

data grid via the introduced method of wind speed increments. Thus the superiority

of the presented approach over linear interpolation is demonstrated – with important

implications for blade load and power output computations.

© 2016. Licensed under the Creative Commons CC-BY-NC-ND 4.0 license,

http://creativecommons.org/licenses/by-nc-nd/4.0/

http://creativecommons.org/licenses/by-nc-nd/4.0/
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3.1 Introduction

In engineering application we often have to deal with unsteady, highly fluctuating

processes, e.g. turbulent atmospheric wind, urban electricity demand, local traffic

volume, financial markets, space physics, etc. Due to limitations in data handling

and/or storage capacity often a full time series of the process under investigation is not

available. Instead, only incomplete data sets at discrete points are at hand. However,

these data sets are regularly used as input for further analysis and often data values

between two sample points are needed. To solve this task, interpolation based on deter-

ministic, continuous, and possibly multivariate algebraic or sometimes trigonometric

polynomials, with the number of variables depending on the considered problem (one

or several interpolation dimensions), is the common solution (Phillips, 2003; Steffensen,

2006; Mastroianni and Milovanovic, 2008). Linear interpolation is the most basic

(and very widely used) example of this kind of interpolation in a one-dimensional space.

However, if the interpolation time and/ or length scales are significantly larger

than the signal’s fluctuation scale these interpolation schemes become erroneous. In

fact, in these cases conventional interpolation with continuous functions acts as a

low-pass filter. Thus it results in a reduced variance σ2 of the interpolated signal, i.e. a

reduced likelihood of extreme events, and consequently a distorted spectrum. Fig. 3.1

illustrates this. A set of N = 100 data points, labelled ‘original process’, is consid-

ered as a generic example of some unsteady, highly fluctuating process with a short

fluctuation scale. The N points were generated independently and standard normal

distributed (variance σ2 = 1). If this process is reconstructed via linear interpolation

from a set of ten equidistant sample points, much further apart than the fluctuation

scale, the resulting process (labeled ‘interpolated’) is obviously considerably smoother,

and the signal variance drops to σ2 = 0.67 5. Clearly this results in an error when the

interpolated data set is used in further analysis.

Although a simple Gaussian process was used here for illustration, linear interpo-

lation obviously has the same effect on various kinds of weakly correlated processes

with short fluctuation scales. Switching from linear to higher order interpolation

methods might mitigate these effects and potentially even conserve the statistical

5For clarity only a short process is shown in Fig. 3.1. However, to achieve statistically stable
results N >> 100 data points were considered.
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Figure 3.1: Comparison of a
generic highly unsteady process
and the resulting data set after in-
terpolation between discrete sam-
ple values.

moments (see e.g. Mastroianni and Milovanovic’s discussion on moment-preserving

approximation (Mastroianni and Milovanovic, 2008)). However, this will not solve the

problem in principle, because these methods still use continuous functions, which lead

to a strongly correlated result not adequate for highly fluctuating processes.

To overcome this limitation Barnsley (1986) and Barnsley and Harrington (1989)

introduced generalized polynomial interpolation. This method is based on fractal

functions and tailored for interpolating highly “wriggly” (Barnsley, 1986) functions,

such as the elevation profiles in mountain ranges, stock-market indices, or the profile

of cloud tops. However, the method lacks flexibility concerning conditions on the

interpolation points and is mathematically rather involved (Bouboulis, 2012). Hence,

even 30 years after its introduction fractal interpolation is not used widely in the

engineering community (Navascués et al., 2014), while linear interpolation remains

the default method.

To limit the scope of this paper, we focus on wind turbine engineering. Here,

linear interpolation certainly is the most common strategy to obtain local blade inflow

velocities from a turbulent wind field pre-computed from an industry standard spec-

trum. For example, the two major wind turbine simulation tools, FAST (Jonkman

and Buhl, 2005) and GH Bladed (Bladed, 2012), employ piecewise linear interpolation

to map from discrete wind speeds on a regular spatial grid to blade-local velocities.

Based on Taylor’s frozen turbulence hypothesis (see e.g. Panofsky (1984)) these tools

interpolate local apparent wind speeds linearly onto the rotating blades at each time

step, while an a priori computed block of discrete frozen wind is stepped through the

rotor disc. However, as just discussed in general (cf. Fig. 3.1), for a highly unsteady

processes (with short correlation scales) such as turbulent wind, this approach can
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introduce a significant error into the statistical properties of the data set.

The time record of turbulent wind speed data in the atmospheric boundary layer

can be interpreted as a stochastic field. Here the cross-correlation C is the indicator of

what we called fluctuation length scale in the general case above. For the wind speed

signals at any two points Pi and Pj the cross-correlation C is defined via the cross

and auto spectrum of the two signals, Sij and Sii, respectively (Burton et al., 2011):

C(f,∆r) =
|Sij(f,∆r)|
Sii(f)Sjj(f)

(3.1)

Obviously C is a function of the signal frequency component f as well as of the the

distance ∆r between Pi and Pj. The commonly used wind turbine design standard

IEC 61400-1, Ed. 3 (2005) gives an empiric approximation equation for C(f,∆r).

The values decay quickly with increasing ∆r, e.g. for 10 m/s wind speed C(f=1 Hz,

∆r=2 m) = 0.091, and C(f=1 Hz, ∆r=5 m) = 0.024. Hence, even for small distances

linear interpolation between neighboring wind speeds means averaging two weakly

correlated events and thus smoothing the data. The consequences are as discussed

above (Fig. 3.1).

Veers (1988) was already aware of this loss of variance. Based on the cross-

correlation function between the two support points of given data he derived an

analytical expression for the resulting variance error. As remedy he suggests without

further details to add white noise to the interpolated data to recover the lost variance.

Although this method can restore the desired variance it distorts the power spectrum

by neglecting auto-correlation – an important characteristic for wind speed data and

other physical processes.

A better method, which is based on stochastic increments and preserves both the

signal’s variance and spectrum, will be introduced in the next section. Rather than

deriving yet another mathematically rigorous but practically too complicated interpola-

tion theory, our goal was to devise a simple engineering method that provides a solution

to the interpolation problem and an improvement over linear interpolation as currently

used in wind turbine engineering, but without digging too deep into probabilistic math.

The resulting method will be presented for the one dimensional case first in general
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(section 3.2.1), such that it can be easily transferred to any unsteady, weakly correlated/

highly fluctuating (one dimensional) process in any field. Section 3.2.2 will provide a

graphic application example: the method will be extended to higher dimensions and

applied to a specific interpolation problem in wind turbine design. Results will be

presented in section 3.3, and compared against linear wind interpolation, the current

status-quo, which is used baseline case here.

3.2 A new interpolation strategy: stochastic incre-

ment interpolation

While linearly interpolating (as well as interpolation based on continuous functions

in general) does not always yield ’good’ results, reducing the interpolation length

down to the correlation length through finer spacing of known support points, or even

obtaining the whole unsteady process at each required point from its fundamental

statistical properties (e.g. probability density function, spectrum, spatial and temporal

correlation, etc.) is often too tedious (Rai et al., 2015). For turbulent wind, for example,

the computational effort for simulating the field rises with the fourth power of the

number of grid points (Bladed, 2012). Moreover, the location of required inter-grid

points is often not known a priori. Hence some kind of interpolation is inevitable. As

an alternative to linear interpolation the use of data increments is suggested. This

section will first outline the method in general. Subsequently we apply it to the specific

example of wind interpolation.

3.2.1 Increment interpolation - general method

The process of increment interpolation is summarized in Fig. 3.2 for a generic data

set y(n) sampled at every tenth point (indicated by blue dots in Fig. 3.2a).6

For two points of the data set y(n) a fixed distance r apart, the data increment is

defined as:

∆yr(n) = y(n+ r)− y(n) (3.2)

6 Note that in general the process y(n) can be sampled in space or time or combined in space and
time (as shown in next section).
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Figure 3.2: Flow chart for interpolating an unsteady process with random increments.

For an unsteady process and a given r, ∆yr(n) is a function of the sample index n

and is at first hard to grasp. Yet, for a stationary stochastic process such as turbulent

wind ∆yr can also be interpreted as a stochastic variable. To indicate this we write

∆yr(ξ), where ξ is a random variable. As discussed by Boettcher et al. (2007), for

each distance r a conditional probability density function (PDF) f(∆yr|r) can be

found. Each f(∆yr|r) then represents the likelihood of a certain increment ∆yr for a

specific distance r (Fig. 3.2b). If f(∆yr|r) cannot be constructed analytically from

the original process an alternative option is extracting an estimate from a short high

resolution sample of the data (see e.g Simonoff (1996), indicated in Fig. 3.2 a→b).

Eventually all the PDFs for each distance r can be combined into one joint PDF

f(∆y, r) of data increments. For interpolating a discrete data set of low resolution the

joint increment PDF can then be used to simulate a (random) data increment ∆yr(ξ)

of appropriate probability for any required interpolation distance r. Various statistical
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methods are available for this step. For our example we cast the increment PDFs

into cumulative probability functions (CDFs) F (∆yr) and use the inverse transform

method (as e.g. described by Kroese et al. (2011)) to obtain a random ∆yr(ξ) for any

required distance r from a uniformly distributed random variable ξ. This ∆yr(ξ) now

represents the increment from a point R of known data to an arbitrary intermediate

point Q a distance r = RQ away. Eq. 3.2 can now readily be used to construct data

at any intermediate point (indicated by stars in Fig. 3.2d):

y(n+ r) = y(n) + ∆yr(ξ) (3.3)

It is important to note that although this method does not reproduce the original

process exactly it conserves the statistical properties by generating random data

increments of correct probability. Moreover, using random increments does not require

much more effort than linearly interpolating, since only step c→d (Fig. 3.2) has to be

performed during the simulation, while steps a through c are calculated only once and

in advance.

3.2.2 Increment interpolation applied to atmospheric wind

Turbulent wind is one example where data cannot easily be described by a continuous

analytic function. Therefore data points must be recorded and supplied to further

analysis as samples discrete in space and time (Rai et al., 2015). Moreover, for wind

turbine analysis the instantaneous (turbulent) wind speed u at varying blade positions

has to be found. For most instances the blade is not aligned with the grid and hence

inter-grid values of wind speeds have to be obtained. The standard procedure as

described by Moriarty and Hansen (2005) linearly interpolates the on-grid values to

the required inter-grid positions. However, as discussed in Section 3.1 this distorts

the wind statistics, which are important for turbine load and fatigue analysis as well

as power output predictions (Wächter et al., 2012; Calif and Schmitt, 2012; Milan

et al., 2013; Calif et al., 2013). This deficit can be overcome by applying wind speed

increment interpolation instead.

Key to using wind speed increments is obtaining the joint PDF of the wind speed

increment ∆u. While the generic (one-dimensional) process from the previous section

provided a simple way to introduce the suggested method, turbulent atmospheric

wind is a three dimensional field correlated in space and time. To preserve the (auto
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and cross) correlation Eq. 3.3 must be extended to include both, the space and

time components. To achieve this an inverse distance average is combined into the

(one dimensional) wind speed increment interpolation. Thus we arrive at a higher

dimensional interpolation yielding the wind speed ui at intermediate points as shown

in Fig. 3.37:

ui(tj) =

a
∆xt

(ui(tj−1) + ∆ut(ξj)) +
K∑
k=1

(
1

∆xk
(uk(tj) + ∆uk(ξj))

)
a

∆xt
+

K∑
k=1

1
∆xk

(3.4)

Here the sum extends over K neighbors in space, a is a weighting factor discussed

later, uk(tj) is the wind speed at the neighboring grid point #k at the current time

instance tj, ui(tj−1) is the interpolated wind speed at the intermediate point at the

previous time step, ∆xk and ∆xt = ū∆t are the interpolation distances in space and

time respectively. To preserve the statistics the wind speed increments ∆uk(ξ) and

∆ut(ξ) now have to be generated from two separate conditional distribution functions

f(∆uk|r = ∆xk) and f(∆ut|t = ∆t) respectively.

It is important that all increments are generated from one random number ξj

for each time step, because otherwise Eq. 3.4 would again result in averaging of

uncorrelated data. Also note that Eq. 3.4 reduces to a tri-linear interpolation in

space and time with the random increments ∆uk(ξ) and ∆ut(ξ) vanishing. Hence, the

increment interpolation can indeed be understood as an stochastic extension of the

conventional linear interpolation.

To adequately represent the auto- and cross-correlation a weighting factor a is

introduced to shift the influence between the spacial and temporal neighbors. Since

the correlations are functions of the fluctuation frequency (e.g. IEC 61400-1, Ed. 3

(2005); Veers (1988)), the factor a has to be adapted with the interpolation time step

∆t. Fig. 3.4 shows the root mean square of the relative error ∆σ between the standard

deviation of the original process and the interpolated one obtained from nine different

interpolation points. To get statistically stable results the average of ten realizations

7 For clarity only two neighbors are shown here, but the same principle holds for a three dimensional
field. Moreover u is considered a scalar. For an extension to a Cartesian velocity vector the method
can directly be repeated for all three components independently.
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Figure 3.3: The increment interpolation for a two dimensional field correlated in time
and space.

was taken for the standard deviation σ of the increment interpolated process. As can

be seen from Fig. 3.4 leaving a ≈ 1 would yield the lowest error. However, to also

reproduce the spectrum, the correlation functions have to be matched, and a has to

be adapted further. Best agreement of spectrum and variance was found with a = 2

for time steps ∆t = 0.1 s and ∆t = 0.05 s, and a = 4 for ∆t = 0.2 s respectively.

Although the existence of an analytic relation between the cross- and auto-correlation

functions and the weighting factor a seems to be reasonable, at this point empiric

fitting was found to be sufficient.

Here, the increments ∆uk(ξ) and ∆ut(ξ) were again generated as random variables

via the inverse transform method from the conditional CDFs F (∆uk|r) and F (∆ut|t).
Note that in general r can be a multidimensional vector ~r and F (∆u~r|~r) its joint

multidimensional conditional CDF. For wind in particular ~r is usually a distance

vector and the CDF dependent on its direction as well as its magnitude. However, for

clarity and to focus on the method as such, homogeneous turbulence was assumed.

Hence rk simplifies for the present study to a scalar distance between the point of

interest Q on the blade and the nearest grid points Rk. Again, if the joint wind speed

increment CDF F (∆ur, r) is not known from the statistics of the considered wind,

it can be estimated from a short wind sample of sufficiently high resolution via the
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Figure 3.4: RMS relative error
of standard deviation between
original and interpolated process.
Solid line: increment interpolation;
dashed line: linear interpolation.

discrete cumulative mass function (CMF) (Simonoff, 1996).

Note that although only the nearest neighbors are used for the interpolation this

procedure must not be misunderstood as a simple nearest neighbor interpolation.

Instead, it should be recognized that the generated joint CDF contains the statistics of

the original process and together with the inverse distance averaging it conserves the

correlations. Thus the increment interpolation is based on the fundamental properties

of the whole process.

3.3 Results

In the previous section the stochastic increment interpolation method was introduced

and subsequently used to interpolate turbulent atmospheric wind. In this section we

will compare the results obtained from the new method to the results form the current

standard procedure, linear interpolation.

3.3.1 Wind speed data set and increment probability distri-

butions

To study the performance of the proposed method and compare it to the existing

procedure a high resolution data set is required. With that set an interpolation

can be performed between two distant points, and the interpolated results can be

compared to the original intermediate points. Although the presented method can be

applied to various other fields, for the time being we focus on wind turbine engineering,

where wind speed interpolation is a very common task. The international standard
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IEC 61400-1, Ed. 3 (2005) governs turbine certification and prescribes wind inflow

conditions. Since in engineering practice many designs have to be evaluated quickly

in many different conditions, the standard uses a spectral wind model for turbine

load calculations. This model generates a sample wind field via an inverse Fourier

transform (with randomly generated component phases) from a generic wind speed

spectrum together with a coherence function (both prescribed by the standard). Thus

a simplified, yet very general sample wind field is provided, which is equally valid at

different turbine locations.

‘Real’ atmospheric wind is very complex and it has been shown repeatedly that a

spectral model as used by IEC 61400 does not capture the true physics completely

(Emeis, 2012; Park et al., 2015). However, to fully account for the dynamic effects of

the atmospheric boundary layer, possibly including buoyancy, requires computationally

expensive large eddy simulations (LES) (Vijayakumar et al., 2016) or vast sets of

experimental data (Dörenkämper et al., 2014). In applied (wind) engineering, both

are not an option as time and computational resources are limited. Moreover, both

are very specific to particular locations. Hence they are problematic for use in general

turbine design, which should be certified for and sold to wind farms in various different

conditions. Due to these limitations the standard uses a simplified, yet very practical

spectral wind model.

The stochastic wind simulator TurbSim (described by Kelley and Jonkman (2007))

is implemented around this spectral wind model. It is widely used in wind turbine

engineering (Graf et al., 2016; Wang et al., 2016) and considered an appropriate

engineering model (Lavely et al., 2012; Choe et al., 2015). Hence TurbSim was used

to generate a high resolution sample wind field to be used as base line for: a) a linear

interpolation of wind speeds and b) a stochastic increment interpolation. Thus the

two results can be compared directly for the kind of data that is used in wind turbine

engineering. The presented method is in principle not limited to this specific wind

model. However, at this point we focus on demonstrating its value for the wind model

used by the industry. A study and discussion of other models is left for future work.

For this study the increment CDFs F (∆uk|ri) and F (∆ut|tj) were extracted from

a synthetic field of 91 wind speed points, each 1 m apart, extending over 50 s sampled

at 10 Hz for ri ∈ {1, 2, ...10} m. Based on these 45,500 wind speed values a normal
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distribution was fitted to the results via the built-in Matlab function fitdist(). Although

real wind is known to be not a Gaussian process (Boettcher et al., 2007; Calif and

Schmitt, 2012), for the used synthetic wind speed data set the normal distribution was

found to be a very good fit. If a more complex wind model is used, or experimental

data is available, a different distribution might be a better choice. In that case the

presented method is not limited to normally distributed increments. Instead, if the

available data suggests a different distribution, any other CDF can be used and the

same procedure will be equally viable. If, on the other hand, the considered process

is not stationary, the presented method will fail, since increment CDFs valid for the

whole process do not exist. In that case the process has to be broken down into several

consecutive quasi stationary segments. However, in practical wind engineering this

case has already been taken care of by the standard (IEC 61400-1, Ed. 3, 2005), as

it requires the use of several short (ten minute) samples, which are each considered

stochastically stationary.

3.3.2 Wind speed increments vs. linear interpolation

For wind modeling, a loss in wind speed variance, as incurred through linear interpo-

lation (cf. section 3.1, Fig. 3.1), directly translates to a loss of turbulence intensity

TI = σ/u (u denoting the mean wind speed). For illustration a turbulent wind data

series was studied. Wind speed data was synthesized at f = 10 Hz through TurbSim

for 91 horizontal high resolution points, each 1 m apart. Only the velocity compo-

nent u in the main flow direction was considered. From the high resolution data set

wind speeds uL and uR at two points d = 10 m apart were interpolated onto the mid-

dle point (r = 5 m) via either linear interpolation or stochastic increment interpolation.

Fig. 3.5 compares the results. In the left plot 100 s from linear interpolation is

compared to the original data. The right plot compares the original data to one 100 s

realization of an increment interpolation. Because the increment interpolation is based

on a stochastic increment, which is generated from a random number, each realization

of the interpolation is different. Hence, the interpolation will in general not reproduce

the original time series exactly. However, the time series resulting from increment

interpolation closely resembles the original process, while linear interpolation results in

a significant smoothing of the signal. One should also note that although the process

is not exactly reproduced, longer trends (on the time scales of roughly ten seconds)
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are retained. Hence the general coherence of the wind field is preserved.
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Figure 3.5: Wind speed time series original process vs. interpolation; d = 10 m,
r = 5 m.

Table 3.1 shows the statistics for the resulting time series. The first column shows

the statistics of the original wind speed data from the high resolution set at the

middle point. The second column gives the statistics for uM , resulting from linearly

interpolation between the outer points onto the middle according to

uM = ((d− r)uL + r uR) /d (3.5)

To minimize stochastic errors the presented data is averaged from the nine point pairs

spread over the 90 m wind field. The loss of variance and thus turbulence intensity

from linear interpolation is obvious.

The data in the third column is generated from increment interpolation via Eq. 3.4

with K = 2 for a single left and a single right neighbor, ∆xk = r = 5 m, and

∆t = 1/f = 0.1 s. The weighting factor was set to a = 2. To obtain stable stochastic

results an ensemble average over ten independent wind speed realizations was analyzed.

As can be seen, using increment interpolation preserves the variance of the original

data in the interpolated results.

Fig. 3.6 shows the change in resulting turbulence intensity with changing grid

spacing. Now uL and uR are taken from two points with increasing separation d. The



51

Table 3.1: Statistics of wind data series.

(d = 10 m, r = 5 m)
original
process

linearly
interpolated

increment
interpolated

sample frequency [Hz] 10 10 10
sample length [s] 1009 1009 1009
mean [m/s] 10.00 10.00 10.00
variance [m2/s2] 3.99 3.17 4.26
turbulence intensity [%] 20.0 17.8 20.6

blue dots show the turbulence intensity resulting from a linear interpolation onto a

point in the middle, r = 0.5d. The original turbulence intensity is marked for reference.

While the turbulence intensity is better conserved when linearly interpolating between

very close grid points (i.e. between well correlated wind speeds), the loss increases

when linearly interpolating between wind speeds at increasing distances, i.e. with

decreasing correlation. Increment interpolation, on the other hand, conserves the

variance much better for a wide range of grid spacings d. Only for d > 12 m deviations

become slowly noticeable even with the increment method.

Fig. 3.7 compares the probability distribution histograms of wind speeds from the

original TurbSim data set to the wind speeds obtained through interpolation. As

for Table 3.1 nine points at d = 10 m, r = 5 m were considered. Again, for linear

interpolation the loss in variance is obvious through a narrower probability distribution.

Moreover, it can be seen that this directly corresponds to a reduction in the likelihood

of extreme events. Considering ultimate load analysis this leads to an overestimation of

return periods, which could have drastic consequences for the structural design process

and hence the structure’s lifetime. Turning to the increment interpolation we see that

now the PDF is conserved much better all the way into the tails of the distribution.

Especially for extreme load extrapolation this is a significant improvement, as now

return periods of extreme events can be estimated more accurately.

Finally Fig. 3.8 shows a comparison of the power spectral density (PSD) S(f)

at the half way point in the middle of the wind field, again for d = 10 m, r = 5 m.

The results from the original wind speed sample at this point are compared to the

interpolated data as obtained before. To filter noise the average PSD for eight subsets

of the data, each 1024 s long, is shown. Not surprisingly, the loss in turbulence
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Figure 3.7: Wind speed PDF: original
process vs. interpolation. Average from
nine points; d = 10 m, r = 5 m.

intensity found before for the linearly interpolated data is reflected here in reduced

power across the sampled spectrum (Fig. 3.8, left plot). The total variance as obtained

from an integral over the PSD drops from Varorig = 3.33 m2/s2 for the original wind

speed at the middle point to Varlin = 2.36 m2/s2 for the linearly interpolated data

onto the same point. Since the spectrum determines loading cycles this divergence

will have implications on the fatigue life analysis (Burton et al., 2011).

The right plot in Fig. 3.8 shows the wind speed PSD at the central point for

original and increment interpolated data. It can be seen that in contrast to the linear

interpolation the original spectrum is now better reproduced. The variance contained

in the spectrum amounts to Varincr = 3.37 m2/s2, close to Varorig = 3.33 m2/s2 for the

original PSD.

To study the impact of using wind speed increments further, another block of

frozen wind with mean wind speed ū = 10 m/s and turbulence intensity TI = 20% was

generated with TurbSim. This block covered a 90×90 m2 domain resolved on 15×15

grid points corresponding to a transverse grid spacing of d = ∆y = ∆z = 6.43 m,

a usual distance for wind turbine analysis8. In the streamwise direction the block

extended over x = 8 km resolved at ∆t = 0.1 s. With Taylor’s hypothesis and the set

mean wind speed this translates to a streamwise grid spacing of ∆x = 1 m. No wind

shear was included for the sake of simplicity of this presentation and only the velocity

8The Bladed Theory Manual suggests a grid point spacing of 6 – 7 m (Bladed, 2012).
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Figure 3.8: Power density spectrum from interpolated wind speeds vs. original wind
speeds; d = 10 m, r = 5 m.

component u in the main flow direction was considered.

Fig. 3.9 shows the apparent wind power density spectrum sampled at 10 Hz on

a reference point at R = 35 m radius on a turbine blade rotating at Ω = 15 rpm

through the wind field. Naturally, the reference point Q on the rotating blade rarely

coincided with a grid point of known wind speed. To get instantaneous wind speeds

at Q the discrete on-grid wind speed values were once bilinearly interpolated from the

four nearest grid points and once computed using the increment interpolation with

the instantaneous distances ∆xk, with k ∈ {1, 2, 3, 4}, to the four nearest grid points

and the ’distance’ ∆xt = ∆tū = 1 m to the wind speed at the current position Q and

the previous time step. The wind speed increment PDFs f(∆uk|r) and f(∆ut|t) were

initially created for r ∈ {1, 2, ..., 10} m and t = 0.1 s on a 90×3 m2 grid over 100 s

resolved at d = 1 m and ∆t = 0.1 s.

In average (over ten realizations of the random increment series) the linear inter-

polation resulted in a rotationally sampled wind speed signal with 12 % less variance.

Fig. 3.9 compares the rotationally sampled spectra. As discussed by Burton et al.

(2011) the usual peaks at multiples of the turbine rotation frequency are found. As

can be seen from the figure the apparent wind power spectra are considerably different

at higher frequencies (f > 1 Hz). The damping of high frequencies found when using

linear interpolation obviously corresponds to the variance loss discussed in the previous

sections. The spectrum obtained from increment interpolation on the other hand

conserves the statistical properties and most likely reflects the true wind speeds more
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Figure 3.9: Apparent wind speed power
density spectrum for a wind turbine blade
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Figure 3.10: Cumulative rainflow cycle
count for root bending moment.

closely. These differences are significant for wind turbine design because the affected

frequencies (f ∈ [1, 10] Hz) are well within the range of relevant structural response

frequencies: Burton et al. (2011) present spectra of different hub and blade load

responses of a turbine operating in turbulent wind. Their plots reach up to 5 Hz and

it can clearly be seen that loads do not vanish at these frequency. Milan et al. (2013)

show that wind turbine power output is sensitive to wind speed fluctuations down

to time scales of a few seconds. Hence, when using an overly damped apparent wind

spectrum (as resulting from linear wind speed interpolation) for turbine simulations

the loss in higher frequency content may introduce significant error into the resulting

load and power output predictions.

For a rough idea about the implication of the different interpolation methods

on turbine analysis a minimal turbine example was studied. Since it is the aim of

this contribution to introduce an alternative interpolation method a more detailed

aerodynamic/ structural analysis is postponed to future work. Here we simply assumed

a 2d airfoil section (NACA64-618, 5° geometric angle of attack) rotating at the control

point Q as above. From this the time series were calculated for:

� the section’s instantaneous angle of attack α,

� the force coefficient cf(t) = 2F/dr
ρu2∞c

(based on F/dr, the resultant force from lift

and drag per unit span, c the section’s chord length, and u∞ the free stream

wind speed),

� the power coefficient cp(t) = 2F/dr
ρu3∞c

f (with f = Ω/60),
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� and the root bending moment m(t) = Fr.

While the resulting peak loads (max[cf (t)] and max[m(t)]) from ten different ten minute

wind field realizations hardly changed, the lower variance of the linearly interpolated

wind speeds yielded less extreme angles of attack. A difference of ∆α = −3.6 % for

the most extreme angle of attack was found. Due to the non-linear lift and drag

curves this resulted in ∆cp = −4.7 % less peak power. Fig. 3.10 gives the cumulative

rainflow cycle count for the root bending moment induced by this one section. The

analysis is obtained from NREL’s Crunch tool (Buhl, 2008) from one ten minute

realization. Although the peak root bending moment hardly changed with different

interpolation methods, Fig. 3.10 shows that linear interpolation consistently yields

lower load cycle counts for any moment range. Again, this underestimation through

the linear interpolation is critical, as it might lead to premature failure of the structure.

3.4 Conclusions

Data values of weakly correlated highly unsteady or statistical processes are usually

recorded only at discrete steps, while often inter-step values are needed as well. It

was shown that the common method of linearly interpolating between discrete values

distorts the statistical properties of these kinds of data series. Hence this approach

was deemed critical since a considerable error may be introduced into the interpo-

lated data set. As an alternative, increment interpolation was introduced. Here a

random data increment is generated from an increment probability as a function of

the interpolation distance. While the presented increment interpolation procedure is

computationally hardly any more expensive than linear interpolation, it conserves the

statistical properties of the original process much better.

Both methods, linear and increment interpolation, were evaluated based on the

example of the turbulent wind sampled by a rotating wind turbine blade. Here

conserving turbulence intensity and the wind spectrum is vital for correct wind load-

ing calculations. Turbine fatigue loading for example is a direct result of unsteady

(turbulent) wind excitation and is key to rotor structural design. However, fatigue

loading can only be calculated correctly if the correct wind spectrum is conserved.

It was shown that the conventional method of linearly interpolating the a priori

generated wind speeds results in a considerable smoothing of the original wind speed

time series, which causes a loss in turbulence intensity and a damping of the higher
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frequency content in the wind power density spectrum. Compared to using wind

speed increments, linear interpolation resulted in 27% less power in the apparent wind

spectrum for frequencies f ∈ [0.01, 5] Hz with most losses occurring for f > 1 Hz.

Increment interpolation, on the other hand, demonstrated very good conservation

of statistical properties. The variance, and thus the turbulence intensity, and the prob-

ability distribution, as well as the spectrum of the data were maintained. Hence using

data increments is suggested as a better approach for interpolating highly unsteady

processes such as turbulent atmospheric wind.

In a next step the method is to be extended to be applicable to a 3D wind vector

field, including wind shear. This transition merely turns the wind speed increment

and the distance into vector valued variables, while the method itself remains the

same. This work and a more detailed quantification of the error introduced by the

different interpolation methods will be studied within the context of an aero-elastic

wind turbine simulation in future work.
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Chapter 4

An Engineering Model for 3D

Turbulent Wind Inflow Based on a

Limited Set of Random Variables

This chapter presents the latest version of a paper accepted for public discussion in

Wind Energy Science Discussions:

Fluck, Manuel and Crawford, Curran: “An engineering model for 3D turbulent wind

inflow based on a limited set of random variables”, Wind Energy Science Discussions,

2017, in review; DOI: 10.5194/wes-2017-7

In this paper we address the ‘curse of dimensionality’ encountered later on. When

employing stochastic models for wind turbine aerodynamic calculations we will find

that the number of random variables that our stochastic model can handle is limited.

Hence, we seek a wind inflow model that relies only on a limited set of random

variables. Since no adequate model was available previously, we derive and validate a

reduced order wind model in this section.

See Appendix C.3 for further information regarding the Matlab code used to

generate results for this section.

http://dx.doi.org/10.5194/wes-2017-7
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Abstract

Emerging stochastic analysis methods are of potentially great benefit for wind turbine

power output and loads analysis. Instead of requiring multiple (e.g. ten-minute)

deterministic simulations, a stochastic approach can enable quick assessment of a

turbine’s long term performance (e.g. 20 year fatigue and extreme loads) from a single

stochastic simulation. However, even though the wind inflow is often described as

a stochastic process, the common spectral formulation requires a large number of

random variables to be considered. This is a major issue for stochastic methods, which

suffer from the ‘curse of dimensionality’ leading to a steep performance drop with

an increasing number of random variables contained in the governing equations. In

this paper a novel engineering wind model is developed which reduces the number

of random variables by 4–5 orders of magnitude compared to typical models while

retaining proper spatial correlation of wind speed sample points across a wind turbine

rotor. The new model can then be used as input to direct stochastic simulations models

under development. A comparison of the new method to results from the commercial

code TurbSim and a custom implementation of the standard spectral model shows

that for a 3D wind field the most important properties (cross-correlation, covariance,

auto- and cross-spectrum) are conserved adequately by the proposed method.
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Nomenclature

Latin Letters:

e Euler’s number
~f = [fm] frequency

i =
√
−1 imaginary unit

NF number of frequencies

NP number of wind speed points

NR number of random variables

P a point in Euclidean space

Skk (auto) power spectrum

Skj cross power spectrum

t time

U wind speed Fourier coefficient

u wind speed

Greek Letters:

θ phase angle

∆θ phase angle increment

ξ random number

~ω = [ωm] angular frequency

Indices:

j, k points in space

m frequencies

4.1 Introduction

Engineering design tasks frequently face uncertain or random model parameters (e.g.

imprecise component geometries), system properties (e.g. tolerances on manufacturing

quality), and/ or boundary conditions (e.g. varying wind conditions). In a deter-

ministic modeling framework the analysis of such uncertain systems produces one

specific solution for each realization of the random quantity. A ‘realization’ (also

referred to as one ‘sample’) is one specific observation of the random quantity, for

example a specific solution for one specific geometry, or one specific set of inflow

conditions. In a numerical experiment a realization is usually obtained based on the

generation of one specific random seed. However, through this process the stochastic

dimension of the problem at hand is either ignored entirely, by analyzing the most

likely case only (the purely deterministic approach), or it requires multiple parallel

solutions to assess the statistics of the results a posteriori, for example via extreme

value, sensitivity analysis, or Monte Carlo simulation. Often the first two options are

insufficient, and the latter is computationally too expensive. To solve this dilemma the

focus of recent research has lately moved towards stochastic analyses and uncertainty

quantification (Sudret, 2007; Najm, 2009; Le Mâıtre and Knio, 2010; Sullivan, 2015).

Rather than generating one specific solution for each realization of a random input or

model quantity, a stochastic analysis can help assess uncertainties quicker and even
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Figure 4.1: Comparison of the solution processes in a pure deterministic (A), a
deterministic-statistic (B), and a stochastic framework (C).

include uncertain quantities directly into the system analysis. This is because it not

only provides one specific solution, but it solves the problem for the whole ensemble

of all possible realizations at once, see Fig. 4.1. This is made possible via stochastic

methods that transform the problem from multiple deterministic realizations with

random seeds to a formulation of the govening equations that directly describe the

stochastic variables in the system. The stochastic solution then directly describes

the statistics (e.g. the probability distributions) of the outputs, based on the proper-

ties given for the input variables in the forcing terms of the governing system equations.

In wind turbine engineering, the driving force, the turbulent atmospheric wind,

is commonly described as a stochastic field, derived from turbulent wind models

developed around stochastic ten-minute mean wind speed distributions. This naturally

invites the use of stochastic methods to assess extreme and fatigue loads, annual

power production, power fluctuations, etc. in a stochastic sense and thus exploit

the advantages of stochastic methods. However, wind turbine design and analysis is

usually carried out in a deterministic fashion, or at best as a Monte-Carlo-like set of

several subsequent deterministic solutions (path A and B in Fig. 4.1 respectively).

The wind turbine design standard IEC 61400-1, Ed. 3 (2005) is indicative of this
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deterministic framework. It bases the turbine load analysis on multiple deterministic

simulations, carried out at many different mean wind speeds, for about 20 different

load cases, each simulated for ten minutes and repeated several times with different

realizations of the turbulent inflow, each generated from a different numerical random

seed. For a land based turbine this quickly amounts to evaluating several hundred

ten-minute samples. For offshore turbines, where various wind conditions (wind speed

and direction) additionally have to be combined with various sea states (combinations

of wave height and direction) this number increases to several thousand ten-minute

evaluations. However, even with a large number of deterministic simulations, extrapo-

lation to extreme loads is a delicate exercise and results can vary greatly (Moriarty,

2008; Burton et al., 2011). Moreover, Zwick and Muskulus (2015) show that basing

a wind turbine analysis on six ten-minute wind speed simulations, generated from

six different random seeds, results in a difference of up to 34% in the ultimate loads

for the most extreme 1% of seed combinations. Tibaldi et al. (2014) present a study,

which indicates that turbine loads extracted even from 20 different ten-minute wind

fields, generated from 20 different random seeds, vary greatly. This shows that in a

deterministic framework load variations from different random seeds can dominate

effects from design parameter changes even with a fairly large number of realizations

analyzed. Obviously this constitutes a severe problem, particularly when concerned

with gradient-based optimization where not only relatively fast solutions times, but

also reliable design variable gradients are vital.

A direct stochastic treatment of the wind loading (path C in Fig. 4.1), on the other

hand, considers the wind as a stochastic process throughout the turbine simulation

procedure. It postpones the generation of realizations until after the calculation of a

solution for the system equations, which thus become stochastic equations. Hence it

can be a means to efficiently include stochastic parameters, directly obtain a stochastic

solution, and arrive at the statistics of the resulting loads much quicker. Fluck and

Crawford (2017b) present an example of a stochastic analysis for wing loads in turbu-

lent inflow, and show that such a stochastic approach does not rely on the repeated

analysis of multiple (e.g. 600 s) realizations of the wind field. Instead one (possibly

short, e.g. 10 s) stochastic result yields all possible realizations and hence contains

the full spectrum of uncertainties. Thus it will enable the analyst to obtain a more

complete description of the resulting load ensemble at large, calculate its statistics,

and eventually arrive at more precise estimates of e.g. the probability of exceedance
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of some load threshold more quickly.

Recently, progress has been made towards stochastic analysis of wind turbines. For

example, results have been shown for an aeroelastic analysis with one uncertain system

parameter, stiffness or damping (Desai and Sarkar, 2010), and for the a stochastic

formulation of airfoil lift, drag, and pitching moment in stall conditions (Bertagnolio

et al., 2010). Moreover, stochastic models have been used for wake modeling, treating

wake center and shape as random processes (Doubrawa et al., 2017). However, only

very early steps have been completed to include the biggest source of uncertainty:

the uncertain inflow from turbulent atmospheric wind. On a wind farm scale Padrón

et al. (2016) recently presented a layout optimization based on a polynomial chaos

formulation for the freestream wind speed and direction. Finally Guo (2013) offers a

stochastic wind model used for a stochastic analysis of wind turbine loads. However,

he still bases the stochastic analysis on deterministic sampling (i.e. path B in Fig. 4.1).

Moreover this model driven by the decomposition (bi-orthogonal and Karhunen-Loève)

of a specific set of wind field data. It hence is not generally applicable, but relies on

the availability of sufficient data.

As turbulent wind is already represented as a stochastic field in many common

wind models, a transition from a deterministic aerodynamic model for specific wind

realizations, to a stochastic model yielding the whole stochastic load ensemble at once,

seems an obvious step. However, this step comes with a simple, yet fundamental

challenge: current wind models, even simple spectral models, rely on a large number

of random variables to set the wind sample’s phase angles. Since realizations of large

sets of random variables can be generated very quickly, this is not a problem for

deterministic load analyses. However, the computational cost of stochastic analysis

methods increases dramatically with the number of random variables included, a fact

commonly known as the ‘curse of dimensionality’ (Majda and Branicki, 2012). This

renders current wind models inaccessible to stochastic methods, and thus poses a

major barrier to the further development of stochastic models for the analysis of wind

turbine loads based on a stochastic description of the turbulent wind input.

To address this problem we reformulate an industry standard wind model into a

reduced order engineering model. The aim of our work is to develop a wind model that

can generate a realistic wind field with appropriate (long term) dynamic properties
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from considerably less random variables than the current models. In the last three

decades numerous turbulent wind models have been proposed. Kleinhans et al. (2008)

summarizes a few. However, none of the previous models had an application in

stochastic aerodynamic models in mind. Hence, as generating a large set of random

numbers as a seed for a wind field realization is usually no problem, the existing

models we are aware of rely on a large number of random variables – too large to be

applicable to a direct stochastic modeling of the aerodynamic wind turbine equations

(path C in Fig. 4.1).

In the following we focuses on a formulation for the IEC standard spectral wind

description (IEC 61400-1, Ed. 3, 2005), so that it may be directly useful in industry.

Veers’ model (Veers, 1988) was chosen as baseline and starting point. This model

is widely used, for example in the stochastic wind simulator TurbSim (described by

Jonkman and Kilcher (2012)), which synthesizes a sample of turbulent atmospheric

wind from Veers’ spectral formulation. Although it is well known that Veers’ model

does not capture all physical details of ‘real’ atmospheric wind (e.g. Mücke et al.

(2011); Morales et al. (2012); Lavely et al. (2012); Park et al. (2015)), it is for many

cases an appropriate engineering model (Nielsen et al., 2007). Due to its comparatively

high independence of site specific parameters, ease of use, and low resource require-

ments, Veers’ model is the preferred model for many applications (Lavely et al., 2012).

Moreover, it is endorsed by the governing wind turbine design standard IEC 61400-1,

Ed. 3 (2005), and thus is widely used in the wind energy industry. This underlines

that its fidelity is accepted as a reasonable compromise in engineering practice for wind

energy. As such, Veers’ model provided a well accepted foundation to base further

development on. Note that our goal is not improving on known deficiencies of Veers’

model, but to arrive at a model that can generate a wind samples of comparable (and

accepted) fidelity with significantly less random variables, geared towards eventual

inclusion in a stochastic wind turbine simulation.

The following sections will first briefly review Veers’ model to set the stage

for the proposed modifications. Subsequently, the new reduced order wind model

is introduced, and finally results are presented, which confirm that key statistical

properties (cross-correlation, covariance, auto- and cross-spectrum) are conserved

by the new model. The paper concludes by giving direction for continued work on

integrating the wind model into a turbine simulation and on refinements with other
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turbulent wind descriptions. To not overload this paper, the focus is solely on the

details and validation of the stochastic wind inflow model itself. Interested readers

should refer to Fluck and Crawford (2017b) for the basic stochastic aerodynamic

model, or Fluck and Crawford (2016c) for an example how the reduced order wind

model is used to calculate stochastic loads on a stationary wing.

4.2 Method

In this section we first briefly summarize Veers’ method, as it represents the established

method for synthesizing turbulent wind (Nielsen et al., 2007; Lavely et al., 2012), and

at the same time is the baseline for our contribution. Subsequently, we will introduce

our new reduced order method. Note that Section 4.2.1 is only meant as a summary

to lay out the basics for the following work. For a complete introduction, the reader is

referred to Veers’ original paper (Veers, 1988) and successive work, e.g. Kelley (1992);

Nielsen et al. (2004); Burton et al. (2011).

4.2.1 Veers’ method

In a spectral method, the wind speed time series uk(t) at each point Pk, k = 1...NP ,

in the sampled wind field is obtained through the inverse discrete Fourier transform of

a set of discrete frequencies components from the double-sided (symmetric) spectrum

Umk at ωm = 2π fm, m = −NF ...NF

uk(t) =
∑
m

Umke
iωmt (4.1)

Here m is used to index the frequency bins, and k is used to index the points in

space where wind speed data is recorded. Usually, the terms Umk are binned Fourier

amplitudes centered at the frequency ωm, prescribed by the wind speed spectrum

S(ωm) at each point Pk. Often a Kaimal spectrum is used (IEC 61400-1, Ed. 3, 2005).

Following Veers’ method (Veers, 1988), Umk ∈ C contains not only the amplitude

but also the random phase angles at point Pk for each frequency ωm. To obtain the

desired coherence for all frequencies and between any two points in the wind field, all

phase angles

θmk = arctan

(
Im(Umk)

Re(Umk)

)
(4.2)
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Figure 4.2: Raw wind spectra from a single wind speed sample, no averaging. Kaimal:
the analytic spectrum; Veers: sample of the spectrum resulting from Eq. 4.3 at two
different points P1 and P6; Phase increments: the spectrum from the reduced order
phase increment model Eq. 4.8 (identical for all points).

need to be correlated correctly. To achieve this, Veers multiplies the set of NR = NF ·NP

independent, uniformly distributed random variables ξjm ∼ U(0, 1) with the weighting

tensor Hjkm, obtained from the discrete cross spectrum Sjk(ωm), to obtain the complex

Fourier coefficients Umk at each frequency band ωm:

Umk =
k∑
j=1

Hjkm e
i 2πξjm (4.3)

where Sjk(ωm) is given by the relevant design standard or physics model. Note that

through Eq. 4.3 the phase angles at point Pk are related to the phases at all previously

computed points Pj<k. Thus, correctly correlated Fourier coefficients are obtained,

which can now be inserted into Eq. 4.1 to obtain a correlated wind field.

This method works well to generate multiple (deterministic) data sets at many

points. However, as already noted by Veers in his original publication (Veers, 1988),

Eq. 4.3 changes the amplitude of each Fourier coefficient, such that |Umk| 6=
√
Skk(ωm)

for all but the point computed first. Thus, the prescribed (e.g. Kaimal) spec-

trum Skk(ωm) is not conserved anymore at each point for any single realization, see
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Fig. 4.2. However, if spectra are averaged over either several points or several real-

izations, the wind field’s average spectrum converges to the prescribed spectrum as

limN→∞ 1/N
∑N

k=1 |Umk(ωm)| =
√
Skk(ωm), with N the number of samples or realiza-

tions. This means the field still is stochastically homogeneous, as expected. However,

for a stochastic analysis where only a limited number of samples might be used, this

may pose a challenge. In the following we introduce a reduced order model based

on phase angle increments. This model not only yields a significant reduction in

random variables required to synthesize a stochastic wind field, but it also analytically

preserves the prescribed spectrum at any single point for each realization (see Fig. 4.2

‘phase increments’).

4.2.2 The reduced order model with phase increments

To arrive at a reduced order model we follow a two step process. First is a reduction

in the number of frequencies necessary for the spectral composition of the wind speed

time series at a single point in space, and with it a reduction in the number of random

phase angles associated with each frequency. This frequency reduction has been done

before. For example Fluck and Crawford (2017b) showed that with ten frequencies

from the IEC Kaimal spectrum, logarithmically spaced in [0.003, 5] Hz (a T = 333 s

sample, resolved at 10 Hz, a reasonable time step for wind turbine simulations, cf.

Bergami and Gaunaa (2014)), a realistic wind speed time series can be produced, with

probability distribution (and thus turbulence intensity), as well as the wind speed

auto-correlation similar to results from a full TurbSim simulation at 10 Hz for 10,000 s

(roughly 5 · 104 frequency bins). Ten frequencies, and thus ten random variables for

the phase angles is manageable as input to a stochastic model. However, when dealing

with a wind field big enough to be used for wind turbine calculations, many points

(typically a grid in the order of 15× 15 points over the rotor disk) of correlated wind

speed are necessary. The challenge is to extend this limited frequency wind description

from a single point to a spatially varying wind field without excessively increasing the

number of random variables required. Fung et al. (1992) introduced a wind model

which models both the spatial and the temporal dimension through Fourier modes.

They reduced the number of modes down to as little as 38, however, the model then

relied on several random numbers associated with each mode. Fung et al. (1992) did

not report in detail how many random variables they used for their model, but the
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equations indicated that this number was still considerably larger than manageable by

stochastic methods. The following paragraphs will introduce a new approach, which

will allow to create a stochastic wind field from a significantly reduced number of

random variables, independently of the (spatial) size of the wind field, i.e. indepen-

dently of both, the number of data points over the rotor disc as well as the lateral extent.

In Veers’ model the phase angle matrix Θ = [θmk] is populated with random

numbers. We note that random phase angles in the rows and columns of Θ carry

out two distinctly different functions. At each individual point Pi the different phase

angles in the column vector [θm]i = ~Θi generate constructive/ destructive interference

of the ensemble of base sinusoids. Thus, different realizations of ~Θi generate the

”gusty“ nature of the wind speed time series at that point. This is indeed the temporal

variability of the wind.9 On the other hand, the wind speed structure in space, for

example the fact that strong winds at one point correlate with strong winds at a

nearby point, is captured through the relation of phase angles for the one particular

frequency ωl at different points Pi and Pj – that is in each row of Θ, [θk]l = ~̄Θl. This

is the spatial variability of the wind.

While the phase angles at each point (the columns ~Θi) are uncorrelated, the

phase angles between two points (the rows ~̄Θl) have to be correlated to reproduce

the spatial structure correctly. For two column vectors [θm]i and [θm]j this means

while the entries within each vector are uncorrelated the two vectors themselves are

element-wise correlated, Fig. 4.3. For wind, this correlation decreases with both,

increasing frequency and increasing distance.

For our use-case of turbulent wind as input to dynamic wind turbine analysis, we

observe the following:

1. The temporal variability is of primary importance, since it drives the dynamic

excitation of the system under investigation. This is the duration of gusts and

lulls, captured by the energy distribution in the frequency spectrum of the wind

sample.

9Note that one dimension of the block of wind, in the average wind direction, corresponds to a
temporal correlation as the wind moves downwind.
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Figure 4.3: Schematic of random phase angle vectors and deterministic phase incre-
ments.

2. The spatial variability needs to be represented correctly to yield representative

wind loads, since the length scale of spatial wind structures needs to be correct

to result in the correct integral loads. For example, for any instance when a

sensor A on the blade experiences an increased load, another sensor B a certain

distance away from A needs to experience a load correctly correlated to the load

at A.

3. For each point, all elements in each column vector ~Θi are independent (Fig. 4.3).

However, the column vectors ~Θi and ~Θj at two points Pi and Pj are element-wise

correlated. This means the phases in each row vector Θ̄l are not independent. Fol-

lowing Veers’ method, only the elements in Θ̄1 are independent, while the phases

at all other points are mapped from i.i.d. random variables ξmi such that they

are correlated to the phases at the base point P1 (and thus to each other), Eq. 4.3.

To obtain a reduced order model which requires fewer random variables we propose

splitting the complex Fourier coefficients Umk, into a temporal and a spatial part. The

temporal part will contain the amplitude of each Fourier mode as well as the random

phase angles. It therefore will determine the structure of the wind speed sample in

time. The spatial part will contain the phase correlation between different points

across the wind field. It will thus set the wind field structure in space. To reflect this
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approach we can write:

Umk = Um1︸︷︷︸
temporal

· ei∆θmk︸ ︷︷ ︸
spatial

(4.4)

The temporal part contains the amplitude according to the prescribed power spectrum

S(ωm) and a vector of random phase angles θm1 = 2πξm at an arbitrary base point P1

within the wind field:

Um1 =
√
S(ωm) eiθm1 (4.5)

with independent and identically distributed ξm ∼ U(0, 1) as before. Similar to the

wind speed increments used for wind interpolation by Fluck and Crawford (2016b),

the spatial part is based on the idea of phase increments ∆θmk, which are specific to

each point and each frequency relative to the base point P1:

∆θmk = θmk − θm1 (4.6)

The increment ∆θmk holds the correlated phase information to generate the correct

spatial structures. Since θmk and θm1 are random numbers, the increments ∆θmk

are random, too. In contrast to Veers’ approach of employing the cross spectrum

to map a set of uncorrelated random variables to a set of correlated phases for each

point in the wind field, we neglect the random nature of ∆θmk and consider the

phase increments deterministic constants to move between points as illustrated in

Fig. 4.3. Note that ∆θmk only contains the spatial structure, but not the temporal

part. That means ‘gusty’ features of the wind (lulls and gusts at different points)

are still generated from random numbers; only the wind field’s structure in space

is fixed with each specific set of phase increments. Based on the three observations

above (1-3) this seems justified for two reasons. Firstly, the phases in each row vector

Θ̄l are correlated, while the phases in each column vector ~Θi are uncorrelated (3).

This means there is more ‘randomness’ in the temporal dimension then in the spatial

dimension. Secondly, for the dynamic analysis of a wind energy device, the temporal

part is of primary importance. While the spatial structures have to be represented

correctly, their variability can be considered secondary (1,2).

It is important to note that focusing on the temporal part does not mean that

each realization of the reduced order wind field will exhibit the same spatial structure

of gusts and lulls, i.e. that a gust at point Pi would e.g. necessarily come with a lull
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at another point Pj. IN contrary, the proposed method does not alter the original

correlation between wind speeds at two distinct points which is generally smaller than

unity. Graphically speaking gusts and lulls result from the interference of different

frequency component sinusoids and phase offsets. Based on the specific realization θm1

the phase angles at each point θmk = ∆θmk + θm1 will be different each time. Thus,

the interference between the frequency components and consequently the structure

of the gusts and lulls will be different with each different realization of phases at

the base point θm1. Figure 4.6, which will be discussed later, demonstrates this fact.

Nonetheless, the proposed reduction of random variables necessarily causes a certain

increase in dependence of wind speeds across the wind field. An investigation into

how this dependence actually looks like in detail is left for future work.

Inserting Eqs. 4.5 and 4.6 into Eq. 4.4 yields the Fourier coefficients based on only

one vector of random phases [θm1] and the (auto-) spectrum:

Umk =
√
S(ωm) ei(θm1+∆θmk) (4.7)

Substituting θm1 = 2πξm with ξm ∼ U(0, 1) as before, Eq. 4.1 can be turned into

our reduced order model:

uk(t) =
∑
m

√
S(ωm) ei(ωmt+2πξm+∆θmk) (4.8)

Note that while Eq. 4.3 changes the amplitude of each Fourier coefficient and thus

distorts the spectrum at each point, Eq. 4.8 fully conserves the spectrum.

In contrast to Veers’ original model, where NR = NF · NP , in the reformulated

model NR = NF . This means the number of random variables NR only depends on

the number of frequencies NF used for the wind Fourier series, not on the number of

wind speed measurement points NP in the 3D wind field. With the available strategies

to reduce the number of frequencies required in a spectral wind model Eq. 4.8 now

allows expression of a turbulent wind field consistent with Veers’ model, but with

significantly fewer frequencies.

What remains is to obtain the phase angle increments ∆θmk. Since these de-

termine the cross-correlation between any two points in the wind field, and since
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Figure 4.4: Schematic of grid points of wind speed data (minimal test case). We
arbitrarily chose the right hand top point (P1) to be the base point.

the cross-correlation and the cross-spectrum are linked as a Fourier transform pair

(correlation theorem, see e.g. (Kauppinen and Partanen, 2011)), it should be possible

to analytically generate one set (one realization) of phase increments directly from

the cross-spectrum. For now, however, we extract one phase angle increment set from

one realization of Veers’ Eq. 4.3, with an analytic solution left to future work.

4.3 Results and discussion

In the following we will take a closer look at statistical metrics of the synthetic reduced

order wind field. As mentioned earlier our goal is not to develop a more physically

faithful wind model, but rather to reduce the number of random variables required

while retaining similar fidelity as the methods currently in use. TurbSim (Jonkman

and Kilcher, 2012) is widely used in industry and the de facto standard to generate

synthetic wind fields for wind turbine analysis. Hence we use TurbSim wind speed data

sets as the benchmark. In the following we compare results obtained from TurbSim to

two different reduced order models.

The first is our implementation of Veers’ model, which allowed us to freely choose

the number of frequencies at each data point and the frequency binning. As sug-

gested by Veers equations implementation relies on the conventional inverse discrete

Fourier transform with random phase angles at each frequency bin. This model

was validated directly against TurbSim. If many frequencies are used and identical

phase angles are enforced perfect agreement of the resulting data set was found as
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expected. As shown by Fluck and Crawford (2017b) the wind speed time series at a

single point for a 333 s sample can be well represented with Nf = 10 logarithmically

spaced frequencies ~f = ~ω/(2π) = [fm] ∈ [f1, fNF ] = [0.003, 5] Hz with fm = 10am

and am = log10

(
fNF
f1

)
m−1
NF−1

for m = 1, . . . , NF . For better comparison (equal sample

length T = 600 s) we use NF = 20 frequencies in ~f = [fm] ∈ [1/600, 5] Hz. The results

of this model are labeled ‘Veers red’ in the following discussion. This model does

not include new theory, yet it is a critical step between TurbSim (and thus Veers’

original model) and our reduced order model. The second model presented is our

reduced order model as described above (Eq. 4.8). The newly introduced theory of

deterministic phase increments ∆θ is employed here, together with a limited number

frequencies NF = 20 and thus a reduced number of stochastic variables NR = 20.

These results are labeled ‘Veers red, ∆θ’.

Table 4.1: Comparison of random numbers used in different wind models for a common
grid size.

TurbSim Veers red Veers red, ∆θ

sample length 10 min 10 min 10 min
grid size NPy ×NPz 15× 15 15× 15 15× 15
frequencies NF ∼3,000 20 20
total number of random variables NR 6.75 · 105 4,500 20

Tab. 4.1 gives a comparison of the three models. Note particularly the total number

of random variables required by each model, assuming a typical grid resolution in the

order of 15× 15 points over a rotor disk of D = 90 m diameter. While the use of a

limited set of frequencies (Veers red) yields a noticeable reduction in random numbers,

for a turbulent wind field with several wind speed data points in x- and y-direction,

this alone is not enough to arrive at a wind model with few enough random numbers to

be applicable in a stochastic method (several dozen random variables to be tractable).

Only the additional introduction of deterministic phase increments (Veers red, ∆θ) to

decouple the number of random variables from the number of wind speed data points

reduces the number of random variables drastically enough to obtain a wind model

which can be reasonably handled by a stochastic method.
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Figure 4.5: Three 50 s excerpt of a wind speed time series sample at four points
generated from different models and different random seeds. TurbSim: NREL’s
original TurbSim model; Veers red: Veers model with a limited number of frequencies
(NF = 20); Veers red, ∆θ: Veers model with a limited number of frequencies and phase
increments to model spatial structures at different points, see Tab. 4.1.

As a test case we study a wind field generated on NPy ×NPz = 5× 3 = 15 points

located on a regular grid as depicted in Fig. 4.4. The origin of the wind field was

located 100 m above ground with mean wind speed ū = 10 m/s and no wind shear.

The IEC class A normal turbulence model with a Kaimal spectrum (IEC 61400-1,

Ed. 3, 2005) and homogeneous turbulence was used. Data was sampled at 10 Hz. We

arbitrarily chose the top left hand point (P1) as the base point. Note that the grid used

here contains fewer points than the usual grid for the analysis of a modern D = 90 m

rotor diameter wind turbine (where NPy = NPz = 15 is more likely). However, the

reduced number of grid points enabled us to solve the equations quickly with all

models and more clearly illustrate the method. At the same time, the configuration of

Fig. 4.4 still allowed us to study both the wind speed time series of points in close

proximity (e.g. P1 and P6), as well as at more distant points (e.g. P1 and P5).

Fig. 4.5 shows realizations of the wind speed time series sampled at four points

(P1, P5, P6, and P10 in Fig. 4.4) from the three different models. For each model

the samples are generated from different random seeds. Thus the time series are not

identical. Still, it can be seen that the fundamental structures are conserved through

both reduced order models. In particular, even if wind samples are synthesized with

only 20 random numbers and deterministic phase increments (Veers red, ∆θ) the wind

speeds at two points in close proximity (P1 and P6, or P5 and P10) are highly correlated,

while at more distant points (e.g. P1 and P5) the correlation is weaker. It is important

to note that this holds not only for points in relation to the base point, but for all
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point pairs. For example, points P5 and P10 are both far away from the base point, but

close to each other. As expected, the wind speeds at these two points are well correlated.

Fig. 4.6 shows three realizations of wind speed time series plots at three points

obtained from the new phase increment model (Veers red, ∆θ), Eq. 4.8. The phase

increments are considered deterministic, and ∆θmk is fixed for all realizations. The

randomness enters the time series only via random phase angles at the base point P1

with θm1 = 2πξm. As can be seen from the figure, this does not result in a complete

determination of the spatial relation between wind speeds at different points, since

the samples still contain different gusts and lulls at different instances in time.
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Figure 4.6: Three realizations of wind speed time series at three points generated from
the the new reduced order model with fixed phase increments (Veers red, ∆θ model).

Beyond this qualitative visual comparison of the wind speed time series the

remainder of this section will show that the phase increment model produces the

same statistics as Veers’ original model (with only 20 frequencies) as well as the full

TurbSim model (with the full set of frequencies) for the most important statistical

metrics.

4.3.1 Cross-correlation

Fig. 4.7 compares the cross-correlation for two different point pairs, P1-P5 (90 m apart)

and P1-P6 (1 m apart) as obtained from six 99 s windows from a 600 s sample from

our reduced model with fixed phase increments (Veers red, ∆θ), from Veers’ model with

20 frequencies (Veers red), and from the full TurbSim simulation. To reduce noise and

compare meaningful (rather than possibly extreme) values the results are presented



75

as averages of 100 realizations from different random seeds for both phase angles and

phase increments.
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Figure 4.7: Wind speed cross-correlation for two point pairs generated from different
models; a close pair (P1,P6) and a distant one (P1,P5).

As can be seen from the figure the cross-correlation in general agrees very well for

both the close points and the distant point pair. The results from our implementation

of Veers’ model and from the phase increment model are almost identical and hence

difficult to distinguish in Fig. 4.7. Note that the TurbSim data is smoother, presumably

due to the significantly higher number of frequencies contained in the TurbSim data set.

Further investigation with the pair P5 and P10, two points close to each other but far

away from the base point P1 (not included in Fig. 4.7), shows that for all three models

the cross-correlation is almost identical to the curve for P1-P6. This confirms that

with our phase increment model the cross-correlation of the homogeneous turbulence

field, and with it the length scale of spatial structures, is indeed only dependent on

the distance between two points, but not on the two specific points themselves.
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4.3.2 Covariance

Now we look at the covariance as a function of the distance between two points and

compare data from TurbSim to the 20 frequency of Veers’ model (Veers red) and to

our reduced model with phase increments (Veers red, ∆θ). As above we use averages

from 99 s windows out of 100 realizations of 600 s samples.

From Fig. 4.8 it can be seen that our implementation of Veers’ model agrees well

with the results from TurbSim. The phase increment model, however, yields slightly,

but consistently less covariance. A more detailed investigation reveals the reason for

this: the covariance depends on the cross-spectrum and thus the spectrum at each

individual point. Consequently the discrepancy between the covariance functions is

connected to the fact that Veers’ model distorts the spectrum at each individual point,

such that with Eq. 4.3 |Umk| =
√
S̃mk 6=

√
Smk (see discussion in section 4.2.1). When

we replace S by the distorted spectrum S̃ at each particular point Pk in Eq. 4.8 all

three curves do match. However, S̃ does not in fact represent the prescribed Kaimal

spectrum. Thus we conclude that our phase increment model actually represents the

desired covariance better than Veers’ original model and TurbSim.

0 20 40 60 80 100

distance [m]

0

1

2

3

4

5

w
in

d
 s

p
e
e
d
 c

o
v
a
ri
a
n
c
e
 c

o
v
(u

) 
[m

2
/s

2
]

TurbSim

Veers
 red

Veers
 red, 

Figure 4.8: Wind speed covariance for points different distances apart.

4.3.3 Cross-spectrum

Next we compare the cross-spectrum, which is again obtained as the average spectrum

from 100 realizations (from different random seeds). However, this time 6,000 s
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were sampled to obtain sufficiently long data sets for a proper resolution of the low

frequency components. Note that the same set of 20 frequencies [fk] ∈ [1/600, 5] Hz

are used for both the 20 frequency (Veers red) and the phase increment (Veers red, ∆θ)

implementations. Hence the T = 6, 000 s signal repeats after 600 s. The spectrum

is binned into discrete bins of frequencies fm equal to the logarithmically spaced

frequencies initially used to generate the wind speed time series. Fig. 4.9 shows a

comparison of the cross-spectra estimates for different point pairs obtained through

Welch’s periodogram method employed on the full 6,000 s samples with no extra

windowing (Welch, 1967). We study the base point, and its closest neighbor (P1-P6);

the base point and a point far away (P1-P5); and a point pair close together, but far

away from base point (P5-P10). For reference, the prescribed Kaimal spectrum S is

included, as well as the analytic cross-spectrum obtained by:

Sij = Coh
√
SiiSjj (4.9)

from the (auto-) spectra Sii = S and the coherence function Coh as defined by the

standard IEC 61400-1, Ed. 3 (2005).
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Figure 4.9: Wind speed cross power spectral density for three point pairs from different
models, together with the analytic results (Eq. 4.9) and the prescribed Kaimal auto-
spectrum. Left: the base point, and its closest neighbor. Middle: the base point and a
point far away. And right: a point pair close together, but far away from base point.

Again, the phase increment model (Veers red, ∆θ) in all cases reproduces the analytic

spectrum well with only 20 random variables. This time, however, the TurbSim results

do not match as well. The reason is that TurbSim chooses the lowest frequency f1

and the frequency bin width ∆f such that ∆f = f1 = 1/T , and thus uses a wider
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frequency band for the first bin compared to our logarithmically spaced bins. When

re-binning to the logarithmic range this results in excess power (and an artificial

peak) in the first bin and hence less power in higher frequency bins. Note, however,

that this is an artifact of the discrete spectrum and the frequency binning, and not a

discrepancy in the underlying data.

4.3.4 Outlook: wind turbine rotor blade loads

Figure 4.10: Blade thrust load probability distribution from BEM model based on
wind fields generated with either TurbSim or from the reduced order Veers model
with constant phase increments.

To further assess the validity of the reduced order wind model, loads were calculated

for one single blade on a three bladed R = 35 m diameter wind turbine rotor spinning

at a tip speed ratio λ = 6.1. Loads were obtained at ∆t = 0.1 s time steps through

a simple blade element momentum model supplied with wind generated either from

TurbSim, or from our reduced model with fixed phase increments (Veers red, ∆θ) on a

15× 15 grid of data points over the rotor disc. The hub height is set to hhub = 90 m,

with the hub height mean wind speed ū = 12 m/s, power law wind shear with power

law exponent a = 0.2 (according to Jonkman and Kilcher (2012)), and IEC normal

turbulence model, class A (IEC 61400-1, Ed. 3, 2005). Fig. 4.10 shows the probability

distribution p(T ) of thrust loads T on one blade calculated from 100 realizations of a
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600 s wind field. TurbSim used the full set of roughly 3,000 frequencies at each of

the 15× 15 grid points. The reduced order model, on the other hand, relied on only

20 frequencies with all 100 realizations generated one set of fixed phase increments.

It can be seen, that the reduced order model, although relying on significantly fewer

random variables (NR = 6.75 · 105 versus NR = 20 for each realization, see Tab. 4.1),

produces almost the same load probability distribution.

4.3.5 Discussion

As shown by the results presented in this section the phase increments wind model

presented in section 4.2.2 can reproduce important statistics (both of a wind field, as

well as for resulting wind loads) with the same accuracy as the full model. At the

same time, the phase increments model requires significantly less random variables.

As indicated by Fig. 4.6 the phase increments model does not produce identical spatial

structures with each realization, even thought a large part of the spatial randomness is

neglected is Eq. 4.8. This further illustrates the method’s ability to retain important

stochastic information.

The results from sections 4.3.1-4.3.3 are generated from a set of 100 different

phase increments generated from 100 different random seeds. This was necessary

because, due to the random equations, it was not possible to compare the results from

a single realization. This might have resulted in uncharacteristically bad (or good)

agreement only by the chance of comparing ‘bad’ (or ‘good’) realizations. Instead

only the averages over multiple realizations could be compared. For a stochastic

analysis as outlined in the introduction, however, only a very limited set of phase

increment realizations would be used. Hence, some part of the randomness of the

wind field will be lost. This is the price to be payed for using a reduced order model.

In section 4.2.2 we justify this choice. The results, particularly Figs. 4.6 and 4.10,

support the notion that a very limited set of phase increment realizations, or even

a single one, can be sufficient. It is still to be determined, however, how many sets

will actually be necessary for adequate results, and how the associated reduction in

randomness influences the relevant output quantities, e.g. for a wind turbine analysis

the resulting loads, especially the probability of extreme loads. Preliminary results

for wind turbine blade loads calculated from a Blade Element Momentum model

indicate that only one single set of phase increments is sufficient to obtain almost the
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same statistical load distribution as from the conventional analysis based on standard

TurbSim wind fields.

4.4 Conclusions

Stochastic analysis and uncertainty quantification are generally very active fields of

research in engineering with the developed methods increasingly adopted by industry.

To enable practitioners to apply these methods to wind turbine aerodynamics and more

generally wind loading analysis on various structures, we presented a new method,

which significantly reduces the number of random variables used in the wind model.

This reduction is critical, because the computational effort of the common stochastic

solutions is very sensitive to the number of random variables involved.

The model introduced here employs a separation of the temporal (correlation in

time) and spatial (coherence in space) part of the random dimension of turbulent wind.

While the temporal part is still determined from random variables, the spatial part is

collapsed into deterministic phase increments. Thus the number of random variables

is reduced by several orders of magnitude compared to the commonly used model

developed by Veers and implemented in TurbSim, currently the (de facto) standard tool

for synthetic wind generation. A comparison of the most important stochastic metrics

(cross-correlation, covariance, auto- and cross-spectrum) showed that the reduced

order model based on phase increments still reproduces these metrics as accurately

as Veers’ equations or TurbSim. Moreover, preliminary results were presented, which

indicate that the reduced order wind model based on phase increments also preserves

wind turbine blade loads well. A detailed study quantifying the impact of using

deterministic phase increments on the overall statistics of wind turbine loads is yet to

be carried out. Subsequent to the implementation of this reduced order wind model

in a full wind turbine simulator, which is the focus of ongoing work, these ultimate

questions can be addressed.
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Chapter 5

Fast Analysis of Unsteady Wing

Aerodynamics via Stochastic

Models

This chapter is a slightly corrected version of a paper first published as:

Fluck, Manuel and Crawford, Curran: “Fast Analysis of Unsteady Wing Aerodynamics

via Stochastic Models”, AIAA Journal, 2016, article in advance;

DOI: 10.2514/1.J054983

In this paper we derive stochastic solutions for a very simple Lagrangian vortex

model with linear aerodynamics. We model only one spanwise vortex element, and are

concerned only with the auto-correlation. Thus we deal with a simple aerodynamic

model and focus on deriving the basics of a stochastic solution. We present and

validate two approaches:

(A) A new, time resolved polynomial chaos expansion, and

(B) the Fourier-Galerkin method, similar to (A), but based on Fourier basis functions

(complex exponentials).

See Appendix C.4.1 for further information regarding the Matlab code used to

generate results for this section.

http://dx.doi.org/10.2514/1.J054983
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Abstract

Lifting surfaces often operate in highly unsteady inflow conditions, such as gusty

wind or waves. These inflows are unsteady on many time scales and have to be

considered stochastic processes. For fluid dynamics practitioners, this leads to a

challenge: how can long term, random design loads (e.g. fatigue or 20-year return

extreme) be quantified efficiently? The conventional approach involves analysis of a

large set of short term inflow realizations and extrapolates the results to long term

loads via their assumed probability distributions. However, this requires separately

solving many simulations. This is computationally expensive and presents a handicap,

especially in early design stages (optimization), where rapid evaluations of candidate

designs and performance gradients are required. To tackle this problem, we introduce

two alternative stochastic methods: one based on a Galerkin projection onto Fourier

modes, and the other based on a polynomial chaos expansion. This approach enables

us to carry the randomness though the solution process to directly obtain a stochastic

result. Thus, long term loads can be directly constructed from the stochastic solution,

without having to analyze specific realizations of the inflow inputs. The new processes

are illustrated and discussed with an example based on a rectangular wing lifting line

model.
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Nomenclature

A wing geometry parameter, m

B current bound circulation

coefficient

C previous bound circulation

coefficient

Cn n-dimensional complex num-

ber space

cl sectional lift coefficient

E expected value operator

F Fourier space

f = [fk], k-th Fourier fre-

quency, Hz

Gi geometry term for i-th ele-

ment, 1/m

g = [gk], solution series Fourier

coefficients, m2/s

ĝ = [ĝr], solution PCE coeffi-

cients, m2/s

i =
√
−1, imaginary unit

K number of frequencies

L = {Λmn}, a set of multiple

multi-indices

N0 set of integers

P set of chaos polynomials

P polynomial chaos space

p polynomial order

R number of polynomial chaos

functions

T = 1/f1, sample period

u∞ inflow speed, m/s

u = [uk], inflow Fourier coeffi-

cients, m/s

û = [ûr], inflow PCE coeffi-

cients, m/s

Var variance operator

w induced velocity, m/s

αg geometric angle of attack, rad

Γi circulation of i-th vortex ele-

ment, m2/s

δij Kronecker delta

Λ = {λk}, a multi-index

σ standard deviation operator

Φk k-th Fourier basis function

ξ = [ξk], random number

Ψr r-th multivariate PCE func-

tion

ψλk λk-th univariate PCE func-

tion

Ω stochastic sample space

ω = [ωk], k-th Fourier frequency,

rad/s

∗ conjugate complex

[ ] a vector, matrix, or interval

{ } a set

| | absolute value

〈�,�〉 an inner product
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5.1 Introduction

Various types of wings, and lifting surfaces in general, operate in highly unsteady

apparent inflow conditions where the driving physics (wind, waves) have to be consid-

ered stochastic: e.g. low speed/ low altitude aircraft during take-off or landing (Etkin,

1981; Patel and Kroo, 2006) and wind turbines (Milan et al., 2013) in the turbulent

conditions of the atmospheric boundary layer, or floating marine systems (ship sails

(Le Mâıtre et al., 1999), floating wind turbine blades (Karimirad, 2014; Graf et al.,

2016), tidal turbine blades (Gant and Stallard, 2008; Shives, 2011)) rolling in waves

and thus subject to highly unsteady relative inflow. For preliminary analysis and

design optimization of these lifting surfaces, where fast solution times are paramount

to allow the quick analysis of multiple candidate designs, Lagrangian vortex models

are often employed (Junge et al., 2010; Fluck et al., 2010; McWilliam et al., 2013b;

Aubin et al., 2016). While full time-domain CFD simulations based on a discretized

solution of the Reynolds Averaged Navier Stokes (RANS) equations potentially offer a

high fidelity analysis, their high costs in terms of computational demand as well as pre-

and post-processing time (mesh generation, quality control, etc) is often prohibitive

for their use in early design stages. On the other hand, Lagrangian vortex models,

such as e.g. a lifting line model (Prandtl, 1918, 1919; Phillips and Snyder, 2000),

represent the lifting surface and the flow around it as a set of vortex elements, which

are advected with the flow. These models offer medium fidelity results. They are

relatively fast to solve and do not require any meshing, while still flexible enough

to model even unconventional geometries (Fluck and Crawford, 2014). Moreover,

Lagrangian methods may achieve accuracy similar to RANS solutions, as the latter

often struggle with an numerically accurate resolution of the complicated physics

involved.

When working with stochastic unsteady inflow conditions long time series have to

be simulated to capture extreme evens. As an example, wind turbine standards (such

as IEC 61400-1, Ed. 3 (2005)) base the load analysis on ten-minute simulations, which

are required at many different wind speeds for 22 different load cases, each repeated

six times with different random seeds for the turbulent inflow field. This results in a

very large number of ten-minute simulations. But even with this, extrapolation to

extreme loads is a delicate exercise and results can vary by a large amount (Moriarty,

2008; Burton et al., 2011). Zwick and Muskulus (2015) for example showed recently
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that when basing a wind turbine analysis on six ten-minute wind speed simulations a

difference of up to 34% occurs in the ultimate load results for the most extreme 1%

of seed combinations. Moreover, recent research (Tibaldi et al., 2014) indicates that

turbine loads extracted even from 20 different ten-minute wind fields generated from

20 different random seeds for each wind speed vary greatly. Often load variations from

different random seeds dominate effects from design parameter changes – obviously a

severe problem, especially when concerned with gradient-based optimization where

obtaining reliable design variable gradients is vital.

Clearly, all these factors call for longer or more simulations based on more random

seeds to accurately capture extreme events. However, the simulations are usually run

in time-stepping solvers based on blade element momentum (BEM) theory. These

solvers achieve solution times of up to 0.1 real time, i.e. 1 minute of simulation time

to obtain ten minutes of (real) wind turbine operation. For the various different load

cases and wind speeds prescribed by the standards this adds up to about 1 hour for

one candidate design for on-shore turbines. When looking at floating structures with

high-dimensional combined load cases of wind and wave data from different directions

the situation gets even worse, requiring an even higher number of simulations (Graf

et al., 2016).

Having to perform many and/ or long simulations to capture unsteady effects ren-

ders optimization for unsteady conditions difficult, since here the computational cost

for each design evaluation is critical. However, reverting to a much faster steady-state

study is dangerous as extreme load responses are not captured accurately and fatigue

loads and unsteady power output may be misrepresented. Picking up our example of

wind power again, Zhou et al. (2016) show that the peak power fluctuation for wind

turbines can reach 22% of its average. Hence a steady state optimization potentially

fails to find a solution close to the ‘real’ (unsteady) optimum. To tackle this dilemma

the available model has to be extended, such that the full set of unsteady inflow

conditions with all extreme loads can be modeled, while keeping the computational

cost down. To do so, we will present a stochastic lifting line model, which will include

stochastic unsteady effects, while keeping the computational effort low.
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Γξ i(t)=f (uξ i(t))

Γ(t ,ξ)=f (u(t ,ξ))

several realizations
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solution

several deterministic 
solutions

Figure 5.1: Alternate solution methods. Top route: conventional with realisations
generated before solution; Bottom route: the new process with a stochastic solution.

When dealing with systems in turbulent wind or relative motions driven by waves,

the wind/ waves are usually represented by a stochastic model, typically specified

in the frequency domain by the governing standards (Burton et al., 2011; Faltinsen,

2005). However, instead of dealing with the notion of stochasticity during the system

modeling, several realizations of the stochastic input wind/wave field are usually gen-

erated from different random seeds at the outset of the simulation (Karimirad, 2014).

This means instead of using the abstract stochastic equations describing the wind/

wave fields, several concrete deterministic time-series are computed; see Fig. 5.1, upper

path. While the benefit of this approach is its ability to use standard time-marching

simulation codes, it removes the advantages of a stochastic description during the

system modeling phase. Consequently, an analysis of many different realizations is

required (Zwick and Muskulus, 2015), which leads to the problematic increase of

computational cost discussed earlier.

In this paper we assume that a spectral model exists that describes the source term

(i.e. the inflow) adequately. Form there on we demonstrate two ways of conducting the

analysis of the system model in the stochastic space (lower path in Fig. 5.1). This will

eliminate the need for multiple realizations of the input flow while retaining stochastic

properties and thus the effects captured with different random seeds. Hence the costly

time-domain analysis for various different random seeds is avoided and unsteady opti-

mization based on Lagrangian vortex models becomes feasible. The aim of this work

is to derive two different stochastic solutions for the aerodynamic system equations.

The first method, polynomial chaos expansion (PCE), has been used to deal with

stochastic models, particularly in the field of uncertainty quantification. However, the
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available literature (e.g. Ghanem and Spanos (1991); Le Mâıtre et al. (2001); Le Mâıtre

(2006); Sudret (2007); Najm (2009); Constantine et al. (2009)) deals with stochastic

but constant boundary conditions or system parameters, i.e. random variables. Our

problem, on the other hand, is concerned with a stochastic time varying source term,

i.e. a random process. To the authors knowledge, this has not been addressed yet in

the engineering literature. The second method, a stochastic Galerkin projection onto

Fourier modes, is a combination of two well-know techniques. Again, while both parts,

Fourier expansion and Galerkin projection, are well-known, the combination of both is

novel as it retains the stochastic dimension of the problem. Thus it can be used to ob-

tain a stochastic solution to a problem driven by a stochastic time varying source term.

In the following we will focus on unsteady aerodynamics in turbulent wind. Here

the governing design standard (IEC 61400-1, Ed. 3 (2005)) requires the use of a

spectral wind model (Veers or Mann model) to describe the inflow. It is well known

that these models do not fully capture the detailed physics of ’real’ wind (Mücke et al.,

2011; Morales et al., 2012; Emeis, 2012; Park et al., 2015), and more advanced models

are available, e.g. (Stresing and Peinke, 2010; Morales et al., 2012). Nonetheless,

spectral models have been widely accepted for years as an adequate compromise

between accuracy, generality, complexity, and computational cost (Nielsen et al., 2007;

Lavely et al., 2012), with the incurred inaccuracy covered by safety factors included

in the design. In the sequel we are not going to challenge the wind model prescribed

by the standard, but work with the established model and focus on introducing the

new stochastic method.

In section 5.2 the basic mathematical concepts will be revisited. Section 5.3 will

take a lifting line model, apply the stochastic concepts introduced before, and thus

arrive at a novel stochastic lifting line model. Here we only use a very simple horseshoe

lifting line model to illustrate the method. Thus, the focus is on a concise introduction

of the new concept, rather than blurring the fundamental ideas in a complicated

aerodynamic model. Nonetheless the novelty of the approach will become apparent:

through the projection on a stoachstic space the random dimension of the problem,

introduced through the random source term, is retained up to the final solution for

the blade loads. Thus, the statistics of the aerodynamic loads can be extracted

directly and quickly from a single (stochastic) solution, the deterministic analysis of

multiple realizations becomes unnecessary, and long term loads become accessible for
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optimization. Eventually a more involved lifting line (or other aerodynamic model) can

be analyzed similarly, and by introducing a hydrodynamic model the results are equally

applicable to unsteady relative motions driven by waves, aeroelastic calculations, or

any other stochastically driven simulations. This, however, will be left for other

work. For now, section 5.4 concludes with some key results, followed by discussion of

limitations, and a brief study of the computational costs in the light to our long term

goal: an implementation of the presented fundamentals to a complete multidisciplinary

stochastic wind turbine model.

5.2 Background: basic concepts

In this paper two related stochastic solutions to the lifting line equations are suggested.

Both alternatives rely on a stochastic Galerkin projection as well as the stochastic

formulation of the driving source term. Both, the stochastic Galerkin projection itself,

as well as the stochastic description of the source term, are known concepts, which

will only be reviewed briefly in this section to set the stage. The emphasis will be

on the next section, where the novel combination of both concepts is introduced to

project aerodynamic system equations onto a stochastic space and thus arrive at our

principle goal: a stochastic solution of wing loads to directly arrive at long term loads

without having to analyze multiple realizations deterministically.

5.2.1 Stochastic Galerkin projection

Both the discussed alternatives presented in the sequel are based on a stochastic

Galerkin projection, which projects a stochastic equation onto a random space spanned

by stochastic basis functions. Thus a system of deterministic equations for the solu-

tion’s coordinates in the stochastic space is obtained. This leads to a split between the

stochastic and the deterministic part of the equation: the stochasticity is contained in

the basis functions, while the coordinates are purely deterministic and can therefore

be solved for in a deterministic manner.

Let fi and fj be any two functions in Cn, and let f ∗ denote the conjugate complex

function of f . For the projection we define the inner product of two functions over
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some space Ω, x ∈ Ω, with the weighting function p(x):

〈fi(x), fj(x)〉 =

∫
Ω

fi(x)f ∗j (x)p(x) dx (5.1)

With appropriate scaling s the scaled functions sifi and sjfj constitute a set of or-

thonormal functions if 〈sifi(x), sjfj(x)〉 = δij , where δij is the Kronecker function. In

a stochastic sample space Ω with an appropriate probability measure p replacing x with

a random number ξ ∈ Ω gives convenient extra properties to this inner product: for a

certain set of functions Φ(ξ), the so-called chaos polynomials, p(ξ) is the probability

distribution of the random variable ξ and hence the inner product equals the expected

value operation 〈Φi,Φj〉 = E[Φi,Φj]. Note, however, that for this property to hold

the chaos polynomials have to be chosen according to the probability function p(ξ).

Examples include Legendre polynomials for uniformly distributed random variables;

Hermite polynomials for normally distributed random variables. For a full list see e.g.

Xiu and Karniadakis (2002).

Similar to the usual Galerkin projection, two steps are executed in the stochastic

Galerkin projection to find an approximate solution to some system of governing

equations:

1. Restrict the approximate solution to lie within some finite dimensional Hilbert

space K equipped with an inner product as defined in Eq. 5.1, and spanned by

a set of independent basis functions. For the stochastic case these are stochastic

basis functions.

2. Employ the inner product of Eq. 5.1 to project the governing equation onto the

space K to obtain a system of equations for the coordinates of the solution in K.

For a linear governing equation and orthogonal basis functions this will result in

a decoupled system of equations.

The key here is to find a space K that provides a sufficient approximation of the

solution with a convenient number of basis functions. By virtue of its definition the

inner product (an orthogonal projection) will then ensure an optimal approximation,

i.e. a solution where the residual is orthogonal to all provided basis functions (Naylor

and Sell, 1971).
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5.2.2 The stochastic source term and the approximation space

Before looking at our lifting line example we need to clarify what approximation

space K to use. For the cases considered here the only source of stocasticity is in

the turbulent inflow. Hence we follow the argument by Le Mâıtre and Knio (2010)

and assume that the stochastic solution will be in the same stochastic space as the

stochastic input. But how is the stochastic input best described?

The atmospheric sciences provide various different, more or less involved, and more

or less accurate stochastic models for atmospheric wind (e.g. Kantz et al. (2004);

Nielsen et al. (2007); Kleinhans et al. (2008); Morales et al. (2012); Calif et al. (2013)

to only cite a few). If we want to present a method applicable to industrial wind

turbine design, however, we are constrained by the governing design standard (IEC

61400-1, Ed. 3, 2005). This standard uses either Veers’ (Veers, 1988) or Mann’s

(Mann, 1994, 1998) wind model, and thus considers the homogeneous, stationary, and

Gaussian description associated with these spectral models adequate (Nielsen et al.,

2007). Since the goal of this work is to develop an improved method for wind turbine

design optimization, and since the design is governed by the IEC standard, we adopt

the prescribed models without further discussion, although we acknowledge that there

are more accurate models available.

The wind models from the IEC standard typically build up the turbulent inflow

u∞ as a truncated Fourier series of K discrete frequencies ωk, each with discrete

amplitude uk and a random phase angle πξk, where each ξ = [ξk] is a vector of

mutually independent uniformly distributed random variables in the sample space

Ω = [−1, 1]K and the imaginary unit i =
√
−1:10

u∞(tn, ξ) =
K∑
k=0

uke
i(ωktn+πξk) (5.2)

Note that this formulation intrinsically provides the possibility to separate time and

random variables into a function purely of time T (tn) and a pure random function

X(ξ):

u∞(tn, ξ) = T (tn)X(ξ) (5.3)

10 N.B.: Here and in the following we implicitly assume the correct symmetry of amplitudes uk
and frequencies ωk in order to arrive at real valued wind speed u∞.
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This will become important later, when we move to a chaos polynomial representation.

For simplicity and clear notation we use a one-dimensional homogeneous inflow here,

but the extension to a three dimensional (correlated) field is possible following for

example Veers (1988).

In general and for the specific case in Eq. 5.2 the inflow u∞(tn, ξ) is a stochastic

process. Based on a wind spectrum (e.g. the isotropic Kaimal spectrum from the IEC

standard (IEC 61400-1, Ed. 3, 2005), which defines uk for each ωk) and a specific

set (i.e. a realization) ξ0 a wind speed time series sample u∞(tn, ξ0) can readily be

generated via the inverse Fourier transform. Veers (1988) and Mann (1994, 1998)

explain this process in detail. Note that each time series u∞(tn, ξ0) is based on one

specific realization ξ0. It is only one specific sample path of the random process

u∞(tn, ξ), and each sample path may be more benign or more extreme depending on

the specific phase angle combination determined by ξ0. Thus, extreme events will only

be encountered if by chance an extreme combination of random variables is realized in

ξ0 and the time series is long enough to capture all possible component interactions.

Once a sample path is generated a deterministic wind time series is available which

can be processed conveniently in the usual deterministic fashion. However, this is

also where the problem discussed around Fig. 5.1 arises: Using one sample path cuts

down the multitude of stochastic possibilities into one single sample path. To still

capture extreme events, a very long time series or many different realizations (from

different ξi) have to be analyzed (the upper path in Fig. 5.1; (Zwick and Muskulus,

2015)) this is costly and time consuming. The remainder of this paper will look at a

simple example and introduce a new alternative (lower path in Fig. 5.1) to avoid this

problem.

5.3 A stochastic horseshoe vortex system

In this section the aerodynamic equations of a horseshoe vortex model will be solved

in the stochastic space. As a base line the classic (deterministic) lifting line model

will be briefly summarized first. Then the lifting line equation is projected onto a

space spanned either by complex exponentials or polynomial chaos functions to obtain

the solution in the stochastic space (lower path in Fig. 5.1). The first method is a

new combination of a Fourier expansion with a Galerkin projection, which avoids the
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Figure 5.2: The Kaimal spectrum for turbulent wind inflow.

linearization typically required in Fourier-based approaches and enables the random

phase shifts to be passed directly through the system equations. We call this method

the Fourier-Galerkin (FG) solution. The second approach, known as a polynomial

chaos expansion (PCE), was introduced by Ghanem and Spanos (1991) in the context

of finite element analysis. It has recently become more popular for uncertainty quan-

tification when dealing with stochastic inputs or stochastic system parameters (Sudret,

2007; Najm, 2009) and has also been applied to fluid dynamic problems. However, so

far only static stochastic parameters (e.g. unknown but constant viscosity (Le Mâıtre

et al., 2001) or oscillation amplitude (Le Mâıtre, 2006)) and stochastic boundary or

initial conditions (e.g. unknown temperature (Constantine et al., 2009)) have been

considered. To our knowledge a polynomial chaos representation has not been used

with stochastic processes (like wind or waves) where the stochastic input evolves

through time and preserving the auto-correlation becomes important. A detailed

assessment on which of the two stochastic methods is more suitable for our problem

of wind turbine optimization is left to forthcoming work.

5.3.1 The deterministic baseline model

A simple lifting line vortex system as introduced by Prandtl (1918, 1919), extended

with shed wake elements representing the wing loading history, will be used as an

example to show a way of retaining the stochasticity through the solution process of
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an unsteady aerodynamic analysis. Thus the need to analyze multiple realizations is

avoided. For the sake of clarity when illustrating the stochastic approach the simplest

possible model of a rectangular lifting surface in unsteady flow is used (Fig. 5.3). This

model can readily be extended to more complicated wing and wake geometries by

simply adding more vortex elements (Anderson Jr, 1985; Phillips and Snyder, 2000).

For the time being, the wake element positions are assumed fixed. Adding more

elements and relaxing the wake positions will not fundamentally change the presented

method, it will merely add more unknowns – with solution strategies known (Anderson

Jr, 1985; Phillips and Snyder, 2000). For now we assume small angles of attack αg,

small induced velocities w, and thus linear airfoil properties (cl = 2π(αg + w/u∞))

and arrive at the well known lifting line equation (for details see e.g. Anderson Jr

(1985); Phillips and Snyder (2000)):

Γ0(tn) = A · u∞(tn) +B · Γ0(tn) + C · Γ0(tn−1) (5.4)

with u∞(tn) the unsteady inflow speed, A = cπαg, B = cπ(G1 + G2 + G3 − G5),

C = cπ(G1 +G4 +G5) and Gi geometry terms representing the induced downwash

according to Biot-Sarvart’s law from each vortex element Γi at the middle of the lifting

line (Γ0). For a specific realization ξ0, and thus one specific deterministic wind speed

time series u∞(tn, ξ0), Eq. 5.4 is solved in the well known deterministic time-stepping

manner:

Γ0(tn) =
A · u∞(tn) + C · Γ0(tn−1)

1−B
(5.5)

Through the Kutta–Joukowski equation the wing lift can then be obtained immediately.

In the next two sub sections Eq. 5.5 will be solved directly for the stochastic inflow

u∞(t, ξ) in general.

5.3.2 Expansion in time (Fourier-Galerkin solution)

To retain the stochasticity though the model equations let us first look at the wing

load solution Γ0(tn, ξ), now a function of time t and the random variable ξ. We can

express Γ0 in some suitable stochastic space as a linear combination of some basis

function Φl(tn), unknown coefficients gl, and a random phases eiπξl for each basis
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function: 11

Γ0(tn, ξ) =
L∑
l=0

gl Φl(tn) eiπξl (5.6)

In general Eq. 5.6 requires L→∞. However, if the input is adequately represented

by a truncated Fourier series of K < ∞ terms then setting L = K gives a fair

approximation for an engineering solution. Moreover, the Fourier series of the input

Eq. 5.2 itself can be understood as a projection of the inflow time series u∞(t) onto

the K-dimensional complex Hilbert space F spanned by the K Fourier modes eiωktn

and equipped with an inner product as defined in Eq. 5.1. Hence it is straight forward

to express the solution Γ0 in the same space F:

Φl(tn) = Φk(tn) = eiωktn (5.7)

Since the models we will consider do not introduce any extra randomness themselves

(besides the one introduced through the input), the output random variables ξ are

drawn from the same sample space Ω (Le Mâıtre and Knio, 2010). Thus we have

ξl = ξk. With this we can express the system equation 5.4 in terms of the basis

functions Φ:

K∑
k=0

gk Φk(tn) eiπξk =

A
K∑
k=0

ukΦk(tn) eiπξk +B
K∑
k=0

gk Φk(tn) eiπξk + C
K∑
k=0

gk Φk(tn−1) eiπξk (5.8)

11 Again we assume the correct symmetry in order to arrive at real valued circulations Γ0.
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As we chose K < ∞ this restricts the solution to a finite dimensional approxima-

tion space, which is the first step of the Galerkin projection. Hence the problem

is recast from finding the bound circulation Γ0(tn) as a function of time directly

to determining the solution coordinates gk. The advantage is that we do retain the

stochasticity, as Eq. 5.8 does not require obtaining one specific realization of ξ anymore.

We recognize that, at least in the case of our linear example, Φk(tn−1) = Φk(t)e
−iwk∆t

with ∆t = tn − tn−1. With the inner product 〈�,Φk(tn)〉 over Ω = [0, T ], both sides

of Eq. 5.8 can now easily be projected onto F to complete the Galerkin projection.

By canceling eiπξk on both sides this transforms Eq. 5.8 directly into a system of K

decouppled equations for the K unknown solution coordinates gk:

gk = Auk +B gk + C gke
−iwk∆t (5.9)

Thus the solution for gk is straight forward:

gk =
A

1−B − Ce−iwk∆t
uk (5.10)

Pluging this back into Eq. 5.6 yields the sought stochastic expression of the time series

of the bound circulation as a function of the random variable ξ. The orthogonality

of the Fourier modes Φ guarantees an optimal solution approximation, because the

residual will be orthogonal to the truncated solution retained in F.

To obtain this result we used a Galerkin projection of the governing equation onto

the Fourier modes of the inflow. Hence we refer to this method as Fourier-Galerkin

(FG) method in the sequel. In contrast to the usual deterministic solution for one

specific inflow realization (Eq. 5.5) the stochastic nature of the inflow (e.g. the forcing

wind) is now carried through the equations and contained in the load solution of

Γ0(tn, ξ). This is obtained by decoupling the random phase angles from the time

history. Consequently the realization of different sample paths is postponed until

after the solution of the governing equation of the stochastic system, i.e. until after

the computationally expensive part of the solution of the system (cf. lower path in

Fig. 5.1). Note that increasing the complexity of the problem will naturally render

Eq. 5.6 more complicated, but it will not not change the method per se.
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For independent uniformly distributed ξ, mean and variance of the wing load

Γ0(tn, ξ) are readily (i.e. without even creating a set of realizations) available from

the expression of Eq. 5.6 and the solution from Eq. 5.10:

E [Γ0] = g0 (5.11)

Var [Γ0] =
K∑
k=1

|gk|2 (5.12)

with |gk| denoting the absolute value of the complex gk.

Note that after the projection Eq. 5.10 is no longer a function of time. In contrast

to the PCE method introduced next, here the time dimension is pulled into the

Fourier modes Φk(tn), and the solution coefficients g = [gk] themselves are not only

independent of the stochastic component ξ, but also independent of time. Hence with

one solve of Eq. 5.10 for g the evolution of the vortex system for all time steps (up

to the longest period of the input expansion for the wind signal) is obtained at once.

For a steady state inflow, where the Fourier series contains only the DC term but no

phase angles, this method thus collapses to the deterministic solution.

On first glance these results may seem like merely a Fourier transform as known

for a linear time-invariant systems from control theory. But this similarity only arises

in our simple example, where the projection of Eq. 5.8 results in a set of decoupled

linear equations. In fact, when going through Eqs. 5.6–5.10 we never assumed linearity

and actually have two important advantages:

1. In contrast to a conventional Fourier transform, the approach presented here is

similarly valid for a non-linear system. The only difference is that for non-linear

systems projecting Eq. 5.8 will not result in decoupled coefficients gk but rather

turn Eq. 5.10 into a coupled system of equations, requiring a matrix inversion

for the solution. With a limited number K of coupled equations this inversion

should not pose any serious problem.

2. In future work the constant mean inflow speed, included in Eq. 5.6 via the

zero frequency ω0 = 0, can easily be replaced with another random variable,

representing the long term variation of the short term mean inflow speed. In

contrast to a conventional Fourier transform, the proposed method can thus

be expanded directly to a long time analysis (e.g. for 20-year extreme loads)
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without significant extra effort.

Moreover, our stochastic Fourier-Galerkin method, in contrast to the usual Fourier

transform, also retains the stochastic dimension of the problem, and hence provides a

means to obtain a stochastic solution.

5.3.3 Expansion of random phase angles (polynomial chaos

expansion)

Instead of using the Fourier representation of the inflow directly, the input and the

output can also be cast into a polynomial chaos expansion (PCE), see e.g. Le Mâıtre

and Knio (2010). Since time and stochastic variables can be separated as established

in Eq. 5.3 we can write:

u∞(tn, ξ) =
R−1∑
r=0

ûr(tn) Ψr(ξ) (5.13)

and

Γ0(tn, ξ) =
R−1∑
r=0

ĝr(tn) Ψr(ξ) (5.14)

with the multivariate polynomial chaos (PC) Ψr(ξ) of the K-dimensional vector of

independent random phases ξ = [ξk], and the input and output coefficients ûr(tn) and

ĝr(tn) respectively. As before the same random variables are used for the input and

output. Based on these expansions, the PCE method then follows the same Galerkin

procedure as the Fourier-Galerkin solution presented above. The construction of the

chaos polynomials Ψr will be outlined next, before the expansion of Eqs. 5.13 and

5.14 will be applied to our lifting line example.

For concise notation let Λ = {λ1, . . . , λK} = {λk} denote a multi-index, with each

λk ∈ N0. Further, let L(p) = {Λmn} be a set of multi-indices for a set of polynomials

of order up to p, such that (cf. Le Mâıtre and Knio (2010)):

L(p) =

{
Λmn

∣∣∣∣∣
K∑
k=1

λk = n; n ≤ p

}
(5.15)
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with m ∈ N a numbering index without particular order for different multi-indices

for any constant n. Combining the indices mn into r ∈ {0, . . . , R− 1} for notational

convenience, the r-th multivariate PC is then given by

Ψr(ξ) = Ψmn(ξ) =
∏

λk∈Λmn

ψλk(ξk) (5.16)

with

R− 1 =
(K + p)!

K!p!
(5.17)

Since the phase angles πξk in the stochastic input are distributed uniformly in

[−π, π] Legendre polynomials are are chosen for ψλk(ξk) to achieve optimal (exponen-

tial) convergence of the series (Xiu and Karniadakis, 2002). With the normalization

factor qλk =
√
λk + 0.5 the univariate Legendre polynomials are:

ψλk(ξk) =
qλk
2λk
·
λk∑
l=0

(
λk
l

)l
(ξk − 1)λk−l(ξk + 1)l (5.18)

Choosing K = 3 and n = 2 as example we get {Λm2} = {{2, 0, 0}, {0, 2, 0}, {0, 0, 1},
{1, 0, 1}, {1, 1, 0}, {0, 1, 1}} leading to e.g. Ψ12 = ψ2(ξ1) = 1

2
q2 (3ξ1 − 1) and

Ψ42 = ψ1(ξ1)ψ1(ξ3) = q2
1 ξ1ξ3.

By construction the chaos polynomials are orthonormal and the set P of all

polynomials Ψ of order up to p derived through Eq. 5.16:

P =

 ⋃
Λmn∈L(p)

Ψmn

 (5.19)

forms an R-dimensional PC basis of the sample space Ω (for p → ∞). Since the

Legendre polynomials (a special case of Jacobi polynomials) are member of the Askey

polynomial scheme this basis is complete (Xiu and Karniadakis, 2002). Thus the

expansions of Eqs. 5.13 and 5.14 express the input and the output via coordinates (û

and ĝ respectively) in a stochastic Hilbert space P, equipped with the inner product

as defined in Eq. 5.1, and spanned by P . Through the Cameron–Martin theorem

(Cameron and Martin, 1947), extended to general PC by Xiu and Karniadakis (2002),

the expansions converge in P in the L2 sense for p→∞. For any practical application

R has to be limited to a finite number. Eq. 5.17 determines this number based on the
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count of random variables K and the order of the polynomial p.

Setting Eq. 5.2 equal to Eq. 5.13, employing the inner product 〈�,Ψr(ξ)〉, and

taking advantage of the orthonormality of the PC approximation basis, the input wind

series coefficients ûr of Eq. 5.13 are now readily found:

ûr(tn) =
K∑
k=1

uke
iωktn

〈
eiπξk ,Ψr(ξ)

〉
(5.20)

Note that we use the stochastic inflow formulation u∞(tn, ξ), and not just one

wind speed sample path u∞(tn). Thus all possible realizations are projected into

the stochastic space through the stochastic variable ξ. Next the PC definitions of

Eqs. 5.13 and 5.14 are inserted into the governing equation 5.4. This yields:

R−1∑
r=0

ĝr(tn) Ψr(ξ) = A
R−1∑
r=0

ûr(tn)Ψr(ξ) +B
R−1∑
r=0

ĝr(tn) Ψr(ξ) + C
R∑
r=0

ĝr(tn−1) Φk(ξ)

(5.21)

In contrast to Eq. 5.8 for the Fourier-Galerkin method, where the evolution through

time is contained in the time dependent basis functions Φ(t), here the basis functions

Ψ(ξ) contain the stochastic part of the solution, while time is carried by the coordinates

û(t) and ĝ(t) respectively. By choosing R <∞ (and thus requiring p <∞) we again

restrict the solution to a finite dimensional approximation space. This completes the

first step of the Galerkin projection for the PCE method.

Next Eq. 5.21 is projected onto P by applying the inner product 〈�,Ψr(ξ)〉 again.

Taking advantage of the orthogonality of the chaos polynomials, this reduces Eq. 5.21

to a system of R decoupled deterministic equations in the chaos coordinates ĝr:

ĝr(tn) = Aûr(tn) +Bĝr(tn) + Cĝr(tn−1) (5.22)

Since the input wind coefficients ûr(tn) are known through Eq. 5.20 this can now be

solved in the same way as the original unsteady lifting line equation (Eq. 5.4) for each

chaos coordinate ĝr at each instance tn:

ĝr(tn) =
Aûr(tn) + Cĝr(tn−1)

1−B
(5.23)



100

The orthogonality of the chaos polynomials Ψ guarantees an optimal solution approxi-

mation as the truncated part of the solution will be orthogonal to the solution retained

in P.

Inserting these coefficients into Eq. 5.14 again yields the stochastic response

Γ0(tn, ξ) to any wind forcing u∞(tn, ξ). Since the time domain is now no longer

contained in the basis functions Ψr, the coordinates ĝ(tn) = [ĝr(tn)] are a function

of the (discrete) time tn. Hence ĝr(tn+1) has to be found from ĝr(tn) through Eq.

5.23 in the usual time-stepping manner. However, now a short analysis time (just

long enough to overcome initialization effects in the wake and to capture the smallest

relevant frequency) is sufficient to produce all possible responses, and thus all possible

wing loads from all possible phase combinations.

Note that ĝ(tn) still contains all possible realizations and one solution for a short

time (just long enough to overcome initialization effects in the wake and to capture

the smallest relevant frequency) is sufficient to produce all possible responses, and

thus all possible wing loads from all possible phase combinations. Again we have

traversed to the lower path in Fig. 5.1.

As earlier, the mean and variance of the wing load Γ0(tn, ξ) can be directly

computed. Since ξ is independent of tn and E [Ψr] =
∏√

qλk = 0.5K/2 only for r = 0

but zero in all other cases we obtain:

E [Γ0] =
R−1∑
r=0

E [ĝrΨr] =
R−1∑
r=0

E [ĝr] E [Ψr] = 0.5K/2E[ĝ0] (5.24a)

Moreover, by construction, the covariance Cov [ĝrΨr, ĝsΨs] = 0 for r 6= s, and

E [Ψ2
r] = 0.5K . Hence:

Var [Γ0] =
R−1∑
r=0

Var [ĝrΨr] =

R−1∑
r=0

E
[
ĝ2
r

]
E
[
Ψ2
r

]
− (E [ĝr] E [Ψr])

2 = 0.5K ·

(
R−1∑
r=0

E
[
ĝ2
r

]
− (E[ĝ0])2

)
(5.24b)

In the same way higher order moments can be calculated, and as before the load

probability distribution can be directly obtained from the coefficients ĝr via an
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appropriate reconstruction method (Williams, 2012).

5.4 Results and discussion

The FG and the PCE methods were applied to solve the lifting line model presented

in section 5.3.1. In this section, after looking at the approximation basis used to

obtain the stochastic solutions, the obtained results will discussed and compared

to the traditional deterministic time marching solution. As discussed earlier, the

relevant design standard (IEC 61400-1, Ed. 3, 2005) bases wind turbine analysis on

spectral wind models. Consequently, we limit our discussion here to a comparison of

our stochastic results to deterministic results obtained from wind samples generated

from TurbSim (Kelley and Jonkman, 2007), a full-field numerical turbulence simulator

developed in line with the IEC standard, and the the most common tool for wind

input generation in the wind energy industry.

5.4.1 The approximation basis

In accordance with the IEC standard (IEC 61400-1, Ed. 3, 2005) both presented

methods express the system equations in a finite dimensional approximation space, F

or P, spanned by Fourier exponentials or PC functionals respectively. In both cases,

the number of basis functions depends on K, the number of terms contained in the

Fourier series representing the input, i.e. the driving wind in our example. To limit

the computational effort when obtaining a solution it is necessary that these spaces

provide an adequate approximation with a limited number of dimensions. Hence it is

vital that the input can be represented with few terms. Discussing how a turbulent

wind field can be represented with few frequencies while still preserving the relevant

qualities, mainly the wind speed variance, probability distribution, and the correlation

functions (spatial and temporal), is beyond the scope of this paper and is left to a

forthcoming publication. However, to confirm feasibility of the presented methods in

the following, one such reduced order representation is introduced here.

Fig. 5.4 shows the variance of the time series synthesized at 10 Hz from the re-

duced order model with an increasing number K of logarithmically spaced frequencies

f = ω/(2π) = [fk] ∈ [0.003, 5] Hz from the IEC Kaimal spectrum, a common model in

the wind industry (IEC 61400-1, Ed. 3, 2005; Burton et al., 2011). For comparison the
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variance of a 10,000 s wind sample generated though TurbSim (Kelley and Jonkman,

2007) is included. TurbSim uses the full spectrum, and for a wind field sampled

at 10 Hz for 10,000 s roughly 5 · 104 frequencies are needed for the full synthesis.

From the figure it can be seen that for K = 10 the variance is almost converged

for the reduced order model. Moreover, note that because only a limited frequency

range is covered, the reduced order model converges to a smaller variance than the

TurbSim results, which contain a larger frequency range. Hence K = 10 frequencies

with fk ∈ [0.003, 5] Hz will be used for the following study. The highest frequency

fK = 5 Hz is set according to the dynamic response of the considered structure and

the highest relevant structural frequency. For wind turbines Bergami and Gaunaa

(2014) show that 5 Hz captures all relevant fatigue contributions well. The stochastic

methods assessed in the following are based on analyzing short time windows (just

long enough to cover the development of wake dynamics) with random phase angles.

For this work, we chose a window length of d = 100 s, assuming that the wake elements

older than this will usually not have any meaningful influence on the model anymore.

With a period T = 1/f1 ≈ 5.56 min well above d the chosen frequency range ensures

a signal without repetitions. Later on the sample length d may be further reduced,

leading to the possibility of increasing f1. In this case the variance left over from

all f < f1 has to be included, e.g. by a stochastically varying mean for each short

window. Again, details are postponed to a forthcoming paper. At this point it is

only relevant that turbulent wind can adequately be represented with a few frequencies.
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Fig. 5.5 shows the probability distribution (PDF) and auto-correlation function

(ACF) for a single point wind speed time series, as well as the time series itself. As

above the original time series generated in TurbSim. The mean wind speed was set

to ū = 10 m/s and type A (normal) IEC turbulence characteristic was simulated

100 m above ground leading to a turbulence intensity of TI = σ[u]/ū = 21%. Again,

10,000 s were sampled at 10 Hz ( 5 · 104 frequencies) from the Kaimal spectrum. As

above the reduced order model is synthesized at 10 Hz from ten logarithmically spaced

frequencies. Fig. 5.5a shows the time series for the first 100 s of the original TurbSim

wind data and the reconstruction from the reduced order model. By inspection it

can be seen that the two signals exhibit similar stochatic properties and time scales

of variation; however, the two signals do not match, and the mean of neither agrees

with the 10 m/s prescribed. Yet, this is not surprising, because: i) the random phase

angles from the reconstruction do not match the original ones and ii) correct statistics

(such as the mean) can not be extracted from such an individual short sample of

realized wind speeds. To evaluate these properties 500 different 100 s long realizations

were generated from the reduced model with 500 different sets of phase combinations.

Fig 5.5b shows that this replicates almost exactly the same PDF as the original

10,000 s TurbSim wind sample (mean: 9.998 m/s and 9.999 m/s; standard deviation:

2.078 m/s, 2.082 m/s for TurbSim and reduced order model respectively). Fig 5.5c

shows that the auto correlation is well matched, too. Here the mean ACF from the

500 short sets of the reduced order model is compared to the mean of the ACF from

100 consecutive sets of 100 s duration drawn from the TurbSim data set.12

Note that the data analyzed in Fig. 5.5 is generated from one long (TurbSim) or

500 short (reduced order model) realizations, respectively. For the methods presented

here, however, the input will never be turned into a concrete realization. Instead, the

solution is based on the stochastic representation of the short input. This facilitates

the significant reduction in frequencies needed to represent the wind’s dynamics; while

with a conventional approach the range of frequencies is determined by the duration of

the sample (fmin) and the sampling rate (fmax or Nyquist frequency), the stochastic

approach is only limited by the sampling rate. The frequencies to be included in

the reconstructed signal then need to be only chosen such that the signal variance

12 The TurbSim output file limits the maximum duration to 9,999.999 s, hence 100 sets of 100 s.
On the other hand, due to fewer random numbers, 500 realizations were necessary for converged
statistics in the reduce order data.
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Figure 5.5: Comparison of the original and reconstructed wind speed data: a) time
series (only first 100 s); b) probability distribution; c) auto-correlation for k = 10.

is reproduced over many different realizations (with many different random seeds).

Again, a detailed discussion of this is beyond the scope of this paper and hence

postponed to a forthcoming separate publication.

5.4.2 Stochastic solution

In accordance with the arguments above, we base our analysis on a spectral wind

model as prescribed in the relevant design standard IEC 61400-1, Ed. 3 (2005).

Consequently we deal with Gaussian inflow and are thus content with second order

statistics only. We recognize that this (just as the standard methods in current wind

turbine engineering) does not capture all details of atmospheric wind, particularly

the ”fat tails“ encountered in wind speed probability distributions. However, for

the time being we consider the Gaussian model sufficient based on the following two

arguments: Firstly, our main concern is not the detailed analysis of a specific load case,

but a qualitative comparison of different candidate designs for optimization. While it

would be convenient to include the details of the tails of a the load distribution, they

are secondary to a consistent qualitative comparison. Currently design optimization

neglects long term loads at large. As our engineering tools evolve incrementally, a even

simplified quantitative long term load comparison is already a significant improvement

over the current status quo. Secondly, for the analysis (and certification) of a final

design the IEC standard established safety factors, which are included to cover residual

uncertainties, such as e.g. uncertainties incurred with inaccurate representation of

non-Gaussian effects. While this is surely not an ideal solution, it is a convenient and

thus well established procedure in engineering practice, which will be equally valid

with our stochastic models. Having said this, however, we acknowledge that Gaussian
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Figure 5.6: The evolution of the bound circulation from the deterministic solution
and for different realizations of the stochastic solution. Left: the Fourier-Galerkin
solution; Right: polynomial chaos solution

wind models can not be the final step. Further improvement is mandatory in the future.

To illustrate the proposed stochastic methods, the lifting line system from Fig. 5.3

is first solved via the conventional deterministic time-stepping approach (Eq. 5.5),

then via the stochastic Fourier-Galerkin solution (Eqs. 5.6 and 5.10) and finally via

the stochastic polynomial chaos method (Eqs. 5.14 and 5.23). For a first comparison,

the input wind field is directly generated from Eq. 5.2. Following the discussion above,

ten input frequencies are used. This results in K = 10 random variables for the

stochastic models. For the PC method multidimensional Legendre polynomial chaos

functions up to order p = 4 are used, since this choice was found to reproduce the

input (Eq. 5.13) well. A time step of 0.1 s is used according to fK = 5 Hz. At this

stage, the projection integrals over the ten-dimensional domain Ω = [−1, 1]10 from

the inner product in Eq. 5.20 are solved simply via a crude Monte Carlo integration

(Davis and Rabinowitz, 1984) with 106 random points in each dimension.

Fig. 5.6 compares the first 100 s of the resulting bound circulation Γ0(tn, ξk)

as obtained from either the deterministic solution or through four realizations for

k ∈ {1, 2, 3, 4} of the PCE or FG equations respectively. The corresponding inflow

u∞(tn, ξk=1) as well as the deterministic solution (Eq. 5.5) based on this inflow are

overlaid. With ξ1 (the same phase angles that generating the inflow realization) both

methods reproduce the deterministic solution almost exactly (cf. Fig. 5.6 ‘deterministic

solution’ and ‘FG solution (ξ1)’ or ‘PC solution (ξ1)’ respectively). But instead of only
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Table 5.1: Comparison of mean in and variance from different models.

E [Γ0] (rel. error) Var [Γ0] (rel. error)

units [m2/s] ([-]) [(m2/s)2] ([-])

deterministic model 2.232 0.213

Fourier-Galerkin model 2.232 (-0.002 %) 0.216 (+1.350 %)

polynomial chaos model 2.231 (-0.012 %) 0.219 (+3.146 %)

a single solution to one specific time series, both the FG and the PCE solution contain

all possible phase angle combinations. Thus, instead of solving for several time series

with different random seeds ξk one stochastic solution is enough. If needed, different

solutions realizations can be obtained a posteriori by realizing different phase angles

(e.g. Fig. 6 solutions for ξ2 - ξ4).

As for the input wind the wing load PDF and ACF from the stochastic models

(not shown) from 100 different realization of d = 100 s reproduce the deterministic

curves very well (in the same way as for the wind input shown above). However, once

the stochastic solution is available the construction of the PDF is unnecessary as the

expected value, variance, as well as higher moments can be directly calculated via

Eqs. 5.12 and 5.24 respectively. As an illustration a deterministic wing load solution

was calculated for the full 10,000 s TurbSim wind sample (with all 5 · 104 frequencies)

used as base line in section 5.4.1. Table 5.1 compares the mean E[Γ0] and the variance

Var[Γ0] of the deterministic solution to the results from the FG and PCE methods. As

can be seen, the metrics from a 10,000 s long deterministic solution can be extracted

directly from one short-time stochastic solve almost exactly.

5.4.3 Computational costs

The proposed stochastic methods solve an unsteady aerodynamic problem driven by

a random process input in the stochastic space. Thus they eliminate the need for

costly analysis of several longer samples to obtain long term fatigue and extreme load

estimates (Fig. 5.1, upper path). Instead, the signal PDF can be obtained from one

stochastic solution and thus the long term extreme loads can be estimated directly
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(Fig. 5.1, lower path). This offers the potential to save significant computational effort

and thus make a long term load analysis accessible in an optimization routine.

At this point a quantitative comparison of the computational costs is difficult for two

reasons. Firstly our example is implemented in an experimental Matlab code, where

an easy development of the method had higher priority over computational efficiency.

Thus any time analysis would be significantly biased by code efficiency. Secondly the

considered simple horseshoe lifting line model provides a small system of equations,

which is solved very quickly (within milliseconds on a laptop computer). This was

intended and helpful for developing the method, but naturally makes performance

differences difficult to quantify. A detailed quantitative comparison of computational

costs is hence left for a forthcoming publication based on the study of a full wind

turbine rotor model. However, while a quantitative comparison is deferred to future

work, a qualitative discussion will show the potential of the new stochastic approach.

The computational cost for both, the deterministic and the PCE method, scales with

the number of equations and the number of time steps to be solved. We will look at

both in the sequel.

Required simulation time

As an example, Fig. 5.7 shows the evolution of the wing load variance V ar[Γ0(t < T )]

with an increasing sample size T for the deterministic solution based on three different

20,000 s realizations of the TurbSim wind sample from above. Obviously, due to

the (long term) unsteady effects in the wind, the sample variance converges only

slowly. At 10,000 s the fist and third sample differ by 2.51 %, and even for T between

10,000 s and 20,000 s significant variance fluctuations are found. This puts the error

found in Table 5.1 into perspective, and shows again that very long simulations are

necessary to obtain a sufficiently accurate variance estimate to be able to extrapolate

the results to long term extreme loads. For a computationally more demanding model

a similar convergence behavior can be expected (Tibaldi et al., 2014). For long term

load estimates this results in a considerable computational effort to obtain reliable

results – presumably too much effort to be feasibly within an optimization routine.

The stochastic methods, on the other hand, yield the load variance instantaneously

from only one stochastic solution of limited length, only long enough to advect start-up

transients downstream.
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Number of equations

In the deterministic case a single equation is solved for a long time sample with many

time steps and/ or several different realizations from different random seeds to make

sure rare extreme events are captured. The stochastic methods, on the other hand,

require the solution of several equations. Therefore only a short time sample needs

to be evaluated, because extreme events are inherently contained in the stochastic

solution and random numbers are never realized. Thus generating different solutions

from different random seeds is not an issue. The analyzed sample window needs to be

only long enough to capture relevant wake effects, i.e. the time during which previous

wing loads influence the current conditions. For illustrative purposes we analyzed

a d = 100 s window in the example above. However, in most practical cases d will

usually be much smaller. For a 10 m rectangular wing of aspect ratio 10 in 10 m/s

inflow d = 1 s will cover the wake of ten chord lengths – presumably enough for most

practical cases. Hence, the savings from fewer time steps required will in most cases

far outweigh the increased computational costs from the additional equations. At

this stage, significant additional computational costs are faced for the Monte Carlo

integration of the projection from Eq. 5.20. However, in an optimization environment

this will not be of greater concern since i) the projection has to be performed only

once for a given wind input (it is not specific to the geometry to be analyzed and thus

can be re-used), and ii) a significant speed-up can be expected by utilizing a more

elaborate multidimensional integration technique.

For our simple example, the FG method results in a set of K = 10 decoupled
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equations for the K frequencies. Since the time evolution is contained in the Fourier

modes Φk(tn) with the solution coefficients gk independent of time, solving these K

equations once yields the solution for all times. Hence a solution can be obtained very

fast, comparable to solving only K time steps in the deterministic case.

After all, the feasibility of either stochastic method will be determined by the

computational cost associated with the transition to the stochastic space, and whether

this cost is smaller than the costs for several long realizations in the deterministic

case. This will obviously be dependent on the specific equations associated with the

model under consideration. A first test with a FG solution for a wind turbine blade

showed significant acceleration potential in the range of several orders of magnitude.

5.5 Concluding remarks

In this paper we introduced two (different but related) new methods to solve aerody-

namic load calculations under turbulent inflow. In line with the wind turbine design

standard IEC61400-1 Ed. 3, the stochastic inflow is represented by a spectral model

with random phase angles. Instead of solving several time series realizations, the

new methods solve the governing equations in a stochastic space and hence retain

the stochastic variables all the way to the final solution. Stochastic properties, such

as mean load, load variance, and thus extreme and fatigue loads, are thus accessible

directly from the stochastic solution without having to generate multiple realizations

from different random seeds. A detailed derivation of both methods was given, includ-

ing the necessary fundamentals regarding orthogonal basis functions and the stochastic

Galerkin projection.

The efficiency of either of the proposed methods depends on the number of random

variables. In the example case presented, this is the number of random phases, thus

the number of frequencies included in the spectral model representing the inflow. It

was shown that for a typical wind sample (obtained from TurbSim, a widely used

numerical tool to generate synthetic wind speed data) the wind speed PDF and its

auto correlation can be reproduced adequately with only ten frequencies.

Based on the example of a simple lifting line model it was shown that both sug-

gested stochastic methods are capable of constructing the response for all possible
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inflow realizations quickly from only one stochastic solution. This avoids the costly

evaluation of multiple time series and will allow fatigue and extreme loads to be calcu-

lated quickly, thus enabling us to include these effects directly into an aerodynamic

(or aero-structural) optimization routine in future work.

At this point, results of comparable accuracy are obtained from both stochastic

models. Once more sophisticated (possible non-linear) system equations come into

play a decision about which model is more favorable can be made. It is expected

that this decision will eventually depend on the specific nature of the equations at

hand and the details of the respective Galerkin projections involved in each stochastic

method.
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Chapter 6

A Stochastic Aerodynamic Model

for Stationary Blades in Unsteady

3D Wind Fields

This chapter is a slightly corrected version of a paper presented at The Science of

Making Torque from Wind (TORQUE 2016), Munich, Germany, October 5-7 2016. It

was first published as:

Fluck, Manuel and Crawford, Curran: “A stochastic aerodynamic model for stationary

blades in unsteady 3D wind fields”, Journal of Physics: Conference Series, 2016;

DOI: 10.1088/1742-6596/753/8/082009

In this paper we extend the stochastic models derived previously to a more complex

Lagrangian vortex model, consisting of several spanwise vortex elements on the blade.

We show that the stochastic model not only captures one-point (auto-correlation), but

also two-point statistics (cross-correlation, covariance, cross-spectrum). We remain

with linear aerodynamic equations, and study a translating blade in turbulent wind.

See Appendix C.4.1 for further information regarding the Matlab code used to

generate results for this section.

http://dx.doi.org/10.1088/1742-6596/753/8/082009
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Abstract

Dynamic loads play an important roll in the design of wind turbines, but establishing

the life-time aerodynamic loads (e.g. extreme and fatigue loads) is a computationally

expensive task. Conventional (deterministic) methods to analyze long term loads,

which rely on the repeated analysis of multiple different wind samples, are usually

too expensive to be included in optimization routines. We present a new stochastic

approach, which solves the aerodynamic system equations (Lagrangian vortex model)

in the stochastic space, and thus arrive directly at a stochastic description of the

coupled loads along a turbine blade. This new approach removes the requirement of

analyzing multiple different realizations. Instead, long term loads can be extracted

from a single stochastic solution, a procedure that is obviously significantly faster.

Despite the reduced analysis time, results obtained from the stochastic approach

match deterministic result well for a simple test-case (a stationary blade). In future

work, the stochastic method will be extended to rotating blades, thus opening up new

avenues to include long term loads into turbine optimization.
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6.1 Introduction

Today, aerodynamic optimization of wind turbines faces two major challenges. First,

the computational tools commonly at hand (BEM solvers) are inherently limited to

planar rotor designs (Burton et al., 2011), while more flexible simulations, based on

the full time-domain solution of the discretized Reynolds Averaged Navier Stokes

equations (CFD methods), are too expensive to be viable for optimization (McWilliam

et al., 2013a). Second, it is computationally difficult to include long term (fatigue and

extreme) loads into the optimization loop (Graf et al., 2016), because this kind of

analysis requires the simulation of long load samples in order to be able to extract

consistent statistics and thus reliably extrapolate to long term loads. IEC 61400-1,

Ed. 3 (2005), for example, bases the long term analysis of every load case on ten

minute simulations, run at different mean wind speeds, each repeated six times with

different random seeds for the turbulent inflow field. Obviously this results in a large

number of ten-minute simulations. Still, it has been shown (Moriarty, 2008; Burton

et al., 2011) that even with this many simulations, extrapolation to extreme loads is a

delicate exercise and results may vary significantly. Zwick and Muskulus (2015) for

example showed recently that when basing a wind turbine analysis on six ten-minute

wind speed realizations a difference of up to 34% occurs in the ultimate load results

for the most extreme 1% of seed combinations. Other recent research (Tibaldi et al.,

2014) indicates that turbine loads extracted even from 20 different ten minute wind

fields generated from 20 different random seeds for each wind speed vary greatly.

Moreover, often load variations from different random seeds dominate effects from

design parameter changes, obviously a severe problem, especially when concerned with

gradient-based optimization where obtaining reliable design variable gradients is vital.

As a result of these two challenges, current wind turbine optimization is inherently

limited, as it a) cannot explore unconventional, but potentially beneficial designs such

as winglets, swept or downwind coning rotors, etc., and b) is blind to the important

(Kareem, 2008) cost savings of modified long term loads and power production from

different blade designs operating in unsteady conditions. For example, Zhou et al.

(2016) show that the peak power fluctuation for wind turbines can reach 22% of its

average. A steady state optimization potentially fails to find a solution close to the

‘real’ (unsteady) optimum.
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Lagrangian vortex models (LVM) (Junge et al., 2010; Fluck et al., 2010; McWilliam

et al., 2013b; McWilliam, 2015) based on Prandtl’s lifting line theory (Prandtl, 1918,

1919) are an attractive solution to the first challenge. They are relatively fast to solve,

but flexible enough for unconventional geometries, see e.g. Fluck and Crawford (2014).

However, time stepping through multiple LVM solutions to obtain data for extrapola-

tion to long term loads is not an option within the time budget of optimization. To

tackle this dilemma, the available model has to be extended, such that the full set

of unsteady inflow conditions with all extreme loads can be modeled, while keeping

the computational cost down. To do so, we present a stochastic lifting line model to

obtain long term loads and power output relatively quickly from a single stochastic

solution. Besides a faster solution, the stochastic formulation potentially captures true

extreme loads better than relying on the extrapolation of limited short term loads

from short term time stepping simulations.

In this paper we present a stochastic blade load model, resolved with several

span-wise lifting line elements in a stochastic unsteady (coherent) three dimensional

wind field. Section 6.2 will give an introduction to the approach. Starting from a

basic aerodynamic LVM blade model in its deterministic formulation (6.2.1) and the

stochastic inflow formulation (section 6.2.2), the transition to the stochastic blade

model with correlated wing blade sections will be presented (section 6.2.3). For clarity

of the method and its presentation we direct our focus to a stationary blade. In section

6.3 we will compare the load time series as well as the statistics from a deterministic

lifting line solution to the results from the proposed stochastic method. Moreover,

the reduction of the computational cost will be discussed. Future steps will extended

the model to stochastic unsteady aerodynamics simulations of a full wind turbine in

operation.

6.2 Approach and methods

When dealing with wind turbine optimization, the driving wind inflow is usually

represented by a stochastic model, typically specified in the frequency domain. However,

instead of dealing with the notion of stochasticity during system modeling, several

realizations of the stochastic input wind are usually generated prior to the simulation

procedure (Karimirad, 2014). For wind turbine analysis several ten minutes wind speed
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samples (deterministic blocks of frozen wind) are generated and then each analyzed

consecutively (Burton et al., 2011). This means that instead of using the abstract

stochastic equations, several deterministic time-series are obtained (see Figure 6.1,

upper path). While the benefit of this approach is its ability to use standard (and

more intuitive) deterministic, generally non-linear, time-marching simulation codes, it

discards the advantages of a direct stochastic description during the system modeling

phase.

  

stochastic 
input process solve system 

equations

several realizations
(only if needed)

analyze  
results 

Γξ i(t)=f (uξ i(t))

Γ(t ,ξ)=f (u(t ,ξ))

several realizations

one stochastic 
solution

several deterministic 
solutions Figure 6.1: Alternate so-

lution methods. Upper
path: conventional with
realizations generated be-
fore solution; Lower path:
the new process with a
stochastic solution.

In Fluck and Crawford (2016a, 2017b) we demonstrated two ways of conducting

the system model analysis directly in the stochastic space, thus eliminating the need

for multiple realizations of the inflow. Instead of the common practice of repeatedly

solving the aerodynamic equations for multiple deterministic realizations (Figure 6.1,

upper path) one single stochastic solution is sought (Figure 6.1, lower path). This

stochastic solution will contain all possible realizations. Thus long term loads can

either be extracted quickly from several realizations of the stochastic solution, or

directly from the statistics of the solution’s random variables. For the case of a very

simple horseshoe vortex lifting line model of a stationary rectangular wing, resolved

with a single spanwise lifting line element, we were able to retain stochastic properties

and thus the effects captured with different random seeds within one stochastic

solution. Obviously, the single spanwise element misses significant effects from the

spatial variability and cross-correlation of the wind field and hence it omits the spacial

coupling of the blade loads. In the remainder of this section we will introduce the

necessary model components to arrive at a stochastic lifting line model for the coupled

loads along wind turbine blades.
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6.2.1 Aerodynamic model

For the blade load calculations, a LVM in unsteady lifting line formulation (Prandtl,

1918, 1919) will be used.13 The vortex system is set up as indicated in Figure 6.2

with an arbitrary number Nb of bound (linearly spaced) elements. Trailing and shed

elements of variable strength are included to capture shed vorticity and the resulting

time lagged variation of the induced velocity from the inflow changes at the wing

as well as the delayed vortex shedding downstream. The wake length Nt can be

chosen freely. For the time being, wake element positions are assumed fixed and in

the x-y-plane.

At each station I along the blade we assume small angles of attack αg,I , small

induced velocities wI , and thus use linear airfoil properties (cl,I = 2π(αg,I + wI/u∞))

to arrive at the well known unsteady lifting line equation:

ΓI(tn) = AI · u∞,I(tn) +
∑
i

∑
j

HI,ij · Γi(tn−j) (6.1)

With this equation we calculate the bound circulation (and thus load) ΓI(tn) at each

station I for each time step tn = n ·∆t implicitly from the current free stream wind

at the respective station u∞,I(tn) and the previous blade loads Γi(tn−j) at all wake

stations i; here AI = cIπαg,I . The tensor HI,ij contains the Biot-Savart influence from

each wake element ij onto the blade element I, as well as the coupling of the current

wake strength and blade load history: Γt,ij = γij − γ(i−1)j and Γs,ij = γij − γi(j−1)

respectively, with γij = Γi(tn−j) (see Figure 6.2).

With a known, deterministic inflow u∞ equation 6.1 can readily be solved with

the common methods.

6.2.2 Stochastic wind model

To calculate blade loads, deterministic models use random, but correlated wind speed

data uI(tn, ξI) generated in advance at many locations PI over the rotor disc from

adequately correlated realizations of the random vectors ξI . In Veers’ model (Veers,

13 For a detailed introduction to lifting line models see Prandtl’s original publications (Prandtl,
1918, 1919) or one of the many more recent works, e.g. Schlichting and Truckenbrodt (2000); Anderson
Jr (1985); Phillips and Snyder (2000).
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1988), which is widely used in industry (e.g. in NREL’s TurbSim (Kelley and Jonkman,

2007)), the wind speed time series at each location PI is generated though an inverse

Fourier transform

uI(tn) =
∑
m

VmI e
i(ωmtn) (6.2)

Here each (complex) Fourier coefficients VmI for each frequency ωm at each location

PI is initially generated from the wind speed spectrum and an independent random

variable ξmI (i.e. a random phase angle), uniformly distributed in [0, 1]. We implicitly

assume correct symmetry of VmI and m containing all necessary (positive and negative)

frequencies in order to arrive at real valued wind speed uI . To correctly model the

coherence of the random wind field correlation of the Fourier coefficients at different

locations is subsequently enforced via the coherence matrix (for details see e.g. Veers

original publication (Veers, 1988)). With this procedure Veers’ approach requires

NR = NI ·Nf independent random variables for NI locations and Nf frequencies. Since

the computational cost of our stochastic method is highly sensitive to the number of

random variables NR, we first split Veers’ complex Fourier coefficients into amplitude

and phase, VmI =
√
Sm e

iθmI , with θmI = 2πξmI the (correlated) phases at each point

and each frequency and the amplitude prescribed by the discrete wind speed power

spectrum Sm. Next we split the phase angles into the phases at one arbitrary base

point P0 and a set of correlated phase increments: θmI = θm0 + ∆θmI . Thus equation

6.2 becomes:

uI(tn) =
∑
m

√
Sm e

i(2πξm+∆θmI) eiωmtn (6.3)

Now ξ = [ξm] is a single vector of uncorrelated random variables specified at one

(arbitrary) base point P0. The phase (and thus wind speed) correlation between the

points PI and P0 is contained in the correlated phase increment vectors ∆θI = [∆θm]I .

Details of this reduced order wind model will be given in a forthcoming publication.

In the following, we focus on the aerodynamic blade model and its stochastic solution.

With Veers’ model one wind field realization is obtained from first generating

independent phase vector realizations for all points and subsequently correlating the

phase angles. Equation 6.3, on the other hand, finds one wind field realization with one

random phase vector ξ at one base point P0 only and a set of random phase increments

∆θI for each other point. For a stochastic analysis equation 6.3 has a major advantage:

the generation of random phases angles and the correlation between two points is
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now separated into ξ and ∆θI respectively. While all ξm are independent, ∆θI are

correlated, which provides the opportunity to establish a reduced order model. If we

assume that the random dimension of the wind field is sufficiently approximated by ξ

only, than ∆θI can be considered a deterministic variable. This reduces the number

of necessary random variables by several orders of magnitude. A detailed discussion

of the consequences of this split between stochastic phases and deterministic phase

increments is beyond the scope of this paper. A comprehensive study is currently

underway and will be available shortly.
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Figure 6.2: Illustration of the vor-

tex system used to model blades

loads.

Figure 6.3 shows a comparison of the input

wind obtained from TurbSim and two realizations

of the reduced order model for the wind speed

at four points with the coordinates (horizontal,

vertical): P1 (1,0) m; P5 (1,90) m; P6 (0,0) m; P10

(0,90) m. By inspection, it can be seen that the

properties of the wind seem to be reproduced well.

Note that the reduced order model of equation 6.3

does not result in a complete determination of the

spatial relation between wind speeds at different

points, as the samples still contain different con-

structive/ destructive phase interference and thus

gusts/ lulls at different instances in time. Both

the theoretical details of this model as well as a

comprehensive discussion of the resulting wind

speed time series are beyond the scope of the

present paper and will be discussed in a separate

publication. Here, Figure 6.3 and the wing load results presented later shall suffice as

justification to use this model.

6.2.3 Stochastic blade load model

For the stochastic solution we follow the process of stochastic projection (Fourier-

Galerkin method) presented by Fluck and Crawford (2017b), expanded to the multi-

element lifting line equation 6.1. We directly use equation 6.3 in the reduced order

stochastic formulation with ∆θI understood as deterministic phase increments and ξ
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Figure 6.3: Samples of wind speed time series at four points generated from TurbSim
and two different realizations of the reduced order model.

a random phase angle vector to represent the correlated random wind field. Similar

as presented by Fluck and Crawford (2017b) the wing load can be expressed in terms

of the same complex Fourier series as the inflow:

ΓI(tn) =
∑
l

glIΦl(tn)ei·2πξl (6.4)

with Φl(tn) = eiωltn . As fir the wind imput we implicitly assume correct symmetry

and l containing all necessary modes (of positive and negative frequencies) in order

to arrive at real valued wind speed uI . Recognizing that thus l = m, equations 6.3

and 6.4 can be inserted into equation 6.1. With tn = n∆t and basic algebra we can

write Φl(tn−j) = Φl(tn)Φl(−j∆t). Thus, after truncating the series to a reasonable

number of frequencies Nf and projecting onto the basis functions Φl(tn), we arrive at

a system of equations in the stochastic space I = 1...Nf (for a detailed derivation and

a discussion of this method refer to Fluck and Crawford (2017b)):

gIl =
√
Sl · AIei∆θIl +

∑
i

∑
j

HI,ij gIl Φl(−j∆t) (6.5)

Note that although equation 6.5 yields the coefficients gIl of the stochastic solution

(equation 6.4), it is a deterministic equation itself. Hence it can be solved with

common (deterministic) approaches in the same way as equation 6.1. However, since

the stochastic solution (equation 6.4) still contains the random vector ξ, it contains

all possible realizations. Hence this one solution contains all possible long term blade

loads that can possibly result from any phase combination in the inflow wind (lower

path in Figure 6.1).
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At the moment linear airfoil properties are assumed. This results in equation 6.5

being conveniently decoupled for each frequency. Moving forward to the optimization

of wind turbine blades in turbulent wind conditions two more steps are necessary. First,

the equations need to be applied to a rotating blade. This will be straight forward

through the introduction of a rotating coordinate system. Secondly, non-linear airfoil

properties, such as (dynamic) stall, need to be included. This will turn equation 6.5

into a more complicated set of coupled equations. To proceed we currently see three

options:

1. Deal with the non-linear, coupled equations in the current framework;

2. Find and include a stochastic surrogate model of the non-linear on-blade effects;

3. Move from a Fourier expansion of Eqs. 6.3 and 6.4 to a polynomial chaos

expansion (PCE) (Fluck and Crawford, 2017b). Since the PCE retains the time

domain through the solution it will likely be easier to handle non-linear effects

in the equations.

An investigation of these options and advancing to wind turbine blade optimization

will be the subject of future work.

6.3 Results

In this section we compare lifting line results for blade loads from the stochastic model

(equation 6.5) to deterministic results (equation 6.1). We consider a blade of b = 60 m

span with constant chord c = 4 m, stationary 100 m above ground in ū∞ = 10 m/s

mean wind (IEC normal turbulence model, class A (IEC 61400-1, Ed. 3, 2005)). The

blade and wake are resolved with Nb = 6 spanwise and Nt = 5 trailing elements. Loads

are calculated at ∆t = 1 s intervals. Wind is calculated from Nf = 20 frequencies

logarithmically spaced at fm = ωm/(2π) ∈ [1/600, 0.5] Hz. For the deterministic case

the usual process was followed: one wind speed realization was calculated first using

Veers’ model (Veers, 1988), then this wind was fed into equation 6.1 as inflow u∞,I(tn).

Figure 6.4 shows the wind speed realization used for the deterministic solution

at the six blade elements together with the resulting deterministic bound circulation

and one realization of the stochastic solution (bottom), as well as the steady state

solution for u = 10 m/s with five snapshots of the stochastic solution (top). Note the
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transient start-up period in the deterministic blade loads for t < 5 s (bottom part for

Figure 6.4). This is due to the wake initialization with ΓI,ij(tn=0) = 0. As a result

of the periodic nature of Φl(tn) this transient phase does not exist in the stochastic

solution.

The realization of the stochastic solution is generated from the same random seed

as was used to generate the deterministic wind. Hence the stochastic solution perfectly

reproduces that one particular deterministic solution (after the initial transient phase

t > 5 s). Note, however, that the stochastic solution also contains all other possible

realizations. Hence all other load time series can be calculated directly via equation 6.4

from only one stochastic solution.
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Figure 6.4: Wing load (circulation) and wind speed time series.

Next we will compare cross-correlation, covariance, and cross-spectrum of the

dynamic blade loads from our stochastic method to the deterministic results. For the

deterministic analysis, blade loads were calculated for 100 realizations of 600 s samples

of turbulent wind synthesized with the commonly used wind simulator TurbSim (Kelley

and Jonkman, 2007). For better comparison the spectrum S in equation 6.3 and 6.5

was replaced with the (slightly different) spectrum extracted from the TurbSim wind

data set via Welch’s periodogram method as implemented in Matlab’s cpsd function

(Welch, 1967). Similarly, phase increments ∆ΘI were extracted from the Fourier
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transform of the TurbSim data. To achieve smoother cross-correlation, covariance,

and cross-spectrum curves we used 100 different sets of phase increments ∆θI . As

discussed in section 6.2.2, most of the stochasticity is contained in the uncorrelated

random variables ξ. The influence of random or deterministic ∆θI is hence a second

order effect. Assessing the implications of only using one (or a few) set(s) of phase

increments remains the subject of further study. As before, we use Nb = 6, Nt = 5,

Nf = 20 with fm ∈ [1/600, 5] Hz, and ∆t = 1 s.

6.3.1 Blade loads cross-correlation

Figure 6.5 shows the cross-correlation function of the circulation on the bound element

pairs Γ1-Γ1, Γ1-Γ3, and Γ1-Γ6. It can be seen that the stochastic model results in a very

similar cross-correlation as the computationally much more expensive deterministic

model. The obvious difference – a much smoother curve in the deterministic cases

– is due to the difference in the number of frequencies contained in the data. While

the deterministic data (provided through TurbSim) is synthesized with well over ten

thousand frequencies, the stochastic data is based on the reduced order model with

only 20 frequencies.

6.3.2 Blade loads covariance

Table 6.1 shows the covariance of the blade loads for selected bound vortex elements

(cf. figure 6.2) for the stochastic and deterministic results, and the error between

the two results. This error is small, especially considering that (assuming normal

distributed blade loads) the 90% X 2 confidence bounds of the deterministic variance

Var[Γ1,Γ1] are [-0.94, 0.96]%. Thus it can be seen that the stochastic and deterministic

results are in very good agreement.

Table 6.1: Covariance of blade loads.

Var[Γ1,Γ1] Var[Γ1,Γ2] Var[Γ1,Γ3] Var[Γ1,Γ5] Var[Γ4,Γ5]

stochastic [m2/s4] 4.06 3.76 2.60 4.17 4.82

deterministic [m2/s4] 4.20 3.77 2.56 4.20 4.91

error [%] 3.27 0.20 -1.37 0.63 1.81
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6.3.3 Blade loads cross-spectrum

Figure 6.6 shows the cross power spectral density functions of the circulation for the

same bound element pairs as before. Both the deterministic and stochastic results

were again obtained from Welch’s spectral estimation from 100 realizations of the

resulting blade loads, binned to the frequencies ωm as used in the reduced model.

Again, the stochastic results are very similar to the computationally much more

expensive deterministic model.

Note the two zero-power frequencies ω2 and ω3 result from the different frequency

spacing in the TurbSim data (linear spacing) versus the reduced model (logarithmic

spacing). The TurbSim data does not contain frequencies between ω1 and ω4, and

hence there is zero power in the spectrum there. Although these frequencies exist

in the stochastic data, they do not contain any power because we use the TurbSim

spectrum S in equation 6.5.
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6.3.4 Numerical Cost

At this point we use a crude Matlab implementation of both the deterministic and

stochastic models. This implementation was designed for experimenting with the

new model, rather than for performance. Hence, only a very rough estimate of

the computational cost can be given. However, the superiority of the stochastic

model becomes apparent nonetheless. On an Intel i5 quad core processor solving 100

realizations of 600 s of the deterministic model takes roughly ten minutes (upper path

in figure 6.1). On the other hand, calculating one stochastic solution with one set of

deterministic phase increments takes less than one second, and realizing 100 samples

at the end (lower path in figure 6.1) is done in about three seconds, yielding 100

realizations from the stochastic model in under five seconds. This is less than 1% of

the time originally used for the deterministic solution.

As shown in the preceding subsections, the stochastic solution reproduces the

statistics of the (correlated) blade loads well. Through postponing the generation of

various different realizations from before calculating a solution (deterministic approach,

upper path in Figure 6.1) to generating realizations of a stochastic solution at the end

(stochastic approach, lower path in Figure 6.1) long term loads can be estimated very

quickly and thus become accessible to be included into an optimization routine.

Besides generating individual solution realizations, a stochastic expression for

the blade loads also holds the possibility of directly extracting load statistics (mean,

variance, possibly peak return periods). Details of such a stochastic load analysis from

a stochastic load solution will presented in a future publication.

6.4 Conclusions

We extended a stochastic model previously introduced for a single element blade to

model correlated aerodynamic loads on a stationary wind turbine blade in turbulent

atmospheric wind. The blade is now resolved with several spanwise and wake lifting

line elements. A reduced order model for the (stochastic) wind inflow fields, based on

phase angle increments between the wind speed at a base point and any other data

point in the wind field is employed to limit the number of random variables necessary.
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Through a comparison to deterministic results (based on several wind field real-

izations generated from TurbSim) it was shown that the stochastic model conserves

the stochastic properties of the dynamic blade loads, including coupling of loads on

different stations along the blade (cross-correlation, covariance, cross-spectrum). For

a simple Lagrangian vortex model test case (lifting line model), the stochastic formu-

lation yielded results for 100 blade load samples in less than 1% of the computation

time needed by the deterministic model. This indicates that long term (extreme

and fatigue) blade loads, commonly extracted from the tails of a load probability

distribution, can now be assessed quickly.

Future work will take the currently stationary blade into a rotating reference frame

to model a wind turbine rotor and subsequently include the stochastic formulation

into a multidisciplinary design optimization framework. While the Lagrangian vortex

model allows extension of the design space to unconventional blade geometries, the

stochastic aerodynamic model limits the computational effort required to extract

reliable blade load statistics. The new stochastic model also makes long term loads

directly accessible to optimization. Hence the combination of a Lagrangian vortex

model with a stochastic aerodynamic model might open up new avenues to pursue

improved and novel wind turbine blade designs.
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Chapter 7

A Fast Stochastic Solution Method

for the Blade Element Momentum

Equations for Long-Term Load

Assessment

This chapter presents the latest version of a paper submitted March 1, 2017 for

publication in the journal Wind Energy:

Fluck, Manuel and Crawford, Curran: “A fast stochastic solution method for the

Blade Element Momentum equations for long-term load assessment”, Wind Energy,

submitted

In this paper we extend the stochastic models derived previously to spinning

wind turbine rotor and rotationally sampled wind. Moreover, we extend our work

to non-linear equations, and show that one stochastic solution can produce similar

results for turbine blade loads as multiple solutions from the deterministic model

conventionally used.

See appendix C.4.2 for further information regarding the Matlab code used to

generate results for this section.
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Abstract

Unsteady power output and long term loads (extreme and fatigue) drive wind turbine

design. However, these loads are difficult to include in optimization loops, and so

are only typically assessed in a post-optimization load analysis or via reduced order

methods, yielding sub-optimal results. The basis for this difficulty are the deterministic

approaches to assess long term loads. They require the analysis of many unsteady

load cases, generated from many different random seeds, to model the statistics of

life time loads, a computationally expensive Monte Carlo procedure. In this paper,

we present an alternative: a stochastic solution for the unsteady aerodynamic loads

based on a projection of the unsteady Blade Element Momentum (BEM) equations

onto a stochastic space spanned by chaos exponentials. This approach is similar to

the increasingly popular polynomial chaos expansion (PCE), but with two major

differences. First, the BEM equations constitute a random process, varying in time,

while previous PCE methods were concerned with random parameters (i.e. random but

constant in time or initial values). Second, a new, more efficient basis (the exponential

chaos) is used. This new stochastic method enables us to obtain unsteady long term

loads much faster, enabling unsteady loads to become accessible inside wind turbine

optimization loops. In this paper we derive the stochastic BEM solution and present

the most relevant results showing the accuracy of the new method.
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Nomenclature

Latin Letters:

a power law exponent

c chord length

cd drag coefficient

cl lift coefficient

cx thrust coefficient

hhub hub height

K number of terms in airfoil series

N number of stochastic samples

NF number of frequencies

NP number of wind speed sample

points

NR number of random variables

NS number of random basis

functions

r rotor radius

S wind speed power spectrum

Ŝ solution series coefficient

T thrust force

T̂ thrust series coefficient

tn (discrete) time

ũ turbulent fluctuations

uapp apparent wind speed

u0 mean wind speed (at hub

height)

uax axial induced velocity

udc mean wind speed

urot rotationally sampled inflow

wind speed

utg tangential induced velocity

Greek Letters:

α angle of attack

β element twist

θ phase

∆θ phase increment

Ξ stochastic space

ξ random number

φ local inflow angle

τ local pitch

τ0 blade pitch

Ψ chaos basis

Ω rotor angular frequency

ω angular frequency

Indices:

k index for points

l index for blade elements

m index for frequencies

n index for samples in time

7.1 Introduction

Long term loads (i.e. life time extreme and fatigue loads) are often critical drivers for

the structural design of wind turbines. However, the analysis of long term loads is

typically not included into the turbine design optimization loop. Instead, compliance

of a candidate design with long term load requirements is ensured only after the
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design optimization is completed. This sequential procedure can obviously lead to

sub-optimal results. However, today this is usually the only possibility, because reliably

analyzing long term loads is computationally expensive – too expensive to be included

into the optimization loop.

These challenges arise from the procedure through which long term loads are

assessed. Today, wind turbine design and analysis is usually carried out in a determin-

istic framework, or at best as a Monte Carlo like set of several subsequent deterministic

solutions (upper path in Fig. 7.1). Adequately capturing the long term load statistics

in such a deterministic framework requires the analysis of many samples. The design

standard IEC 61400-1, Ed. 3 (2005) is indicative of this challenge: it bases the turbine

load analysis on multiple deterministic 600 s simulations, carried out at many different

mean wind speeds, for roughly 20 different load cases, every one repeated several times

with different realizations of the turbulent inflow, each generated from a different

random seed. This large number of analyses and the associated computational costs

obviously present a challenge to any automated optimization, where many different

candidate designs have to be evaluated.
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Figure 7.1: Alternate solution methods. Top: conventional deterministic route;
Bottom: the new stochastic alternative.

Even if this large number of deterministic simulations was tractable, the challenges

with the deterministic framework continue. It is known that extrapolation from a

limited data set to extreme loads is a delicate exercise and results can vary greatly

(Moriarty, 2008; Burton et al., 2011). It was shown that basing a wind turbine analysis

on six ten-minute wind speed simulations, generated from six different random seeds,
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results in a difference of up to 34% in the ultimate load results for the most extreme

1% of seed combinations (Zwick and Muskulus, 2015). Tibaldi et al. (2014) present a

study which indicates that turbine loads extracted even from 20 different ten-minute

wind fields, generated from 20 different random seeds, vary greatly. This shows that in

a deterministic framework, load variations from different random seeds can dominate

effects from design parameter changes. Obviously this constitutes a fundamental

problem, particularly with gradient-based optimization where obtaining reliable design

variable gradients is vital.

The goal of this paper is to avoid these problems and present a means to quickly

analyze long term loads which can be used within a future optimization routine. To do

this we propose to look at the governing equations from a different perspective. The

current method obtains a deterministic solution from a deterministic analysis using

deterministic equations. The deterministic equations are individual samples (obtained

through the use of specific random seeds) from an a priori stochastic input (e.g. wind

or waves). This approach is convenient, because it allows us to remain in the well

known deterministic world; when individual samples are treated we can ignore the

difficulties related to the stochastic dimension of the problem at hand. However, this

comfort comes with the price outlined above (Fig. 7.1, upper path): If we want to

regain the stochastic domain of our solution (i.e. load statistics) we need to analyze a

large number of deterministic samples.

If we step away from this deterministic thinking and look at the process in the

context of its full stochastic scope, we see that instead of embracing the stochastic

dimensions available we reduced the (initially stochastic) problem to the analysis of

individual sample paths or realizations14 and then struggle at the end to regain the

stochastic dimensions through the analysis of multiple deterministic solutions. We

propose a stochastic solution, the lower path in Fig. 7.1. This stochastic approach

will embrace the stochasticity of turbulent atmospheric wind and thus take advantage

of the knowledge of the stochastic domain all the way through the system analysis

towards a stochastic solution.

14A sample path (also called a realization) is the evolution of the system through time for one
specific random seed.
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To achieve this we, advance the basic ideas brought forward earlier (Fluck and

Crawford, 2017b), and no longer employ a deterministic analysis of multiple input

realizations (the wind), but instead treat the aerodynamic equations in their full

stochastic context. This will allow us to eventually assess long term loads from one

single stochastic solution. Thus, long term loads can be assessed more quickly.

In the following, we present a preliminary test case to show the feasibility and

benefits of the new stochastic analysis method based on the aerodynamic equations

form Blade Element Momentum (BEM) theory (Burton et al., 2011; Bladed, 2012;

Hansen, 2008). This is not an example of a full wind turbine optimization, but merely

a proof of concept for that eventual application. Thus, at several instances we chose

an easier solution over a computationally more efficient or more elegant alternative.

Extending the authors previous work (Fluck and Crawford, 2017b, 2016c), where a

stationary wing with linear time dependent aerodynamic equations was treated, we

here show the feasibility of the stochastic method with non-linear time dependent

aerodynamic equations for a wind turbine rotor. An expansion to a more involved

aerodynamic model (e.g. a Lagrangian vortex model) and the incorporation into an

optimization routine is left for future work.

7.2 Method

To arrive at a stochastic solution for the unsteady BEM equations we adopt a stochastic

spectral approach, first employed by Ghanem and Spanos (1991) for finite element

analysis. This method separates the random dimensions of the problem from the

deterministic ones, by expressing the solution S (later the thrust or torque contribution

of a particular blade element) as a stochastic series:

S(t, ξ) =
∑

Ŝs(t)Ψs(ξ) (7.1)

Eq. 7.1 can be interpreted as expressing the solution S by a linear combination of

deterministic coordinates Ŝs in a stochastic space Ξ spanned by a set of adequately

selected stochastic basis functions Ψs(ξ) of the random vector ξ = [ξm], Fig. 7.2 (with

Ξ, Ψ, and ξ to be specified later). Thus the problem of finding an unknown stochastic

solution S is transformed into finding the unknown coordinates Ŝs. Note that while

the usual applications of the stochastic spectral method have been concerned with
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a random variable constant in time, the aerodynamic equations considered here are

random functions of time (i.e. random processes). Hence the coordinates Ŝi are not

constant anymore, but a function of time, too. This allows the stochastic solution

to capture short term time history and hysteresis effects as well as the long term

stochastic behavior of loads. To solve for the coordinates Ŝs a stochastic Galerkin

projection (presented in (Fluck and Crawford, 2017b)) is employed. Since each basis

function Ψi(ξ) is a multivariate function of NR random variables [ξ1, . . . , ξNR ] = ξ,

this projection will collapse the different deterministic solutions from all different

random seeds ξ into a single set of time varying coordinates T̂i(tn).
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Figure 7.2: Projection of the time dependent, stochastic solution onto a stochastic
space spanned by three basis functionals Ψs(ξ).

Let 〈�,Ψs(ξ)〉 denote some stochastic projection onto Ψs (details explained later).

If Sξi(t) = B(x, uξi(t)) is the solution to the unsteady BEM equations for a partic-

ular turbine design described by the state vector 15 x and one specific wind field

sample uξi(t) generated from one specific random seed ξi, then Ŝs could be approxi-

mated deterministically by sampling the unsteady BEM equations for a sufficiently

large set of random seeds ξi and numerically evaluating the stochastic projection

〈B(x, uξ(t)),Ψs(ξ)〉 from multiple samples. However, as will become apparent later,

the stochastic projection is computationally expensive. Following this route would

mean that for each change in turbine design parameters x, the projection would have

15 In general x will contain all turbine design parameters, i.e. geometry and control parameters.
For this study, however, we will assume constant rotational speed and thus neglect any controller
input.
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to be evaluated anew. For application to optimization, this is obviously problematic.

The goal of this paper will instead be to reformulate the unsteady BEM equations

to split them into a turbine design dependent part BT (x), and a time-random part

BR(ξ, t):

B (x, uξ(t)) = BT (x) ·BR(ξ, t) (7.2)

Following this route will allow the separation of BT , which will be independent of ξ,

from the projection:

〈B(x, uξ(t)),Ψs(ξ)〉 = BT (x) · 〈BR(ξ, t),Ψs(ξ)〉 (7.3)

Thus, during a turbine optimization run, the computationally expensive projection

〈BR,Ψs〉 will be carried out only once in a pre-processing step, while the varying

turbine parameters can be included quickly through multiplication by BT .

For this strategy to work an enhanced closed-form analytic expression of the BEM

equations is required with:

i) a stochastic expression of the inflow wind speed as function of the random seed

ξ, and

ii) an analytic expression of the lift and drag coefficients, or thrust and torque

coefficients cx and ct respectively, for the blade airfoils.

In the following, the well-known BEM equations will be repeated briefly. Subse-

quently the required analytic expressions for turbulent atmospheric wind (Section

7.2.2) and airfoil data (Section 7.2.3) will be derived to arrive at the fundamental

equations used for the stochastic projection (Section 7.2.4). Subsequently a suitable

stochastic basis will be defined and the projection outlined above will be presented in

detail (Section 7.2.6).

To avoid excessive indexing only one rotor blade will be considered for the deriva-

tion. The extension to NB rotor blades is trivial; Moreover, only the equations for

thrust will be derived. The procedure for calculating torque will be identical with the

torque coefficient instead of the thrust coefficient.
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7.2.1 The conventional unsteady BEM thrust equation

From BEM theory (Burton et al., 2011; Bladed, 2012; Hansen, 2008) the thrust at

any blade element indexed by its radial position r is:

Tr(t) =
ρ

2
u2
app(t)cx(t) c∆r (7.4)

with cx(t) = cx(φ(t)) the blade element instantaneous thrust coefficient as a function

of the local (time varying) inflow angle φ(t), c the element’s chord, and ∆r its length

(cf. Figs. 7.3–7.4). The rotationally sampled apparent inflow is:

uapp(t) =
√

(urot(t)− uax)2 + (Ωr + utg)2 (7.5)

with axial and tangential induced velocities, uax and utg respectively (Fig. 7.3), and

the axial component of the rotationally sampled inflow wind speed urot (without

the tangential component of the relative blade motion). Note that, without explicit

labeling, uapp, urot, cx, c, and ∆r are of course functions of the blade element location

r on the rotor disc. Moreover, the inflow wind field V = [ux, 0, 0] is assumed to be

purely one-dimensional and aligned with the turbine rotor axis. To not unnecessarily

complicate the equations, this study uses a frozen wake model (Bladed, 2012), by

assuming that the induced velocities uax and utg are constant in time and equal to

the induced velocities from the steady BEM for constant, homogeneous hub height

mean wind speed u0. It is important to note that the induced velocities uax and utg

are frozen in time, not the induction factors themselves, and that uax and utg are

still obtained from a steady state BEM solution for each specific the rotor geome-

try. For a future optimization uax and utg will be updated with each rotor design

update. Moreover, freezing the wake does not mean induction terms are neglected.

The induced velocities uax and utg will still be contained in the equations. Only the

(temporal) variations ũax and ũtg are neglected. Considering that wake advection

causes a time lag between rotor load changes and wake strength changes, and that the

rotational sampling of the turbulent wind field by the spinning rotor blade, as well

as dynamic on blade effects cause considerable averaging of the dynamic induction

effects, assuming a frozen wake is a fair choice for this preliminary study. Since the

stochastic solution is still a time stepping solution, a more advanced wake model (e.g.

instantaneous induction change (Pitt and Peters, 1981; Peters and He, 1991), inertially

lagged wake) can later easily be incorporated into the to the stochastic equations in a
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similar fashion as is already well established for the conventional deterministic methods.
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Figure 7.3: Definition of velocities and
inflow angles at a blade section with local
(rotating) coordinate system.
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Figure 7.4: Definition of blade element
geometry and force coefficients with local
(rotating) coordinate system.

7.2.2 Stochastic wind, rotationally sampled

The wind inflow data, used for a BEM analysis, is usually synthesized from a numeric

wind model and the stochastic wind simulator TurbSim (described by Kelley and

Jonkman (2007)) is the standard tool for this task in industry. Based on Veers’

spectral model (Veers, 1988), TurbSim generates a data set of wind from a random

seed. Although it is well known that Veers’ model does not capture all physical details

of ‘real’ atmospheric wind (e.g. Mücke et al. (2011); Morales et al. (2012); Lavely

et al. (2012); Park et al. (2015)), it is an appropriate engineering model (Nielsen

et al., 2007) required by the international design standard IEC 61400-1, Ed. 3 (2005).

For a grid of NP wind speed data points (distributed over the rotor plane) resolved

with NF frequencies from the wind speed spectrum, Veers’ model (and TurbSim) uses

NR = NF · NP random variables to set the wind field’s phase angles. In practical

cases this quickly amounts to somewhere on the order of 105 random variables. Since

realizations of large sets of random variables can be generated very quickly, this
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is not a problem for deterministic load analyses. However, the computational cost

of stochastic tools increases dramatically with the number of random variables, a

phenomenon commonly known as the ‘curse of dimensionality’ (Majda and Branicki,

2012). To keep the number of random variables manageable a reduced order wind

model is used (Fluck and Crawford, 2017a):

uk(t, ξ) =

NF∑
m=−NF

√
S(ωm) ei(ωmt+2πξm+∆θmk) (7.6)

where S is the (symmetric) wind speed power spectrum (e.g. a Kaimal spectrum, cf.

(Burton et al., 2011) Eq. (2.24)), ωm are selected spectral frequencies, ξ = [ξm] is a

random vector, and ∆θ = [∆θmk] is a matrix of (deterministic, known, and usually

constant) phase increments implicitly containing the spatial structure (i.e. coherence)

of the wind field. This brings the count of necessary random numbers ξm down to

NR = NF , independently of how many data points are contained in the wind data grid.

Through Eq. 7.6 the inflow wind speed uk is given in an earth-fixed reference frame.

For Eq. 7.4, however, the rotationally sampled inflow urot,l at a point Ql on the rotor

blade a distance rl from the hub, is required. To obtain urot,l we assume constant16

rotor speed Ω and arrange the (earth-fixed) points Pkn in a azimuthal pattern such

that Pkn = [pkxn , pkyn ] = rl[sin(Ωtn), cos(Ωtn)], Fig. 7.6. Thus Ql passes through Pkn

at the time tn = n ·∆t. Hence it is possible to group the phase increments ∆θ such

that ∆θml(tn) = ∆θmkn with kn = k(tn). For clarity we define the deterministic wind

component as:

ûml(tn) :=
√
S(ωm) ei(ωmtn+∆θmkn ) (7.7)

for each blade element Ql.

Next consider wind shear. Neglecting any details of the atmospheric boundary

layer we must assume a power law description (IEC 61400-1, Ed. 3, 2005). Hence, the

mean wind speed at each data point Pk is udc,k = u0

(
pky
hhub

)a
for a mean wind speed

u0 at hub height hhub, with the power law exponent a set according to e.g. Jonkman

and Kilcher (2012). For the rotationally sampled mean wind speed including wind

16 This assumption for now simplifies the equations, and moreover allows to avoid dealing with the
setup of a controller algorithm. Since the final solution (Eqs. 7.21 and 7.22) is a time series solution,
eventually introducing a controller routine and modeling variable rotor speed will not be a major
challenge.
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shear at the blade point Ql this yields (with zero shaft tile angle, and no yaw):

udc,l = u0

(
1 +

rl
hhub

cos(Ωtn)

)a
(7.8)

Discarding the DC component from the spectrum S(ω0) = 0 (û0l(tn) = 0) and replacing

it with the rotationally sampled mean wind shear, Eq. 7.7 yields the rotationally

sampled turbulent wind speed at any blade point Ql:

urot,l(t, ξ) = udc,l +

NF∑
m=−NF

ûml(tn) e2iπξm (7.9)

For clarity we drop the index l in the sequel and look at one blade element only.

7.2.3 Airfoil data

With lift and drag coefficients, cl and cd, obtained from experiment or simulation the

thrust coefficient cx in Eq. 7.4 is computed as (Fig. 7.4):

cx(t) = cl(α, φ, t) cos(φ(t)) + cd(α, φ, t) sin(φ(t)) (7.10)

For any given inflow angle φ and known local pitch angle τ at the blade element,

Eq. 7.10 is usually solved via interpolation from tabulated airfoil data for cl and cd.

However, in order to separate turbine design dependent parts of the BEM equations

from the stochastic parts (cf. Eq. 7.3) we seek a closed-form function cx = cx(φ(t)).

Note that the following steps will not change the BEM equations in principle, and

that φ will still include the induced velocities (Fig. 7.4), but that we merely map

the element force look-up table from cl(α) and cd(α) to cx(φ). We include the local

blade element pitch angle τ(r) = β(r) + τ0 in a reformatted airfoil data set and use

α = φ− τ . Then we approximate the thrust coefficient as a complex Fourier series of

the discrete base mode numbers mk: cx =
∑

k Y
0
τ,k e

iφmk , to obtain the desired function

of φ. For convenience later on we note:

φ(t) = tan−1

(
urot(t)− uax

Ωr + utg

)
(7.11)
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and map the airfoil data such that cx is obtained as a function of tanφ (instead of φ

itself) from a sufficiently large number of modes K (Fig. 7.5):

cx (tan(φ(t))) =
K−1∑
k=0

Yτ,k e
i(tan(φ(t))+π

2
)mk for tanφ ∈

[
−π

2
,
π

2

]
(7.12)

For Eq. 7.12 Yτ,k is easily obtained from a Fast Fourier Transform of any airfoil

data set cl(α), cd(α) and Eq. 7.10, mapped for a specific pitch angle τ from α to tan(φ).
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Figure 7.5: Thrust coefficient original
data, and a trigonometric fit (Eq. 7.12).
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Combining Eqs. 7.8, 7.9, 7.11, 7.12 and rearranging yields:

cx(tn) =
K∑
k=0

Yτ,k e
Lkũ(tn) · Ek(tn) (7.13)

where

Ek(tn) := exp

[
i

(
udc(tn)− uax

Ωr + utg
+
π

2

)
mk

]
(7.14)

Lk := i
mk

Ωr + utg
(7.15)
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and the (mean-free, rotationally sampled) turbulent fluctuations:

ũ(tn, ξ) := urot(t)− udc =

NF∑
m=−NF

ûm(tn) e2iπξm (7.16)

7.2.4 The combined BEM thrust equation

To arrive at the desired analytic expression of the BEM equations, Eqs. 7.5, 7.9, and

7.13 can now be combined into Eq. 7.4:

Tr(t) =
ρ

2
c∆r

(
(ũ(tn, ξ) + udc − uax)2 + (Ωr + utg)

2
) K∑

k=0

Yτ,k e
Lkũ(tn,ξ) · Ek(tn)

(7.17)

As discussed, it is important to separate turbine dependent parts from the stochastic

parts. Thus, we write Eq. 7.17:

Tr(tn) =

turbine, BT︷ ︸︸ ︷
ρ

2
c∆r

(
A ·

K∑
k=0

Yτ,kEk(tn)

random, BR︷ ︸︸ ︷
Fk(tn, ξ) +

B ·
K∑
k=0

Yτ,kEk(tn) Fk(tn, ξ)ũ(tn, ξ) +

K∑
k=0

Yτ,kEk(tn) Fk(tn, ξ)ũ2(tn, ξ)

)
(7.18)

with A := (udc−uax)2 +(Ωr+utg)
2, B := 2(udc−uax), and Fk(tn, ξ) := exp [Lkũ(tn, ξ)].

Note that Tr(tn) and thus Tr(t) are still time domain solutions. Hence time domain

effects such as load auto-correlation and for future work hysteresis effects (e.g. dynamic

stall, wake advection) can easily be included.

In Eq. 7.18 only the latter part of each summand is dependent on the random

vector ξ, while most of the turbine parameters are contained in the leading part. The

only exception is Lk, which theoretically is a function of the induced velocity utg, and

thus of the turbine design. Practically, however, Lk can easily be considered constant

and independent of the turbine design, as utg << Ωr.
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Eq. 7.18 already represents a stochastic solution, i.e. a solution on the lower

path of Fig. 7.1. However, repeatedly solving this equation for multiple candidate

designs is still fairly costly, even for an aerodynamic model as simple as BEM. A

more complicated aerodynamic model (e.g. a Lagrangian vortex model as would be

used to analyze advanced blade geometries (Fluck and Crawford, 2014)) might not

allow to express blade loads explicitly as a function of the random variable. Hence,

the next section presents the steps necessary to project Eq.7.18 onto the stochastic

space. Thus we arrive at a stochastic series expression of for blade loads and at a

solution process which can similarly be used for BEM equations as well as for more

complicated equations.

7.2.5 The stochastic basis

To arrive at the chaos series form Eq. 7.1 we follow the method presented by Fluck

and Crawford (2017b) and apply a stochastic projection. Due to the nature of the

BEM equations we use the strategy labeled ‘Expansion of Random Phase Angles’.

For this expansion, a polynomial chaos basis is usually used (Le Mâıtre and Knio,

2010). However, for the problem at hand complex exponential functions turn out to

be a better choice. Firstly, these allow an approximation of the stochastic domain

with only a very small subset of the stochastic basis functions, cf. Fig. 7.7. Secondly

choosing complex exponential functions will result in a stochastic projection operation

similar to a multidimensional Fourier transform, enabling the use of efficient Fast

Fourier Transform algorithms.

Similar to polynomial chaos (PC), the new basis functions will be functions of the

random vector ξ. Hence, they will be called chaos exponentials, or exponential chaos

(EC) functions. Since Eq. 7.18 is a function of the NR-dimensional random vector

ξ = [ξm], m = 1 . . . NR, multivariate complex chaos exponentials Ψ(ξ) are required.

Let λm ∈ {0, 1, . . . p} and Λs = {λm}s, s = 1 . . . NS, be one of NS rows in the integer

lattice Λ ∈ ZNR of all points in [0, . . . , p]NR , then:

Ψs(ξ) =
∏

λm∈Λs

e2iπ λmξm = e2iπ Λsξ (7.19)

Consider a discrete, NR-dimensional stochastic (chaos) space Ξ = [0, 1]NR of NR

random variables ξm, sampled in each dimension m = 1 . . . NR at N equidistant sample
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points ξ̄m = [0, 1/N, . . . , (N − 1)/N ]. For a discrete sample lattice X̄ = [ξ̄m] over all

NR dimensions the chaos exponentials Ψs constitute an orthonormal basis of Ξ with

the (normalized) inner product:

〈f, g〉 =
1

NNR

∑∑∑
X̄

f(ξ̄)g∗(ξ̄) (7.20)

where
∑∑∑

X̄ denotes the NR-dimensional sum over all points in the sample tensor X̄,

and g∗ the conjugate complex of g. Eq. 7.20 is normalized with 1/NNR , such that

〈Ψs(ξ),Ψt(ξ)〉 = δs,t (δs,t denoting the Kronecker delta). Hence 〈�,Ψs(ξ)〉 constitutes

an orthonormal projection of � onto the stochastic basis function Ψs. Note that in

general, for an arbitrary function, N →∞ is necessary. However, as will be shown

later, in our case N �∞ is sufficient.

7.2.6 Projection and stochastic solution

In order to conduct the stochastic Galerkin projection, the thrust solution Tr(tn) is

now expanded in terms of the random variable (as introduced by Fluck and Crawford

(2017b)). Instead of a polynomial chaos expansion (PCE) we use the more suitable

exponential chaos basis, and write Tr(tn) as an exponential chaos expansion (ECE):

Tr(tn, ξ) =

NS∑
s=0

T̂r,s(tn)Ψs(ξ) (7.21)

Inserting Eq. 7.21 into Eq. 7.18 and projecting onto the EC basis {Ψs(ξ)} yields the

unknown solution coefficients T̂r,s by virtue of the orthogonality of the discrete EC

basis {Ψs(ξ)} (for details see Fluck and Crawford (2017b)):

T̂r,s(tn) =
ρ

2
c∆r

(
A ·

K−1∑
k=0

Yτ,kEk(tn)I1,k(tn)+

B ·
K−1∑
k=0

Yτ,kEk(tn)I2,k(tn) +
K∑
k=0

Yτ,kEk(tn)I3,k(tn)

)
(7.22)
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with K the number of terms in the airfoil coefficient series (Fig. 7.5), and

I1,k(tn) := 〈Fk(tn, ξ) , Ψs(ξ)〉

I2,k(tn) := 〈Fk(tn, ξ) ũ (tn, ξ), Ψs(ξ)〉

I3,k(tn) := 〈Fk(tn, ξ) ũ2(tn, ξ), Ψs(ξ)〉

(7.23)

with the discrete projection sums I1,k, I2,k, and I3,k from the inner product as defined

in Eq. 7.20.

If we consider Ψs(ξ) as multivariate harmonics in the chaos space, each λm ∈ Λs

a discrete base frequency of the s-th chaos exponential in the m-th chaos dimension

(corresponding to the m-th random variable ξm), and 1/N as the sample rate, then

Eqs. 7.19 and 7.20 directly lead to a multidimensional discrete Fourier transform

(Marks II, 2009; Amidror, 2013)17 and the projection of Eq. 7.23 can be evaluated

efficiently via a multidimensional Fast Fourier Transform.

With Eqs. 7.22 and 7.23, Eq. 7.21 yields a compact and quick solution for the

varying blade thrust at each blade element not only for one sample time series (as

Eq. 7.4), but for all possible realizations of ξ, i.e. for all possible wind field random

seeds over all time (i.e. covering all possible constructive/ destructive inferences of all

frequency components in the wind field). The advantages discussed in the introduction

are obvious:

1. For any new turbine design only Eq. 7.22 needs to be updated for Eq. 7.21 to

very quickly yield a large ensemble of blade loads. The projection itself (Eq. 7.23)

is independent of the turbine geometry.

2. Since Ψs in Eq. 7.21 are known the stochastic properties (e.g. probability distri-

butions and thus return periods) of blade loads will only depend on T̂s. Hence

it will be possible to extract stochastic moments (e.g. load mean, variance) and

thus long term loads for each design directly and very quickly from Eq. 7.22.

We previously showed this for a polynomial chaos basis (Fluck and Crawford,

2017b); similar equations can be derived for an ECE.

17N.B.: This is not the usual Fourier analysis in time or (geometric) space, but rather in random
coordinates of the stochasitc space.
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In the following results for (1) will be presented. To yield long term loads the wind

inflow expression (Eq. 7.9) needs to be modified. In line with the usual deterministic

analysis, Eq. 7.9 gives the turbulent wind speed for medium samples length, where

u0 is assumed to be constant for each sample, but variable over the long term (for

details see e.g. (IEC 61400-1, Ed. 3, 2005; Burton et al., 2011)). To obtain long

term loads, these long term variations of u0 need to be included into Eq. 7.9, e.g. by

substituting the constant u0 with ũ0(ξ0) of some appropriate long term (e.g. Weibull)

probability distribution. This step and deriving the equations to relate T̂ to probability

distributions for blade loads will be left for future work.

7.3 Results

In this section we compare BEM results for thrust loads on individual blade elements,

as well as integrated over a rotor blade, obtained from both deterministic and stochas-

tic methods. The deterministic simulation Eq. 7.4 was implemented in Matlab and

solved iteratively. The results of that code were successfully verified against results

from NREL’s FAST code (Jonkman and Buhl, 2005) for steady state conditions, i.e.

for constant wind speed, and no yaw or rotor axle tilt. For unsteady conditions, i.e.

turbulent wind inflow varying in space and time, FAST uses the Generalized Dynamic

Wake model (Moriarty and Hansen, 2005), while our stochastic solution employs a

frozen wake model. To compare like-for-like aerodynamic models in the deterministic

and the stochastic case we thus use our own implementation of the unsteady BEM

model (Eq. 7.4) as deterministic base line. For the stochastic case Eqs. 7.18 and 7.22

were solved.

7.3.1 Model setup

In the following a generic three-bladed wind turbine with R = 35 m rotor radius is

analyzed. To avoid any control peculiarities constant rotor speed is prescribed at

Ω = 20 rpm. Table 7.1 summarizes the blade geometry and element locations. To

limit computational effort for the deterministic simulations only seven evenly spaced

elements were used.
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Table 7.1: Blade geometry and element locations for a generic R = 35 m wind turbine.

element # 1 2 3 4 4 6 7

relative position τ = r/R [-] 0.14 0.29 0.43 0.57 0.71 0.86 0.96

element center r [m] 5.0 10 15 20 25 30 33.75

element length ∆r [m] 5.0 5.0 5.0 5.0 5.0 5.0 2.5

chord c [m] 2.3 2.8 2.4 2.0 1.6 1.3 1.0

twist β [◦] 28 14 9.0 5.0 3.0 1.0 0.0

We use data from the NREL S825 airfoil (Somers, 2005) for all blade sections fitted

between φ = ±60 ◦ by Eq. 7.12 with K = 11 (Fig. 7.5). Note that for this study we

arbitrarily chose a reasonable airfoil. Hence an exact fit for the cx curve in Fig. 7.5 was

not our primary goal. However, we took care to retain generic features of the airfoil

(linear lift, stall, post stall recovery). Blade pitch is set to τ0 = 2◦ and twist according

to Tab. 7.1. We set hhub = 90 m, u0 = 12 m/s, a = 0.2 (Jonkman and Kilcher, 2012),

and use IEC normal turbulence class A (IEC 61400-1, Ed. 3, 2005). We use NF = 7

logarithmically spaced frequencies ~f = ~ω/(2π) = [fk] ∈ [f1, fNF ] = [1/600, 5] Hz with

fm = 10am and am = log10

(
fNF
f1

)
m−1
NF−1

for m = 1, . . . , NF , and thus capture the

variance contained in the turbulent peak of the wind energy spectrum (Burton et al.,

2011). Loads are calculated at tn = n∆t with ∆t = 0.1 s intervals. Only the axial

wind component of the wind is used.
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Figure 7.7: Spectrum of the chaos modes
T̂s for the first 150 modes for each element
at tn = 10 s.
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Figure 7.8: Thrust time series for two blade elements: Deterministic solution from
random seed ξ0, stochastic solution from same random seed, and three other realizations
of the stochastic solution (from different random seeds ξi 6= ξ0).

To capture the stochastic dimension via ECE (Eq. 7.23), the stochastic functions

(Fk, Fkũ, Fkũ
2) need to be sampled adequately. For the present example we found

stochastic sampling with N = 8 and a resolution with p = 2 sufficient. For NF = 7

frequencies this results in a total of NS ≈ 8 · 105 basis functions Ψs. However, only

a few of these are actually significant, particularly the low order ones Λi = {λmi}
with

∑
|λmi| ≤ 3, and obviously Λ0 = {λm0} with

∑
|λm0| = 0. Hence we trun-

cate the EC series (Eq. 7.21) to NS = 50, and only use the most important terms.

Fig. 7.7 shows an excerpt of the chaos spectrum in terms of the absolute value of each

mode |T̂s|. The amplitude spectra for other time steps are almost identical. Hence,

the importance sorting of the spectra is based on the amplitudes at one time step

only. Note, however, that although the amplitudes are almost constant over time

for each blade element, the stochastic phases tan(Im[T̂ ]/Re[T̂ ]) at each time step differ.

In the following we focus on turbine blade thrust loads. Torque loads can be

calculated similarly by substituting the torque coefficient for the thrust coefficient in

all proceeding equations. Any derived load, such as e.g. blade root bending moments,

tower base loads, or rotor power, can be calculated directly in the well-known way

from these basic loads.

7.3.2 Element thrust time series

Fig. 7.8 compares the first 10 s of the unsteady thrust force on two different blade

elements obtained from either the deterministic BEM equation (Eq. 7.4) or from four
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realizations for of the EC solution (Eq. 7.21). Because we use a frozen wake formulation

no start-up transients are appearing. For comparability both the deterministic and

stochastic analysis are based on a 20 s wind realization generated from the reduced

order model with NF = 7. The first stochastic realization (labeled ξ0) is generated

from the same random seed ξ0 and the same phase increments ∆θ as used for the

deterministic wind realization. For this case the deterministic and the stochastic

solution should be identical for a perfect ECE with N →∞ and NS →∞. Fig. 7.8

shows that even for our choice of N = 8 and NS = 50 very good agreement is achieved.

However, instead of only a single solution to one specific wind speed time series,

the ECE solution contains all possible phase angle combinations, and thus all possible

thrust load solutions. This is illustrated by three further realizations (ξ1, ξ2, ξ3) of

the stochastic solution (Fig. 7.8, dotted lines). These additional solution samples were

generated directly from the ECE solution (Eq. 7.21), this time with different random

vectors ξ (but still the same phase increments ∆θ).18

7.3.3 Element thrust covariance

0.14 0.29 0.43 0.57 0.71 0.86 0.96

0
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deterministic (Eq 2.4), 600 s sample (TurbSim)

deterministic (Eq 2.4), 20 s sample (Veers
red, 

)

stochastic (Eq. 2.23), 20 s sample

Figure 7.9: Normalized blade element
thrust covariance.

Fig. 7.9 shows the normalized thrust force covariance Cov[T0.14, Tτ ]/Tτ for an

element at the radial position τ = r/R and the thrust at the first element T0.14.

Results from the new stochastic approach are compared to two different deterministic

results with the input wind

18 The results presented here and in the following sub-sections are calculated each based on one
specific realization of phase angle increments ∆θ. Note, however, that these fixed phase angles were
not the same throughout the study, but generated anew for each new simulation.



147

(a) generated from the reduced order Veers’ wind model (cf. Section 7.2.2) with

NF = 7 frequencies prescribed on a radial grid of NP = 210 points (Fig. 7.6)

with fixed phase increments ∆θ. This is labeled ‘Veersred,∆θ’;

(b) synthesized through the stochastic wind simulator TurbSim (Kelley and Jonkman,

2007), labeled ‘TurbSim’.

Loads were calculated from the conventional BEM model (Eq. 7.4) for 100 different

realizations of 600 s, resulting in total of 1,000 minutes of realized data.

The stochastic results are obtained from 3,000 realizations of the stochastic EC

solution (Eq. 7.21) for 20 s, i.e. the same 1,000 minutes total data. The wind input

was set up identically to (a) for the deterministic case with fixed phase increments ∆θ.

Note that, while TurbSim, case (b), on a 15× 15 Cartesian wind speed data grid used

NF ≈ 3, 000 frequencies and thus relied on NR ≈ 7 · 105 random numbers, the reduced

order model (case (a) the stochastic solution) used only NR = NF = 7 frequencies.

Fig. 7.9 shows that the stochastic results agree almost perfectly with the deter-

ministic case based on the same wind speed input (20 s from the reduced order Veers’

model, case (i)). This is not very surprising: with the same random seed, the stochastic

method reproduces the deterministic time series results almost exactly (Fig. 7.8). For

enough realizations, with enough different random seeds, the results for each individual

realization will be different, however, the statistics of the data set should converge.

It was demonstrated by Fluck and Crawford (2017a) that the reduced order version

of Veers’ model preserves the same wind field covariance as obtained from a full

TurbSim run. Fig. 7.9 shows that the stochastic model preserves that covariance from

the deterministic results based on TurbSim input, too.19 This is important, because

the dynamic blade loads (as the sum of the correlated loads on each blade element)

can be calculated correctly only if the covariance is preserved.

7.3.4 Thrust force statistics

Fig. 7.10 compares the probability distribution function (PDF) of unsteady thrust loads

integrated over a single blade from the usual deterministic model to results from the

19 For comparability the results form each 600 s TurbSim sample were split into 30 individual
sample of 20 s each.
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new stochastic approach as above. Once a load probability distribution like Fig. 7.10 is

obtained extrapolation to long term loads, e.g. life time extreme loads (Burton et al.,

2011), is straight forward. Again, the stochastic results agree almost perfectly with

the deterministic case from the reduced order Veers’ model (case (a)), see Fig. 7.10,

left. Slight differences result possibly from the truncation of the ECE to NS = 50 terms.

Fig. 7.10, right, shows the blade load PDFs obtained from the stochastic model

compared to results based on TurbSim wind (case (b)). Although the agreement is

not quite perfect anymore, a good match is still obtained. Considering the enormous

reduction in the number of random variables involved and the computational speed-up,

particularly when analyzing various different turbine geometries (see next section),

this agreement is remarkable.

Figure 7.10: Probability distribution of unsteady blade thrust load obtained from
100 deterministic solutions compared to results from one stochastic solution. Left:
deterministic solution based on a wind field from the reduced order Veers wind model
(7 random numbers); Right: deterministic solution based on a TurbSim wind field
(7 · 105 random numbers).

The reduced order wind model was previously studied for NF = 20 frequencies

Fluck and Crawford (2017a). Using NR = NF = 20 random variables for the

stochastic projection was not feasible with the Matlab code at hand and the desktop

computational resources available for the projection (due memory limitations incurred

with the current implementation of the stochastic projection). However, there are

indications that increasing the number of frequencies only slightly (e.g. NF = 10, a

quite realistic number with some code optimization and better memory management)
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could already bring significant improvement. Moreover, Fluck and Crawford (2016b)

show that wind speed interpolation (as commonly used to obtain on-blade wind data

from a fixed grid of stored data points) distorts the stochastic properties of the wind

field. For the reduced order version of Veers’ model we used a radial grid, set up

such that no interpolation was necessary. This was not possible for the TurbSim data.

Thus, nearest neighbor interpolation was employed. It is likely that this distorted the

blade load PDFs relative to the stochastic method. A detailed study of the remaining

discrepancy between blade load PDFs, where the difference originates from, and how

they can be further reduced, is left for future work.

7.3.5 Computational effort

At this point a quantitative comparison of the computational costs is difficult, because

currently the equations are implemented in an experimental Matlab code, where an

easy development of the method took priority over computational efficiency. Thus

any time requirement analysis is inevitably biased by limited code efficiency. However,

we will give a rough estimate of the time required to calculate the PDF of Fig. 7.10

on a Intel i5 quad core processor with no explicit parallelization in the Matlab code.

With the deterministic method it took roughly 10 minutes to solve 100 samples of

600 s duration. On the other hand, 3,000 realizations of the stochastic 20 s solution,

Eq.7.21 can be obtained within about 30 s. When concerned with design optimization,

where multiple candidate designs have to be evaluated quickly, the stochastic method

clearly shows its advantage. A typical optimization might require 50 iterations. With

20 design variables and a finite differencing approach to estimate design gradients

the deterministic method would take Td = 50 · (20 + 1) · 10 min = 175 hours vs.

50 · (20 + 1) · 30 s = 8.75 hours for the stochastic solution (both covering 1,000 minutes

of simulated data for each design evaluation). Moreover, a gradient based optimization

will be very sensitive to obtaining precise design variable gradients. When optimizing

with respect to long term loads these gradients have to be extrapolated from load

PDFs as in Fig. 7.10. To improve these gradients in the deterministic case one needs

to gather more data, i.e. analyze more samples. For the stochastic solution, on

the other hand, load statistics (mean, variance, and higher order moments), thus

the load PDF and eventually long term loads (as well as their finite gradients) can

be extracted directly and analytically from the series coefficients T̂ . This means

gradients can be estimated much more consistently without relying on a large number
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of realizations to sufficiently populate a PDF. Discussing this step is outside the scope

of this introductory work. It will thus be deferred to a forthcoming publication.

These gains, however, do not come for free. While TurbSim takes about 25 minutes

to generate 100 wind field samples of 600 s duration for the deterministic method,

calculating the stochastic projection (Eq. 7.23) for a 20 s time series in its current

implementation requires roughly 3.2 hours. However, both synthesizing the wind field

as well as executing the stochastic projection is performed prior to the actual design

evaluation, i.e. in a pre-processing step before the optimization loop. With code

optimization and parallelization we expect to significantly reduce this time demand.

Here it is crucial to note that the projection is independent of the turbine design. Thus,

the computational cost associated with the stochastic projection occurs only once

during a turbine optimization. With K = 11 and NS = 50 the computational costs

incurred at run-time associated with updating T̂r,s in Eq. 7.22 is negligible. Hence,

in an optimization context, these costs are irrelevant. Instead, the run-time costs of

obtaining a big enough data set (e.g. 100 solutions of 600 s realizations) is the critical

one. Here, the huge advantage of stochastic method becomes obvious: 10 minutes for

the deterministic method vs. 30 seconds for the stochastic one.

7.4 Conclusions

In previous work a stochastic solution to linear aerodynamic equations for a simple

horseshoe vortex wing model subject to turbulent (stochastic) atmospheric wind was

presented. This work was extended here to non-linear Blade Element Momentum

(BEM) equations set up to calculate wind turbine blade thrust (and similarly torque,

as well as derived loads such as e.g. blade root bending moments, or tower base loads)

in turbulent inflow. Similar to previous work, a stochastic projection approach was

chosen to arrive at a stochastic solution. However, instead of a projection onto a

polynomial chaos basis (the common choice) a new basis, composed of multivariate

complex exponential functions, the exponential chaos (EC), was introduced. This new

basis permitted a rapid projection using multidimensional Fast Fourier Transform,

and, moreover, allowed representation of the stochastic domain with only a small

subset of the stochastic basis functions.



151

As usual, the number of random variables which the stochastic method can handle

is limited. Hence, a reduced order model for the stochastic representation of the turbu-

lent atmospheric wind was used. It was shown that the stochastic model reproduces the

deterministic time stepping solution of the BEM equations for a generic wind turbine

rotor example if both solutions, the deterministic and the stochastic one, are generated

from the same random seed. Even with a highly truncated expansion series (50

stochastic basis functions) a very good agreement between deterministic and stochastic

solutions is maintained. Moreover, it was shown that also the covariance of element

load on different stations along the blade is maintained well with the stochastic method.

Instead of only presenting a single solution to a single realization of the inflow wind

field (e.g. a 600 s sample), the stochastic solution contains all possible realizations.

It was shown that this can be used to very quickly produce probability distribution

functions (PDF) of the loads obtained form an unsteady BEM analysis, and that the

resulting PDFs are almost identical. It was also shown that the blade load PDFs

obtained through the stochastic method match the ones from the deterministic method

based wind fields generated through TurbSim, a standard tool used in industry for

wind field simulation. As the stochastic method allows calculation of such a load PDF

for a specific turbine design in several seconds (vs several minutes for a deterministic

analysis), the assessment of long term loads (e.g. extreme and fatigue loads) now

becomes accessible within a turbine optimization routine.

However, the fast stochastic analysis comes at a price: a costly stochastic projection.

Yet, the projection equations presented here are arranged such that the extensive part is

a function of the wind conditions only and independent of the turbine geometry. Hence

the projection can be carried out off-line for any representative site, independently of

the turbine design, and prior to actual turbine optimization. Future work will seek

to accelerate this projection (e.g. by parallelizing the computations), and aim for a

detailed study of long term loads, including methods to extract long term statistics

directly from the stochastic series. Moreover, controller design for unsteady rotor

speed will be included, the frozen wake assumption will be relaxed, and eventually a

full unsteady stochastic wind turbine optimization framework will be set up to include

life time loads.
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Chapter 8

Conclusions and Future Work

This chapter wraps up this dissertation by summarizing the conclusions as well as the

fundamental assumptions made. Finally an outlook onto possible future work is given.

8.1 Conclusions

The principal objective of our work was to develop a method to assess life time unsteady

wind loads, which in the future can be used in a new wind turbine design optimization

framework. These new methods and the surrounding work were presented in this

dissertation, grouped into three building blocks: analyzing unconventional geometries

via Lagrangian vortex methods (Chapter 2); handling turbulent wind as input for

stochastic models (Chapters 3 and 4); and fast analysis of unsteady aerodynamic loads

via stochastic models (Chapters 5, 6, and 7). The dissertation itself is a collection of

six research papers. Each of these papers is published or submitted for publication

in a peer reviewed scientific journal. Fig. 8.1 summarizes the principal contributions

and outcomes of this research. Together with this figure the remainder of this section

summarizes our conclusions.

8.1.1 Unconventional geometries

Existing Lagrangian vortex models were modified to be capable to assess unconven-

tional, non-planar, and strongly interacting lifting surfaces. This has been a challenge,

because Lagrangian vortex models tend to become numerically unstable with vortex

elements in close interaction. Hence it was questionable if these models are actually a
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Figure 8.1: Principal research contributions and outcomes.

good choice for advanced wind turbine design.

We chose one of the possibly most complex wing geometries (bird wings with

strongly interacting tip feathers, Fig. 2.1), and developed a reliable Lagrangian vortex

model (lifting line formulation, Fig. 2.2) capable of analyzing these kinds of complex

geometries. Thus we arrived at a model, which is now available to better understand

bird flight, the way evolution has optimized these animal’s wings, and potentially

bring forward new bionic applications. In an initial study we found that (Section 2.6):

1. Introducing multiple tip feathers, horizontally and vertically spread to create

a non-planar tip slotted wing, can be beneficial for in wing efficiency (i.e. the

obtained glide ratio L/D), stall behavior, and/ or maximum lift.

2. Without optimization a 21% efficiency improvement of the best configuration

with tip feathers over an elliptic wing of same aspect ratio but with no tip
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feathers was found.

3. The details of the geometry of the tip feather is vital. Small changes can make

a big difference, and not all configurations are beneficial in all situations.

Very good agreement between results from our extended lifting line model and

experimental data was found (Section 2.3, especially Tab. 2.1 and Fig. 2.4). Thus, it

was shown that a Lagrangian vortex model, in contrast to Blade Element Momentum

equations, is capable to yield reliable results for highly unconventional wing or blade

geometries, indeed. This was important to confirm before moving forward to advanced

unsteady aerodynamic models and eventually wind turbine optimization where new

geometries such as e.g. winglets, ailerons, swept or kinked blades, etc. are to be

analyzed.

8.1.2 Turbulent wind

Turbulent wind fields can be regarded as three dimensional random fields with pre-

scribed spatial and temporal statistics, such as auto and cross-spectrum, variance and

covariance, auto and cross-correlation. In this dissertation we studied the way these

fields are synthesized from a numeric model (Cahpter 4), and how the resulting (in-

evitably discrete) data is eventually interpolated when input into other analysis models,

e.g. from a ‘block of frozen wind’ to data on a rotating wind turbine blade (Chapter 3).

Once wind speed (as well as data from other random processes) is obtained from a

numerical model or an experimental measurement, it is only available at discrete data

points (Chapter 3). Often these data points are spaced far enough apart (5-10 m) for

the data to be only weakly correlated (Section 3.1). In this dissertation:

1. We revealed that for the typically available wind data linearly interpolating

between discrete values (the most common method) distorts the statistical

properties of the data series (Fig. 3.1 and Tab. 3.1).

2. To solve this problem an alternative was introduced in Section 3.2, based on

random wind speed interpolation increments. In Section 3.3 it was demonstrated

that this new method conserves the statistical properties of the original data

much better than the conventional linear interpolation (Tab. 3.1).
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On the other hand looking at wind models (Chapter 4) as an input to further

analysis we found that currently these models rely on a large set of random numbers

for synthesizing the wind (Section 4.1 and particularly Tab. 4.1). Because generating

random seeds is cheap, previously there has been no incentive to be careful about the

number of random variables in use. However:

1. A large number or random variables poses a problem for a stochastic treatment

of wind loads. A fact not only relevant for wind turbine analysis, but for the

analysis of stochastic wind loads on engineering structures in general.

2. Hence, before moving to stochastic models for wind turbine aerodynamics, it

became necessary to find a new wind model, which relies on significantly less

random variables than the previously available models.

3. In Section 4.2.2 we presented a new method, based on a separation of the

temporal and spatial part of the random dimension of turbulent wind. This

new model reduces the number of random variables used from the usual 105 to

only 7-20 (Tab. 4.1), while conserving the statistical properties of the wind field

(Section 4.3).

8.1.3 Unsteady aerodynamics (stochastic models)

In this block we combined the results from the previous blocks and eventually arrived

at a stochastic model for unsteady aerodynamic loads (see Fig. 8.1). This resulted in:

A) A stochastic solution to a simple Lagrangian vortex model for unsteady blade

loads on a translating blade/wing (Chapter 6).

B) A stochastic solution for the aerodynamic analysis of a wind turbine rotor with

Blade Element Momentum theory (Chapter 7).

Together, (A) and (B) showed that a fast analysis of unsteady rotor loads is quite

possible with the proposed stochastic methods. The conclusions for the Chapters 5-7

are summarized in the following.

So far conventional polynomial chaos methods were concerned with uncertain (but

constant) boundary conditions or system parameters. Expanding on this we found in

Chapter 5:
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1. With slight modifications polynomial chaos expansion can be used for random

processes varying in time (Section 5.3.3). Turbulent atmospheric wind can be

regarded as such a random process (cf. Chapter 4).

2. Substituting the polynomial chaos basis with complex exponential functions

(Fourier modes) yields a very simple solution for linear unsteady equations

(Section 5.3.2).

3. Using such a stochastic series expansion we can obtain the system output (e.g.

turbine blade loads resulting from turbulent wind inflow), and its stochastic

properties, such as mean or variance, directly from one stochastic solution

(Section 5.4, particularly Fig. 5.6).

By combining the new stochastic wind model for a limited set of random variables

form above (Chapter 4) with the stochastic aerodynamic model (Chapter 5) we were

able to obtain a stochastic solution for a wing/ blade translating in a three dimensional

turbulent wind field (Chapter 6). Finally we switched to a new basis for a stochastic

series expansion, introduced exponential chaos (Section 7.2.5), and arrived at a new

model to solve the unsteady aerodynamic equations for wind turbine rotor loads

directly in the stochastic domain (Section 7.2.6) – a process considerably faster than

the repeated analysis of the equivalent deterministic equations (Section 7.3.5). With

this we conclude for unsteady aerodynamic equations in general, and wind turbines

aerodynamics in particular:

1. The stochastic model presented here and the conventional deterministic approach

result in very similar stochastic properties of the dynamic loads along a turbine

blade resolved with several elements (Sections 6.3 and 7.3). This includes two

point statistics of loads on different stations along the blade (cross-correlation,

covariance, cross-spectrum).

2. Assessing long term aerodynamic loads from one stochastic solution is much faster

than from multiple solutions of the corresponding deterministic equation. For

the examples considered the stochastic model yielded results in 1-5% of the time

required by the deterministic model (Section 7.3.5). Thus analyzing unsteady

aerodynamic loads becomes accessible within an aerodynamic optimization

routine.
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3. The stochastic model was successfully applied to a Lagrangian vortex model

with linear airfoil properties (Chapter 6) as well as to non-linear Blade Element

Momentum equations (Chapter 7). Combining both into a stochastic non-linear

Lagrangian vortex model and eventually arriving a new stochastic optimization

routine for novel blade geometries is left for future work.

In the Chapters 5 and 6 a stochastic solution to Lagrangian vortex equations for

wing or blade loads was developed. However, in Chapter 7 we did not advance directly

to a stochastic lifting line wind turbine optimization geared towards new geometries.

Instead, we derived a stochastic solution for the Blade Element Momentum equations

(see Fig. 8.1). The rational behind this is the divide et impera maxim. We did not

have an unsteady Lagrangian vortex model for wind turbine aerodynamics readily

available. Implementing such a model would not come without significant challenges

(mainly based in handling the evolving helical wake structures) even before employing

stochastic methods. Instead of jumping forward and trying to conquer all at once,

we decided to divide the process in two sub-steps: first, develop a stochastic solution

for a (more straight forward) conventional rotor aerodynamics model based on Blade

Element Momentum theory; subsequently move on to the full Lagrangian vortex model

for unconventional rotors, and eventually implement the new optimization framework.

Due to the limited scope of this work we are content with completing the first step

here. This step alone is valuable, as it now allows to bring unsteady loads and power

production into the turbine optimization, particularly since today all certified wind

turbine design codes use a variant of Blade Element Momentum theory, thus making

the contributions in this dissertation directly relevant in industry. Possible future

work will be outlined in the following section.

8.2 Model assumptions

Just like every model, the models presented in this dissertation are based on a few

assumptions. Before looking at future work, which to a large extent will be concerned

with relaxing these assumptions, we present a brief summary of the basic assumptions

made in this work.
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8.2.1 Lagrangian vortex model

The Lagrangian vortex model used in Chapters 2, 5, and 6 relies on the potential

flow assumption, i.e. invicid and irrotational flow. To include viscous drag into the

equations, experimental airfoil data (drag coefficients) was employed in Chapter 2.

The good agreement between our results and experimental data (Section 2.3) show

that this is a valid approach.

In Chapters 5 and 6 no drag term is included and a cl = 2πα is assumed. This

is probably the simplest version of a Lagrangian vortex model. Here, this choice

seemed reasonable, because details of the wing/ blade geometry were not relevant.

The goal was rather a fundamental feasibility study of the new stochastic methods for

Lagrangian vortex equations.

For the results presented in Chapter 2 the wake was assumed to be fixed and

aligned with the free stream velocity. We found that this simplification had little

influence on the results, but brought a considerable reduction in computational effort

(Section 2.5).

8.2.2 Stochastic wind model

To be applicable to the stochastic solutions procedures we sought, the stochastic wind

model could only rely on a very limited number of random variables. Since every

frequency used in the spectral wind model requires a random phase angle, only a

very limited number of frequencies from the wind speed frequency spectrum could be

included. This is a major simplification.

To further reduce the number of random variables in use, it was assumed that

phase angles can be split into random phases at one base point, and deterministic

phase increments at all other points. As discussed in Section 4.2 this is a significant

simplification and obviously reduces the randomness contained in the system. However,

as discussed in Section 4.3 the accuracy penalty is acceptable, particularly considering

the enormous reduction in random variables necessary in the model.

These two steps (reducing the number of frequencies, and assuming deterministic

phase increments) are doubtlessly significant simplifications. However, the figures in
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Sections 6.3 and 7.3 demonstrate good agreement between results based on TurbSim

wind (generated from the full spectrum with a full set of random phases) and from

the reduced order model, and thus justify these simplifications.

8.2.3 Blade Element Momentum model

Besides the usual assumption of any Blade Element Momentum model (the most

severe arguably: planar rotors and radial independence of blade elements) we assume

in Chapter 7 frozen wake, i.e. constant induced velocities. This means (temporal)

fluctuations are neglected, and instead mean values of the induced velocities are used.

Considering the complexity and the many vague assumptions associated with dynamic

wake models this is a fair assumption for showing the principal feasibility of the

presented stochastic models, see discussion in Section 7.2.1. However, this certainly is

a point to be relaxed in future work.

8.2.4 Stochastic projection and stochastic solution

For the stochastic projection and stochastic solutions presented in Chapters 5, 6, and

7 we employ the Fourier-Galerkin approach, or use polynomial or exponential chaos

methods. All three options require that the solution can be expressed as a series of

random functions which span the entire stochastic domain of the problem at hand, and

(for practical relevance) that the employed series expansion converges with increasing

number of terms. Since the present work is an engineering dissertation we did not

dive into mathematical rigor to prove either of these two requirements. Instead we are

content with finding that for the aerodynamic problems studied here (a) the chosen

stochastic basis functions represent the stochastic space well enough, and (b) the

stochastic series yields very accurate results with only a reasonable subset of terms.

This is sufficient for practical engineering. A more rigorous treatment is left to the

many better trained mathematicians out there.

8.3 Future work

In this dissertation the feasibility of Lagrangian vortex methods to analyze uncon-

ventional wing or blade geometries was confirmed. With the stochastic aerodynamic

methods introduced in Chapters 5-7 a tool for relatively quick assessment of unsteady
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turbine thrust and torque was provided. These are two important steps forward.

However, in the long run the goal should be to arrive at an optimization framework,

which will be able to expand to new blade geometries and include life time unsteady

loads as well as unsteady power output dynamics into the coast function. However,

progress happens in small increments, and each single research project extends the

horizon of knowledge only by a tiny bit. Thus more work is left for the ones to follow.

From an engineering perspective the most obvious next step, as indicated in Fig. 8.1,

is to complete the journey towards a wind turbine optimization for new geometries

including unsteady life time wind loads. This will first of all require extending the

stochastic wind model to a life time wind model. So far, the stochastic formulation is

set up to capture the same information as captured in multiple 600 s samples of the

same wind conditions, i.e. with the same mean wind speed. To capture life time loads

this needs to be extended to a time span in the order of 20 years. To achieve this, the

deterministic process can be adopted in the stochastic model. For a deterministic load

assessment life time loads are assembled from multiple 600 s simulations at different

mean wind speeds. Similarly the stochastic analysis can be extended by moving from

our model with a constant mean wind speed to a new model where the mean wind

speed is an additional random variable. If the frequencies in Eq. 4.8 are chosen such

that they cover 600 s, and the random mean wind speed is set such that it represents

the ten minute mean distribution correctly, life time wind speed fluctuations will be

covered in a similar fashion as previously in the deterministic model (Burton et al.,

2011). The challenge which remains is to find a proper representation of the long time

variability of the 600 s mean wind speed.

Once a life time stochastic wind model is available two directions further forward

become apparent:

1. Enhance the available stochastic Blade Element Momentum model:

This could, for example, be relaxing the frozen wake assumptions, including a

stochastic formulation for dynamic on blade effects (e.g a stochastic stall model,

Bertagnolio et al. (2010)), considering variable speed operation, blade pitch, and/

or controller design, and eventually building a wind turbine optimizer around

this new stochastic aerodynamics model. This could lead to an interesting study

of how considering life time loads influences the ‘optimal’ aerodynamic (and

possibly controller) design.
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2. Apply the stochastic formulation of Chapter 7 to a Lagrangian vortex model:

In Chapter 7 we showed that our stochastic formulation can be applied to

non-linear equations, and that transferring the stochastic approach from a Blade

Element Momentum model to a Lagrangian vortex model is in principle straight

forward. However, some effort will be required to bring the stochastic projection

of the vortex equations (cf. Section 7.2.6) into a shape, which can be solved

sufficiently fast.

For either of these directions, a combination of the stochastic aerodynamic model with

an appropriate structural model (possible a stochastic structural model as investigated

by Ghulam (2016)) will eventually be necessary to include aero-structural effects.

Moreover, combining the aerodynamic model with a larger scale economic model (as

investigated e.g. by Broeer (2016)), including not only integral (i.e. time averaged)

power production, but time resolved revenue based on the dynamic electricity market

prize, as well as grid stability costs, could be a further step. This would allow to set

up a true system level optimization (in the widest sense), which in turn could enable

researchers and turbine designers to study improved turbine concepts to mitigate

electrical grid stability issues, which currently arise from too much, too volatile, and

too uncontrollable wind power feed-in.

Beyond the stochastic models geared towards wind turbines, the ideas presented

in this dissertation could also be extended to other fields of applications. A stochastic

wave model, to combine stochastic wind and wave forcing on an offshore wind turbine,

and supply stochastic solution for the resulting loads is probably the most obvious one.

Similarly an application to a stochastic analysis of wave and tidal power technologies

could open up new perspectives and be very beneficial. Others promising applications

are for example: stochastic analyses of bridge loads from wind forcing; or a stochastic

analysis of the sailboat driving force generated from turbulent wind input.

On the other hand, the bird wing study of Chapter 2 revealed interesting insights

into biomimetic means to improve wing or blade performance. With the lifting line

code available much more can be investigated. For us, proceeding in that direction

would have diverted too far from our principal objective (cf. Chapter 1.2). For future

work, however, it would be valuable to actually embed the available lifting line model

into a wing or blade optimization framework, and study which wing (tip) configuration

is actually best. Combined with a sensitivity analysis this promises to reveal very
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interesting insights into wing design. Chapter 2 showed already that distinct tip

feather are beneficial in specific flight conditions, but detrimental in others, but a

major question is left open: given a mechanical wing or blade, with limited ability

to change its geometry during operation, do distinct tip feathers actually yield gross

benefits over the whole range of operational conditions?
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Appendix A

Some Practical Notes on the

Discrete Fourier Transform – An

Engineering Perspective

Spectral models, and with them Fourier transforms and Fourier series are instrumental

for this dissertation. Hence, this appendix will summarize a few notes on Fourier

theory. These notes are compiled from multiple sources. Personally I found the online

book by Smith (2007) the the best.

The Matlab scripts testingFourier.m, Fourier VKMspectrum.m, and testing-

FourierOrthogonality.m can be used to experiment with the theory presented in the

sequel. These scripts can be found on the SSDL group’s server (ssdl.me.uvic.ca) in

the directory projects/stochasticGalerkin/sandbox/. Access authorization may

be requested from Dr. Crawford.

These notes are meant to help the ones continuing this work after me to dive into

the matter quickly. Emphasis is put onto an easily comprehensible introduction for

engineering practitioners, rather than a mathematically rigorous treatment of the

theory.
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A.1 Basic definitions and nomenclature

For two discrete functions x(n), y(n) inner product of Eq. 5.1 turns into

〈x(n), y(n)〉 =
1

N

N−1∑
n=0

x(n)y∗(n) (A.1)

with y∗ denoting the conjugate complex of y. Let moreover

sk(n) = eiωktn = ei2πkn/N (A.2)

be the k-th complex harmonic with:

ω = [ωk] = 2π [fk], with ωk = 2π k/(N ∆t), k = 0, . . . , N − 1

f = [fk], with fk = k/(N ∆t) = k/T = kfs/N ,

i.e. f = [0, fs/N, 2fs/N, . . . , (N − 1)fs/N ]

and

t = [tn], with tn = n∆t, n = 0, . . . , N − 1

We then call:

fs = 1/∆t the sampling frequency (fs/2: ‘highest frequency in spectrum’)

T = N ∆t the sampling time (T : ‘longest period in spectrum’)

1/T = 1/(N∆t) lowest frequency in spectrum.

The highest resolved frequency fs/2 is called the Nyquist frequency. Higher fre-

quencies, which might appear in the spectrum for f > Fs/2, are only shifted negative

frequencies, which appear through periodicity, but do not contribute additional infor-

mation.

Note that for the conjugate complex

s∗k(n) = sk(−n) (A.3)

and that sk, s
∗
l are orthonormal for integers k, l ∈ N0 (see section A.5.3):

〈sk(n), sl(n)〉 =
1

N

N−1∑
n=0

sk(n)sl(−n) = δnl (A.4)
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with δ denoting the Kronecker Delta.

A.2 Transforming to frequency space and back

The (discrete) Fourier transform (DFT) of a discrete time series x(tn) = x(n) is

obtained with the inner product of Eq. A.1. Write

x(tn) =
∑
ωk∈ω

X(ωk) e
iωktn (A.5)

with: ω = [ωk], k = 0...N − 1. By projecting both sides of Eq. A.5 onto sk(n)

via the inner product of Eq. A.1 we obtain the Fourer coefficients X(ωk). With

ωk = 2π k/(N ∆t) and tn = n∆t and Eq. A.4 we get:

X(ωk) = 〈x(n), sk(n)〉 =
1

N

∑
tn∈t

x(t) e−iωktn (A.6)

In general the spectrum X(ωk) is complex, with the amplitudes |X(ωk)| and the

phase angles θ = arctan( Im[X(ωk)]
Re[X(ωk)]

) for each harmonic sk(n). The (discrete) power

spectrum, which we will use later to describe a wind speed time series, is:

S(ωk) = |X(ωk)|2 (A.7)

Note, however, that through the absolute value operation all phase information is lost.

The time series can be recovered via the inverse (discrete) Fourier transformation

(iDFT) of Eq. A.5.

A.3 Two-sided vs. one-sided spectrum

For a real valued signal the spectrum X(ωk) is symmetric about ωN/2 = π/∆t with

X(ωk) = X∗(ωN−k).
20 Hence X(ωk̄) with k̄ = 0 . . . N/2 alone contains the full infor-

mation of the (real valued) signal. This is referred to as the ‘one-sided’ spectrum, vs.

the ‘double sided’ spectrum when k = 0 . . . N − 1 is used.

20N.B.: this holds only for real signals. The spectrum of complex signals, as encountered in
Chapter 7, is generally not symmetric!
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Figure A.1: Scematic of a two-
sided spectrum and how to take
advantage of the symmetry.

Using a one sided spectrum is attractive, since it reduces the number of necessary

frequencies, i.e. the number of data stored, the number of floating point operations,

and/ or the number of random phase angles. If the full spectrum obtained from the

DFT contains N frequencies the one-sided spectrum contains N/2 + 1 frequencies.

But how are the two-sided vs. one-sided Fourier series connected?

To answer this question we recall Euler’s identity

eiωtn = cos(ωtn) + i sin(ωtn) (A.8)

which can also (and more helpfully for the following discussion) be written:

cos(ωtn) =
1

2
ei(−ω)tn +

1

2
eiωtn (A.9a)

sin(ωtn) =
1

2
ei(−ω)tn − 1

2
eiωtn (A.9b)

Further on we note (again, only for a real signal!):

1. For periodic signals (n.b. periodicity is inherently assumed with finite signals)

spectrum is symmetric about ωN/2, the Nyquist frequency. See Fig. A.1.

2. Two amplitudes appear only once. These are the ones for ω0 and ωN/2. At these

frequencies sin(2πk/(Ntn)) = 0 and hence the complex part of the spectrum is

irrelevant: Im[X(ω0)] = Im[X(ωN/2)] = 0.
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Further at ω0 = 0, cos(0) = 1, and X(ω0) = x̄, the mean value.

For the middle frequency k = N/2 we get ωN/2 = 2πfk = mπ and cos(mπtn) =

±1.

3. For all other frequencies the amplitudes appear twice, and X(ωk) = X∗(ωN/2−k).

4. The identities e2miπ = 1 and e(2m−1) iπ = −1 hold for any integer m ∈ N.

Consequently we get ei(x+2mπ) = eix and ei(x+(2m−1)π) = e−ix.

From point 3 we see that all the information is actually contained in the spectrum

from 0 to N/2. Now we take advantage of this:

Based on point 4 we shift all frequencies ωk for k > N/2 + 1 to ωj = ωk − π with

j = k − N . Note that this is a shift, not a mirroring of the spectrum! See

green frequencies in Fig. A.1.

Attention: be careful when using frequencies ωk with k > N/2 + 1. In test cases

this lead to trouble (strong oscillations between support points). Better use negative

frequencies.21

This means that X(ωk) = X(ωj) + X(ωl) for k = 0, . . . , N − 1 and for the new

case j = −N/2 + 1, . . . , 0 and l = 0, . . . , N/2. Hence ωj = −ωl. Keeping point 2 in

mind, Eq. A.5 can now be re-written:

x(tn) =
1

N

N/2∑
k=−N/2+1

X(ωk) e
iωktn =

1

N

X(ω0) +

N/2−1∑
k=1

X(ωk)e
iωktn +X∗(ωk)e

−iωktn +X(ωN/2)eiωN/2tn

 (A.10)

This is the one-sided notation. Note that here the frequencies ω0 and ωN/2 have to be

dealt with separately, because these two only appear once while all other frequencies

21Reason: for a signal recorded at N sample points ωk completes at most one period every two
sample intervals (i.e. over three sample points) at k = N/2 + 1. This means a smooth interpolation
between samples because there is at most one peak between two sample points. Higher frequencies
(k > N/2 + 1) result in more than one period over there samples, up to one period for over only
two samples for k = N . This leads to extra osscilations between samples points, as now we extract
more frequencies than we actually supply data. (Remember: each frequency contains two pieces of
information, amplitude and phase.)
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come in pairs. Since X(ω0) = x̄, and x+ x∗ = 2Re[x] Eq. A.10 further simplifies to:

x(tn) =
1

N

x̄+ 2Re

N/2−1∑
k=1

X(ωk)e
iωktn

+X(ωN/2)eiωN/2tn

 (A.11)

The last term in Eq. A.11 seems to be often neglected as it is usually small.

A.4 Synthesizing turbulent wind (via iDFT)

Now we turn to a turbulent wind sample composed of L frequencies. The phase angle

φl of each of these frequencies ωl (l = 0, ...L − 1) is assumed to be random (with

uniform distribution), and only the power density spectrum Su(ωl) is given. Note that

the spectra Su given in literature (e.g. (Burton et al., 2011) and (IEC 61400-1, Ed.

3, 2005)) are often continuous power spectra. We adopt the notation used by Veers

(1988) with

G denoting the continuous power spectrum

S the discrete power spectrum and

Su the discrete power spectral density.

For homogeneous frequency bin sizes ∆f we get

S = Su ∆f = G∆f = G
fs
N

= X
1

N
(A.12)

Based on eq. A.5 the wind field can thus be synthesized with the amplitude spectrum

X(ωl):

u(tn) =
∑
ωl∈ω

X(ωl) e
iωltn =

∑
ωl∈ω

√
Su(ωl) ∆f

2
ei(ωltn+φl) (A.13)

Here Su is assumed to be the one sided power spectrum, where l = 0, . . . , N − 1.

N.B.: The scaling (factor 2) from a one-sided to a two-sided spectrum often happens

happens at power (not frequency) spectrum level! Depending on how data from other

sources (e.g. literature) is scaled a factor 2, or
√

2 might have to be introduced into
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the Fourier sum.

Random phase angles for each frequency are realized by adding a random constant

to each Fourier mode:

u(tn) =
∑
ωl∈ω

√
Su(ωl) ∆f

2
ei(ωltn+φl) (A.14)

A shift (i.e. time lag) of the whole signal is achieved via

u(t+m∆tn) =
∑
ωl∈ω

√
Su(ωl) ∆f

2
eiωl(tn+δ) = eiωlδ

∑
ωl∈ω

√
Su(ωl) ∆f

2
eiωltn (A.15)

with δ = m∆t the time lag in terms of multiple of the sampling time step ∆t. Note

the difference of a phase shift φl (Eq. A.14) and a time shift δ (Eq. A.15)! This is the

shift theorem, c.f. Smith (2007).

A.5 Some general remarks

In the following we collect some general remarks relevant to the use of the Fourier

transform in this dissertation.

A.5.1 Aliasing

From pure trigonometry we know:

cos

(
2π(f +

1

∆t
)k∆t

)
= cos (2πfk∆t) (A.16)

and similarly for sinus terms.

Hence the Fourier transformation of Eq. A.5 produces a spectrum that repeats

after the highest frequency f̄ = 1
∆t

. For a double sided spectrum with frequencies

ωk, k ∈ [0;N/2] this means the spectrum (more precisely it’s negative part) starts

repeating at ωk̄ with k̄ = N −N/2 + 1 = N/2 + 1. This is the same property that also
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leads to the symmetry exploited to use a one-sided spectrum (depicted in Fig. A.1).

However, when not sampling at a high enough frequency fs > fN with fN the Nyquist

frequency (i.e. double the highest frequency in the signal) energy from the aliased

spectrum will “leak” into the actual spectrum and generate “false” amplitudes. This

is the Nyquist–Shannon sampling theorem, nicely explained by Wikipedia (2015).

A.5.2 Variance

The variance of any sinusoid with amplitude a is

Var[a sin(x)] =
a2

2π

2π∫
0

sin2(x) dx =
a2

2
(A.17)

Similarly for each cosine term: Var[a cos(x)] = a2/2. Thus, with Eq. A.8 we get for

each harmonic in the complex Fourier series of Eq. A.5:

Var[X(ωk) e
iωkt] = |X(ωk)|2 (A.18)

Hence the variance of a signal x(t) synthesized through iDFT from a discrete

frequency spectrum X(ωk) is

Var[x(t)] =
N−1∑
k=1

(|X(ωk)|)2 (A.19)

Care must be taken which spectrum is used. Particularly if a one-sided spectrum is

employed, because depending on how the one-sided vs. two-sided scaling (Wq. A.12)

was performed, i.e. with the power or the frequency spectrum, a factor
√

2 may appear

somewhere.

N.B.: With a typical turbulent wind spectrum Eq. A.19 does not converge for

a long time, i.e. with decreasing ω1. The reason is that there is ample energy in

the spectrum up to very low frequencies. Consider for example seasonal, annual and

even decadal wind variations, cf. Burton et al. (2011, Section 2.3) and Palutikof et al.

(1991).
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A.5.3 Orthogonality

The complex sinusoid is defined via Eq. A.2. For discrete sinusoids the orthogonality

of the sinusoids is derived e.g. by Smith (2007, section 6.3).

For continuous sinusoids we get

〈sk(t), sl(t)〉 =

T∫
0

eiωkte−iωltdt =

T∫
0

ei(ωk−ωl)tdt =

[
ei(ωk−ωl)t

i(ωk − ωl)

]T
0

=
ei(ωk−ωl)T − 1

i(ωk − ωl)

(A.20)

again setting ωk = 2πk
T

and ωl = 2πl
T

we get

〈sk(t), sl(t)〉 =
ei2π(k−l) − 1

i2π
T

(k − l)
=

0 for k 6= l

T for k = l
(A.21)

Where we used ei2πn = 1 for n ∈ N0 for the first case (k 6= l). For k = l we employ

l’Hospital’s rule and obtain

lim
k→l

ei2π(k−l) − 1

i2π
T

(k − l)
l′Hop
= lim

k→l

i2πei2π(k−l)

i2π
T

= T (A.22)

Note: the same result is directly obtained form Eq. A.20 with ωk = ωl

T∫
0

ei(ωk−ωl)tdt =

T∫
0

e0dt = [t]T0 = T (A.23)
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Appendix B

A Minimal Example for the

Stochastic Projection Procedure

When someone starts dealing with stochastic methods and wants to look into stochastic

projection methods the learning curve is initially very steep. For an easier start into

the material a minimal example is presented here. We recommend the interested reader

to work through this example (and possibly implement the equations themselves) as a

start and before diving into the more complex problems presented in the body of this

dissertation.

B.1 Problem definition

Consider a cantilever beam with a point load at its free end, see Fig. B.1. The

governing equation for the beam bending deflection y is (setting EI = 1):

d2

dx2
y = −M(x) = −F (1− x) (B.1)

with the boundary conditions

y(0) =
d

dx
y(0) = 0 (B.2)

This simple problem will serve as a minimal example to illustrate the chosen method

and to verify the fundamental suitability of the chosen model to simplify unsteady

time series calculations.
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Figure B.1: The example set-up: a
clamped beam with a point load.

Figure B.2: Beam deflection results
for the deterministic load and for 20
random realizations.

In the deterministic case (known and constant F ) the solution to Eq. B.1 is:

y(x) =
F

6
(x3 − 3x2) (B.3)

B.2 Stochastic solution

Now let us assume the load varies randomly in time (with no memory or time-lag):

F (t) = 10 + ξ(t) (B.4)

With ξ(t) a standard normal distributed random variable. Suppose moreover that

Eqs. B.3 and B.4 are more complicated and the system non-linear, such that simply

substituting Eq. B.4 in Eq. B.3 is not an option. For simplicity we assume a quasi

static process with no dynamics in the beam (infinite damping and zero inertia). Thus

each time step is independent from any other time step. Since the random variables are

normal distributed we follow Xiu and Karniadakis (2002) and choose to use Hermite

chaos polynomials Hk(ξ) as basis for the stochastic space.22 Thus we can express the

solution deflection as a polynomial chaos expansion (PCE):

ỹ(x, ω) =
P−1∑
n=0

sn(x)Hn(ξ) (B.5)

22 The lengthy definition of the Hermite polynomials is not repeated here. For details see e.g.
Abramowitz and Stegun (1972, p. 775).
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Figure B.3: Resulting series for
100 realizations of tip deflection
y(x = 1) for a Monte Carlo ex-
periment versus the stochastic
Galerkin solution.

Inserting Eq. B.4 and B.5 in Eq. B.1 and executing the Galerkin projection (i.e. taking

the inner product 〈�, Hm(ξ)〉, Eq. 5.1, of the system equation) for all basis functions

Hm with m ∈ [0, P − 1] over the stochastic space Ω = R yields:

∞∫
−∞

(
P−1∑
n=0

d2sn(x)

dx2
Hn(ξ) + (10 + ξ)(1− x)

)
Hm(ξ)p(ξ) dξ = 0 (B.6)

With the projection weights set equal to the PDF of the random variable p(ξ) =
1√
2π

exp
(
− ξ2

2

)
and n = 0, 1, . . . , P − 1, this gives a system of P equations for the P

unknown solution coefficients sn(x) (with n = 0, 1, . . . , P − 1). With the boundary

conditions (Eq. B.2) the equations for each n can readily be solved:

s0 =
10

6
(x3 − 3x2)

s1 =
1

6
(x3 − 3x2) (B.7)

sn = 0 for n = 2, 3, ..., P − 1,

Thus we obtain the result for the stochastic deflection from the series of Eq. B.5

ỹ(x) =
1

6
(10 + ξ) (x3 − 3x2) (B.8)

For known and constant load F , i.e. ξ = 0, Eq. B.8 immediately recovers the deter-

ministic solution. Fig. B.2 shows the results for the deterministic load and for 20

random realizations of Eq. B.8.
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B.3 Discussion

For a time series with ξi(t) independent realizations, Eq. B.8 now directly gives the

deflection for all times from one single solve – without re-evaluating the whole model

each time step. In this simple case the gain in computational effort is not relevant, as

the initial system equation (Eq. B.1) could have been solved easily and as a function

of an arbitrary load F quickly. However, once the system becomes more complicated

(cf. Chapters 5 and 6) or non-linear (cf. Chapter 7) such an easy solution may not

be available any more. In that case having Eq. B.8 as a faster approximation of the

stochastic solution is valuable for reducing computational expenses: now a set of model

responses can directly be calculated from one single stochastic evaluation (instead of

a possibly expensive recurring solve of the system equations though the whole time

series). Fig. B.3 shows the resulting time series for 100 time steps. Once the deflection

y(t) is obtained from solving Eq. B.1 for 100 different forces F (t) (a Monte Carlo

experiment), the other time from 100 realizations of Eq. B.8 (the stochastic Galerkin

solution). As can be seen the processes seem statistically similar. Table B.1 compares

the expected value and the variance from the Monte Carlo simulations (for one set of

1000 realizations) of to the values obtained via Eq. B.8 for the stochastic Galerkin

solution. It confirms the impression from Fig. B.3: both processes are statistically

equivalent. Moreover, it can be seen that in this simple case, where the random

process is fully captured by a PC series of two terms, the stochastic Galerkin method

reproduces the analytic mean value and variance exactly.

Table B.1: Statistics of tip deflection for the randomly loaded beam.

Monte
Carlo

stochastic
Galerkin

analytic

mean -3.348 −10/3 -10/3

variance 0.1097 1/9 1/9
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Appendix C

Overview on Scripts and Code

All calculation scripts and all code relevant for this work can be found on the SSDL

group’s server (ssdl.me.uvic.ca). The projects are each under Mercurial Version control

and can be cloned to a local drive after authorization by Dr. Crawford. Some custom

Matlab functions globally used can be found in: projects/Matlab_functionLib/

The work presented throughout this dissertation strongly builds on each other.

Consequently, the computation code related to each section is dependent on each

other. Each of the projects presented in the following, which are each stored in

their own folders, are kept fairly independent. However, in some instances this was

not practicable and some functions from one project need to be made accessible for

another. Although spread over different folders all necessary files are available in the

/export/project/projects/. At the time of writing this dissertation, this folder

was located at /export/project/.

This appendix will give an overview of the available scripts and code related to

the projects presented in the chapters of this dissertation.

C.1 Bird wing vortex code (C++)

The repository for the files related to the bird wing project presented in Chapter 2

can be found at: projects/birdWing.
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This project is implemented in C++; CMake is used for building. BirdMain.cpp is

the main file, setup.conf defines the wing geometry and flow conditions. All other

necessary files are contained in the same folder or its sub-folders. Comments in the

code explain their proper use and functionality.

C.2 Wind interpolation (Matlab)

The repository for the Matlab files related to the turbulent wind interpolation project

presented in Chapter 3 can be found at: projects/windInterpolation

The main scripts are incrementInterpolTS.m and incrementInterpolTS rotSample.m

for the stationary and the rotationally sampled interpolation respectively. Comments

in the scripts explain their proper use and functionality. Sub-functions are in the same

folder. TurbSim wind data is supplied in the sub-folder /turbsim, which is not under

version control (for its large size).

C.3 Turbulent wind synthesizing

C.3.1 Veers model (Matlab)

In various places throughout this dissertation we use our own implementation of

Veers’ wind model. The Matlab function makeWindVeers(v0,P,Nf,dt fft) gener-

ates such a wind wind field for the data points P, with mean wind speed v0, from

Nf frequencies resolved at a time step of dt fft. This function can be found at

projects/stochasticGalerkin/3dWindField

Comments in the code explain the use of this function and reference to Veers paper

(Veers, 1988). Sub-functions are in the same folder.

C.3.2 Reduced order Veers model (Matlab)

The reduced order version of Veers’ wind model is implemented in the Matlab script

severalPoints.m, available at projects/stochasticGalerkin/3dWindField.
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This script compares wind data from different models (TurbSim, Veers original

model, cf. Section C.3) to the reduced order model. The wind speed data is evaluated

at several user-selected points in space. This is the script used to generate most of the

results in Chapter 6. Comments in the script explains the proper use and functionality.

C.4 Stochastic solution of unsteady aerodynamic

equations

C.4.1 Lagrangian vortex model for horseshoe wing and trans-

lating blade with correlated sections (Matlab)

The Lagrangian vortex model used to analyze the translating blade with correlated

sections (cf. Chapter 6) is a direct evolution of the simple horseshoe vortex wing

model (cf. Chapter 5). Hence, the Matlab implementations for both models are in

the same folder: projects/stochasticGalerkin/2dHorseshoe.

The Matlab script unsteady multidim.m is the latest implementation of the

unsteady Lagrangian vortex equations using polynomial chaos functions (cf. Sec-

tion 5.3.3). The script unsteady complexFourier.m is the latest implementation of the

unsteady Lagrangian vortex equations using complex (Fourier) exponential functions

(cf. Section 5.3.2). The script correlatedWing.m is used for the analysis of a translating

wing with correlated bound vortex elements of Chapter 6. Comments in the scripts

explain their proper use and functionality.

These scripts use the chaos polynomials and Fourier exponential functions which

are supplied in the folder projects/stochasticGalerkin/Polynomials.

The formulation of these polynomials is instrumental to the work presented here. Thus

this folder is under its own version control.

C.4.2 Stochastic wind turbine Blade Element Momentum

(Matlab)

The code used for the stochastic Blade Element Momentum analysis of Chapter 7 is

stored in the folder: projects/stochasticGalerkin/BEM.
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The stochastic thrust solution is calculated in the Matlab script bem stochastic.m.

The torque solution in bem stochasticTQ.m. The script makePDF.m generates multiple

solutions and populates the PDFs of Section 7.3.4. Comments in the scripts explain

their proper use and functionality.
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