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ABSTRACT

Electricity generation from wind power and other renewable energy sources is in-

creasing, and their variability introduces new challenges to the existing power system,

which cannot cope effectively with highly variable and distributed energy resources.

The emergence of smart grid technologies in recent year has seen a paradigm shift

in redefining the electrical system of the future, in which controlled response of the

demand side is used to balance fluctuations and intermittencies from the generation

side. This thesis investigates the impact of smart grid technologies on the integra-

tion of wind power into the power system. A smart grid power system model is

developed and validated by comparison with a real-life smart grid experiment: the

Olympic Peninsula Demonstration Experiment. The smart grid system model is then

expanded to include 1000 houses and a generic generation mix of nuclear, hydro,

coal, gas and oil based generators. The effect of super-imposing varying levels of

wind penetration are then investigated in conjunction with a market model whereby

suppliers and demanders bid into a Real-Time Pricing (RTP) electricity market. The
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results demonstrate and quantify the effectiveness of DR in mitigating the variability

of renewable generation. It is also found that the degree to which Greenhouse Gas

(GHG) emissions can be mitigated is highly dependent on the generation mix. A dis-

placement of natural gas based generation during peak demand can for instance lead

to an increase in GHG emissions. Of practical significance to power system operators,

the simulations also demonstrate that Demand Response (DR) can reduce generator

cycling and improve generator efficiency, thus potentially lowering GHG emissions

while also reducing wear and tear on generating equipment.
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Chapter 1

Introduction

1.1 Motivation

Sustainability, climate change, increasing cost of fossil fuels and a political imperative

for energy independence have combined to increase interest in the use of renewable

energy sources to meet growing electricity demands, as well partially displacing ex-

isting thermal power generation. Current power systems are still dominated by fossil

fuel based electricity generation and operated on supply following the changing de-

mand. In such systems nuclear and coal plants usually operate as base load power

plants, while other types of power plants, such as hydro and natural gas, balance

the variability on the demand side. The increasing use of renewable energy resources

adds additional complexity to power systems and makes them more challenging to

operate, as illustrated in Figure 1.1.

Figure 1.1: Power system overview
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Renewable power generation resources can be divided into two groups:

• Those which have similar characteristics to conventional power generation fa-

cilities in that they are predictable and controllable. This group includes hy-

droelectric generation and the use of biomass.

• Those which are variable and intermittent, such as wind and solar.

This research will focus on Variable Renewable Energy sources, and in particular

on the large scale integration of wind power into the electricity system. The dis-

placement of fossil fuels by Variable Renewable Energy Sources (VRES) is considered

to be a viable option for mitigating greenhouse gas emissions. However, compared

with conventional power-generating facilities, VRES have challenging operating char-

acteristics such as lower and more variable capacity factors and variable, intermittent

availability. Figure 1.2 illustrates the extreme case of supply comprised of 100% wind

power and the challenge of balancing a fixed and unresponsive demand with a variable

supply.

Figure 1.2: Balancing supply and demand
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Superimposing demand and supply shows periods of both energy deficit and energy

surplus (Figure 1.3). The traditional approach to making up for the energy deficit

would be supply-side management by providing reserve capacity from other energy

sources. However, the additional cost and infrastructure required could offset the

economic and environmental benefits of utilizing wind power.

Figure 1.3: Energy deficit

The increasing penetration of wind power and other variable and distributed en-

ergy resources calls for an integrated system approach that includes not only supply

side management, but also the active participation of the demand side in conjunc-

tion with emerging smart grid technologies. This thesis investigates a new approach

to balancing electricity demand and supply by modifying the power consumption

of residential loads in addition to the conventional way of balancing power by load

following.
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1.2 Literature review

Optimal operation of the electrical power system is a central objective in power sys-

tems engineering and includes the transmission and distribution grid, generation facil-

ities and loads, and interconnections to other power system control areas. The overall

goals are to reduce costs, improve overall system efficiency and ensure system relia-

bility. Traditionally, these operational goals have been achieved mainly by managing

the supply side (SSM) and by trading electricity, when available, with neighbouring

power systems.

A simplified representation of an electrical power system is shown in Figure 1.4.

It includes thermal, hydro electricity generation and VRES on the supply side, which

have to match industrial, commercial and residential consumption on the demand

side at all times.

Hydro

Thermal

Variable 
Renewables

Residential

Commercial

Industrial

The Grid

Constraints

Economics

Supply Demand

Resources

Figure 1.4: Aspects of an electrical power system

Today’s power system is already complex and poses many challenges for system

operators to ensure grid stability and reliability. The increasing integration of VRES,

such as wind and solar power, adds further complexity and operational difficulties to

the overall system.

This literature review covers the relevant work done to address these issues and

concentrates specifically on the following aspects:

1. The need for more renewable energy
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2. Renewable energy integration with an emphasis on wind power

3. Smart grid and demand response

4. Power system modeling

1.2.1 The need for more renewable energy

Climate change underpins much of the motivation for renewable energy. Mounting

scientific evidence has led to the following observations and predictions:

• Although numerous and diverse factors contribute to climate change a major

driver of global warming is the increase in atmospheric CO2 and other green

house gases emitted by burning fossil fuels.

• Since the beginning of the industrial revolution the world temperature has in-

creased by 0.8 ◦C and the resulting melting of glaciers and polar ice caps has

already led to a rise in sea level of 20 cm.

• CO2 levels continue to rise and, without intervention, the temperature of the

planet will rapidly reach what is considered to be the critical limit of 2 ◦C

above pre-industrial level, beyond which major ecosystems are predicted to

begin collapsing.

• The International Panel on Climate Change (IPCC) predicts that a ”business

as usual” policy will risk a rise in global temperature of more than 5 ◦C by the

end of the century, with devastating consequences for the world’s economy.

• A world-wide effort is necessary to reduce GHG emissions and prevent a looming

climate catastrophe.

The introduction and expansion of renewable energy resources to replace fossil

fuels, coupled with energy conservation initiatives, are the main pillars of a long-term

strategy to achieve the required mitigation of GHG emissions necessary to minimize

global warming.
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1.2.2 Renewable energy integration

The balancing challenges introduced by variable renewable resources are addressed

in a report from the IEA (International Energy Agency)[30], which also discuses

pathways for ”managing power systems with large shares of variable renewables”.

The variability and uncertainties of VRES increases the need for a flexible power

system as shown in Figure 1.5.

Electric
Power 
Systemvariable

renewables

Contingencies

Dispatchable 
power plants

Energy storage

Interconnection
with other
markets

Demand Side
mangement

Demand

Net load 
Fluctations

Needs for flexibility Flexible resources

Figure 1.5: The need for flexibility

Wind power integration

According to the wind energy roadmap from the IEA [31] the worldwide installed

wind energy capacity is expected to grow from 464 GW in 2013 to 1403 GW in 2030.

According to the same source wind power generation cost range from $60/MWh to

$130/MWh and can already be competitive.

However, development of wind power plants requires land with sufficient wind re-

sources. Proximity to the power grid is an asset, but often wind generation sites are

remote from existing transmission lines and load centres. Public opposition due to
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visual impact and noise, regulatory requirements and other environmental concerns

are additional factors to be considered. Although wind energy fed into the power

system has the potential to reduce reliance on traditional energy resources and re-

duce emissions, it may necessitate complementary power generation to balance the

inevitable fluctuations in generating capacity. The additional infrastructure could

offset the intended environmental and economic benefits. The optimal placement of

wind turbines is thus influenced by a combination of socio-political, environmental,

technical and economic factors.

An overview of integration of wind power into the power system as well as current

approaches for assessing the technical and economic impacts of large scale wind power

integration are investigated in [1]. Also included are the different methodologies used

and definitions of common terms.

Wind integration studies

Several relevant studies were analyzed by the IEA Wind R&D Task 25; these were

compiled in the final report [27] published in July 2009. A summary paper emphasized

the difficulty in comparing the results from the various studies. Factors such as the

different assessment methodologies, time scales, input data and the different usage of

common terms can lead to misleading interpretation of the results. Wind integration

costs can vary widely and depend upon control area characteristics such as size,

generation portfolio mix, the level of interconnections, the geographic dispersion of

wind resources, level of wind penetration, system reliability and reserve requirements.

Methodology for modeling wind power impacts

Modeling plays an important role in wind integration studies and both the parameters

selected and methods used influence the results. The various modeling approaches are

discussed and categorized in [42] to facilitate an understanding of different approaches.
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A summary of modeling approaches impacting wind integration studies is pre-

sented in Figure. 1.6. This illustrates that different methods and assumptions lead to

different results and conclusions. The ideal overall simulation method should include

all the different cases (items) and input data. Ideally the factors listed in the shaded

areas should be combined within a single model. However, due to current computa-

tional power limitations this is impractical so approximations and assumptions have

to be made.

Figure 1.6: Methodology and input data for modeling wind power impacts
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1.2.3 The smart grid and demand response

Today’s electricity system has often been described as the ”greatest and most complex

machine ever built” [21]. While this system is complex, it is not smart. It is still a

highly mechanical system of transmission towers, transmission and distribution lines,

circuit breakers and transformers, the components of which were designed in some

cases a 100 years ago. There is limited use of sensing, monitoring, communication

and control devices throughout the overall system. In recent years a redesigned

power system, often referred to as a ”Smart Grid”, has been proposed. It addresses

the increasing challenges to the power system and offers potential solutions.

Smart grid is a term used to cover a broad spectrum of subjects; some are outside

of the scope of this thesis, but are briefly noted with a few references below.

• Communication [23]

• Sensing and measurement [25]

• Standardization [34]

• Regulatory issues [47]

• Cyber security [46]

The pathways to a smarter grid are outlined in [9, 21, 13, 8] and include discus-

sion and status assessment of information and communication technology as well as

sensors, monitoring, and control. It is assumed that smart grid ”technology will trans-

form a centralized, passive power system into one that is dynamic, interactive, and

increasingly customer-centric” [18]. Some smart grids concepts have already been

implemented and tested in several projects, such as the Olympic Peninsula Smart

Grid Demonstration Project [26, 6].

The benefits of a prospective smart grid have been investigated in several publi-

cations [39, 44, 15] and and include technical, economical and environmental perfor-

mance improvements in comparison to the traditional power system.
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History and definitions

The idea of influencing the electricity demand of customers is not new. DSM measures

had already been discussed during the energy crisis at the end 1970s and shortly af-

terwards some of them were implemented [23]. Commercial and industrial customers

were the main targets, and incentives were provided to reduce and change their elec-

tricity consumption when required.

The term DSM first appeared in the literature in the early 1980s. It referred to

different strategies for managing loads rather than supply. A overview of various load

control strategies is presented in [22] and were divided into load shape changes and

load level changes as shown in Figure 1.7. Even at this early stage the vision included

flexible load shape that later evolved into the ”smart grid” concept.

Load shape changes Load level changes

Figure 1.7: Load control strategies; adapted from [22]
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Demand response

According to the U.S. Department of Energy (DOE), demand response (DR) is defined

as:

”Changes in electric usage by end-use customers from their normal con-

sumption patterns in response to changes in the price of electricity over

time, or to incentive payments designed to induce lower electricity use at

times of high wholesale market prices or when system reliability is jeop-

ardized.”

Changing the electricity usage of consumers can be translated into three imple-

mentation strategies:

1. Consumers are on call to reduce their usage when the grid is stressed. This

requires predefined contracts between consumers and the utility company, the

ability of Direct Load Control (DLC) and, preferably, knowledge about the

state of the load. An important issue regarding DLC is that of consumers’

acceptance, as they may lose control of their energy usage [14].

2. Consumers have the option to react to certain tariff structures such as Time of

Use (TOU). This may require both smart metering and installation of appliances

controllers on the consumer side, in order to make this strategy a reliable DR

resource.

3. Consumers have the ability to react to electricity prices within a Real-Time-

Pricing (RTP) electricity market. This also would require enabling technologies,

such as appliance controllers.

The question ”How to Get More Response from Demand Response?” has been

addressed in [38] . This paper identifies enabling technology that utilizes fast, reliable,

automated communication, that is critical for the effective implementation of DR. It is

also argues that having competitive markets with DR would have significant economic

and political ramifications.

Electricity markets and the different pricing mechanisms are also discussed in

[14]. The author promotes Demand Side Integration (DSI) for integrating flexibility

and controllability into power system operations. Incentive- and price-based demand

response strategies [2] are discussed, where either customers respond directly to price
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signals (a market led approach), or a system operator (aggregator or agent) sends

signals to the demand side customers. The author indicates that small consumers are

ready and willing to participate in active demand, especially as the practice of TOU

pricing component is already in place and accepted. However, the level of automation

is important for both user comfort and demand response benefits.

1.2.4 Power system modeling

The requirements for modeling and analyzing energy systems are manifold and may

include factors such as technical, economical, environmental and social aspects. This

section reviews the current approaches to power system modeling and the transitions

required to model both a smarter grid and demand response.

A comparative study ”of 13 of the most widely used PC based interactive software

packages in the field of power engineering that are used for industrial applications,

education and research” was conducted in [29]. The author defines four criteria, which

he believes are essential for the software packages to be effective education/research

tools. These criteria are:

• Allow network modeling through per unit representation

• Provide the behavior of networks under steady-state and transient conditions

• Allow for control of the network for economy/security conditions

• Have similarities with energy management systems used in control centres

Additional important criteria include factors such as an open architecture, ex-

pendability via a ”built-in toolbox” and an interface to other systems and libraries.

It has been found that most of the software systems (e.g. PowerWorld) were strong

in analyzing and optimizing AC power flow, but were not capable of dealing with

renewable energy systems in a detailed manner.

Agent based modeling

Requirements for a more intelligent power system design necessarily demand new

electricity system models that go beyond the traditional approaches used for power

system modeling.
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A number of Agent Based Models (ABM) have been proposed as a better way

to investigate electrical power systems in terms of power market interaction, grid

congestion and environmental issues and are discussed in [41, 16, 7, 49, 35]. ABM,

such as GridLAB-D or Electricity Market Complex Adaptive System (EMACS), rep-

resents the power system with multiple and diverse participants (agents). Each of

the individual agents follow their own objectives, bidding strategies and may have

the ability to learn from past experiences and adapt their behavior.

Load modeling

It has always been of value to predict demand in order to schedule generation facilities

and operate the electrical power system. Load modeling has usually been based

on aggregated metered data from residences, commercial buildings and industrial

consumers [4, 32]. This data-based modeling approach led to a relatively precise

prediction of aggregated demand such as that of the electricity usage of residential

houses.

However, with the introduction of the smart grid concept more detailed load mod-

eling approaches had to be developed. Modeling now had to incorporate and vary the

behavior of individual appliances (e.g. thermostatic loads) and include appropriate

control strategies to achieve the desired demand response outcomes [50].

1.2.5 Summary of literature review

This literature review provides a synoptic overview of the state of the art:

• The challenges and approaches of integrating large scale variable renewable

energy sources into the electricity system.

• An overview about smart grid and demand response

• Power System modelling approaches and load modelling

The review identified the following open questions: What approaches are suitable

for modeling and simulating a smarter grid in order to facilitate further investigation

and understanding of the operation and interaction of individual loads, generators,

markets and controllers within an overall system context? This thesis will especially

focus on modelling and validating of such a system, and on the requirements and

implementation of proper market operations including load and generator bidding.
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Furthermore a new methodology for emission tracking and a procedure that accounts

for generator cycling will be introduced.

1.3 Objectives

The overall objective of this research is to determine whether residential loads within

a smart grid architecture can support the integration of wind power. While various

types of residential loads can potentially mitigate the negative impacts of the vari-

ability of wind power, this research focuses on using only one type, space heating, as

a demand response resource. The more specific objectives are to:

• Create and validate a smart grid model

• Superimpose wind power on the model and show qualitatively, how demand

responds to power surpluses and deficits

• Quantify the impact of a smart grid on the potential reduction of green house

gas emissions

• Quantify how demand response influences generator cycling when wind power

or other variable generation contributes to the electricity generation system

1.4 Methodology

This thesis proposes a new approach to balancing demand and supply by managing

residential loads instead of the traditional method of adding generating capacity to

match demand. A smart grid power system model was designed and then validated

using actual performance and temporal data from a physical experiment: the Olympic

Peninsula Demonstration Project. Wind power generation was then superimposed

on the validated model. The model incorporates suppliers and demanders who bid

into a real-time pricing (RTP) electricity market. The methodology focuses on the

utilization of selected residential end-use appliances with an intrinsic storage capacity

(thermal loads), that are able to alter their power consumption with minimal effect

on the comfort of the consumers. Loads become responsive and reduce or increase

their consumption depending on both their power needs and current electricity prices.

A surplus of power will result in a lower market price and appliances will respond by
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switching on or staying on. Deficits of power will result in a higher market price and

as a consequence appliances will switch off or stay off. Within this double auction

electricity market, these responsive loads behave as additional grid resources.

1.5 Contributions

This research contributes to the development of smart grid system modeling method-

ologies that allow the investigation and analysis of large scale wind energy integration

into the electricity system.

We make four claims that are validated in my dissertation:

This work on smart grid modeling and demand response explores and

quantifies pathways to mitigate the problems associated with wind

power integration and includes the following outcomes, whose practical

applicability are demonstrated through validated simulations:

1. Creation and validation of a smart grid model.

2. Identification of the benefits and challenges of demand response.

3. Quantification of the mitigation of GHG emissions.

4. Quantification of the mitigation of generator cycling.
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Chapter 2

Modeling and validation

2.1 Introduction

Modeling the electrical power system presents many challenges because it involves the

representation of several subsystems and their interactions, including the generation

side, the demand side, electricity markets, and the transmission and distribution

system. In addition there are many constraints to take care of, such as voltage and

frequency limits and line capacities. With the transformation of the current electricity

system into a smarter grid this modeling task becomes even more complex, especially

as loads now become an active part of the overall power system, and hence a detailed

knowledge about their behavior is also required. The questions are:

1. How do loads behave?

2. How can their behavior be altered?

3. Do the loads exhibit the desired behavior?

This chapter will describe the overall system modeling approach adopted in this

thesis and its validation.

2.2 Model system description and grid modeling

An agent-based modeling environment was utilized for modeling a smart grid power

system using the open source GridLAB-DTM simulation platform [10]. This general

modeling framework includes a range of models and sub-models, accounting for loads ,
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market, distribution and transmission system, end-use and their coupled interactions

within the overall system. The variety of component models within GridLAB-DTM

and the array of user determined parameters and variables allows comprehensive

modeling and simulation of a variety of complex electric power systems and scenarios,

and makes this platform particularly well suited to exploring the integration of new

energy technologies. Additionally no open literature studies [33, 17, 37, 36] include

detailed load modeling within an overall system context and therefore GridLAB-

DTM was selected for this study. The application of the model to solve the power

flow problem within a 3-phase unbalanced system utilizes the Three-Phase Current

Injection Method (TCIM) [20] for specific transmission and distribution scenarios.

This section focuses primarily on two general aspects of the system model that

have been further developed as part of this thesis: market modeling and generator

modeling. The system and component models were developed within the GridLAB-

DTM modeling environment. MATLAB was utilized for pre- and postprocessing of

data and for generating some of the GridLAB-DTM macro codes.

2.2.1 End-use load modeling

The electric end-use loads of any house can be divided into two major classes: non-

thermostatic loads, have been such as lights and outlets, and thermostatic loads,

such as Heating, Ventilation, and Air-Conditioning (HVAC) units, water heaters and

refrigerators. Thermostatically controlled loads include some form of intrinsic storage,

such as the thermal mass of the home or water in the tank. Therefore the loads service

function will be maintained during power interruptions over a limited amount of time,

without affecting user comfort.

HVAC systems and water heaters generally have a high potential for demand

response, which depends on factors such as size of system and house, insulation,

location, weather and the recent demand response history. Fig. 2.1 shows the average

energy consumption for a single family residential house in the U.S., where space

heating, air conditioning and water heating together account for 66% of the total

energy consumption. Other household appliances, such as lights, have limited or no

demand response potential as switching off these appliances would generally be not

acceptable to customer and adversely effect their comfort.

The house model in Fig. 2.2 is based on the Equivalent Thermal Parameter (ETP)

model. The ETP model determines the state and power consumption of the HVAC
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Figure 2.1: Average energy consumption for a single family house in the U.S.A (data
source:[48])

system while also considering the heat gain through the use of other residential ap-

pliances, and heat gain/loss to the outside environment as a function of weather.

Other household loads were integrated into this model using physical, probabilistic,

and time-varying power consumption models. These models are all available within

the GridLAB-D development environment [45, 5].

2.2.2 Market

Fig. 2.3 shows the bidding behavior of the controller of HVAC loads during heating

mode. Every load controller observes the electricity market, and automatically places

a bid for power that is influenced by the average market price and standard deviation,

the market clearing price and the current state of the load, defined by the difference

between the current and desired temperature. The bidding price formulation of the

controller is given in Equation 2.1.

Pbid = Pavg +
(Tcurrent − Tdesired) ∗ khigh/low ∗ σact∣∣Tmax /min − Tdesired

∣∣ (2.1)
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Figure 2.2: Residential house model: electrical appliances with varying potential for
demand response are shown, along with other variables such as weather and human
behavior.

where Pbid is the bid price below which the load will turn on, Paverage is the

mean price of electricity for the last 24-hour period, Tcurrent is the current indoor

temperature, Tdesired is the desired indoor temperature, khigh/low are the predefined

comfort setting, σact is standard deviation of the electricity price for the last 24-hour

period, Tmax/min is the maximum or minimum temperature range.

In this example, the upper and lower setpoints for the desired room temperature

are 22 ◦C and 17 ◦C and the intelligent controller of the heating appliances places

price and power bids into the market according to its power needs. A high room

temperature results in a lower price bid, and no bid at all when the room temperature

is 22 ◦C or higher. A lower temperature results in a higher price bid with a maximum

possible market price (cap price) when the temperature falls below the 17 ◦C threshold

set by residents as their minimum comfort level. A bid at the cap price ensures that

the bid is always successful in purchasing power. Under this condition the load now

behaves as an unresponsive load, as it is only bidding the fixed cap price into the

market and purchases power at whatever the market clearing price might be.
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Figure 2.3: Bidding behavior of the controller of a thermostatic heating load set
between 17 ◦C and 22 ◦C

The setpoints of the controllers are determined by the individual consumer and

therefore the heating system of each house reacts differently depending on the con-

sumer’s desires for comfort versus money.

2.3 Case study: The Olympic Peninsula Experi-

ment

The Olympic Peninsula Demonstration Project was conducted between April 2006

and March 2007 for the U.S. Department of Energy (DOE) and the Pacific North-

west GridWiseTM Testbed under the leadership of the Pacific Northwest National

Laboratory (PNNL). The project was undertaken to investigate how electricity pric-

ing could be used to manage congestion on an experimental feeder. A Real-Time

Pricing (RTP) electricity market with an interval of 5 minutes was established to

facilitate more active participation of end-use appliances and distributed generation

within the electricity system. A dynamic pricing mechanism was implemented, where

suppliers and demanders offered bids into a common market. A simplified represen-
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tation of the overall demonstration project is shown in Fig. 2.4.

Figure 2.4: Overview of The Olympic Peninsula Smart Grid Demonstration Project,
where different suppliers and demanders are part of a double auction real-time elec-
tricity market

One part of the demand side was comprised of a commercial building, backed

up by two diesel generators of 175 kW and 600 kW. The building load represented a

resource capacity and was able to place price and power bids into the market. Under

certain market and bidding conditions, the building could effectively disconnect itself

from the grid by transferring power generation to the diesel units.

Another part of the demand side resource consisted of 112 residential houses

retrofitted with intelligent appliances capable of receiving and responding to price

signals from the electricity market. This enabled a home to automatically change

power consumption based on the current market price of electricity. The aggregate

load when all the responsive devices are on is approximately 75 kW. Each partici-
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pating house operated on one of three different types of electricity contracts: fixed,

Time-of-Use (TOU) with critical peak price (CPP), and RTP. For comparison, an

experimental control group of standard non-participating houses was included.

In addition to the commercial building and the residential houses, the project also

included two municipal water-pumping stations. These two pumping stations offered

about 150 kW of controllable load into the market.

The project demonstrated that, for a single experimental feeder, peak loads and

distribution congestion could be reduced by enabling loads to interact within a market

clearing process. More information about the Olympic Peninsula smart grid exper-

iment can be found in [26, 6] and is presented in the system model that duplicates

this experiment.

2.3.1 System modeling

This section presents a smart grid power system model replicating the supply, de-

mand, distribution, transmission and market of the Olympic Peninsula Demonstra-

tion Project.

Transmission and distribution

The entire transmission system is modeled as a single slack bus feeding into the dis-

tribution system. The distribution grid model is based on the physical characteristics

of the Olympic Peninsula Experiment (OPE).

This model presents an unconstrained transmission grid above the connection

point of the feeder, capable of providing infinite power. However, the electricity

market limits the supply so that the feeder capacity is effectively constrained to

maximum capacity of 750 kW. This constraint represents a transmission line capacity

limit of one of the supply lines to the Olympic Penninsula system.

Supply

The supply is represented by two entities. The first is bulk electricity from the Mid-

Columbian wholesale market. For the physical model of the power system, this supply

appears to have infinite capacity. However, the actual supply is controlled by market

dynamics, where the power quantity supply bid from the Mid-Columbian (MID-C)

market is always 750 kW at a wholesale price based on the MID-C electricity mix as

shown in Fig. 2.5. This effectively constrains the feeder capacity to a limit of 750 kW.
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The second supply entity is a micro-turbine that provides an additional distributed

supply of 30 kW.
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Figure 2.5: Variation in the Mid-Columbian wholesale electricity price over a four
day period during December 2006

Demand

The demand side in the OPE incorporates a variety of residential houses and a com-

mercial building with back up generation. Appropriate and detailed load and house

models are required to represent realistic system behavior. The following subsections

describe the residential house model and a model of the backup generator for the

commercial building.

One-hundred and twelve (112) individual residential houses are modeled using

data extracted from the OPE. The data includes the size, type and thermal prop-

erties of houses, used appliances and occupancy mode. The weather, settings of the

appliances and human behavior all have salient influences on the power system and

are included within the system model Fig. 2.2. Different schedules and thermostat

settings are used to reflect the various occupancy patterns, home heating and hot

water usage that together represent the major responsive loads.
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Generator model

The commercial load with two back-up diesel generators is a unique feature to the

Olympic Peninsula demonstration. If the market clearing price exceeds the building

bid, the generators will turn on and effectively remove the building from the feeder

system.

New generator controllers were developed to allow generators bidding into a whole-

sale or retail market. The generators bidding behaviors are characterized by the gen-

erator cost curve and include fixed cost, fuel costs, start up and shut down costs. The

building bid is determined by the cost of producing power from its backup genera-

tors that represent a potential ”negative load”. Since the generators are diesel-fueled,

yearly runtime allowances are a key component of the bid price formulation. Equation

(2.2) includes the various parameters contributing to the bid price.

bid price = license premium(fuel cost . . .

+O&M cost+ startup cost . . .

+ shutdown penalty) (2.2)

where:
license premium: factor used to weight the

bid price by the number of

remaining licensed operation

hours remaining in the year

fuel cost: fuel cost for running 1 hour

O&M cost: operating and maintenance costs

per capacity-time

startup cost: projected penalties associated

with starting the unit

shutdown penalty: projected penalties associated

with a premature shutdown

of the unit.

The basis and detail formulation of this equation are given in [26]. In particular,

the license premium term includes the influence of yearly runtime restrictions and

how many hours have been used by the plant to date. For example, if the generator



25

runs a significant portion of its hour limit early in the year, the remaining hours are

ascribed a higher value since they need to “last” the rest of the year.

In the OPE, both generators were attached to the same building, allowing dif-

ferent portions of the building load to be switched from one generator to the other,

as appropriate. However, to simplify modeling and simulation, two buildings were

assumed, each with one generator attached to it.

2.4 Simulation, validation and case studies

This section explains the simulation and validation approach. It involved refining

the model by calibrating the input data, and validating the simulation results by

comparing them with actual data from the Olympic Peninsula Demonstration Project.

Figure 2.6: Validation approach: Comparison of base reference data and operational
results from the demonstration project with the simulation

The last week of December 2006 was chosen as a reference period to run the

corresponding simulation. Although the OPE extended over a period of one year; the

simulations were restricted to this week, as it was the only week during the heating

season with consistent and complete data. All reference data utilized are publicly

available within the analysis section of the GridLAB-D website [24].

Given the complexity of the physical system and the intractability of resolving all

the details and temporal scales, an exact reproduction of the field data is unrealistic.
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Rather, the objective was to verify that model and demonstration project behavior

exhibit similar characteristics. In order to determine the correctness of the model,

the primary validation approach is based on data and operational representativeness

of the model.

2.4.1 Base reference data validation

Base reference data were extracted from the demonstration project and introduced

into the model in order to create a physically representative environment in which to

conduct the simulation. These data included weather, schedules, thermostat settings

and the characteristics of all 112 individual houses. The setpoints and schedules for

the HVAC and hot water system model reflected the effects of seasonal changes, such

as winter and summer, and usage patterns for weekdays and weekends. Additional

loads were represented as scheduled constant impedance, current and power (ZIP)

loads [40]. These additional loads were divided into two categories: responsive and

unresponsive loads. Unresponsive loads included appliances that would not respond

to the market, such as lights, plug loads, clothes washers, clothes dryers, dishwashers,

cooking ranges, and microwaves. Responsive loads are influenced by the market (like

the HVAC and water heater explicit models) and include refrigerator and freezer

loads.

2.4.2 Operational validation

With the base reference data extracted and helping to define the basic physical aspects

of the system, the behavior of these underlying systems needs to be validated. The

behavior of the various load devices and the electricity market on the system were

both validated to ensure similar behavior to the original OPE.

Load validation

After reproducing the base data of the demonstration project, the behavior of the

aggregated load was tested and validated. First, the load behavior of both the fixed

and control house groups was tested and validated. The load curve of each house is

mainly influenced by weather and thermostat setpoints and schedules, which reflect

human behavior, as illustrated in Fig. 2.2.
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Fig. 2.7 shows the average power demand of houses in the control group over a 24-

hour period. The actual behavior of houses in the Olympic Peninsula Demonstration

Project are compared with the corresponding group from the simulations. Both

exhibit similar characteristics with good overall agreement in power levels and ramp

up/down rates, except for some discrepancy around T = 15 hrs. Given the complex

dynamics of the system, it is difficult to ascribe this to a particular component of

the model. Although some of the discrepancy can be attributed to the small sample

of houses and some of the scheduling mismatch, adjustments would at this stage be

somewhat arbitrary.
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Figure 2.7: Comparison of simulation results with the demonstration project: Average
power demand of all houses in the control group over a weekend 24 hour period.

Second, the load behavior of both the RTP and TOU house groups was tested and

validated. Since the appliances in these houses were retrofitted with intelligent, price

responsive controllers, it had to be shown that the appliances reacted appropriately

to price signals. This involved feeding the market clearing prices from the OPE into

the system model via time series data.

At this stage of the validation process, the loads reacted to the price data from the

project by switching on or off without placing bids into the market. Fig. 2.8 shows
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that the modeled houses with their controlled appliances show similar behavior in

comparison to the real life experiment.
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Figure 2.8: Comparison of simulation results with the demonstration project: Average
power consumption of all houses in the RTP group over a weekday 24 hour period

Market validation

In this section, the full market dynamics, including market pricing, were tested and

validated. This involves a double auction RTP market, where the residential loads on

RTP-contracts receive and place bids into the market. In comparison to the previous

load validation process, the intelligent load controllers place their own bids into the

market that depend on the state of the loads and the current market price.

In addition, commercial buildings place bids into the market by offering to switch

off the total building loads. The bid price and quantity depend on the operating costs

of the backup generators to produce electricity, as described in equation (2.2).

The market interaction between electricity suppliers and demanders are shown

in Fig. 2.9. It illustrates one specific market event in the system. The market was

updated every 5 minutes. The simulation time-step for buildings and appliances was

set to 15 seconds as it must be significantly smaller than the market cycle time. This
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ensures that the fidelity of load diversity is preserved, and prevents the loads from

turning on and off simultaneously when the market cycles.

Figure 2.9: Market interactions

The substation supply is represented by the wholesale price obtained from the Dow

Jones MID-C Electricity Index. This power bid is always 750 kW and is constrained in

order to mimic the feeder limit. The bid price varies according to the price fluctuations

shown in Fig. 2.5.

A 30 kW micro-turbine is the second seller and bids its maximum capacity with a

varying price into the market. The micro turbine is located downstream of the feeder,

and therefore the total available supply capacity exceeds the feeder limit by 30 kW.

The commercial building always bids its corresponding load into the market at

a price that is equal to the cost of running the backup generators. If the market

clearing price exceeds the bid price, then the backup generators turn on and the

building removes itself from the grid. This is the reason why the generator capacity

appears on the demand side.

On the pure demand side, houses that are on the RTP tariff bid into the market.

Depending on their power needs, the power and price bids vary for each participating

house. The houses which are on TOU tariff do not bid into the market. However,

they react to the changing cost of electricity throughout the day, during times such

as off-peak, mid-peak and on-peak periods. The other houses are part of the fixed

and control groups. None of these houses bid into the market and their loads appear
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as unresponsive on the demand curve.

A comparison of the simulated and experimental total load behavior is shown in

Fig. 2.10.
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Figure 2.10: Comparison of simulation results with the demonstration project: Total
load of all houses and commercial buildings over the week of the experiment

This includes all the price responsive and non-price responsive sellers and buyers.

The salient features are well captured by the simulations, aside from the higher fre-

quency fluctuations which are not resolved by the simulation time steps, and some

discrepancies that are particularly noticeable at the end of the week (Fri.-Sat.). This

is attributed to a systematic offset in solar gains in the model which used weather

data obtained from a location (airport) that was cloudier. The model insolation levels

are thus lower than the average insolation for the geographically distributed houses

in the OPE. Overall, the results indicate that not only is the market behaving appro-

priately, but also provide additional confirmation that individual devices respond to

the market behavior appropriately.

2.5 Summary

In this chapter a modeling and simulation framework is provided,in which an agent-

based model is successfully used to validate a smart grid environment. In the following
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chapter further investigation will be conducted to explore the effects of superimposing

wind power on the previously validated model.
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Chapter 3

Wind balancing

3.1 Introduction

Balancing demand and supply in power systems currently focuses mainly on the

management of the supply side (supply side management) by controlling the supply

in such a way that supply follows the demand (load following). However, variable

electricity consumption combined with an increased penetration of wind power will

make this an even more challenging task than it already is today. The ability to

selectively switch loads off may be an effective way to offset the variability of wind and

to meet demand during periods of insufficient generation. The potential and impacts

of including responsive loads into the electrical power system with the presence of

wind power will be the main focus of this chapter.

3.2 Electricity market behavior and proposed bid-

ding mechanisms

An overview of a simplified overall smart grid electricity system model is shown in

Fig. 3.1. It incorporates an electricity market, end-use models, generator and electric

load models. Price signals are used to change the traditional behavior of loads in

order to achieve market based demand response reaction.

The market model represents a double auction RTP electricity market with sell-

ers and buyers bidding into a common market. The basic market interactions are

illustrated in Fig. 3.2.

Appliances and other end-use devices in residential homes or commercial buildings
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Figure 3.1: Smart grid system model

represent buyers. Appliances, such as HVAC systems and water heaters are equipped

with intelligent controllers [19], which independently and automatically place price

and power demand bids into the market. The electricity suppliers represent the sellers,
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who also place price and power bids into the market. The intersection point of the

supply and demand curves sets the market clearing price and quantity of power.

Fig. 3.2a illustrates how all parts of the loads and all suppliers contribute to

setting market prices. Unresponsive loads, such as lights, bid the maximum price

into the market in order to guarantee that they remain in operation. Although the

bid price of the unresponsive loads is always fixed at the maximum bid price, the

changing bid quantity will result in a shift of the demand curve and thus influence

the clearing price. Responsive loads vary their bid prices according to their internal

states and power needs. Generators that place bids below the market clearing price

are guaranteed to sell power at that clearing price. Consumers who are on RTP and

TOU contracts may respond to the changing market prices and curtail their demand

when prices are high. Customers who are on fixed contract do not react to market

prices and, along with other unresponsive loads, they form the unresponsive part in

the demand curve.

Fig. 3.2b illustrates a new market event, in which the supply of wind power to the

overall power mix is reduced. This results in a new and higher market clearing price.

As a consequence, some buyers, whose bids were previously successful, are now below

the higher clearing price and consequently have to shut off. This example illustrates

how demand response operates, and how the desired demand behavior to changing

wind power is achieved.

3.3 Wind power integration

This section examines the impacts of demand response on wind power integration.

First wind power is added to the previously validated model of the OPE. With the

expected simulation behavior of the OPE being maintained the model was then scaled

up to a larger model by introducing 35 MW of wind power and increasing the popula-

tion to 10,000 houses. This larger model shares the model framework of the validated

OPE model and provides a larger and diverse basis than the OPE for further study.

3.3.1 Introducing wind power to The Olympic Peninsula Project

Wind power was not part of the Olympic Peninsula Demonstration Project. The

incorporated wind power output data shown in Fig. 3.3 were derived from 10-minute

wind data sets measured at the William R. Fairchild International Airport (KCLM),
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located within the Olympic Penninsula demonstration area. The wind speed was

converted to the hub height of an Enercon E-33 wind turbine and the power output

calculated using its power curve.

Wind power is an additional supply to the existing power generation mix, con-

necting in a way similar to the micro-turbine. This means the wind power is located

downstream in the simulated feeder, adding to the overall power capacity of the

feeder. It is modeled as a negative load, which bids its corresponding power capacity

and price into the market. Wind power generators have no fuel cost and usually

place low (zero) market bids into the market. This ensures that the bids are below

the market clearing price and this guarantees that the electricity from wind power

will be sold. However, as a consequence, a market situation, such as that shown in

Fig. 3.4 (a)when a high wind power meets low demand, electricity will be sold for

$0/MWh.

The strategy of placing bids of $0/MWh works until wind power penetration in-

creases to the point where electricity generation from wind meets or exceeds the

demand so often that a bid and market price of $0/MWh becomes uneconomical.

At this stage a new bidding strategy that includes the real production costs of wind

power generation such as capital cost, maintenance cost and wind integration cost is

required. As electricity demand and supply change with time, different market situa-

tions arise. For example, if electricity generation from wind power drops, generation

from other, higher-priced, power sources will result in a higher market clearing price,

such as shown in Fig. 3.4 (b). In response, loads with bids that are lower than the

market clearing price will switch off. Thus loads are responsive to decreasing power

generation from wind power.

3.3.2 Scaled up model

The previous modeling methodology is now applied to a RTP-only model with 10,000

residential houses and increased wind power bidding into a double auction electricity

market. The supply side is represented by a 35 MW wind park consistently bidding at

$0/kWh and hydro supply always bidding at $0.1/kWh. Fig. 3.5 shows how a single

residential house responds to varying wind power.

The responsive demand is represented by an HVAC load that bids into the market.

When wind power decreases, the clearing price rises and the load bid falls below

the clearing price. Accordingly, the HVAC system loses the bid and switches off.



36

Such an event can be observed in Fig. 3.5 at around 5:30AM, where a drop in wind

power causes the heating system to switch off for approximately one hour. As a

consequence, the air temperature of the house drops and eventually approaches the

lower temperature limit (17 ◦C for example). The HVAC system now reenters the

market with a bid of the maximum possible market price (the preset cap-price) to

prevent the temperature from dropping below the minimum set value. The formerly

responsive HVAC load is now unresponsive and cannot react to market signals as it

is maintaining the preset minimum temperature. This leads to a high variability of

the bids, however the thermostat automatically protects against fast cycling of the

device.

As wind power increases the clearing price falls and the HVAC system recovers

and its bids remain below the market price cap. However, high wind power regimes

can also result in unresponsive load behavior, because wind drives the price down and

HVAC bids are always successful. This will result in indoor house temperatures close

to the upper temperature limit. At this stage, the HVAC system stops purchasing

power and no longer participates in the market.

3.4 Summary

Simulation results show that traditionally passive loads may become a resource that

can mitigate the consequences of wind’s variability. Various residential loads that are

the preferred candidates for demand response strategies have been identified. Chang-

ing the behavior of these loads depending on wind power deficits or wind power surplus

is a fundamental issue of this research work. The impact of demand response on gen-

erator cycling and the consequences on the mitigation of green house gas emission

will be evaluated in subsequent chapters.
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Figure 3.2: The principle of a double auction real-time (RTP) electricity market:
(a) Market event N: suppliers (wind and hydro) and demanders bid into the market
and determine the market clearing price
(b) Market event N+1: a decline in wind power leads to a higher market clearing
price and the loads automatically switch off
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Figure 3.3: Simulated wind power data for the week of the experiment
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(a) Indoor house temperature following wind power
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Chapter 4

Mitigation of greenhouse gas

emissions

4.1 Introduction

Energy use and climate change are closely related. In industrial countries, electricity

consumption can be subdivided into commercial, industrial and residential electric-

ity demand in almost equal parts [12]. Fossil fuel based electricity generation still

has a dominant share of overall electricity generation and is a major factor in the

contribution to GHG emissions.

The replacement of fossil fuels by renewable energy sources is viewed as one of the

most viable options for large scale mitigation of greenhouse gas emissions. However,

our current electricity system was not designed to cope with the large scale integration

of variable, renewable energy resources, such as wind and solar. A more flexible power

system is required [30] that also includes the demand side within an integrated system

approach.

This chapter investigates the energy usage of residential homes and their contribu-

tion to GHG emissions, and explores how both demand response and the additional

use of wind power can mitigate emissions of GHG. These emissions depend on the

generation mix (primary energy) that is used to generate the electricity.

A detailed smart grid power system model is created, where suppliers and de-

manders are bidding into a double auction electricity market. In this scenario, the

demand is represented by 1,000 residential houses and the supply by a hypothetical

highly fossil fuel-based generation mix. Wind power is superimposed as an additional
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supply source. Based on this model the following questions are explored:

• What is the demand curve of these houses?

• How much GHG will be emitted based on the assumed generation mix?

• What happens when DR is introduced to the system and how does this affect

GHG emissions?

• What happens when wind power is introduced into the initial system (without

DR) and how does this affect GHG emissions?

• How does the combination of both DR and wind power affect GHG emissions?
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4.2 System model and simulation approach

The system model contains all the traditional components of an electrical power

system. This includes the transmission system, which is modeled as a single slack

bus, and a detailed representation of a distribution system. The supply consists of

different generators such as hydro, coal, nuclear and natural gas. All supply options

have different generation costs and different GHG emissions associated with them.

The demand side consists of 1,000 residential houses with a diversity typical of houses

in the Pacific Northwest. Additionally, a RTP electricity market is introduced where

not only the supply side, but also the demand side places bids into the market.

Figure 4.1: System model

The following sections give further background about the components of the sys-
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tem model. This includes the modeling approach for achieving a diversity of loads,

the supply side in the overall system model, and the methodology of GHG emission

tracking .

4.2.1 Demand and load modeling

The demand side consists of 1,000 residential houses with various appliances as shown

in Fig. 4.1. This demand is strongly influenced by factors such as weather, thermostat

settings, and other human behavior. Generally, loads can be subdivided into two

types: responsive and unresponsive loads where some loads are more suitable for

demand response than others.

Load diversity

To achieve effective demand response interactions, a diversity of loads is important to

ensure that the household loads do not all react in the same way. This is achieved by

creating model houses, each with different loads, load properties, and load behavior.

Load behavior varies due to factors, such as house size and design, energy efficiency,

occupancy, and load usage.

Fig. 4.2 illustrates the load behavior of two houses with quite different properties.

The figure shows the operation of the heating system with a conventional thermostat

and the influence of insulation on the heating system power consumption of the two

houses.

The heating system contributes greatly to the overall power consumption of an

individual house. Additionally, the different setpoints of thermostats will have an

impact on the overall power consumption of each house. The distribution of heating

setpoints of all the residential homes is shown in Fig. 4.3 and illustrates a diversity

of set points with all having the same thermostat bandwidth of 2 ◦C.
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Figure 4.2: Comparison of the load behavior of the heating system in two distinctly
different residential houses:
(a) Good insulation
(b) Poor insulation
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Figure 4.3: Distribution of heating setpoints for all 1,000 modeled residential houses

Unresponsive loads

Unresponsive loads do not change their normal operational behavior. These loads do

not react to externally-induced signals that may be derived from, for example, market

prices, grid frequency or voltage deviations.

An example of a load curve with unresponsive demand behavior is shown in

Fig. 4.4. It represents the aggregated demand of 1,000 modeled residential homes

each with its typical appliances and heating system as the major load. This type

of residential load curve is typical for residential consumers during a Pacific North-

west winter. Although the demand will change due to human behavior, thermostat

settings and weather, the load curve represents a relatively fixed and predictable de-

mand. The demand does not respond to changing situations in the power system,

such as power deficits or surplus. The loads show a passive behavior.

Responsive loads

Responsive loads have the ability to react to price or other signals from the grid; they

can respond by increasing or decreasing their power consumption. Preferably, this
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Figure 4.4: Aggregated demand curve of 1,000 typical residential homes in the Pacific
Northwest during a winter season

should be done without reducing either customer comfort or control. Loads with an

intrinsic storage capability are the preferred candidates to interrupt service without

affecting user comfort too much.

To make some residential loads responsive, the heating system in every individual

house is equipped with a controller. This controller adjusts the thermostat base

setpoint depending on the price signals received from the electricity market and on

the current room temperature. High market prices usually result in lower heating

setpoints and low market prices in higher heating setpoints and, as a consequence,

varying price bids as shown earlier in Fig. 2.3.

The base setpoints of the ”transactive controllers” are identical to those in houses

equipped only with conventional thermostats. However, to ensure each house equipped

with a transactive controller responds accurately to the electricity market, the ther-

mostat deadband is set to zero. The upper and lower limits of the range from which

the base heating setpoint is allowed to vary are thus set by the transactive controller.

Both the base set point and the range limits can be chosen by the consumer. The di-

versity of range settings in the 1000 houses of the system model are shown in Fig. 4.5.
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Figure 4.5: Diversity of controller ranges (Tmax-Tmin) of 1,000 individual houses

An initially responsive load (such as a heating system) can become unresponsive

when the maximum limit of variability is reached. This can occur in the case of

”longer periods” of power deficit or power surplus, which consequently may result in

maximum or minimum and static bid prices until the situation changes and the load

recovers.
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4.2.2 Supply side modeling

The supply side is represented by a hypothetical generation mix consisting of hydro,

nuclear, coal, gas and oil- based power generation facilities as shown in Fig. 4.6.
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Figure 4.6: Available capacity of a global generation mix

Each of these generators has different electricity generation costs, that take into

account the generator cost curve, startup cost, minimum runtime and early shutdown

cost. A breakdown for the individual generator cost and runtime constraints is given

in Table 4.1.

Table 4.1: Assumed operations and maintenance cost, startup cost, early shutdown
cost and minimum runtime per generator (power plant)

O&M Start-up Shut-down minimum runtime
($) ($/MW) ($/MW) (min.)

Nuclear 8 55 55 360
Hydro 15 15 15 5
Coal 40 55 55 240
Gas(CT) 95 25 25 30
Oil(CT) 245 40 40 30

The values are assumptions and based on information from various reports and
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websites. The cost to produce electricity varies widely, where hydro and nuclear

generators have typical running costs below $10/MWh, while the generation costs for

a combustion turbine can be in the range of $100/MWh or more.

The supply bid price curve is obtained by combining the costs of all the individual

generators (excluding wind)and results in a generation stack composition as shown

in Fig. 4.7. Together with an assumed unresponsive demand (the vertical line) the

clearing price is determined. Each of the vertical lines represent a certain demand

scenario, where the off peak demand results in a low market clearing price and the

peak demand results in a high market clearing price. Also illustrated is a scenario

of extreme demand that could result in insufficient supply and the market would not

clear. This specific event would cause a power outage.

Figure 4.7: Various suppliers are bidding into the market with loads as price takers
(unresponsive demand)
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The effect of adding wind power into the generation mix can be seen in Fig. 4.8.

Wind power always bids with the lowest price of $0/MWh. As a consequence, as the

amount of wind power increases, the supply bid curve is shifted further to the right.

Higher cost generators may lose the bid and be forced to switch off or reduce power

output.

Figure 4.8: Different suppliers and demanders are part of a double auction real-time
electricity market

The wind power data are based on a wind integration study conducted by BC

Hydro [11] and represent data from a potential 30 MW wind park. These data had

a resolution of 10 minutes and were processed into 5 minute resolution via linear

interpolation and scaled down to maximum power output (installed capacity) of 1.8

MW. The applied wind power data for a seven day period, the first week in January

2009, can be seen in Fig. 4.9.
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Figure 4.9: Wind power during the first week of January

4.2.3 Greenhouse gas emission tracking

The supply side in the model system is based both on low GHG emission generation

facilities and on fossil fuel- based electricity generation. The model is confined to

assessing operational GHG emissions. GHG emissions based on life cycle assessment

[43] are not considered. Hence it is assumed that the GHG emission from hydro,

nuclear and wind power generation can be neglected. GHG emissions for coal, gas and

oil-based generation facilities are calculated in the methodology shown in Fig. 4.10.

The methodology considers decreasing efficiency of the generators by lower utilization,

that may be caused by demand response effects and renewable energy supply.

Table 4.2 shows the generation heat rates at different capacity factors for three

different fossil fuels: coal, gas and oil. Coal has the highest efficiency, gas has the

lowest efficiency and oil is between the two. The efficiency of all three fossil fuel

generators increases with decreasing capacity factor (CF).

Table 4.3 compares the emissions from natural gas, oil and coal-fired generation

facilities. Coal is usually used as a base load power plant and gas is usually used to

satisfy fast power changes within the electricity system. These changes are caused by

fast changing demand and other contingencies within the transmission, distribution

and supply system. Currently, oil is still used to satisfy peak demand. However, gas

and hydro facilities can also function as peaking power plants and, where available,

have replaced oil. Gas plants have the lowest emissions, coal producing more, oil

having the highest emissions.
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Figure 4.10: Methodology for GHG emission tracking, taking into consideration the
capacity factors and efficiency for all individual generators and fuel types

Table 4.2: Typical fossil generation unit heat rates:(source: [3])

Heat Rate in Btu/kWh
Capacity fac-
tor

Coal Gas Oil

100% Output 8750 9200 9100
80% Output 8803 9255 9155
60% Output 9048 9513 9409
40% Output 9625 10120 10120
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Table 4.3: Fossil fuel emissions for coal, gas and oil:
(pounds per billion BTU of energy input)

Emissions in
lb/MBtu

Coal Gas Oil(Petroleum)

CO2 205.573 117.08 225.13
SO2 0.1 0.001 0.1
NOX 0.06 0.0075 0.04

4.2.4 Grid modeling

A modified IEEE4 feeder is used to model and simulate the distribution system.

Although more complex distribution configurations can be found around the world,

this simplified representation was chosen to accelerate the processing time of the

simulation. Detailed feeder evaluations such as voltage, frequency variations and

feeder overload are beyond the scope of this research and are therefore not included.

The modifications made to the IEEE feeder configurations shown in Fig. 4.11

include increased transformer and line ratings. Additional various bidding generators

are added at bus1. Furthermore, another component (known as a capacity reference

object) is attached at the regulator, and bids all the unresponsive loads into a double

auction electricity market. 1,000 residential houses are attached at the low voltage

side, and evenly distributed over the three phases.
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Figure 4.11: Modified ”IEEE4 feeder” with 1,000 residential houses and five genera-
tors, unresponsive loads, all bidding into a double auction electricity market

4.3 Simulation results

All simulations cover the same seven day period during the first week of January

2009. A minimum timestep of 60 seconds and a market interval of 5 minutes were

chosen. GHG emissions were monitored and accumulated for each generator every 5

minutes (i.e. each market cycle). Various simulations were conducted to investigate

the following cases:

1. The base case scenario is an electricity system without either wind power or

demand response.

2. The base scenario to which only wind power has been added.

3. The base case scenario to which only demand response has been added.

4. The base case scenario to which both wind power and demand response have

been added.

It is expected that the effects of demand response on electricity use will reduce

dependency on fossil fuel-based electricity generation. However, the anticipated miti-

gation of GHG emissions is dependent on the number and efficiency of those fossil fuel

generators and especially on the capacity factor at which they will operate. There-

fore, if a generator (the marginal seller) is forced to use less efficient fossil fuel power

generation schemes this may lead to higher GHG emissions.
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4.3.1 Base case

In this base case scenario the aggregated load of all residential houses bids into a

double auction electricity market. In terms of market interaction all houses are price

takers that accept any electricity price. This is illustrated in Fig. 4.12 by the vertical

demand line that represents a bid into the market at the maximum market price (cap

price). The vertical demand line changes with each market interval as the market

progresses. This is represented by the horizontal double arrow line.

Various electricity generation facilities are present in the system. Fig. 4.12 shows

competing fossil fuel-based suppliers bidding into the market. In this scenario there

are no renewables in the generation mix. All the loads are unresponsive and so do

not react to price signals from the electricity market. This mimics today’s retail

electricity market, where the demand is inflexible and consumers usually pay a flat

rate for electricity.
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Figure 4.12: Various suppliers and the aggregated demand of all 1,000 houses are
bidding into the market, where the demanders are price takers

A time-step simulation results for all market events over a period of one day are

illustrated in Fig. 4.13 and compares the load curve and the market clearing quantity.

As the market clears this will result in suppliers and demanders switching on or off,

i.e. reacting to the changing market price. Ideally these two curve should line up, as

the load should follow the cleared market quantity.

However, due to marginal buyer issues and an estimation of system losses there

may be a mismatch between the curves as shown in Fig. 4.14 resulting in an error of

up 6% for an individual market interval.
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A presentation of the accumulated power and market clearing quantity over time

is shown in Fig. 4.15 and indicates that the error can be neglected from the energy

perspective.
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Figure 4.15: Accumulated power and market clearing quantity over time (energy)
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4.3.2 Base case and wind power

In the second scenario wind power is added to the generation mix, introducing more

variability to the power system and resulting in a change of the net load.

Depending on the amount of wind power, conventional generation will be fully or

partly displaced and the generators are forced to switch on and off more frequently.

The impact of wind power on the generation stack in a high wind event is shown in

Fig. 4.16
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Figure 4.16: Market interaction with wind power and the aggregated load of all
individual houses bidding into the market during a high wind power regime

4.3.3 Base case and demand response

In the third scenario demand response is added to the base case system, to allow the

heating systems of all 1,000 residential houses bid into the electricity market and react

to electricity prices. Fig. 4.17 illustrates an average load event leading to relatively

average electricity prices. The graph also shows a variety of bid prices indicating

a sufficient diversity of houses with different characteristics. The fraction of unre-

sponsive loads is relatively small, showing that the thermal storage capacity is not
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exploited and the bidding behavior is still adequate.
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Figure 4.17: Market interaction with a generation mix without wind power and all
individual residential houses bidding into the market

4.3.4 Base case, wind power and demand response

In this final scenario wind power and demand response are added to the system.

Depending on the amount of wind power ”conventional generation” such as coal is

displaced and this leads to lower market clearing prices. Additionally loads respond

to changing market prices.

In Fig. 4.18 a high wind power event can be observed. The coal power is switched

off and also hydro power has been partly displaced. The vertical line represents the

non-demand response case, where the clearing quantity is even lower.

Fig. 4.19 compares the load curve with and without demand response. It shows

that demand response clips the top from the load peak and fills in the valleys at low

demand and lower electricity prices (rebound effect).
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Figure 4.18: Market interaction with demand response and wind power
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Figure 4.19: Comparison of load curves with and without demand response
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4.4 Comparison of emissions

This section explores how demand response alters the behavior of individual genera-

tors in comparison to the base case scenarios without demand response. The changes

in greenhouse gas emissions are determined using the methodology outlined in sub-

section 4.2.3.

4.4.1 Accumulated emissions

The effect on accumulated emissions over a period of one week can be seen in Fig. 4.20.

The conclusion that can be drawn from the figure for the base case scenario is that

demand response leads only to a slight decrease (approx. 5%) in GHG emissions when

compared with the case in which there is no demand response. These quite unexpected

results can be explained by the generation mix used in this specific simulation. High-

price bidding, but low GHG-emitting, natural gas generation facilities are used as

peaking power plants while low-price bidding, but high GHG-emitting coal power

plants present the base load. Peak shaving events reduce and may even eliminate

the need to utilize the natural gas power plants. However, following the peak event,

loads switch on again due to the recharge/rebound effect described previously. Power

usage is now higher than in the non-demand response scenario, at a time when less-

expensive bidders, in this case coal power generating plants, are the marginal sellers

defining the market price. The overall effect is for demand to shift from the peak of

the curve, when low-emission plants are operative, to the valley when high-emission

plants are operative. As a result only a relatively small decrease in GHG emissions is

seen or, in a more extreme case, the additional high emission power production may

lead to even higher GHG emissions. From these observations it is clear that the effect

of demand response on GHG emissions is highly dependent on the generation mix.

When wind power is added into the generation mix then the emissions are almost

the same at the end of the one week simulation period. In this case only low emitting

gas generation is almost entirely displaced by wind power. However at the same time

coal power is forced into a higher cycling and lower efficiency regimes.
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Figure 4.20: Comparison of accumulated emissions

4.4.2 Individual emissions for fossil fuel based generators

In today’s conventional electricity system high demand events often result in the

recruitment of less efficient, or more carbon intensive peaking power plants to ensure

that energy supply matches demand. These power plants are usually also the most

expensive options for electricity generation, which is why they are kept in reserve.

In a demand response scenario high electricity prices during periods of peak loads

will potentially reduce consumption and therefore costs. The effect is peak shaving

and, in a best case scenario, it will neither be necessary to employ peaking power

plants, nor, perhaps, to build and maintain them at all. In less optimal scenarios this

will, at the very least, reduce the use of peaking power plants and, depending on the

fuel used to generate electricity, possibly reduce GHG emissions.

Another positive side effect of demand response is a potential decrease in the need

for capacity expansion in the transmission and distribution system, such as additional

lines and transformers.
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Figure 4.21: Base case: Emissions per fossil fuel based generator
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Figure 4.22: Base case and wind power: Emissions per fossil fuel based generator
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Figure 4.23: Base case and demand response: Emissions per fossil fuel based generator
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Figure 4.24: Base case, wind power and demand response: Emissions per fossil fuel
based generator

4.4.3 Emissions over time

The effect of peak shaving on emissions over a period of 24 hours can be seen in

Fig. 4.25. Loads switch off during peak periods so that energy usage declines and, if
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the peak generators are less-efficient and/or consume fossil fuels, GHG emissions will

be reduced during these periods. However, figure Fig. 4.25 shows that peak shaving

leads to a compensatory increase in energy usage after the peak, increasing emissions

during those non-peak periods when compared to the non-demand response scenario.

This so-called ”rebound effect” show as ”valley filling” on the emissions curve.
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Figure 4.25: Comparison of emissions
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4.5 Generator cycling

The increased utilization of variable renewable energy sources has well known positive

effects, but, conversely, adds additional stresses to the power system. The increased

net load variations from the incorporation of renewable energy suppliers such as wind

power, requires other generators to react with more flexibility and, as a consequence,

changes their cycling behaviour. Generally each additional generator cycling event

is associated with additional cost, wear and tear, and increasing emissions. Further-

more, certain generation facilities such as nuclear and coal have limited flexibility of

dispatchable generation and limited capability of cycling.

This section investigates how generator cycling is influenced by adding renewable

energy (wind power) to the base case generation mix. Demand response is then added

to the system and its potential to reduce generator cycling is examined.

The following figures show the accumulated cycling events for all generators over

the same one week period and same conditions as the simulation cases outlined in the

previous section.

4.5.1 Base case with and without wind power

Fig. 4.26 compares the accumulated cycling events with and without wind power.

In the base case scenario in Fig. 4.26 (a) the gas generation facility shows 111 cycle

counts, as it compensates for most of the load variability. The oil generator cycles 8

times as it functions primarily as a peaking generator. Even the coal generator cycles

3 times over the week time span, as in these cases the total demand (low load events)

can be fulfilled by hydro and nuclear power only.

The impact of adding wind power into the generation mix is shown in Fig. 4.26 (b).

The oil generator that previously provided peaking power is now entirely displayed

by wind power. Gas power generation is partly displaced, leading to a reduced cycle

count of 58 for the gas generation facility. At the same time hydro plants start cycling

(13 counts) and even coal power plants, that are not ideal candidates for cycling, are

forced into cycling (6 counts). All of these effects are caused by wind power bidding

with the lowest price of all generators and hence displacing, in part or completely, all

of the remaining generators except nuclear.
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Figure 4.26: Accumulated generator cycling over a period of 1 week:
(a) Base case without wind power.
(b) Base case with wind power.
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4.5.2 Adding demand response

Fig. 4.27 shows that, with or without wind power as part of the generation mix,

demand response reduces the effect on cycling on the generators.

Fig. 4.27 (a) illustrates the positive effect of demand response on the base case

scenario. The gas generation facility in now the only remaining power plant cycling,

with a reduced cycle count of 7.

Fig. 4.27 (b) shows, how both wind power and demand response influence plant

cycling. The gas generator cycle count is reduced to 5. Coal is only partly displaced

by wind power, but the cycle count is reduced to 4.
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Figure 4.27: Accumulated generator cycling over a period of 1 week:
(a) Base case with demand response
(b) Base case with demand response and wind power
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4.6 The limits of demand response and the ”Bat-

tery state of charge”

This section will discuss the ”limits of demand response”. The contour plot in

Fig. 4.28 represents the capabilities of all loads to participate in demand respond

activities during the total market period. The simulation was performed over a mar-

ket period of one day and at a market interval of five minutes. The colors represent

the bidding prices of households and correspond to the houses’ inside temperatures.

Blue colors indicate colder houses at the minimum set temperature and red colors

indicate warmer houses at the maximum set temperature.

Figure 4.28: The battery state of charge

The plot reflects wind power surplus and deficits regimes and the transition states

of the loads. It also can be referred to as the state of charge, according to terminology

used for batteries and other storage devices. It shows that much of the behavior of

demand response appears to the system as though it was energy storage. Unrespon-

sive loads have no value for demand response. As an increasing number of responsive

loads reach their predefined limits they become unresponsive. This may become be-

come critical for the system, as demand response performance declines and eventually

becomes ineffective. In order to mitigate these effects a diversity of loads have to be
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part of the overall system.

4.7 Summary

This chapter investigated a smart grid power system incorporating 1,000 residential

homes with electric heating appliances from the demand side and a generic generation

mix representing the supply side. Wind power was added to the generation mix and

changes to GHG emissions and generator cycling were monitored over one week for

each market cycle. Results show that demand response has the potential to reduce

GHG emissions and can mitigate generator cycling.
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Chapter 5

Further Discussion and

Conclusions

5.1 Summary of work

The first stage of this research was to create a smart grid power system model and

then validate it using data from the Smart Grid Olympic Peninsula Demonstration

Project. The agent based modeling and open source software, GridLAB-D, was uti-

lized to design a model that represented the actual demonstration project. This model

incorporated submodels of the transmission and distribution system, a real-time pric-

ing electricity market, generator models, and a residential house model with all its

appliances. Price signals and appliances controller were employed to make the demand

side responsive and reacting on power surplus or deficits. The demand side within the

Olympic Peninsula Demonstration Project was represented by four different groups

of residential houses: a fixed group with no smart appliances, a Time-of-Use (TOU)

group, a Real Time Pricing (RTP) group and a control group of non-participating

houses. Furthermore, a commercial building was included on the demand side. This

building was equipped with a back-up diesel generator with the ability to bid into

the electricity market. Hence the building had the ability to disconnect from the

grid. The supply side was based primarily on the Mid-Columbian wholesale market,

but limited by a maximum feeder capacity of 750kW. A second supply option was

available through a 30kW micro turbine.

The second stage of the research investigated the effects of adding wind power to

the generation mix of the previously validated, but now scaled-up model. The new
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system comprised 10,000 residential houses, a hydro electricity generation facility and

a 35MW wind park. Results from the scaled-up system simulation showed that the

load behavior of the individual houses changes, depending on wind power deficits and

surplus.

The third and final stage of this work investigated the effects of both demand re-

sponse and variable renewable energy sources (VRES) on the potential for mitigation

of greenhouse gas emissions and on generator cycling. A generic generation mix was

introduced, whereby nuclear, hydro, coal, gas and oil based generators are bidding

into the electricity market. Wind power was added to this generation mix and the

changes in GHG emissions and the generator state (on or off) monitored for each

market cycle. The generator model incorporated the cost curve for each individual

generator as well as start up and shutdown costs and minimum runtime. From the

demand side 1,000 houses were bidding into the market, assuming that all had electric

heating appliances equipped with the technology to react to market prices. A mod-

ified IEEE-4 feeder was used for simplicity of the grid topology and the simulation

performed over a period of one week.

5.2 Results

A modeling and simulation framework was constructed and successfully used to vali-

date a smart grid environment. The model allows the implementation of a large scale

smart grid that includes complex transmission and distribution feeder topologies,

several thousand residential houses with their appliances and controllers, and various

generation supply options, all bidding into a common double auction electricity mar-

ket. However, the size and complexity of the model requires significant computational

power to solve the powerflow problem and for post-processing of simulation data.

The results derived from the simulations showed that smart grid technology and

demand response can mitigate the already existing load variations, as well as the

change in net load variations that are a consequence of the use of wind power and

other renewable energy resources. Additionally it was found that the degree to which

GHG emissions can be mitigated is highly dependent on the generation mix used.

A displacement of natural gas based generation during peak demand could actually

lead to an increase in GHG emissions if coal is used to generate the additional power

required during the rebound period following peak power consumption.

Although the simulations have demonstrated that under certain conditions de-



75

mand response can lead to a small increase or only a marginal reduction of GHG

emissions, demand response in principle can enhance the overall system operation.

Positive outcomes are especially associated with the increased level of penetration of

variable renewable electricity generation made possible by demand response and with-

out jeopardizing grid operation reliability. Demand response can reduce the amount

of generator cycling and ramping, reduce wear and tear on generating equipment, im-

prove generator efficiency and avoid grid and generator capacity additions by shaving

load peaks. Overall, this can facilitate increased use of renewable energy resources

and as a consequence lead to a reduction of GHG emissions.

5.3 Perspective and future research

Various power system models have been created and tested during this research.

The following extends the discussion by providing a perspective on system aspects

and some additional preliminary findings that were not discussed in the body of the

dissertation but warrant further investigation.

Increasing wind power penetration

Within the current power system model, wind power bids with a price of $0/MWh

into the market to ensure that the electricity generated is sold. This bidding behavior

becomes uneconomic with increasing wind penetration, to the point where high wind

power combined with low load events could result in a market clearing prices of

$0/MWh. As a consequence the bidding strategy of wind power generators has to

change with increasing wind power penetration and has to reflect the real cost of

generation. However, this also may result in additional curtailment of wind power,

as wind generators may be underbid by competing generators.

Reserve requirements for wind power

An increase in wind power penetration also requires a larger reserve capacity avail-

able to the power system. Preliminary results indicate that demand response can

effectively mitigate the higher reserve requirements associated with wind power inte-

gration. The methodology described in [28], where standard deviation of the changes

in demand and wind power generation is used to calculate operational reserve re-

quirements for wind power, represents a validated and feasible approach for further
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research in this area.

Generator model

More detailed generator models are required that include ramp rates. Future models

should also differentiate between cold, warm and hot starts of generators in order to

more accurately determine the costs and emissions associated with generator cycling.

While generator cycling is included in the current generator model by considering

startup and shutdown cost, the on/off cycles are not considered for the accounting

of emissions. However, each startup/shuthown sequence is also associated with addi-

tional fuel usage and hence increases GHG emission.

Grid issues

For the purpose of simplifying the models used in this research an unconstrained grid

was assumed. However, the model would also allow the investigation of grid issues

such as feeder overload, voltage and frequency deviations.

Integrated energy system

In the simulations conducted in this research the RTP double auction electricity

market plays a key role in the operation of the overall system. Within this system

all the individual agents, both generators and loads bid into the electricity market

with their own individual goal. The goals of a thermostatic load, for example, are to

buy power at the lowest price while ensuring that the desired temperature remains

within a preset temperature range. However, satisfying only the goals of individual

buyers and sellers might not guarantee the optimal performance and operation of

the integrated power system. Additional regulatory factors or a ”regulatory agent”,

that include both system objectives and constraints may be necessary to optimize the

power system.

Other topics

Another interesting extension of this research effort is forecasting, that could be

included in the bidding strategy of sellers and buyers. Further investigation could

also include the effects of RTP electricity markets on electricity prices.
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Appendix A

Additional figures to Chapter 4
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Figure A.1: Loadcurve of 1,000 residential houses without demand response, com-
pared to the loadcurve with wind power and demand response
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Appendix B

Technical implementation

B.1 Further information

The following pages provide a programming overview and code. Additional informa-

tion can be found under the following link: http://www.engr.uvic.ca/~ndjilali/

Broeer-supplementary.html

http://www.engr.uvic.ca/~ndjilali/Broeer-supplementary.html
http://www.engr.uvic.ca/~ndjilali/Broeer-supplementary.html
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B.2 Programming overview

� ������ �� �	�
� �
������ ��� �	
� �� 
	��


����� �	�
� �
���	��� �� 
�� ��
� � �
 �

� 
����� 
� � �� 
�
� �� 	�� 	�
 ��
�

� ����� ����	

�
	��� �
��		���

����	�����
������ ��

� �
�� �
��
�� 	� 

������ ��

� ����� 
� �
���	� 	��� 	��

���

����
� 	 ����� 	 �
���� ��	 � � �� �
	


����� �	�
� �
� �	���� �� ����

� ���� ����� 
����� 
� �

� ������ ��
	�� � �� ��
� ��� �� �

� ������ ��
� ���
 ���������

�� 	��	��
��
�

� ��
���
�� 
�

� 	��
��
�

 	� � �� 
	�� ���� �
�

Figure B.1: Overview of programs, input- and output files
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OVERVIEW: IEEE-4 feeder generator
Population script to add houses, generators and a market to a modified IEEE 4-node

Based on: Feeder_Generator.m (open-source tool from PNNL)

Requires regionalization.m to be in the same folder

Last major modification: May 10, 2014

Initialization / Prepare workspace
close all;
clear all;
clc;

%File name to output GridLAB-D Macro Language file(GLM)
FileOutput='C:\Sync_Notebook\Test_GLM_File.glm';

%base recorder name
BaseRecorderName='MarketTest';

%Number of houses to populate
NumHouses=1000;

%Minimum timestep (seconds)
MinTimeStep=60;

%Recorder interval
RecorderInterval=60;

%Market parameters
MarketPeriod=300;               %market intervall = 5 minutes
MarketVerbose=0;
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MarketPriceCap=350;             %max. bid price = $3.5
MarketInitialPrice=50;          %Statistics initialization
MarketInitialStdDev=10;         %Statistics initialization
MarketCapacityReferenceBid=350;
MarketMaxCapacityReferenceQuantity=0;

%Time Parameters
StartTime='2009-01-04 00:00:00';
EndTime='2009-01-14 00:00:00';
TimeZone='PST+8PDT';

%Weather
WeatherFile='WA-Seattle.tmy2';

%Weather region
% 1 - West Coast - temperate
% 2 - North Central/Northeast - cold/cold
% 3 - Southwest - hot/arid
% 4 - Southeast/Central - hot/cold
% 5 - Southeast coastal - hot/humid
% 6 - Hawaii - sub-tropical (not part of original taxonomy)
WeatherRegion=1; % West coast weather (Seattle data)

%Want market controllers in the system?
%0 = none (no market), 1 = on
Want_Controllers=1;

%Want wind power in the system?
%0 = none, 1 = on
Want_Wind=1;

%Powerflow solver
%0 = FBS, 1 = NR
PowerflowSolver=1; % NR

%Pause at exit?
PauseAtExit=1;

%Initialize random stream
StreamVal = RandStream.create('mrg32k3a','NumStreams',1);

%Insure it is default
if ( verLessThan('matlab','8.1') )
    RandStream.setDefaultStream(StreamVal); %#ok<SETRS>
else
    RandStream.setGlobalStream(StreamVal);
end

%House phases
TempVar=rand(NumHouses,1);
HousePhaseAssignment=3*ones(NumHouses,1);
HousePhaseAssignment(TempVar<=0.33)=1;
HousePhaseAssignment((TempVar>0.33) & (TempVar<=0.67))=2;
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%Get number of houses per phase
NumHousesPerPhase=[sum(HousePhaseAssignment==1)...
    sum(HousePhaseAssignment==2) sum(HousePhaseAssignment==3)];

%Pull region information
regional_data = regionalization(WeatherRegion);

% Create a histogram of what the thermal integrity of the houses should be
% Ceiling function will create a few extra houses in histogram, but its
% needed
thermal_integrity = ceil(regional_data.thermal_percentages * NumHouses);

total_houses_by_type = sum(thermal_integrity.');

%only allow pool pumps on single family homes
no_pool_pumps = total_houses_by_type(1);

%Extract set point information
cool_sp = zeros(size(regional_data.cooling_setpoint{1}(:,1),1),3);
heat_sp = zeros(size(regional_data.heating_setpoint{1}(:,1),1),3);

for typeind=1:3
    cool_sp(:,typeind) = ceil(regional_data.cooling_setpoint{typeind}...
        (:,1) * total_houses_by_type(typeind));
    heat_sp(:,typeind) = ceil(regional_data.heating_setpoint{typeind}...
        (:,1) * total_houses_by_type(typeind));
end

%Large vs small percentage
TempValues=rand(NumHouses,1);
LargeVersusSmallValues=50*ones(NumHouses,1);
LargeVersusSmallValues(TempValues<=regional_data.percentageSmall)=-50;

Set parameter
skew_value = regional_data.residential_skew_std*randn(NumHouses,1);
skew_value(skew_value < -regional_data.residential_skew_max) =...
    -regional_data.residential_skew_max;
skew_value(skew_value > regional_data.residential_skew_max) =...
    regional_data.residential_skew_max;

wh_skew_value = 3*regional_data.residential_skew_std*randn(NumHouses,1);
wh_skew_value(wh_skew_value < -6*regional_data.residential_skew_max) =...
    -6*regional_data.residential_skew_max;
wh_skew_value(wh_skew_value > 6*regional_data.residential_skew_max) =...
    6*regional_data.residential_skew_max;

% scale this skew up to weeks
pp_skew_value = 128*regional_data.residential_skew_std*randn(NumHouses,1);
pp_skew_value(pp_skew_value < -128*regional_data.residential_skew_max) =...
    -128*regional_data.residential_skew_max;
pp_skew_value(pp_skew_value > 128*regional_data.residential_skew_max) =...
    128*regional_data.residential_skew_max;
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**** Creating output file ****

Headers
%open the file handle
fHandle=fopen(FileOutput,'wt');

%Start the initial matter
fprintf(fHandle,'//IEEE 4-node file - generated %s\n',...
    datestr(now,'yyyy-mm-dd HH:MM:SS'));
fprintf(fHandle,'//Generated with prefix ''%s''\n',BaseRecorderName);
fprintf(fHandle,...
    '//Contained %d houses - [%d %d %d] in Weather Region %d\n',...
    NumHouses,NumHousesPerPhase(1),NumHousesPerPhase(2),...
    NumHousesPerPhase(3),WeatherRegion);
fprintf(fHandle,...
    '//Run with mininum_timestep=%d and recorders set at %d\n',...
    MinTimeStep,RecorderInterval);
if (Want_Controllers==1)
    fprintf(fHandle,['//Market ran with period=%d, price cap=%.2f,'...
        'initial_price=%.2f, initial_std_dev=%.2f\n'],...
        MarketPeriod,MarketPriceCap,MarketInitialPrice,...
        MarketInitialStdDev);
    fprintf(fHandle,['//...and capicity reference bid=%.2f and max '...
        'capacity reference quantity=%.2f\n'],...
        MarketCapacityReferenceBid,MarketMaxCapacityReferenceQuantity);
    fprintf(fHandle,'//Controllers on all devices\n');
else
    fprintf(fHandle,['//Market ran with period=%d, price cap=%.2f,'...
        'initial_price=%.2f, initial_std_dev=%.2f\n'],MarketPeriod,...
        MarketPriceCap,MarketInitialPrice,MarketInitialStdDev);
    fprintf(fHandle,['//and capicity reference bid=%.2f and max'...
        'capacity reference quantity=%.2f\n'],...
        MarketCapacityReferenceBid,MarketMaxCapacityReferenceQuantity);
    fprintf(fHandle,'//No Controllers\n');
end
if (PowerflowSolver==0)
    fprintf(fHandle,'//FBS Powerflow solver\n\n');
else
    fprintf(fHandle,'//NR Powerflow solver\n\n');
end

%Definitions
fprintf(fHandle,'#set suppress_repeat_messages=0\n');
fprintf(fHandle,'#set minimum_timestep=%d\n',MinTimeStep);
fprintf(fHandle,'#set profiler=1\n');
fprintf(fHandle,'#set randomseed=10\n');
if (PauseAtExit==1)
    fprintf(fHandle,'#set pauseatexit=1\n');
end
fprintf(fHandle,'#include "water_and_setpoint_schedule_v5.glm";\n');
fprintf(fHandle,'#include "appliance_schedules.glm";\n\n');
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fprintf(fHandle,'clock {\n');
fprintf(fHandle,'\ttimezone %s;\n',TimeZone);
fprintf(fHandle,'\tstarttime ''%s'';\n',StartTime);
fprintf(fHandle,'\tstoptime ''%s'';\n',EndTime);
fprintf(fHandle,'}\n\n');
fprintf(fHandle,'module tape;\n');
fprintf(fHandle,'module climate;\n');
fprintf(fHandle,'module market;\n');
fprintf(fHandle,'module residential {\n');
fprintf(fHandle,'\timplicit_enduses NONE;\n');
fprintf(fHandle,'}\n');
fprintf(fHandle,'module powerflow {\n');
if (PowerflowSolver==0)
 fprintf(fHandle,'\tsolver_method FBS;\n');
else
 fprintf(fHandle,'\tsolver_method NR;\n');
 fprintf(fHandle,'\tNR_iteration_limit 50;\n');
end
fprintf(fHandle,'}\n\n');
fprintf(fHandle,'class auction {\n');
fprintf(fHandle,'\tdouble current_price_mean_24h;\n');
fprintf(fHandle,'\tdouble current_price_stdev_24h;\n');
fprintf(fHandle,'}\n\n');
fprintf(fHandle,'object climate {\n');
fprintf(fHandle,'\tname "WeatherData";\n');
fprintf(fHandle,'\ttmyfile "%s";\n',WeatherFile);
fprintf(fHandle,'\tinterpolate QUADRATIC;\n');
fprintf(fHandle,'}\n\n');
fprintf(fHandle,'#include "Test_Feeder_Line_Configurations.glm";\n\n');

Auction object
if (Want_Controllers==1 || Want_Controllers==0)
    fprintf(fHandle,'object auction {\n');
    fprintf(fHandle,'\tname Market_1;\n');
    fprintf(fHandle,'\tperiod %d;\n',MarketPeriod);
    fprintf(fHandle,'\tunit kW;\n');
    if (MarketVerbose==1)
        fprintf(fHandle,'\tverbose TRUE;\n');
    end
    fprintf(fHandle,'\tspecial_mode NONE;\n');
    fprintf(fHandle,'\tprice_cap %f;\n',MarketPriceCap);
    fprintf(fHandle,'\tinit_price %f;\n',MarketInitialPrice);
    fprintf(fHandle,'\tinit_stdev %f;\n',MarketInitialStdDev);
    fprintf(fHandle,'\twarmup 0;\n');
    fprintf(fHandle,'\tcapacity_reference_object controller_9999;\n');
    fprintf(fHandle,'\tcapacity_reference_property power_out_real;\n');
    fprintf(fHandle,'\tcapacity_reference_bid_price %f;\n',...
        MarketCapacityReferenceBid);
    fprintf(fHandle,'\tmax_capacity_reference_bid_quantity %f;\n',...
        MarketMaxCapacityReferenceQuantity);
    fprintf(fHandle,'\tcurve_log_file "%s_market_bids.csv";\n',...
        BaseRecorderName);
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    fprintf(fHandle,'\tcurve_log_info EXTRA;\n');
    fprintf(fHandle,'\tobject recorder {\n');
    fprintf(fHandle,['\t\tproperty "current_market.clearing_price,'...
        'current_market.clearing_quantity,fixed_price,fixed_quantity";\n']);
    fprintf(fHandle,'\t\tinterval %d;\n',RecorderInterval);
    fprintf(fHandle,'\t\tfile "%s_marketvalues.csv";\n',BaseRecorderName);
    fprintf(fHandle,'\t};\n');
    fprintf(fHandle,'}\n\n');
end

IEEE-4 system with triplex
fprintf(fHandle,'///////////////////////////////////////////\n');
fprintf(fHandle,'// BEGIN: IEEE-4 Feeder - main part\n');
fprintf(fHandle,'///////////////////////////////////////////\n\n');
fprintf(fHandle,'object node {\n');
fprintf(fHandle,'\tname node1;\n');
fprintf(fHandle,'\tphases "ABCN";\n');
fprintf(fHandle,'\tbustype SWING;\n');
fprintf(fHandle,'\tnominal_voltage 7200;\n');
fprintf(fHandle,'}\n\n');
fprintf(fHandle,'object overhead_line {\n');
fprintf(fHandle,'\tname ohl12;\n');
fprintf(fHandle,'\tphases "ABCN";\n');
fprintf(fHandle,'\tfrom node1;\n');
fprintf(fHandle,'\tto node2;\n');
fprintf(fHandle,'\tlength 2000;\n');
fprintf(fHandle,'\tconfiguration lc300;\n');
fprintf(fHandle,'}\n\n');
fprintf(fHandle,'object node {\n');
fprintf(fHandle,'\tname node2;\n');
fprintf(fHandle,'\tphases "ABCN";\n');
fprintf(fHandle,'\tnominal_voltage 7200;\n');
fprintf(fHandle,'}\n\n');
fprintf(fHandle,'object transformer {\n');
fprintf(fHandle,'\tname controller_9999;\n');
fprintf(fHandle,'\tphases "ABCN";\n');
fprintf(fHandle,'\tfrom node2;\n');
fprintf(fHandle,'\tto node3;\n');
fprintf(fHandle,'\tconfiguration tc400;\n');
fprintf(fHandle,'}\n\n');
fprintf(fHandle,'object node {\n');
fprintf(fHandle,'\tname node3;\n');
fprintf(fHandle,'\tphases "ABCN";\n');
fprintf(fHandle,'\tnominal_voltage 2400;\n');
fprintf(fHandle,'}\n\n');
fprintf(fHandle,'object overhead_line {\n');
fprintf(fHandle,'\tname ohl34;\n');
fprintf(fHandle,'\tphases "ABCN";\n');
fprintf(fHandle,'\tfrom node3;\n');
fprintf(fHandle,'\tto node4;\n');
fprintf(fHandle,'\tlength 2500;\n');
fprintf(fHandle,'\tconfiguration lc300;\n');
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fprintf(fHandle,'}\n\n');
fprintf(fHandle,'object node {\n');
fprintf(fHandle,'\tname node4;\n');
fprintf(fHandle,'\tphases "ABCN";\n');
fprintf(fHandle,'\tnominal_voltage 2400;\n');
fprintf(fHandle,'}\n\n');

Load object for generators
fprintf(fHandle,'//Load object - for gen controller objects\n');
fprintf(fHandle,'object load {\n');
fprintf(fHandle,'\tname gen_control_connect;\n');
fprintf(fHandle,'\tparent node1;\n');
fprintf(fHandle,'\tnominal_voltage 7200.0;\n');
fprintf(fHandle,'\tphases ABCN;\n');
fprintf(fHandle,'\tobject recorder {\n');
fprintf(fHandle,['\t\tproperty "constant_power_A,constant_power_B,'...
    'constant_power_C";\n']);
fprintf(fHandle,'\t\tinterval %d;\n',RecorderInterval);
fprintf(fHandle,'\t\tfile "%s_generator_controller.csv";\n',...
    BaseRecorderName);
fprintf(fHandle,'\t};\n');
fprintf(fHandle,'}\n\n');

Triplex portions
fprintf(fHandle,'//////////////////////////////////////////////\n');
fprintf(fHandle,'// BEGIN :Transformer and triplex_nodes\n');
fprintf(fHandle,'//////////////////////////////////////////////\n\n');
fprintf(fHandle,'//Triplex Transformers\n\n');
fprintf(fHandle,'object transformer {\n');
fprintf(fHandle,'\tname center_tap_1;\n');
fprintf(fHandle,'\tphases AS;\n');
fprintf(fHandle,'\tfrom node4;\n');
fprintf(fHandle,'\tto trip_node_AS;\n');
fprintf(fHandle,'\tconfiguration AS_config;\n');
fprintf(fHandle,'}\n\n');
fprintf(fHandle,'object transformer {\n');
fprintf(fHandle,'\tname center_tap_2;\n');
fprintf(fHandle,'\tphases BS;\n');
fprintf(fHandle,'\tfrom node4;\n');
fprintf(fHandle,'\tto trip_node_BS;\n');
fprintf(fHandle,'\tconfiguration BS_config;\n');
fprintf(fHandle,'}\n\n');
fprintf(fHandle,'object transformer {\n');
fprintf(fHandle,'\tname center_tap_3;\n');
fprintf(fHandle,'\tphases CS;\n');
fprintf(fHandle,'\tfrom node4;\n');
fprintf(fHandle,'\tto trip_node_CS;\n');
fprintf(fHandle,'\tconfiguration CS_config;\n');
fprintf(fHandle,'}\n\n');
fprintf(fHandle,'//Triplex nodes\n\n');
fprintf(fHandle,'object triplex_node {\n');
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fprintf(fHandle,'\tname trip_node_AS;\n');
fprintf(fHandle,'\tphases AS;\n');
fprintf(fHandle,'\tnominal_voltage 120;\n');
fprintf(fHandle,'}\n\n');
fprintf(fHandle,'object triplex_node {\n');
fprintf(fHandle,'\tname trip_node_BS;\n');
fprintf(fHandle,'\tphases BS;\n');
fprintf(fHandle,'\tnominal_voltage 120;\n');
fprintf(fHandle,'}\n\n');
fprintf(fHandle,'object triplex_node {\n');
fprintf(fHandle,'\tname trip_node_CS;\n');
fprintf(fHandle,'\tphases CS;\n');
fprintf(fHandle,'\tnominal_voltage 120;\n');
fprintf(fHandle,'}\n\n');
fprintf(fHandle,'//Triplex meters\n\n');
fprintf(fHandle,'object triplex_meter {\n');
fprintf(fHandle,'\tname trip_meter_AS;\n');
fprintf(fHandle,'\tphases AS;\n');
fprintf(fHandle,'\tnominal_voltage 120;\n');
fprintf(fHandle,'}\n\n');
fprintf(fHandle,'object triplex_meter {\n');
fprintf(fHandle,'\tname trip_meter_BS;\n');
fprintf(fHandle,'\tphases BS;\n');
fprintf(fHandle,'\tnominal_voltage 120;\n');
fprintf(fHandle,'}\n\n');
fprintf(fHandle,'object triplex_meter {\n');
fprintf(fHandle,'\tname trip_meter_CS;\n');
fprintf(fHandle,'\tphases CS;\n');
fprintf(fHandle,'\tnominal_voltage 120;\n');
fprintf(fHandle,'}\n\n');
fprintf(fHandle,'//Triplex lines\n\n');
fprintf(fHandle,'object triplex_line {\n');
fprintf(fHandle,'\tname trip_line_AS;\n');
fprintf(fHandle,'\tphases AS;\n');
fprintf(fHandle,'\tfrom trip_node_AS;\n');
fprintf(fHandle,'\tto trip_meter_AS;\n');
fprintf(fHandle,'\tlength 10;\n');
fprintf(fHandle,'\tconfiguration triplex_line_configuration_1;\n');
fprintf(fHandle,'}\n\n');
fprintf(fHandle,'object triplex_line {\n');
fprintf(fHandle,'\tname trip_line_BS;\n');
fprintf(fHandle,'\tphases BS;\n');
fprintf(fHandle,'\tfrom trip_node_BS;\n');
fprintf(fHandle,'\tto trip_meter_BS;\n');
fprintf(fHandle,'\tlength 10;\n');
fprintf(fHandle,'\tconfiguration triplex_line_configuration_1;\n');
fprintf(fHandle,'}\n\n');
fprintf(fHandle,'object triplex_line {\n');
fprintf(fHandle,'\tname trip_line_CS;\n');
fprintf(fHandle,'\tphases CS;\n');
fprintf(fHandle,'\tfrom trip_node_CS;\n');
fprintf(fHandle,'\tto trip_meter_CS;\n');
fprintf(fHandle,'\tlength 10;\n');
fprintf(fHandle,'\tconfiguration triplex_line_configuration_1;\n');
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fprintf(fHandle,'}\n\n');
fprintf(fHandle,'//////////////////////////////////////////////\n');
fprintf(fHandle,'// END: Pure Powerflow Portions\n');
fprintf(fHandle,'//////////////////////////////////////////////\n\n');

Generator controller objects
fprintf(fHandle,'/////////////////////////////////////////////\n');
fprintf(fHandle,'//Generator_controller objects\n');
fprintf(fHandle,'/////////////////////////////////////////////\n');

%Determine how many generator controllers there are
NumGenControllers=size(regional_data.GenControlInformation,1);

if (~isempty(NumGenControllers))
 if (NumGenControllers>1)
  for gVals=1:NumGenControllers

   %Print the generator controllers
   fprintf(fHandle,'object generator_controller {\n');
   fprintf(fHandle,'\tparent gen_control_connect;\n');
   fprintf(fHandle,'\tname generator_controller_%d;\n',gVals);
   fprintf(fHandle,'\tmarket Market_1;\n');
   fprintf(fHandle,'\tgenerator_rating %.2f;\n',...
                regional_data.GenControlInformation{gVals}{1});
   fprintf(fHandle,'\tgenerator_state %s;\n',...
                regional_data.GenControlInformation{gVals}{2});
   fprintf(fHandle,'\tbid_curve "%s";\n',...
                regional_data.GenControlInformation{gVals}{3});
   fprintf(fHandle,'\tbid_delay 1;\n');
   fprintf(fHandle,'\tstartup_cost %.2f;\n',...
                regional_data.GenControlInformation{gVals}{4});
   fprintf(fHandle,'\tshutdown_cost %.2f;\n',...
                regional_data.GenControlInformation{gVals}{5});
   fprintf(fHandle,'\tminimum_runtime %.2f min;\n',...
                regional_data.GenControlInformation{gVals}{6});
   fprintf(fHandle,'\tminimum_downtime %.2f min;\n',...
                regional_data.GenControlInformation{gVals}{7});
   fprintf(fHandle,'\tamortization_factor %.2f 1/h;\n',...
                regional_data.GenControlInformation{gVals}{8});
   fprintf(fHandle,'\tinput_unit_base 1000 kW;\n');
   fprintf(fHandle,'\tobject recorder {\n');
   fprintf(fHandle,['\t\tproperty "generator_output,'...
                'generator_state,capacity_factor";\n']);
   fprintf(fHandle,'\t\tinterval %d;\n',RecorderInterval);
   fprintf(fHandle,'\t\tfile "%s_gen_controller_%d.csv";\n',...
                BaseRecorderName,gVals);
   fprintf(fHandle,'\t};\n');
   fprintf(fHandle,'}\n');
  end
 end
end
fprintf(fHandle,'\n');
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Wind farm
if (Want_Wind==1)

fprintf(fHandle,'/////////////////////////////////////////////\n');
fprintf(fHandle,'//This represetns a wind farm');
fprintf(fHandle,'/////////////////////////////////////////////\n');

fprintf(fHandle,'object generator_controller {\n');
fprintf(fHandle,'parent gen_control_connect;\n');
fprintf(fHandle,'name gen_wind_power;\n');
fprintf(fHandle,'market Market_1;\n');
fprintf(fHandle,'generator_rating 1725.00;\n');
fprintf(fHandle,'object player {\n');
fprintf(fHandle,'file windpower.player;\n');
fprintf(fHandle,'property bid_generator_rating; //generator_rating;\n');
fprintf(fHandle,'};\n');
fprintf(fHandle,'generator_state OFF;\n');
fprintf(fHandle,'bid_curve "1725.00 0";\n');
fprintf(fHandle,'object player {\n');
fprintf(fHandle,'file windpower_new.player;\n');
fprintf(fHandle,'property bid_curve;\n');
fprintf(fHandle,'};\n');
fprintf(fHandle,'object player {\n');
fprintf(fHandle,'file windpower_bool.player;\n');
fprintf(fHandle,'property "update_curve";\n');
fprintf(fHandle,'};\n');
fprintf(fHandle,'object recorder {\n');
fprintf(fHandle,['property "generator_output,generator_state,'...
    'capacity_factor";\n']);
fprintf(fHandle,'interval 60;\n');
fprintf(fHandle,'file "gen_wind_power_output.csv";\n');
fprintf(fHandle,'};\n');
fprintf(fHandle,'}\n');
end

Residential houses
%Common variables
building_type = {'Single Family';'Apartment';'Mobile Home'};

%Slider settings
% limit slider randomization to Olypen style
slider_random = 0.45 + (0.2).*randn(NumHouses,1);
    sl1 = slider_random > regional_data.market_info;
slider_random(sl1) = regional_data.market_info;
    sl2 = slider_random < 0;
slider_random(sl2) = 0;

fprintf(fHandle,'/////////////////////////////////////////////\n');
fprintf(fHandle,'//Houses\n');
fprintf(fHandle,'/////////////////////////////////////////////\n');
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%Loop through the houses and output them
for hVals=1:NumHouses

    %Print first parts of house values
    fprintf(fHandle,'object house {\n');
 fprintf(fHandle,'\tname house_%d;\n',hVals);
    if (HousePhaseAssignment(hVals)==1)
        fprintf(fHandle,'\tparent trip_meter_AS;\n');
    elseif (HousePhaseAssignment(hVals)==2)
        fprintf(fHandle,'\tparent trip_meter_BS;\n');
    else
        fprintf(fHandle,'\tparent trip_meter_CS;\n');
    end
    fprintf(fHandle,'\tgroupid Residential;\n');
 fprintf(fHandle,'\tschedule_skew %.0f;\n',skew_value(hVals));

    %Determine thermal integrity and floor area properties
    % Choose what type of building we are going to use
    % and set the thermal integrity of said building
        [size_a,size_b] = size(thermal_integrity);

        therm_int = ceil(size_a * size_b * rand(1));

        row_ti = mod(therm_int,size_a) + 1;
        col_ti = mod(therm_int,size_b) + 1;
        while ( thermal_integrity(row_ti,col_ti) < 1 )
            therm_int = ceil(size_a * size_b * rand(1));

            row_ti = mod(therm_int,size_a) + 1;
            col_ti = mod(therm_int,size_b) + 1;
        end

        thermal_integrity(row_ti,col_ti) = ...
            thermal_integrity(row_ti,col_ti) - 1;

        thermal_temp = regional_data.thermal_properties(row_ti,col_ti);

        f_area = regional_data.floor_area(row_ti);
        story_rand = rand(1);
        height_rand = randi(2);
        fa_rand = rand(1);
        if (col_ti == 1) % SF homes
            floor_area = f_area + (f_area/2) * fa_rand * (row_ti - 4)/3;
            if (story_rand < regional_data.one_story(WeatherRegion))
                stories = 1;
            else
                stories = 2;
            end
        else
            floor_area = f_area + (f_area/2) * (0.5 - fa_rand); %+/- 50%
            stories = 1;
            height_rand = 0;
        end
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        % Now also adjust square footage as a factor of whether
        % the load modifier (avg_house) rounded up or down
        floor_area = (1 + LargeVersusSmallValues(hVals)) * floor_area;

        if (floor_area > 4000)
            floor_area = 3800 + fa_rand*200;
        elseif (floor_area < 300)
            floor_area = 300 + fa_rand*100;
        end

        fprintf(fHandle,'\tfloor_area %.0f;\n',floor_area);
        fprintf(fHandle,'\tnumber_of_stories %.0f;\n',stories);
        ceiling_height = 8 + height_rand;
        fprintf(fHandle,'\tceiling_height %.0f;\n',ceiling_height);
        os_rand = regional_data.over_sizing_factor * (.8 + 0.4*rand);
        fprintf(fHandle,'\tover_sizing_factor %.1f;\n',os_rand);
        fprintf(fHandle,'\t//Thermal integrity -> %s %.0f\n',...
            building_type{row_ti},col_ti);

        rroof = thermal_temp{1}(1)*(0.8 + 0.4*rand(1));
        fprintf(fHandle,'\tRroof %.2f;\n',rroof);

        rwall = thermal_temp{1}(2)*(0.8 + 0.4*rand(1));
        fprintf(fHandle,'\tRwall %.2f;\n',rwall);

        rfloor = thermal_temp{1}(3)*(0.8 + 0.4*rand(1));
        fprintf(fHandle,'\tRfloor %.2f;\n',rfloor);
        fprintf(fHandle,'\tglazing_layers %.0f;\n',thermal_temp{1}(4));
        fprintf(fHandle,'\tglass_type %.0f;\n',thermal_temp{1}(5));
        fprintf(fHandle,'\tglazing_treatment %.0f;\n',thermal_temp{1}(6));
        fprintf(fHandle,'\twindow_frame %.0f;\n',thermal_temp{1}(7));

        rdoor = thermal_temp{1}(8)*(0.8 + 0.4*rand(1));
        fprintf(fHandle,'\tRdoors %.2f;\n',rdoor);
        fprintf(fHandle,'\tRwindows 1.81;\n');

        airchange = thermal_temp{1}(9)*(0.8 + 0.4*rand(1));
        fprintf(fHandle,'\tairchange_per_hour %.2f;\n',airchange);

        c_COP = thermal_temp{1}(11) + rand(1)*(thermal_temp{1}(10) - ...
            thermal_temp{1}(11));
        fprintf(fHandle,'\tcooling_COP %.1f;\n',c_COP);

        % set init_temp
        init_temp = 69 + 4*rand(1);
        fprintf(fHandle,'\tair_temperature %.2f;\n',init_temp);
        fprintf(fHandle,'\tmass_temperature %.2f;\n',init_temp);

        mass_floor = 2.5 + 1.5*rand(1);
        fprintf(fHandle,'\ttotal_thermal_mass_per_floor_area %.3f;\n',...
            mass_floor);

    %Heating type information
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        heat_type = rand(1);
        cool_type = rand(1);
        h_COP = c_COP;
        ct = 'NONE';

        if (heat_type <= regional_data.perc_gas)
            fprintf(fHandle,'\theating_system_type GAS;\n');
            if (cool_type <= regional_data.perc_AC)
                fprintf(fHandle,'\tcooling_system_type ELECTRIC;\n');
                ct = 'ELEC';
            else
                fprintf(fHandle,'\tcooling_system_type NONE;\n');
            end
            ht = 'GAS';
        elseif (heat_type <= (regional_data.perc_gas + ...
                regional_data.perc_pump))
            fprintf(fHandle,'\theating_system_type HEAT_PUMP;\n');
            fprintf(fHandle,'\theating_COP %.1f;\n',h_COP);
            fprintf(fHandle,'\tcooling_system_type ELECTRIC;\n');
            fprintf(fHandle,'\tauxiliary_strategy DEADBAND;\n');
            fprintf(fHandle,'\tauxiliary_system_type ELECTRIC;\n');
            fprintf(fHandle,'\tmotor_model BASIC;\n');
            fprintf(fHandle,'\tmotor_efficiency AVERAGE;\n');
            ht = 'HP';
            ct = 'ELEC';

        else
            fprintf(fHandle,'\theating_system_type RESISTANCE;\n');
            if (cool_type <= regional_data.perc_AC)
                fprintf(fHandle,'\tcooling_system_type ELECTRIC;\n');
                fprintf(fHandle,'\tmotor_model BASIC;\n');
                fprintf(fHandle,'\tmotor_efficiency GOOD;\n');
                ct = 'ELEC';
            else
                fprintf(fHandle,'\tcooling_system_type NONE;\n');
            end
            ht = 'ELEC';
        end

    %Breaker values
        fprintf(fHandle,'\tbreaker_amps 1000;\n');
        fprintf(fHandle,'\thvac_breaker_rating 1000;\n');

    %Choose the heating and cooling schedule
        cooling_set = ceil(regional_data.no_cool_sch*rand(1));
        heating_set = ceil(regional_data.no_heat_sch*rand(1));

        % choose a cooling bin
        coolsp = regional_data.cooling_setpoint{row_ti};
        [no_cool_bins,junk] = size(coolsp);

        % see if we have that bin left
        cool_bin = randi(no_cool_bins);
        while (cool_sp(cool_bin,row_ti) < 1)
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            cool_bin = randi(no_cool_bins);
        end
        cool_sp(cool_bin,row_ti) = cool_sp(cool_bin,row_ti) - 1;

        % choose a heating bin
        heatsp = regional_data.heating_setpoint{row_ti};
        [no_heat_bins,~] = size(heatsp);
        heat_bin = randi(no_heat_bins);
        heat_count = 1;

        % see if we have that bin left, then check to make sure
        % upper limit of chosen bin is not greater than lower limit
        % of cooling bin
        while (heat_sp(heat_bin,row_ti) < 1 || (heatsp(heat_bin,3) >= ...
                coolsp(cool_bin,4)))
            heat_bin = randi(no_heat_bins);

            if (heat_count > 20)
                heat_bin = 1;
                break;
            end

            heat_count = heat_count + 1;
        end
        heat_sp(heat_bin,row_ti) = heat_sp(heat_bin,row_ti) - 1;

        % randomly choose within the bin, then +/- one
        % degree to seperate the deadbands
        cool_night = (coolsp(cool_bin,3) - coolsp(cool_bin,4))*rand(1) +...
            coolsp(cool_bin,4) + 1;
        heat_night = (heatsp(heat_bin,3) - heatsp(heat_bin,4))*rand(1) +...
            heatsp(heat_bin,4) - 1;

        cool_night_diff = coolsp(cool_bin,2) * 2 * rand(1);
        heat_night_diff = heatsp(heat_bin,2) * 2 * rand(1);

 %Remaining house properties
 fprintf(fHandle,'\thvac_power_factor 0.97;\n');
 fprintf(fHandle,'\tfan_type ONE_SPEED;\n');
 fprintf(fHandle,'\tnumber_of_doors 2;\n');

    fprintf(fHandle,'\tcooling_setpoint %.2f;\n',cool_night);

    fprintf(fHandle,'\theating_setpoint heating%d*%.2f+%.2f;\n',...
        heating_set,heat_night_diff,heat_night);

    %Controller writing
    if (Want_Controllers==1)
        fprintf(fHandle,'\tthermostat_deadband 0.001;\n');
        fprintf(fHandle,'\tdlc_offset 100;\n');

  % pull in the slider response level
  slider = slider_random(hVals);
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  % set the pre-cool / pre-heat range to really small
  % to get rid of it.
  s_tstat = 6;
  hrh = 1+5*(1-slider);
  crh = 5-5*(1-slider);
  hrl = -2.005+0*(1-slider);
  crl = -0.005+0*(1-slider);

  crh2 = s_tstat + (1 - slider) * (3 - s_tstat);
  crl2 = s_tstat + (1 - slider) * (3 - s_tstat);

        % below are the changed heating ramp settings
        hrh2 = -s_tstat - (1 - slider); %* (3 - s_tstat); %!!! TB changed
        hrl2 = -s_tstat - (1 - slider); %* (3 - s_tstat); %!!! TB changed

        if (strcmp(ht,'HP') ~= 0) % Control both therm setpoints
   fprintf(fHandle,'\tcooling_setpoint %.2f;\n',cool_night);
   fprintf(fHandle,'\theating_setpoint %.2f;\n',cool_night-3);
   fprintf(fHandle,'\tobject controller {\n');
   fprintf(fHandle,'\t\tschedule_skew %.0f;\n',skew_value(hVals));
   fprintf(fHandle,'\t\tbid_delay 1;\n');
   fprintf(fHandle,'\t\tname controller_%d;\n',hVals);
   fprintf(fHandle,'\t\tmarket Market_1;\n');
   fprintf(fHandle,'\t\tuse_override ON;\n');
   fprintf(fHandle,'\t\toverride override;\n');
   fprintf(fHandle,'\t\tbid_mode ON;\n');
   fprintf(fHandle,'\t\tcontrol_mode DOUBLE_RAMP;\n');
   fprintf(fHandle,'\t\tresolve_mode DEADBAND;\n');
   fprintf(fHandle,'\t\theating_range_high %.3f;\n',hrh);
   fprintf(fHandle,'\t\tcooling_range_high %.3f;\n',crh);
   fprintf(fHandle,'\t\theating_range_low %.3f;\n',hrl);
   fprintf(fHandle,'\t\tcooling_range_low %.3f;\n',crl);
   fprintf(fHandle,'\t\theating_ramp_high %.3f;\n',hrh2);
   fprintf(fHandle,'\t\tcooling_ramp_high %.3f;\n',crh2);
   fprintf(fHandle,'\t\theating_ramp_low %.3f;\n',hrl2);
   fprintf(fHandle,'\t\tcooling_ramp_low %.3f;\n',crl2);
   fprintf(fHandle,['\t\tcooling_base_setpoint '...
                'cooling%d*%.2f+%.2f;\n'],cooling_set,cool_night_diff,...
                cool_night);
   fprintf(fHandle,['\t\theating_base_setpoint '...
                'heating%d*%.2f+%.2f;\n'],heating_set,heat_night_diff,...
                heat_night);
   fprintf(fHandle,'\t\tperiod %d;\n',MarketPeriod);
   fprintf(fHandle,'\t\taverage_target current_price_mean_24h;\n');
   fprintf(fHandle,['\t\tstandard_deviation_target '...
                'current_price_stdev_24h;\n']);
   fprintf(fHandle,'\t\ttarget air_temperature;\n');
   fprintf(fHandle,'\t\theating_setpoint heating_setpoint;\n');
   fprintf(fHandle,'\t\theating_demand last_heating_load;\n');
   fprintf(fHandle,'\t\tcooling_setpoint cooling_setpoint;\n');
   fprintf(fHandle,'\t\tcooling_demand last_cooling_load;\n');
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   fprintf(fHandle,'\t\tdeadband thermostat_deadband;\n');
   fprintf(fHandle,'\t\ttotal hvac_load;\n');
   fprintf(fHandle,'\t\tload hvac_load;\n');
   fprintf(fHandle,'\t\tstate power_state;\n');
   fprintf(fHandle,'\t};\n');
        elseif (strcmp(ht,'ELEC') ~= 0) % Control heat, check if  AC
            if (strcmp(ct,'ELEC') ~= 0) % control like a heat pump

    fprintf(fHandle,'\tcooling_setpoint %.2f;\n',cool_night);
                fprintf(fHandle,['\theating_setpoint '...
                    'heating%d*%.2f+%.2f;\n'],...
                    heating_set,heat_night_diff,heat_night);

    fprintf(fHandle,'\tobject controller {\n');
    fprintf(fHandle,'\t\tschedule_skew %.0f;\n',...
                    skew_value(hVals));
    fprintf(fHandle,'\t\tbid_delay 1;\n');
    fprintf(fHandle,'\t\tname controller_%d;\n',hVals);
    fprintf(fHandle,'\t\tmarket Market_1;\n');
    fprintf(fHandle,'\t\tuse_override ON;\n');
    fprintf(fHandle,'\t\toverride override;\n');
    fprintf(fHandle,'\t\tbid_mode ON;\n');
    fprintf(fHandle,'\t\tcontrol_mode DOUBLE_RAMP;\n');
    fprintf(fHandle,'\t\theating_range_high %.3f;\n',hrh);
    fprintf(fHandle,'\t\tcooling_range_high %.3f;\n',crh);
    fprintf(fHandle,'\t\theating_range_low %.3f;\n',hrl);
    fprintf(fHandle,'\t\tcooling_range_low %.3f;\n',crl);
    fprintf(fHandle,'\t\theating_ramp_high %.3f;\n',hrh2);
    fprintf(fHandle,'\t\tcooling_ramp_high %.3f;\n',crh2);
    fprintf(fHandle,'\t\theating_ramp_low %.3f;\n',hrl2);
    fprintf(fHandle,'\t\tcooling_ramp_low %.3f;\n',crl2);
    fprintf(fHandle,'\t\tcooling_base_setpoint 100;\n');
    fprintf(fHandle,['\t\theating_base_setpoint '...
                    'heating%d*%.2f+%.2f;\n'],heating_set,...
                    heat_night_diff,heat_night);
    fprintf(fHandle,'\t\tperiod %d;\n',MarketPeriod);
    fprintf(fHandle,['\t\taverage_target '...
                    'current_price_mean_24h;\n']);
    fprintf(fHandle,['\t\tstandard_deviation_target '...
                    'current_price_stdev_24h;\n']);
    fprintf(fHandle,'\t\ttarget air_temperature;\n');
    fprintf(fHandle,'\t\theating_setpoint heating_setpoint;\n');
    fprintf(fHandle,'\t\theating_demand heating_demand;\n');
    fprintf(fHandle,'\t\tcooling_setpoint cooling_setpoint;\n');
    fprintf(fHandle,'\t\tcooling_demand last_cooling_load;\n');
    fprintf(fHandle,'\t\tdeadband thermostat_deadband;\n');
    fprintf(fHandle,'\t\ttotal total_load;\n');
    fprintf(fHandle,'\t\tload hvac_load;\n');
    fprintf(fHandle,'\t\tstate power_state;\n');
    fprintf(fHandle,'\t};\n');
            else % control only the heat
    fprintf(fHandle,'\tcooling_setpoint %.2f;\n',cool_night);
    fprintf(fHandle,'\theating_setpoint %.2f;\n',cool_night-3);
    fprintf(fHandle,'\tobject controller {\n');
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    fprintf(fHandle,'\t\tschedule_skew %.0f;\n',...
                    skew_value(hVals));
    fprintf(fHandle,'\t\tbid_delay 1;\n');
    fprintf(fHandle,'\t\tname controller_%d;\n',hVals);
    fprintf(fHandle,'\t\tmarket Market_1;\n');
    fprintf(fHandle,'\t\tuse_override ON;\n');
    fprintf(fHandle,'\t\toverride override;\n');
    fprintf(fHandle,'\t\tbid_mode ON;\n');
    fprintf(fHandle,'\t\tcontrol_mode RAMP;\n');
    fprintf(fHandle,'\t\trange_high %.3f;\n',hrh);
    fprintf(fHandle,'\t\trange_low %.3f;\n',hrl);
    fprintf(fHandle,'\t\tramp_high %.3f;\n',hrh2);
    fprintf(fHandle,'\t\tramp_low %.3f;\n',hrl2);
    fprintf(fHandle,['\t\tbase_setpoint '...
                    'heating%d*%.2f+%.2f;\n'],heating_set,...
                    heat_night_diff,heat_night);
    fprintf(fHandle,'\t\tperiod %d;\n',MarketPeriod);
    fprintf(fHandle,['\t\taverage_target '...
                    'current_price_mean_24h;\n']);
    fprintf(fHandle,['\t\tstandard_deviation_target '...
                    'current_price_stdev_24h;\n']);
    fprintf(fHandle,'\t\ttarget air_temperature;\n');
    fprintf(fHandle,'\t\tsetpoint heating_setpoint;\n');
    fprintf(fHandle,'\t\tdemand last_heating_load;\n');
    fprintf(fHandle,'\t\tdeadband thermostat_deadband;\n');
    fprintf(fHandle,'\t\ttotal hvac_load;\n');
    fprintf(fHandle,'\t\tload hvac_load;\n');
    fprintf(fHandle,'\t\tstate power_state;\n');
    fprintf(fHandle,'\t};\n');
            end
        elseif (strcmp(ct,'ELEC') ~= 0) % gas heat, but control the AC
   fprintf(fHandle,'\theating_setpoint heating%d*%.2f+%.2f;\n',...
                heating_set,heat_night_diff,heat_night);
   fprintf(fHandle,'\tobject controller {\n');
   fprintf(fHandle,'\t\tschedule_skew %.0f;\n',skew_value(hVals));
   fprintf(fHandle,'\t\tbid_delay 1;\n');
   fprintf(fHandle,'\t\tname controller_%d;\n',hVals);
   fprintf(fHandle,'\t\tmarket Market_1;\n');
   fprintf(fHandle,'\t\tuse_override ON;\n');
   fprintf(fHandle,'\t\toverride override;\n');
   fprintf(fHandle,'\t\tbid_mode ON;\n');
   fprintf(fHandle,'\t\tcontrol_mode RAMP;\n');
   fprintf(fHandle,'\t\trange_high %.3f;\n',crh);
   fprintf(fHandle,'\t\trange_low %.3f;\n',crl);
   fprintf(fHandle,'\t\tramp_high %.3f;\n',crh2);
   fprintf(fHandle,'\t\tramp_low %.3f;\n',crl2);
   fprintf(fHandle,'\t\tbase_setpoint cooling%d*%.2f+%.2f;\n',...
                cooling_set,cool_night_diff,cool_night);
   fprintf(fHandle,'\t\tperiod %d;\n',MarketPeriod);
   fprintf(fHandle,['\t\taverage_target '...
                'current_price_mean_24h;\n']);
   fprintf(fHandle,['\t\tstandard_deviation_target '...
                'current_price_stdev_24h;\n']);
   fprintf(fHandle,'\t\ttarget air_temperature;\n');
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   fprintf(fHandle,'\t\tsetpoint cooling_setpoint;\n');
   fprintf(fHandle,'\t\tdemand last_cooling_load;\n');
   fprintf(fHandle,'\t\tdeadband thermostat_deadband;\n');
   fprintf(fHandle,'\t\ttotal hvac_load;\n');
   fprintf(fHandle,'\t\tload hvac_load;\n');
   fprintf(fHandle,'\t\tstate power_state;\n');
   fprintf(fHandle,'\t};\n');
        else % gas heat, no AC, so no control
   fprintf(fHandle,'\tcooling_setpoint cooling%d*%.2f+%.2f;\n',...
                cooling_set,cool_night_diff,cool_night);
   fprintf(fHandle,'\theating_setpoint heating%d*%.2f+%.2f;\n',...
                heating_set,heat_night_diff,heat_night);
        end
    end

    %Auxilliary load pieces

        % scale all of the end-use loads
        scalar1 = 324.9/8907 * floor_area^0.442;
        scalar2 = 0.8 + 0.4 * rand(1);
        scalar3 = 0.8 + 0.4 * rand(1);
        resp_scalar = scalar1 * scalar2;
        unresp_scalar = scalar1 * scalar3;

        % average size is 1.36 kW Energy Savings through Automatic Seasonal
        % Run-Time Adjustment of Pool Filter Pumps Stephen D Allen, B.S.
        % Electrical Engineering
        pool_pump_power = 1.36 + .36*rand(1);
        pool_pump_perc = rand(1);

        % average 4-12 hours / day -> 1/6-1/2 duty cycle
        % typically run for 2 - 4 hours at a time
        pp_dutycycle = 1/6 + (1/2 - 1/6)*rand(1);
        pp_period = 4 + 4*rand(1);
        pp_init_phase = rand(1);

        fprintf(fHandle,'\tobject ZIPload {\n');
        fprintf(fHandle,'\t\t// Unresponsive load\n');
        fprintf(fHandle,'\t\tname house_%d_unresp_load;\n',hVals);
        fprintf(fHandle,'\t\tschedule_skew %.0f;\n',skew_value(hVals));
        fprintf(fHandle,'\t\tbase_power unresponsive_loads*%.2f;\n',...
            unresp_scalar);
        fprintf(fHandle,'\t\theatgain_fraction %.3f;\n',...
            regional_data.heat_fraction);
        fprintf(fHandle,'\t\tpower_pf %.3f;\n',regional_data.p_pf);
        fprintf(fHandle,'\t\tcurrent_pf %.3f;\n',regional_data.i_pf);
        fprintf(fHandle,'\t\timpedance_pf %.3f;\n',regional_data.z_pf);
        fprintf(fHandle,'\t\timpedance_fraction %f;\n',...
            regional_data.zfrac);
        fprintf(fHandle,'\t\tcurrent_fraction %f;\n',regional_data.ifrac);
        fprintf(fHandle,'\t\tpower_fraction %f;\n',regional_data.pfrac);
        fprintf(fHandle,'\t};\n');
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        % pool pumps only on single-family homes
        if (pool_pump_perc < 2*regional_data.perc_poolpumps && ...
                no_pool_pumps >= 1 && row_ti == 1)
            fprintf(fHandle,'\tobject ZIPload {\n');
            fprintf(fHandle,'\t\tname house_%d_ppump;\n',hVals);
            fprintf(fHandle,'\t\t// Pool Pump\n');
            fprintf(fHandle,'\t\tschedule_skew %.0f;\n',...
                pp_skew_value(hVals));
            fprintf(fHandle,'\t\tbase_power pool_pump_season*%.2f;\n',...
                pool_pump_power);
            fprintf(fHandle,'\t\tduty_cycle %.2f;\n',pp_dutycycle);
            fprintf(fHandle,'\t\tphase %.2f;\n',pp_init_phase);
            fprintf(fHandle,'\t\tperiod %.2f;\n',pp_period);
            fprintf(fHandle,'\t\theatgain_fraction 0.0;\n');
            fprintf(fHandle,'\t\tpower_pf %.3f;\n',regional_data.p_pf);
            fprintf(fHandle,'\t\tcurrent_pf %.3f;\n',regional_data.i_pf);
            fprintf(fHandle,'\t\timpedance_pf %.3f;\n',regional_data.z_pf);
            fprintf(fHandle,'\t\timpedance_fraction %f;\n',...
                regional_data.zfrac);
            fprintf(fHandle,'\t\tcurrent_fraction %f;\n',...
                regional_data.ifrac);
            fprintf(fHandle,'\t\tpower_fraction %f;\n',...
                regional_data.pfrac);
            fprintf(fHandle,'\t\tis_240 TRUE;\n');
            fprintf(fHandle,'\t};\n');
        end

  %water heaters
  heat_element = 3.0 + 0.5*randi(5);
  tank_set = 120 + 16*rand(1);
  therm_dead = 4 + 4*rand(1);
  tank_UA = 2 + 2*rand(1);
  water_sch = ceil(regional_data.no_water_sch*rand(1));
  water_var = 0.95 + rand(1) * 0.1; % +/-5% variability
  wh_size_test = rand(1);
  wh_size_rand = randi(3);

        if (heat_type > (1 - regional_data.wh_electric) && ...
                regional_data.use_wh == 1)
            fprintf(fHandle,'\tobject waterheater {\n');
            fprintf(fHandle,'\t\tschedule_skew %.0f;\n',...
                wh_skew_value(hVals));
            fprintf(fHandle,'\t\theating_element_capacity %.1f kW;\n',...
                heat_element);
            fprintf(fHandle,'\t\ttank_setpoint %.1f;\n',tank_set);
            fprintf(fHandle,'\t\ttemperature 132;\n');
            fprintf(fHandle,'\t\tthermostat_deadband %.1f;\n',therm_dead);
            fprintf(fHandle,'\t\tlocation INSIDE;\n');
            fprintf(fHandle,'\t\ttank_UA %.1f;\n',tank_UA);

            if (wh_size_test < regional_data.wh_size(1))
                fprintf(fHandle,'\t\tdemand small_%.0f*%.02f;\n',...
                    water_sch,water_var);
                    whsize = 20 + (wh_size_rand-1) * 5;
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                fprintf(fHandle,'\t\ttank_volume %.0f;\n',whsize);
            elseif (wh_size_test < (regional_data.wh_size(1) + ...
                    regional_data.wh_size(2)))
                if(floor_area < 2000)
                    fprintf(fHandle,'\t\tdemand small_%.0f*%.02f;\n',...
                        water_sch,water_var);
                else
                    fprintf(fHandle,'\t\tdemand large_%.0f*%.02f;\n',...
                        water_sch,water_var);
                end
                    whsize = 30 + (wh_size_rand - 1)*10;
                fprintf(fHandle,'\t\ttank_volume %.0f;\n',whsize);
            elseif (floor_area > 2000)
                    whsize = 50 + (wh_size_rand - 1)*10;
                fprintf(fHandle,'\t\tdemand large_%.0f*%.02f;\n',...
                    water_sch,water_var);
                fprintf(fHandle,'\t\ttank_volume %.0f;\n',whsize);
            else
                fprintf(fHandle,'\t\tdemand large_%.0f*%.02f;\n',...
                    water_sch,water_var);
                    whsize = 30 + (wh_size_rand - 1)*10;
                fprintf(fHandle,'\t\ttank_volume %.0f;\n',whsize);
            end
            fprintf(fHandle,'\t};\n');
        end

 %End house
    fprintf(fHandle,'}\n\n');

end

Recorders for simulation data
fprintf(fHandle,'object multi_recorder {\n');
fprintf(fHandle,'\tfile %s_transformer_power.csv;\n',BaseRecorderName);
fprintf(fHandle,'\tparent controller_9999;\n');
fprintf(fHandle,'\tinterval %d;\n',RecorderInterval);
fprintf(fHandle,['\tproperty power_out_A.real,power_out_A.imag,'...
    'power_out_B.real,power_out_B.imag,power_out_C.real,'...
    'power_out_C.imag,power_out.real,house_1:total_load;\n']);
fprintf(fHandle,'}\n');
fprintf(fHandle,'\n');
fprintf(fHandle,'object recorder {\n');
fprintf(fHandle,'\tparent house_1;\n');
fprintf(fHandle,['\tproperty total_load,air_temperature[degC],'...
    'outdoor_temperature[degC],floor_area,Rroof,Rwall,'...
    'Rfloor,Rdoors,heating_system_type;\n']);
fprintf(fHandle,'\tinterval %d;\n',RecorderInterval);
fprintf(fHandle,'\tfile "%s_base_data_house.csv";\n',BaseRecorderName);
fprintf(fHandle,'}\n');

%close the file handle
fclose(fHandle);
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Regional and base data
% This function regionalization.m supplies regional and base data to the
% main program IEEE4_feeder_generator.m

function data = regionalization(region)

%Regional data that will be imported by the taxonomy script
% Regions:
% 1 - West Coast - temperate
% 2 - North Central/Northeast - cold/cold
% 3 - Southwest - hot/arid
% 4 - Southeast/Central - hot/cold
% 5 - Southeast coastal - hot/humid
% 6 - Hawaii - sub-tropical (not part of original taxonomy)

Regional building data
TODO: Region 6 is unknown right now thermal_percentage integrity percentages {region}(level,sf/apart/
mh) single family homes apartments mobile homes level corresponds to age of home from "Building
Reccs" 1:pre-1940, 2:1940-1949, 3:1950-1959, 4:1960-1969, 5:1970-1979, 6:1980-1989, 7:1990-2005
1:pre-1960, 2:1960-1989, 3:1990-2005 1:pre-1960, 2:1960-1989, 3:1990-2005

thermal_percentage{1} = [0.0805,0.0724,0.1090,0.0867,0.1384,0.1264,0.1297;
                         0.0356,0.1223,0.0256,0.0000,0.0000,0.0000,0.0000;
                         0.0000,0.0554,0.0181,0.0000,0.0000,0.0000,0.0000];
thermal_percentage{2} = [0.1574,0.0702,0.1290,0.0971,0.0941,0.0744,0.1532;
                         0.0481,0.0887,0.0303,0.0000,0.0000,0.0000,0.0000;
                         0.0000,0.0372,0.0202,0.0000,0.0000,0.0000,0.0000];
thermal_percentage{3} = [0.0448,0.0252,0.0883,0.0843,0.1185,0.1315,0.2411;
                         0.0198,0.1159,0.0478,0.0000,0.0000,0.0000,0.0000;
                         0.0000,0.0524,0.0302,0.0000,0.0000,0.0000,0.0000];
thermal_percentage{4} = [0.0526,0.0337,0.0806,0.0827,0.1081,0.1249,0.2539;
                         0.0217,0.1091,0.0502,0.0000,0.0000,0.0000,0.0000;
                         0.0000,0.0491,0.0333,0.0000,0.0000,0.0000,0.0000];
thermal_percentage{5} = [0.0526,0.0337,0.0806,0.0827,0.1081,0.1249,0.2539;
                         0.0217,0.1091,0.0502,0.0000,0.0000,0.0000,0.0000;
                         0.0000,0.0491,0.0333,0.0000,0.0000,0.0000,0.0000];
thermal_percentage{6} = [0.0526,0.0337,0.0806,0.0827,0.1081,0.1249,0.2539;
                         0.0217,0.1091,0.0502,0.0000,0.0000,0.0000,0.0000;
                         0.0000,0.0491,0.0333,0.0000,0.0000,0.0000,0.0000];

for jjj=1:6
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    check_total = sum(sum(thermal_percentage{jjj}));
    if ( abs(check_total - 1) > 0.001 )
        error(['Error in total thermal percentage{',num2str(jjj),...
            '} - Sum does not equal 100%.']);
    end
end

% thermal properties for each level
%   {sf/apart/mh,level}(R-ceil,R-wall,R-floor,window layers,window glass,
%   glazing treatment, window frame, R-door, Air infiltration, COP high,
%   COP low) Single family homes
thermal_properties{1,1} =  [16.0, 10.0, 10.0, 1, 1, 1, 1,   3,  .75,...
    2.8, 2.4];
thermal_properties{1,2} =  [19.0, 11.0, 12.0, 2, 1, 1, 1,   3,  .75,...
    3.0, 2.5];
thermal_properties{1,3} =  [19.0, 14.0, 16.0, 2, 1, 1, 1,   3,   .5,...
    3.2, 2.6];
thermal_properties{1,4} =  [30.0, 17.0, 19.0, 2, 1, 1, 2,   3,   .5,...
    3.4, 2.8];
thermal_properties{1,5} =  [34.0, 19.0, 20.0, 2, 1, 1, 2,   3,   .5,...
    3.6, 3.0];
thermal_properties{1,6} =  [36.0, 22.0, 22.0, 2, 2, 1, 2,   5, 0.25,...
    3.8, 3.0];
thermal_properties{1,7} =  [48.0, 28.0, 30.0, 3, 2, 2, 4,  11, 0.25,...
    4.0, 3.0];
%   Apartments
thermal_properties{2,1} =  [13.4, 11.7,  9.4, 1, 1, 1, 1, 2.2, .75,...
    2.8, 1.9];
thermal_properties{2,2} =  [20.3, 11.7, 12.7, 2, 1, 2, 2, 2.7, 0.25,...
    3.0, 2.0];
thermal_properties{2,3} =  [28.7, 14.3, 12.7, 2, 2, 3, 4, 6.3, .125,...
    3.2, 2.1];
%   Mobile Homes
thermal_properties{3,1} =  [   0,    0,    0, 0, 0, 0, 0,   0,   0,...
    0,   0];
thermal_properties{3,2} =  [13.4,  9.2, 11.7, 1, 1, 1, 1, 2.2, .75,...
    2.8, 1.9];
thermal_properties{3,3} =  [24.1, 11.7, 18.1, 2, 2, 1, 2,   3, .75,...
    3.5, 2.2];

% Average floor areas for each type and region
% TODO: Region 6 is unknown right now
floor_area{1} = [2209,820,1054];
floor_area{2} = [2951,798,1035];
floor_area{3} = [2370,764,1093];
floor_area{4} = [2655,901,1069];
floor_area{5} = [2655,901,1069];
floor_area{6} = [2655,901,1069];

% Percentage of one-story homes
% TODO: Region 6 is unknown right now
one_story = [.6887;.5210;.7745;.7043;.7043;.7043];

% Average heating and cooling setpoints
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%  by thermal integrity type {1=SF, 2=apt, 3=mh} [nighttime percentage,
%  nighttime average difference (+ indicates nightime is cooler), high bin
%  value, low bin value]
cooling_setpoint{1} = [ 0.098,0.96,69,65;
                        0.140,0.96,70,70;
                        0.166,0.96,73,71;
                        0.306,0.96,76,74;
                        0.206,0.96,79,77;
                        0.084,0.96,85,80];

cooling_setpoint{2} = [ 0.155,0.49,69,65;
                        0.207,0.49,70,70;
                        0.103,0.49,73,71;
                        0.310,0.49,76,74;
                        0.155,0.49,79,77;
                        0.069,0.49,85,80];

cooling_setpoint{3} = [ 0.138,0.97,69,65;
                        0.172,0.97,70,70;
                        0.172,0.97,73,71;
                        0.276,0.97,76,74;
                        0.138,0.97,79,77;
                        0.103,0.97,85,80];

heating_setpoint{1} = [ 0.141,0.80,63,59;
                        0.204,0.80,66,64;
                        0.231,0.80,69,67;
                        0.163,0.80,70,70;
                        0.120,0.80,73,71;
                        0.141,0.80,79,74];

heating_setpoint{2} = [ 0.085,0.20,63,59;
                        0.132,0.20,66,64;
                        0.147,0.20,69,67;
                        0.279,0.20,70,70;
                        0.109,0.20,73,71;
                        0.248,0.20,79,74];

heating_setpoint{3} = [ 0.129,0.88,63,59;
                        0.177,0.88,66,64;
                        0.161,0.88,69,67;
                        0.274,0.88,70,70;
                        0.081,0.88,73,71;
                        0.177,0.88,79,74];

% Breakdown of gas vs. heat pump vs. resistance - by region
% TODO: Region 6 is unknown right now
perc_gas = [0.00051;0.8927;0.6723;0.4425;0.4425;0.4425];
perc_pump = [0.0000;0.0177;0.0559;0.1983;0.1983;0.1983];
perc_res = 1 - perc_pump - perc_gas;

% of AC
% TODO: Region 6 is unknown right now
perc_AC = [1;0.7528;0.5259;0.9673;0.9673;0.9673];
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% Over sizing factor of the AC units
% TODO: Region 6 is unknown right now
over_sizing_factor = [0.1;0.2;0.2;0.3;0.3;0.3];

% pool pumps
% TODO: Region 6 is unknown right now
perc_poolpumps = [0.0904;0.0591;0.0818;0.0657;0.0657;0.0657];

% water heaters
% Breakdown by fuel vs. electric
% TODO: Region 6 is unknown right now
wh_electric = [0.7455;0.7485;0.6520;0.3572;0.3572;0.3572];

% size of units - [<30, 31-49, >50] - by region
% TODO: Region 6 is unknown right now
wh_size = [ 0.0000,0.3333,0.6667;
            0.1459,0.5836,0.2706;
            0.2072,0.5135,0.2793;
            0.2259,0.5267,0.2475;
            0.2259,0.5267,0.2475;
            0.2259,0.5267,0.2475];

% emission dispatch order
% Nuc Hydro Solar BioMass Wind Coal NG GeoTherm Petro
% TODO: Region 6 is unknown right now
dispatch_order = [1,5,2,3,4,7,6,8,9;
                  1,7,2,3,4,5,6,8,9;
                  1,7,2,3,4,5,6,8,9;
                  1,7,2,3,4,5,6,8,9;
                  1,7,2,3,4,6,5,8,9;
                  1,7,2,3,4,6,5,8,9];

data.thermal_properties = thermal_properties;
data.thermal_percentages = thermal_percentage{region};
data.cooling_setpoint = cooling_setpoint;
data.heating_setpoint = heating_setpoint;
data.perc_gas = perc_gas(region);
data.perc_pump = perc_pump(region);
data.perc_res = perc_res(region);
data.perc_AC = perc_AC(region);
data.perc_poolpumps = perc_poolpumps(region);
data.floor_area = floor_area{region};
data.perc_poolpumps = perc_poolpumps(region);
data.wh_electric = wh_electric(region);
data.wh_size = wh_size(region,:);
data.no_cool_sch = 8;
data.no_heat_sch = 6;
data.no_water_sch = 6;
data.one_story = one_story;
data.over_sizing_factor = over_sizing_factor(region);
data.dispatch_order = dispatch_order(region,:);
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%Other parameters

%Percentage small homes on the feeder (versus large homes)
data.percentageSmall=0.50;

% Skews
data.residential_skew_std = 2700;
data.residential_skew_max = 8100;
data.commercial_skew_std = 1800; %These are in 30 minute blocks
data.commercial_skew_max = 5400;

Error using regionalization (line 191)
Not enough input arguments.

Residential parameters / technology parame-
ters

ZIP fractions and their power factors - Residential

data.z_pf = 1;
data.i_pf = 1;
data.p_pf = 1;
data.zfrac = 0.2;
data.ifrac = 0.4;
data.pfrac = 1 - data.zfrac - data.ifrac;

data.heat_fraction = 0.9;

% waterheaters 1 = yes, 0 = no
data.use_wh = 1;
data.res_meter_cons = 0;

%Slider setting-related item from technology file
data.market_info=1.0;

% There is no ZIP fraction assosciated with this variable
data.light_scalar_res = 1;

Generator controller data
%Generator controller object information
% { rating (kW), start state, bid_curve text, startup cost, shutdown_cost,
% min runtime, min downtime, amortizaiton factor (1/h)}

data.GenControlInformation = {
    {1050, 'OFF', '200 8.00 400 8.1 600 8.2 800 8.3 1050 8.5',...
    55.00, 55.00, 360.0, 0.0, 5}; %Nuclear
    {1120, 'OFF', '200 15.00 400 15.1 600 15.2 800 15.3 1120 15.4',...
    15.00, 15.00, 5.0, 0.0, 5}; % Hydro
    {2940, 'OFF', ['200 20.00 400 22.00 700 25.00 1200 30 1800 40 2500 50'...
    '2600 52 2700 55 2800 58.0 2940 60.00'],...
    55.00, 55.00, 240.0, 0.0, 5}; %Coal
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    {1470, 'OFF', ['120 70.00 160 71.00 210 78 800 80 1000 85 1100 90'...
    '1200 100 1250 115 1400 117 1470 120.00'],...
    25.00, 25.00, 30.0, 0.0, 5}; %Gas
    {420, 'OFF', ['50 140.00 150 150 200 180 210 200 240 205 280 210'...
    '300 230 330 260 400 280.0 420 350.00'],...
    40.00, 40.00, 30.0, 0.0, 5}; %Oil

};

Published with MATLAB® R2013b
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simulation of electricity markets: A literature review. Technical report, 2007.

[42] Lennart Soder and Hannele Holttinen. On methodology for modelling wind

power impact on power systems. International Journal of Global Energy Issues,

29(1):181, 2008.

[43] B Sovacool. Valuing the greenhouse gas emissions from nuclear power: A critical

survey. Energy Policy, 36(8):2950–2963, August 2008.

[44] G Strbac. Demand side management: Benefits and challenges. Energy Policy,

36(12):4419–4426, December 2008.



111

[45] Z.T. Taylor, K. Gowri, and S. Katipamula. GridLAB-D Technical Support Doc-

ument: Residential End-Use Module Version 1.0. Technical Report July, Pacific

Northwest National Laboratory (PNNL), Richland, WA (US), 2008.

[46] The Smart Grid Interoperability Panel. Guidelines for Smart Grid Cyber Se-

curity: Vol. 2, Privacy and the Smart Grid. Technical Report August, NIST,

2010.

[47] Jacopo Torriti, Mohamed G. Hassan, and Matthew Leach. Demand response

experience in Europe: Policies, programmes and implementation. Energy,

35(4):1575–1583, April 2010.

[48] U.S. Energy Information Administration. Residential Energy Consumption Sur-

vey (RECS), 2013.

[49] Anke Weidlich and Daniel Veit. A critical survey of agent-based wholesale elec-

tricity market models. Energy Economics, 30(4):1728–1759, July 2008.

[50] S. E. Widergren. Demand or request: Will load behave? 2009 IEEE Power &

Energy Society General Meeting, pages 1–5, July 2009.


	Supervisory Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Motivation
	Literature review
	The need for more renewable energy
	Renewable energy integration
	The smart grid and demand response
	Power system modeling
	Summary of literature review

	Objectives
	Methodology
	Contributions

	Modeling and validation
	Introduction
	Model system description and grid modeling
	End-use load modeling
	Market

	Case study: The Olympic Peninsula Experiment
	System modeling

	Simulation, validation and case studies
	Base reference data validation
	Operational validation

	Summary

	Wind balancing 
	Introduction
	Electricity market behavior and proposed bidding mechanisms
	Wind power integration
	Introducing wind power to The Olympic Peninsula Project
	 Scaled up model

	Summary

	Mitigation of greenhouse gas emissions 
	Introduction
	System model and simulation approach
	Demand and load modeling
	Supply side modeling
	Greenhouse gas emission tracking
	Grid modeling

	Simulation results
	Base case
	Base case and wind power
	Base case and demand response
	Base case, wind power and demand response

	Comparison of emissions
	Accumulated emissions
	Individual emissions for fossil fuel based generators
	Emissions over time

	Generator cycling
	Base case with and without wind power
	Adding demand response

	The limits of demand response and the "Battery state of charge"
	Summary

	Further Discussion and Conclusions
	Summary of work
	Results
	Perspective and future research

	Additional figures to Chapter 4
	Technical implementation
	Further information
	Programming overview

	Bibliography

