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Abstract

The purpose of this work is to demonstrate the usability of irreversible thermodynamics and
kinetic theory in describing slow steady state evaporation and condensation, analyze the sta-
tistical rate theory (SRT) approach, and investigate the physical phenomena involved.

Recently large interface temperature jumps have been observed during steady state evaporation
and condensation experiments; the vapor interface temperature was greater than the liquid
interface temperature for condensation and evaporation. To predict the temperature jump,
the SRT mass flux was introduced as an alternative to the established approaches of irreversible
thermodynamics and kinetic theory of gases.

Simple one dimensional planar and spherical models were developed for slow evaporation and
condensation based on the experiments. We considered pure liquid water evaporation and
condensation to, and from its own vapor. Expressions for the mass and energy fluxes across
the interface were found using irreversible thermodynamics, kinetic theory, and SRT. The
SRT theory does not have an energy flux expression, as a substitute we use the irreversible
thermodynamics energy flux in the SRT model. The equations were then solved to yield the
mass and energy fluxes, and the liquid and vapor temperature profiles.

We find the interface temperature jump is dependant on the energy flux expression. The
irreversible thermodynamics energy flux closely predicts the measured temperature jump and
direction. Kinetic theory models do not predict the jump, however with incorporation of a
velocity dependant condensation coefficient, kinetic theory can predict the correct temperature
jump direction, and vapor interface temperature. All the models predict mass fluxes that agree
with the measured data.

We suggest the temperature jump direction is established based on the direction of the vapor
conductive energy flux, and not the direction of the mass flux (condensation or evaporation).

We conclude that irreversible thermodynamics, kinetic theory, and SRT can all be used to
model steady state evaporation and condensation.
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Chapter 1 1

Chapter 1

Introduction

Evaporation and condensation phenomena have been a subject of research and debate for over
one hundred years. The mechanism of transfer across a phase boundary was not a great focus of
research because it was considered adequate to assume that the liquid vapor interface is nearly
at complete equilibrium. This led to assumptions such as constant temperature across the inter-
face, even outside of equilibrium. Schrage [1] provides a good overview of the history. Ward,
Fang, and Stanga’s [2], [3], [4] recent steady state evaporation and condensation experiments

show large temperature jumps across the interface, something not previously observed.

Interface conditions have been modelled using the kinetic theory of gases, and irreversible ther-
modynamics to develop expressions for the energy, and mass fluxes across the interface. Ward
and Stanga [5] introduced an alternative approach, statistical rate theory (SRT), which they sug-
gest accurately models their observed interface temperature jump. Still other approaches such
as the non-equilibrium van der Waals square gradient model, and mesoscopic non-equilibrium
thermodynamics have been employed. Modeling has also been done with computationally
expensive molecular dynamics (MD) simulations. Most research has focussed on theoretical
aspects of evaporation and condensation; little focus has been directed to using these theories

to reproduce or predict measured results.

1.1 Purpose and Scope

The purpose of this work is to demonstrate the usability of irreversible thermodynamics and
kinetic theory in describing the steady state evaporation and condensation of pure fluids, to
analyze the statistical rate theory approach, and to investigate the physical phenomena involved

in phase change.
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One-dimensional models are developed based on the Ward, Fang, and Stanga [2], [3], [4] exper-
iments. In particular we consider pure liquid water evaporation and condensation to, and from
its own vapor. Outside of equilibrium, the temperature is not assumed to be continuous across
the interface. Liquid and vapor boundary temperatures, and vapor pressure are prescribed.
The balances of mass, and energy are solved for the liquid and vapor temperature profiles. The
complete solution requires expressions for mass and energy flux across the interface, which are
developed from kinetic theory, irreversible thermodynamics, and SRT. The analysis is per-
formed for relatively slow evaporation and condensation, that is we assume the system is close
to equilibrium, which facilitates the use of certain equilibrium expressions, even though the
system is outside equilibrium. The equations are solved to yield the mass and energy fluxes

per unit area, and the liquid and vapor temperature profiles.

The results due to irreversible thermodynamics, kinetic theory, and SRT are presented and
compared. Model result variation with prescribed parameters is investigated, and additional
factors that may affect the results are considered. Moreover, model predictions are compared

with the Ward and Stanga [4] measured data .

We find good agreement between irreversible thermodynamics, SRT, kinetic theory, and the
experimental results [4]. The models are able to predict the measured interface temperature
jump magnitude and direction. Our observations indicate that much of the heat transfer
involved in the phase change process is conducted through the liquid, but that the temperature

jump is directly related to the conductive heat flux through the vapor.
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1.2 Ward Group’s Experiments

Our model simulations are one-dimensional approximations of the experiments by Ward, Fang,

and Stanga [2], [3], [4], who investigated steady state evaporation and condensation of water,

octane, and methylcyclohexane.

1.2.1 Apparatus and Procedure

Ward, Fang, and Stanga [2], [3], [4] considered liquid evaporating from, or condensing to, its

own vapor. Figure 1.1 shows their apparatus [4].

<'Fﬁ7

Polycarbonate Cylinder N To

Mercury gassi
Manometer To Vacuum System AFlfSk
|
3 =
e t e 1 30
TC4 1 120
Liquid
V:?por ‘ELZ TCS 110
Interface Vapor
—_—t 0
7 A
4 i -10
7 ‘ 1 & N
Cooling or 2| ‘| < |TC6 4 -20
Heating Jacket gt ) 3
| , N
2 i N -+ -30
7 N
N
3 7 M 4 -40
/ N\ Scale
Test Liquid Reservoir S ¥ - Cooli ;H " m‘i‘" id Out
; it ooling/Heating Liquid Ou
Goolmg Heating Liquid Out o LCooling/Heating Liquid In
Cooling/Heating liquid In 1.5 mm Stainless Steel Tube
Test liquid to
or from
syringe pump

Figure 1.1: Ward et al. steady state evaporation condensation apparatus

Water was supplied through the bottom of the funnel by a syringe pump, and withdrawn as
vapor from the top of the chamber. Steady state evaporation was achieved by adjusting the
rate of liquid water entry at the inlet, and regulating the vapor pressure by opening and closing

a vacuum valve in line with a vacuum pump.
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For condensation, the syringe pump withdrew water at a constant rate, and the water exiting
the funnel was cooled by a cooling jacket causing the water vapor in the chamber to condense.
Steady state was maintained by allowing water to evaporate from the test liquid reservoir to

replace the water condensing into the funnel.

The evaporation and condensation rates were measured based on the syringe pump rate. The
vapor pressure was measured with a mercury manometer. Temperatures in the liquid and vapor
were measured along the centre line with thermocouples, which were located using a positioning
micrometer. The liquid vapor interface position and radius of curvature were established by
observation using a cathetometer. Temperatures were measured in the vapor within 1 to 5
mean free paths of the interface. Temperatures in the liquid were measured within 0.25 mm of

the interface.

The apparatus was radially symmetric. The liquid vapor interface at the top of the funnel was
assumed to be hemispherical. Ward, Fang, and Stanga suggest there is very little heat transfer

with, or through the walls of the funnel.

1.2.2 Observations and Results

For evaporation Fang and Ward [2], [3] observed that the interface vapor temperature 7, was as
much as 7.8 °C higher than the liquid interface temperature 7;. Their evaporation experiments
all involve vapor temperature gradients sloping down towards the interface. They later observed
that T, > T; is also true for condensation, but with smaller jumps. They observed the same
vapor temperature gradient direction in condensation as for evaporation [4]. Figure 1.2 gives

the typical characteristics of their measured temperature profiles and jumps [4].
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Position /mm

Temperature /°C

Figure 1.2: Ward et al. experimental evaporation and condensation temperature profiles

1.3 One-dimensional Planar Interface Geometry

The fluxes and gradients are assumed uniform, one-dimensional, and perpendicular to the
liquid vapor interface everywhere along the interface. A spherical coordinate system with one-
dimensional radial fluxes and gradients should be a good approximation of their experimental
system. The geometry is further simplified by approximating the interface as planar. The
interface curvature would only affect the saturation pressure, and as we shall see, only if the
radius of curvature is much smaller than that observed in the experiments. Figure 1.3 describes

the planar geometry.
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Figure 1.3: One dimensional planar geometry

The one-dimensional mass flux per unit area j, and energy flux per unit area @), are defined as
positive in the positive z direction, the direction of evaporation. All fluxes mentioned in this
work are fluxes per unit area; for ease of writing they will simply be referred to as fluxes, and
the ’per unit area’ will be inferred. At the interface z = 0, the liquid temperature is T; (0), and
the vapor temperature is T, (0). Often we shall refer to the interface temperatures as 7;, and
T,. The liquid and vapor temperatures are not constrained to be equal. The liquid and vapor
boundary temperatures are specified at specific distances away from the interface, such that at
the liquid boundary z = —L;, the liquid boundary temperature is T; (—L;) = T}, and at the
vapor boundary z = L,,the temperature is T, (L,) = Tp,. The vapor pressure p, is assume to
be uniform. The liquid pressure is p;. The equivalent pressure of the evaporating molecules
is given by peyap. The pressure in the bulk liquid does not play a large role in the analysis, its
only requirement is that it must be equal to the vapor pressure next to the interface, otherwise
the interface would not be stationary. To avoid confusion we emphasize that peyqp is not the

pressure in the liquid, but instead is the pressure of the molecules leaving the interface.

With our model we can force mass and energy fluxes by imposing a temperature gradient

across the system using unequal boundary temperatures, Ty, # Tp,, or by perturbing the vapor
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pressure p, away from the equilibrium pressure ~We recall that the equilibrium pressure is
the saturation pressure psq: (1), at the temperature of the system, 7. For equal boundary
temperatures Ty, = Ty, = T, a vapor pressure below the saturation pressure p, < psq: (T') will

cause a net evaporation, while p, > psat (T'), will cause a net condensation.

1.4 Range of Study

We consider slow evaporation and condensation of the order of 10*3%{% and lower, correspond-

m
S )

ing to liquid speeds of 10762 and vapor speeds of 10_1% for the liquid and vapor densities
of 103% and 10*2% respectively. This is partially dictated by the mass flux range of the
Ward, Fang, and Stanga experiments [2], [3], [4], but also it is small enough to facilitate the

assumption that the system is not far from equilibrium.

Only small pressures of 0.6 —5.0 kPa near the triple point (0.6 kPa) are considered, which permit
the vapor to be described as an ideal gas. This vapor pressure range also corresponds to the

experimental parameters.

A small temperature range is used to facilitate the assumption of constant specific heats, and
thermal conductivities. We are studying phase change; the range must include the saturation

temperature of the chosen vapor pressure. The corresponding temperature range is 0 — 25 °C.

1.5 Overview of Kinetic Theory

Kinetic theory of gases averages the properties of individual molecules to obtain macroscopic
properties of the system of molecules, such as pressure, temperature, and density. Harris [6],

Riedi [7], Cercignani [8], and Sears and Salinger [9] provide good overviews.

1.5.1 Range of Validity

Simple kinetic theory is derived for monatomic molecules with only translational degrees of

freedom. Most kinetic theory research focuses on monatomic molecules, however there are
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extensions which incorporate additional degrees of freedom that deal with polyatomic molecules.
Cercignani et al. [10], [11], [8], and Soga [12] discuss this further. These theories are more
complex, and beyond the scope of this work. Water molecules are polyatomic, however as do

other researchers, we approximate them as monatomic.

Kinetic theory was developed for binary collisions, it is valid for any case where only binary
collisions take place, such as dilute vapors. This discounts solids, liquids, and dense vapors,
where intermolecular collisions often involve more than two molecules. Dilute vapors are ideal
gases. Near the triple point, vapor close to the saturation dome can be described as an ideal
gas. At higher pressures the ideal gas assumption is no longer valid next to the saturation
region. Thus for liquid vapor phase changes, kinetic theory is best suited at low pressures near

the triple point.

1.5.2 Velocity Distribution Function

The behavior of a monatomic molecule for any time can be described by its position vector r,
and velocity vector c,

r=(x,y,2), and ¢ = (cg, ¢y, Cz). (1.1)

The statistical behavior of a system of molecules is described by the generalized single molecule
distribution function f (c,r,t), which is defined such that f (c,r,¢) dcdr is the average number of
molecules with velocity in the range of {c, ¢ + dc}, at position {r,r + dr}, at time ¢t. Knowledge

of the distribution function facilitates the calculation of bulk properties such as:

p= m[Z/ fde, (1.2)

p=j7 %szdg, (1.3)

mass density

pressure

and internal energy



Chapter 1 9

We use m for the molecular mass, k is the Boltzmann constant, C is the peculiar velocity vector,
defined as C=c—v, and v is the mean velocity vector of the vapor. Overall fluxes can also be
found, e.g.

the one-dimensional mass flux is

j=j7 me, fdc, (1.5)

the one-dimensional momentum flux is

M = ﬁ/mcifd(_:, (1.6)

and the one-dimensional energy flux reads

Q= /7/%@02de. (1.7)

The velocity distribution is a solution of the Boltzmann equation,

of  of _of

The Boltzmann equation the evolution of f through free flight, binary collisions between mole-
cules, taking into account the interaction potential between the molecules, and the effects of
external forces F;. r;, and ¢; are the molecule position, and velocity vectors in tensor notation.
The right hand side of the equation is the collision term, which describes the change of the
velocity distributions of the two molecules which collide. From the Boltzmann equation the

balances of mass, momentum, energy, and entropy can be derived [8], [6].

In equilibrium, the velocity distribution function does not change with time or location, and
there are no external forces acting on the system. The left hand side of the Boltzmann equation
is zero. This implies the right hand side is also zero. The solution to this is the Maxwellian

distribution,

n =17 (ar) "= (o) (19)
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Introduction of the Maxwellian for a gas at rest, v= 0, into Eqns. (1.2), (1.3), and (1.4) yields
the ideal gas law,

pzpﬁT, (1.10)
m

and the kinetic theory definition of internal energy

=-—T. 1.11
U=z (1.11)

Non-equilibrium solutions of the Boltzmann equation are considerably more complex. The
Boltzmann equation can be solved by computer either directly, or by Direct Simulation Monte
Carlo (DSMC), both of which are computationally expensive. For this reason, and because
the necessary computational power was not always available, simplifications were devised. A
widely used simplification which replaces the collision term with a simpler expression is the

Bhatnagar, Gross, Krook, and Welander (BGKW) model.

An alternate method is the Chapman-Enskog (CE) method which expands the distribution
function about the Knudsen number Kn. The Knudsen number is the ratio of the mean distance
a molecule travels between collisions (mean free path), to a macroscopic length associated with
the vapor. The first order CE expansion of the Boltzmann equation yields the first order CE

distribution, a first approximation of the non-equilibrium velocity distribution,

2Kkm mC? 5\ 0T 2km m v
fce—fm <135EC]€ <Wﬁ> 8—xk+g;EC<kCl>k—TWk>> (112)

Here k is the thermal conductivity. From Navier Stokes,

v —Dk)
= ) 1.13
Fo = (1.13)
where p is the viscosity, and the trace-free pressure tensor is given by
1
D(ik) = Pik — 5Pnn0lik. (1.14)

3
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If we assume the istropic pressure, and neglect shear stresses, Eqn. (1.14) reduces to
Piky =0 (1.15)
If follows then from Eqn. (1.13) that the CE distribution for isotropic pressure without shear

2Kkm mC? 5\ 0T
Jee = fm <1 - g;zck <—2kT2 - ﬁ) 8_:ck> : (1.16)

For equilibrium conditions, zero mean vapor velocity v, = 0, and zero temperature gradient

stress is

or

52y = 0, the CE distribution reduces to the equilibrium Maxwellian.

Another popular method of approximating the Boltzmann equation is Grad’s moment method

which is beyond our scope and will not be discussed, e.g. see [6].

1.5.3 Hertz-Knudsen Mass Flux

Kinetic theory represents the liquid-vapor-interface as a wall which emits molecules into the
vapor, and with which incident vapor molecules collide, and are sorbed, or reflected. The
evaporating molecules leave the surface with the temperature and pressure peyqp of the surface!.
The condensing molecules hit the surface with the temperature and pressure of the vapor
at the surface. The velocity distributions of condensing and evaporating molecules are not
necessarily the same. This can lead to temperature jumps across the interface. Schrage [1]
gives a good discussion on temperature jumps. Figure 1.4 represents the condensing molecules
with the distribution f, (py,Ty), where p, and T, are the vapor pressure, and temperature at
the interface. The evaporating molecules are represented by the distribution fi (pevap,11), @

function of the pressure of the evaporating molecules, and the liquid interface temperature.

'Recall that Devap 15 defined as the pressure of the molecules that evaporate.
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Figure 1.4: Evaporation and condensation velocity distributions

The Hertz-Knudsen (HK) mass flux is a simple one-dimensional kinetic theory expression de-
scribing condensation and evaporation. Hertz and Knudsen [13], [14] assume that the vapor
is sufficiently close to equilibrium to model the condensing and evaporating molecules using
Maxwellians with zero mean vapor velocity. Eqn. (1.5) is split into half-space integrals to

accommodate the different condensation and evaporation distributions,

j:// me fi (Pevap,Tz)dQ—i—// me, fo (P, Ty) de. (1.17)

c:>0 <0

The integrated result is the HK mass flux,

1
- () (B 2.
The first term represents the molecules evaporating at liquid interface properties 7Tj and peyap,
and the second term gives the flux of molecules condensing with the vapor interface properties
T, and p,. In equilibrium the mass flux is zero, the temperature T across the interface is
constant, and the vapor pressure is equal to the saturation pressure ps,; (7). We then see from
Eqn. (1.18) that in equilibrium
Pevap = Psat (T) - (1.19)

This should still be true for small perturbations from equilibrium; we can then replace peyap
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with pses (77) in Eqn. (1.18). It is standard practice to assume the liquid phase is never far from
equilibrium; this allows the molecules leaving the interface to be described by the Maxwellian.

This yields the HK mass flux as

1.5.4 Condensation and Evaporation Coefficients

The HK mass flux assumes all molecules that hit the liquid vapor interface condense instead
of bouncing back into the vapor, and all molecules that evaporate stay in the vapor. The
condensation coefficient 6., and the evaporation coefficient 6. remove this limitation. 6. is
defined as the ratio of incident molecules sorbed by the surface to those which hit the surface.
Molecules which do not stay in the liquid are bounced back into the vapor. Accordingly, 6. = 1

if all incident molecules condense, and 6. = 0 if all molecules are bounced back into the vapor.

The evaporation coefficient 0, is not as easily defined. It is a measure of how many molecules
escape from the surface into the vapor. Unlike condensation, there is no surface in the vapor to
bounce off of to return to the liquid. This results in multiple definitions for #.. Two popular
definitions are, the ratio of the number of molecules that enter the vapor phase divided by the
number of molecules that leave the liquid phase, and the ratio of the measured evaporation
rate to the HK evaporation rate. Figure 1.5 demonstrates the use of the evaporation and
condensation coefficients. Note that the reflected particle distributions are not forced to be

the same as the incident distributions.
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Figure 1.5: Evaporation and condensation with reflection

The HK mass flux with condensation, and evaporation coeflicients is

There is much debate regarding the values, and dependencies of 0, and 6.. Eames et al.
[15], and Marek and Straub [16] reviewed the water condensation and evaporation coefficient
literature, and found that published values for each vary between 0.01 to 1. It is agreed upon
that 0. and 6. are equal in equilibrium. The classic opinion is that they are constants [15]
[16]. If this is the case, then they must also be equal outside equilibrium to satisfy equilibrium
conditions. We see this from Eqn. (1.21): j = 0 for the equilibrium conditions 7} =T, = T
and py = psqt (T') only if 0, = 6..

Schrage [1] devised a correction factor for the HK mass flux to account for a small non-zero net

vapor velocity v,. Barret and Clement [17] present Schrage’s equation in the form

)@ ). e

which assumes v2 = 0. Eqn. (1.22) incorporates the evaporation and condensation coefficients.
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For . = 0. = 1, the Schrage equation reduces to exactly twice the HK result. Ytrehus [18]
through comparison with the BGKW equation, and DSMC simulations finds HK underestimates
the mass flux by an approximate order of two. He also observes that the Schrage expression
leads to a slightly overestimated mass flux, likely due to neglect of collisional effects in the
Knudsen layer. The Knudsen layer, which we discuss at the end of this section, is a transitional
layer between the bulk vapor and the interface. Labuntsov [19] revised the Schrage equation

to consider non-equilibrium effects in the Knudsen layer,

)= (2 - 0.279806) (2?1@)% (%pi;%ﬂ) N f/%) ' (1.23)

Barret and Clement [17] suggest that the Schrage velocity distribution violates the conservation

of energy and momentum. Their conclusion is drawn from comparison of interface expressions
to bulk flux expressions. The equations we present later incorporate the Schrage correction,

without violation of the conservation laws. This will be discussed further then.

1.5.5 Accommodation Coefficient

The concept of molecules reflecting off the interface and bouncing back into the vapor has been
discussed. The distribution of the rebounding molecules must now be mentioned. Molecules
can interact with the interface with two limiting conditions: specular, or diffuse reflection.
Specular reflection describes molecules that maintain their energy, and do not react thermally

with the surface.

The specularly reflected molecules are considered to maintain the temperature and pressure of
the incident molecules. They also maintain the distribution of the incident molecules, except
with mirrored velocities. Diffuse reflection describes molecules which do not conserve their

energy, and undergo a complete thermal interaction with the surface.

Diffusely reflected molecules take on the temperature of the surface, and the Maxwell distribu-
tion of the evaporating molecules. Of course, diffusely reflected molecules must still satisfy the
conservation of mass. This is done by introducing an equivalent pressure p* which is established

based on the conservation of mass. To distinguish between specular and diffuse reflection an
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accommodation coefficient v is employed, where v = 1 for specular reflection, and v = 0 for dif-
fuse reflection. The accommodation coefficient plays an important role in the afore mentioned

temperature jump. Figure 1.6 shows the specularly, and diffusely reflected distributions.

Vapor
Condensing Reflected vapor molecules
molecules Vapor molecules specular: y (1 - 0. )f v—ref (p no s )’
0.1.(p,.T,) tobereflected diffuse: (1 y )1 - 0,)f, (p* T,)

(t-0.)1(p,.T.)

: N/

T Evaporating
molecules Interface
ae-fm (pevap aT1)
Liquid

Figure 1.6: Specular and diffuse reflection distributions

The concept of diffuse and specular reflection was introduced by Maxwell, to obtain a useful

analytical model for the complicated interaction processes taking place.

1.5.6 Knudsen Layer

We have already mentioned that vapor molecules striking a wall are assumed to have the
bulk vapor distribution, and those leaving a wall have a distribution associated with the wall.
Close to the wall these two different molecular streams collide with each other, altering the
distributions of each. The collisions cause the distribution of the escaping molecules to approach
that of the bulk vapor. The region where this equilibration occurs is referred to as the Knudsen
layer, see Figure 1.7. Typically it extends approximately one mean free path from the wall.
In Figure 1.7 the bulk vapor is described by the distribution fp,%, and the molecules leaving

the wall by distribution f,q.
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Figure 1.7: Vapor molecule velocity distrubution showing the Knudsen layer

Within the Knudsen layer, the velocity distributions of both molecule streams can no longer
be described by the bulk vapor, or wall distributions. In Figure 1.7 the altered distribution of
the molecules approaching the wall is fx,_puk, and the altered distribution of the molecules
leaving the wall is fxpn_waii- The altered distributions change with location, making them
very difficult to resolve. Since the incident vapor molecules no longer have the bulk vapor
distribution, the bulk characteristics of the vapor near the wall will be altered. However, the
effects are usually small, for small to intermediate Kn. Because of this, and the complexity
of the altered distribution functions, the Knudsen layer is usually neglected, or set to zero
thickness, and incident molecules are assumed to posses the bulk vapor distribution up to the
wall. Sone [20], Cercignani [8], Rebrov [21], and Meland et al. [22] provide a more detailed

analysis of the Knudsen layer. In our work Knudsen layer effects are neglected.

1.6 Overview of Irreversible Thermodynamics

Irreversible thermodynamics facilitates the macroscopic description of irreversible processes.
Unlike kinetic theory it is not limited to dilute monatomic fluids; its range of application

is significantly more broad. Some of its applications include: heat conduction, viscous flow,
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chemical reactions, various thermoelectric phenomena, and phase change. De Groot and Mazur
[23], and Bedeaux [24] provide an overview of non-equilibrium thermodynamics, which we refer

to as irreversible thermodynamics.

An irreversible process is characterized by a positive rate of entropy production, ¢ > 0. This
implies the system is out of equilibrium. Conversely an equilibrium or quasi equilibrium process
is considered to be reversible, with ¢ = 0. The conservation laws for mass, energy, and entropy
and the relations between properties (i.e. the Gibbs equation) can be used to write the entropy

production as the sum of thermodynamic forces multiplied by thermodynamic fluxes,
o= J;X;. (1.24)
i

Here, J; are the fluxes, while X; are the accompanying forces. In equilibrium, the entropy
production, the fluxes, and the forces are all zero. Irreversible thermodynamics assumes a
process is near enough to equilibrium to employ a linear phenomenological law to describe the

fluxes as linear functions of their forces,
J; =3 L Xr. (1.25)
k

L;i are the phenomenological coefficients. Their values are found experimentally, or theoret-
ically from kinetic theory, or molecular dynamic simulations. Indeed it is known empirically
that a wide range of non-equilibrium processes can be described using linear phenomenological

laws [23].

An example of a pair of forces and fluxes is Fourier’s law of heat conduction, the conductive

heat flux with the temperature gradient force, and conductivity coefficient.

The terms in Eqn. (1.25) where ¢ # k are considered as cross over terms. They give the
dependency of a flux on the other forces with which it is not directly associated in the entropy
production. De Groot and Mazur [23] demonstrate the Onsager reciprocal relations [25], [26]

which state the phenomenological coefficient matrix must be symmetric, Lz = Ly;.

The second law of thermodynamics tells us the entropy production can not be negative. This
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implies from Eqns. (1.24), and (1.25), that the phenomenological matrix must be positive

definite. We find for a 2 x 2 matrix that
Ly >0, Ly > 0, and Ly Lyx — L3, > 0 (1.26)

to ensure a non-negative entropy production.

Bedeaux et al. [27] introduce an interface surface phase at temperature T;. They find the

entropy production across the interface for one-dimensional steady state flow to be

11 11 (e —
S — )= . 1.27
T=a <T5 Tl> t <Tv T8> ]m< T, (1.27)

It is in the form of force-flux products. Here, ¢; is the conductive flux from the liquid into

the surface, ¢, is the conductive flux from the surface into the vapor, j,, is the molar flux, and
i, and y; are the vapor and liquid chemical potentials evaluated at Ts. If we apply the same
assumption here as in kinetic theory, that the surface temperature is the same as the adjacent

liquid temperature, Ty = Tj, the entropy production reduces to

1 1 . Hy — My
_ —_—)_ v Ly 1.28
0 =(y <Tv T > Jm < T ( )
Bedeaux [27] points out that this assumption is crucial to make irreversible thermodynamics
compatible with kinetic theory. Bedeaux and Kjelstrup arrive at the same expression in a later

paper [28]. Using the Onsager reciprocal relations the phenomenological interface molar and

conductive heat fluxes are

1 1 oy —
v =L — — — | = L,; , 1.2
q qq <Tv Tl) qj < T ) (1.29)
and,
L ) 1 1 . Moy — 1y
Jm = Ljq <Tv Tz) Lj; < T ) . (1.30)

The Onsager symmetry relation requires Lj; = Lg;. This stipulates that there are only three

independent, coefficients describing steady state evaporation, and condensation.
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1.7 Relevant Research

1.7.1 Statistical Rate Theory

Ward and Fang [5] suggested statistical rate theory (SRT) as an alternative to kinetic theory
and irreversible thermodynamics. The approach is based on the quantum mechanics concept

of transition probability, and the Boltzmann definition of entropy. They derive a non linear

(1) o
_ Upsat (17) vy (17)

by = 2Psat UD o nd9 = exp [ L2 (56 — ot (T1) ) 1.32
\/m al exp< kn (pl p t( l))) ( )

hy is the vapor enthalpy at the interface. They point out that SRT is free of fitting parameters,

expression for the steady state molecular flux,

. . My oy hv
= 2k, sinh | 24— ual
J s {le W, T h

where

unlike kinetic theory and irreversible thermodynamics. On closer observation the exponential
term is, as we will show later, exactly the dimensionless form of the mass-force term of irre-
versible thermodynamics. The coefficient k; is a per unit molecule version of the first term of
the HK mass flux (1.20) which describes the evaporative flux of the molecules where all mole-
cules evaporate and condense 6. = 0, = 1; this implies SRT assumes 6. = 6, = 1, which Ward
partially points out by stating the SRT expression assumes all molecules hitting the interface
condense [29]. Ward and Fang [5] compare SRT to their experimental results and conclude
that SRT correctly predicts the temperature jump across the interface. Unlike kinetic the-
ory, and irreversible thermodynamics, SRT does not provide an energy flux expression. Ward
demonstrates this by not including the energy flux in his SRT entropy production [29], however

this omission is not discussed.

1.7.2 Phenomenological Coefficients

Cippolla et al. [30] give kinetic theory values for the phenomenological coefficients, Lqq, L;j,
and Lg;. They note that interface pressure and temperature jump are the respective forces for
mass and energy flux. They use their kinetic theory temperature and pressure jump results to

derive kinetic theory expressions for the phenomenological coefficients, where the condensation
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coefficient is the only free choice in their expressions. Sone and Onishi [31] derive similar

kinetic theory phenomenological coefficient values.

Bedeaux and Kjelstrup [28] compare the Cippolla et al. [30] coefficient values to values obtained
from Fang and Ward ’s [2] experimental data. They find that the kinetic theory values are
30 to 100 times greater than the experimental values, and that adjustment of the condensation
coefficient is not sufficient to improve the fit. They hypothesize that multiparticle events play
an important role in evaporation. Since kinetic theory only deals with single particle events,
it is not sufficient to describe the evaporation process. Bedeaux and Kjelstrup go on to say
that irreversible thermodynamics can agree with Fang and Ward ’s measurements, and SRT, if
the appropriate phenomenological coefficients are used, but the coefficients do not agree with
those from kinetic theory. Because kinetic theory coefficients are in such disagreement to
experimental values, they conclude, as Fang and Ward do, that kinetic theory is inadequate in

this case [28] [2].

1.7.3 Interface Temperature Jump

We have already mentioned that the liquid and vapor interface temperatures are not constrained
to be equal outside of equilibrium. We have seen that differences in velocity distributions can
lead to temperature jumps in kinetic theory. Sone and Onishi [32], and Young [33] find that
kinetic theory predicts T;, > T; for condensation, and T, < T; for evaporation. Kjelstrup et al.

[34] find the same using irreversible thermodynamics.

Wylie and Brodkey [35] find a similar result experimentally. They measure a temperature jump
of up to 5°C with T, > T; during the condensation of mercury. The condensation temperature
jump direction is in agreement with that found by Ward, Fang, and Stanga. However, for
evaporation the direction of the temperature jump is opposite to that of Ward, Fang, and

Stanga [2], [3], [4].
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1.7.4 Parallel Surface Geometry

A popular configuration for studying one-dimensional evaporation and condensation phenomena
is the parallel surface geometry. It consists of a vapor surrounded on both sides by its condensed
phase. Only the surfaces of the condensed phases are considered in the analysis, reducing the
problem to two parallel surfaces, separated by vapor. The temperature of one surface is held
higher than the other, forcing mass and heat flux from one side to the other. At the hot surface
there is a net evaporation into the vapor, while at the cold surface the vapor condenses.

Pao [36], [37] investigated parallel surfaces using the BGKW model. He found that the vapor
temperature gradient could be made to oppose the applied temperature difference between the
two interfaces for

Ah > ng‘“’g.

Here Ah is the latent heat of vaporization, and T%"9 is the mean temperature between the
two surfaces. This phenomenon has come to be known as an inverted vapor temperature
profile.  Pao’s expression says nothing about the amplitude of the temperature difference
between the two plates, which must be overcome to achieve the temperature gradient. The
inverted temperature profile has been a subject of much speculation and discussion in many
papers. Koffman et al. [38] even question the validity of a theory that yields an inverted

temperature profile.

The inverted profile is due to interface temperature jumps. The afore mentioned kinetic theory
temperature jump directions tell us that for condensation T, > T;, and for evaporation T,, < T;.
This is illustrated in Figure 1.8. As the temperature jumps increase, the vapor temperature

gradient approaches inversion.
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Figure 1.8: Parallel surface non-inverted, and inverted temperature profiles

Meland and Ytrehus [39] using the moment method investigated the dependence of the inverted

temperature gradient on the condensation coefficient. They find that if

Ah
RT‘lfcold

>4.8+8 <1g90) (1.33)

the vapor temperature profile will be inverted. Tj_.q 18 the temperature of the cold surface.
Cipolla et al. [30] evaluate the BGKW model to obtain the pressure and temperature jumps
at the interface. They find the interface temperature jump arising from the conductive heat
flux, and mass flux is independent of the condensation coefficient. Since the existence of the
inverted temperature profile is directly related to interface temperature jump, the findings of

Cipolla are contradictory to those of Meland and Ytrehus.

Kjelstrup et al. [34] discuss the inverted temperature profile from an irreversible thermodynam-
ics point of view. They consider only the cold surface where condensation takes place, the
right hand side of Figure 1.8. They define the positive direction as from the vapor toward the
surface (opposite to our definition), and find that the sign of the interface temperature jump
T, — T; is the same as that of the vapor temperature gradient in an inverted profile, and the
opposite for a non-inverted profile. This implies that the temperature jump does not flip with

the vapor temperature gradient.



Chapter 1 24

We recall that Bedeaux [27] defined the conductive energy flux ¢, travelling in the vapor away
from the surface as positive. Figure 1.9 shows the directions of the positive conductive energy
flux at each surface. For a non-inverted profile g, > 0 at the evaporating surface, and g, < 0
at the condensing surface. The opposite is true for the inverted profile, g, < 0 for evaporation,

and ¢, > 0 for condensation.

— Positive gy Positive q, <—

Tr-hodd Vapor
T\f—hol

Inverted

Tv-cold
Mass Flux L Ticold
Evaporating Condensing
surface surface

Figure 1.9: Conductive energy flux directions

Fourier’s law shows that
dT,

dz

(1.34)

Qv ~ —

We first consider the non-inverted profile, where from Figure 1.9 at the evaporating surface,
T, < T; and % < 0, and at the condensing surface T, > T; and % > 0. For the inverted

case the jumps are the same, but the gradient direction changes, that is at the evaporating
‘fl—:g ‘fi—:g < 0. Keeping in

surface, T, < T; and > 0, and at the condensing surface T, > 1; and

mind that the positive direction here is away from the surface, this agrees with Kjelstrup et
al.’s [34] stipulation relating the temperature jump and gradient signs to the inverted profile

and non-inverted profile, mentioned earlier.

We apply Fourier’s law to Eqn. (1.29), and write the first term to show the temperature jump,

dr 1
~ L

% qulTu (T, = Th) + Ly; (b — 1) - (1.35)
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This shows that the sign of the cross over term, Lg; (i, — j;), must be opposite to that of the
temperature difference for the signs of the temperature difference and gradient to oppose each
other. Kjelstrup et al. [34] conclude Ly; < 0 for an inverted temperature profile to be possible,

recall that Lgg > 0 in any case.

Shankar and Deshpande [40] investigate the parallel surface problem experimentally. They
observe nearly inverted temperature profiles. Figure 1.10 is an excerpt from their results. The

jump directions are as predicted by kinetic theory.
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Figure 1.10: Parallel surface temperature measurements

1.7.5 Molecular Dynamics Simulations

MD simulations provide the possibility to study liquid vapor interface characteristics in detail.
In MD simulations the translational motion of molecules in a simulation box is calculated
according to Newton’s second law, F' = ma. The force is often approximated as a sum of pair

interactions between molecules. Meland et al. [41] give a good overview.

Yasuoka and Matsumoto [42] perform MD simulations of argon (monatomic gas). They con-
clude that for temperatures of 80 K, and 100 K, the condensation coefficient is close to unity and

nearly independent of temperature. Matsumoto [43] also conducted MD simulations for argon,
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water, methanol, and acetic acid. He observed for argon that the condensation coefficient is
constant until approximately 100 K. This agrees with the findings of Yasuoka and Matsumoto
[42].

Matsumoto [43] found for argon at higher temperatures, water, and acetic acid, that the con-
densation coefficient is strongly dependant on the surface temperature; it decreases as the
surface temperature is increased. It is suggested that this is due to molecular exchange, which
takes place when an incident vapor molecule hits the surface and stays, but displaces another
molecule from the surface back into the vapor. Higher surface temperatures mean that the
surface molecules have greater energy, and are more likely to be bounced off the surface into
the vapor. Matsumoto [43] reports molecular exchange causes associating fluids such as water,

and alcohols, and fluids at high temperatures to have low condensation coefficients.

Tsuruta et al. [44] use MD simulations for argon to study the effects of translational motion on
the condensation and evaporation coefficients. They observe that higher energy vapor mole-
cules are more likely to condense, since they can penetrate more deeply into the surface, thus
increasing the number of collisions with liquid molecules. It was also found that surfaces with
higher energy (high temperature) reflect molecules more easily. They developed a condensation

coefficient expression to reflect these observations,

0. = [1wexp<f£0l>] . (1.36)

Here, F,,, is the translational molecular energy in the direction normal to the surface, and
and w are constants. Tsuruta et al. [44] report they vary from 0.971 — 0.685, and 0.086 — 0.554
respectively. Tsuruta et al. [44] also observe that most molecules reflect diffusely, meaning an

accommodation coefficient of near zero. Recall that these are values for argon.

Meland and Ytrehus [45] also find the condensation probability is velocity dependant. Tsuruta
and Gyoko [46] perform direct simulation Monte Carlo (DSMC) using the velocity dependant
condensation coefficient (1.36). Nagayama and Tsuruta [47] derive the condensation coeffi-
cient (1.36) for monatomic and polyatomic molecules based on transition state theory, which

they use to develop expressions for ¢ and w. They find that the characteristic length ratio
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between liquid and vapor plays an important role in evaluating the condensation coefficient, as
translational motion dominates rotational motion during the condensation process. They find
good agreement with their results when compared to MD simulations for Argon and Water.
Meland et al. [41] from their MD simulations conclude that a constant condensation coefficient

is inadequate, and agree with the approach taken by Tsuruta et al. [44].

Rosjorde et al. [48] perform equilibrium, and non-equilibrium MD simulations for argon, with
which they verify the Maxwellian equilibrium velocity distribution. They point out that even
for large temperature gradients the liquid and vapor are each in local equilibrium. They also
verify that the surface temperature is approximately the adjacent liquid temperature Ts = T;
likely because of the large thermal conductivity of the liquid. Rosjorde et al. [49] find that the
mass and energy force-flux relations are linear, even for large temperature gradients. Meland
and Ytrehus [45] use MD simulations to determine the velocity distributions of evaporating and
reflecting molecules. They find they both resemble drifting Maxwellians. This verifies the

necessity to include the net vapor velocity in the analysis.

Frezzotti et al. [50] perform MD simulations for the parallel surface geometry. They find
evidence of the onset of the inverted temperature gradient. They report that their results

agree with kinetic theory.

1.7.6 Van der Waals Square Gradient model, and Mesoscopic Non-equilibrium

Thermodynamics

Bedeaux et al. [51], [52], [53] use a van der Waals square gradient model to describe the non-
equilibrium conditions across the liquid vapor interface. The van der Waals equation of state
treats the transition between the liquid and vapor phases as continuous. Unlike kinetic theory
and irreversible thermodynamics, the interface is modelled as a continuous transition zone. The
transition zone between phases is described by adding a term proportional to the square of the
density gradient to the Helmholtz free energy. The square gradient term filters down through
the balance equations, and entropy production, into the thermal resistivity of the conductive

heat flux. This gives rise to significant temperature jumps across the interfacial zone.
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Bedeaux et al. [54] also analyze the transition zone from a mesoscopic non-equilibrium thermo-
dynamic point of view. They derive an expression for condensation flux, and an expression for

the condensation coefficient found from MD simulations.

1.7.7 Conclusions

In conclusion, standard kinetic theory predicts 1; > T for evaporation, and T, > T; for con-
densation. Irreversible thermodynamics predicts T, > T; for condensation. For evaporation,
irreversible thermodynamics can predict either sign depending on the choice of phenomenolog-
ical coefficients. Experimental results all agree that T, > T; for condensation, but find jumps
in both directions for evaporation. Kinetic theory phenomenological coefficient predictions
do not agree with experimental results. MD simulations have shown that the condensation
coefficient is temperature and molecular velocity dependant, the condensation and evaporation
mass and energy fluxes can be modelled using a linear law, the equilibrium velocity distribution

is a Maxwellian, T =~ T; is true, and the possible existence of the inverted temperature profile.
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Chapter 2

Supporting Equations

The supporting equations provide the framework of our model. This is where many of the
necessary assumptions are applied. These are the equations which are solved in conjunction

with the interface mass and energy fluxes that will be discussed in the following chapter.

2.1 Balance Laws

General balances of mass, momentum, energy, and entropy are presented. They are simplified
for one-dimensional steady state flow in the vapor, liquid, and across the liquid vapor interface.

For this, we assume the interface to be a discontinuity of zero thickness.

2.1.1 Balance of Mass

We first consider the bulk fluids away from the interface. The general differential form of the

balance of mass in tensor form is [55]

Op  Opv;
ot + oz =0, (2.1)

where ¢ is the Cartesian coordinate index. For one-dimensional steady state this reduces to

d(pvz) _
5% 0 (2.2)

where z represents the vertical direction, see Figure 1.3. Eqn. (2.2) implies the mass flux

J = pv, is constant with position, and in the bulk liquid

Ji = pyu = const; (2.3)
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in the bulk vapor
Jv = PyUy = const. (2.4)

The subscripts [, and v represent the liquid and vapor respectively. The signs are chosen such
that positive velocity and mass flux are in the positive z direction, which implies for evaporation

j >0, and for condensation j < 0, see Figure 1.3.

Eqn. (2.2) requires only the steady state, and one-dimensional assumptions which should be
valid everywhere including across the interface. We should then expect j; = j,. This is seen
more clearly by considering the control volume surrounding the interface, using the integral

version of the mass balance. The integral form of the balance of mass is

V/ <% + 82‘;?) v =0, (2.5)

where V' is the volume of the control volume. Applying Gauss’s law, at steady state Eqn. (2.5)

reduces to

75 (pvini) dA = 0, (2.6)

the closed surface integral around the surface of the control volume. n; is the unit normal to
the surface, and is positive outwards. We shrink the control volume such that its height above

and below the interface approaches zero. For one-dimensional flow in the z direction we then
find
(Pyvo — prur) A =0, (2.7)

where A is the interface surface area. Since A # 0 this reduces to

PpUu = PUL- (2.8)

We conclude the mass flux is constant through the interface control volume, and in the bulk

phases,

J = pju1 = pyUy = const. (2.9)
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2.1.2 Balance of Momentum
The conservation of momentum is applied to establish the pressure gradients in the bulk fluids,

and the difference across the interface. The general momentum balance in differential form is

[55]

Opv; n d (pvivy + pik)
ot oxy,

= pF,. (2.10)
There are two coordinate indices i, and k. We expand Eqn. (2.10) for steady state,

Opvy, ov;  Opig
i = pF;. 2.11
v ka + POk awk + ka p ( )

The mass balance, Eqn. (2.2), shows the first term is zero. If we assume isotropic pressure and
neglect shear forces, the pressure tensor p;; reduces to pd;, where p is the pressure and 6;; is
the unit matrix. The only external force present is gravity, so that the force term reduces to
pF; = (0,0, pg). With these simplifications the one-dimensional momentum balance reads

ov,  Op
Uz + 5, — PI- (2.12)

We assume that the product of the vapor velocity, and velocity gradient is small, allowing it to
be neglected. If the gravitational force is also neglected, Eqn. (2.12) also shows us the pressure

in the vapor is constant,
Ipy
0z

=0, (2.13)

a conclusion which we confirm later. Eqn. (2.13) does not apply across the interface; the
velocity gradient there will not be zero from Eqn. (2.9) because of the difference in liquid and

vapor densities.

We now examine the momentum balance across the interface control volume, Figure 1.3. The

integral version of the balance of momentum is

/<8pvi n d (pvivy, +pik)) dV = /pFidV. (2.14)
“ v

ot oxy,
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With Gauss’s law for steady state, and assuming isotropic pressure with no shear forces, this

reduces to

7{ (pvgving + pdigny) dA = /pFidV. (2.15)
v

The control volume can now be shrunk to zero height, such that it exactly surrounds the liquid
vapor interface. This causes dV — 0. For one-dimensional flow the momentum balance

becomes

Po =PI = P} = pyvy- (2.16)

We insert the mass balance, Eqn. (2.9), and find the pressure difference across the interface to

be

21 1
po—pi=j <— ——>. (2.17)
Pr Py
Since p, is small relative to p;, we find
ij
Pv—p=—, (2.18)
Py

which for p, = 1072X& and j = 103X | yields p, — py = —10~*Pa. This indicates that the

liquid interface pressure p; is very close to the vapor pressure p,.

If the system was in equilibrium, the mass flux, velocities, and gradients would all be zero.

Eqn. (2.17) yields, p; = py.

2.1.3 Balance of Energy

The conservation of energy in differential form is [55]

0 v? 0 v?
E (u + ?) + oz, |:p (u + ?> V; + PikVg + qi:| = pF;v;. (2.19)

u is the internal energy, and ¢; is the conductive heat flux. We neglect the kinetic energy

term, %, since it will be insignificant relative to the internal energy. If we neglect gravity, and
assume isotropic pressure and no shear forces, the one-dimensional steady state energy balance

18
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% [p <u + %) v, + qz} = 0. (2.20)

Like the balance of mass this reduces to constant liquid and vapor total energy fluxes,
Q1 = jhi+ q = const, (2.21)

and

Qv = ]hv + qu = const. (2.22)

The mass balance is invoked for pv,. h is enthalpy, h = u + 1—;. The total energy flux is

composed of the convective flux jh and the conductive flux q.

As with the mass flux the assumptions required for Eqns. (2.21), and (2.22) are still valid at
the interface; we expect to find that @ is constant. To confirm this the integral energy balance

is presented,

0 1)2 o U2
/ {E <u * 5) e [” <“ * 5) Vi T PikUk ‘h} } av = /sz-vz-dV. (2.23)
v 14

We neglect kinetic energy and the gravitational force, and assume isotropic pressure without

shear forces. The one-dimensional steady state integral balance across the interface control
volume becomes

Q=Jjh+q = jhy + q = const. (2.24)

2.1.4 Balance of Entropy

For irreversible thermodynamics, an expression for the entropy production o at the interface is
required. This is equal to the entropy production of the control volume for zero height. The

integral form of the entropy balance is [55]

o= / [% + 0 (psvi + &)} av > 0. (2.25)
v

8t 8332 T
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For steady state one-dimensional flow across the control volume this reduces to

c=j(sy—8)+ 0= — == >0, (2.26)

where s; and s, are the liquid and vapor entropies evaluated at the liquid and vapor interface
properties. The energy flux, Eqn. (2.24) is employed to eliminate the liquid conductive energy

flux from the entropy production

9 Gv 1 1 1 1
— i - ap == wl|l——=1]>0. 2.27
? ‘7<Tl T, " <Tv Tl>>+q<Tv T (227)
Here ¢;, and g, are the liquid and vapor Gibbs free energies, g = h — T's. The Gibbs free
energies and the vapor enthalpy are evaluated at the respective liquid and vapor interface

temperatures and pressures. We can again employ the energy flux expression to eliminate the

vapor convective energy flux, and express the entropy production in terms of the total energy

(9 v 1 1
— _ - > (). 2.2
o j<Tl Tv>+Q<Tv Tl>_0 (2.28)

Eqns. (2.27), and (2.28) are both in the flux-force form discussed in the introduction.

flux

From the irreversible thermodynamics discussion the fluxes and forces are both zero in equilib-

rium. It follows from Eqn. (2.28) that in equilibrium @ =0, j =0,

1 1

—— = = 2.29

T'U Cz'vl 07 ( )
and

g1 Gv

gL Jv 2.30

T, 0 (2.30)

This indicates that in equilibrium T, = T;, and ¢g; = g,. These equilibrium conditions also

fulfill Eqn. (2.27).
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2.2 Constitutive Assumptions

To write the enthalpies and entropies in terms of temperature and pressure, we assume the
liquid water is incompressible, the vapor is an ideal gas, and constant specific heats and thermal

conductivities in the liquid and vapor.

2.2.1 Liquid Water as Incompressible

It is common to assume the density of liquid water to be constant. This can be checked
approximately using the saturated liquid density. It varies from 1000% to 995% for a pressure
range of 0.6 — 5kPa [56], a percent difference of 0.5%. This change incorporates changes with

saturation temperature. The change in density due to pressure alone will be even smaller.

2.2.2 Water Vapor as an Ideal Gas

The ideal gas assumption assumes a compressibility factor of unity [56]. The dimensionless
reduced pressure, p, = ]% is an indicator of a vapor’s compressibility. Here, p, is the vapor
pressure, and p. = 2.209 x 10° kPa is the critical pressure [56]. Considering the pressure range
in this study, the highest reduced pressure is of the order of 107°. It is sufficiently small that the

compressibility is approximately unity [56], which makes the ideal gas assumption reasonable.

2.2.3 Constant Specific Heats

For liquid water as an incompressible liquid, and water vapor as an ideal gas, we now discuss

the assumptions of constant specific heats.

The liquid specific heat varies from ¢; = 4.23XL to ¢; = 4. 18 ¢ a difference of 1.20% over the

kgK
temperature range of 273 — 298 K [56]. It follows that we can approximate the liquid specific

heat as constant, and choose it to be ¢; = 4. 18klg‘JK.

A polynomial fitting function for water vapor specific heat in kg—K is [56]

ep(T) = 05 (32.24 +0.1923 % 10727 4 1.055 * 10~°T2 + 3.595 % 10 — 97°) . (2.31)
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The vapor specific heat changes by 0.5% over the temperature range of 273 — 298 K. The

kJ

average specific heat is ¢, = 1.865;%

The kinetic theory gives the specific heat for monatomic molecules as [9]
p =75 (2.32)

Here m is the molecular mass, and k is the Boltzmann constant . Inserting numeric values for
m and k, the kinetic theory specific heat is ¢, = 1.151{1;—‘]}{. As discussed in the introduction our
kinetic theory analyses is performed for monatomic molecules. Water is not monatomic but we
approximate it as such. The kinetic theory expressions in the next chapter utilize the kinetic
theory specific heat. To provide equality between kinetic theory, the supporting equations, and
irreversible thermodynamics, the simulations employ the kinetic theory specific heat instead of

the true value for water vapor. There is a 38.5% percent difference between them. We show

later that this difference although significant, does not greatly modify the model results.

2.2.4 Liquid and Vapor Enthalpies

Enthalpies are expressed in terms of differences between the actual state and a reference state.

Differentiating the definition of enthalpy h = u + % yields

1 1
dh = du + ;dp + pd (;) . (2.33)

The last term is zero because of our incompressible assumption. The liquid reference state is
given by the liquid enthalpy h{ at temperature 7,, pressure p,. Writing Eqn. (2.33) for the

liquid temperature at location z with constant specific heats we find

hy —hi = [Ti(z) — T,] + pll(pl — Do)- (2.34)
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Usual practice is to incorporate the reference term and absolute term together, and neglect the

pressure difference. The resulting constant specific heat liquid enthalpy is

b= a[Ti(z) —To). (2.35)

The vapor enthalpy is expressed assuming the vapor specific heat for constant pressure c, is

constant,

hy — hy = cp [Ty(2) — Tp) . (2.36)

The difference in liquid and vapor enthalpies at reference temperature T, is constrained to be
the enthalpy of vaporization Ah, at the reference temperature. The enthalpy of vaporization
could be included as an additional term in the liquid enthalpy, vapor enthalpy, or partially in
both. We have expressed the liquid enthalpy without it, thus it must be included with the
vapor enthalpy. Eqn. (2.36) becomes

he = ¢y [To(2) — Ty) + Ah. (2.37)

2.2.5 Liquid and Vapor Entropies

We start with the Gibbs equation in terms of internal energy,
1
Tds=du+pd|(-). (2.38)
p
For an incompressible liquid the last term is zero. Introducing constant specific heats for the

internal energy and integrating yields the liquid entropy as

T (2.39)

si=s7+¢ln

Here s7 is the liquid entropy at reference temperature 715,
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The vapor entropy is found from the Gibbs equation in terms of enthalpy,
1
Tds = dh — ;dp. (2.40)

We use the ideal gas law to express the density and temperature in terms of pressure, and

introduce constant specific heats for the enthalpy. The resulting expression is

dl' R
We integrate, and find the vapor entropy
T’U v
SU:82+CPIH%RIH%. (2.42)

o

9 is the vapor entropy at reference temperature 7, and reference pressure p,, and p, is the

S

vapor pressure.

At equilibrium the temperature and pressure are uniform throughout the system, including
across the interface. Across an isothermal, and isobaric interface at reference temperature T,
Eqn. (2.40) becomes

To(s5 — s7) = Ahs. (2.43)

It follows that the equilibrium entropy difference across the interface at T, is

Ah,
As, =585 — s8] = T (2.44)

o

2.3 Saturation Pressure

The saturation pressure pgsq: (1)) is the equilibrium pressure of a fluid at temperature 7" that
exists simultaneously in both liquid and vapor phases. We saw from the momentum balance
that the pressure across the interface is constant at equilibrium. The entropy balance tells us
the temperature and Gibbs free energies are also constant across the boundary. The equilibrium

conditions are then
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P = Pv = Pl = Psat (T), T=T,="1, g1 = G- (245)

psat (T') is the saturation pressure at temperature 7. ¢; and g, are the liquid and vapor Gibbs
free energies, g = h — T's. Incorporating the constant specific heat enthalpies and entropies

the Gibbs free energies become

1
g=al-T,) -1, <s;’ +¢ln <Tl>> , (2.46)
and
o Ty Po
Gy = cp(Ty = To) + Ahoy — T, | 55+ cpIn 7 )= Rln o)) (2.47)

The liquid and vapor Gibbs free energies are equated at equilibrium,

(T -T,)—T <37 +¢ln (%)) = cp(T—Tp) + Ahy — T <sg +epln <T£> —Rln <p£o>) .
(2.48)

Solving for p = psat (1), using Eqn. (2.44) to replace As,, we find
_ a-¢& (1 L\ (T Aho (1 1
Psat (T') = po €xp < 7 (1 T In <To)> + R\T."T)) (2.49)

The results of Eqn. (2.49) calculated with reference temperature T, = 25 °C, reference pressure

Po = Psat (25°C) = 3.169kPa [56], and the monatomic vapor molecule specific heat ¢, = g%,

are compared in Figure 2.1 to tabulated data from Cengel and Boles [56].
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Figure 2.1: Tabulated and calculated saturation pressures versus temperatures

The tabulated and calculated results match very closely over a large temperature range. The
percent difference at 0°C is 0.45% and at 50 °C is 0.73%. Since we chose the reference conditions

at 25 °C, the percent difference at this point is zero.

2.4 Fourier’s Law of Heat Conduction

We assume the liquid and vapor heat conductivities x;, and x, are constant. The conductivity

of water vapor varies between 1.56 x 107 and 1.81 x 1072 %, a difference of 16% over a

temperature range of 270 — 300K [57]. The liquid water conductivity varies from 0.5555% to
0.6095“%, 11% over the same temperature range [57]. We present sensitivity tests in a later

section to confirm these variations do not significantly alter the model results.

The one-dimensional Fourier’s law for the liquid and vapor reads

a () = -l (e) (250)
and
Qv (2) = —Ky ddj;v (2). (2.51)
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2.5 Liquid and Vapor Temperature Profiles

After inserting the relations for enthalpy (2.35), (2.37), and conductive heat fluxes (2.50), (2.51),

the energy balance, Eqn. (2.24), can be written as

_ oA
Ydz —

i {cp [Ty (2) — Tp] + Aho} — kiy ddz;” =Q. (2.52)

Ja [Tl(z) - TO]

Note that, by Eqns. (2.9), and (2.24) @, and j, are constants. We group the constant terms

together to define new constants

=i, a-tL (2.53)
JC JC
and
A o ()
ch = Q + To - h , Ay = K_ (254)
J Cp J
With these constants, the liquid and vapor differential equations read
dT; dT,
T —aq— =T, Ty (2) — ay— = Tpyp. 2.
l (Z) aj dz c > (Z) a dz ( 55)

They are solved using the variation of parameters. The homogeneous solution is T = A exp (a%) ,
where A is a constant of integration. The non-homogeneous solution is found by inserting the
homogeneous solution back into the original differential equation, and assuming A is a function

of z. We find for the liquid

dA —Ty z
da 2 2.
= ten (-2, (2.56)
with the solution
A(2) = Ty exp <ai) + B. (2.57)
l

Here, B is another constant of integration. Inserting the solution for A back into the homoge-

neous solution we find

T (2) = Ty + Bexp (ail) . (2.58)

Applying the liquid boundary condition T; (—L;) = Tj; yields the liquid temperature profile,
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z+ L
Ty (2) = T + (Ty — Ter) exp < ” l) : (2.59)

The same procedure is followed for the vapor. Using the vapor boundary condition T, (L) =

Ty, the vapor temperature profile is

Ty (2) = Top + (Thw — Tu) exp <Z — L”) . (2.60)

Ay

Note that by Eqns. (2.53) and (2.54), the constants T and T, depend on the values of the

interface fluxes, j and @, expressions for which will be discussed in the next two chapters.
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Chapter 3

Macroscopic Energy and Mass Flux Expressions

We have now derived the liquid and vapor temperature profiles, and the liquid saturation
pressure, all of which can be written in terms of the mass flux j, and the energy flux Q. In
order to solve the problem, relations at the interface are needed between j and (), and the
properties of the liquid and vapor. In this section we employ irreversible thermodynamics, and

SRT, to develop mass, and energy flux expressions at the liquid-vapor interface.

3.1 Irreversible Thermodynamics

Earlier we combined the entropy production (2.26) with the energy flux (2.24), to find two

different force-flux expressions for interface entropy production,

(L2 (== ) ) 4a(=—-=) >0, 1
7 j(Tl Tv+ (Tv Tl)>+q <Tv T 0 (3.1)
and
. 9 Jv 1 1
— _ - _ > (). 2
o j<Tl TU>+Q<TU T1>_0 (3:2)

The energy flux (2.24) can be used again to write the entropy production in terms of the

conductive flux in the liquid ¢; giving a third force-flux expression

. Gl Jv 1 1 1 1
— gL I - _ — —— | >0. .
o J(n Tv+hl<Tv Tl>>+‘”<n Tl>_0 (3.3)

Any one of these three entropy production force-flux combinations could be used to produce

phenomenological expressions. The respective force-flux combinations are listed in Table 3.1.
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Eqn. | Flux Force Flux | Force
: v 1 1 1 1
31 |- ftm(h-4)| o |E-4
: v 1 1 1 1
33 | 0 | #-#th(E-4)| o |£-4

3.2 j -2 Q |+ -+

Table 3.1: Thermodynamic Forces and Fluxes

We see from Table 3.1 that there are three different mass flux forcing expressions. We write

the Gibbs free energies in terms of enthalpy and entropy, and find

hy — hy
H:ln + Sy — 81, (3.4)

hy — hy
FQ:ZT‘I*SU*SZ, (3.5)

and
hy — hy 1 1

Fs=——+h (77 v~ SI, .
3 T + <Tl Ty>+8 S (3.6)

where F is the mass flux forcing from Eqn. (3.1), F» is the mass flux forcing from Eqn. (3.3),
and Fj is the mass flux forcing from Eqn. (3.2). We see that F; and F, are in terms of
enthalpy and entropy differences, which are independent of the choice of enthalpy and entropy
reference point, but F3 is dependent on the enthalpy reference. Since the mass flux should not
be dependent on the arbitrary choice of reference, we conclude that the F3 mass forcing should

not be considered.

Choosing between the remaining two force pairs in Table 3.1 is not as clearly defined. Both are
different from those of Bedeaux and Kjelstrup [28], Eqns. (1.29), and (1.30), discussed in the
introduction. However, Bedeaux and Kjelstrup do write their phenomenological expressions in
terms of the vapor convective flux g, but they do not have the h,, (T% — T%) term in their force
for mass flux. Perhaps a more solid indicator is the mass flux forcing of the SRT expression
(1.31), derived independently of irreversible thermodynamics using quantum mechanics and the

Boltzmann entropy definition [5], which is the same as the mass forcing from Eqn. (3.1).

Thus we choose the forces and fluxes from Eqn. (3.1) for our irreversible thermodynamics (IT)
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analysis. To simplify our analysis we neglect the cross-over terms, and find

(99 L1
J _5<Tl T, T <Tv Tl>) (3.7)
and

Qo = (T% - %) . (3.8)

For simplicity of notation we have inserted 3, and « as the phenomenological coefficients. As

discussed earlier, to ensure positive entropy production they must both be positive.

For equilibrium where ¢; = g,, and T; = T;,, we see that Eqns. (3.7), and (3.8) reduce to j =0,

and @ = 0, satisfying the equilibrium conditions.

3.2 Statistical Rate Theory

As we mentioned earlier, Ward and Fang [5] suggested a SRT expression for the interface

molecular flux,

_ I Ly  hy (1 1 —U;  Hy  hy (1 1
m = ks S exp | L - LU I | e S (1IN g
’ {eXp [sz W,k <Tv Tlﬂ P [le TR \T, T (3.9)
where
19psat (Tl) Uy (Tl)
ks = ————=, and ¥ = 7 — Dsat (11)] ¢ - 3.10
oy 0= o T P Paar (T0) (3.10)

The chemical potentials per molecule y;, and pu,, as well as the temperatures are evaluated
directly at the interface. wv; is the liquid specific volume per particle, and pj is the liquid

equilibrium pressure (different from psq (T') because of surface tension).

For water in our range of study, 7T; ~ 298K, and v; =~ 10_3%;; we estimate %;F—lll R 10_9%2.
As we shall see, the difference between pf and psq (17) is small, thus ¥ ~ 1, and the factor in

front of the exponential reduces to
DPsat (ﬂ)
ky = 2L 3.11
vV 2mmkT; ( )
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This expression has units of molecules per unit area and time. To convert to units of mass
which we use for our analysis, we multiply ks by the molecular mass m to convert to units of

mass per unit area and time. The resulting coefficient is

— DPsat (ﬂ)

s ) 312
V2w RT; ( )

where R = % is the gas constant for water. Again we mention that kg is exactly the first term
of the HK mass flux (1.20) which represents the mass flux of the molecules evaporating from

the interface, and that SRT assumes 6. = 0. = 1.

Like ks the SRT exponents are written in terms of molecules, and not mass. We wish to use
Gibbs free energies, and enthalpies per unit mass. To maintain proper unitless form, we must

multiply each term by m. The resulting SRT mass flux is

- 9 9o he (1 1N]_ 9, 9o _he (1 1
j—ks{exp[RTl RTU+R<TU Tlﬂ eXp[Rﬂ+RTU r\T, 7 , (3.13)

with

ky = Lot (TD (3.14)

* V2rRT;
The first exponential of Eqn. (3.13) is the dimensionless form of the force for the IT mass flux
(3.7). Since the IT expression was derived for positive mass flux in the evaporation direction,
we can say that the first exponential term in the SRT expression (3.9) is the evaporation force.
The second exponential in the SRT expression is the negative of the mass force; it must be the

condensation force.

For equilibrium, where g, = ¢,, and T; = T,,, we see Eqn. (3.13) reduces to the equilibrium

condition j = 0.
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3.2.1 Linearized Statistical Rate Theory Mass Flux

When we assume that the terms inside the SRT mass flux exponentials are small, the SRT mass

flux can be linearized to give

. g1 [ Iy 1 1
= ok | Fo e ) 1
J =2k [RTl RT, " R <Tv :n)] (3.15)

Eqn. (3.15) is identical to the IT mass flux expression (3.7), except, here the force is dimen-

sionless, and the coefficient is explicitly defined. We rewrite Eqn. (3.15) in the same form as

Eqn. (3.7),
. Psat (ﬂ) 2 g 9v 1 1
=Dt U2 (A (=), 1
=Tt Ve \n T, T \T T (3.16)

We see that the SRT definition of the phenomenological coefficient for mass flux is

Dsat (,Tl) / 2
= —_— .].

This coefficient must be positive, since it depends on temperature and pressure, and thus agrees

with the phenomenological coefficient non-negative restriction.

SRT does not have an accompanying energy flux expression as in irreversible thermodynamics
or kinetic theory. As mentioned at the beginning of this chapter expressions for both j and
are required to solve the problem. The above analysis shows the SRT mass flux is essentially a
non-linear IT mass flux expression. We suggest then, that the IT energy flux (3.8) can be used
as a substitute in the absence of an SRT energy flux expression. We further mention that it is

important to develop an SRT energy flux expression, a fact which Ward and Fang [5] overlook.
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Chapter 4

Kinetic Theory

We now derive mass and energy flux expressions from kinetic theory.

4.1 Mass and Energy Flux Integrals

We recall from the introduction that the one-dimensional mass and energy flux integrals are

j:j] mc, fdc, (4.1)
Q= ﬁ/%czczfdc. (42)

These can be split into half-space integrals

and

jZ// me; fi (pemp,Tl)ngr// me; fo (po, Tv) de, (4.3)

c;>0 . <0
and
m m
Q = /// ECzC2fl (pevap,ﬂ) dc + /// ECZCva (pU,TU) d(;, (44)
c=>0 cz<0

where we used

f _ fl (pevapyﬂ) Cy > 0 . (45)

fv (pvaTv) c, <0

Here fi (pevap, 1) represents molecules evaporating at the liquid interface properties peyap, and

Ty, and f, (py, Ty) describes the condensing molecules at the vapor interface conditions p,, and
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7.

4.2 Hertz-Knudsen Mass and Energy Fluxes

The HK flux expressions assume the equilibrium Maxwellian distribution

= (i) o (57 ") (4

for the evaporating, and condensing molecules, and that the vapor velocity is zero. We recall
from our discussion in the Chapter 1 that near equilibrium peyap = Dsat (T'). Integrating Eqns.
(4.3), and (4.4) for

fm [Psat (T1) , T} ¢z >0

= , 0, =05, (4.7)
Jm (0o, Ty) 2 <0

the resulting HK mass, and energy fluxes are

and )
2k \ 2

Q= — (psat (T) VTi — po v/ Tv> : (4.9)

In equilibrium we know that p, = pset (T'), and 1} = T, = T, under these conditions Eqns.

(4.8), and (4.9) reduce to the equilibrium condition j = 0, and @ = 0.

4.3 Chapman-Enskog (first order) with Net Vapor Velocity

A small one-dimensional vapor velocity v, is introduced into the Maxwellian to account for

non-zero vapor velocity. The square of the peculiar velocity vector is

C? =2 — 2y + 02 (4.10)
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Since the mean vapor velocity is small, v2 ~ 0. We substitute for the peculiar velocity into the

Maxwellian (4.6),

Nlw

p

fm—w = P (%) exp (—%CQ> exp (%czvz> . (4.11)

We perform a first order Taylor expansion about zero for the second exponential. The Maxwellian

with a small mean gas velocity becomes

Nlw

fmw = % (%) exp (—%8) (1 + %czvz> . (4.12)

Eqn. (4.12) is incorporated into the first order CE distribution Eqn. (1.16), which for one-

dimension, and assuming small vapor temperature gradient and velocity reads
2km mc? 5\ dT’
o =fmw|1—=—— — = — | — . 4.13
Jeemu f”“’< 5pk:cz<2l<:T2 2T> dz> (4.13)

The mass and energy fluxes are now calculated from Eqns. (4.3), and (4.4) for

f: fm[psat(n)aﬂ] c; >0 . (414)

fee—v (pv, ) ¢z <0
The CE distribution (4.13) is used to represent the bulk vapor, and the condensing particle
velocity distribution. The evaporating molecules are represented by the equilibrium Maxwellian
distribution, Eqn. (4.6). The mean velocity of the evaporating molecules is assumed to be equal
to velocity of the liquid at the interface. By the balance of mass, Eqn. (2.9), vjp; = vyp, = J-
The liquid density is much greater than the vapor density, p; >> p,, which implies v; << wvy,.
Since the vapor velocity is small, the liquid velocity is therefore negligible. Then it is reasonable
to assume that the liquid is close to mechanical and thermodynamic equilibrium. We have
already stated that the evaporating molecules take on the liquid interface properties. It follows
that the evaporating distribution can be approximated by the equilibrium Maxwellian (4.6), as

in the HK expressions.
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For the mass flux we obtain

1
. m \z2 [ Psat (n) Dv 1
_ _ Zv.p, 4.1
J <2ﬂk> ( JTi \/7;>'%21’p“ (4.15)

which, since j = v,p,,, simplifies to

1
. m \2 [ Psat (ﬂ) Do
:2( ) - . 4.16
7 " \ork < VT, \/T) (4.16)
Thus, the CE mass flux is exactly twice the HK mass flux, Eqn. (4.8).

We find for the energy flux,

-(@)

We recall the vapor far from the interface is described by fee—y [P, Ty (2)], which is valid for

=

1 dI, 5
(psat (Tl) \/i — pv\/ﬁ> — 5:‘%@% + vavz. (417)

molecules traveling towards and away from the surface. Integrating Eqn. (4.2) over full space

yields
dT, (z) 5
Q — dz + 2pvvz (Z) . (418)
Evaluated at the interface for z = 0,
dl, 5
= —ky—2 + Zpyvs. 4.1
Q= —m T + 2pww (119)

Plugging this into Eqn. (4.17), the CE energy flux is

Q=2 <;—Z) (P (@) VT = 9oV (4.20)

As we saw for the mass flux, this is twice the HK energy flux, Eqn. (4.9).

We check that equilibrium is satisfied: as with the HK expressions Eqns. (4.16), and (4.20)
yield 7 =0, and Q = 0 for py, = psat ('), and T; =T, =T.
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4.4 Constant Condensation and Evaporation Coefficients-Specular

Reflection

We now extend our discussion to include the condensation and evaporation coefficients, 6.
and 0.. We begin our discussion of reflection with the simpler specular reflection case. We
pointed out earlier that specularly reflected molecules maintain their energy, and do not interact
thermally with the surface. The reflected molecules have exactly the same energy as they had
before they were reflected. This causes the reflected velocity distribution to be identical to
the incident distribution, except that the signs of the terms containing the molecular velocity
¢, are reversed. As a result the specularly reflected streams do no contribute to the mass and

energy fluxes.

Condensing Vap or
molecules Vapor molecules
Hc fv (Tu s Py ) to be reflected Reflected vapor
(t-60)5.(p,.T,) molecules

(-0.)f, . (p..T.)

T, \Ajﬁerface / \

T, . Molecules Re-condensed
Egi?:;i;g;g to be reflected liquid
1-6 T),T i
0. fu (P (T).T)) = 0)fulpo @).T1)  pariicles

(1 = ge)fm—ref (psat (Tl)r TI)
Liquid

Figure 4.1: Distributions with evaporation and condensation coefficients

4.4.1 Hertz-Knudsen

We see from Figure 4.1, the incident molecules which condense are 6.f, [py, Ty], and those
which evaporate are O f, [psat(T7),71].  Only those molecules which evaporate or condense
will contribute to the mass flux, since the reflected molecules are bounced back to their original

phases.
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The HK velocity distributions with condensation and evaporation coefficients are then

f= Ocfm [psat (Tl) ’Tl] ¢ >0 , 0, =0p. (4-21)

ecfm (pU7 Tv) c, <0

From Eqn. (4.3), the mass flux is

Since the specularly reflected molecules maintain their energy, the reflected streams will not
contribute to the energy flux, similarly to what we saw with the mass flux. Integrating Eqn.

(4.4) gives the energy flux as

Q= <2—k>% (9@psat (T) V/T1 — Hcpvx/f)) . (4.23)

mm

As expected Eqns. (4.22), and (4.23) reduce to the HK fluxes Eqns. (4.8), and (4.9) for 0, =
0. =1.

The equilibrium conditions of p, = psa: (T'), T} =T, =T, j = 0, and @ = 0 are only fulfilled
by Eqns. (4.22), and (4.23) for . = .. This reiterates our earlier comments that, if 6. and 6.

are constants, then they must be equal.

4.4.2 Chapman-Enskog with Net Vapor Velocity

Incorporating 6., and 6. into with the CE velocity distribution we find

f _ eefm [psat (ﬂ) 71—‘1] Cz > 0 . (424)

chcefv (pva Tv) c, <0

Integrating Eqns. (4.3), and (4.4), and following the simplifications discussed for the earlier CE

solution, the mass and energy fluxes become

D@ ) e
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and

Q= <2 = 00> <%> (0epsat (T) /Tt = 00, /T ) (4.26)

mm

As we observed with the HK expressions, Eqns. (4.25), and (4.26) reduce to the coefficientless
CE equations (4.16), and (4.20) for 6, = 0. = 1.

We see Eqns. (4.25), and (4.26) fulfill the equilibrium conditions of j = 0, and @ = 0 for
pv =psat (T), Ty =T, =T, and 6, = 0.. Again we find that 6. and 6. can only be constants if

they are equal.

4.4.3 Schrage Velocity Distribution

We see Eqn. (4.25) is the Schrage mass flux (1.22) mentioned in the introduction. Even
though we derived it using the CE distribution (4.13), it did incorporate the Maxwellian with
net vapor velocity fm—y.(4.12), Schrage’s distribution. We now address the claims of Barrett
and Clement [17] that the Schrage velocity distribution (4.12) might violate the conservations

laws for energy and momentum.

We start by looking at the energy flux expression. The Barrett and Clement [17] derivation
assumes specular reflection, thus we use Eqn. (4.4) to derive the interface energy flux. Using
the Schrage distribution, with the Maxwellian for evaporation,

f _ eefm [psat (ﬂ) 71—2] c; >0 ’ (427)

Hcfmfv (pva Tv) c, <0

we find )
2k \ 2 5
Q = <m> (ersat (,T[) \/i — chv V Tv) + chpvvz- (428)

Integrating Eqn.(4.2) in the bulk vapor over full space with the Schrage distribution f,—.(4.12)
yields the bulk energy flux,

Q = gpvvz (Z) . (429)

Barrett and Clement [17] suggest the bulk and interface energy flux expressions do not agree.

We point out that their equivalence is forced by evaluating Eqn. (4.29) at z = 0, substituting
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it into Eqn. (4.28), and solving for (). This yields the Schrage energy flux

Q= < : ) (ﬁ> (Oebsat () Vi ~ 69/ (4:30)

2—0, mm

which is identical to the to the CE energy flux (4.26), and agrees with the form presented by
Barrett and Clement [17].

We now consider the momentum flux. Barrett and Clement [17] claim that by definition the
momentum flux must be constant, and equal to the pressure in the direction of the flux, i.e.
the vapor pressure p,. We see from the momentum balance, Eqn. (2.10), that they are correct

in assuming that the momentum flux,
M = pv;ug + pir = const (4.31)

for steady state without gravity effects. If we assume the isotropic vapor pressure, and neglect

shear forces, as before p;;, = py0;1. For one-dimensional flow the momentum flux reduces to
M = pv? + p, = const, (4.32)

which becomes p, for small v,, as Barrett and Clement point out [17]. We emphasize that
the momentum flux is only equal to p, under the assumptions of small v,, and isotropic vapor

pressure without shear forces, not in the general case as Barrett and Clement claim [17].

The one-dimensional momentum flux is given by

M = ﬁ / mc? fdc. (4.33)

At the interface it must include the momentum flux due to the reflected molecule streams; for
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specular reflection it is

Mg = // mefi (psat (T1) , Ti) de + / / mefy (po, To) de +

c>0 c.<0

(=00 [[[ s @) Ty det (1= 00) [[ [ méfo o Ty de (430

c.<0 c>0

We now calculate the momentum flux at the interface for specular reflection by integrating Eqn.

(130)
- e =@ (15 ) e (1= ) (13 o

Substituting in the bulk energy flux (4.29), the interface momentum flux becomes

O 8 m 0.
Mint = Psat (Tl) <1 - 3) + <pv — EQ 27T]€Tv) <1 — 3) . (436)

From Eqn. (4.33) the momentum flux in the bulk vapor using the Schrage distribution (4.12) is

Mypuix = po. (4.37)

We note that both the interface and bulk kinetic theory moment fluxes, Eqns. (4.36) and (4.37),
assume small v,. The bulk momentum flux (4.37) agrees with Eqn. (4.32) for small v,, thus
in the bulk vapor the pressure must be isotropic, and without shear forces. If this is also true

at the interface, then M;, = Mpyx. However this would imply from Eqns. (4.36) and (4.37)

Pv = Psat (Tl) <1 — %) + <pv — %Q 2;;;2_,[}) <1 — %) s (438)

which does not agree with the energy flux expression (4.30), thus we conclude that the non-

that

isotropic pressure, and shear forces make up the difference between M;,; and Mpyyr. This

however does not imply that momentum is not conserved.

We conclude that the Schrage distribution (4.12) does not violate the conservation of momen-
tum, nor the conservation of energy. Barrett and Clement [17] are correct in saying the bulk

and interface energy and momentum flux expressions are not the same, however they miss the
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substitution of the bulk energy flux into the interface flux, and the interface non-isotropic and

shear force pressure effects.

4.5 Specular and Diffuse Reflection

In the previous section we made the assumption that all reflected vapor molecules are reflected
specularly. We now allow for the possibility of diffuse reflection, that is the vapor molecules
interact thermally with the interface, and leave with the interface distribution, and temperature.
The accommodation coefficient « differentiates between specular and diffuse reflection. + is the
ratio between the number of specularly reflected molecules, and the total number of reflected
molecules. v = 1 designates purely specular reflection, and v = 0 purely diffuse reflection.
Figure 4.2 shows the distributions with the accommodation coefficient. The diffusely reflected
molecule distribution is the same as the surface distribution, namely the Maxwellian (4.6). It
is a function of the liquid surface temperature 7} and equivalent pressure px. This pressure is
calculated based on the conservation of mass (4.1) to insure the number of molecules that hit

the interface to be reflected is equal to the number reflected.

Vapor
) Reflected vapor molecules
Condensing Specular: (1 - 0.7, (p..T.).
molecuies Vapor molecules  pyiffuse: (1— 7 X1 — @ ' * T
0.f,(p,.T,) to be reflected i ({1 = ) o (2% T,)

(t-0.)1(p,.T,)

: NN

T Evaporating Molecules Re-condensed
molecules Interface to be reflected liquid
o, f, (Pm ,TI) (1 -0, )fm (pm ,Tl) molecules

(l_ge)fm(psmaTl)

Liquid

Figure 4.2: Specular and diffuse reflection distributions

The mass flux expressions, Eqns. (4.22) , and (4.25) which we developed for specular reflection
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are still valid for diffuse reflection, since the reflected molecules do not contribute to the mass

flux.

The energy flux expression must now account for the reflected molecules, since the net energy
flux of the diffusely reflected molecules and their incident molecules is no longer zero, as was the
case for purely specular reflection. We assume the molecules described by (1 — 0¢) frn—ref (Psat (11) , T1)
in Figure 4.2 which leave the liquid and bounce back, do so specularly, and thus do not con-
tribute to the energy flux. They likely would not travel far from the surface, and not collide
with many other molecules, thus allowing them to maintain their energy, and distribution. We

sum each molecule stream’s contribution to the energy flux

Q@ = 0 [[[ Fetntpu M) By dc 0. [[ [ G ho T de

c;>0 c, <0
+<1> 0.) / [ 0/ e fy (po, To) de +7(I 0.) / Z 0/ P iy reg (ponTy) de
H1=9) (1= 6) / / O/ ™ o (i T de. (4.3

Each integral in Eqn. (4.39) represents a molecule flow in Figure 4.2. The first term is due to
evaporating molecules, the second is due to condensing molecules, the third is due to incident
molecules that are reflected at the interface, the fourth is due to specularly reflected molecules,

and the fifth is due to diffusely reflected molecules. ~The second and third terms can be

Q = 0 [[[ Fec b o ) T e+ [[[ Feith T e

combined,

c:>0 <0
m 9
+ (1 - 96) ECZC fv—ref (pv, Tv) dc
c,>0
U= =00 [[[ e on 1) de (4.40)
c,>0

We need to develop an expression for px. Applying the conservation of mass (4.1) for the
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reflected molecules yields

(1-06.) /// czfo (Pv, Ty) dec + v (1 —0.) /// Cz fo—ref (Pv, Ty) dc

c,<0 c,>0

+(1 =) 1-6) /// ¢z fm (p%, 1) dc = 0. (4.41)

cz>0

The first term represents all the incident vapor molecules that are reflected, the second those

which are reflected specularly, and the third the diffusely reflected stream.

4.5.1 Maxwell Distribution, v, =0

As before we set f, = fi,, and assume the net vapor velocity v, = 0. As mentioned earlier, the
distribution of the specularly reflected molecules is identical to the incident distribution, except
that the signs of the terms containing c, are reversed. Since the Maxwellian (4.6) has only a
C? velocity term, reversing the sign of the velocity for the reflected distribution will have no

effect, thus the specularly reflected distribution will be fy,_ref (Do, T) = fin (P, Tv)-

Eqn. (4.41) becomes

m m m
Pl omkT, TP 2, T (IL=7)p+ \ 27kT; 0- (4.42)

We solve for px and find

Ti

oy (4.43)

p* =Dy

Integrating Eqn. (4.40) and substituting in for p«, yields the energy flux for specular and diffuse

reflection,

2% \ 2 1 Po
Q= <E) <96p8at (Tl) \/fl - Hcpv\/_T—v + \/_T_U (Tl — Tv) [1 -y (1 — 90)]) R (444)

and from Eqn. (4.22) the mass flux is still
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We see that Eqn. (4.44) reduces to Eqn. (4.23) for purely specular reflection, v = 1. As well for
0. = 0. =1, it reduces to the HK energy flux (4.9). Finally we see that it satisfies equilibrium
for any values of vy, j = 0 and @ = 0, for p, = psat (T), Ty =T, =T, and 0, = 0..

4.5.2 Chapman-Enskog with Net Vapor Velocity

The reflected CE distribution with net vapor velocity is

2Km me? 5\ dT
ce—v—ref — Jm—v—re 1 -7 %2\ 579 o+~ | 4.4
J r=1 f< Ty <2kT2 2T> dz) (4.46)
where
3
_ b (M \: __m 2) <1 _m ) 4.4
Jm—vrer = 37 (QWkT) exp( W KT %) (4.47)

Note the signs of the terms containing ¢, have changed from the incident distributions Eqns.

(4.12) and (4.13).

The conservation of mass (4.41) yields

11 .k
= Dot/ — — —_— 4.4
px=p T, J 2m (4.48)

From Equns. (4.40), and (4.48) the CE energy flux with specular and diffuse reflection reads

2 ok \ 2
© =T <E> (4.49)
<Oep3at (n) \/ﬁ_ecpvf_}—v + [1 _'7(1 _90)] \5_;—7—1}(1—2 _Tv) _ﬂ(l _’Y) (1 _Hc)j %) .

From Eqn. (4.25) the corresponding mass flux is
. 2 m\z OcDsat (Tl) 0cpy
= i . 4-
J (2—00) <27rk> ( JIi VT (4.50)

As expected Eqn. (4.49) reduces to Eqn. (4.26) for purely specular reflection, v = 1, and Eqn.

(4.20) for 6. = . = 1. Again we see the equilibrium conditions are satisfied for any value of

v, @ =0and j =0, forpvzpsat(T)aﬂ:Tv:Ty and 0, = 0.
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4.6 Velocity and Temperature Dependant Condensation and

Evaporation Coefficients

We mentioned in the introduction that MD simulations have suggested the condensation coeffi-
cient is dependant on the energy of the incident molecules, and the interface surface temperature
[43], [44], [45], [46], [47]. An incident molecule with high energy can penetrate more deeply
into the liquid phase, resulting in more collisions with liquid molecules increasing the likelihood
of condensation [44]. Increased surface temperature increases the energy and velocities of the
surface molecules, increasing the likelihood of incident molecules having collisions at the sur-
face. This reduces incident molecule penetration, reducing the condensation coefficient. To

accommodate this behavior, it is suggested that the condensation coefficient is of the form [44]

0. =1 [1 — wexp <2ZL£2>} , (4.51)

where v, and w are constants.

Since we know the condensation coefficient must be between 0 and 1, this must also be true for

Eqn. (4.51). If ¢ — oo, . = 1 indicating that 0 < ¢ < 1. For ¢2 =0, 0. = ¢ (1 — w); this

forces w < 1, and also implies w > 1 — % Thus w is restricted to

1-—<w<l. (4.52)

<=

This suggests the possibility of a negative w. We recall that the probability of a molecule
condensing increases with its energy mc?, and decreases with higher surface temperature 7j.

For 6. (4.51) to follow this trend, w must be positive, thus its range is

0<w<l. (4.53)

Tsuruta et al. [44] report from MD simulations for argon that ¢, and w vary from 0.971 — 0.685,
and 0.086 — 0.554, respectively.

We know that . = 6. must be true in equilibrium, and that the liquid is locally in equilibrium.

If we assume that the individual vapor molecules hitting the interface, described by Eqn. (4.51),
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are also locally in equilibrium, then we can set 6, = 0.. The velocity dependant condensation

coefficient (4.51) is then inserted into the mass and energy flux integrals, Eqns. (4.3), and (4.4),

yielding

2

///1/’ (1 Ceep <2Z£ )) mez fm [Psat (Th) , T de
e:>0
+///1/1 <1 T wexp <QZ§>> me; fo (pv, Tv) de, (4.54)

c<0

for purely specular reflection

m
Q = ///10 <1wexp< 2T, )) QCZC fm [psat (T1), T1) dc
m
1-— M 2 (o, To) de, ‘
///d}( weXp(QkT >>QCCf(p T,)dc (4.55)
and for specular and diffuse reflection

///1/’(1—%@(2” ))—czc fm [Psat (T1) , T dc—i—///—czc Fo (po, T) de

cz<0

c.>0

+7/// (1 - {1 — wexp < %, )}) 5 € 2 fores (Do, Tyy) de
/(R (o A

) for the reflected molecules becomes

The conservation of mass (4.1

/[O/ <1w{1 —wexp <_22”1512>}> e fo (pos To) de
+7/// <1 — {1 — wexp <_2;njfl2> }) ¢z fo—ref (Pv, Tv) dc
c,>0
+<1—v)ﬁof <1—¢{1—wexp<‘2;”§>}> eofm (pt. T de = 0. (457)
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4.6.1 Maxwell Distribution-Specular Reflection, v, =0

We integrate Eqn. (4.54) for fu, = fm, fo—ref (Dv, Tv) = fm (Pv, Tv), and v, = 0, and find

jz(ﬁf<¢<1_%)%L¢(T_if”_w<l_nﬁwTv> jT) (4.58)

Eqn. (4.58) differs from the HK mass flux (4.8) by a temperature and coefficient dependant

factor of
Tiw
17,T) = 1-— . 4.
0.7 = (1- 7% (4.59
We incorporate 7 (1;,T') into Eqn. (4.58),
For T'=T;, Eqn. (4.59) reduces to
w
N0 1) =v (1-3). (4.61)

which is the factor in front of the first term in Eqn. (4.58), and is exactly what Nagayama et

al. [47] give as the condensation coefficient.

We recall from Eqn. (4.51), that 6. = 1, for ¢ = 1, and w = 0. Since we have assumed that
0. = 0., we see Eqn. (4.60) reduces to the HK mass flux (4.8) for ¢y = 1, and w = 0.

If we compare Eqn. (4.60) to Eqn. (4.22), we see n (1}, T) is a temperature dependant conden-

sation and evaporation coefficient.

Integrating Eqn. (4.55) yields the energy flux for purely specular reflection

Q= <2—k)% (1/1 (1 - %w) Psat (1) V/Ti — ¥ <1 - w) pv\/f,> . (4.62)

mm 2(T; 4 T)?

Comparing Eqn. (4.62) with the HK energy flux, Eqns. (4.9) and (4.23) gives another temper-
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ature dependant condensation, and evaporation coefficient

T, (21 +T) w)
s (I, T :1/’(1—— : 4.63
v, (11, T) 2(Th +T)2 ( )
different from that of the mass flux (4.59). Eqn. (4.62) with ¢, (T, T) reads
2%k \ 7
Q = <%> (Qos (,‘Tla Tl)psat (ﬂ) j} — Ps (ﬂ, Tv)pv V Tv) . (464)

Again we see for ¢ = 1, and w = 0, Eqn. (4.64) reduces to the HK energy flux (4.9).

Eqns. (4.60),and (4.64) satisfy the equilibrium conditions, p, = psat (T), T} = T, = T',since they
reduce to j = 0, and @ = 0. We also note that n (1},T) and ¢, (T, T) satisfy the equilibrium

condition of 6, = 0..

4.6.2 Maxwell Distribution-Specular and Diffuse Reflection, v, =0

The mass flux expression is the same as for purely specular reflection, Eqn. (4.60). For the
energy flux we initially consider purely diffuse reflection. From Eqns. (4.56), and (4.57) with

~v = 0 we find a temperature dependant evaporation and condensation coefficient, of

B % ﬂ2<17¢+¢wTIZTZ)
SOd(TlaT)—<¢<1§>1>? CFRTY Y + 1. (4.65)

We write a general energy flux evaporation and condensation coefficient for both specular, and

diffuse reflection by combining Eqns. (4.63), and (4.65) using the accommodation coefficient,

o (T, T) = vps (11, T) + (1 =) pa (11, T) - (4.66)

The energy flux with ¢ (7}, T') reads

-@)

Again, Eqn. (4.67) satisfies the equilibrium conditions, @ = 0, for p, = pse (T), and T} = T, =

N

(5 (10,10 poat (1) VT = 0 (T, T) po/ T ) (4.67)
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T. For ¢ =1, and w = 0 it reduces to the HK energy flux Eqn. (4.9).

4.6.3 Chapman-Enskog with Net Vapor Velocity

For f, = fee—v, and fy—ref (v, Tv) = fee—ref (Pv; Tv), the mass flux from Eqns. (4.54), and 4.59

reads

m DPsat (ﬂ)

1= () (o e )

+—m K %ww 1i : TH_%TU —
2Tk " 0z T, + T, T, + T,
3
T (1 (T_\?
—1-21/} <1 <Tz +Tv> w) . (4.68)

The energy flux for purely specular reflection from Eqns. (4.55), and (4.63) is

Q = (2—";)%(sogm,Tl)psat(Tl)ﬁ—mﬂ,ﬂ)pv@)

mm

3
2

LI <5 <T . 2T) 35Tl2+281}Tv+8T3> 1
—hw " l -dv | — -
0z (T +Tv)% 4 5 20 (T + 1) 2
3
T2 2 ic,T,
o1 —L <Tl+—Tv>w I, (4.69)
(Ti + To)? 5 2

We recall the definition of the energy flux (2.24), Q@ = jh, + ¢,. For kinetic theory the vapor

enthalpy is h, = ¢,T;, where ¢, = %% From Fourier’s law (2.51), the conductive heat flux

is @y = — Ky ‘987;“. Solving the energy flux for the temperature gradient yields

or, .
Koy = JjepTy — Q. (4.70)

With this definition of energy flux in mind, we see that the mass flux (4.68), and energy flux

(4.69) are linked, since they each contain mass, and energy flux terms. We seek to present
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them in a more explicit matrix form,
=R (4.71)

The matrix R reads

Ry = 1-2ww( T %Tl+%T”—1 S %w
= 4 \T,+T, T, + T, 2 T, + T,

3
m T 2 Tl+%Tv
= —1
Tz = dwgps <T1+Tv> <T1+Tv

T, T 2 3577 + 28T, T, + 8T?2
Roy = Cp ww l 5<Z<Tl+—Tv)— I+ o + v>
2 (T) + T2 2 5} 10(Tl+Tv)
3
T2 5 2 3572 + 28T, T, + 8T? 1
Rog = 1-— —Lt (s (n+ZT1,) - — v v+, (472
& i <4< 5 ) 20 (Ti + 1) 2| 7
and the vector X is given as
1
m \z2 Dsat (,Tl) Duv
Ny = [([— T, T, —n(1;,T,) —
1 (271']{7) <77( 1y l) \/T‘l 77( 1y )\/ﬁ)
1
2k \ 2
N2 = <m7r> (Sos (ﬂaﬂ)psat (Tl) ﬂ — Ps (ﬂaTv)pU V TU) . (473)

We see that vector N (4.73) gives exactly the mass flux, and specular energy flux found with
the Maxwellian, Eqns. (4.60), and (4.64). We conclude that for the Maxwellian, the matrix #

is just the unit matrix.

As we would expect, Eqn. (4.71) reduces to the CE relations, Eqns. (4.16), and (4.20) for ¢ = 1,
and w = 0. Also it yields j = 0, and @ = 0, for the equilibrium conditions p, = psq (T'), and
T1=T,=T.

We create the corresponding matrix, and vector for the more general specular, and diffuse
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reflection case. Eqns. (4.54), (4.56), (4.57), (4.59), (4.63), (4.65), and (4.66) result in

~ 5ww Y T\?
Bu = 1- <T1+T) <T1+T _1>_5<1_<T1+Tv> w)

T+ £T,
Bz = g 2Tk< (TlJrT 1)

Ry, — Jelt, T {Z <Tl +gT> B 351}2+28TlTv+8T3}
2 (m+m)s |2 5°° 10(T; + T)

(17){1¢<1§“’>}2Hk<m>

5 5
Tigw 3T} Tw

Nl

Ti(p—1)— 3 5
(Ti+T)2 (T +T,)?
3
1 T? 5 2 351}2+281}Tv+8T3} 1
= - - — L (T +=T) - =
Rz 3 W w(Tl+Tv)%{4<‘+5 ) 20(T; + T,) 2
5
3 6 T2 Yw
oo (-8
(T +T)2 2+ (w—2)

and vector

N, = <ﬂ>% (n(ﬂ,ﬂ)psat(Tl) — (T}, Ty) Py >

21k VT VT,
N = <;—i)§(w<ﬂ,ﬂ>psat<n> Ti— o (1. 1) poVTy) (4.75)

We see that vector N (4.75) gives exactly the mass flux, and specular and diffuse energy
flux found with the Maxwellian, Eqns. (4.60), and (4.67). We again conclude that for the
Maxwellian, the matrix R is the unit matrix. As with the specular case, Eqns. (4.71), (4.74),
and (4.75) can be considered to be in the same form as the phenomenological force-flux expres-

sions (1.25).

Again we comment that for ¢ = 1, and w = 0 Eqns. (4.71), (4.74), and (4.75) reduce to the
CE relations, Eqns. (4.16), and (4.20). For equilibrium, p, = pse: (T) and T} = T, = T, they
reduce to j =0 and Q@ =0
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4.7 Kinetic Theory Reference Adjustment

The kinetic theory vapor enthalpy used in Eqn. (4.70) is different from the constant specific
heat vapor enthalpy (2.37), since both are not based on the same reference. To use the kinetic
theory energy flux expression in conjunction with the temperature distribution, and entropy
production expressions developed with the constant specific heat vapor enthalpy, it is necessary
to adjust the kinetic theory reference point. A reference constant r; is included with the

molecule kinetic energy in the energy flux integral,

Q= /7/ me (C—; + Tf) fdc. (4.76)

Modelling the bulk vapor with the first order CE distribution (4.13), and integrating over full

dl, . (5KT,
Q=—FKy— +J (— + Tf) . (4.77)

space, yields

dz 2 m

Using the monatomic gas specific heat, ¢, = %% the energy flux in the bulk vapor becomes

ar, .
— +j(epTy +7y). (4.78)

@=—Ho dz

The first term in Eqn. (4.78) is the conductive energy flux, and the second term is the convective

energy flux. From Eqns. (4.78), (2.24), and (2.51), it follows

, dr,  dT,
J(ep (Ty — Tp) + Ahy) — Ro =~ = —hu +j(cp+71y), (4.79)
which implies
rp = Ahy — ¢, T, (4.80)

Re-performing the energy flux integral, Eqn. (4.4), with the addition of r¢ for the CE vapor
distribution, the CE energy flux with the adjusted reference is

Q=2 <§L—]jr>% <psat (T) VT —pv\/f,) + jry. (4.81)



Chapter 4 69

Eqn. (4.81) compared with the CE energy flux without reference adjustment, Eqn. (4.20), gives
the energy flux reference correction term jry. This correction can be applied to any of the

kinetic theory energy flux expressions. A general from of the corrected kinetic theory energy

flux is then
Q= Que +jry, (4.82)

where Qp; is the kinetic theory energy flux before reference correction.
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Chapter 5

Model Solution Generation Methodology

We now have expressions for the liquid and vapor temperature profiles, the surface pressure,
and the interface mass and energy fluxes. We describe our procedure for solving this system

of equations.

5.1 Constants, Prescribed Parameters, Equations to Solve

We choose a common thermodynamic reference temperature of T, = 25°C. The reference

pressure is chosen as the saturation pressure of T,, p, = 3.169 kPa [56].

The material constants are then chosen relative to the reference point, see Table 5.1 [56]. They
are all specific to water, except the vapor specific heat which is the general expression for a

monatomic gas. The rationale for this has been discussed in Section 2.2. recall that % = R.

Enthalpy of Vaporization Ah, | 2.445 x 1061%g
Monatomic Gas Specific Heat Cp %%
Liquid Specific Heat q 4180@%
Vapor Thermal Conductivity Ky | 1.4 x 1()_2”1&K
Liquid Thermal Conductivity Kk | B5 x 1()*2mlK
Molecular Mass m 0.018%
Ideal Gas Constant for Water Vapor | R 0.462klg‘—JK

Table 5.1: Material constants

We prescribe the temperature boundaries, and vapor pressure, see Table 5.2. These parameters

describe the state of the system, see Figure 5.1.
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Ty(Ly) = Tp, Vapor Boundary
Vapor »
XY z
1,(0) } """"""" Interface } :
7(0) }Pl
Control Volume
Liquid
Ty(-Ly) = Ty, Liquid Boundary P

Figure 5.1: Model parameters

Their values can be found from the measurements of Ward, Fang, and Stanga [2], [3], [4], and

then used in conjunction with the model to predict the interface conditions and temperature

profiles.

Liquid boundary temperature | Ty

Vapor boundary temperature | T,

Liquid depth L;
Vapor depth Ly
Vapor pressure Dy

Table 5.2: Prescribed parameters

We have expressions for the liquid and vapor interface temperatures 7, and T,,, Eqns. (2.59),
and (2.60) at z = 0, in terms of the mass and energy fluxes j, and ). We have irreversible
thermodynamics, SRT, and kinetic theory expressions for j and @ in terms of 7; and T, and
the saturation pressure psq: (17) (2.49). This results in four equations, the two temperature

profiles, and the mass and energy flux equations, with four unknowns, 7;, T, 7, and Q.
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5.2 Equation Solving Software and Functions

The four equations are solved simultaneously using the ”FindRoot” function in Mathematica
4.1@©. The function uses Newton’s method with an initial guess to converge to an accuracy of
six digits [58]. We make initial guesses for the two interface temperatures and fluxes, based
on trial and error, and knowledge of the equilibrium position. If these guesses are sufficiently
close to the solution, then Newton’s method will converge to a solution. There is no guarantee
that there is only one solution. It is possible with different initial guesses, that an alternate
solution might be found. We discount the possibility of multiple solutions for our system of
equations for two reasons: the solutions we find appear to be realistic agreeing with measured
data, and variation of the initial guesses does not alter the converged solution. Should the
initial guess be too far from the solution, and sufficient convergence is not achieved, an error

message of non-convergence is displayed.
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Chapter 6

Coefficient Study

In our kinetic theory, and irreversible thermodynamics derivations we saw that the flux ex-
pressions are dependant on coefficients. In irreversible thermodynamics we have the phenom-
enological coefficients, while in kinetic theory there are the evaporation, condensation, and
accommodation coefficients. In this chapter we investigate the influence the coefficients have

on the model results.

6.1 Irreversible Thermodynamics and Statistical Rate Theory

The irreversible thermodynamics simulations use the IT mass and conductive energy fluxes,

Eqns. (3.7), and (3.8),
_a(9 9 1 1
j_ﬁ<Tl T, Tl <TU 1}))

and

The statistical rate theory model uses the SRT exponential mass flux (3.13), or the linearized

SRT mass flux (3.15),
. qgi Gv I 1 1 —aq1 [ hy 1 1
— k, g Mo (2 2 )| exp | =2 S 2L
’ {eXp [RT; RT, R <Tv Tzﬂ P [RTl tYRLCR\T, T
: g1 9v I 1 1
Y I R S N
’ [RTI RT, R (Tv Tl)]

sa T
kszp t( l)

V21 RTy’

where
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together with the IT energy flux.(3.8). The IT mass flux (3.7), is dependant on the mass
flux phenomenological coefficient (3, while the IT energy flux depends on the energy flux phe-
nomenological coefficient «. We now investigate the effects of these coefficients on the model

results.

6.1.1 Choosing the Phenomenological Coefficients

We have already seen that o > 0, and 8 > 0 to ensure positive entropy production. To
establish base values for each, from which we can study the results of their variation, we fit the
model results to Ward and Stanga’s data from their evaporation experiment E1 [4][59]. Table
6.1 gives Ward and Stanga ’s measured data split into prescribed parameters, and results, as

in our model.

Model Prescribed Parameters Model Results
po (Pa) | Ly (mm) | Ly (mm) | Ty (°C) | Thy (°C) | 71 (°C) | T, (°C) | AT | j (3£)
593 4.970 18.590 26.060 25.710 —-0.4 2.6 3.0 | 1.017 x 1073

Table 6.1: Ward et al. evaporation experiment E1 data

We see the measured liquid interface temperature is slightly below zero, suggesting the liquid
water is on the verge of the super cooled region. Later we comment on how the liquid properties

change in the super cooled region.

IT Mass and Energy Flux

Using Eqns. (3.7), and (3.8), we find the best fitting to Table 6.1 for

_ 5 — -
a=1.55x10 In2,andﬁ—lxl() s

The predicted interface temperatures and mass flux with these coefficient values are given in

Table 6.2, they compare well with the measured data, Table 6.1.
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o. (W) | B (GE55) |10 | 1o d(ak) | Q6%
1.55x10° | B=1x10"% | —0.306 | 2.67 |1.18 x1073 | 2861

Table 6.2: Interface temperatures, and mass flux, using I'T mass and energy flux model

Exponential and Linearized Statistical Rate Theory Mass Flux, with IT Energy
Flux

The SRT mass flux expressions (3.13), (3.15) do not have unknown coefficients . We need only
find a value for a from Eqn. (3.8). For both the exponential SRT and the linearized SRT, the
best fit is for o = 1.535 x 10°¥K. Table 6.3 gives the resulting interface temperatures and

fluxes which are the same for both SRT expressions.

() |10 | eo| b(35) [
1.535 x 10° | —0.329 2.67 1.18 x 1073 | 2861

Table 6.3: SRT Interface Temperatures and Fluxes

We see the values of o do not change greatly for the three different mass flux expressions.
Comparing Table 6.2 to the measured data, Table 6.3, the predicted interface temperatures

and mass fluxes are again close to the measured values.

We recall that the linearized SRT expression (3.15) can be written in the same form as the IT

mass flux (3.7), yielding the SRT value of 3 (3.17),

ﬂ — DPsat (ﬂ) li

We evaluate Sgpp for liquid interface temperature 7; = —0.4°C, and find Bgpyr (—0.4°C) =

2.88 x 10*3%%&, which is of the same order of magnitude as the value we found from

irreversible thermodynamics.
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6.1.2 Variation of Results with the Phenomenological Coefficients

In the previous section we established base values for the phenomenological coefficients, o =
1.5 x 10°%K and 8 = 1 x 107328 58K We now vary both by an order of magnitude to

m? m?s J

establish their influence on the model results.

Simultaneous Variation of a, and G, IT Mass, and Energy Fluxes

We use the IT mass and energy fluxes, Eqns. (3.7), and (3.8), with the prescribed parameters

from the measured data, Table 6.1.

Figure 6.1 shows the liquid interface temperature is nearly constant for most values of a and
08, except for small 3, where the gradient is steep. However for both, the liquid interface

temperature changes less than a degree.

Figure 6.1: Liquid interface temperature versus a and (8

Figure 6.2 shows the independence of vapor interface temperature from §. The temperature

increases significantly as « is decreased.
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Figure 6.2: Vapor interface temperature versus a and 3

Thus the temperature jump is strongly related to the choice of a, but is almost independent of
0, see Figure 6.3. The vapor interface temperature change with « is one order of magnitude
more significant than the liquid interface temperature change with 3 and «. It follows that

the temperature jump increases as « is reduced.
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Figure 6.3: Interface temperature jump versus a and 3

Figures 6.4, and 6.5 illustrate that the mass and energy fluxes are approximately constant with

the variation of a;, and 8. Both fluxes vary more for small «, or § but the variation is less than

2%.
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Figure 6.5: Energy flux versus o and (8

We use Eqn. (2.27) to calculate the entropy production at the interface. Figure 6.6 gives the

entropy production, we see it remains positive, as must be the case for positive o and 3
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Figure 6.6: Entropy Production versus a and (3

The value of the phenomenological conductive energy flux coefficient « strongly affects T, and
the temperature jump across the interface. Reducing the energy force coefficient increases T,
and the interface temperature jump, with little effect on 73, 7, and Q. A possible explanation
is that 17, j, and @ are unaffected by « because of the high liquid conductivity, which implies

that the fluxes and T} are more dependant on the liquid properties than those of the vapor.

The phenomenological conductive mass flux coefficient § does slightly affect 13, j, and Q. It

has a negligible effect on T, and the interface temperature jump.

Variation of a, SRT Mass Flux and IT Energy Flux

The conductive energy flux phenomenological coefficient a in Eqn. (3.8) is varied as in the
previous section, but in conjunction with the exponential, or linearized SRT mass fluxes (3.13),

(3.15). Both cases yield the same results.

The results are similar to those we found with the linear force mass flux model. Variation of «

strongly affects T, and the temperature jump, but has only a small effect on 13, j, and @), see
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Figures 6.7- 6.11.
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Figure 6.11: Energy Flux versus a
We use Eqn. (2.27) to calculate the entropy production at the interface. We see from Figure

6.12 that the entropy production remains positive. We expect this to be the case since both

a, and Bgpy are positive.

0.001
0.0009
T
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Figure 6.12: Entropy production versus «

We conclude, that the interface temperature jump is not strongly affected by the mass flux

expression, but is highly dependant on the IT conductive energy flux expression (3.8). Eqn.
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(3.8) predicts the same temperature jump direction T;, > T; as the measured data, Table 6.1,

and with the appropriate choice of o can also predict the correct magnitude.

6.2 Kinetic Theory

We investigate the variation of the condensation coefficient 6., the evaporation coefficient 6.,
the accommodation coefficient v, and the velocity dependant condensation parameters v and
w. Each of these coefficients have clearly defined ranges of possible values. Thus there is no
need to establish base point values, as we did for irreversible thermodynamics. The energy
flux reference point is corrected as per Eqn. (4.82). Again, we use the experimental input

parameters from Table 6.1.

6.2.1 Variation of Evaporation and Condensation Coefficients for Specular

and Diffuse Reflection

We investigate the effects of the condensation, and evaporation coefficients on the results for
specular and diffuse reflection. For this we use the HK, and CE flux expressions with constant
condensation and evaporation coefficients, Eqns. (4.22), (4.44), (4.25), and (4.49). As discussed
earlier (Chapter 4) if the evaporation and condensation coefficients are constants, they must be
equal 6. = 6., for the equilibrium conditions are to be fulfilled. We set 8, = 0, = 0, and vary
0 between 1 and 0.1. We find an indeterminate result for 8 = 0, thus we stop at 0.1. We look
at the two extreme cases for the accommodation coefficient, purely specular reflection v = 1,

and purely diffuse reflection v = 0.

The HK and CE models behave similarly. The results for specular and diffuse reflection are
also very close, except for T, and the interface temperature jump. We represent both the HK,
and CE models for specular and diffuse reflection with one set of Figures, except for T, and the

interface temperature jump where we show both specular and diffuse cases.

We see from Figure 6.13 that T; increases as 6 approaches zero. When compared with the
irreversible thermodynamics and SRT results, and the measured data, Tables 6.2, 6.3, and 6.1,

we see very good agreement for 6 = 1.
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Figure 6.13: Liquid interface temperature versus 6

Comparing Figures 6.14, and 6.15 we see that T, behaves differently with 6 for purely dif-
fuse reflection, than specular reflection. In both cases though, T, is not near the calculated

irreversible thermodynamics and SRT results, or the measured data, Tables 6.2, 6.3, and 6.1.

[E
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Figure 6.14: Vapor interface temperature versus 6 for specular reflection
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Figure 6.15: Vapor interface temperature versus 6 for diffuse reflection

Indeed, we see from Figures 6.16, and 6.17 that for both, pure, specular, and pure diffuse
reflection, the temperature jump is negative, 1; > T,,, for any choice of . This is the opposite
direction to what we observed from irreversible thermodynamics, Tables 6.2 and 6.3, and from
the measurements, Table 6.1. However it is the same as the temperature jump direction

predicted from kinetic theory in the literature [32], [33].

0.2 0.4 0.6 0.8 1

Figure 6.16: Interface temperature jump versus 6 for specular reflection
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Figure 6.17: Interface temperature jump versus 6 for diffuse reflection

For specular reflection, the temperature jump becomes increasingly negative as 6 goes to zero.
This is likely so, because if no evaporation or condensation mass flux occurs, and the molecules
are reflected specularly, then there will be no thermal interaction between the liquid and vapor.
For the diffuse case we see the jump approaches zero as 0 gets small, because reflected molecules
undergo complete thermal interaction with the interface, thus there is temperature equalization

between the liquid, and vapor.

We also point out that for § = 1 the choice of specular or diffuse reflection is irrelevant, since

there are no reflected molecules, as seen from Figures 6.14, 6.15, 6.16, and 6.17.

We see from Figures 6.18, and 6.19 that j and @ vary only a small amount for the values
of 0 considered. Their values are close to the measured fluxes, and those calculated using
irreversible thermodynamics and SRT, Tables 6.2, 6.3, and 6.1. However, as 6 is reduced, they
both approach zero, demonstrating that if no molecules condense or evaporate there should be
neither mass nor energy flux. The prior statement is true for pure specular reflection, but since
diffusely reflected molecules will interact thermally with the surface, we might expect some

energy flux, even if no molecules change phases.
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Figure 6.18: Mass flux versus 6
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Figure 6.19: Energy flux versus 6

As with irreversible thermodynamics and SRT we use Eqn. (2.27) to calculate the entropy
production. We see from Figure 6.20 that the entropy production is positive for specular and

diffuse reflection, with any value of 6.
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Figure 6.20: Entropy production versus 6

In conclusion we note that the CE and HK expressions give very similar results in the case of
constant 6. The resulting fluxes are close to those calculated using irreversible thermodynamics
and SRT, and measurements, Tables 6.2, 6.3, and 6.1. We see the liquid interface temperature
also has good agreement. However the temperature jump is considerably smaller and in the
opposite direction, for any choice of evaporation condensation coefficient, or accommodation

coefficient. Importantly, the entropy production is positive.

6.2.2 Velocity and Temperature Dependant Condensation Coefficient Spec-

ular and Diffuse Reflection

Now, we use the HK and CE velocity dependant condensation coefficient expressions (HKVEL
and CEVEL) for diffuse and specular reflection, Eqns. (4.60), (4.67), (4.71), (4.74), and (4.75).
We investigate the effects of the condensation coefficient parameters ¥ and w for both, purely

specular and diffuse reflection.

As we did earlier, we use the experimental input parameters from Table 6.1. The range of
possible values for 1, and w, between 0 and 1 has already been established in Section 4.6. We
vary ¢ between 0.1 and 1, because as mentioned in the last section, a condensation evaporation
coefficient of 0 yields an indeterminate result. w is varied over its full range, 0 — 1. Again we
find the HK and CE distributions give similar results; thus they are presented together. The

effects of 1 and w are similar for specular and diffuse reflection. The only differences occur
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with the interface temperatures, and the interface temperature jump. The specular and diffuse
results are represented together, except for the interface temperatures, and temperature jump

where we present both the specular and diffuse cases.

Figures 6.21, and 6.22, show for diffuse reflection, that both, 7T; and T, are nearly constant

except for small ¢, where they both increase for large w. From Eqn. (4.51),

*TI’LC2

T]} 9 (6.1)

0.=v |1 —wexp

this implies that the interface temperatures become highly dependant on molecular energy and

surface temperature only for a small condensation coefficient 6.

3
e ey
L
R
S
e e
LIS
S ,;/ 1

7

AL TS

& S
22y 0.25

s

Figure 6.21: Liquid interface temperature versus ¥ and w for diffuse reflection
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Figure 6.22: Vapor interface temperature versus ¥ and w for diffuse reflection

We see from Figure 6.23, that for diffuse reflection the temperature jump behaves similarly to
the interface temperatures, it is maximum for small ¢, and large w. We also remark that this
maximum is positive implying 7;, > Tj, which is the direction we observed from irreversible

thermodynamics and SRT, and from measurements, Tables 6.2, 6.3, and 6.1.
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Figure 6.23: Interface temperature jump versus ¢ and w for diffuse reflection
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For the purely specular reflecting case the interface temperature and jump results have more

pronounced extremes for small ¢, and large w. To explore these more fully, we extended the

range of ¥ to between 0.01 and 1. We see from Figures 6.24, and 6.25 that T;, and T, can

reach over 3°C, significantly higher than for diffuse reflection, and near the measured T, value,

Table 6.1. We check this by adjusting ¥ and w to match the measured T;, value, the results of

which are found in Table 6.4.

¢ |w|rv|[neo|neo| (%) [ )

00174 | 1 |1 2.01 2.67 1.08 x 1073 2612

Table 6.4: HKVEL and CEVEL interface temperatures and fluxes

Note that the 7; value is 2°C higher than the measured value. We suggest that this might

imply the molecules leaving the surface, leave with a higher temperature than the surface.
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Figure 6.24: Liquid interface temperature versus 1 and w for specular reflection

We see for specular reflection, Figure 6.26, that the temperature jump is again positive for small

1, and large w.
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Figure 6.25: Vapor interface temperature versus ¢ and w for specular reflection
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Figure 6.26: Interface temperature jump versus 1 and w for specular reflection

We see from Figures 6.27, and 6.28 that the mass and energy fluxes behave as they did for the
constant condensation evaporation coefficient: they are almost constant for large evaporation
and condensation coefficients, and fall as the condensation and evaporation coefficients are made
small, and are close to the other model results and measurements, Tables 6.4, 6.2, 6.3, and 6.1.
We also remark from the mass and energy flux independence of w, that the molecular energy

2, and surface temperature 7} have little influence on the fluxes.
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Figure 6.28: Energy flux versus ¢ and w

In Figure 6.29 we see again, that the entropy production, as calculated from Eqn. (2.27) is

positive.
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Figure 6.29: Entropy production versus ¢ and w

We conclude that the velocity dependant condensation coefficient (4.51) for small v, and large
w alters the kinetic theory flux expressions sufficiently, to predict the same vapor interface
temperature, jump direction, and fluxes as found with irreversible thermodynamics, SRT, and

measurements, Tables 6.4, 6.2, 6.3, and 6.1.

We also conclude, as we did in the previous section that the HK and CE distributions yield
similar results. This implies that the deviation from the Maxwelllian (4.6) in the CE distribu-
tion (4.13) has little effect on evaporation phenomena. The details of the interaction between
vapor and liquid, which determine 6 and -, however, are of great importance, and influence,
since their variation leads to quite distinct results. In particular it must be noted that constant

6 can not provide data in agreement with the Ward and Stanga measurements [4].
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Chapter 7

Variation of Results with Vapor Pressure

Next, we look at the predicted interface temperatures and fluxes for various vapor pressures.
The liquid and vapor boundary temperatures are set equal, Ty; = Ty, = Tp, to eliminate
forcing caused by a temperature difference between the boundaries. The system will be in
equilibrium when the vapor pressure is equal to the boundary temperature saturation pressure,

Pv = Deq = Psat (Ip). The boundary conditions are in Table 7.1.

Ly (m) | Ly (m) | T (°C)
1x103%|1x10°3 25

Table 7.1: Symmetric temperature boundary conditions

The saturation pressure is, psq (25°C) = 3.169 kPa [56]. We vary the vapor pressure around
this point, from 1kPa to 5kPa.

We consider the IT (3.7)(3.8), the SRT (3.13), the linearized SRT (3.15), the HK (4.8) (4.9) and
CE (4.16) (4.20) without condensation and evaporation coefficient, and the HK (4.60) (4.67)
and CE (4.71) (4.74) (4.75) with velocity dependant condensation coefficient models (HKVEL,
CEVEL). The constant condensation and evaporation coefficient HK (4.22) (4.44) and CE
(4.25) (4.49) models are not considered since they predict the wrong sign for the interface
temperature jump. Where coefficient values are required, we use those found from the data

fitting in the previous chapter, Tables 6.2, 6.3, and 6.4.
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Figure 7.1 shows that the liquid interface temperatures of the IT and SRT models, and the HK
and CE models vary closely with the vapor pressure saturation temperature, Tsqs (py). The
velocity dependant condensation coefficient models have different slopes than the vapor pressure

saturation temperature, however they are still close, especially near the equilibrium pressure

psat(j%)-

30
— IT T,
25 — SRT T;
— L SRT T,
)
°~ 20 — HK T,
[
— CE T1
15 - —— HKVEL T,
—— CEVEL T,
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I I I I I
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Py (Pa)

Figure 7.1: Liquid interface temperature and vapor pressure saturation temperature versus

vapor pressure
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Figure 7.2 facilitates the comparison of vapor interface temperatures with the vapor pressure
saturation temperature. They are equal at the equilibrium pressure. The HK and CE models
follow the saturation temperature. The IT, SRT, HKVEL, and CEVEL models are above
the saturation temperature for pressures less than the equilibrium pressure, and below the
saturation temperature for pressures above the equilibrium pressure. As discussed in the
introduction, pressures below the equilibrium pressure result in evaporation, while those above

cause condensation.
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Figure 7.2: Vapor interface temperature and vapor pressure saturation temperature versus

vapor pressure
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The interface temperature jump, Figure 7.3, shows the HK and CE models predict a negligible
jump. The other models predict a positive jump for vapor pressure below the equilibrium
pressure (evaporation), and negative jump above the equilibrium pressure (condensation). Of

course all models show zero temperature jump at equilibrium.
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Figure 7.3: Interface temperature jump versus vapor pressure
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Figure 7.4 shows the mass flux is positive to the left of equilibrium, zero at equilibrium, and
negative to the right Positive mass flux means evaporation, and negative means condensation.
Reducing the vapor pressure results in increased evaporation; increasing the vapor pressure
increases the condensation. There are three distinct groups of curves. The I'T and SRT models,
the HK and CE models, and the HKVEL and CEVEL models. Close to the equilibrium point
all the models closely agree. Away from equilibrium the IT and SRT, and HKVEL and CEVEL
models are still close. The HKVEL and CEVEL predict lower magnitude fluxes than the other

models.
0.004 |
0.003  \\ ]
\s IT
N
1 \\i\
'0.002 | N ] SKT
| \\x\
ol @ L SRT
e AN
27 0.001 N
HK
™
CE
0
\
S -~ HKVEL
\\
-0.001 } S
—_ ——— CEVEL
1000 2000 3000 4000 5000
pv (Pa)

Figure 7.4: Mass flux versus vapor pressure
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The energy flux, Figure 7.5, behaves similar to the mass flux. The energy flux increases
with reduced vapor pressure, and becomes more negative with increased vapor pressure. As
expected, the energy flux is zero at the equilibrium pressure. Again we see the IT, SRT, HK,
and CE models are close, while the HKVEL and CEVEL models predict lower fluxes.
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Figure 7.5: Energy flux versus vapor pressure
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Figure 7.6 demonstrates that the entropy production is zero at equilibrium, and increases as
we move away from equilibrium in both the evaporation and condensation directions. The
entropy production is very temperature sensitive, as shown by the large differences in entropy
production between models, for small differences in interface temperatures. Importantly for
all our models it is positive. Note that only the IT model was constructed to ensure positive
entropy production, while the kinetic theory models were constructed independently of entropy
production. That they always show positive entropy production helps to validate the theories

on which they are based.
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Figure 7.6: Interface entropy production versus vapor pressure

From the previous figures it becomes clear that the interface temperatures, fluxes, and entropy
production are strong functions of vapor pressure. Vapor pressures below the boundary tem-
perature saturation pressure p, < psq: (Ip) lead to evaporation, which coincides with positive
interface temperature jump T, > T}, except for the HK and CE models where the temperature
jump is too small to detect. Vapor pressures greater than the boundary temperature saturation
pressure p, > psat (1p) cause condensation with a negative temperature jump 7, < T}, except

for the HK and CE models where it is again very small .
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The IT and SRT models all behave very similarly, suggesting that the exponential form of the
SRT expression is not necessary for this case. The HK and CE models are also very close,
indicating that using the CE distribution with small vapor velocity does not greatly improve
the results found using the Maxwellian distribution with no vapor velocity. The same is true

for the HKVEL and CEVEL models.

Finally we emphasize again that the HKVEL and CEVEL models predict the same temperature
jump directions as the I'T and SRT models, while the conventional HK and CE models fail to

do so.
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Chapter 8

Liquid and Vapor Temperature Profile Analysis

8.1 Condensation and Evaporation Temperature Profiles

Now we investigate the liquid and vapor temperature profiles. We are interested in the di-
rections of the interface temperature jump, and temperature gradients for the different inputs
of vapor pressure p,, and liquid and vapor boundary temperatures T3 and Tp,. The analysis
is performed using the SRT (3.13) (3.8), CE (4.16) (4.20), and CEVEL (4.71) (4.74) (4.75)
models. We choose these because in the previous chapters, the SRT model closely agrees with
the linearized SRT (3.15) and IT (3.7)(3.8) models, the CE model is an excellent fit with the
HK model (4.8) (4.9), and the CEVEL model agrees well with the HKVEL model (4.60) (4.67).
Where coefficient values are required, we use again those found from the data fitting in the
previous Chapters, Tables 6.2, 6.3, and 6.4. We use the symmetric input parameters from

Table 8.1.

Ly (m) | Ly (m) | T} (°C)
1x1073 | 1x1073 25

Table 8.1: Symmetric temperature boundary conditions

We recall that the equilibrium pressure is psq: (25°C) = 3.169 kPa [56]. Evaporation is given
by Figure 8.1, where the vapor pressure was set to p, = 2.339kPa, below the equilibrium pres-
sure. Equilibrium, zero temperature jump, and temperature gradient is achieved by setting
the vapor pressure equal to the equilibrium pressure, p, = psqt (25°C) Figure 8.2 shows con-
densation, achieved by specifying the vapor pressure as greater than the equilibrium pressure,

Py = 5.628 kPa.

Figure 8.1 shows the direction of the evaporation temperature gradients. The liquid tempera-
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ture gradient, on the left, is negative. The vapor temperature gradient on the right is positive.
This implies that the conductive heat flux in both phases flows towards the interface. This can

be understood by taking into account that energy influx is required to vaporize liquid water.
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Figure 8.1: Evaporation liquid and vapor temperature profiles

As discussed earlier, the SRT and CE liquid interface temperatures are very close to the satu-
ration temperature of the vapor pressure, T4 (2.339kPa) = 20°C [56], and the CEVEL liquid
interface temperature is above the saturation temperature. The temperature jumps are posi-
tive with the vapor interface temperature being greater than the liquid interface temperature

T, > Tj, except for the CE model where it is again small.

Figure 8.2 demonstrates the temperature gradients are reversed for condensation. The liquid
temperature gradient becomes positive, while the vapor temperature gradient is negative. The
conductive heat fluxes are away from the interface, transporting away the energy given off by

the condensing liquid.

The SRT and CE model liquid interface temperatures are close to the saturation temperature of
the vapor pressure, Tsq (5.628 kPa) = 35°C [56]. The temperature jumps are now reversed with
the liquid interface temperature greater than that of the vapor, T, < T;. The CE temperature

jump is again near zero.
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Figure 8.2: Condensation liquid and vapor temperatures verses position

We conclude that for equal boundary temperatures, the SRT, and CEVEL models predict
T, > T, for evaporation, and T, < 1} for condensation, whereas the CE model predicts almost
no temperature jump. All models show that the liquid and vapor conductive energy fluxes are

towards the interface for evaporation, and away from the interface for evaporation.

The evaporative temperature jump (7, > T;), and gradient (conductive flux towards the in-
terface) directions agree with the Ward, Fang, and Stanga experiments [2], [3], [4] For con-
densation Ward and Stanga [4] find T, > T; which is opposite to what we see in Figure 8.2.
Comparing Figures 1.2, and 8.2 we notice that Ward and Stanga ’s condensation vapor temper-
ature gradient is in the opposite direction to ours. We suggest the vapor temperature gradient
and temperature jump are linked, as pointed out by Kjelstrup et al. [34]. The use of the IT
conductive heat flux (3.8) in the SRT model forces this relation; the CEVEL model has no such
forcing, yet it behaves similarly to the SRT model. We investigate this further in the following

Sections.

The steady state evaporation or condensation, for equal boundary temperatures Ty = Tp, = T,
is established based on the relation between the boundary temperature and the vapor pressure
saturation temperature. Thus we could have achieved the same variation between evaporation

and condensation by increasing or decreasing the liquid and vapor boundary temperature Tp,
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relative to a constant vapor pressure.

8.2 Sensitivity to Liquid and Vapor Depth

We investigate the sensitivity of the interface temperatures, and fluxes to variations in the liquid
and vapor depths L;, and L,. The analysis is performed using the SRT (3.13) (3.8), CE (4.16)
(4.20), and CEVEL (4.71) (4.74) (4.75) models. Where coefficient values are required, we use
those found from the data fitting in the previous chapter, Tables 6.2, 6.3, and 6.4.

We use the symmetric input parameters from Table 8.2 with a vapor pressure p, = 2.339 kPa

as a base point from which we vary L;, and L,, from the base value of 1 x 1073 m to 1m.

Ly (m)
1x1073

LU (m) Tbl (OC) Tbv (OC)
1x1073 25 25

Table 8.2: Symmetric temperature boundary conditions

Tables 8.3, 8.4, and 8.5 give the resulting interface temperatures and fluxes from the three

models.
Lim) | Lym) |G (0| T O | j(3%) |Q ()
1x1072 | 1x102% | 20.0 24.4 1.12x 1073 | 2733
1 1x1073 | 20.0 24.4 43 x107% | 2.702
1x1073 1 20.0 20.0 1.12x 1073 | 2736

Table 8.3: SRT interface temperatures and fluxes variation with liquid and vapor depths

Table 8.4: CE interface temperatures and fluxes variation with liquid and vapor depths

Lim) | Lo(m) |T(CC)| T (O | j(2) |Q (W)

1x1073 [ 1x1073 | 20.0 200 | 1.15x1073 | 2735
1 1x1073 | 20.0 20.0 |296x107°| 245

1x1073 1 20.0 200 | 1.12x1073 | 2735
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Lim) | Lom) |T(CC)| T O | j(2) |Q (W)

1x1073 [ 1x1073 | 20.7 222 | 9.80x107* | 2355
1 1x1073 | 20.0 21.9 [ 1.88x107°| 255

1x 1073 1 20.6 20.6 | 9.96 x 107* | 2360

109

Table 8.5: CEVEL interface temperatures and fluxes variation with liquid and vapor depths

We see a significant drop in mass and energy flux when L; is increased, and only small variations
in fluxes with increases in L,. This indicates that the fluxes are more dependant on the liquid
thermal conditions, than those of the vapor. The likely reason is that the liquid thermal

conductivity is an order of magnitude higher than the vapor thermal conductivity.

The liquid interface temperatures are almost constant near the vapor pressure saturation tem-
perature Ty, (2.339kPa) = 20°C for each model. This supports the claim that the liquid
interface temperature is closely related to the vapor pressure saturation temperature. It also
suggests that it is independent of the temperature boundaries. To support this claim, we

investigate the effects of unequal boundary temperatures in the next section .

8.3 Different Liquid and Vapor Boundary Temperatures

We show that changing the boundary temperatures can alter the direction of the temperature
gradients, without necessarily altering the flux directions. The analysis is performed using the
SRT (3.13) (3.8), CE (4.16) (4.20), and CEVEL (4.71) (4.74) (4.75) models. Where coefficient
values are required, we use those found from the data fitting in the previous chapter, Tables

6.2, 6.3, and 6.4.

We use the symmetric input parameters from Table 8.6 with a vapor pressure p, = 2.339 kPa

as a base point from which we vary Ty, and Ty, between 10°C and 25°C.

Ll (m)

L, (m)

Ty (°C)

Ty (°C)

1x1073

1x103

25

25

Table 8.6: Symmetric temperature boundary conditions
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Table 8.7 gives the models interface temperatures and fluxes, for variation of the boundary

temperatures Ty; and T,; between 25°C and 10°C.

Model | Ty (°C) | Th (°C) | T (°C) | T, °C) | j (&) | @ (%)

SRT 25 25 20.0 24.4 1.12x 1073 | 2733
20 25 20.0 24.5 1.89 x 1076 | —3.19

10 25 20.0 20.0 | —2.21 x 1073 | —5407

25 20 20.0 20.0 1.12x 1073 | 2736

25 10 20.0 11.2 1.12x 1073 | 2726

CE 25 25 20.0 20.0 1.15x 1073 | 2735
20 25 20.0 20.0 2.81 x107° | —1.05

10 25 20.0 20.0 | —2.18 x 1073 | —5405

25 20 20.0 20.0 1.12x 1073 | 2735

25 10 20.0 20.0 1.07 x 1073 | 2736

CEVEL 25 25 20.7 22.2 9.80 x 107* | 2355
20 25 20.0 21.9 1.49 x 107 | —6.99

10 25 18.6 21.4 1.88 x 1073 | —4638

25 20 20.7 20.4 9.66 x 107* | 2361

25 10 20.7 16.8 9.37 x 107* | 2373

Table 8.7: Sensitivity of interface conditions to different boundary temperatures

The liquid interface temperatures are nearly constant for variations of the boundary temper-
atures. This verifies our earlier suggestion that the liquid interface temperature is almost
independent of the liquid and vapor boundary conditions. We conclude that the liquid in-
terface temperature is always close to the vapor pressure saturation temperature, and is thus

largely determined by the vapor pressure.

We now examine the temperature profiles. First the liquid boundary temperature is per-
turbed to T3 = 20°C, which is the saturation temperature for the prescribed vapor pressure

py = 2.339kPa [56]. Figure 8.3 shows that is results in a near horizontal liquid temperature
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gradient. Table 8.7 shows this results in small mass and energy fluxes. We have almost
achieved equilibrium by setting Ty; close to the liquid interface temperature, the fluxes are now
almost completely due to the vapor temperature gradient. This is a similar effect to what
we observed when the liquid boundary temperature was moved far from the interface, Tables
8.3, 8.4, and 8.5. We conclude, as we did before, that the liquid temperature gradient plays a
significant role in determining the fluxes. We also suggest this implies that much of the heat

supplied for evaporation comes through the liquid.
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Figure 8.3: Liquid and vapor temperature profiles, Ty, = 20°C, Ty, = 25°C

For Ty = 10°C condensation (j < 0) is observed. This indicates that the relation between
the liquid boundary temperature and the vapor pressure saturation temperature is a strong
determination if condensation or evaporation will occur. In Figure 8.4 the liquid tempera-
ture gradients are positive; they agree with the direction we saw for condensation with equal
boundary temperatures, Figure 8.2. The vapor temperature gradients are forced to be positive
because of the vapor boundary temperature. The energy flux becomes negative because the
liquid and vapor conductive heat fluxes operate in the same negative direction as the convective

heat flux.

In Figure 8.4 the direction of the SRT and CEVEL temperature jumps is positive, T,, > Tj,

even though we have condensation. This stands in agreeance with Ward and Stanga [4]. The
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direction of the SRT temperature jump is due to the IT conductive energy flux, Eqn. (3.8),

which can be rearranged with Fourier’s law (2.51) to read

dT, _ a <H> . (8.1)

dz Ky T,

Thus, for positive vapor temperature gradients, the vapor interface temperature must be greater
than the liquid interface temperature. The opposite is true for negative gradients. It is
significantly more difficult to isolate the temperature gradient in the CEVEL model (4.71),
(4.74), (4.75). We suffice by pointing out that until now it agrees with the temperature jump
directions predicted by the IT conductive heat flux (3.8); thus it also seems to be dependant

on the sign of the vapor temperature gradient.
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Figure 8.4: Liquid and vapor temperature profiles, T; = 10°C, Ty, = 25°C

Next we set the liquid boundary temperature back to 25°C, and set the vapor boundary tem-
perature to 20°C, Figure 8.5. Table 8.7 shows this has little effect on the mass and energy
fluxes, as we observed earlier with the adjustment of the vapor boundary depth, Tables 8.3,
8.4, and 8.5 This again supports our claim that the liquid temperature gradient has a much

greater influence on the fluxes, than that of the vapor.
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Figure 8.5: Liquid and vapor temperature profiles, Ty, = 25 °C, Ty, = 20°C

Figure 8.5 shows the SRT model’s near zero temperature jump, caused by the near zero vapor
temperature gradient. The temperature gradient and jump of the CEVEL model are reversed
from that of the previous figures, even though we still have evaporation. Considering this
and the observations we made for condensation in Figure 8.4 we conclude that the CEVEL
temperature jump direction, like the IT conductive heat flux (3.8), is also directly dependant

on the direction of the vapor temperature gradient.

Figure 8.6 is the result of setting Ty, = 10°C, and maintaining Ty; = 25°C. The vapor
temperature profiles are now reversed, but we see from Table 8.7 that evaporation is still
predicted, and the mass flux has only decreased slightly from Ty, = 20°C. Reducing T,
lowers the evaporative forcing by increasing the magnitude of the vapor temperature gradient,
increasing the conductive flux in vapor away from the interface, thus decreasing the evaporative
mass flux. The energy flux increases slightly, since the inverted vapor temperature profile aligns

the liquid and vapor conductive energy fluxes with the convective energy flux.



Chapter 8 114

241

22|

20; T~ § ] SRT
RT):
a 16%
145

i ——— CE VEL
12}

10 L. ‘
-0.001 -0.0005

Figure 8.6: Liquid and vapor temperature profiles, Ty, = 25°C, Ty, = 10°C

Figure 8.6 shows the increased negative temperature jump of the SRT, and CEVEL models,

which coincides with an increased magnitude of the negative vapor temperature gradient.

Since the direction of the vapor temperature gradient can be in both directions for either conden-
sation or evaporation, we conclude that the relation between the liquid boundary temperature
and the vapor pressure saturation temperature is the main factor in the determination of evapo-
ration or condensation. If Ty > Tyt (py) there is a strong evaporative forcing, if Ty < Tsar (py)
there is a strong condensation forcing. This coincides with the conductive heat flux in the lig-
uid ¢; flowing toward the interface, delivering heat for evaporation, and away from the interface
removing heat for condensation. The relation of the vapor boundary temperature to the vapor
pressure saturation temperature plays a role in the direction of forcing, but does not have the
influence of the liquid. Ty, > Tsat (py) causes evaporative forcing, and Ty < Tsqt (py) results
in condensation forcing, but if in either case the liquid boundary temperature forcing is in the
opposite direction the mass flux will be in the direction of the liquid boundary temperature

forcing.

The temperature jumps of the SRT and CEVEL models both behave similarly, showing that
T, > 1; when the vapor conductive heat flux ¢, flows toward the interface, and T,, < 1; when

¢» flows away from the interface, independent of if there is condensation or evaporation. Also
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as the magnitude of ¢, is increased the magnitude of the temperature jump increases. Thus

we conclude that the temperature jump is independent of the direction of the mass flux, and is

directly dependant on the direction and magnitude of ¢,.
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Chapter 9

Analysis of Assumptions

We check the effects and validity of the assumptions involved in the equation derivations.
The sensitivity of models to specific heats and thermal conductivities is investigated, and the

assumption of constant vapor pressure is confirmed.

We use the experimental data from Table 6.1 with the SRT (3.13) (3.8), the CE (4.16) (4.20),
and the CEVEL (4.71) (4.74) (4.75) models.
data fitting in Tables 6.3, and 6.4.

We use the coeflicients found from the earlier

9.1 Constant Specific Heats of the Vapor and Liquid

In our models we use the kinetic theory monatomic gas specific heat, ¢, = %% = 1.151(1;—‘]}{. The
[56].

water vapor specific heat is ¢, = 1.8655L Tables 9.1, 9.2, and 9.3 show the SRT, CE,

kg K

and CEVEL result variation with specific heat. We calculate pure differences for the interface

temperatures, and percent differences for the fluxes.

& () | 10 |1 o) | j (%) | Q (W)
1.15 —0.329 2.67 1.19 x 1073 2861
1.865 —0.416 1.03 1.20 x 1073 2869
38.5% 0.087°C | 1.64°C 0.985% 0.309%

Table 9.1: SRT model sensitivity to vapor specific heat




Chapter 9 117
o (%) | eo) | Teo) | j(2%) [Q ()
1.15 —0.330 | —0.385 | 1.19x 1073 | 2861
1.865 —0.411 | —0.659 | 1.20 x 1073 | 2869
38.5% | 0.081°C | 0.274°C 0.930% 0.287%

Table 9.2: CE model sensitivity to vapor specific heat

o (%) | neo) [ Teo) | (%) | QW)
1.15 2.01 2.67 | 1.08x 1073 2612
1.865 0.883 -9.76 | 1.11 x 1073 2613
38.5% | 1.127°C | 12.43°C 2.66% 411 x 1072%

Table 9.3: CEVEL model sensitivity to vapor specific heat

The mass and energy fluxes do not change greatly, less than 1%. In all cases the interface

temperatures fall. The change is small for the CE model. The SRT T, falls by over 1°C,
however the temperature jump direction is unchanged. The SRT vapor interface temperature
change with specific heat could be offset by decreasing the conductive energy flux (3.8) phe-
nomenological coefficient a. The most striking change is the CEVEL model, where T,, falls by
over 10 °C and 7; falls by over 1°C, reversing the interface temperature jump direction. Unlike

the SRT model this change can not be rectified by adjusting ¢ and w.

We recall that the CEVEL model, like all the kinetic theory models is derived based on the
assumption of a monatomic vapor, which requires the specific heat to be ¢, = %% To properly
include the true value for the water specific heat into the model, the additional degrees of

freedom for the water molecule would need to be accounted for.

The specific heat of liquid water varies between 4.231{1;—‘]K and 4.181(1;—‘]K over a temperature range
of 273K to 298 K [56]. Tables 9.4, 9.5, and 9.6 give the variation in the SRT, CE, and CEVEL

model results for the range of liquid specific heat values.
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a (&%) | neo) | neoy| (%) Q (%)
4.18 —0.329 2.67 1.19 x 1073 2861
4.23 —0.323 2.67 1.18 x 1073 2859
1.20% | 0.006°C | 0.00°C | 4.65 x 1072% | 4.64 x 102%

Table 9.4: SRT model sensitivity to liquid specific heat

a (@) | neo | neo| (%) Q (%)
4.18 —0.330 | —0.385 | 1.19x 1073 2861
4.23 —0.324 | —0.379 | 1.19x 1073 2859
1.20% | 0.006°C | 0.006°C | 4.65 x 1072% | 4.64 x 107%%

Table 9.5: CE model sensitivity to liquid specific heat

a ()| T eo) | Teoy | g (3%) Q ()
4.18 2.01 2.67 1.08 x 1073 2612
4.23 2.01 2.67 1.08 x 103 2611

1.20% | 0.00°C | 0.00°C | 3.88 x 1072% | 3.89 x 1072%

Table 9.6: CEVEL model sensitivity to liquid specific heat
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We conclude, that the use of the monatomic specific heat will not alter the conclusions obtained

from the SRT and CE models, however does significantly alter the findings from the CEVEL

model. The CEVEL results using the monatomic specific heat are still of great interest, but the

model’s great sensitivity to specific heat implies that it might require the inclusion of additional

degrees of freedom. Here, it must be kept in mind that inclusion of more degrees of freedom will

also change the expressions for j, and ). Nothing definitive on the influence of the inclusion

of additional degrees of freedom can be concluded without proper expressions for j, and Q.

The liquid specific heat variation over the specified temperature range has an insignificant effect

on the interface temperatures and fluxes.
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9.2 Constant Vapor and Liquid Thermal Conductivities

The water vapor thermal conductivity varies between 1.56 x 107 and 1.81 x 1072 3% over

a temperature range of 273K to 298 K [57]. From Tables 9.7, 9.8, and 9.9 the variation in

interface temperatures and fluxes with vapor thermal conductivity is small.

fo (%) | TEO) | T o) | g (25) Q (X)
1.81 x 1072 | —0.330 | 4.36 1.18 x 1073 2860
1.56 x 1072 | —0.328 | 3.33 1.18 x 1073 2860

13.8% 0.002°C | 1.03°C | 1.02 x 1072% | 7.69 x 1073%

Table 9.7: SRT model sensitivity to vapor thermal conductivity

fo (%) | TCO) | T 0) | 5 (%) Q (%)
1.81 x 1072 | —0.330 | —0.381 | 1.19 x 1073 2861
1.56 x 1072 | —0.330 | —0.383 | 1.19 x 1073 2861
13.8% 0.000°C | 0.002°C | 0.168% | 1.75 x 1073%

Table 9.8: CE model sensitivity to vapor thermal conductivity

R |[neo|neo] (3 | e
1.81 x 1072 | 2.01 3.22 1.08 x 1073 2611
1.56 x 1072 | 2.01 2.88 1.08 x 1073 2612

13.8% 0.00°C | 0.34°C | 6.46 x 1072% | 8.04 x 1073%

Table 9.9: CEVEL model sensitivity to vapor thermal conductivity

The liquid water thermal conductivity varies between 0.5553% and 0.609 3% over a temperature
range of 273K to 298 K [57]. Tables 9.10, 9.11, and 9.12 show the model variation with liquid
thermal conductivity. The liquid thermal conductivity variation causes insignificant changes
in the interface temperatures. The mass and energy fluxes change more significantly than we
observed with variation of the other constants. This sensitivity might suggest that a significant

portion of the heat supplied to the interface comes from the liquid, due to its higher thermal
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conductivity as compared to the vapor. Although the flux percent differences can not be

ignored, they are still small enough to not alter our conclusions.

f(RE) | TCO |5 eo | () |@®)
0.555 | —0.329 | 2.67 | 1.19x1073| 2861
0.609 | —0.328 | 235 |1.31x1073| 3167
10.7% | 0.001°C | 0.32°C 10.7% 10.72%

Table 9.10: SRT model sensitivity to liquid thermal conductivity

n (%) | Teo) | Teo) | g (25) | Q)
0.555 —0.330 —0.385 | 1.19 x 1073 2861
0.609 —0.328 —0.390 | 1.31 x1073 3167
10.7% 0.002°C | 0.005°C 10.7% 10.7%

Table 9.11: CE model sensitivity to liquid thermal conductivity

f (%) | T CO) | T cO) | (55) | @ (W)
0.555 2.01 2.67 | 1.08x1073 | 2612
0.609 2.22 2.75 | 1.19x 1073 | 2867
10.7% | 0.21°C | 0.08°C 3.37% 9.76%

Table 9.12: CEVEL model sensitivity to liquid thermal conductivity

In conclusion, the vapor thermal conductivity has little effect on the model results, while the
liquid thermal conductivity has no measurable effect on the interface temperatures, but does
modestly affect the fluxes, indicating the significance of the liquid conductive heat flux for
evaporation and condensation. These variations are still not significant enough to alter any of

our findings.
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9.3 Constant Vapor Pressure

We assume the pressure is uniform throughout the vapor. We now use the one-dimensional
mass (2.2) and momentum balances (2.12), with the ideal gas law to show that this assumption

is valid.

We start with the mass balance (2.2),

Op,Us
etz
0z ’
and rearrange it to read
v, Olnp,
5%~ e, (9.1)
We now rewrite the ideal gas law
Py
= 9.2
p’l} RT/U (Z) ( )
as
Inp, =Inp, —InT, (2) —InR. (9.3)
Substituting Eqn. (9.3) into Eqn. (9.1), and recalling that j = p,v, we find
%:fi Olnp, 0InT, () ‘ (9.4)
0z Pu 0z 0z
The one-dimensional momentum balance gives us
Opy v,
5, — P95, (9-5)
Inserting Eqn. (9.4) and rearranging results in
_2_1 9T,
8]71; o Pvy Py Tv(z) 0z 96
pvp’U

We now calculate the pressure gradient from Eqn. (9.6), using the SRT and CE model results.
The vapor pressure used in the experimental data, Table 6.1, is p, = 593 Pa, which we take as

the vapor pressure at the interface. The models give us the vapor interface temperatures, and



Chapter 9 122

interface temperature gradients. We calculate the vapor density using the ideal gas law with

the prescribed interface vapor pressure, and calculated interface temperature. The resulting

interface pressure gradients are: from the SRT model 68;); = 4.52 x 1072%, and the CE

model % = 4.56 x 10*2P—r§. We also calculated the gradients at the vapor temperature
boundary z = Ly,, and found for the SRT model % = 3.92 x 10_2%, and the CE model

%% = 3.88 X 10*2%. The depth of the vapor from Table 6.1 is Ly, = 18.6 x 1073 m, this
corresponds to a maximum pressure change of the order of 107%Pa. We conclude that it is

very accurate to assume a constant vapor pressure for our system.
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Chapter 10

Spherical Geometry

Up until now we have considered a planar geometry, see Figure 1.3. This is a simplification
of the Ward, Fang, and Stanga experiments [2], [3], [4]. We now investigate the effects of
interface surface shape. Ward, Fang, and Stanga [2], [3], [4] suggest that their experimental
interface can be modelled as hemisphere, see Figure 1.1. In keeping with our simple one-
dimensional approach we suggest that the hemispherical shape can be approximated using a

spherical interface, with one-dimensional radial fluxes, jumps, and gradients.

10.1 Spherical Model Geometry

The problem is redefined with spherical geometry, see Figure 10.1.

Vapor Boundary

Tv(rv) = Tbv

Figure 10.1: Spherical model geometry
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The liquid temperature boundary at radius r; is the inner most ring. The middle ring is the
liquid vapor interface, at r; and the outermost ring is the vapor temperature boundary, at 7.
We use the same notation as before for the boundary temperatures so that the liquid boundary
temperature is Ty;, and the vapor boundary temperature is Tp,. The liquid and vapor interface
temperatures are 1 (r;), and T, (r;) respectively. We designate the interface mass flux and
energy fluxes as j;, and ;. The radial fluxes, and gradients are defined as positive for the
outward direction. We again note, that the pressure of the evaporating molecules leaving the

surface is Pevap-

In Figure 10.1 we have drawn in the funnel from the Ward, Fang, and Stanga experimental

apparatus, Figure 1.1.

10.2 Spherical Liquid and Vapor Temperature Profiles
We assume only one-dimensional radial fluxes, gradients, and jumps.

The differential balance of mass in spherical coordinates is

1d .

Applying the interface boundary condition j, (r;) = j; the radial mass flux is

2

. ]ZTI
Jr(r) =735 (10.2)

The differential balance of energy in spherical coordinates reads
1d .
2, Urh+a;) =0. (10.3)

We recall the definition of total energy flux, as the combination of the convective, and conductive

energy fluxes,

QT = ]rh + qr- (10'4)
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Eqn. (10.3) with the spherical energy flux becomes
1 d
20 g =0, (10.5)

which like the mass flux, can be solved using the interface condition @, (r;) = @; to be

_ Qirf

Qr (1) o (10.6)

We expand Eqn. (10.3) by inserting the constant specific heat vapor enthalpy (2.37) and
Fourier’s law (2.51), and find

AT, 1d [, dT,\ _
CPJTW - ﬁ% <7’ Ry dr > = 0. (107)

We substitute for the radial mass flux using Eqn. (10.2), and get

&?T, 2 jirch dT,
—-—=t+)—=0. 10.8
dr? <1“ 72Ky ) dr (10.8)
To solve the differential equation the function f (r) = dg;“ is introduced, and we find
ar, A —jir?e,

Integrating again gives us the vapor radial temperature profile,

A v _'i 2
T, (r) = — exp< JTZCP>+B, (10.10)

Jiricy TRy
where A and B are constants of integration.

The vapor boundary temperature

Ty (ro) = Thy (10.11)

is one boundary condition. The second boundary condition is found by substituting the radial

energy flux (10.4), with Fourier’s law (2.51), and the radial mass flux (10.2), into Eqn. (10.6),
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and solving for the radial temperature gradient at the vapor boundary r = r,,

5L (cp (Thy — Tp) + Ahy) — L22
a1 72 CpLw — Lo o) T T2
,) = 2 Gy 10.12
() - (1012)

Applying the boundary conditions we find

2 2
A= I T Yexp <ﬂ_> (10.13)
Ry RyTwy
and
b Ah, —jir?
B=Th— (Tbv _ Qi g AR ) exp <M> . (10.14)
iCp Cp KoyTo

Simplifying the integration constants, and substituting them into Eqn. (10.10) yields the spher-

ical vapor temperature distribution,

Tv (7’) = Tc'u + (Tbv - ch) exp <T — Tv) 5 (1015)

Ty
with similar temperature constants to the planar case,

; Ah
TCU:Q_Z+T07 0’ Qy = .KQU :
JiCp Cp JiT; Cp

(10.16)

The procedure for deriving the spherical liquid temperature profile is identical, resulting in

Ti(r) =Ta + (T — Ta) exp <r — Tl) ; (10.17)
rria;
with constants of
Ty = QZ + T, ap=- Hé . (10.18)
JiCi Jiric

10.3 Spherical Results

The interface mass and energy flux expressions, and the saturation pressure expression remain

the same for spherical coordinates. The change is in the temperature profile expressions; the
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planar expressions: Eqns. (2.59), (2.60), (2.53), and (2.54), are replaced by spherical expressions,
Eqns. (10.17), (10.15), (10.18), and (10.16).

For the simulations we use the input parameters from the experimental data in Table 6.1.
The boundary temperatures are the same, but their depths must be converted to the spherical
geometry The vapor boundary radius r, is interface radius r; plus the vapor depth, L,. The
interface radius is assumed to be equal to the radius of curvature R,. The liquid boundary
radius, r; is the liquid depth L; subtracted from the interface radius. The radius values are

given below in Table 10.1. The radius of curvature is from Ward and Stanga ’s experiment E1

[4].

Conversion | Radius (m)

ri =R, 6.088 x 1073
ro =7 + Ly | 24.68 x 1073

rm=ri—1L; | 1.118 x 1073

Table 10.1: Conversions from planar to radial, Ward et al. experiment E1

We use three models which are representative of their respective groups, the SRT (3.13) (3.8),
CE (4.16) (4.20), and CEVEL (4.71) (4.74) (4.75) models, with coefficient values from Ta-
bles 6.3, and 6.4. We use the coefficient choices from the planar interface models since we
wish to observe the changes in the interface conditions between spherical and planar interface

geometries.

10.3.1 Interface Conditions

Table 10.2 gives the resulting spherical interface conditions.
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For comparison the results for the planar interface are repeated in Table 10.3.

Model | T} (°C) | T, (°C) | j (2£) | @ (%)
SRT | —0.287 | 153 |228x107*| 524
CE —0.342 | —0.293 | 2.48 x 1074 | 524

CEVEL | 0.192 821 |[233x107*| 514

Table 10.2: Spherical interface conditions

Model | T} (°C) | T, (°C) | j (2£) | @ (%)
SRT | —0.329 | 267 | 1.18x1073| 2861
CE —0.330 | —0.385 | 1.19 x 1073 | 2861

CEVEL | 2.01 2.67 | 1.08x1073 | 2612

128

Table 10.3: Planar interface conditions

In the spherical geometry, mass and energy fluxes are an order of magnitude smaller than in
the planar case. We also note the spherical mass flux is an order of magnitude smaller than

the measured value in Table 6.1.

The liquid interface temperatures change only slightly between the planar and spherical geome-
tries, see Tables 10.2, and 10.3. The vapor interface temperatures of the SRT, and CEVEL
models are larger for spherical coordinates, because of their dependence on the vapor conductive

heat flux, while the CE vapor interface temperature is almost unchanged.

The results further solidify our conclusions that the liquid interface temperature is largely
dependant on the vapor pressure, by suggesting that it is almost independent of geometry, in
addition to its independence from temperature boundary conditions. For the vapor interface

temperature, we see from the SRT and CEVEL models that it is highly geometry dependant.
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The CE model vapor interface temperature is largely independent of geometry, since it closely

follows the vapor pressure saturation temperature.

10.3.2 Temperature Profiles

Figure 10.2 shows the spherical temperature profiles of the three models. The interface is at

r =6.088 x 1073 m.

|
25t |
'a
‘a
20 T
— SRT
15+
S
H CE
10 t
5r CE Vel
O L
0.005 0.01 0.015 0.02 0.025
r (m)

Figure 10.2: Spherical liquid and vapor temperature profiles

We compare Figure 10.2, and the planar temperature profiles, Figure 10.3.
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Figure 10.3: Planar liquid and vapor temperature profiles

We see that the spherical and planar temperature profiles are very different. In the liquid, the
planar profile is close to linear, while the spherical is exponential. The vapor profiles are also
different: we see the planar temperature gradient increases as we move deeper into the vapor,
while the spherical gradient levels off. Interestingly, if we compare these results to the sample
of Ward and Stanga ’s results Figure 1.2, we see for evaporation that the planar liquid profile

together with the spherical vapor profile are the best matches to the measured results.
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Chapter 11

Additional Factors

We now address three supplemental factors which we have yet to mention, that arise from the
Ward, Fang, and Stanga publications [2], [3], [4]: the effects of liquid water near the super

cooled region, surface tension, and an observed isothermal zone in the liquid.

11.1 Properties of Super Cooled Liquid Water

The Ward and Stanga [4] experiments involve liquid water near 0°C. Although their experi-
ments do not go below —1°C, they still border on the super cooled liquid water region. We

briefly discuss the variation of specific heat and thermal conductivity in this region.

kJ

The liquid water specific heat measured between —10 °C and 0°C varies from 4.3];;—JK to 4.2¢ oK

[60]. Tables 9.4 and 9.5 show that there is a negligible effect on the results for variations between
4.231(1;—‘]K and 4.181(1;—‘]}(. We conclude the super cooled liquid water specific heat variation will

have little effect on the model results.

We have already presented the liquid water thermal conductivity for —3°C, as 0.555;1“% [57].
Measurements report for a temperature range of —10°C to 0 °C the thermal conductivity moves
from 0.5, to 0.553% [61]. We have already investigated the variation between 0.5520, to
O.GOQBWK, and found that the mass and energy fluxes change by about 10%, with negligible
effect on the interface temperatures, see Tables 9.10, and 9.11. This would imply that in the
extreme case (—10°C) we could expect up to a 20% error in the fluxes due to the liquid thermal
conductivity. However, the Ward and Stanga experiments [4] do not go below —1°C, and thus

we can expect errors due to the liquid thermal conductivity to be near or below 10%, which

will not alter the conclusions drawn from the model results.
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11.2 Surface Tension Effects

Surface tension will create an equilibrium pressure difference across a free surface such as liquid
vapor interface. For a curved liquid surface surrounded by vapor, as shown in Figure 11.1, the

equilibrium pressure difference due to surface tension is [62]

2
pL—po =1 (11.1)

C
Here p; is the pressure in the liquid, 7 is the surface tension coefficient, and r. is the radius of

surface curvature.

Vapor Do

Figure 11.1: Curved surface, surface tension diagram

By Eqn. (11.1) a planar surface with infinite radius of curvature has no contribution of surface
tension to pressure difference across the interface. The spherical model however, will have

surface tension contributions.

11.2.1 Surface Tension Adjusted Saturation Pressure

The addition of surface tension affects the equilibrium condition. We re-derive the saturation

pressure accounting for surface tension.
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From Eqn. (11.1) the equilibrium liquid pressure is given by

2
p=pyt (11.2)
Te
In equilibrium the liquid and vapor temperatures are equal, 1T; = T, = T, and the vapor

pressure is equal to the saturation pressure at temperature T', p, = py; (T). From Eqn. (11.2)
the liquid equilibrium pressure follows as
21
P = Poar (T) + —- (11.3)
Te
The liquid and vapor Gibbs free energies must be equal for equilibrium across the liquid vapor

interface,

9 (T,p1) = gv (T, pv) - (11.4)

We need an expression for the liquid Gibbs free energy at the interface in terms of pl,, (T).

Performing a Taylor series expansion about 1 we find

_ 20\ _ g 2n  19%, 27\
a(T,p) =g <T,pu + rc) = g1 (T, py) + 9 (T, py) - +3 o (T, pv) ) (11.5)
By definition
(ﬁ) =, (11.6)
op )
which leads to
2
<5_92!> _ <@> _0 (11.7)
op? ) p op ) r

because we assume that the liquid is incompressible. Here v is the specific volume. Eqn.

(11.5) then becomes
2
9 (T,p1) = g1 (T, po) + T—nv. (11.8)

C

Substituting this into Eqn. (11.4), the equilibrium condition becomes

1 [T ot (T)] + 20 = gy (Tl (T)) (11.9)

C
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We now insert the constant specific heat enthalpies and entropies, Eqns. (2.35), (2.37), (2.39),
and (2.42) to obtain

T 2n
T-T,)—-T1s? In|— —
af ) <Sl+cln<To>>+rcv
p{sat(T)

(T —T))+ Ahy—T <sg +epln <T1> ~ Rl <7)> . (1110)

0 Do

We follow the same procedure used for the derivation of saturation pressure psq: (7') without

surface tension Eqn. (2.49) and find

() = a=¢(p Lo (L) B0 (L 1) 20v
psat(T)—poexp< 7 <1 T ln<To>)+ 2\ 7)) (11.11)

or in terms of pgqs (T'), the saturation pressure for the flat interface,

) = 2 v
Psat (T) = Psat (T) exp <7’c RT> . (11.12)

This is the same expression as found by Young [33].

11.2.2 Analysis of pl,, (T)

The surface tension coefficient for water is n = 72.7 x 1073-J; [62].

To estimate the size of the correction due to surface tension, the liquid water specific volume is
taken as v = 10*311?—;, the temperature as T'= 273 K, and the radius of curvature as r. = 1 mm
(same order of magnitude as the Ward and Stanga experiments [4]). The saturation pressure
correction factor of Eqn. (11.12) is %?RL = 1.15 x 107, the exponential of this is unity to 6
decimal places. In other words we do not expect the surface tension to affect the saturation
pressure for a radius of curvature of the order of 1mm. Using the same temperature and

specific volume we find that r. < 1.16 x 10~ mm must be true before p, (T) will be more

than 1% greater than psa: (7).

To incorporate the surface tension correction into the models, the liquid Gibbs free energy must



Chapter 11 135

be made to include the surface tension correction,

2
g =g+ r—”v. (11.13)

C

The spherical liquid temperature profile constant, Eqn. (10.18), becomes

; 2
T, =9 o2, (11.14)
Jicl are
The SRT mass flux, Eqn. (3.13) reads
g 21y h 1 1

exp Wﬁ%+#<?ﬁ>>
i =k . 11.15
’ Cex <M+9_~J_@(L_i>> (11.15)

p RT; RT, R \T, — T

We use Eqn. (11.12) in the place of the saturation pressure. The SRT (3.13) (3.8), CE (4.16)
(4.20), and CEVEL (4.71) (4.74) (4.75) models were run with the experimental data, Table 6.1,
with coefficients from Tables 6.3, and 6.4. We found negligible change in the results with the
addition of surface tension. We conclude that the surface tension does not play a significant

role for our situation.

11.3 Constant Liquid Temperature Zone

Ward and Stanga [4] observe a small isothermal zone in the liquid, adjacent to the interface
during their evaporation and condensation experiments, which they suggest could be due to
surface tension driven Marangoni-Benard convection, or energy partitioning during the phase
change process. However they are unable to conclude that either process is responsible. In
any case, our simple models do not allow for either of these phenomena, and thus do not predict
a liquid isothermal zone. None the less, we wish to investigate the effect the isothermal zone
might have on the results, and introduce a forced liquid constant temperature zone adjacent to

the interface into our models, and observe its effect on the interface conditions and fluxes.
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11.3.1 Planar Interface

The liquid is separated into two zones, the constant temperature zone of thickness L., and the
non-isothermal zone of thickness I; — L.. By definition the temperature gradient, and thus
the conductive flux, in the isothermal zone must be zero, ¢ = 0. From Eqn. (2.24) we see this

implies only convective energy flux due to the mass flux in the isothermal zone,

Q = jh (T}) (11.16)

at the liquid interface temperature 7;. We recall from our discussion of the balance laws
that the mass and energy fluxes, 7 and @ are constants. Outside of the isothermal zone the

conductive flux must be included in the energy flux (2.24), leading to

Q= jh (T1) + q. (11.17)

For Eqns. (11.16), and (11.17) to agree, assuming the bulk liquid properties still apply in the
isothermal zone and the liquid enthalpy is only a function of temperature, there must be a
temperature jump across the boundary between the two liquid zones, which Ward and Stanga
[4] do not observe, or the temperature gradient there must be zero, which can not be true
based on our previous analysis without the isothermal zone, see Figure 10.3. In Figure 10.3
the liquid temperature gradient is almost linear, a fact that Ward and Stanga also point out
[4], suggesting that it can not be zero near the interface. We conclude that Eqns. (11.16), and
(11.17) do not agree, and thus the assumption of only convective heat flux due to the mass flux

in the isothermal zone can not be valid.

We instead use the energy flux at the boundary between the two liquid temperature zones to

describe the energy flux through the isothermal zone to the interface, see Figure 11.2.
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Figure 11.2: Isothermal zone, planar geometry

At the boundary between the two liquid zones the energy flux is

Q =l [T (=Le)] +a [~Ld], (11.18)
where the conductive energy flux is q; (—L.) = —m% (—=Lc). In the isothermal zone, from our

constant specific heat assumption (2.35) we know that h; (—L.) = h; (0). Continuous tempera-
ture across the liquid zone boundary is assumed. The conductive energy flux is assumed to be
completely transferred through the isothermal zone via an alternate form of energy transport,
such as Marangoni-Benard convection. This is necessary to satisfy the balances of mass and
energy, which force constant mass and energy fluxes. The liquid interface temperature in the
liquid interface temperature profile (2.59) will now be evaluated at z = — L, instead of z = 0,

which was done for the non-isothermal case.

We compare the model results with and without the isothermal zone. Again, we apply the con-
ditions from Ward and Stanga ’s experiment E1 [4], Table 6.1, where the measured isothermal

zone thickness is L, = 0.34 x 10~ m using the SRT (3.13) (3.8), CE (4.16) (4.20), and CEVEL
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(4.71) (4.74) (4.75) models, with coefficients from Tables 6.3, and 6.4. Table 11.1 presents the

results.

Model | Iso. Temp. Zone | T; (°C) | T, (°C) | J <nlf2gs> Q ()

SRT No —0.329 | 267 |1.18x1073 | 2861

Yes —0.328 | 245 |127x1073| 3071

CE No —0.330 | —0.385 | 1.19 x 1073 | 2861

Yes —0.329 | —0.389 | 1.27 x 1073 | 3071

CE VEL No 2.01 2.67 | 1.08 x 1073 | 2612

Yes 2.16 2.73 | 1.15x 1073 | 2787

Table 11.1: Planar non-isothermal and isothermal liquid zone results comparison

Table 11.1 indicates the mass and energy fluxes increase with the addition of the liquid isother-
mal zone, but the interface temperatures are nearly constant. The increase in mass and energy
flux is likely due to the interface temperature being evaluated for a slightly larger liquid tem-
perature gradient, at distance L. from the interface, than would be the case if it was evaluated

at the interface.

11.3.2 Spherical Interface

We apply the same procedure and implement a constant liquid temperature zone with the

spherical temperature profile, see Table 11.2.

Model | Iso. Temp. Zone | T; (°C) | T, (°C) | J <%> Q ()
SRT No —0.287 | 153 |227x107%| 524
Yes —0.287 | 153 |[231x107*| 531
CE No —0.342 | —0.293 | 2.48 x 1074 | 524
Yes —0.342 | —0.293 | 2.51 x 107* | 531
CE VEL No 0.192 821 |233x107*| 514
Yes 0.199 821 |236x107*| 521

Table 11.2: Spherical non-isothermal and isothermal liquid zone results comparison
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As in the planar case the fluxes all increase slightly with the addition of the liquid constant

temperature zone, but the interface temperatures are nearly unchanged.
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Chapter 12

Model Comparison with Experimental Data

In the previous chapters we have discussed the irreversible thermodynamics, SRT, and kinetic
theory flux expressions. We have examined factors that influence the interface temperatures,
interface temperature jump, temperature profiles, evaporation or condensation mass flux, and
the energy flux. We now compare our model predictions to the Ward and Stanga measurements
from their evaporation experiments E1, E2, E3, and E4, and condensation experiments C1, C2,

C3, and C4 [59].

12.1 Evaporation Experiments

Figure 12.1 shows the measured temperature distribution of evaporation experiment E1 [59].
As we mentioned in the Chapter 10, the curvature of the vapor temperature profile appears
similar to that of the spherical evaporation case, see Figure 10.2, but is opposite to that of the

planar temperature profile, Figure 10.3.

251° o«

20 1

G151 .

B 10+

-0.005 0 0.005 0.01 0.015

Figure 12.1: Measured evaporation temperature profile, experiment E1
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The mass flux in the planar geometry was close to the measured value, while the mass flux was
an order of magnitude too small in the spherical geometry, see Tables 10.3, and 10.2. Since
we also observed that the liquid conditions affect the fluxes more significantly than the vapor,
we suggest to use a planar temperature distribution in the liquid to more closely predict the
measured mass flux. This would also yield a near linear liquid temperature gradient, as Ward

and Stanga suggest is the case [4].

If the funnel of the experimental apparatus (Figure 12.2 [4]) which holds the liquid water is well
insulated, we could expect the absolute energy flux through any cross section to be constant,
which is a property of our radial mass (10.2) and energy fluxes (10.6). However the outside
wall of the funnel in the Ward, Fang, and Stanga apparatus is exposed to the vapor in the
evaporation chamber. This suggests that there will be heat transfer through the walls of the
funnel between the liquid inside the funnel, and the vapor outside, in the case of evaporation
adding heat to the liquid, thus enhancing the evaporative fluxes. We suggest this heat transfer
could be a reason why Ward and Stanga do not observe a spherical temperature profile in the

liquid, and their measured fluxes are higher than those calculated using our spherical model.
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Figure 12.2: Ward et al. evaporation condensation apparatus

The addition of the constant temperature zone, although it slightly increases the fluxes, will not
greatly alter the results. It is included in the simulations mainly to allow for better comparison

of the modelled temperature profiles with measurements.

We mentioned earlier that Ward and Stanga suggest that the liquid temperature gradient is
constant [4]. Figure 12.1 demonstrates that the liquid temperature measurements are concen-
trated near the interface, with only one measurement at the liquid boundary. We suggest that
further measurement points in the liquid region are necessary to confirm the constant liquid
temperature gradient. We will show that the measured liquid temperature points can be fit

using both spherical and planar liquid temperature profiles.

With the afore mentioned considerations, we present the evaporation results using the constant
liquid temperature zone, and the spherical vapor temperature distribution, with planar and
spherical liquid temperature distributions. The SRT (3.13) (3.8), CE (4.16) (4.20), and CEVEL
(4.71) (4.74) (4.75) models are employed. We re-adjust the phenomenological conductive energy
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flux coefficient v, the velocity dependant condensation coeflicient parameters ¢ and w, and the
accommodation coefficient  to fit the vapor interface temperature of experiment E1 for each
of the temperature profile combinations. We then use this set of coefficients for modelling the

remainder of the experiments.

Table 12.1 gives the model input data, and boundary conditions for the Ward and Stanga

evaporation experiments [4], [59].

Experiment | p, (Pa) | Ty (°C) | Ly (mm) | Ty, (°C) | Ly (mm) | R, (mm) | L. (mm)
El 593 26.06 4.97 25.7 18.59 6.088 0.34
E2 639 19.23 4.95 25.88 18.67 6.20 0.38
E3 616 12.52 4.90 25.08 18.70 6.506 0.35
E4 629 7.06 4.96 25.76 18.66 6.143 0.61

Table 12.1: Ward et al. evaporation experimental data

From Table 12.1 the vapor pressures used for the evaporation experiments are all very close,
near 600 Pa, which corresponds to a saturation temperature T4 (py) of approximately 0°C [56].
From our earlier observations we expect that the liquid interface temperature will be very close
to the vapor pressure saturation temperature, thus we expect 1; ~ 0°C for all the evaporation

experiments.

We have already seen that the evaporative and condensation forcing is strongly related to the
relation between T4 (py), and the liquid boundary temperature Ty;. For Ty > Tgqt (py) there is
forcing in the evaporation direction, and for Ty < Tsat (py) there is forcing in the condensation
direction. We have already mentioned that p, does not change greatly between the evaporation
experiments. We see from Table 12.1 that Ty > Tyt (py) for all the evaporation experiments,
Thus we expect that experiment E1 will

and that it is decreased through the experiments.

have the highest evaporation rate, while experiment E4 will have the lowest.

The coefficient values which yield results close to the experiment E1 data for the various geom-

etry choices are given in Table 12.2.
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Geometry o} (WK) 0 w | v

m?2

Planar liquid and spherical vapor || 1.37 x 106 || 5.78 x 1072 | 1 | 1
Spherical liquid and spherical vapor || 1.68 x 106 || 6.38 x 1072 | 1 | 1

Table 12.2: Coefficient values, experiment E1

We see from Table 12.2, and the planar interface data Tables 6.3 and 6.4, that the coeflicient
values do change slightly for the different geometries, this is due to the influence of energy flux on
the vapor interface temperature. We recall that « gives the ratio between the conductive heat
flux in the vapor at the interface to the interface temperature jump, Eqn. (3.8), ¢ is a measure
of how many incident molecules hitting the interface condense, and w sets the dependence of

the condensation coefficient on the molecular energy and surface temperature, Eqn. (4.51).

It is necessary to choose a common coordinate system, if we are to combine the planar liquid
temperature profile with the spherical vapor profile. We wish to write everything in terms
of coordinate z since z = 0 at the interface is easily identifiable. Comparing the planar and

spherical model geometries, Figures 1.3 and 10.1, we have at the interface,
z=0,and r =7; = R,, (12.1)
telling us that
=T — Ti' (122)

where R, is the interface radius of curvature. We also know from Table 10.1 that the boundary
conditions are related by

ry =7; + Ly, and 7 = 7; — L. (12.3)

12.1.1 Experiment E1

The experiment E1 parameters are given by Table 12.1, while the coefficients which we use are

in Table 12.2.
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Table 12.3 shows the measured interface conditions (top line), the predictions from the three
models for the different temperature profile geometries, and the difference between the models

and experiments (°C for temperatures, and % for the mass flux).

Model T, (°C) | T, (°C) J <nlf2gs> Coefficient(s)
Measured -04 2.6 1.017 x 1073 -
SRT Planar Liquid, —0.328 | 2.67 | 1.29x107% | a=1.37x10°
Spherical Vapor 0.072°C | 0.07°C 27.0% (LK)
SRT Spherical Liquid, —0.338 2.67 247 x107* | a=1.68x 106
Spherical Vapor 0.062°C | 0.07°C 75.7% (%)
CE Planar Liquid, —0.329 | —0.346 | 1.30 x 1073 -
Spherical Vapor 0.071°C | 2.95°C 27.4% -
CE Spherical Liquid, —0.293 | —0.342 | 2.51 x 10~* -
Spherical Vapor 0.107°C | 2.94°C 75.3% -
CEVEL Planar Liquid 0.505 2.67 1.25 x 1073 | ¢y =5.78 x 1072
Spherical Vapor 0.105°C | 0.07°C 23.1% w=1,v=1
CEVEL Spherical Liquid, | —0.188 | 2.67 | 2.46 x 1074 | ¢ = 6.38 x 102
Spherical Vapor 0.212°C | 0.07°C 75.8% w=1,v=1

Table 12.3: Experiment E1 interface temperatures and mass fluxes

We see from Table 12.3 that the mass fluxes using the planar liquid temperature profile and
spherical vapor profile are significantly closer to the measured mass flux, than the purely spher-

ical cases.

The SRT and CEVEL models correctly predict the direction of the interface temperature jump,
T, > T;, while the CE model predicts the opposite jump direction. As expected, the vapor
interface temperature predictions of the SRT and CEVEL models are very close to the measured
vapor interface temperature, due to the choices of their coefficients, while the CE vapor interface
temperature is very far from the experimental value. The SRT and CE models predict the

liquid interface temperature more closely than the CEVEL model, which predicts a higher liquid
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interface temperature. It follows that the SRT temperature jump is very near the measured

result, but the CEVEL is less because of its higher liquid interface temperature.

Figure 12.3 represents the three models with a planar liquid temperature distribution, and
spherical vapor temperature distribution. The vapor and liquid temperature distributions of
the three models are similar. The curvature of the model vapor temperature profiles agrees
with that of the measured profile. The liquid temperature profile is linear which fits well with
the limited liquid data points. It also agrees with Ward and Stanga ’s statement that the liquid

temperature gradient is constant [4].

———— Measured

SRT

— CE Vel

Figure 12.3: Planar liquid and spherical vapor temperature profiles, experiment E1

Figure 12.4 uses the spherical liquid and vapor temperature profiles. The vapor temperature
profiles are similar to Figure 12.3. The liquid temperature profiles no longer have a constant
gradient. Although this liquid temperature profile does not fit the data as well as the planar
liquid temperature profile, it could still be representative depending on the location of additional

measured data points in the liquid.
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Figure 12.4: Spherical liquid and vapor temperature profiles, experiment E1

12.1.2 Experiments E2-E4

In the subsequent evaporation experiments the mass flux is reduced by reducing the liquid
boundary temperature Tp;, and thus the evaporative forcing; refer to Table 12.1, where the
experimental input parameters are given. We reuse the coefficients from experiment E1, Table

12.2 to study how the various models describe the experiments.

Tables 12.4, 12.5, and 12.6 compare the model results, with the experimental measurements,
while Figures 12.5, 12.6, 12.7, 12.8, 12.9, and 12.10 give the planar liquid, and spherical vapor,

and spherical liquid and vapor temperature profiles.
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Model T, (°C) | T, (°C) | 4 <n1f2gs> Coefficient(s)
Measured —0.1 2.8 7.97 x 1074 -
SRT Planar Liquid, 0.690 3.76 1921 x107* | a=1.37x10°
Spherical Vapor 0.790°C | 0.96°C 15.5% (%)
SRT Spherical Liquid, 0.683 3.59 1.96 x 1074 | o =1.68 x 10°
Spherical Vapor 0.683°C | 0.79°C 75.3% (LK)
CE Planar Liquid, 0.688 0.692 | 9.25 x 1074 -
Spherical Vapor 0.788°C' | 2.11°C 16.1% -
CE Spherical Liquid, 0.680 | 0.726 | 2.00 x 10~ ;
Spherical Vapor 0.780°C' | 2.07°C 74.9% -
CEVEL Planar Liquid, 1.25 3.47 8.94 x 107* | ¢ = 5.78 x 1072
Spherical Vapor 1.35°C | 0.67°C 12.2% w=1~v=1
CEVEL Spherical Liquid, 0.795 3.39 1.95 x 107* | ¢ = 6.38 x 1072
Spherical Vapor 0.895°C | 0.59°C 75.5% w=1v=1
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Table 12.4: Experiment E2 interface temperatures and mass fluxes (coefficients from experiment

E1)
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Figure 12.5: Planar liquid and spherical vapor temperature profiles, experiment E2
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Figure 12.6: Spherical liquid and vapor temperature profiles, experiment E2
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Model T, (°C) | T, (°C) | 4 <n1f2gs> Coefficient(s)
Measured —-0.2 24 5.95 x 1074 -
SRT Planar Liquid, 0.185 326 [6.19x107*| a=1.37x10°
Spherical Vapor 0.385°C | 0.86°C 4.08% (%)
SRT Spherical Liquid, 0.180 2.97 1.64x107* | a=1.68 x 108
Spherical Vapor 0.380°C | 0.57°C 72.4% (LK)
CE Planar Liquid, 0.182 | 0.201 |6.23 x 1074 -
Spherical Vapor 0.382°C' | 2.20°C 4.78% -
CE Spherical Liquid, 0.177 | 0.223 | 1.68 x 10~* ;
Spherical Vapor 0.377°C' | 2.20°C 71.8% -
CEVEL Planar Liquid, 0.576 3.00 |[6.01x107* | ¢ =5.78 x 1072
Spherical Vapor 0.776°C' | 0.60°C 1.00% w=1v=1
CEVEL Spherical Liquid, 0.276 2.87 1.63 x 107 | ¢ = 6.38 x 1072
Spherical Vapor 0.476°C | 0.47°C 72.5% w=1v=1
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Table 12.5: Experiment E3 interface temperatures and mass fluxes (coefficients from experiment

E1)
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Figure 12.7: Planar liquid and spherical vapor temperature profiles, experiment E3
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Figure 12.8: Spherical liquid and vapor temperature profiles, experiment E3
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Model T, (°C) | T, (°C) | 4 (Hlf;gs) Coefficient(s)
Measured —0.1 2.5 4.19 x 1074 -
SRT Planar Liquid, 0.468 3.32 357 x107% | a=1.37 x 106
Spherical Vapor 0.568°C' | 0.82°C 14.7% (LK)
SRT Spherical Liquid, 0.466 3.46 | 841 x107° | a=1.68x 10°
Spherical Vapor 0.566°C' | 0.96°C 79.9% (W)
CE Planar Liquid, 0.466 0.503 | 3.61x 1074 -
Spherical Vapor 0.566°C' | 2.00°C 13.8% -
CE Spherical Liquid, 0.462 0.516 | 8.78 x 107° -
Spherical Vapor 0.562°C' | 1.98°C 79.0% -
CEVEL Planar Liquid, 0.691 3.46 | 3.46 x 1074 | ¢ =5.78 x 1072
Spherical Vapor 0.791°C' | 0.96°C 17.4% w=1v=1
CEVEL Spherical Liquid, | 0.514 3.28 | 839x107° | ¢ =6.38 x 1072
Spherical Vapor 0.614°C | 0.78°C 80.0% w=1,v=1
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Table 12.6: Experiment E4 interface temperatures and mass fluxes (coefficients from experiment

E1)
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Figure 12.9: Planar liquid and spherical vapor temperature profiles, experiment E4
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Figure 12.10: Spherical liquid and vapor temperature profiles, experiment FE4
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We see for each plot with a planar liquid temperature profile, Figures 12.3, 12.5, 12.7, and
12.9, that the liquid temperature gradient is near constant, where as for each plot using a
spherical liquid temperature profile, Figures 12.4, 12.6, 12.8, and 12.10, the liquid temperature
profile is exponential. If Ward and Stanga [4] are correct that the liquid temperature profile
is indeed linear, then this would imply that there must by a planar temperature profile in the
liquid. However we note, because of the lack of data points in the vapor, the spherical liquid

temperature profiles can still fit with the data points, see Figures 12.4, 12.6, 12.8, and 12.10.

From Tables 12.3, 12.4, 12.5, and 12.6 we observe that the mass fluxes predicted by the models
with the planar liquid temperature profile yield significantly closer results to the measured
values, than the models with spherical liquid temperature profiles. This also suggests the
possibility of a planar liquid temperature profile. However heat transfer through the funnel

walls could be affecting the experimental results.

The measured liquid interface temperatures are as predicted, almost constant from experiment
to experiment since the vapor pressure is not changed greatly. The liquid interface temperatures
are close to the vapor pressure saturation temperature, except for the CEVEL model which
slightly overpredicts the liquid interface temperature. The SRT, and CEVEL vapor interface
temperature predictions are the most accurate for experiment E1, since their coefficients are
optimized for that data set. However, for all experiments the vapor interface temperature of
these models is closer to the measured value than the CE model. The SRT and CEVEL models
also agree with the sign of the interface temperature jump for all evaporation experiments,
T, > T;. The CE model greatly under predicts the temperature jump, however contrary to
our earlier findings it does predict the correct jump direction T;, > T; for all the evaporation

experiments except experiment E1.

Experiments E1 through E4 have shown the behavior of the models with variations in the liquid
boundary temperature, it would now be useful to test the models for different vapor pressures.

This what is done in the next section, where condensation is considered.
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12.2 Condensation Experiments

We maintain the coefficient values established from experiment E1, see Table 12.2. The conden-
sation experiments are modelled using the same geometrical temperature distribution choices
as for the evaporation, a planar liquid with spherical vapor profile, and a spherical liquid and

vapor profile.

We do not present the spherical liquid temperature distribution case for experiment C2. There
the interface radius of curvature R, is less than the liquid depth L;. In our models we assume
the interface radius of curvature is equal to the interface radius, r;. By our definition of the
liquid boundary radius, Table 10.1, r; = r; — L; implying the liquid boundary radius would be

negative which is not physical.

The condensation experimental data is given in Table 12.7 [4], [59].

Experiment | p, (Pa) | Ty (°C) | Ly (mm) | Ty (°C) | Ly (mm) | R, (mm) | L. (mm)
C1 3181 | 0.00 4.81 30.81 18.78 7.119 0.22
C2 2161 | 0.07 5.37 24.3 18.33 4.545 0.37
C3 1463 | —0.02 | 4.87 19.65 18.73 6.690 0.19
C4 959 | —0.10 | 5.06 17.75 18.60 5.628 0.25

Table 12.7: Ward et al. condensation experimental data

Unlike the evaporation experiments, the condensation experiments were varied by adjusting the
vapor pressure p,, and holding the liquid boundary temperature Ty nearly constant. From our
earlier discussion we expect the liquid interface temperature 7; to vary closely with the vapor
pressure saturation temperature Tyq (py), and thus expect T; to decrease with the decreased p,
from experiments C1 to C4. We have seen that Ty < Tsqt (py) causes a condensation forcing.
Experiment C4 will have the lowest saturation temperature, and thus the lowest condensation

flux.

Tables 12.8-12.11 compare the model results with the measured data. Figures 12.11-12.17 give

the planar liquid with spherical vapor, and spherical liquid and vapor temperature profiles.
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Model T, (°C) | Ty (°C) J (rrll(QgS) Coefficient(s)
Measured 25.6 26.0 —3.15x 1074 -
SRT Planar Liquid, 25.1 26.1 | —1.19x 1073 | a=1.37x 106
Spherical Vapor 0.5°C | 0.1°C 279% (LK)
SRT Spherical Liquid, 25.1 258 | =3.72x107* | a=1.68 x 10°
Spherical Vapor 0.5°C | 0.2°C 18.1% (LK)
CE Planar Liquid, 25.1 25.1 | —1.19 x 1073 -
Spherical Vapor 0.5°C | 0.9°C 279% -
CE Spherical Liquid, 25.1 25.1 | —3.71x10* -
Spherical Vapor 0.5°C | 0.9°C 17.9% -
CEVEL Planar Liquid, 24.9 25.1 | —1.18 x 1073 | ¢ =5.78 x 1072
Spherical Vapor 0.7°C | 0.9°C 276% w=1~v=1
CEVEL Spherical Liquid, | 25.0 25.2 | =3.71 x107* | ¢ =6.38 x 1072
Spherical Vapor 0.6°C | 0.8°C 17.6% w=1v=1
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Table 12.8: Condensation experiment C1 interface temperatures and mass fuxes (coefficients

from experiment E1)
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Figure 12.11: Planar liquid and spherical vapor temperature profiles, experiment C1
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Figure 12.12: Spherical liquid and vapor temperature profiles, experiment C1
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Model T, (°C) | T, (°C) J (rrll(QgS) Coefficient(s)
Measured 19.1 194 | -1.77x 1074 -
SRT Planar Liquid, 18.7 199 | —8.12x107* | a=1.37 x 10°
Spherical Vapor 0.4°C | 0.5°C 359% (%)
CE Planar Liquid, 18.7 18.7 | —8.10x 1074 -
Spherical Vapor 0.4°C | 0.7°C 358% -
CEVEL Planar Liquid, 18.5 18.9 —8.02x 107 | ¢ =5.78 x 1072
Spherical Vapor 0.6°C | 0.5°C 353% w=1,v=1

Table 12.9: Condensation experiment C2 interface temperatures and mass fuxes (coefficients

from experiment E1)
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Figure 12.13: Planar liquid and spherical vapor temperature profiles, experiment C2
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Model T, (°C) | Ty (°C) J (rrll(QgS) Coefficient(s)
Measured 12.6 13.0 —1.50 x 10~* -
SRT Planar Liquid, 12.6 13.8 —5.86 x 1074 | a = 1.37 x 10°
Spherical Vapor 0.0°C | 0.8°C 290% (%)
SRT Spherical Liquid, 12.6 135 | =148 x107* | o =1.68 x 10°
Spherical Vapor 0.0°C | 0.5°C 1.33% (LK)
CE Planar Liquid, 12.6 12.7 | —=5.85x 10* -
Spherical Vapor 0.0°C | 0.3°C 290% -
CE Spherical Liquid, 12.6 127 | —1.49 x 1074 -
Spherical Vapor 0.0°C | 0.3°C 0.828% -
CEVEL Planar Liquid, 12.5 13.0 | =576 x 107* | ¢ = 5.78 x 1072
Spherical Vapor 0.1°C | 0.0°C 284% w=1,v=1
CEVEL Spherical Liquid, | 12.6 13.0 | —1.48 x107* | ¢ =6.38 x 1072
Spherical Vapor 0.1°C | 0.0°C 0.941% w=1v=1
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Table 12.10: Condensation experiment C3 interface temperatures and mass fluxes (coefficients

from experiment E1)
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Figure 12.14: Planar liquid and spherical vapor temperature profiles, experiment C3
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Figure 12.15: Spherical liquid and vapor temperature profiles, experiment C3
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Model T, (°C) | Ty (°C) J (rrll(QgS) Coefficient(s)
Measured 6.9 7.5 —4.0 x 107° -
SRT Planar Liquid, 6.40 825 | —2.82x107* | a=1.37x106
Spherical Vapor 0.50°C | 0.75°C 606% (%)
SRT Spherical Liquid, 6.40 790 | —1.57x107% | a=1.68x 10°
Spherical Vapor 0.50°C | 0.40°C 60.6% (LK)
CE Planar Liquid, 6.39 6.42 | —2.80 x 1074 -
Spherical Vapor 0.51°C | 1.08°C 600% -
CE Spherical Liquid, 6.40 6.42 | —1.38 x107° -
Spherical Vapor 0.50°C | 1.08°C 65.4% -
CEVEL Planar Liquid, 6.27 741 | =275 x 1074 | ¢ = 5.78 x 1072
Spherical Vapor 0.63°C | 0.09°C 589% w=1~v=1
CEVEL Spherical Liquid, | 6.39 733 | —1.50 x 1075 | ¢ = 6.38 x 1072
Spherical Vapor 0.51°C | 0.17°C 62.5% w=1v=1

Table 12.11: Condensation experiment C4 interface temperatures and mass fluxes (coefficients

from experiment E1)
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Figure 12.17: Spherical liquid and vapor temperature profiles, experiment C4

Again we see for each plot with a planar liquid temperature profile, Figures 12.11, 12.13, 12.14,
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and 12.16, that the liquid temperature gradient is near constant, whereas for each plot using
a spherical liquid temperature profile, Figures 12.12, 12.15, and 12.17, the liquid temperature
profile is exponential. If Ward and Stanga [4] are correct that the liquid temperature profile is
indeed linear, we see for condensation as well, that there must by a planar temperature profile
in the liquid. However we note, because of the lack of data points in the vapor the spherical

liquid temperature profiles can still fit with the data points, see Figures 12.12, 12.15, and 12.17.

From Tables 12.8-12.11 we observe that the mass fluxes predicted by the models with the
spherical liquid temperature profile are significantly closer to the measured values, than the
models with the planar liquid temperature profiles. This could indicate less heat leakage

through the funnel walls than for evaporation.

For both, the evaporation and condensation cases, the models with the planar liquid temper-
ature profile have greater mass fluxes (Approximately on order of magnitude higher) than the

models with the spherical liquid temperature profile.

We see the liquid interface temperatures follow the vapor pressure saturation temperature, as
we saw for evaporation. As we suggested, the condensation mass flux decreases as the va-
por pressure is dropped. As for evaporation the SRT and CEVEL models reasonably predict
the condensation vapor interface temperature, and temperature jump magnitude and direction
T, > T relative to the measured data. The CE model as we saw with the evaporation experi-
ments predicts a smaller temperature jump, but the correct direction T, > T; for condensation

experiments C3 and C4. In experiments C1 and C2 it predicts zero jump.
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Chapter 13

Conclusions

The purpose of this work was to demonstrate the usability of irreversible thermodynamics and
kinetic theory in describing the steady state evaporation and condensation of pure fluids, to
analyze the statistical rate theory approach, and to investigate the physical phenomena involved

in non-equilibrium phase change.

We developed simple one-dimensional planar and spherical models for slow evaporation and
condensation based on the Ward, Fang, and Stanga [2], [3], [4] experiments. We considered
pure liquid water evaporation and condensation to, and from its own vapor. We assumed
the water vapor to be an ideal gas of uniform pressure, the liquid water as incompressible,
constant liquid and vapor specific heat, and the thermal conductivities to be constant. Using
the balances of mass, energy, and entropy, we developed expressions for the liquid and vapor
temperature profiles, and the liquid surface saturation pressure. To achieve the complete
solution, we required expressions for the mass and energy fluxes across the interface, which we
found using irreversible thermodynamics, kinetic theory, and SRT. The equations were then

solved to yield the mass and energy fluxes, and the liquid and vapor temperature profiles.

The results, and their variation with model parameters for irreversible thermodynamics, kinetic
theory, and SRT were presented and compared between models, as well as with the Ward and
Stanga measured data [4]. We now draw conclusions regarding the irreversible thermodynam-
ics, kinetic theory, and SRT approaches, and some physical factors involved in steady state

evaporation and condensation.
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13.1 Irreversible Thermodynamics

The irreversible thermodynamics phenomenological mass and vapor conductive energy fluxes
are given by Eqns. (3.7), and (3.8). This form neglects cross-over terms, and thus has only two
phenomenological coefficients, for the mass flux § , and for the conductive heat flux «, which

must both be positive to ensure positive entropy production.

The liquid interface temperature 7; is largely independent of either coefficient, the mass flux
is slightly affected by the value of 8, while o has a significant effect on the vapor interface
temperature T, and thus the interface temperature jump AT = T, — T;. The magnitude of

AT increases as o decreases.

In all the IT model simulations we observed that 7; was nearly equal to the vapor pressure

saturation temperature T4 (py), which agrees with the Ward and Stanga measurements [4].

The IT conductive energy flux equation (3.8) relates the direction and magnitude of the interface
temperature jump to the conductive energy flux in the vapor. If the vapor conductive heat
flux flows toward the interface (temperature gradient sloping down toward the surface,% > 0)
we find T, > T, while if it flows away from the interface (temperature gradient sloping down

ddj;” < 0) then T, < T;. This is true for evaporation and condensation,

away from the surface
and agrees with the evaporation and condensation temperature jumps found by Ward, Fang,
and Stanga [2], [3], [4]. Looking back to our discussion of parallel surface inverted temperature
profiles, Figure 1.8, we see it agrees with the non-inverted configuration, however can not predict
the inverted profile. By Eqn. (3.8) the inverted profile would reverse the temperature gradient,
thereby reversing the direction of the jump, which clearly can not happen. As suggested by
Kjelstrup et al. [34] for irreversible thermodynamics to predict the inverted temperature profile,

cross-over terms are required.

We conclude that irreversible thermodynamics can be used to our model steady state evapo-
ration and condensation, with the appropriate phenomenological coefficient choices. Although
cross-over terms do not appear to be necessary, if the parallel surface inverted temperature pro-
file is a real physical possibility, then they must be included in the irreversible thermodynamics

phenomenological expressions.
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13.2 Statistical Rate Theory

The statistical rate theory exponential (3.13), and linearized (3.15) mass flux results are iden-

tical, and match well with the measured data [4] and irreversible thermodynamics predictions.

The SRT mass flux (3.13) is an exponential expression of the IT phenomenological mass flux
(3.7). In fact, the linearized SRT expression (3.15) can be written in the same form as the IT
mass flux, Eqn. (3.16). This, and the fact that the SRT and IT expressions yield the same

results, leads us to conclude that the exponential SRT expression (3.13) is not necessary.

The factor ks in front of the SRT expressions (3.13) (3.15) is the kinetic theory HK mass flux
(4.8). This implies the assumption of unity condensation and evaporation coefficients, implying
that all molecules hitting the surface, will condense, while all those which leave the surface are

evaporating. In light of the MD simulation results [44] this assumption seems in doubt.

SRT does not provide an energy flux expression. In our SRT models we substituted with the IT
conductive energy flux (3.8). Since the vapor interface temperature, and temperature jump are
highly dependant on the energy flux expression, this caused the SRT vapor interface tempera-
ture, and temperature jump predictions to exactly follow those of irreversible thermodynamics,
and thus agree well the measurements. From this it is clear that SRT does not predict the

temperature jump, as Ward and Stanga [4] suggest.

As with the IT model, we found T} ~ T (py) for the SRT simulations. Also of note, the

entropy production for the SRT, IT combined model is positive.

We conclude that SRT accurately predicts steady state condensation and evaporation fluxes,
and agrees with the measured temperature jumps, but does not predict them. An SRT energy
flux expression is necessary to complete the SRT theory. However linear laws are sufficient to
describe the mass and energy fluxes, suggesting that the SRT exponential analysis may not be

necessary.
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13.3 Hertz-Knudsen, and Chapman-Enskog

In our kinetic theory analysis the water is approximated as a monatomic vapor. Although this
is not true for water molecules, we find that our kinetic theory models yield reasonable results

relative to measurements, and the other models.

Two different mass and energy flux pairs were considered, the Hertz-Knudsen (4.22) (4.44),
developed with equilibrium Maxwellian distributions, and the Chapman-Enskog (4.25) (4.49),
based on the quasi-equilibrium CE vapor distribution. In all cases, both sets of expressions
yielded identical results, leading us to conclude that the HK and CE models are very close for

slow evaporation and condensation.

The predicted mass and energy fluxes match well with the other models, and the experimental

mass flux [4].

The HK and CE models show T ~ Ty, (py) as we observed with irreversible thermodynamics,
SRT, and the Ward and Stanga measurements [4]. However the predicted vapor interface
temperatures do not coincide with those of the other models and experimental values. Instead
the HK and CE models predict small temperature jumps, which at times are in the opposite
direction. Adjustment of the condensation, evaporation, or accommodation coefficients does

not correct the jump.

The condensation and evaporation coefficients must be equal in equilibrium, and thus, if they

are considered as constants, they must also be equal outside of equilibrium.

Although these models were not derived to ensure positive entropy production, as was the I'T

model, we find that the entropy production is always positive.

We conclude the HK and CE expressions accurately model our steady state evaporation and

condensation, but they cannot predict the vapor interface temperature, and temperature jump.
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13.4 Hertz-Knudsen and Chapman-Enskog with the Velocity

and Temperature Dependant Condensation Coefficient

We introduced the velocity dependent condensation coefficient (4.51) into the kinetic theory
expressions assuming equal condensation and evaporation coefficients. Again, we have two sets
of mass and energy flux equations, one set based on a Maxwellian vapor distribution HKVEL
(4.60) (4.67), and the other with a CE distribution CEVEL (4.71) (4.74) (4.75). Once again

we observe that the two models yield nearly identical results.

The HKVEL (4.60) (4.67) and CEVEL (4.75) flux expressions are written in terms of temper-
ature dependant coefficients, n (T, T;), and ¢ (T',T;). The coefficient for the mass flux (4.59) is
different from that of the energy flux (4.66).

The velocity dependent condensation coefficient (4.51) is dependant on two parameters, 1) the
measure of how many molecules condense, and w which gives the dependence of the condensation
coefficient on the molecular velocity, and liquid interface temperature. We found for ¢ ~
5x 1072, and w = 1 with purely specular reflection (accommodation coefficient v = 1) that the
HKVEL and CEVEL models predict a vapor interface temperature close to the measured values
[4], and that of the SRT and IT models. This implies that approximately 5% of molecules
hitting the interface condense, and their probability of condensing is highly dependant on the
molecular velocity and interface temperature. We remark that these findings are contrary
to the findings of Tsuruta et al. [44]. They report from MD simulations for Argon that
0.971 < 9 <0.685, 0.086 < w < 0.554, and that most molecules reflect diffusely. We see from
Figure 6.22 that in our models the Tsuruta parameters do not come near the measured vapor

interface temperatures [4].

We also observe that the HKVEL and CEVEL models predict the same temperature jump
directions as the IT conductive energy flux (3.8). This suggests the HKVEL and CEVEL
model vapor interface temperature is dependant on the direction of the vapor temperature

gradient as is for the IT and SRT models.

The HKVEL and CEVEL model interface temperature, and jump results must be considered as

tentative, since we observed significantly different interface temperature results when the water
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vapor specific heat was used in place of the monatomic molecule specific heat. We suggest the
limitation of the HKVEL, and CEVEL models to monatomic molecules with only translational
degrees of freedom is one possible explanation. Further research in this area is necessary to
implement additional degrees of freedom into the HKVEL and CEVEL models, which will likely

change their form.

The HKVEL, and CEVEL models with ¢ ~ 5x 1072, w = 1, and v = 1 predict mass and energy
fluxes near the values of the Ward and Stanga experiments [4] and the other models. They
also predict the T; ~ Tsqt (py), except for evaporation they predict a higher liquid interface
temperature. We suggest this could imply that the molecules leaving the interface could be at

a higher temperature than the surface temperature.
We observe that the HKVEL and CEVEL models both have positive entropy production.

We then say that, when the monatomic specific heat is used, the HKVEL and CEVEL models
accurately model our steady state evaporation and condensation, and show that kinetic theory
can predict the same vapor interface temperature, and temperature jump direction as that
observed by Ward and Stanga [4], which is not achieved by the simpler HK and CE models.
Only the use of the more complicated velocity and temperature dependant condensation coef-
ficient allows us to obtain these results. However accurate interface temperature results are
not observed where the water vapor specific heat is employed, thus these results must not be

considered as conclusive.

13.5 Steady State Evaporation and Condensation

We now mention common factors affecting condensation and evaporation from the models, and

the experimental results [4].

Irreversible thermodynamics, SRT, and kinetic theory all predict similar mass and energy fluxes,
This is a particularly interesting result, considering that each is derived from a different theory.

This suggests that each can be used to predict evaporation and condensation fluxes.
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In all our model simulations, and the experimental results, we see the liquid interface temper-

ature is very close to the vapor pressure saturation temperature 7} ~ Tsqt (py).

Evaporation is forced by conductive heat flux flowing toward the interface, which implies that
in the liquid Ty > Tsat (py), and in the vapor Ty, > Tsqt (py). Conversely, condensation is
forced by conductive heat flux away from the interface, which is true for Ty < Tsqr (py) in
the liquid, and Ty, < Tsqt (py) in the vapor. The conductive heat flux in the liquid plays a
much more significant role in delivering, or removing energy at the interface since the liquid
thermal conductivity is an order of magnitude higher than that of the vapor. This causes the
direction of the mass flux to be highly dependent on the direction of forcing in the liquid, if
Ty > Tsat (py) there is a net evaporation, and if Ty < Tsqt (py) there is condensation, regardless

of the direction of the vapor temperature gradient.

The direction of the interface temperature jump seems to be dependant on the direction of
the conductive heat flux in the vapor, and not the net mass flux direction (evaporation or
condensation), T,, > T; for vapor conductive heat flux toward the interface , and T, < T;
for vapor conductive heat flux away from the interface. Since the direction of the vapor
conductive heat flux does not establish if there is a net evaporation or condensation, then it
can be in either direction for condensation or evaporation. Ward, Fang, and Stanga [2], [3], [4]
from their experiments say that for condensation and evaporation T;, > T;, however in all their
evaporation and condensation experiments the conductive heat flux is toward the interface,
forcing T, > T; to be true. This hypothesis also agrees with the non-inverted parallel surface
temperature jump, but is not true for the inverted case. More experimental results are required

if this is to be confirmed.

13.6 Recommendations and Future Work

More experiments are required to confirm our hypothesis that the interface temperature jump
is dependant on the conductive heat flux in the vapor. As well MD simulations, modeled after
the experimental apparatus would be useful to establish the velocity dependant condensation

coefficient parameter values, and further investigate how molecules reflect.
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The inclusion of additional degrees of freedom in the HKVEL and CEVEL models should be
considered; this could make them valid for use with the water vapor specific heat, instead of
only with the monatomic molecule specific heat. As well the simple kinetic theory HK and CE

models could also be modified to include additional degrees of freedom.

The inclusion of cross-over terms in the I'T mass and energy flux expressions should be investi-

gated.

A SRT energy flux expression to complete the SRT model would allow us to fully evaluate the
SRT theory.

Our study of planar and spherical geometry revealed a marked dependence of the mass and
energy flux on the geometry of the apparatus. In order to fully validate the models, a 3-D

CFD simulation of the experiments would be useful.



References 172

References

1]

R. W. Schrage. A Theoretical Study of Interphase Mass Transfer. Columbia University
Press, New York (1953).

G. Fang and C. A. Ward. ‘Temperature measured close to the interface of an evaporating

liquid.” Physical Review E 59(1), 417-428 (1999).

G. Fang and C. Ward. ‘Examination of the statistical rate theory expression for liquid

evaporation rates.” Physical Review E 59(1), 441-453 (1999).

C. Ward and D. Stanga. ‘Interfacial conditions during evaporation or condensation of

water.” Physical Review E 64, 051509 (2001).

C. Ward and G. Fang. ‘Expression for predicting liquid evaporation flux: Statistical rate

theory approach.” Physical Review E 59(1), 429-440 (1999).

S. Harris. An Introduction to the Theory of the Boltzmann Fquation. Holt, Rinehart, and
Winston, Inc., New York (1971).

P. C. Riedi. Thermal Physics An Introduction to Thermodynamics, Statistical Mechanics,
and Kinetic Theory. Oxford University Press, New York, second edition (1988).

C. Cercignani. Rarefied Gas Dynamics From Basic Concepts to Actual Calculations. Cam-

bridge University Press (2000).

F. W. Sears and G. L. Salinger. Thermodynamics, Kinetic Theory, and Statistical Ther-
modynamics. Addison-Wesley Publishing Company Inc., Philippines, 3rd edition (1975).

C. Cercignani. ‘Strong evaporation of a polyatomic gas.” Rarefied Gas Dynamics T4(1),

305-320 (1981).

C. Cercignani, W. Fiszdon, and A. Frezzotti. ‘The paradox of the inverted temperature
profiles between an evaporating and a condensing surface.” Physics of Fluids 28(11), 3237—
3240 (1985).



References 173

[12]

[13]

[14]

[20]

[21]

[22]

T. Soga. ‘A kinetic theory analysis of evaporation and condensation of a diatomic gas.’

Physics of Fluids 28(5), 12801285 (1985).

H. Hertz. ‘Ueber die verdunstung der flussigkeiten, insbesondere des quecksilbers, im

luftleeren raume.” Annalen der Physik und Chemie 17, 177-200 (1882).

M. Knudsen. ‘Die maximale verdampfunggeschwindigkeit des quecksilbers.” Annalen der

Physik und Chemie 47, 697708 (1915).

I. Eames, N. Marr, and H. Sabir. ‘The evaporation coefficient of water: A review.” Inter-

national Journal of Heat and Mass Transfer 40(12), 2963-2973 (1997).

R. Marek and J. Straub. ‘Analysis of the evaporation coefficient and the condensation

coefficient of water.” Int. J. Heat and Mass Transfer 44, 39-53 (2001).

J. Barrett and C. Clement. ‘Kinetic evaporation and condensation rates and their coeffi-

cients.” Journal of Colloid and Interface Science 150(2), 352-364 (1992).

T. Ytrehus. ‘Theory and experiments on gas kinetics in evaporation.” Rarefied Gas Dy-

namics 51(2), 1197-1212 (1977).

D. Labuntsov. ‘An analysis of intensive evaporation and condensation.” High Temperature

(English Translation) 5, 579-647 (1967).
Y. Sone. Kinetic Theory and Fluid Dynamics. Birkhauser, Boston (2000).

A. K. Rebrov. ‘Nonequilibrium processes at evaporating and condensing surfaces.” AIP

Conference Proceedings 585(1), 557-564 (2001).

R. Meland and T. Ytrehus. ‘Evaporation and condensation kundsen layers for nonunity

condensation coefficient.” Physics of Fluids 15(5), 1348-1350 (2003).

S. R. de Groot and P. Mazur. Non-Equilibrium Thermodynamics. Dover Publications,

Inc., New York (1984).

D. Bedeaux. ‘Nonequilibrium thermodynamics and statistical physics of surfaces.” Advances

in Chemical Physics 64, 47-109 (1986).



References 174

[25]

[26]

[27]

[33]

L. Onsager. ‘Reciprocal relations in irreversible processes i.” Physical Review 37, 405426

(1931).

L. Onsager. ‘Reciprocal relations in irreversible processes 11.” Physical Review 38, 2265—

2279 (1931).

D. Bedeaux, L. J. F. Hermans, and T. Ytrehus. ‘Slow evaporation and condensation.’

Physica A 169, 263280 (1990).

D. Bedeaux and S. Kjelstrup. ‘Transfer coefficients for evaporation.” Physica A 270,
413-426 (1999).

C. Ward. ‘Liquid-vapor phase change rates and interfacial entropy production.” Journal

of Non-Equilibrium Thermodynamics 27(3), 289-303 (2002).

J. W. Cipolla, H. Lang, and S. K. Loyalka. ‘Kinetic theory of condensation and evaporation
II.” The Journal of Chemical Physics 61(1), 69-77 (1974).

Y. Sone and Y. Onishi. ‘Kinetic theory of evaporation and condensation.” Journal of the

Physical Society of Japan 35, 1773-1776 (1973).

Y. Sone and Y. Onishi. ‘Kinetic theory of evaporation and condensation-hydrodynamic
equation and slip boundary condition.” Journal of Physical Society of Japan 44(6), 1981
1994 (1978).

J. B. Young. ‘The condensation and evaporation of liquid droplets in a pure vapour at
arbitrary knudsen number.’ International Journal of Heat and Mass Transfer 34(7), 1649—
1661 (1991).

S. Kjelstrup, T. Tsuruta, and D. Bedeaux. ‘The inverted temperature profile accross a
Vapor/Liquid surface analyzed by molecular computer simulations.” Journal of Colloid

and Interface Science 256, 451-461 (2002).

K. Wylie and R. S. Brodkey. ‘Transport phenomena at the liquid-vapor interface of mercury
using a radioactive tracer.” Progress in Heat and Mass Transfer 6, 195-206 (1972).



References 175

[36]

Y. P. Pao. ‘Application of kinetic theory to the problem of evaporation and condensation.’

The Physics of Fluids 14(2), 306-312 (1971).

Y. P. Pao. ‘Temperature and density jumps in the kinetic theory of gases and vapors.” The

Physics of Fluids 14(7), 1340-1346 (1971).

L. Koffman, M. Plesset, and L. Lees. ‘Theory of evaporation and condensation.” Physics

of Fluids 27(4), 876-880 (1984).

R. Meland and T. Ytrehus. ‘Dependence of the inverted temperature gradient phenomenon

on the condensation coefficient.” Physics of Fluids 16(3), 836-838 (2004).

P. N. Shankar and M. Deshpande. ‘On the temperature distribution in liquid-vapor phase
change between plane liquid surfaces.” Physics of Fluids A 2(6), 1030-1038 (1990).

R. Meland, A. Frezzotti, T. Ytrehus, and B. Hafskjold. ‘Nonequilibrium molecular-
dynamics simulation of net evaporation and net condensation, and evaluation of the gas-

kinetic boundary condition at the interphase.” Physics of Fluids 16(3), 223-243 (2004).

K. Yasuoka and M. Matsumoto. ‘Evaporation and condensation at a liquid surface i. argon.’

Journal of Chemical Physics 101(9), 79047911 (1994).

M. Matsumoto. ‘Molecular dynamics of fluid phase change.” Fluid Phase Equilibria 144,
307-314 (1998).

T. Tsuruta, H. Tanaka, and T. Masuoka. ‘Condensation/evaporation coefficient and ve-
locity distributions at liquid-vapor interface.” International Journal of Heat and Mass

Transfer 42, 4107-4116 (1999).

R. Meland and T. Ytrehus. ‘Boundary condition at a gas-liquid interphase.” AIP Confer-
ence Proceedings 585(1), 583-587 (2001).

T. Tsuruta and G. Nagayama. ‘DSMC analysis of interface mass transfer in Evapora-
tion/Condensation based molecular dynamics study.” Thermal Science and Engineering

10(1), 9-15 (2002).



References 176

[47]

[49]

[53]

[54]

[55]

[56]

[57]

G. Nagayama and T. Tsuruta. ‘A general expression for the condensation coefficient based
on transition state theory and molecular dynamics simulation.” Journal of Chemical Physics

118(3), 1392-1399 (2003).

A. Rosjorde, D. W. Fossmo, D. Bedeaux, S. Kjelstrup, and B. Hafskjold. ‘Nonequilibrium
molecular dynamics simulations of steady state heat and mass transport in condensation

i. local equilibrium.” Journal of colloid and Interface Science 232, 178-185 (2000).

A. Rosjorde, S. Kjelstrup, D. Bedeaux, and B. Hafskjold. ‘Nonequilibrium molecular
dynamics simulations of steady-state heat and mass transport in condensation. II. transfer

coefficients.” Journal of Colloid and Interface Science 240, 355-364 (2001).

A. Frezzotti, P. Grosfils, and S. Toxvaerd. ‘Evidence of an inverted temperature gradient
during evaporation condensation of a lennard-jones fluid.” Physics of Fluids 15(10), 2837—
2842 (2003).

D. Bedeaux, E. Johannessen, and A. Rosjorde. ‘The nonequilbrium van der waals square

gradient model (i). the model and its numerical solution.” Physica A 330, 329-353 (2003).

E. Johannessen and D. Bedeaux. ‘The nonequilbrium van der waals square gradient model

(IT). local equilibrium of the gibbs surface.” Physica A 330, 354-372 (2003).

E. Johannessen and D. Bedeaux. ‘The nonequilbrium van der waals square gradient model

(IIT). heat and mass transfer coefficients.” Physica A 336, 252-270 (2004).

D. Bedeaux, S. Kjelstrup, and J. M. Rubi. ‘Nonequilibrium translational effects in evapo-

ration and condensation.” Journal of Chemical Physics 119(17), 9163-9170 (2003).

B. Bird, W. E. Stewart, and E. N. Lightfoot. Transport Phenomena. Wiley, New York
(1960).

Y. A. Cengel and M. A. Boles. Thermodynamics An Engineering Approach. McGraw Hill,
4th edition (2002).

W. Robert C and M. J. Astle, editors. Handbook of Chemistry and Physics. CRC Press
Inc., West Palm Beach, Florida, 59th edition (1978).



References 177

[58] S. Wolfram. The Mathematica Book. Wolfram Media/Cambridge University Press, 4th
edition (1999).

[59] C. Ward. ‘Temperature profile data points.” (2001). Email Communication, October 2003.

[60] E. Tombari, C. Ferrari, and G. Salvetti. ‘Heat capacity anomaly in a large sampe of

supercooled water.” Chemical Physics Letters 300, 749-751 (1999).

[61] O. Benchikh, D. Fournier, and A. Boccara. ‘Photothermal measurement of the thermal

conductivity of supercooled water.” Journal Physique 46, 727-731 (1985).

[62] M. Kaufman. Principles of Thermodynamics. Marcel Dekker Inc., New York (2002).



