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ABSTRACT

Variable generator output levels from renewable energies is an important techni-

cal obstacle to the transition from fossil fuels to renewable resources. Super grids

and smart grids are among the most effective solutions to mitigate generation vari-

ability. In a super grid, electric utilities within an interconnected system can share

generation and reserve units so that they can produce electricity at a lower overall

cost. Smart grids, in particular demand response programs, enable flexible loads such

as plug-in electric vehicles and HVAC systems to consume electricity preferntially

in a grid-friendly way that assists the grid operator to maintain the power balance.

These solutions, in conjunction with energy storage systems, can facilitate renewable

integration.

This study aims to provide an understanding of the achievable benefits from inte-

grating demand response into wholesale and retail electricity markets, in particular

in the presence of significant amounts of variable generation. Among the options for

control methods for demand response, market-based approaches provide a relatively

efficient use of load flexibility, without restricting consumers’ autonomy or invading

their privacy. In this regard, a model of demand response integration into bulk electric

grids is presented to study the interaction between variable renewables and demand

response in the double auction environment, on an hourly basis. The cost benefit
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analysis shows that there exists an upper limit of renewable integration, and that

additional solutions such as super grids and/or energy storage systems are required

to go beyond this threshold.

The idea of operating an interconnection in an unified (centralized) manner is

also explored. The traditional approach to the unit commitment problem is to de-

termine the dispatch schedule of generation units to minimize the operation cost.

However, in the presence of price-sensitive loads (market-based demand response),

the maximization of economic surplus is a preferred objective to the minimization

of cost. Accordingly, a surplus-maximizing hour-ahead scheduling problem is formu-

lated, and is then tested on a system that represents a 20-area reduced model of the

North America Western Interconnection for the planning year 2024. The simulation

results show that the proposed scheduling method reduces the total operational costs

substantially, taking advantage of renewable generation diversity.

The value of demand response is more pronounced when ancillary services (e.g.

real-time power balancing and voltage/frequency regulation) are also included along

with basic temporal load shifting. Relating to this, a smart charging strategy for plug-

in electric vehicles is developed that enables them to participate in a 5-minute retail

electricity market. The cost reduction associated with implementation of this charging

strategy is compared to uncontrolled charging. In addition, an optimal operation

method for thermostatically controlled loads is developed that reduces energy costs

and prevents grid congestion, while maintaining the room temperature in the comfort

range set by the consumer. The proposed model also includes loads in the energy

imbalance market.

The simulation results show that market-based demand response can contribute

to a significant cost saving at the sub-hourly level (e.g. HVAC optimal operation), but

not at the super-hourly level. Therefore, we conclude that demand response programs

and super grids are complementary approaches to overcoming renewable generation

variation across a range of temporal and spatial scales.
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Chapter 1

Introduction

1.1 Background and Motivation

Inherent generation variability1 is an important technical barrier to the transition

from fossil fuels to renewable energies such as wind and solar power [2, 3]. Genera-

tion variation will break the balance of supply and demand, bringing risk to the entire

electric system. In a typical system, the ramp up/down capability of base load power

plants (nuclear, coal-fired and combined cycle) is not sufficient to mitigate renew-

able variability. Also, operating additional reserves to back up variable generation

resources is often too costly. The high overall cost of renewable energies often limits

the transition, despite great socio-economic benefits of these clean resources.

Super grids [4, 5] and smart grids, in particular demand response programs [6, 7],

are among the effective solutions to overcome renewable generation intermittency. A

super grid is an interconnected system, often at the continent scale, that ties together

a number of control areas so that they can share generation and reserve units [8, 9] e.g.,

the European super grid [10]. Using system interties, control areas can accommodate

generation and load fluctuations at a lower overall cost [11, 12]. A demand response

program motivates changes in electricity use by customers through changes in the

price of electricity over time, or through incentive payments at times of high market

prices or when grid reliability is jeopardized [13, 14].

In an interconnection, control areas most often exchange electricity based on long-

term bilateral contracts. If control areas set the import/export flows 24 hours ahead

of operation, and then reset them one hour ahead according to the real-time sys-

1Variability is the extent to which a power source may exhibit undesired or uncontrolled changes
in output [1].
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tem condition, costs associated with the exchange would decrease and/or revenue

would increase, because the hour-ahead forecast is more accurate than the day-ahead

forecast. A centralized approach to the resource allocation process (import/export

optimal schedule through system tielines) would also reduce the combined operation

cost [15, 16]. Upgrading monitoring and controlling devices would allow the imple-

mentation of such improved operation methods, facilitating renewable integration.

Modernizing the electric system would accelerate the transition to renewable en-

ergies. Recent advances in information technology enables smart grids to effectively

control distributed resources (generation, load and storage) that can potentially result

in lowering operational costs and increasing grid reliability [17, 18]. Flexible resources

such as plug-in electric vehicles [19, 20] and HVAC loads [21, 22] can provide ancil-

lary services (e.g. energy balancing [23, 24] and frequency and voltage regulation

[25, 26]) to the power grid. Demand response behaves very much like fast-acting

generators when it is enabled with the appropriate automation technology [27, 28].

For this reason, demand response is sometimes referred to as virtual power generation

[29, 30].

This study aims to provide a better understanding of the benefits of introduc-

ing super grid and demand response solutions to electric systems with a significant

amount of intermittent renewables. As stated before, these solutions along with en-

ergy storage systems can facilitate renewable integration to a great extent. This

dissertation investigates the concept of super grids in the presence of variable genera-

tion and demand response at the wholesale market level in Chapters 2–4, and explores

load control methods at the retail market level in Chapters 5 and 6.

To explain the use of markets to determine optimal resource allocation (the lowest

operational cost), it is important to understant the impact of energy market dereg-

ulation. There are two kinds of electricity markets: regulated and deregulated. In

regulated markets, the utility sets the prices for electricity supply (typically overseen

by an energy regulator, such as the BCUC overseeing BC Hydro), along with the

associated transportation and distribution costs. Utilities are granted a monopoly in

exchange for foregoing the ability to set prices. Consumers therefore have no choice

when it comes to their electricity provider. In deregulated markets, electricity is a

commodity capable of being bought, sold, and traded at current and future times

[31]. Producers compete to sell electricity to consumers, which in theory leads to

lower overall prices to consumers by giving them the opportunity to search for the

best deal. Accordingly, deregulated markets set the price of electricity in accordance
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to the supply-demand balance, which also theoretically gives the most economically-

efficient allocation of resources. The detailed market structures, in terms of rules,

temporal breakdown and ancillary markets vary widely around the world, and can

lead to more or less efficient market implementation in practice. Our objective is to

treat electric loads in the same way as generation units by including them in electricity

markets so that they can compete with generators and also with each other [32, 33].

We develop a market platform in which demand resources can participate. There are

other approaches to use load flexibility (e.g. direct load control methods). Although

their implementation could be simpler and even more effective than market-based

approaches, they are a step backward from achieving full market deregulation.

Related to the super grid modeling, we will first develop a model of a wholesale

electricity market to investigate the economical amount of intermittent renewables.

Second, we will examine the idea of a super grid, and redefine the objective function

of the unit commitment problem in the presence of demand response. Third, we will

explore solutions to this problem for an interconnected system consisting of a number

of electricity markets on an hourly basis. Related to the load management modeling,

implementing operation control methods can help the grid operator maintain real-

time energy balance at a lower cost. Both generation and load deviate from their

predicted hourly values in real time, which causes a mismatch between supply and

demand. In this regard, fourth, we will propose a load management strategy to charge

electric vehicles in a grid-friendly way using an agent-based modeling approach. Fifth,

we will develop a method of operating thermostatically controlled loads based on

the transactive control paradigm, in order to reduce energy costs and prevent grid

congestion.

In summary, we will analyze the idea of operating an interconnection in a central-

ized manner that dispatches resources taking into consideration the real-time condi-

tion of the electric system. We will then explore the idea of including electric vehicles

and HVAC loads in retail energy imbalance markets.

1.2 Dissertation Outline

This dissertation consists of an introduction in Chapter 1, five research articles pre-

sented individually in Chapters 2-6, and a conclusion in Chapter 7. The first and

third articles were published in the Elsevier Applied Energy Journal, the second ar-

ticle was presented at the CSME 2016 International Congress, the fourth article was
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presented at the HICSS 2016 International Conference, and the fifth article has been

submitted to Elsevier Applied Energy Journal. Each paper includes its own abstract,

introduction, methodology, simulations, discussions and conclusion. Chapters 2-6 are

outlined as follows:

In Chapter 2, we investigate the optimal integration level of a variable resource in a

typical power grid in conjunction with demand response. In this regard, we consider

a wholesale electricity market in which both generators and loads participate, on

an hourly basis. The demand curve includes inflexible loads that are unresponsive

to price changes and flexible loads that are responsive (price-sensitive). As shown

in Figure 1.1, a sigmoid (logistic) function is suggested to represent the collective

response of flexible loads to price changes. In addition, an asymptotic (hockey stick

shape) function is used to represent the supply curve, consisting of a flat-price segment

for must-take generation units and a variant-price segment for dispatchable units.

We then discuss the impact of renewable intermittency and demand flexibility on the

uncertainty cost acting jointly in a double auction. We also analyze sensitivity of

the optimal amount to capital cost, carbon tax and load flexibility. The simulation

results suggests that additional tools such as super grids and energy storage systems

are required to increase the renewable penetration beyond a certain level.

In Chapter 3, we explore the concept of super grids. Load fluctuations and gen-

eration intermittency are not strongly correlated with each other over a large inter-

connected system. Accordingly, the combined interconnection power fluctuations are

smaller than the sum of the variations in individual control areas. Therefore, with an

unified manner of operation, it is possible to mitigate the intermittency of renewable

generation. A simulation is performed to evaluate the effectiveness of the proposed

idea on a system that loosely represents the North America Western Interconnection.

The Western Interconnection, also known as Western Electricity Coordinating Coun-

cil (WECC), stretches from Western Canada South to Baja California in Mexico,

reaching eastward over the Rockies to the Great Plains. A hypothetical wholesale

market is assigned to British Columbia and Alberta together, and another hypotheti-

cal market to the rest of the system consolidated. With price-sensitive loads included,

the market is cleared to maximize the economic surplus rather than minimize the op-

eration costs. Figure 1.2 shows a group of wholesale markets that exchange electricity

to maximize the interconnection surplus. The impact of optimal inter-area electricity

transfer (through the Canada-US tieline) on the economic surplus is assessed.

In Chapter 4, we formulate an interconnection-wide optimal flow scheduling method,
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Fig. 1.1: A wholesale electricity market including different types of generation units as
well as load aggregators and retailers.
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Fig. 1.2: Surplus-maximizing inter-area transfer flows within an interconnection.

and then test it on a 20-area reduced model of the WECC system. We assign a hy-

pothetical double auction market to each area, considering the characteristics of the

electric system in that area. The interconnection model captures the geographic dis-
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tribution of resources as well as intertie constraints, taken from the WECC 2024

Common Case [34]. The proposed scheduling method simultaneously clears these

markets to maximize the global economic surplus. However, due to technical and

political barriers, it is practically impossible to operate the system in such an optimal

manner. The central scheduler sets transfer flows to maximizes the global surplus.

The proposed work is aimed at scenario studies on a large scale, but without going

into the arcane details of bilateral contracts. This model is therefore good for looking

at constrained optimal operation of the system, which places an upper bound on the

achievable economic benefits of generation sharing in WECC.

All control areas are required to deliver the hourly scheduled imports/exports

regardless of local real-time supply and demand fluctuations. Control areas must

therefore deal with these possible energy mismatches using their local generation as-

sets, which can be very costly. In Chapter 5 and Chapter 6, we explore the use of

flexible load resources to assist grid operators in maintaining energy balance. We sug-

gest using retail electricity markets to indirectly control distributed energy resources.

Figure 1.3 illustrates a retail electricity market in which generation units and flexible

loads can participate (double auction). In this regard, in Chapter 5, we propose a new

charging strategy for electric vehicles to improve inter-temporal coordination between

charging events and low cost periods in a real-time retail energy market. The dif-

ference between the elapsed time required for charging and the time that the vehicle

is plugged allows for charging flexibility that allows consumers to take advantage of

inexpensive renewable generation normally only available at particular hours of the

day.

In Chapter 6, a market-based (indirect and centralized) demand response pro-

gram is presented for thermostatically controlled loads under the transactive control

paradigm. The role of demand response is to facilitate an accurate alignment be-

tween ON times and the most beneficial periods. We propose a bidding strategy

that quantifies the load’s willingness-to-pay (bid) price, taking into account both the

indoor temperature state and the grid’s real-time conditions. Simulation results in-

dicate that implementation of this method of operation reduces energy costs in both

heating and cooling modes, while maintaining the room temperature in the comfort

range set by the consumer.

Figure 1.4 illustrates the relation between the models and market structure hier-

archy presented in this work. This hierarchy can be thought of two ways. The first

would be a proposal for a real-world market structure and operating mechanism. This
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Fig. 1.3: A retail electricity market including distributed generators, solar panels, electric
vehicles, heat pumps and air conditioners.

is not the purpose of this work, so that the second way of viewing the hierarchy is as

a proxy, market optimization tool to determine upper bound efficiencies on real-world

markets with a myriad of market structures. In summary, we will first present a model

of an energy-only wholesale market in Chapter 2 (blue zone). This double auction

market belongs to a control area that can potentially exchange electricity with other

control areas through system tielines within an interconnection, in a dynamic man-

ner. Under each control area, there are several retail markets, generation units and

load centers. The generation units exist both directly participating in the wholesale

market (large generators, e.g. coal plants or wind farms), as well as embedded in the

retail market (distributed generation, such as building-mounted PV and micro CHP).

The power grid operator dispatches the large generation units participating directly

in the wholesale market based on the hourly schedule set at the wholesale market.

Second, we develop a model of super grids to determine optimal inter-area change in

Chapters 3 and 4 (green zone). The super grid model consists of a number of control

areas (each with a wholesale market) that coordinate the generation an hour ahead in

order to increase the global economic surplus. Third, we propose a model of 5-minute

retail markets that includes electric vehicles and HVAC loads in Chapters 5 and 6

(gray zone).
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Fig. 1.4: Proposed model structure.

1.3 Research Contributions

The contributions arising from this work are listed below:

In Chapter 2,

(I) Demand response integration into wholesale markets: Including flexible

loads in the market makes it possible to assess the interaction between must-
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take renewables and demand response, and also to explore the impacts on the

uncertainty cost of intermittent renewables and demand response acting jointly.

(II) Joint demand response/renewables portfolio study for a typical power

grid: Developing a methodology for portfolio studies is crucial as conducting

such a study is an essential first step to development of renewable energies.

In Chapter 3,

(III) A new resource allocation approach to incorporate market-driven de-

mand response into the unit commitment problem: With demand re-

sponse included in a market, the settlement process is such that it maximizes

the economic surplus rather than minimizing the operational costs. Accordingly,

the objective function of the optimal scheduling problem (at the interconnection

level) is redefined.

(IV) The super grid concept: We introduce the idea of operating an intercon-

nected system in a centralized manner in terms of increasing the economic sur-

plus, and then define new performance parameters to evaluate system interties.

In Chapter 4,

(V) A model of the interchange export/import scheduling problem for the

interconnection-wide surplus maximization objective: We formulate an

optimization problem to determine the unconstrained and constrained optimal

inter-area power flows. With this model, we can then explore the impact of the

electricity import/export on the economic surplus.

(VI) The optimal inter-area transfer schedule for the Western Intercon-

nection: We present a reduced model of the WECC system consisting of 20

consolidated areas, each with a hypothetical wholesale market for the planning

year 2024. The proposed surplus-maximizing scheduling approach is applied on

this interconnection model, and simulation results are analyzed in detail.

In Chapter 5,

(VII) Plug-in electric vehicle participation in a 5-minute retail market: A

load management scheme is developed to charge electric vehicles in a grid-

friendly way, in the presence of an appreciable amount of rooftop solar PV

panels.
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(VIII) The idea of smart charging: The cost reduction associated with unidirec-

tional charging (V1G) and bidirectional charging (V2G) scenarios is compared

with the uncoordinated charging (V0G) scenario.

In Chapter 6,

(IX) An agent-based model of a new operation method for thermostatically

controlled loads considering temperature comfort range: A bidding

strategy for HVAC loads is developed that quantifies load flexibility, considering

real-time grid conditions based on the transactive control paradigm. Then these

loads are included in an energy imbalance market in conjunction with PV panels.

(X) The collective behavior of HVAC loads: We investigate load aggregator

behavior in response to price changes in both heating and cooling modes.
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Chapter 2

Renewable Resources Portfolio

Optimization in the Presence of

Demand Response

This paper was accepted to Applied Energy journal in October 2016:

Sahand Behboodi, David P Chassin, Curran Crawford and Ned Djilali. Renew-

able Resources Portfolio Optimization in the Presence of Demand Response. Applied

Energy. 2016 Jan 15;162:139-48. Available online at: http://www.sciencedirect.

com/science/article/pii/S030626191501301X

Sahand Behboodi has done the major part of developing the methodology, coding

the simulation, and writing the text. David Chassin has helped Sahand to establish

an understanding of the energy markets and the demand curve shape. David has also

written the introduction section, and edited the entire manuscript.

This chapter proposes a model for demand response integration in wholesale elec-

tricity markets. We also present a cost model of integrating intermittent renewables

and demand response that can be used to assess the optimal level of variable gener-

ation in an electric system.

http://www.sciencedirect.com/science/article/pii/S030626191501301X
http://www.sciencedirect.com/science/article/pii/S030626191501301X
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Abstract

Demand response is viewed as a practical and relatively low-cost solution to increasing

penetration of intermittent renewable generation in bulk electric power systems. This

paper examines the question of what is the optimal installed capacity allocation of re-

newable resources in conjunction with demand response. We introduce an integrated

model for total annual system cost that can be used to determine a cost-minimizing al-

location of renewable asset investments. The model includes production, uncertainty,

emission, capacity expansion and mothballing costs, as well as wind variability and

demand elasticity to determine the hourly cost of electricity delivery. The model is

applied to a 2024 planning case for British Columbia, Canada. Results show that

cost is minimized at about 30% wind generation. We find that the optimal amount of

renewable resource is as sensitive to installation cost as it is to a carbon tax. But we

find the inter-hourly demand response magnitude is much less helpful in promoting

additional renewables than intra-hourly demand elasticity.

Keywords

Demand response, Renewable integration, Power market, Portfolio optimization

Nomenclature

C Annual cost, in $/y.

c Hourly cost, in $/h.

G Annual generation, in MWh/y.

g Hourly generation, in MWh/h.

p Price, in $/MWh.

Q Quantity, in MW.

q Hourly demand, in MWh/h.

t Time, in hours.

v Normalized hourly wind production, per unit of installed wind capacity.

Greek symbols

α Magnitude of the variable cost component of supply curve, in $/MWh.

β Curvature of the supply curve, in a non-dimensional unit.

γ Base price of the first dispatchable generation, $/MWh.



13

ε Emission factor of a resource, in tCO2/MWh.

κ Curvature of the demand curve, in a non-dimensional unit.

τ Time-substitution delay of inter-hourly demand response, in hours.

ω Fractional resource allocation, per unit of installed capacity.

Subscripts

BG Base load generation

CT Carbon tax

D Demand response

E Emission

IG Intermediate load generation

M Market

P Production

PG Peak load generation

R Reserve

SV Scarcity value

U Uncertainty

W Wind

2.1 Introduction

According to the Energy Information Agency (EIA) International Energy Outlook

developing economies have seen a steady growth in renewable energy resources in

recent years. Wind and solar resources in particular show the strongest growth with

EIA projecting that more than three quarters of all new additions in 2015 will be

renewable [35]. The advantages of renewable energy are manifest and in the absence

of viable alternatives to reducing greenhouse gas emissions, they are expected to re-

main the electricity generation resource of choice for new additions for many years to

come. Unfortunately, all is not well where renewable electricity generating resources

are concerned. Significant economic and operational considerations impose practical

limits on the total amount of renewables that can be deployed in bulk electric power

systems. Land use considerations, power system reliability, and electricity market

design are among the many issues that contribute to constraints on the total deploy-

ment of renewables, particular those that rely on intermittent prime-movers, like wind

and solar energy. Hydro-electric generation has long been employed as a significant

renewable source of electricity. But climate change may jeopardize the magnitude
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and certainty with which the existing asset base can meet demand [36, 37], while lack

of productive new dam siting options, population displacement, habitat destruction

and fish stock degradation limit the growth of new assets. Wind power has seen rapid

growth in recent years, but the need for reliable resources limits the penetration of

wind generation unless additional intermittency mitigation measures are considered

[2]. Solar resources are also becoming increasingly available but have intermittency

challenges similar to those of wind. In addition residential rooftop solar resources are

challenging the classical utility revenue model [38] and are known to cause voltage

control issues in distribution systems in response to cloud transients and the diurnal

cycle [39, 3]. There are also early signs that the wholesale market designs are not

well suited to high penetration of renewables and the specter of revenue adequacy

problems has been raised [40, 41]. Finally, the reliable, robust control and optimal

operation of an increasingly complex bulk electricity system has become a very real

concern [42].

The traditional utility approach to renewable intermittency is to allocate addi-

tional firm resources to replace all potentially non-firm renewables resources. These

firm resources are generally provided by fast-responding fossil-fuelled thermal plants

and hydro (where available) power generation as well. The need for fast-ramping

resources discourages the dispatch of high-efficiency fossil and nuclear generation as-

sets while promoting low-efficiency fossil for regulation and reserve services. The

early state of development of many wholesale regulation markets precludes consider-

ation of market-based remedies at this time, although arguably one should consider

renewables before committing to any particular market design.

Demand response is generally regarded as a lower-cost alternative to fast-response

generation reserves that reduces the dispatch of expensive generation resources [6,

18, 43, 44], although the response speed, magnitude and duration are important

considerations [45]. The effect of demand response on the daily generation schedule

is known [46] and sometimes demand response is even presented as a virtual power

plant [29]. But load control strategies for demand response can be challenging to

deploy [7] in part due to competing local and global objectives [47, 48] and in part

due of the complexity of the load control modeling and design problem itself [27].

Numerical modeling of resource adequacy for large-scale planning problems is difficult

to implement [49] and demand response models typically do not capture the salient

features of load necessary to make optimal resource allocation decisions. This is

particularly true when considering the interaction of renewable intermittency and
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demand response capabilities [50].

Effective and widely used strategies for optimizing the scheduling and operation

of bulk-system resources have used markets to solve the cost-minimizing resource-

allocation problem since they were proposed in the early 1980s [51]. Market-based

control strategies were later adapted to building control systems [52], generalized

to feeder-scale operations [53], then utility-scale operations [54], and most recently

proposed for ancillary services [55]. Integrated demand dispatch mechanisms allow

consideration of the combined economic impact of both intermittent generation under

traditional wholesale markets and so-called “transactive” retail-side demand response

dispatch system. It seems therefore possible to define global cost functions that

incorporate the essential characteristics of both intermittent generation and demand

response.

In recent years many have contributed relevant and very detailed models [12, 56,

57, 58] addressing the individual aspects discussed above. Wang et al. [59] reviewed

prototyped real-time electricity markets, focusing on their market architectures and

incentive policies for integrating distributed energy resources and demand response.

Kwag and Kim [60] introduced a new concept of virtual generation resources, ac-

cording to which marginal costs are calculated in the same manner as conventional

generation marginal costs using demand response information: magnitude, duration,

frequency and marginal cost. Sreedharan et al. [61] determined the avoided cost of

demand response in a restructured market with renewables in California. Dallinger

et al. [62] showed that a demand response program based on smart charging of elec-

tric vehicles can facilitate the integration of intermittent resources in California and

Germany. Mahmoudi et al. [63] proposed a new wind offering strategy in which a

wind power producer employs demand response to cope with power production un-

certainty and market violations. To this end, the wind power producer sets contracts

with a demand response aggregator. Rajeev and Ashok [64] proposed a dynamic load

shifting program using real-time data in a cloud computing framework to enable the

effective capacity utilisation of renewable resources. Heydarian-Forushani et al. [65]

investigated the impacts of different electricity markets on the optimal behavior of

a demand response aggregator in a renewable-based power system. Fripp [66] intro-

duces Switch, a new open-source optimization model for long-term planning of power

systems with large shares of renewable energy. Santoro et al. [67] used a stochastic

approach based on Monte Carlo simulation technique to simulate the impacts of de-

mand response in power systems with integrated renewable resources over one year
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period. They showed the optimization of demand response and renewable production

reduces locational marginal prices.

Electricity consumers behavior, and in particular their response to price fluctu-

ations is challenging to characterize and model, and researchers have modeled the

behavior by using a linear demand curves to represent price responsiveness [68], in-

voking new methods to calculate a demand reserve offer function [69], or assuming

consumers use day-ahead prices to shift daily energy consumption from hours when

the price is expected to be high to hours when the price is expected to be low while

maintaining total net energy consumption [70]. The results from the Olympic Penin-

sula demonstration project [53] and American Electrical Power gridSMART project

[54] showed that the demand curves of thermostatic loads are generally sigmoid with

asymptotes at the unresponsive quantity and the maximum load.

For the most part, these contributions do not collectively answer the larger ques-

tion of how to determine the optimal installed capacity allocation of renewable re-

sources when demand response is considered simultaneously. This paper introduces a

model for total annual system cost that integrates renewable resource intermittency

and demand response impacts in a global cost function that can be used to determine

the optimal allocation of new asset investments. The new contributions of this work

are: (i) formulation of the uncertainty cost of intermittent renewable resources and de-

mand response acting jointly; (ii) an economic model of demand response interacting

with renewables in markets; (iii) separation of the impact of intra-hour (short-term)

demand response from inter-hour (mid to long-term) demand response; and (iv) a

joint demand response/renewables portfolio study for British Columbia.

In Section 2.2 the model is described in detail, and in Section 2.3 we propose a

resource portfolio optimization formulation that addresses the question of how much

renewable and demand response is necessary to minimize annual cost in any given

system. In Section 2.4 the model is applied to a system loosely based on the power

grid of British Columbia, Canada and sensitivity analyses of the results are presented

in Section 2.5.

2.2 System Description

In this section we describe the system models employed to solve the general annual-

cost minimizing resource allocation problem. The model includes three categories of

elements: (i) the resource models, (ii) the temporal models, and (iii) the economic



17

models.

2.2.1 Resource Model

System resources are modeled with five classes of generation and two classes of load:

Base: Baseload generation includes all generators that are presumed to be always

running when available. Baseload generation usually has a very low marginal

cost but is not expected to respond to intra-hour load changes or intermittency

in other generation assets.

Intermediate: Intermediate generation includes all the main energy production as-

sets that are used to follow the normal diurnal fluctuations in demand. Interme-

diate generation is usually also relatively low marginal cost but is expected to

have at least some ability to change output in response to intra-hour imbalances.

Peak: Peak generation usually includes only low efficiency energy production assets

that are used to meet peak load events that happen infrequently. These assets

are typically low capital-cost assets with high marginal costs of production, but

they are expected to have excellent ability to change output quickly in response

imbalances.

Intermittent: Intermittent generation generally has high first cost, but effectively

zero marginal production cost. The main feature of intermittent resources is

that they are essentially non-dispatchable because their production capacity is

subject to uncontrollable fluctuations in the prime mover, e.g., wind, solar, or

wave. As a result not only intermittent resources cannot provide any useful load

following capability, but they may also contribute to increasing imbalances due

to forecasting uncertainty.

Reserve: Reserve generation is usually comprised of peak generation units that are

effectively never used and only held in reserve in the event of a system con-

tingency. Because many of these non-spinning reserve units typically are not

dispatched, they effectively do not generate revenue directly from production.

Instead they are a cost which is typically recovered through scarcity rent on

the other assets in a vertically integrated systems, or by participating in reserve

markets, when they exist.
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Unresponsive: Unresponsive loads include the vast majority of load in most sys-

tems. Unresponsive load generally has five components: (i) the base load, which

is always present; (ii) the seasonal load, which varies according to the time of

year; (iii) the long term weather component, which changes with weather; (iv)

the diurnal component, which fluctuates with the daily solar cycle; and (v)

the short term weather and human activity disturbances, which fluctuate on a

subdaily and often subhourly basis.

Responsive: Responsive loads are all the loads that can respond to signals of vari-

ous kinds, including direct and indirect (e.g. price-based) load control signals.

Responsive load is generally divided into three categories: (i) curtailable load,

where energy use is reduced and not replaced later, e.g., by industrial load

curtailment; (ii) deferrable capacity or inter-hourly demand response, where

peak demand is cut and energy use is replaced in subsequent hours, e.g., by

direct load control; and (iii) fast-acting ramp response or intra-hourly demand

response, where load is shifted momentarily and typically replaced within one

hour, e.g., by real-time price signals.

Elasticity represents the response of consumers to dynamic pricing. The price

elasticity of demand is the fractional change in demand to a given fractional

change in price:

η =
p

q

dq

dp
(2.1)

where η, p and q respectively are elasticity, price and demand. Numerous stud-

ies in recent decades have examined the elasticity of demand under various

tariffs. However, few of those studies [71, 72] address real-time price tariffs. In

their survey of 15 demand response studies, Faruqui and Sergici [73] identified

the likely range of inter-hourly elasticity of substitution as between −0.07 and

−0.21. For the purposes of this paper, we use the suggested average value of

−0.14. It should be noted that the long-term demand elasticity is taken out

from consumers’ behaviour before estimating the short-term elasticity. Sensi-

tivity analysis on the elasticity is formed to gauge the impact of this estimate

on the results.
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2.2.2 Temporal Model

All system assets are typically scheduled for operation on an hourly basis in a day-

ahead electricity market. Fast-acting controllable assets can be dispatched subhourly,

with some assets responding at a five-minute time-scale (e.g. demand response),

some at the 4 second control time-scale, and some at a subsecond electromechanical

dynamic response and sub-cycle relay/protection control time scale. However, in

general these are only considered insofar as they may reduce the backup reserve

requirement and they do not affect the energy component of the hourly dispatch

schedule.

The potential magnitude of demand response resources must be considered in

terms of the bandwidths over which they can operate [74]. In general demand re-

sponse that addresses intermittency is based on load resources that respond only

within a time no greater than about a few hours and no less than a few minutes,

the upper limit arising from limits on the customer’s willingness to forgo or defer

consumption, and the lower limit arising from the time update rate of the load con-

trol signal or load control lockout. For example, building thermostat-based demand

response is relatively fast and essentially subhourly, whereas electric vehicle charging

demand response is relativity slow and primarily super-hourly. The magnitude of the

intermittency within that frequency band is the only intermittency that demand re-

sponse can mitigate and therefore the only intermittency that we can consider being

cancelled in the total resource pool [75].

The production cost for energy is determined hourly based on the variation in load

for each hour of the year. In this study, demand response with inter-hour capability is

assumed to not be significant beyond 4 hours. The proposed model dispatches price-

sensitive load by comparing the real-time price and the average price over the next

4 hours. In the case of subhourly response, we assume that all fast dynamics have

mean zero contribution to the hourly energy demand, but they do have a non-zero

variance contribution to the power imbalance. For intermittent generation the cost

of mitigating this variance is included in the cost function through the variability

of the wind production. With fast-acting demand response the magnitude of its

contribution is assumed to be always less than the subhourly intermittency of wind

but effectively mitigates intermittent generation. Because the marginal cost of fast-

acting demand response and the marginal cost of intermittent generation are both

zero, they are simply cancelled and the total intermittent wind subhourly impact on
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the system is reduced by the amount of demand response available. The first cost

of fast-acting demand response is assumed to be in addition to the deferrable load

control infrastructure cost. Where automated metering infrastructure is already in

place, this additional first cost should in principle be nearly zero.

2.2.3 Economic Model

The global cost function consists of variable and fixed costs. The variable costs include

the following components:

Production: This cost includes the hourly cost of producing energy from the re-

sources that were dispatched. In principle this should include subhourly cost

of production as a result of redispatch to follow load and mitigate forecast de-

viations in intermittent resources, but we assume that this cost has zero mean

over the hour.

Uncertainty: This is actually defined as producer surplus [76]. But because this

cost arises primarily from the requirement to maintain dispatchable resources

with non-zero marginal costs to mitigate for the uncertainty in non-dispatchable

resources with zero marginal (as well as variability in the unresponsive load) we

choose to call this the cost of uncertainty due to the intermittency of lower or

zero cost resources. As we will see below, this definition has the significant ad-

vantage of allowing us to easily relate the magnitude of the resource uncertainty

to the cost impact of that uncertainty as the allocation of that resource changes.

For example, the uncertainty cost of a small allocation of wind is counterintu-

itively much higher than it is for a large allocation of wind simply because as

we add more wind, the resources being used to mitigate its intermittency are

dispatched from lower down the supply curve. This effect is independent of

and in addition to smoothing effects [77] that results from geographic resource

diversity.

Emission: This cost is considered by the introduction of a carbon tax at the point

of CO2 emission.

The fixed costs include the following components:

Wind: Increasing wind allocation requires an investment in the installation of new

units, which is represented by a levelized cost of energy on what would otherwise
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be a zero production cost. However, strict application of market-pricing regards

this as a sunk cost once the unit is installed, which is why intermittent wind,

solar and wave units are effectively zero-marginal cost relative to fossil units.

Thus the first cost of new units is captured separately in the model in order to

avoid having to account for these in the production cost.

Demand response: There is very little recent data on the first cost of demand

response installation. Borenstein provided a quote from Comverge in 2002 where

the estimate was $1000 per customer [78]. If we assume that each customer can

provide about 10 kW of controllable load on peak, the cost of controllable

demand response capacity is around $50,000/MW.

Reserve: As the allocation of wind is increased, a proportion of non-spinning reserve

is not required but continues to incur costs.

2.3 Problem Formulation

In this section, the cost minimization problem is stated in the standard form, and its

components are quantified considering renewable intermittency and demand response

effects.

2.3.1 Hourly Cost

To derive the annual cost function we begin with the hourly costs, which will then be

integrated over a year. The hourly cost includes the market-based energy cost, and

the intermittency and the demand response impacts discussed above.

Market Cost

We use a mathematical formulation for the market cost based on an asymptotic supply

curve for production cost, which is combined with a cost arising from the producer

surplus, which we refer to as the uncertainty cost when intermittent resources are

considered. Consider the supply curve illustrated in Figure 2.1a where producers bid

their marginal costs (which is zero for wind) and are paid the clearing price, which is

the marginal cost of the last unit dispatched. At any given time, the region enclosed

by the market clearing quantity qM and price pM is the market cost cM = pM qM . So

the region under the supply curve is the total production cost which is the sum of
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the individual production costs of the each generating unit cP =
∑N

n=1 pn gn and the

region above the curve but below the clearing price is total producer surplus associated

with each unit cU =
∑N

n=1(pM − pn) gn. The supply curve can be expressed as an

asymptotic function of the quantity:

p = α

(
1− q

Qcap

)−β
+ γ (2.2)

where α and β determine the magnitude of the scarcity rent and the curvature of the

supply curve respectively, and γ is the minimum bidding price of the first dispatchable

unit. The system capacity Qcap is the maximum observed demand Qmax with the

supply requirement reserve factor ωR, so Qcap = Qmax (1 + ωR). The cost function

for any particular time t is then:

cM [t] = α qM [t]

(
1− qM [t]

Qcap

)−β
+ γ qM [t] (2.3)

We can express the energy production cost as:

cP [t] =

∫ qM [t]

0

p dq =
α Qcap

β − 1

{(
1− qM [t]

Qcap

)−β+1

− 1

}
+ γ qM [t] (2.4)

Then the uncertainty cost cU = cM − cP at any particular time is:

cU [t] =

∫ pM [t]

0

q dp =
α Qcap

β − 1

{
1−

(
1− qM [t]

Qcap

)−β (
1− qM [t]

Qcap

β

)}
(2.5)

Wind Intermittency Effect

When renewable resources are active, they are dispatched below the baseload re-

sources in the supply merit order, and therefore they shift supply curve accordingly.

We assume that renewable production cost is zero because the marginal cost of all

wind is zero. But the producer surplus can be large, as shown in Figure 2.1b. De-

ducting the wind generation gW from the demand, the clearing price is:

pM = α

(
1− qM [t]− gW [t]

Qcap

)−β
+ γ (2.6)

where wind generation is gW [t] = vW [t] ωW Qmax, and vW is the normalized wind
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Fig. 2.1: Single auction electricity market: demand curve (blue) and supply curve (red).

generation pattern taken from historical data.

We make an important observation about the cost of uncertainty: if the supply

curve is flat, the cost of uncertainty is zero even though there may be very high

variability associated with the lowest cost resource. In other words, if the lowest

cost resource is highly uncertain, but can be replaced by other similarly low-cost

resources, then the cost of uncertainty may be in fact near zero. Of course, this

condition is predicated on the notion that excess resources are “curtailed”, which

may not always the case with today’s wind resources. But this possibility suggests

that any attempt to optimize a resource portfolio where unlimited highly uncertain

resources are permitted will necessarily result in an optimal allocation where a large

amount of low cost/high uncertainty resources are acquired and only the uncertain

resources are used.

Demand Response Effect

Being sensitive to electricity price, customers change their demand in response to price

fluctuations. With demand response included, the total quantity consumed is given

as the summation of price unresponsive and responsive demands. The particular

form of the sigmoid function is not readily deduced from the field data, but one

can presume that it arises from the discrete choice statistics of the consumers based

on the random utility model [79]. According to this model, comfort governs the

outcome with the highest utility going to the customers with the highest demand for

comfort. The net benefit to each customer depends on an unobservable characteristic

a and an observable one b, such that the utility of choosing x is a + bx + δ where
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Fig. 2.2: Behavior of price-responsive demand.

δ is a random independent error. The action corresponding to that choice is taken

when a + bx + δ > 0. The probability of taking the action is then proportional to

(1 + e−(a+bx))−1. The behavior of the demand response model under curtailment and

recovery is illustrated in Figure 2.2a and Figure 2.2b respectively.

The proposed model determines the active responsive load considering the mean

of expected prices p within the next τ hours. We use this model to express all

demand curves from automated demand response agents such as HVAC thermostats

and electric vehicle chargers as taking the form:

qD [t] =
2 ωD q̄[t]

1 + eκ(
pM
p
−1)

(2.7)

where ωD is demand response allocation and κ is the demand response function cur-

vature. It should be noted that q is the total load when the demand is completely

blind to the price. The responsive demand qD changes to clear market at quantity of

qM = q̄ (1−ωD)+ qD and its associated price pM . We consider only demand response

that is capable to shift the load for more than 1 hour and treats all subhourly demand

response as mean-zero magnitude. The average elasticity of demand η̄ is then given

over a τ hours time window, and defined based on the instantaneous elasticity. Com-

bining this definition with the equation for the demand response we find: κ = −2 η̄.

Figure 2.3 illustrates the interaction between the proposed demand response model

(under curtailment) and supply model in a double auction market. The horizontal
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Fig. 2.3: Double auction electricity market.

and vertical shades respectively show the reduction of uncertainty and production

costs as a result of demand response implementation.

2.3.2 Annualized Effective Electricity Price

Our objective is to minimize the total annual cost, which is a function of the renewable

resource and demand response penetration levels. The total annual cost, consisting

of annual production, uncertainty, emission, wind capacity expansion, supply reserve

and demand response (e.g. labor and hardware) installation costs, is computed for

different combinations of design variables ωW and ωD. We express results in annual-

ized effective electricity price peff , which is a more easily understood criterion, and

by definition is the total annual cost divided by the annual demand:

peff (ωW ,ωD) =
CP + CU + CE + CW + CR + CD∑8760

t=1 qM [t]

(2.8)

where CP =
∑8760

t=1 cP [t] and CU =
∑8760

t=1 cU [t] are the annual production and un-

certainty costs. These costs are obtained across the entire year with a hourly time

resolution. The emission cost CE is:

CE (ωW ,ωD) = FCT (εBG GBG + εIG GIG + εPG GPG) (2.9)

where ε and G are the carbon intensity and annual generation of base, intermediate

and peak load generation units; FCT is the carbon tax. The cost of adding a new

wind unit is assumed quadratic due to market scarcity for large magnitude resource
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additions. The wind installation cost CW therefore is computed as:

CW (ωW ) = FSV (ωW Qmax)
2 + FW ωW Qmax (2.10)

where FSV and FW are scarcity value and average wind initial cost. The cost of

unused supply reserves CR is:

CR(ωW ,ωD) = FR (Qcap − (1 + ωR) [q[t]− gW [t]]max) (2.11)

where FR is the average cost for unused reserve capacity. Finally, the cost of demand

response CD infrastructure is assumed as:

CD(ωD) = FD ωD Qmax (2.12)

where FD is the estimated cost for demand response.

2.4 Application

We apply the proposed model to a hypothetical electric system based on the planning

model for the province of British Columbia, Canada used by the Western Electricity

Coordinating Council for the year 2024 [34]. The hourly load forecast and wind

generation profiles of the province are taken from a 10 year-ahead planning case.

British Columbia’s power system is not deregulated, so we use a hypothetical energy

market with characteristics of a deregulated market, as shown in Table 2.1. To

estimate the emission costs, the baseload generation type is assumed to be a zero

emission resource (e.g. hydro), and intermediate and peak units are combined and

simple cycles respectively. Figure 2.4 shows the supply curve with a supply reserve

requirement of 14%.

Table 2.1: Market characteristics

Variable Base Intermediate Peak Reserve Unit
Capacity 5300 3500 3500 1700 MW
Emission factor [80, 81] 5 450 670 670 tCO2e/MWh
Minimum bid 15 25 65 1006 $/MWh

The first cost of wind is determined by averaging the direct capital cost of 111

potential onshore wind site in British Columbia [82]. The assumed costs and demand
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Fig. 2.4: Supply curve.

response parameters are tabulated in Table 2.2. We estimate the scarcity value based

on the wind turbine price trends in the US over the past decade [83].

Table 2.2: Assumed values

Variable Symbol Value Unit Source
Carbon emission tax FCT 30 $/tCO2 [84]
Demand response cost FD 50000 $/MW [78]
Interest rate i 3 %
Elasticity η -14 % [73]
Peak load Qmax 12300 MW Table 2.1
Scarcity value FSV 7 $/MW2

Time-substitution τ 4 h
Unnecessary supply reserve cost FR 100000 $/MW-year
Wind installation cost FW 3210000 $/MW [82]

The cost model is applied across a range of wind penetration levels. Figure 2.5 is a

plot of objective function, allowing identification of an optimal level. The penetration

level of 100% is the case where the wind capacity equals to the maximum demand

Qmax. With demand response considered, the optimal wind capacity is slightly less

than 3860 MW, or 31.2% of the system load on peak. In other words, the reduction

in the combined annual production and uncertainty costs is greater than the wind

installation capital cost up to 3860 MW. By May 2015, British Columbia had 4 wind

farms currently supplying power to the grid with a nameplate capacity of 487 MW,

and another 4 wind farms in development with a nameplate capacity of 230 MW [85].

The scenarios presented in Figure 2.6 and Figure 2.7 are as follows:
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Fig. 2.5: Objective function for various possible renewable capacity allocations with active
demand response

Fig. 2.6: Load duration curve

(1) No wind and no demand response;

(2) Optimal wind and no demand response;

(3) No wind and maximum demand response; and

(4) Optimal wind and optimal demand response.
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Fig. 2.7: Cost duration curve.

The fraction of maximum responsive demand to total demand was established at

10% and the optimization determined that this is the corner solution for the optimal

demand response. A logarithmic scale on the duration axis is used to emphasize

the results during peak hours where they have the greatest impact on overall costs.

Table 2.3 compares annual generation of all scenarios.

Table 2.3: Annual generation by type

Scenario
Resource (1) (2) (3) (4) Unit
Intermittent 0 8500 0 8515 GWh
Base 46555 46555 46555 46555 GWh
Intermediate 19845 12635 19862 12636 GWh
Peak 1753 464 1729 453 GWh

Figure 2.8 illustrates the impact of the demand response fraction on the annual

production and uncertainty costs and also on its installation cost. The saving im-

pact of demand response on the uncertainty cost is much greater than its impact on

production cost.

Figure 2.9 shows the behaviour of demand response pricing over the study year.

This illustrates the degree to which demand response is reacting when hourly prices

are different from expected price. The negative points (red) are hours during which

the market price is higher than the average of the next 4 hours; therefore, the respon-

sive demand is postponed.
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Fig. 2.8: Demand response cost and benefits.

Fig. 2.9: Demand response behaviour.

2.5 Discussion and Sensitivity Analysis

At the hourly scale of energy markets, only a slight benefit from demand response can

be observed. The sensitivity of the optimal wind allocation to elasticity and time-

substitution of demand response are shown in Figure 2.10. This result shows that

strategies to increase load shifting horizon and demand elasticity have no significant

impact on the effective electricity price for the optimal wind case. This suggests that

reasoning based on the inter-hour forward energy prices does not offer a significant

benefit when compared to accounting for only the intra-hour price fluctuations. This

emphasizes the importance of analyzing thermostatic (intra-hourly) demand response

using short-term fluctuations in prices, separately from storage-based (inter-hourly)
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(a) Price elasticity of demand (b) Time substitution

Fig. 2.10: Demand response impact on optimal wind allocation and effective electricity
price (¢/kWh).

Fig. 2.11: Wind installation cost impact on optimal wind allocation and effective electricity
price (¢/kWh).

demand response using slow price fluctuations.

The nominal wind installation cost assumed for this study is $3.21 M/MW. How-

ever wind turbine costs are expected to decrease over time. Figure 2.11 shows the

sensitivity on the wind installation cost. For a 30% decrease in wind capacity cost, we

observe a 5.5% increase in wind capacity and a corresponding 0.28 ¢/kWh decrease

in electricity price.

A carbon tax is widely regarded as one of the most effective tools regulators have

to encourage power producers to invest on clean energy resources. Figure 2.12 shows
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Fig. 2.12: Carbon emission tax impact on optimal wind allocation and effective electricity
price (in ¢/kWh).

the sensitivity to the level of carbon tax and suggests the optimal wind penetra-

tion changes more than 10% for a range of reasonable carbon taxes expected in the

foreseeable future.

Since we consider a fixed generation schedule for baseload units, we must assume

excess wind generation is curtailed rather than redispatching baseload units. However

if the baseload generation can go to part load, renewable curtailment is reduced.

Figure 2.13 shows the sensitivity on the part load factor range. From this analysis,

part load does not have an appreciable impact on the optimal allocation intermittent

resources. The cost impact of curtailing wind rather than redispatching baseload is

insignificant because of the low cost during off peak load hours when this is expected

to occur.

2.6 Conclusions

In this paper we introduce a simple cost model of renewable integration and demand

response that can be used to determine the optimal mix of generation and demand

response resources. We use numerical methods to obtain the optimal mixtures of

renewable generation and demand response resources given a fixed portfolio of con-

ventional generation assets, wind patterns and energy use. The model incorporates

production, uncertainty, emission costs, as well as capacity expansion and mothballing

costs, and considers wind variability and demand response impacts to determine the

hourly price of electricity delivery. Supply is divided into intermittent, base, interme-
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Fig. 2.13: Part load factor impact on useful wind generation fraction and optimal wind
allocation.

diate, peak and reserves, while load is divided into unresponsive and responsive. The

load model includes inter-hourly impact of fast (e.g. building thermostat) and slow

(e.g. electric vehicles) responses to price variations. The temporal model includes

time-substitution in demand up to 4 hours.

The model is tested by optimizing the 2024 planning case for British Columbia

at the hourly level. We find that cost is minimized with about 31.5% renewable

generation. The cost reduction relative to the current level is about 15%. The optimal

renewable mix decreases to 31.2% when 10% demand response is considered with a

very small cost impact. We find that demand response does not have a significant

impact on cost at the hourly level, which suggests that future work must include sub-

hourly load behavior to properly consider its full potential. The results also suggest

that the optimal level of renewable resources is not very sensitive to demand elasticity,

but it is highly sensitive to a carbon tax and renewable resource first cost.
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Chapter 3

Optimal Inter-Area Transfer in the

Presence of Demand Response and

Renewable Electricity Generation

This paper was presented at CSME international congress on June 27th 2016:

Sahand Behboodi, David P Chassin, Curran Crawford, Ned Djilali. Optimal Inter-

Area Transfer in the Presence of Demand Response and Renewable Electricity Gen-

eration. In proceedings of Canadian Society for Mechanical Engineering (CSME)

International Congress 2016.

Sahand Behboodi has done the major part of developing the theory, perform-

ing the simulation, and preparing the paper. David Chassin has helped Sahand to

establish an understanding of the double auction theory and the economic surplus

calculation. David has also revised the manuscript.

This chapter discusses the impact of incorporating demand response in the unit

commitment problem. It also provides an insight to the super grid concept, and

assesses the impact of electricity imports/exports on the economic surplus.

Abstract

This paper describes the impact of demand response and intermittent renewable re-

sources integration on electricity generation and inter-change scheduling. A surplus



35

maximizing method is proposed and tested on a hypothetical system of two con-

solidated areas that loosely represent the North America’s Western Interconnection

(separated by the Canada-United States border). An hourly electricity market is

assigned to each area, and the power exchange that achieves the maximum surplus

is obtained for the planning year of 2024. The solution is then modified to account

for the existing path transfer capacity, 3150 MW North-South and 3000 MW South-

North. The path economic utilization factor, the ratio of the surplus increase to the

maximum surplus increase, is 31%. The economic power transfer distribution fac-

tor, the metric used to quantify the sensitivity of the power flow with respect to the

price difference, is 67 MW/($/MWh). In addition, the optimal schedule is sought for

cases when path transfer capacity is expanded by 1000 MW and 2000 MW. The same

study is performed for year 2030, assuming the additional wind electricity meets the

demand growth. Results show the economic utilization factor increases to 32%, and

the economic power transfer distribution factor increases to 84 MW/($/MWh).

Keywords

Demand response; variable generation; scheduling; surplus; electricity market; tie-line

transfer capacity.

3.1 Introduction

Growing participation of renewable resources in the overall generation fleet has in-

creased pressure on generators responsible for ensuring reliability to provide resources

that mitigate renewable intermittency, without increasing overall GHG emissions.

Demand response is widely regarded as a potentially significant class of zero-carbon

reliability resources that can displace carbon-intensive reliability resources, such as

natural gas combustion turbines and/or energy constrained reliability resources such

as hydro-electric generators. The US Department of Energy has adopted a definition

of demand response that is now widely recognized for its inclusiveness [14]: load vari-

ations in response to change in both financial incentives and/or reliability signals over

time. The interaction between demand response and renewable resources in electric-

ity markets is a well-studied topic [18, 46, 59, 60, 67, 86]. Given an inelastic demand,

the market finds the generation and inter-change schedules that minimizes the op-

erational costs; however, in the presence of demand response, the market finds the
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schedule that maximizes the total surplus [87]. Total surplus is defined as consumer

monetary value minus producer cost [76]. We present a methodology to investi-

gate the impact of demand response implementation on generation and inter-change

scheduling. The proposed method is tested on a hypothetical system consisting of two

areas that loosely represent the North America’s Western Interconnection, known as

the Western Electricity Coordinating Council (WECC), including 14 Western States,

two Canadian Provinces and Baja California in Mexico. Area 1 is the consolidation

of British Columbia and Alberta power grids, and Area 2 is the rest of the system.

In interconnected systems, transmission tie-lines enable balancing authorities to ex-

change electricity and share operating reserves. In the WECC system, balancing

authorities exchange electricity to reduce their operational costs, although the in-

terconnection is not operated according to a true optimal schedule, because of local

regulations. As the penetration of variable generation resources increases, balancing

authorities can collaborate more effectively to benefit from the geographical diversity

of renewable resources in the interconnection, which requires an enhanced transmis-

sion system. Previous work [11] has shown potential savings in production cost due

to consolidation of balancing authorities, with 8% wind and 3% solar energy pene-

tration, ranges from 2.4% to 3.2% of the total yearly production cost, considering

transmission congestion; the full copper-sheet consolidation of WECC shows an ad-

ditional 1.4% improvement. A recent study [4] showed that the deployment of wind

and solar power can reduce CO2 emissions in the US by up to 80% relative to 1990

levels, without an increase in electricity price, by moving away from a regionally di-

vided electricity sector to a national system enabled by high-voltage direct-current

transmission lines. The inter-area exchange schedule is usually updated on an hourly

basis; however, intra-hour scheduling should perhaps be used, since it has substantial

cost benefits, particularly for cases with high penetrations of variable generation. A

10-minute exchange schedule has been shown to reduce the WECC production cost

by 4% and 6% for intermittent renewable penetrations of 11% and 33%, respectively

[88]. This paper examines the impact of demand response integration and transmis-

sion expansion on generation and inter-change schedules in the presence of variable

generation resources, for WECC year 2024 and 2030 case studies. In Section 3.2, a

detailed description on the proposed scheduling method is provided. In Section 3.3,

optimal flow is determined for given assumptions, and the surplus increase is studied.
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3.2 Methodology

3.2.1 Market Basics

The demand curve consists of a flat segment, including price-unresponsive loads, and

a sloping segment including responsive loads. An approximation for the demand

function is [89]:

QL(P ) =
QR

1 + e2 η(1− P
P̄

)
+QU , (3.1)

where QR is the maximum responsive demand, QU is the unresponsive load, is the

short-term price elasticity of demand, P is the dispatch price, and P̄ is the average

price. At equilibrium the responsive portion of demand has a symmetric shape, with

an inflection point at (QR
2

+ QU , P̄ ). The supply curve consists of a flat segment

including must-run (usually zero-marginal cost) units and another sloping segment

including non-zero bid units, which together form the hockey stick shape supply curve.

An approximation for the supply function is [89]:

P (QG, QN) = c1(1− QG −QN

Qmax

)−c2 + c3, (3.2)

where c1, c2 and c3 are supply curve constants determined by the generation mixture,

Qmax is the control area’s maximum possible load with reserve requirements, and

QN is non-dispatchable (must-run) generation. Figure 3.1 shows the clearing condi-

tion. The intersection of these curves (equilibrium point) is the stand-alone clearing

condition (QS, PS). The blue and red hatched areas are the consumer and producer

surpluses respectively.

Figure 3.2 illustrates the impact of electricity export on the surplus. As the

exports increase, the local consumption (QL) and consumer surplus decrease, while

local production (QG) and producer surplus increase, as a result of the new higher

clearing price (PC). The total surplus increase is the solid red area. Similarly, for

the importing jurisdiction, the production and producer surpluses decrease, while the

local consumption, consumer and total surpluses increase. The producer surplus is

obtained as:

PC − c3

c2 − 1
c2 QG −

Pc − c2 c3

c2 − 1
QN −

Pc − c1 − c3

c2 − 1
Qmax. (3.3)
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Fig. 3.1: Market clearing process.

The consumer surplus for the elastic demands is:

(Pmax − PC)(QU +QR)− QR P̄

2 η
ln

1 + e2 η(1− PC
P̄

)

1 + e2 η(1− Pmax
P̄

)
, (3.4)

and for the inelastic demands is:

(Pmax − PC) QL. (3.5)
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P [$/MWh]

PC

QGQL

PS
Legend:
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Demand

Fig. 3.2: The impact of electricity export on surplus.
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3.2.2 Problem Description

The purpose of interconnection scheduler is to establish inter-area flows such that

the system (global) surplus increases, while considering system constraints. In every

area the surplus includes the stand-alone surplus, which is invariant with respect to

inter-area flows, and the additional inter-change surplus, which is variable. The sched-

uler maximizes the summation of additional surplus over the entire interconnected

system’s areas:

max
f

M∑
m=1

interchange surplusm, (3.6)

where f are the tie-line flows. The maximum surplus condition is achieved when the

clearing price is uniform in the entire interconnection. However, there may be no

flow solution that satisfies the ideal exports/imports within tie-line flow constraints.

In this case, we seek the tie-line flow that increases the surplus as much as possible

given the constraints. The ratio of the additional surplus to the maximum additional

surplus is a metric that defines the transmission system performance, which we refer

to as the economic utilization factor (EUF ). Accordingly, the path EUF is zero

for stand-alone (no exchange) condition, and is 100% for the copper-sheet (uncon-

strained flow) condition. Determination of the optimal flow is straightforward for

a two-area system, because only one path exists. In hours that the optimal flow is

beyond the path limit, the constraint is active, thus the actual flow should be trun-

cated to the path transfer capacity, and the quantities and prices should be updated

accordingly. Another performance metric, the economic power transfer distribution

factor (EPTDF ), is defined to quantify the sensitivity of flow with respect to price

difference:

EPTDF =
1

8760

M∑
m=1

(
f1→2

Ps2 − Ps1
)t, (3.7)

where Ps1 and Ps2 are stand-alone prices at hour t in Area 1 and Area 2, respec-

tively. The proposed method is summarized in the following steps. First, the stand-

alone (the minimum global surplus), copper-sheet (the maximum global surplus) and

constrained-flow solutions are obtained, assuming the load is completely inelastic, for

given hourly demand and must-run generation profiles. Notice that the non-flat seg-

ment of the supply curve is assumed fixed for the whole study year. The opportunity

price, defined as the next hour price for any hour, is found. Second, the demand curve

is stated based on the logistic function given in Equation 3.1, with an inflection point
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at the mean value of the hour price and the opportunity price, and a demand elas-

ticity of –1. Third, the market clearing process is repeated with the elastic demand,

and stand-alone demand and price are obtained. Next, the inter-change schedule that

equalizes the prices is determined, and the annual maximum surplus increase is com-

puted. At the end, the exchange is adjusted according to the path transfer capacity,

and the actual surplus increase, the path EUF and EPTDF are computed.

3.2.3 Model Inputs

An important assumption here is that each area has a uniform price, with no binding

internal constraints that would result in different price zones within the area. This

is not always a valid assumption for peak hours, but is easily remedied by increasing

the number of areas defined in the model. The model inputs are taken from the

WECC 2024 common case [34]. Figure 3.3 shows the forecasted hourly load duration

curve for the WECC 2024 model. We aggregate the intermittent renewable electricity

(wind, solar and run-of-river hydro) in each area, to find the must-run generation.

These resources have zero-marginal cost. Table 3.1 shows the capacity and capacity

factor of wind electricity in Area 1 (Canada) and Area 2 (United States), taken from

[34].

Fig. 3.3: WECC load duration curve.

Supply curve constants for a typical curve are taken from [90] as c1 = 4$/MWh,

c2 = 2.6 and c3 = 11$/MWh, and the market price cap is 1000 $/MWh. Regarding
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Table 3.1: Wind characteristics

Type Area 1 Area 2
Capacity (MW) 3234 25918
Capacity factor (%) 33.26 28.53
Correlation coefficient 0.27

the demand curve, we assume that the responsive portion of demand will be 10% if

the cleared price is the same as the average price. In extremes, the magnitude of

responsive demand will be: twice as the average price case if the price is zero; and

zero if the price is at its cap.

3.3 Results and Discussion

In this section, the simulation results for year 2024 and 2030 are provided. Demand

response implementation moderates the price, as is clearly shown in Figure 3.4 and

Figure 3.5.

Fig. 3.4: Price duration curve (stand-alone) year 2024.

Figure 3.6 and Figure 3.7 show both unconstrained and constrained flow versus

the difference between stand-alone prices under the inelastic and elastic loads. The
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Fig. 3.5: Price duration curve (with transfer constraint) year 2024.

positive direction of path flow is from Area 1 to Area 2. The price difference is the

stand-alone price in Area 2 minus the stand-alone price in Area 1. The unconstrained-

flow EPTDF is 80 MW/($/MWh), and constrained-flow is 40 MW/($/MWh) for the

inelastic load. Similarly, the unconstrained-flow EPTDF is 151 MW/($/MWh) and

constrained-flow is 67 MW/($/MWh) for the elastic load. The price difference causes

a relatively greater demand in the expensive side of the path, and a smaller demand

in the cheap side of the path; therefore, increasing the path flow.

Figure 3.8 illustrates the path utilization duration curves. As expected, the mag-

nitude of flow under the elastic demand case is greater than with the inelastic demand.

The flow is truncated according to the path transfer capacity expansions.

The maximum annual surplus increase under the inelastic and the elastic demands

are $703 M and $635 M, respectively. The annual surplus increase for the existing

path transfer capacity under the inelastic and the elastic demands are $298 M and

$156 M. The annual surplus increase (ASI), EUF and EPTDF are summarized

in Table 3.2. The path capacity expansion increases both EUF and EPTDF . A

cost-benefit analysis would be required to determine the optimal transfer capacity of

the path.

The same analysis is performed for the year 2030, assuming a case where wind
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Fig. 3.6: Flow sensitivity to the price difference (inelastic load) year 2024.

Fig. 3.7: Flow sensitivity to the price difference (elastic load) year 2024.

capacity increases such that the annual generation from additional wind is equal to

the demand growth (0.7% per year [4]). Figure 3.9 and Figure 3.10 show the price
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Fig. 3.8: Path utilization duration curve for year 2024.

Table 3.2: Results for year 2024

Inelastic Demand Elastic Demand
ASI EUF EPTDF ASI EUF EPTDF

Scenario [M$] [%] [MW/($/MWh)] [M$] [%] [MW/($/MWh)]

Stand-alone 0 0 0 0 0 0
Existing 298 42 40 196 31 67
transfer capacity
1000 MW 430 61 52 302 47 88
transfer expansion
2000 MW 545 78 63 406 64 107
transfer expansion
Copper-sheet 703 100 88 635 100 151

duration curves under inelastic and elastic demands. In comparison to the year 2024,

the market clearing price is lower. The reason is wind, which is a zero-marginal

cost resource, is a greater portion of the generation mixture, and influences the mar-

ket price more significantly. This means that as wind penetration level increases,

the producer surplus decreases, and maybe some supply units cannot recover their

investment costs.

Figure 3.11 illustrates the path utilization duration curves. In comparison with
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Fig. 3.9: Price duration curve (stand-alone) year 2030.

Fig. 3.10: Price duration curve (with transfer constraint) year 2030.

year 2024, the magnitude of the optimal flow is greater, because the demand and the

wind generation are greater, and a greater flow is required to balance market prices.
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Fig. 3.11: Path utilization duration curve for year 2030.

Simulation results for 2030 are listed in Table 3.3. In comparison to 2024, the

EUF is almost the same, but the EPTDF increases, because the flow is greater and

the price difference is smaller in 2030 relatively.

Table 3.3: Results for year 2030

Inelastic Demand Elastic Demand
ASI EUF EPTDF ASI EUF EPTDF

Scenario [M$] [%] [MW/($/MWh)] [M$] [%] [MW/($/MWh)]

Stand-alone 0 0 0 0 0 0
Existing 232 42 54 160 32 84
transfer capacity
1000 MW 333 60 69 243 48 109
transfer expansion
2000 MW 419 76 83 323 64 132
transfer expansion
Copper-sheet 549 100 106 502 100 185
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3.4 Conclusion

This paper assesses the impact of demand response integration and transmission ca-

pacity expansion on the electricity generation and inter-change scheduling. A surplus

maximizing scheduling method is proposed and tested on a hypothetical system con-

sisting of two consolidated areas that loosely represents the Western Interconnection.

For given 2024 forecast data with hourly resolution, the stand-alone, copper-sheet

(unconstrained-flow) and constrained-flow schedules are determined and compared.

The additional annual surplus is $196 M under the elastic demand, for the exist-

ing path transfer capacity, which is only one-third of the maximum possible surplus

increase. The path economic utilization factor and the economic power transfer dis-

tribution factor shows the sensitivity of the flow to the price difference is found 67

MW/($/MWh). The results for the year 2030, where additional wind electricity sup-

plies the demand growth alone, show that a greater penetration of wind causes the

path to be utilized relatively more. Future work is to develop a multi-area model for

the WECC interconnection, and solve the constraint flow problem.
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Chapter 4

Interconnection-wide Hour-ahead

Scheduling in the Presence of

Intermittent Renewables and

Demand Response: a Surplus

Maximizing Approach

This paper was accepted to Applied Energy Journal in December 2016:

Sahand Behboodi, David P Chassin, Ned Djilali and Curran Crawford. Interconnection-

wide Hour-ahead Scheduling in the Presence of Intermittent Renewables and De-

mand Response: a Surplus Maximizing Approach Applied Energy 189 (2017): 336-

351. Available online at: http://www.sciencedirect.com/science/article/pii/

S0306261916318165

Sahand Behboodi has done the major part of defining the problem, formulating

the objective function, performing the optimization, and writing the paper. David

Chassin has been a help to Sahand to code the model in Matlab. David has also

modified the manuscript.

This chapter addresses the topic of resource allocation in an interconnected system

in presence of significant amount of intermittent renewables and demand response.

A new approach to determine the optimal inter-area transfer schedule is presented

http://www.sciencedirect.com/science/article/pii/S0306261916318165
http://www.sciencedirect.com/science/article/pii/S0306261916318165
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that maximizes the system’s economic surplus. This method is demonstrated on a

reduced model of the North America Western Interconnection.

Abstract

This paper describes a new approach for solving the multi-area electricity resource

allocation problem when considering both intermittent renewables and demand re-

sponse. The method determines the hourly inter-area export/import set that maxi-

mizes the interconnection (global) surplus satisfying transmission, generation and load

constraints. The optimal inter-area transfer set effectively makes the electricity price

uniform over the interconnection apart from constrained areas, which overall increases

the consumer surplus more than it decreases the producer surplus. The method is

computationally efficient and suitable for use in simulations that depend on optimal

scheduling models. The method is demonstrated on a system that represents North

America Western Interconnection for the planning year of 2024. Simulation results

indicate that effective use of interties reduces the system operation cost substantially.

Excluding demand response, both the unconstrained and the constrained scheduling

solutions decrease the global production cost (and equivalently increase the global

economic surplus) by $12.30B and $10.67B per year, respectively, when compared

to the standalone case in which each control area relies only on its local supply re-

sources. This cost saving is equal to 25% and 22% of the annual production cost.

Including 5% demand response, the constrained solution decreases the annual pro-

duction cost by $10.70B, while increases the annual surplus by $9.32B in comparison

to the standalone case.

Keywords

Demand response, energy market, renewable intermittency, resource allocation, west-

ern interconnection

Highlights

1. A new approach for electricity resource allocation that includes price-elastic

loads
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2. A new model of interconnection-scale scheduling that maximizes economic sur-

plus

3. A demonstration of the scheduling method on the North America Western In-

terconnection

Nomenclature

A Market state solution matrix.

b Market condition vector.

d Demand curve slope, in $/(MWh.MW).

e Net export, in MW.

f Transfer flow, in MW.

p Price, in $/MWh.

pmax Must-serve load price, in $/MWh.

pmin Must-take generation price, in $/MWh.

q Quantity, in MW.

s Supply curve slope, in $/(MWh.MW).

x Market state vector.

Y Connectivity matrix.

α Degree of demand inelasticity.

∆ Difference operator.

ω Combined demand and supply slope, in $/(MWh.MW).

Ω Diagonal matrix of combined slopes.

Subscripts

0 Standalone

c Clearing

d Demand

p Price

q Quantity

r Responsive

s Supply

u Unresponsive

w Must-take
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4.1 Introduction

Most jurisdictions in North America have adopted renewable energy portfolio policies

as part of efforts to reduce greenhouse gas emissions. The inherent intermittency of

renewables is the main challenge to the large-scale integration of these clean resources

at high penetration levels. The traditional utility approach to generation variability

is to operate reserve units, which are usually more costly and may increase emissions.

Demand response is a zero-emission and potentially lower-cost alternative to the

use of generation reserves. It also benefits the flexible load through payment for

their services, and benefits all consumers through lowered electricity costs. The US

Department of Energy has adopted a definition of demand response that is now widely

recognized for its inclusiveness [14]: “load variations in response to changes in both

financial incentives and/or reliability signals over time”.

The idea of including demand response in electricity markets is discussed in a

large body of recent works. The impact of demand response integration on peak

energy consumption, energy price and emissions under load uncertainty is analyzed

in [91]. A model of demand response participation in real-time markets to minimize

the operation cost considering the load elasticity is formulated in [92]. The interaction

between renewable intermittency and demand response in the market environment is

investigated in [50].

Load fluctuations and renewable generation intermittency are generally not strongly

correlated with each other over a large interconnected system that includes multiple

balancing authorities [9]. As a result, the combined interconnection power fluctua-

tions are smaller than the sum of the variations in individual balancing authorities.

Neighbouring jurisdictions can take advantage of the geographical diversity of re-

newable resources within the system, and cooperate more effectively to mitigate the

intermittency of renewable power generation. This cooperation, which is beneficial

from both reliability and economic viewpoints, requires an enhanced transmission

system, sometimes referred to as a “supergrid” [8]. A recent study of consolidation

of balancing authorities in the US [4] showed that if planners moved away from a

regionally divided electricity system to a national system using high-voltage direct-

current transmission lines then the deployment of wind and solar power could reduce

CO2 emissions by up to 80% relative to 1990 levels, without an increase in electricity

price.

Resource scheduling using locational marginal price (LMP) has been the foun-
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dation of modern electricity system operations since the early 1980s when it was

first introduced [93]. The basic LMP solution was subsequently extended to perform

security constrained economic dispatch (SCED) to satisfy operational constraints.

This family of solutions has been deployed very successfully by transmission system

operators [94]. However, the LMP formulation considers load to be essentially in-

elastic. Approaches to compensating demand response that allow consideration of

price sensitive loads have been examined [95]. For policy-makers seeking to study the

widespread development of renewable resources and the impact of demand response

in system operation, the preferred LMP/SCED solution to the resource scheduling

problem presents a significant barrier to adoption because the system models are

typically constructed in a manner that assumes: (i) the system operation is domi-

nated by supply resources with significant and relatively consistent fixed and variable

cost components throughout an interconnected system, and (ii) demand is essentially

inelastic and predictable. Solutions to the demand response problem include those

proposed by the US Federal Energy Regulatory Commission [96]. Unfortunately, re-

newable resources such as wind and solar do not fulfill assumption (i), and short-term

redispatchable demand does not conform well to assumption (ii).

A deep understanding of the interconnection-scale impact of demand response

integration is difficult to achieve in the absence of accurate resource allocation mod-

els that properly consider the system-wide impact of demand response on locational

energy price calculations and generation resource allocation. This is even more im-

portant for the case of large interconnected systems where mixed pricing mechanisms

are extant, such as in the Western Electricity Coordinating Council (WECC). In

the WECC some regions have fully developed energy markets and others do not, and

multiple balancing authorities operate and interact through a myriad of bilateral con-

tracts and other financial arrangements including some as obscure as the Columbia

River Treaty [97]. In an effort to address these barriers and to study optimal operation

of large-scale interconnections, we are motivated to find a more flexible and general

model of the resource scheduling problem based on energy pricing. In the absence

of price sensitive loads, the problem of unit commitment is to determine the hourly

generation schedule in a way that minimizes the operational costs, which equiva-

lently maximizes the economic surplus (social welfare) [76, 98]. Therefore solving the

traditional LMP problem is sufficient. However, when a significant amount of price

sensitive loads is present, minimizing cost is no longer a satisfactory objective, and

maximizing surplus is preferred [87], as described in Section 4.2. Surplus maximiza-
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tion for the unit commitment problem has been already formulated at the balancing

authority level [18, 46, 99]. In the present work, we are interested in analyzing this

problem at the interconnection level. More precisely, we seek a set of inter-area power

transfers that maximizes the global surplus, which is defined as the sum of consumer

and producer surpluses over all balancing authorities in an interconnection.

The optimal operation of the interconnection helps utilities produce electricity

with a lower cost, integrate more intermittent renewables, and defer or cancel costly

investments in grid infrastructure. Previous work [11] has shown the potential annual

savings in production cost due to consolidation of balancing authorities ranges from

2.4% to 3.2%, considering transmission congestions. The full coppersheet consolida-

tion of the WECC system provides an additional 1.4% improvement. However this

study did not consider the impact of demand response on system resource allocation.

Load management assists the WECC system operators in dealing with uncertainty

in demand and intermittent resource output [100].

We consider one important reference to be the inelastic demand scenario in which

the WECC system as a whole is operated in the most economically efficient manner.

This scenario is unlikely because of various jurisdictional regulations, but it does

provide an upper bound for the achievable system-wide economic benefits considering

the transmission constraints. Thus, demand response with different penetration levels

across the system, and potential surplus increases are evaluated with respect to this

best achievable performance absent demand response. It should be noted that the

outcome of this work is a model to study system-wide scenarios for planning rather

than proposing an operational tool to be used in WECC.

Energy scheduling and reserve scheduling can be performed simultaneously to

achieve a more economically-efficient use of both supply and demand resources, par-

ticularly when reserve sharing is anticipated to be significant [101, 102]. We exclude

reserve scheduling in this formulation/simulation for simplicity. But we recognize

that including it is an essential future work.

The new contributions of this work are: (i) a new resource allocation method that

incorporates the market-driven demand response into the unit commitment problem;

(ii) a new model of the interchange export/import scheduling problem for the global

(interconnection-wide) surplus maximization objective; and (iii) a demonstration of

the proposed model on the Western Interconnection for the planning year 2024. In

Section 4.2 an overview on the double auction market theory is provided, and in

Section 4.3 the scheduling problem considering demand price responsiveness is for-
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mulated. In Section 4.4, a reduced model of the WECC system is presented, and in

Section 4.5, simulation results are discussed.

4.2 Electricity Markets

The ultimate purpose of the proposed model of resource allocation is to determine

the hourly schedule for the most economically efficient mix of supply and demand

resources that does not violate the transfer constraints on system interties within

an interconnection. This hourly schedule is essential to establishing the intra-hourly

control reference for both supply and demand resource dispatch, which is needed

to evaluate the performance of short-term demand response control strategies. To

obtain this schedule, an hour-by-hour virtual double auction wholesale market is

assigned to each of the system’s control areas in which both supply and demand

resources participate. Although the magnitude of the responsive load is relatively

small, it is still worth considering its impact on the optimal schedule, particularly in

the presence of substantial intermittent renewable resources. One key advantage of

using the proposed model is that it facilitates modeling of inter-temporal effects such

as demand response by load shifting and recovery after load curtailment.

4.2.1 Market clearing process

We begin by considering how prices and quantities are computed in an area. In

general, both supply and demand curves are composed of a series of linear segments

(sell or buy bidding quantities/prices). For simplicity, we assume supply curves only

include a flat segment for non-dispatchable generators (e.g. wind and nuclear power)

and a variant segment for dispatchable generators. Similarly, we assume demand

curves consist of a flat segment for must-serve loads and a variant segment for de-

ferrable loads (e.g. electric vehicles). The supply and demand curves are given as:

ps =

{
s (qs − qw) + pmin qs > qw

pmin otherwise,
(4.1a)

and

pd =

{
d (qd − qu) + pmax qd > qu

pmax otherwise,
(4.1b)
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q [MW]

p [$/MWh]
qu qr

pmax

qw

pmin

q0

p0

Consumer surplus

Producer
surplus

Production
cost

Supply

Demand

Fig. 4.1: A double auction electricity market.

respectively, where ps is the supply price, s > 0 is the slope of the supply curve,

qs is the supply quantity, qw is must-take (non-dispatchable) generation, pmin is the

must-take price, pd is the demand price, d < 0 is the slope of the demand curve, qd

is the demand quantity, qu is must-serve load, and pmax is the must-serve price. The

slope of an inelastic demand curve is infinite (d→ −∞). Supply and demand curves

are illustrated in Figure 4.1.

The supply and demand prices, ps and pd respectively, of energy as well as the

supply and demand quantities, qs and qd respectively, of power must satisfy the linear

system:

Ax = b, (4.2a)

where the matrix A represents the area supply and demand, the vector x represents

the prices and quantities for supply and demand, and the vector b represents the

solution condition. In the case of the simple linear supply and demand system above,

we have:

A =


−d 1 0 0

0 0 −s 1

−1 0 1 0

0 −1 0 1

 , x =


qd

pd

qs

ps

 , and b =


pmax − d qu
pmin − s qw

∆q

∆p

 , (4.2b)

where ∆q is the export (or import if ∆q < 0) quantity and ∆p is the price subsidy

(or tax if ∆p < 0). Note that if both s and d are infinite, this formulation is not
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appropriate.

The solution price and quantity at which supply equals demand in a standalone

area (both ∆q and ∆p are zero) is found by solving the standalone area problem:

x0 = A−1b =
[
q0 p0 q0 p0

]T

. (4.2c)

The supply and demand quantities for a given price p can be found by solving the

quantity problem:

xp = Ap
−1bp =

[
qd p qs p

]T

, (4.3a)

where

Ap =


−d 1 0 0

0 0 −s 1

0 1 0 0

0 0 0 1

 , and bp =


pmax − d qu
pmin − s qw

p

p

 . (4.3b)

Similarly, the supply and demand prices for a given quantity q can be found by

solving the price problem:

xq = Aq
−1bq =

[
q pd q ps

]T

, (4.4a)

where

Aq =


−d 1 0 0

0 0 −s 1

1 0 0 0

0 0 1 0

 , and bq =


pmax − d qu
pmin − s qw

q

q

 . (4.4b)

Another important problem required to determine the multi-area schedule is find-

ing the price at which the difference between supply and demand quantities (export)

is ∆q. The clearing price, supply and demand quantities can be found by solving the

export problem (or import problem for ∆q < 0):

x = A−1b∆q =
[
qd p qs p

]T

, (4.5a)
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where

b∆q =


pmax − d qu
pmin − s qw

∆q

0

 . (4.5b)

In addition, if there is a difference between supply and demand prices such as a

renewable subsidy or a carbon tax, the clearing quantity, supply and demand prices

can be found by solving the subsidy problem (or tax problem for ∆p < 0):

x = A−1b∆p =
[
q pd q ps

]T

, (4.6a)

where

b∆p =


pmax − d qu
pmin − s qw

0

∆p

 . (4.6b)

4.2.2 Surplus calculation

The double auction market finds the quantity and price that maximize the total

economic surplus, which is geometrically the area between the supply and demand

curves, as shown in Figure 4.1. By definition, the total surplus is the summation

of the producer surplus (the red hatched area) and the consumer surplus (the blue

hatched area) [76]. The green hatched area is the electricity production cost.

The idea of global surplus maximization is presented through an example. Con-

sider two control areas with identical demand curves and slightly different supply

curves, as illustrated in Figure 4.2. The must-take supply resource is 2000 MW in

Area A, and 1000 MW in Area B. If these areas are not connected, their markets

will be cleared under the standalone condition as shown in Table 4.1.

When we consider the unconstrained transfer problem, the generation units in

Area A that did not get dispatched when the tieline was not operating are now

dispatched to serve additional load in Area B. Despite Area A, the generation in

Area B decreases up to the point where the price difference between two areas is zero

as illustrated in Figure 4.3. Notice that the clearing price increases in Area A and

decreases in Area B. As a result, demand quantity decreases in Area A and increases

in Area B such that the difference between supply and demand quantities is 500 MW
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in Area A and -500 MW in Area B. Electricity exchange, like any other economic

transaction, increases the global surplus (social welfare), as tabulated in Table 4.2.

The maximum global surplus which is obtained under this condition is referred to as

the coppersheet solution.

q [MW]

p [$/MWh] Area A
3000 MW 500 MW

500

2000 3286

214

q [MW]

p [$/MWh] Area B
3000 MW 500 MW

500

1000 3143

357

Fig. 4.2: Standalone markets.

q [MW]

p [$/MWh] Area A

500

2000 3214 3714

286
∆q

q [MW]

p [$/MWh] Area B

500

1000 32142714

286
∆q

Fig. 4.3: Interconnected markets with unconstrained transfer capacity.

Now we constrain the tieline’s transfer capacity to 400 MW, which is insuffi-

cient to equalize the prices, as illustrated in Figure 4.4. Table 4.3 shows that the

global surplus associated with the constrained transfer solution ($2666k) is between

the standalone ($2643k) and coppersheet surpluses ($2679k). A surplus-maximizing

scheduler identifies the tieline flow such that it either zeros out the price difference or

fully utilizes the transfer capacity. This scheduling problem becomes more complex

when the number of areas and tielines is increased.
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q [MW]

p [$/MWh] Area A

500

2000 3229 3629

271

q [MW]

p [$/MWh] Area B

500

1000 32002800

300

Fig. 4.4: Interconnected markets with constrained transfer capacity.

Table 4.1: Standalone schedule and surplus (zero MW exchange)

Control Price Demand Supply Consumer Producer Total
area [$/MWh] [MW] [MW] sur. [k$/h] sur. [k$/h] sur. [k$/h]

A 214 3286 3286 898 566 1464
B 375 3143 3143 439 740 1179

Total 284 6429 6429 1337 1306 2643

Table 4.2: Coppersheet schedule and surplus (500 MW exchange)

Control Price Demand Supply Consumer Producer Total
area [$/MWh] [MW] [MW] sur. [k$/h] sur. [k$/h] sur. [k$/h]

A 286 3214 3714 666 816 1482
B 286 3214 2714 666 531 1197

Total 286 6428 6428 1332 1347 2679

Table 4.3: Constrained transfer schedule and surplus (400 MW exchange)

Control Price Demand Supply Consumer Producer Total
area [$/MWh] [MW] [MW] sur. [k$/h] sur. [k$/h] sur. [k$/h]

A 271 3629 3229 713 763 1476
B 300 2800 3200 620 570 1190

Total 284 6429 6429 1333 1333 2666

4.3 Inter-area Transfer Scheduling

In this section, we formulate the inter-area transfer scheduling problem, and deter-

mine the export/import schedule that maximizes the global surplus excluding and

including transmission constraints, i.e., the coppersheet and constrained transfer so-

lutions, respectively.
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4.3.1 Surplus maximization

The objective function maximizes the global surplus by varying the local supply and

demand dispatch quantities over the interconnection. The optimization effectively

aims to maximize the sum of the areas circumscribed by the triangles bounded by

the supply and demand curves and the price after export/import (see Figure 4.3 and

Figure 4.4). Because the standalone surplus is invariant, it can be ignored in the

formulation for surplus maximization. The optimization problem for an N -control

area system is stated as:

max
qsn , qdn

N∑
n=1

1

2
(pcn − p0n) (qsn − qdn), (4.7a)

subject to:

qun ≤ qdn ≤ qun + qrn . (4.7b)

Note that supply and demand constraints are not needed because they are fully

captured by the supply and demand curves. The objective function can be simplified

to (see Appendix 1):

min
1

2

N∑
n=1

ωn e
2
n, (4.7c)

where en is the difference between the supply and the demand quantities (net export),

and ωn = sn dn
sn−dn is the combined demand and supply slope in area n.

Negative prices are allowed in the optimization, but the surplus calculation is

modified whenever the clearing price before power exchange (p0) or after (pc) is neg-

ative. As illustrated in Figure 4.5, the positive-price region (red area) is considered

as the true surplus increase, excluding the negative-price region (yellow area). If the

standalone price is negative in an area (left side market), as long as the export can-

not push the clearing price beyond 0 $/MWh, the producer surplus is zero, and the

supply quantity equals the maximum demand (qu + qr) plus the export (e). Notice

that the resource allocation is at the hour-ahead scheduling level not at the real-time

operation level, thus a situation in which the generation exceeds the required power

does not occur so that generators never pay a penalty for over-production simply be-

cause they can never be allowed to over-produce. The actual surplus appears beyond

0 $/MWh, where the supply quantity exceeds the local must-take generation. When

the clearing price is negative (right side market), the actual import will be the dif-
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p [$/MWh]
pmax

0

p0
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qs

•

qd

•

p0 < 0

e > 0

q [MW]

p [$/MWh]
pmax

0

p0

pc
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•

qs
•

pc < 0

e < 0

Fig. 4.5: Surplus calculation with a negative price.

ference between the maximum demand (qu + qr) and the local must-take generation

(qs), which happens at 0 $/MWh. Thus, the surplus increase beyond this price is

virtual and will never be realized during operation. If both prices are negative, the

surplus increase is zero—if an area has too much excess power generation such that

after exporting to its neighboring jurisdictions the clearing price is still negative, the

area’s income from exporting is zero.

4.3.2 Coppersheet solution

Under the maximum global surplus, we expect the price to be the same over the entire

interconnection, which gives the most economically efficient allocation of supply and

demand resources. To obtain this coppersheet price, we construct the coppersheet

supply curve by combining all supply curves, and the coppersheet demand curve by

combining all demand curves. From Equation 4.2c, the intersection point determines

the coppersheet quantity q̃ and price p̃:
q̃

p̃

q̃

p̃

 =


−d̃ 1 0 0

0 0 −s̃ 1

−1 0 1 0

0 −1 0 1



pcap − d̃

∑N
n=1 qun

s̃
∑N

n=1 qwn

0

0

 , (4.8a)

where coppersheet supply and demand slopes are:

s̃ =

(
N∑
n=1

s−1
n

)−1

, (4.8b)
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and

d̃ =

(
N∑
n=1

d−1
n

)−1

, (4.8c)

respectively. We assume the must-take and must-serve prices are the same every-

where, e.g., the minimum price of zero and the maximum price of the market cap.

With the coppersheet price we obtain the ideal net exports, ẽ =
[
ẽ1 · · · ẽn

]T

, from

Equation 4.5a.

We can find the unconstrained transfer flow solution using the graph theory frame-

work. The connectivity matrix for an N -area L-line interconnection is:

Y =


y(1,1) · · · y(1,L)

...
. . .

...

y(N,1) · · · y(N,L)

 , (4.9a)

where the value for a line l from area n to area m is y(n,l) = +1 when n < m and

y(n,l) = −1 when n > m, and y(n,l) = 0 when n = m or no line connects areas n and m.

Given the matrix Y and the ideal net export set ẽ we can solve for the unconstrained

flows on the L lines:

f̃ = Y+ ẽ =
[
f̃1 · · · f̃L

]T

, (4.9b)

where Y+ is the Penrose pseudo-inverse of Y. Among the possible flow solutions

that result in the ideal net exports, this solution has the smallest 2-norm [103], so

arguably the transmission loss is minimum if tielines have similar loss factors.

4.3.3 Constrained-transfer solution

As described above, the maximum global surplus is achieved under a condition when

the exports are those obtained from the coppersheet solution. This solution may

assign a flow to a tieline over its transfer limit. In this case, we seek a flow set

that does not violate transmission constraints but still results in the ideal net export

values. If such a flow set does not exist, we will seek the flow set that results in a

global surplus as close to the maximum surplus as possible. The objective function

can be rewritten as:

min
e

eT Ω e = min
f

(Y f)T Ω (Y f), (4.10a)
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subject to:

fmin ≤ f ≤ fmax, (4.10b)

where Ω is the N × N diagonal matrix of
[
ω1 · · · ωN

]
. In any feasible solution,

as long as there is a price gradient on a tieline its associated transfer flow equals its

limit:

fn→m =

{
fn→mmin for pm < pn,

fn→mmax for pm > pn.
(4.10c)

The price gradient vector δp is obtained from:

δp = −YT p, (4.10d)

where p is the price vector, calculated from (see Appendix 1):

p = p0 −Ω e = p0 −Ω Y f . (4.10e)

We use a sequential quadratic programming (SQP) method [104] implemented

by Matlab’s optimization toolbox function fmincon [105] to solve this optimization

problem and determine the optimum flow set. The objective function is convex, and

also the objective and constraints are differentiable functions, thus the solution to

the optimization is the global optimum [106]. Perhaps a good initial point to feed

into the solver is the coppersheet solution with overloaded tielines adjusted to their

capacity limits.

4.4 Western Interconnection

In this section, we present an interconnected system model that loosely represents

the Western Interconnection. The WECC system extends from Canada to Mexico

and includes the provinces of Alberta and British Columbia in Canada, the northern

portion of Baja California in Mexico, and all or portions of 14 western US states.

As of March 2016, there are 38 control areas (balancing authorities) in the WECC

system [107]. California and Alberta are the only regions with full energy markets in

the interconnection.
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Fig. 4.6: The bubble pipeline view of the 20-consolidated area WECC model.

4.4.1 Bulk system model

A 20-area reduced model of the WECC system, illustrated in Figure 4.6, is built by

combining two or more balancing authorities into one consolidated area. The system

interties (groups of transmission lines) are assumed lossless. The intertie transfer

limits are given in Appendix 2, estimated from the WECC 2024 common case [34]. In

this model, the internal transmission constraints within the control areas are ignored,

although area demand is scaled up by a constant factor that approximately accounts

for these losses. The peak load and annual energy consumption forecasts as well

as the internal loss factors are provided in Table 4.4, extracted from the WECC

2024 common case [34]. Intermittent (wind, solar and run-of-river hydro), base and
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Table 4.4: Demand forecast and internal loss data in 2024

Area Peak Energy Loss
number Consolidated area [MW] [GWh/year] factor

1 AESO 16095 115061 1.019
2 BCH 12542 69326 1.020
3 PNW = AVA + BPA + CHPD 33384 184103 1.025

+ DOPD + GCPD + PACW

+ PGE + PSEI + SCL + TPWR

4 NWMT 1898 12163 1.023
5 PAWY 1681 11028 1.013
6 NCA = BANC + CIPB 30626 144848 1.043

+ CIPV + TIDC

7 SPPC 2447 15784 1.026
8 ID = IPFE + IPMV + IPTV 4157 19290 1.036
9 UT = PAID + PAUT 8443 39362 1.028
10 CO = WACM + WAUW 5867 34863 1.023
11 LDWP 7789 34129 1.027
12 NEVP 7034 30083 1.045
13 PSCO 8130 41027 1.028
14 SCA = CISC + VEA 26847 119573 1.040
15 AZ = AZPS + SRP 23596 109534 1.026

+ TEPC + WALC

16 CISD 5573 26702 1.037
17 IID 1342 4836 1.043
18 PNM 3136 16449 1.026
19 CEF 3255 15452 1.033
20 EPE 2391 11106 1.032

dispatchable generation capacities are given in Table 4.5 also from the WECC 2024

common case.

4.4.2 Market model

We assign a hypothetical market to every consolidated area. The supply curve consists

of a flat segment for must-take generators (wind, solar, run-of-river hydro, biomass,

geothermal and nuclear units), and a variant segment for dispatchable generators

(coal-fired, hydro and gas-fired units). The hourly power generation of intermittent

generation resources (wind, solar and run-of-river) are extracted from the WECC 2024

common case. Once constructed, there is effectively no marginal cost of producing

renewable energy, thus it will produce at a price as low 0 $/MWh. We also assign a

price of 0 $/MWh to 15% of hydro capacity, 50% of coal capacity and all of nuclear
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Table 4.5: Supply data (aggregated installed capacity) in 2024

Non-dispatchable (must-take) generation Dispatchable
Area Intermittent [MW] Base (invariable) [MW] generation [MW]

AESO 2275.2 3710 17733
BCH 815.3 3531 17000
PNW 14432.0 5845 36675
NWMT 664.2 1227 1993
PAWY 1315.3 1648 2105
NCA 5092.7 5351 38684
SPPC 800.0 1118 3287
ID 660.3 374 2845
UT 256.5 2183 8136
CO 656.4 1807 4310
LDWP 687.0 89 8727
NEVP 75.7 426 13085
PSCO 2441.1 1616 11645
SCA 6028.1 977 28645
AZ 3220.6 8601 39353
CISD 432.8 34 8558
IID 34.4 1170 1514
PNM 840.3 910 4504
CFE 384.2 697 6600
EPE 1.3 0 3512

capacity so that they will be treated as a must-take resource because once started

these generators are costly to shut down and thus exhibit a negative marginal cost of

operation below these levels.

For simplicity we assume that the variant segment is linear, and the bidding prices

of the cheapest and most expensive dispatchable units are the same as the must-take

(zero) and must-serve (here 500 $/MWh) prices, respectively. Note that must-take

units operate continuously (except during curtailment hours) so their start-up and

shut-down costs are not considered. In addition, for simplicity, the start-up and

shut-down costs of dispatchable units are not currently considered in the model.

Similarly, the demand curve consists of an unresponsive segment for must-serve

loads and a responsive segment for deferrable loads such as water heaters, electric

vehicles, heating, ventilation and air conditioning loads. The responsive load can

respond to the market price such that it is zero when price is at the market cap, and

is all-in when price is zero. A simple demand model is developed to obtain the hourly

responsive load function. Given that the wide variety of demand response functions

available in literature can all be linearized in the neighborhood of the operating point,
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a linear model of demand is chosen for the multi-area resource allocation focus of this

study.

The hourly demand forecast qh in every balancing authority is available in the

WECC 2024 common case. A portion of qh is flexible and potentially responsive

to the market price, and the remainder is unresponsive. For simplicity, we assume

the relative magnitude of the unresponsive portion, α = qu
qh

, remains constant over

the entire year. To approximate the responsive demand, we make the additional

assumption that responsive load is linearly sensitive to the price fluctuation in a 4-

hour future time window. If the average of inelastic-demand clearing prices over a

4-hour future time window (from a 4-hour ahead forecast) is less than the inelastic-

demand clearing price at a given hour, then the cleared elastic demand will be lower

than the inelastic demand. The motivation behind this behavior is driven by the

opportunity to postpone a proportion of responsive load in order to take advantage

of lower prices within the next 4 hours.

Consider p̄ is the price at which the cleared quantity of the elastic and inelastic

demands are equal. We assume p̄ is equal to the average of estimated inelastic-demand

clearing prices in a 4-hour future time window. If the hourly price is equal to the

average price, there is no economic incentive to adjust flexible loads. Using a linear

demand curve, the maximum responsive load is:

qr =
(1− α) pcap
pcap − p̄

qh. (4.11)

Figure 4.7 shows an hour at which must-take generation, inelastic demand and

the associated price are 1000 MW, 3250 MW and 321 $/MWh, respectively. Con-

sider the case for which the forecast shows the must-take generation will increase to

1500 MW after one hour, 2000 MW after two hours and 2500 MW after three hours,

therefore the associated prices will be 250 $/MWh, 179 $/MWh and 107 $/MWh,

respectively if the demand remains constant. The average price of these four hours is

214 $/MWh. Assuming 80% of the demand is inelastic, then according to the model

if the hour inelastic-demand price were 214 $/MWh, the elastic demand quantity

would be the same as the inelastic demand quantity (3250 MW). Because the hourly

price (321 $/MWh) is greater than the average price, the responsive load adjusts

such than the clearing price and cleared quantity are 295 (< 321) $/MWh and 3066

(< 3250) MW, respectively. This demand function gives an approximately constant

energy consumption model over a 4-hour window.
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Fig. 4.7: Responsive load shape example.

Although it may seem that a relatively large fraction of the demand is responsive,

the active responsive demand is typically a smaller fraction. The dispatched quantity

of the responsive demand is implicitly restricted between the quantities associated

with the cheapest and the most expensive prices estimated in a 4 hour future time

window, not between zero and qr. This restriction avoids the load control saturation

and oscillation observed in some studies of short-term dispatchable demand response

[53, 54, 108].

4.5 Results and discussion

We evaluate the proposed scheduling method on the reduced WECC baseline model

for each 8784 hours of the year 2024. First, a simulation is performed assuming the

demand is completely inelastic. Second, another simulation is carried out for a case

in which 5% of demand is price sensitive. To set up the responsive demand functions,

the 4-hour rolling average prices (in each area) are gathered from the first simulation

and used in the second one. All presented figures are from the second simulation

with the transfer constraint limits set to 75% of the rated transfer capacity. Finally,

several simulations are performed to explore the impact of various levels of demand

response, and of relaxation of the transfer constraint limit on global cost.
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4.5.1 Inelastic demand

The simulation results, excluding demand response, show that the unconstrained and

the constrained transfer solutions decrease the global electricity production cost (and

correspondingly increase the global surplus) by $12.30B and $ 10.67B per year, re-

spectively, when compared with the standalone condition case. This cost reduction is

equal to 25% and 22% of the standalone production cost respectively. The $12.30B

reduction is the difference between the two extreme coppersheet and standalone con-

ditions. In WECC and many other jurisdictions, balancing authorities exchange elec-

tricity according to long-term and short-term bilateral contracts. Therefore, without

the proposed unified operation the production cost is lower than the standalone con-

dition case. In addition, in the model, we assume hydro (up to 15% of total nominal

capacity) and baseload thermal (up to 50% of total nominal capacity) power plants

are treated as must-take resources (base generation) to satisfy operational constraints.

Thus, the reported percentage of cost saving, which is the cost reduction divided to

the total cost is over-estimated because its denominator excludes a portion of the

operation cost.

Table 4.6 compares the producer cost reduction and surplus reduction in each

consolidated area under unconstrained and constrained solutions. Negative cost re-

duction indicates an increase in production cost in that area. We note that although

the magnitude of the decreased producer surplus is greater than the magnitude of

the decreased production cost in many consolidated areas, the magnitude of the total

surplus reduction is smaller than the magnitude of the total cost reduction.

4.5.2 Elastic demand

Coppersheet condition

Figure 4.8 illustrates the aggregated hourly demand with 5% responsive fraction,

intermittent generation and base generation (both must-take) in the summer peak

month of July and the winter peak month of December 2024. In addition, the net

demand, which is the difference between the aggregated demand and the must-take

generation is illustrated. The color of the net demand represents the associated cop-

persheet price. Notice that dispatchable generation is also equal to the net demand.

As expected, smaller net demand is associated with lower prices.

Figure 4.9 shows the maximum global cost reduction (relative to standalone global
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Table 4.6: Producer cost and surplus reduction for 100% inelastic demand for 2024 (in
M$/year)

Producer cost reduction Producer surplus reduction

Unconstrained Constrained Unconstrained Constrained

AESO 6642 1797 11421 2820
BCH 55 149 79 284
PNW 35 479 -552 588
NWMT -260 -236 -1622 -1516
PAWY -297 -246 -2513 -2132
NCA -393 121 -817 145
SPPC -297 -254 -1058 -933
ID 1873 1907 2630 2696
UT 453 557 763 997
CO 1244 1296 2978 3147
LDWP 2304 2422 2498 2632
NEVP -183 -4 -214 -8
PSCO -454 -306 -1044 -753
SCA 5697 6083 7215 7771
AZ -4624 -4082 -12111 -10968
CISD 992 1108 1061 1187
IID -213 -192 -1467 -1375
PNM -324 -262 -873 -735
CFE -521 -287 -873 -506
EPE 573 622 573 622

Total 12301 10671 6075 3965

cost) versus the standard deviation of standalone prices (for each of 8784 hours in

the year 2024). Negative prices are considered zero when computing the standard

deviation. The color represents the associated coppersheet price. A larger standard

deviation value indicates a greater resource diversity, which usually creates a greater

opportunity to reduce the production cost by exchanging power within the intercon-

nection.

Constrained transfer condition

Figure 4.10 illustrates fluctuations of the hourly global cost reduction under both

the unconstrained and the constrained transfer conditions in July and December

2024. Clearly, the cost reduction is strongly correlated with demand. The color

represents the economic utilization factor, which is a proposed performance index for

the transmission system defines as the ratio of the cost reduction associated with the
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Fig. 4.8: Coppersheet demand, must-take and associated prices.

constrained transfer solution to the cost reduction associated with the unconstrained

transfer solution on an hourly basis. We note that there is a greater opportunity to

reduce the production cost in December than in July, despite the lower aggregate

demand in December. The reason is the magnitude of net demand is more diverse

over the system in winter than in summer. In other words, the relatively lower

demand in winter enables some areas to feed cheap electricity to the rest of the system,
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Fig. 4.9: Global cost reduction vs. standard deviation of standalone prices for each hour.

so other areas do not schedule their more expensive units. However, because of

transfer constraints the coppersheet export/import schedule is not usually achievable

in December, thus the economic utilization factor in December is considerably lower

than in July.

Figure 4.11 shows a set of the “economic utilization factor” and the “standard

deviation of clearing price over areas” pairs. The utopia point is at the top left

corner, where the clearing price is uniform over the entire interconnection. As the

standard deviation approaches zero, the economic utilization factor increases. The

color represents the mean value of clearing prices.

Figure 4.12 shows the optimal transfer set at the system peak hour. The node

color represents the price associated with the standalone condition case, which varies

between 0 $/MWh and 500 $/MWh with a standard deviation of 124 $/MWh. Be-

cause of the electricity exchange, the clearing price decreases in importing areas and

increases in exporting areas. In the peak hour, the clearing price in AESO decreases

to 251 $/MWh, in BCH and CFE increases to 251 $/MWh and 236 $/MWh respec-

tively, and in the rest of the system becomes 241 $/MWh. Consequently, suppliers will

gather less surplus in importing and more surplus in exporting areas in comparison to

the standalone condition. The magnitude of the decreased surplus in importing areas

is greater than the magnitude of increased surplus in exporting areas thus sharing
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Fig. 4.10: Global hourly cost reduction.

generators decreases the overall producer surplus.

Table 4.7 compares the production cost per unit associated with the standalone

and the constrained transfer solutions in every consolidated area for the 100% and

the 95% inelastic demand conditions. In general, the production cost per unit de-

creases in importer-areas, and increases in exporter-areas. Table 4.7 indicates that

demand response does not reduce the production cost per unit notably. Without
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Fig. 4.11: Economic utilization factor vs. price standard deviation.

demand response, the average production cost under the standalone and the con-

strained transfer solutions are 41.96 $/MWh and 33.40 $/MWh, respectively. With

5% demand response, the average production cost under the standalone and the con-

strained transfer solutions are 41.95 $/MWh and 33.39 $/MWh, respectively. Notice

that the electricity production cost is very low in consolidated areas with a significant

amount of must-take generators in some hours.

4.5.3 British Columbia

We now illustrate the impact of optimal scheduling on British Columbia’s export/im-

port schedule. British Columbia’s hydro-dominated grid connects Alberta’s fossil-

dominated grid to the rest of the WECC system. Hydroelectric storage assets in

British Columbia can also provide the reserves needed to help WECC integrate a

significant amount of intermittent renewables in the future.

Figure 4.13 illustrates the load duration curve of the Pacific Northwest–British

Columbia tieline. The color represents the price difference. The positive direction

is from Pacific Northwest to British Columbia, with positive price difference as the

British Columbia price minus the Pacific Northwest price. The price difference is zero

when the transfer flow is not at its limits, because the neighboring area prices will

naturally equilibrate due to the power transfer. As shown, British Columbia exports a
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Fig. 4.12: Optimal transfer flow solution at the system peak hour.

significant amount of the imported electricity (820-900 MW) to Alberta. The positive

direction of the Alberta–British Columbia tieline is from Alberta to British Columbia,

with positive price difference as the British Columbia price minus the Alberta price.

The optimal solution suggests that the Alberta–British Columbia tieline is usually

operated under the full transfer capacity (900 MW), and as a result there is a price

gradient on this tieline. Therefore British Columbia has an arbitrage opportunity

buying relatively cheaper electricity from the US to sell to Alberta.

Figure 4.14 shows the surplus increase as a function of the net export in British

Columbia. The shape of this curve should be a parabola according to Equation 4.7c,

which is verified in the figure. The color represents the clearing price.

4.5.4 Sensitivity analysis

The model presented belongs to a class of agent-based models for which validation

can be challenging [109]. Validation methods include the usual statistical, behavior,
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Table 4.7: Production cost per unit in $/MWh

Standalone Constrained

100% inelastic 95% inelastic 100% inelastic 95% inelastic

AESO 78.48 78.47 67.51 67.50
BCH 32.72 32.71 31.31 31.30
PNW 26.33 26.31 24.64 24.63
NWMT 1.45 1.44 14.78 14.77
PAWY 0.00 0.00 11.11 11.10
NCA 32.14 32.13 31.68 31.67
SPPC 9.76 9.75 21.29 21.28
ID 109.06 109.07 32.83 32.79
UT 35.66 35.62 26.92 26.91
CO 50.93 50.92 19.19 19.18
LDWP 97.06 97.04 51.01 51.01
NEVP 49.45 49.44 49.91 49.90
PSCO 26.24 26.23 31.62 31.61
SCA 76.38 76.37 41.27 41.26
AZ 6.11 6.11 28.10 28.09
CISD 79.17 79.17 52.90 52.90
IID 0.01 0.01 13.82 13.81
PNM 16.58 16.57 27.71 27.71
CFE 21.43 21.43 33.10 33.11
EPE 90.20 90.19 57.33 57.33

Average 41.96 41.95 33.40 33.39

and structural validation, as well as so-called face validation in which experts observe

the response of the system to various scenarios to consider whether the model exhibits

the expected local and global properties and sensitivities. In spite of these challenges,

agent-based models are particularly well-suited for the study of transient dynamics in

highly complex hybrid econo-physical systems such as smart-grids [90]. If the model

behaves in the same way as the physics of the problem dictates, the model can be a

useful tool that provides insight to the system behavior [110].

For the proposed model we expect that (i) upgrading the transmission system and

(ii) integrating demand response result in a greater cost reduction. Table 4.8 confirms

this expectation: as the intertie constraints are relaxed the global cost decreases.

The same trend is also observed when the fraction of responsive demand increases

significantly. However, the economic benefit of introducting inter-hourly demand

response is not substantial when the system is operated with the optimal inter-area

transfer set. The rational behind this is that the optimal transfer set has already

adjusted to price fluctuations (as much as the transmission system allows); hence the
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Fig. 4.13: Load duration curve of the Pacific Northwest–British Columbia and the Alberta–
British Columbia tielines.

Fig. 4.14: Surplus increase in British Columbia.

remaining opportunity for demand response to react is very limited. If we used a

more flexible demand curve such as that presented in previous studies by the authors

[89, 111], the impact of demand response would be potentially greater, but probably

still not comparable with the impact of the optimal interchange transfer.

Relaxation of the transfer limit from 75% to 90% (even to 105%) does not provide a

significant additional cost reduction, in comparison to the achievable benefit from op-

erating the system under optimal inter-area transfer set (relative to standalone case).

Some tielines probably need major upgrades, but most have sufficient transfer capac-
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Table 4.8: Global cost reduction

Demand 75% transfer 90% transfer 105% transfer Copper-
response limit [B$] limit [B$] limit [B$] sheet [B$]

0% 10.67 10.85 11.01 12.30
1% 10.68 10.86 11.02 12.31
5% 10.70 10.88 11.04 12.33
10% 10.72 10.91 11.06 12.35
20% 10.77 10.95 11.10 12.39
50% 10.85 11.04 11.19 12.48

ity at least for the WECC 2024 scenario studied. This finding highlights the great

cost reduction opportunity that exists in operating the interconnection in an unified

manner with the existing transmission capacity. This opportunity is more appreciable

with greater penetration levels of intermittent renewables in the future. Operating

the system in an economically efficient manner enables the interconnection to meet

its greenhouse gas emissions reduction targets with a relatively moderate incremental

cost. Although technical and non-technical barriers make a unified scheduling and

dispatch control challenging, distributed dispatch control strategies exist that can

provide sub-optimal inter-area transfer sets.

Optimizing the interchange transfer effectively depresses the clearing price by shar-

ing low-cost generation units over the interconnection. Consequently, the expensive

peak units are dispatched less frequently and the annual producer surplus decreases.

Table 4.9 indicates the global producer surplus reduction for different limits of trans-

fer constraint and levels of demand response. For example, under the 75% limit of

transfer constraint and 5% demand response, this reduction is 4% of the global pro-

ducer surplus. In general we find that optimal scheduling decreases producer surplus

which may have an adverse economic impact both on operators that rely on con-

gestion revenues and zero marginal-cost generation units that must recover capital

costs.

4.6 Conclusions

In this paper we have presented a method to model the limits and optimal generation

and demand response allocation for the hourly schedule problem. The purpose is

not to solve the interconnection resource allocation problem itself. Rather we seek

to provide a method that facilitates impact studies of renewable generation and de-
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Table 4.9: Global producer surplus reduction

Demand 75% transfer 90% transfer 105% transfer Copper-
response limit [B$] limit [B$] limit [B$] sheet [B$]

0% 3.96 4.07 4.26 6.07
1% 3.97 4.07 4.27 6.08
5% 4.00 4.10 4.30 6.11
10% 4.03 4.13 4.33 6.14
20% 4.08 4.18 4.38 6.19
50% 4.19 4.29 4.49 6.30

mand response interaction at the interconnection scale without fully implementing

the various market designs extant.

Accordingly a new resource allocation modeling method that incorporates both en-

ergy supply and demand response resource is presented. This method is used to model

the interconnection-scale scheduling problem in the Western Electricity Coordinat-

ing Council (WECC) system planning year 2024. We quantify the potential benefits

of demand response integration in WECC using the proposed surplus-maximizing

scheduling model considering tieline transfer limits on an hourly basis. The method

determines the optimal inter-area transfer set that effectively makes the clearing price

uniform over the interconnection’s markets (as much as possible). The overall con-

sumer surplus increases and the overall producer surplus decreases, while the increased

magnitude is always greater than the decreased magnitude. At the same time, the

magnitude of production cost decrease is greater than the magnitude of produce sur-

plus decrease. Results show that inter-regional collaboration assist control areas in

reducing production cost by $10.67B, equal to 22% relative to the standalone condi-

tion with inelastic demand. In addition, integration of 5% demand response provides

an additional $27M cost saving. However, we also conclude that economic benefit of

inter-hourly demand response is not substantial when the system is operated with the

optimal inter-area transfer set, which suggests that the majority of the benefits for

demand response arise from intra-hourly demand response resources which are not

considered in conventional hourly resource scheduling mechanisms.

The hourly supply and demand resource commitments found in this paper can be

used to establish a 5-minute redispatch market in each balancing authority to provide

reliable and efficient short-term matching of generation and load resources. Suitable

control systems are needed to enable demand response participation in redispatch

markets and ultimately in the ancillary services markets for frequency [25] and voltage
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regulation [112].

Future work will apply the proposed scheduling method for energy planning pur-

poses for renewable energy policy studies in the Western Interconnection beyond the

year 2024. The objective will be to determine the most economically beneficial type

and capacity of renewable energies in each region such that the interconnection can

achieve a target level of greenhouse gas emissions reduction.

Appendix 1: Objective function

Under the standalone condition, supply and demand quantities are equal, so the

clearing price in control area n is:

p0n =
sn pmax − dn pmin

sn − dn
+

sn dn
sn − dn

(qwn − qun).

For a non-zero net export en = qsn − qdn , the demand price is equal to the supply

price:

dn (qdn − qun) + pmax︸ ︷︷ ︸
pdn

= sn (qsn − qwn) + pmin︸ ︷︷ ︸
psn

= sn (qdn + en︸ ︷︷ ︸
qsn

−qwn) + pmin,

therefore the demand quantity is:

qdn =
pmax − pmin
sn − dn

+
sn qw − dn qu
sn − dn

− sn
sn − dn

en,

and the clearing price is:

pcn =
sn pmax − dn pmin

sn − dn
+

sn dn
sn − dn

(qwn − qun)︸ ︷︷ ︸
p0n

− sn dn
sn − dn

en = p0n − ωn en,

so the price vector is:

p = p0 −Ω e.

Accordingly, Equation 4.7a can be rewritten as:

max
−1

2

N∑
n=1

ωn e
2
n ≡ min

1

2

N∑
n=1

ωn e
2
n.
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Appendix 2: WECC intertie transfer capacity

Path From To Minimum Maximum
number area area [MW] [MW]

P01 AESO BCH -1200 1000
P03 PNW BCH -3150 3000
P08 NWMT PNW -2150 3000
P09 NWMT CO -2573 2573
P14 ID PNW -2250 3400
P16 ID SPPC -360 500
P18 NWMT ID -256 337
P20 ID UT -2250 2250
P22 PNM AZ -2325 2325
P24 NCA SPPC -150 160
P26 NCA SCA -3000 4000
P27 UT LDWP -1400 2400
P30 UT PSCO -650 650
P31 PSCO PNM -690 690
P32 SPPC UT -235 440
P35 UT NEVP -580 600
P36 CO PSCO -1680 1680
P42 IID SCA -1500 1500
P43 LDWP SCA -4000 4000
P44 CISD SCA -2500 2500
P45 CISD CFE -800 400
P46N NEVP LDWP -6000 6000
P46S NEVP SCA -5000 5000
P47 EPE AZ -1048 1048
P48 EPE PNM -1970 1970
P49 AZ NEVP -10200 10200
P59 AZ SCA -218 218
P65 PNW LDWP -3100 3220
P66 PNW NCA -3675 4800
P76 PNW SPPC -300 300
P78 UT PNM -600 600
P79 AZ UT -300 265
P80 NWMT PAWY -600 600
PP1 PAWY UT -1700 1700
PP2 IID CISD -150 150
PP3 AZ CISD -1160 1650
PP4 AZ IID -160 260
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Chapter 5

Electric Vehicle Participation in

Transactive Power Systems Using

Real-time Retail Prices

This paper was presented at IEEE HICSS-49 international conference on January 7th 2016:

Sahand Behboodi, David P Chassin, Curran Crawford and Ned Djilali. Electric Vehi-

cle Participation in Transactive Power Systems Using Real-time Retail Prices 2016 49th

Hawaii International Conference on System Sciences (HICSS). Available online at: http:

//ieeexplore.ieee.org/abstract/document/7427483/?section=abstract

Sahand Behboodi has done the major part of developing the methodology, performing

the simulation, and writing the paper. David Chassin has helped Sahand to establish an

understanding of the transactive control paradigm and the bidding strategy. David has also

helped Sahand in coding the control strategies as well as writing the manuscript.

This chapter introduces a load management strategy for plug-in electric vehicles based

on the transactive control paradigm. There exists a retail electricity market that provides

an efficient use of the charging load flexibility. Depends on the available time to departure

and the required time to reach full charge as well as grid real-time conditions, individual

electric vehicles submit a buy bid (and also a sell bid under V2G scenario) to the double

auction market. This strategy reduces energy costs practically by shifting the demand from

super peak evening time to off peak after midnight or early morning in the presence of solar

PV generation.

http://ieeexplore.ieee.org/abstract/document/7427483/?section=abstract
http://ieeexplore.ieee.org/abstract/document/7427483/?section=abstract
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Abstract

Smart grids can help Plug-in Electric Vehicles (PEV) manage their load in a grid-friendly

way. In this paper, we consider the case of PEVs participating in a retail double auction

electricity regulation market, as in the so-called “transactive control” paradigm.

Price-responsive charging of PEVs is modeled in conjunction with real-time retail price

signals from the utility. PEVs can defer charging or even discharge when the retail prices

are high. Buy and sell reservation prices are based on expectations of future prices and

opportunity costs of sold energy, respectively. Feeder capacity constraints also affect the

retail price and are allowed to rise to the point at which supply equals demand. For the

most advanced charging strategies, as the price rises, demand from PEVs drops, and if the

constraint causes further price increases, the PEVs can begin to supply energy.

The results show that when rooftop solar energy is available transactive bid-response

vehicle charging strategies significantly enhance short-term electricity demand elasticity and

can reduce consumer energy costs by more than 75% in comparison to the unresponsive

charge case.

Keywords

Demand response, plug-in electric vehicle, real-time price, transactive control, smart grid

Nomenclature

P Price, in ¢/kWh.

Q Demand, in kWh.

SOC State of charge.

t Time.

Greek symbols

β Battery capacity, in kWh.

γ Degradation impact

η Demand elasticity

κ Battery capital cost, in $/kWh.

ρ Charging rate, in kW.

τ Real-time

Subscripts

A Available

arr Arrival



84

B Buy

C Cycle

D Standard deviation

dep Departure

M Mean

O Opportunity

R Required

S Sell

Abbreviations

LMP Locational marginal price

PEV Plug-in electric vehicle

PV Photovoltaic

Stdev Standard Deviation

V0G Uncontrolled strategy

V1G Grid to vehicle

V2G Vehicle to grid

5.1 Introduction

The adoption of plug-in electric vehicle (PEV) can displace petroleum use and tailpipe

emissions, but will also impose an additional load on the power grid. PEV integration

can have a disruptive impact on the power grid if not integrated smartly. The difference

between the elapsed time required for charging and the time that the vehicle is plugged in

allows timing flexibility that can be harnessed to provide grid services while at the same

time meeting the needs of the consumer [13] [113]. The idea of smart vehicle charging is

addressed in a large body of recent work [20] [114]. Smart charging also helps the grid

balance the fluctuation of renewable resources [19, 23, 24, 30, 115, 22, 116], and as a result

can contribute to greater GHG emissions mitigation. One important potential benefit of

PEV integration is vehicle-to-grid technology [117] [118], which enables electric vehicles to

offer regulation up/down service to the grid by making their on-board storage capacity

available.

Perhaps the simplest approach to determine the PEV optimal charging is to consider a

retail market environment and then distribute the aggregated PEV load on top of the total

demand in a grid friendly way. This approach manages the charge schedule to minimize

the charging cost. An example of centralized charging control algorithms is Nash certainty

equivalence principle [119]. On the consumer side, financial incentives are necessary to

encourage PEV owners to participate in the demand response programs [120]. In this paper,
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we examine a transactive control system where PEVs participate in a 5-minute real-time

market that also has participating distributed renewable energy sources. The PEVs submit

buy (charge) and sell (discharge) reservation (bid) prices to the market before clearing, and

receive a price signal from the market after clearing. PEVs respond to the real-time price

according to their original bid by charging, turning off, or discharging, as appropriate.

Without a controlling strategy the integration of a large number of PEV chargers poses

challenges to reliable service because it may cause transformer overloads and feeder conges-

tion [121], while of the generation and transmission level it may increase system operation

risk [122] [123]. Capacity constraints can be managed under a real-time price computed us-

ing a retail double-auction, as shown in the US Department of Energy’s 2006-2007 Olympic

Peninsula [53], and 2013 American Electrical Power (AEP) gridSMART [54] demonstration

projects. In the Olympic Peninsula project, distributed generation (DG) resources were

dispatched using the same price signals as demand response resources, and it was shown

that these signals gave rise to benefits that accrued to both the utilities and the consumers.

In a similar manner, rooftop photovoltaic (PV) generation can be included in the retail

market and displace feeder load.

A great deal is known about the demand response behavior of thermostatic loads such as

waterheaters, heat-pumps and air-conditioners [26]. Demand elasticity has been extensively

studied for these loads under various tariffs and pricing mechanisms, and relatively recent

survey of the many load studies conducted over the years indicates that demand elasticity

for electricity used by thermostatic loads can range from −0.07 to as high as −0.21, with a

mean of about −0.14 [73]. In spite of the importance of this information to electricity tariff

design in particular, much less is known about the response of electric vehicle charging to

price signals, in part due to the relative novelty of the technology and in part due to its

relatively slow adoption. Previous work on electricity pricing for electric vehicle charging

suggests elasticity values of −0.10 [124] based on conventional electricity demand. This

contrasts with the elasticity for the annual cost of a conventional vehicle of around −0.87

[125], which may be more appropriate given the increased disconnect between driving habits

and electric bills. However, based on the experience with real-time price automation for

thermostats, one expects that vehicle charger automation and better integration of charger

control with real-time price utility dispatch will significantly impact short-term electric

vehicle demand elasticity.

The paper provides a detailed description in Section 5.2 of alternative frameworks of

the PEV charger bidding strategies for real-time price auctions and associated modeling

assumptions. Results are presented in Section 5.3 with an examination of prices, load

profiles, vehicle state-of-charge and elasticity, followed by a discussion of these results and

the sensitivity of consumer cost to wholesale and retail price volatility in Section 5.4.
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5.2 Model Description

Among other things, transactive control systems dispatch distributed generation and load

using subhourly (5-minutes in this paper) real-time prices at which available supply capacity

is expected to equal local demand. This strategy is extended to include loads such as

price-responsive vehicle-chargers that may be operated as either “plug-and-go” loads (so-

called V0G), as unidirectional price-responsive loads (so-called V1G), or as bidirectional

price-responsive loads (so-called V2G). The same results have been achieved using other

methods, such as distribution locational marginal pricing [124]. Specifically, charger demand

is controlled using a bidding strategy that increases each charger’s reservation prices as the

expected vehicle departure time approaches and the probability of being able to achieve a

full charge diminishes given its maximum charging capability. Such a bid/response system

also allows sufficiently-charged units to discharge if the real-time price exceeds the expected

opportunity cost of recharging later.

The efficient capacity allocation strategy arises naturally from the transactive control

strategy, which integrates small-scale electric equipment with utility electric power distribu-

tion system operations as a first step toward integrating distributed generation and demand

response into wholesale operations. These market-based paradigms are designed to find a

Pareto-optimal allocation of supply capacity and demand response to resolve how much

distributed generators should produce and customers consume in a future time interval.

The transactive control systems we consider use distribution capacity markets to determine

the price which minimizes the imbalance between supply and demand for electricity by par-

ticipating equipment during the next operating interval. The system computes a 5-minute

retail real-time price (RTP) that reflects the underlying wholesale locational marginal price

(LMP), all other distribution costs and any scarcity rent arising from distribution capacity

constraints, as well as any constraints on demand arising from consumer comfort preferences

given the current state of loads.

Distributed generation, load shifting, demand curtailment and recovery are all induced

by variations in real-time prices. In doing so the transactive control system can reduce the

exposure of the consumers and the utility to price volatility in the wholesale market and

the costs of congestion on the distribution system. The prices are discovered using a feeder

capacity double auction that directly manages distribution, transmission or bulk generation

level constraints, if any. Distributed generation is economically dispatched and consumer

preferences are used to dispatch advanced load controllers that act as rational agents on

behalf of the consumers. Devices such as electric vehicle chargers bid for energy when it is

needed and respond to price changes when they occur. Using this system consumers can

expect to realize greater savings on their bills when they show a preference for more savings,
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presumably at the expense of some otherwise deferrable or non-critical comfort.

5.2.1 Bidding Strategies

The retail capacity auction is the key component to determining the real-time price. For

PEV units operating in charge mode, the thermostat bidding strategy employed by the

Olympic and Columbus demonstration was used with some minor simplifications. The PEV

discharge bidding strategy is based on the Olympic generator bidding strategy. However

it is improved upon by including an opportunity-cost computed for recharging the battery

that is derived from the generic transactive thermostat bidding strategy and accounts for

the slower rate at which the desired state-of-charge is reached.

Using these strategies PEVs can participate in retail real-time electricity double auctions

by offering buy and sell reservation prices at any particular time. Participating PEVs

compare the real-time price with their buy and sell reservation prices. If the price is above

a PEVs buy price it will forgo charging for the next 5 minutes. If the price is above a PEV

sell price, it will discharge energy back to the feeder during the next 5 minutes. When there

is a constraint on the load of a feeder, the clearing price will rise to the point that the total

load (including unresponsive load and aggregate PEV load) is just below the supply limit.

When there is an excess of PEV energy with an opportunity cost below the feeder supply

price, the PEVs will discharge and help reduce utility net feeder load.

The PEV buy price is determined as

PB = PM + PD K
∆tR
∆tA

where PM and PD are the mean and standard deviation of the expected LMP over a time

interval between the real-time and the departure; K is the consumer comfort control setting,

which enables the consumer to control its charge/discharge behaviour. The forward price

time horizon is typically between 2 and 8 hours and which is significantly less than the

24-hour forward price window used in the Olympic and Columbus demonstrations. For

vehicle chargers we interpret the meaning of K as follows:

A customer with a higher value of K is more likely to depart with a fully charged

vehicle than one with a lower value of K.

A more vernacular definition can be thought of as the charging strategy aggressiveness, i.e.,

a more aggressive strategy has a higher value of K and will cost the customer more, but is

more likely to fully satisfy the customer.
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The required time to fully charge is:

∆tR = (1− SOC)
β

ρ

where SOC is the battery state of charge, β is the battery capacity in kWh and ρ is the

charging rate in kW. The available time until the departure is:

∆tA = tdep − τ

where tdep is the departure time, and τ is the real-time. The PEV sell price is expressed as:

PS =
PO
η2 γ

+ PC

where η is the round trip efficiency, and γ accounts for battery ageing. The cycling cost,

PC , accounts for the additional degradation costs of using V2G, which for SOC < 80% are

estimated based on experimental data [126] as:

PC =
0.001 κ

(SOC + 0.4)2

where κ is battery capital cost in $/kWh; if SOC > 80% the cycle cost is zero. PO is

opportunity cost for discharging during the next time increment δt:

PO = PM + PD K
∆tR + δt

∆tA − δt

The expectation price is estimated from the day ahead market LMPs.

5.2.2 Scenarios

The model considers the case where 100 homes on a capacity-constrained feeder have both

rooftop PV panels and PEVs with predominantly night-time charging needs. Three charge

scenarios are considered with a feeder constraint 40% of the total nameplate connected load,

as shown in Figure 5.1. The V0G scenario assumes vehicle chargers begin charging as soon

as the vehicle is plugged in, unless the real-time price exceeds the customer’s maximum

reservation price, with comfort setting considered. V1G assumes the vehicle chargers only

charge when the real-time price is below the expected average price for the remaining time

to departure, with comfort setting considered. V2G assumes that charging is like V1G but

will also discharge when the real-time price is above the opportunity cost of recharging later

given the expected average price for the remaining time to departure, with comfort setting

considered.
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Fig. 5.1: Household load and photovoltaic distributed generation with vehicle/grid in-
tegration scenarios: dumb charger (V0G/top), unidirectional price-responsive charger
(V1G/middle), bidirectional price-responsive charger/discharger (V2G/bottom)

5.2.3 Assumptions and inputs

Driving Pattern

Driving pattern data were analyzed to get insight into how vehicles are actually driven.

Driving Diary data are extracted from the Canadian Plug-in Electric Vehicle Survey 2013

[127]. A normal distribution is fitted on the home arrival and departure times. The mean

and standard deviation used are shown in Table 5.1. In addition, a normal distribution is

assumed for the battery SOC level at arrival time.

Table 5.1: Driving pattern parameters

Variable Mean Stdev
Arrival time [HH:MM] 18:00 2:00
Departure time [HH:MM] 8:00 2:00
Arrival SOC level [%] 70 10

Charge characteristics

The charge/discharge rate depends on the battery SOC level, but for simplicity here the

rate is assumed to be uniform during the charge period. We assume the charge/discharge
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Table 5.2: Modeling inputs and assumptions and inputs

Assumption Mean Stdev
Customer comfort [%] 25 10
Round trip efficiency [%] 92 1
Ageing factor [%] 100 5
LMP [$/MWh] 80 24
Battery size [kWh] 50 10
LMP peak time [HH:MM] 16:00
Unresponsive load [MW] 0.200
Feeder capacity [MW] 0.344
Solar capacity [MW] 0.202
Number of customers 100

rate is 6.6 kW for Level 2 and 16.8 kW for Level 3 to compare the impact of charge rate

[128].

The battery technology status will be a strong determinant of PEV future success in the

marketplace. The auto industry needs cheap, high energy density, fast charging and long

life time batteries [129]. Battery ageing is managed by adjusting the bid price as a function

of the actual duty cycle relative to expected duty cycle for the battery’s age. The strategy

is derived from the Olympic demonstration’s license usage premium for DG bidding so that

the ageing factor is:

γ =
N

N − n
× M −m

M

where N is the battery’s lifetime, M is the number of expected cycles in the battery’s

lifetime, n is the current age of the battery (in units of N), and m is the number of cycles

used so far.

The general assumptions for this model are shown in Table 6.1.

Solar panel

The effect of solar power is examined using insolation data from the Victoria School-Based

Weather Network (www.victoriaweather.ca) on a July day in Victoria, BC (approx. 48◦N

latitude) with intermittent cloudiness. The residential rooftop panels have power output

normally distributed about a mean of 2 kW with 0.1 kW standard deviation truncated at ±3

stdev. We assume 100% penetration of solar PV so that every home with an unresponsive

peak load of 2 kW has a PV panel and the bid price for solar PV is zero.
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5.2.4 Demand Elasticity

We evaluate the arc elasticity of vehicle operating cost [130]

η =
P

Q

dQ

dP
=
d logQ

d logP
=

log(Qafter/Qbefore)

log(Pafter/Pbefore)
.

where the two values for P andQ are found for the unconstrained feeder (before) case and for

the constrained feeder (after) case. In their study of mixed-logit models of alternative-fuel

vehicles in the UK, Batley et al. [130] found that operating cost elasticities were between

−0.15 for a 20% fuel cost reductions and −0.25 for a 5% fuel cost reductions, depending

on the model used. However, in many cases feeder congestion can cause price volatility far

beyond the range studied. Increased short-term purchasing flexibility can be expected to

yield elasticity results that are not very comparable to previous studies, particularly for the

V1G and V2G cases.

The analysis of elasticity distinguishes between evening charging, which is dominated

by inelastic consumers who prefer the “plug-and-go” option and morning charging which is

dominated by consumers who are generally more flexible but have less time to departure.

The delineation in this paper uses noon and midnight, with all morning charging during

the AM hours and all evening charging during the PM hours.

5.3 Results

The aggregated load of a 100 PEV fleet, with a 5 minutes time resolution, is determined

for three charging scenarios with the third scenario evaluated for Level 3 charger instead

of Level 2. In all scenarios, LMPs, feeder capacities, unresponsive load, vehicle arrival

and departure times and state-of-charge, consumer comfort settings, and PV outputs are

identical.

5.3.1 V0G Scenario

We evaluate first the “V0G” scenario in which vehicle chargers consume electricity as soon

as the vehicles return home and do so until the batteries are fully charged, unless the retail

price exceeds a reservation price set by the consumer based on how likely the vehicle is to

be fully charged by the departure time. This scenario corresponds to the minimum demand

elasticity case with an overloaded feeder, where all the PEV demand elasticity arises from

the consumer’s maximum reservation price. The LMP and RTP prices resulting from this

method of operation, as well as the total and feeder load profiles for a single day are shown

in Figure 5.2 (left). The corresponding PEV state-charge profiles for all 100 vehicles and
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the corresponding aggregate demand elasticity is also shown in Figure 5.2 (right).

The instantaneous elasticities are shown in Figure 5.2 (bottom) and from these we

estimate the average evening and morning demand elasticities of the PEV load. Note that

because charging is never postponed, there is no measurable secondary elasticity for the

morning hours.

5.3.2 V1G Scenario

The second scenario we examine is the “V1G” scenario in which vehicle chargers submit

bids to the retail double-auction for the chargers’ capacities at the consumer’s reservation

price, which is based on how likely the battery is to be fully charged by the departure time.

The buy price defers charging based on the expected average price until departure instead

of the maximum reservation price. Figure 5.3 shows the impact of V1G on the clearing price

and the aggregated load. This scenario corresponds to the moderate elasticity case, where

a significant fraction of the total demand elasticity arises from the willingness of highly

charged batteries to postpone demand until hours when the price is likely to be lower. The

LMP and RTP prices resulting from this method of operation, as well as the total and

feeder load profiles for a single day are shown in Figure 5.3 (left). The corresponding PEV

state-charge profiles for all 100 vehicles and the corresponding aggregate demand elasticity

is also shown in Figure 5.3 (right).

The instantaneous elasticities are shown in Figure 5.3 (bottom) and from these we can

estimate the average evening and morning demand elasticities of the PEV load. Note that

because charging can be postponed, there is now a secondary elasticity for the morning

hours when chargers still needing energy need to top off the batteries, in spite of potentially

higher prices.

5.3.3 V2G Scenario

The final scenario we examine is the “V2G” scenario in which vehicle chargers not only

submit bids for the consumer’s reservation demand price but also offer to sell energy from

the batteries if the opportunity cost is sufficiently low relative to the retail price. This

scenario corresponds to the high elasticity case, where a significant fraction of the total

demand elasticity arises from the willingness of highly charged batteries to not only postpone

demand until hours when the price is likely to be lower but also are willing to sell-back

energy if the price is high enough. The net effect is to increase demand for “free” solar

energy when it is available and store it in the batteries until it can be sold in the middle

of the night to batteries that need energy. The LMP and RTP prices resulting from this

method of operation, as well as the total and feeder load profiles for a single day are shown
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Fig. 5.2: Price, load, state-of-charge and elasticity for a single day of combined “V0G”
PEV chargers and rooftop PV
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Fig. 5.3: Price, load, state-of-charge and elasticity for a single day of combined “V1G”
PEV chargers and rooftop PV
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Table 5.3: PEV prices, revenues and elasticity results

Output V0G V1G V2G-L2 V2G-L3
RTP mean [$/MWh] 120.29 66.80 66.82 67.36
RTP stdev [$/MWh] 144.57 37.58 37.56 36.88
Peak price time 19:50 16:10 16:10 16:10
Energy [kWh/PEV.day] 16.63 15.96 15.66 15.73
Payment [$/PEV.day] 4.46 0.94 0.91 0.93
P effective [¢/kWh] 26.82 5.90 5.80 5.89
ηD (evening) −0.41 −3.86 −3.86 −5.53
ηD (morning) (na) −0.68 −0.59 −0.64

in Figure 5.4 (left). The corresponding PEV state-charge profiles for all 100 vehicles and

the corresponding aggregate demand elasticity is also shown in Figure 5.4 (right).

The instantaneous elasticities are shown in Figure 5.4 (bottom) and from these we can

estimate the average evening and morning demand elasticities of the PEV load. The V2G

case is examined for both Level 2 and Level 3 charging rates, but the results for prices and

loads for V2G-L2 are very similar to V1G and therefore not illustrated.

5.4 Discussion

The results summarized in Table 5.3 suggest that the mean clearing price and the price

volability are generally reduced by about 50% when V1G of V2G are used. The peak price

time is shifted to later in the evening under V0G but not under V1G or V2G charging.

PEV energy consumption by customers is reduced about 4% using V1G and reduced about

5.8% using V2G. Net payment from PEV charging with PV supply is significantly reduced

using V1G and V2G, with a corresponding significant reduction in the effective price paid

by PEVs. With V0G charging all charging is completed in the evening as soon as the

vehicles return home. Thus there is no morning elasticity and evening elasticity is relatively

low, albeit greater than Batley’s annual cost elasticity of between −0.15 and −0.25. With

V1G and V2G charging, a significant amount of charging is deferred and evening demand

elasticity increases significantly. However morning elasticity is introduced and it remains

relatively low, although somewhat higher than V0G evening elasticity.

Table 5.4 compares the final SOC level under different charging control scenarios. The

first column is the percent of full charge achieved at the departure time. The second column

is the result of a consumer PEV satisfaction survey [131] showing the acceptance rate of PEV

owners to different levels of battery charge. The results suggests that high charger capacity

allows the charging strategy to take better advantage of customer charging flexibility by
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Fig. 5.4: Price, load, state-of-charge and elasticity for a single day of combined “V2G-L3”
PEV chargers and rooftop PV
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Table 5.4: Final SOC level

Final SOC Survey V0G V1G V2G-L2 V2G-L3
99–100 35% 100% 64% 59% 57%
80–99 45% 0% 36% 41% 43%
60–80 20% 0% 0% 0% 0%

Table 5.5: Retail price sensitivity to wholesale price volatility

Effective Retail Price [¢/kWh]
LMP Volatility V0G V1G V2G-L2 V2G-L3

Subhourly Daily volatility: 37.5%
6.25% 27.98 5.80 5.71 5.76
12.5% 26.82 5.90 5.80 5.89
25% 24.44 5.91 5.82 5.84
50% 19.68 6.01 5.68 5.99

Daily Subhourly volability: 12.5%
18.75% 26.64 7.11 6.93 6.95
37.5% 26.82 5.90 5.80 5.89
56.25% 26.86 4.55 4.41 4.45

75% 27.22 3.12 2.93 3.05

discharging some batteries “back” into other batteries in the morning hours. This has two

important effects. First it allows more solar energy stored overnight to be delivered in the

morning. Second, it mitigates price volatility when solar energy would otherwise depress

prices or PEV demand would increase it. This results in slightly higher prices when Level 3

charging is in use, but the money is primarily being transferred from less flexible customers

directly to more flexible customers, rather than to the utility.

The sensitivity of the effective retail price was examined relative to both the subhourly

and daily wholesale price volatility. The results are shown in Table 5.5. Generally consumer

costs increase as price volatility increases because they have insufficient elasticity. However

the availability of advanced price-sensitive charger strategies increases their elasticity to

such a degree that it reverses this trend for daily price volatility. Interhour PEV charger

storage capacity has a significant impact the effective prices consumers pay for energy,

particularly when photovoltaic energy sources are available.

Table 5.6 tabulates the impact of the customer comfort setting on the departure SOC

level and the effective price. Customers with a higher willingess to pay incur higher costs

but are also more likely to achieve full charge at the time of departure in the morning.
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Table 5.6: Customer comfort setting impact on SOC and retail price under V1G scenario

Customer comfort (K) 0.25 0.50 1.00 2.00
Fully charged [%] 64 71 91 100
SOC 80% to 98% [%] 36 29 9 0
Effective price [¢/kWh] 5.90 5.98 6.17 6.25

5.5 Conclusions

In this paper we demonstrated how advanced electric vehicle charging strategies that con-

sider real-time prices can be used to improve inter-temporal coordination between charging

needs and charging opportunities. The results are beneficial both to the consumer and

the utility: consumers can take advantage of inexpensive renewable sources normally only

available at other times of day, and utilities can reduce the risk of overloading distribution

assets by allowing customer to exchange energy within the distribution system. When using

real-time retail price to reduce the impact of distribution constraints, utilities can also help

connect PV to PEV and reduce the customer’s net vehicle energy costs by more than three

quarters when compared to the simple “plug-and-go” charging, thus significantly bolstering

the economic case of electric vehicles over internal combustion engine-powered vehicles.

The results also suggest that there is a qualitative difference between the impact of

short-term subhourly price volatility and long-term daily price volatility. Automated load

control strategies increase consumer demand elasticity and respond easily to long-term price

volatility by deploying energy storage capacity for inter-hour load shifting. These impacts

can be evaluated using agent-based simulations of plug-in vehicle charging operated in a

real-time pricing environment in conjunction with solar photovoltaic distributed generation.

This results suggest that the modeling approach in this paper can be used to evaluate

the combined interaction of PV, PEV and HVAC equipment all operating together as well.

This is particularly important given that the PEV can help shift energy from PV to HVAC

when the peak times are not coincident, a challenge that will certainly be explored in future

work.

Overall consumers would realize significant savings when PEVs participate in a retail

electricity markets and receive real-time price signals which they compare to buy/sell reser-

vation prices to make charge/discharge decisions. This subhourly bid-response strategy

requires knowledge of price expectations based on day-ahead hourly wholesale prices, which

suggests that the integration of wholesale and retail markets must consider not only topo-

logical but also inter-temporal exchange to induce sufficient demand response participation

at the wholesale level.
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Chapter 6

Transactive Control of Fast-Acting

Demand Response Based on

Thermostatic Loads in Real-Time

Electricity Markets

This paper has been submitted to Applied Energy journal in March 2017:

Sahand Behboodi, David P Chassin, Ned Djilali and Curran Crawford. Transactive

Control of Fast-Acting Demand Response Based on Thermostatic Loads in Real-Time Elec-

tricity Markets.

Sahand Behboodi has developed the theory, coding the simulation, and writing the

text. David Chassin has helped Sahand in analyzing the simulation results and writing the

manuscript.

This chapter addresses the topic of demand response control for thermostatic loads.

We present a new operation strategy for HVAC loads that minimizes the energy costs

and prevents the grid congestion, while maintaining the room temperature in the comfort

bound set by the consumer. In the this strategy, thermostats participate in a 5-minute

retail electricity market based on transactive control paradigm. An agent-based approach

is used to simulate the collective behaviour of HVAC loads to price changes in both heating

and cooling modes.
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6.1 Abstract

Coordinated operation of distributed thermostatically controlled loads (TCLs) such as heat

pumps and air conditioners can reduce energy costs and prevents grid congestion, while

maintaining room temperatures in the comfort range set by consumers. This paper furthers

efforts towards enabling thermostatically controlled loads to participate in real-time retail

electricity markets under a transactive control paradigm. An agent-based approach is used

to develop an effective and low complexity demand response control scheme for TCLs.

The proposed scheme adjusts aggregated thermostatic loads according to real-time grid

conditions under both heating and cooling modes. A case study is presented showing

the method reduces consumer electricity costs by over 10% compared to uncoordinated

operation.

Keywords

Agent-based modeling, market-based control, smart grid, thermostatically controlled loads

Highlights

• Market-based control for flexible loads based on transactive paradigm

• Load aggregation of thermostatically controlled loads using an agent based approach

• Demand response with fast reaction to market price fluctuations

• Reduced electricity costs in both cooling and heating modes

6.2 Introduction

Demand response automation allows customers to adjust their electricity usage in response

to changes in energy prices or to incentive payments. Price changes and incentives can

induce lower electricity use at times of high market prices or when system reliability is

jeopardized [14]. Demand response can be a valuable resource for system operators, partic-

ularly when significant levels of intermittent renewables are present [89, 132]. Loads that

are well suited for demand response include heat pumps [133], air conditioners [28], do-

mestic hot water tanks [134], plug-in electric vehicles [72], water distribution systems [135],

electrolyzers [56] and smart appliances such as laundry machines and dishwashers [136].
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The inherent flexibility of thermostatically controlled loads (TCLs) such as heating,

ventilation and air conditioning (HVAC) allows consumers to use their devices in a grid-

friendly way [137], reduce energy costs [138] and potentially mitigate CO2 emissions [139].

The benefits of demand response are numerous and varied but must be structured carefully

to be fair to all participants. An integrated model of demand and supply is presented in

[140] to evaluate the overall cost benefit of introducing demand response for electric heating

systems (building interior and domestic hot water) coupled with thermal energy storage.

This model shows that (i) demand response can assist the grid operator in dispatching

the generation fleet in a more economically-efficient manner, and that (ii) the higher the

renewable generation, the greater the benefit of demand response.

In recent years several operational strategies have been suggested using TCLs to mitigate

the imbalance between power supply and demand. Many involve managing TCLs by varying

the setpoint temperature within a limited range [17, 141]. Understanding the behavioral

characteristics of the user is crucial to designing an effective control mechanism for demand

response. This is a very broad area of research, with opportunities for many differing

approaches. These include a logit form of discrete choice model to represent the aggregate

load behavior under critical peak pricing in [142] and under real-time pricing [111].

Incentive-based strategies dispatch flexible loads through economic means [143]. Among

this set of operational strategies, price-based [144, 145] and market-based control methods

[146, 53, 54] provide significant and useful responses to real-time grid conditions. In the

former method, the utility sends a price signal to flexible loads which respond in accordance

to their states and settings. The price is such that the collective response of loads is ideally

as much as the grid operator needs to maintain the energy balance in an economically-

efficient manner or to track an optimal load schedule. There are concerns regarding fairness

[147] and stability of such a load control strategy [148, 21]. In the latter method (market-

based), flexible loads submit their willingness-to-pay price for a particular level of demand

for electricity to the market operator. This buy bid is computed based on the load state,

consumer comfort objective as well as an expectation of future market price and its volatility.

The market operator collects buy and sell bids to clear a double auction market, and

broadcasts the clearing price, while scheduling its operations for the cleared load quantity.

If the buy bid of a participant is above the clearing price, the participant will consume

electricity (and pay the clearing price); otherwise it will forgo consumption until the next

market clearing. This indirect control operation method is favored among customers in

comparison with direct control methods because it does not restrict customers autonomy

or invade their privacy [53].

Price-based demand response for large population of loads has long been used in con-

junction with time-of-use rates and critical-peak tariffs, as well as peak-time rebates. More
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direct aggregate TCL control methods are based on linearized models of open loop control,

and some include a feedback mechanism to track a target aggregate load. Open loop ag-

gregate TCL control models based on first principles [149], parameter identification [150],

and model identification [151] have long been available. Most recently, methods that close

the aggregate TCL control loop were proposed by Perfumo et al. [152], Kok et al. [146],

Hammerstrom et al. [53], and Widergren et al. [54]. The latter three were demonstrations

of market-based mechanisms in pilot projects using real customers who bid for energy use

and were presented with real-time prices in utility operations.

Market-based control using bidding loads can be implemented by retrofitting existing

thermostats, such as used in previous demonstrations [146, 53, 54]. An alternative approach

is to design a new type of thermostatic controller that updates only when the market clears,

and has no prescribed deadband. The advantage of this approach is that demand response

better tracks the quantity corresponding to the clearing price [75].

Real-time electricity markets serve as a platform for matching the supply and demand

of electricity on a least cost basis. The bid (buy) quantity of individual flexible loads is

substantially smaller than the bid (sell) quantity of generation units. At the same time,

the number of participating loads is much larger than the number of suppliers. Therefore,

it is challenging to include these loads individually in the wholesale market in conjunction

with large generation units. This challenge is addressed by aggregating loads so that the

load aggregator (similar to a retailer) participates in the wholesale market on behalf of

them. Load aggregation reduces the communication complexity and also eases the market

settlement process, although it may influence efficiency of the resource use. An immediately

important research question to investigate is the suitable size of a load aggregator that

participates in a wholesale market.

Recent advances in Information Technology enables smart grids to include individual dis-

tributed generation units and flexible loads in retail markets so that they can together reduce

the energy costs [113]. Retail transactive control systems are similar to energy wholesale

markets, but the price signals are applied at much finer temporal and physical granularity

than is possible in wholesale markets. However, the need to deploy suitable infrastructure

remains a significant barrier to implementation of market-based control methods. Flexi-

ble loads must receive real-time information about the power grid condition to quantify

their willingness-to-pay price, considering their flexibility and comfort. For instance, this

information can be a price signal representing the estimated mean and variance of elec-

tricity price over a time period in near future (e.g. 1 hour), based on which price-sensitive

loads compute their willingness-to-pay prices. Integrated closed-loop and bid/response mar-

ket mechanisms (e.g. transactive control) require two-way communications infrastructure,

which may come at higher costs than one-way open-loop dispatch mechanisms, but may
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enhance system stability and efficiency.

The value of demand response in supporting grid operation is more pronounced when

ancillary services are also included along with basic temporal load shifting [153]. Accord-

ingly, a control scheme is required that enables thermostatic loads to provide a fast-acting,

energy neutral response to real-time grid conditions. We propose a market-based (indirect

and centralized) load control method that includes TCLs in real-time retail markets under

transactive control, using agent-based modeling approach. The main contributions of this

work are: (i) introduction of a new market-based control scheme for TCL, (ii) reduction in

user input and model complexity, and (iii) demonstration of effectiveness of the transactive

control scheme.

This paper begins with an introduction to the proposed bidding strategy and market

structure in Section 6.3. A case study to demonstrate the performance of the presented

transactive control method in terms of cost saving against uncoordinated operation is pro-

vided in Section 6.4 for both heating and cooling HVAC operation modes. Finally, conclu-

sion and suggestions for future work are presented in Section 6.5.

6.3 Model description

In this section, we present the thermostatic transactive control setup. A new thermostat

design is presented that reduces the complexity of implementing the control method. A

bidding strategy for thermostatic loads is proposed based on the expected mean and variance

of the market price over a future time window. At the end, a simple thermal model is

provided to represent energy balance in buildings and serving as the simulation physics

model.

6.3.1 Temperature state

In contrast to regular thermostats, demand responsive thermostats do not have one setpoint

temperature with deadband-based control. Instead they allow for a range of temperatures

that may vary according to both the thermal comfort and cost savings desired by the con-

sumer. An aggregated thermostatically controllable load consists of a non-trivial number

of thermostats that control heat pumps or air conditioners by maintaining room tempera-

ture (T ) in a customer-specified temperature range of [Tl, Tu]. We define a dimensionless

temperature (state):

θ =
T − Tl
Tu − Tl

that varies over the range of [0, 1]. In heating mode, the absolute value of the temperature

upper bound is greater than the absolute value the temperature lower bound (|Tl| < |Tu|),
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while in the cooling mode the opposite is true (|Tl| > |Tu|). When 1
2 < θ < 1 the space

temperature is closer to the upper temperature bound than to the lower bound and there

is less pressure for the load to be in the ON mode. Conversely when θ < 1
2 the room

temperature is closer to the lower bound temperature and there is more pressure for the

load to be ON. Notice that Tl and Tu are specific to each load. Without any coordinated

control strategy, as long as room temperature is in the range of (Tl, Tu) the heat pump or the

air conditioner does not operate. As soon as the room temperature reaches Tl or θ = 0, the

thermostat commands the device to operate until the room temperature reaches Tu or θ = 1.

However, with a coordinated control strategy, individual thermostats command differently,

although they maintain the room temperature in the same comfort range. Consumers can

change their temperature range throughout the day according to their comfort and savings

needs, although in the simulation in Section ?? we do not consider such variations.

6.3.2 Bidding strategy

We consider a hypothetical real-time retail electricity market for a distribution feeder in

which each thermostat submits a buy bid based on its value of θ and expected future prices.

The retail market operator gathers these buy bids as well as sell bids of distributed gen-

eration units to clear the market every τ minutes (market update cycle), considering the

locational marginal price (LMP) and unresponsive load quantity. On behalf of loads and

generation units in the retail market, the operator also participates in a separate wholesale

market to determine the hourly LMP, thereby acting in the wholesale market as an aggre-

gator. We could have alternatively considered that thermostats provide ancillary services

to the grid; then they would be sellers of ancillary services as well as buyers of energy.

The retail market operator broadcasts the clearing price (Pc) in $/MWh as well as the

estimated mean price (P̄ ) and standard deviation price (P̂ ) over a future time window of

duration (tfw) to all TCLs. Active thermostats provide their willingness-to-pay per unit of

energy price by computing the bid price:

φ = P̄ +
√

2 erf−1(1− 2 θ) P̂ , (6.1)

where erf−1 is the inverse error function. If the bid is above the clearing price the

thermostat consumes electricity, otherwise it forgoes until the next market cycle (e.g.

τ = 5 minutes < tfw = 1 hour). The proposed bidding strategy is based on the quan-

tile function (inverse cumulative distribution function) of the Gaussian distribution. The

magnitude of θ determines the probability of its associated bid price being above the clear-

ing price over the future time period of tfw. The bid will be greater than the expected

mean price when θ < 1
2 and below the expected mean price when θ > 1

2 .
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In the simulation presented in the next section, every household is assumed to be

equipped with a rooftop PV solar panel. The magnitude of the net load on the feeder

(the total unresponsive load plus the total responsive load minus the total PV generation)

should not exceed the feeder capacity. Scarcity rent from any lack of PV generation will

raise auction clearing prices and induce thermostats to reduce load to match the available

feeder capacity.

Figure 6.1 shows the structure of the control process. The wholesale market operator

provides a forecast of LMPs over a future time window of tfw. The participating thermostats

compute their bids based on the mean and standard deviation of these LMPs as well as

their temperature states. A model to predict the temperature state is described in the next

subsection. When the price becomes steady over tfw (zero or otherwise), the effect of θ on

the bid price is ignored since P̂ is zero, and as a result every bid will be equal to P̄ . To

avoid this issue, a minimum price (e.g. 1 $/MWh) can be specified for P̂ .

Device Bid
θ φ

Feeder real-time market
Pc

P̄ P̂

Forecast

Tamb q0

Meter Wholesale market PV

LMP

Fig. 6.1: Control process diagram.

6.3.3 Building thermal model

A lumped system thermal energy balance equation for a household unit is used to define

the relevant physics of the system:

M
dT

dt
+ U (T − Tamb)− q0 − qhvac = 0, (6.2a)

where M , U , q0, qhvac are respectively thermal mass in kJ/◦C, overall heat transfer coeffi-

cient in kW/◦C, total thermal load in kWth, heat pump or air conditioner output in kWth,

specific for each unit. The total thermal load (q0) encapsulates multiple sources such as

internal loads. We assume M , U , Tamb, q0 + qhvac do not vary over time τ . Solving this

differential equation, the temperature state of load j in the next market cycle (k + 1) will

be:

θj(k + 1) = e
−
Ujτ

Mj θj(k) + (1− e−
Ujτ

Mj )×
(
Tamb − Tl
Tu − Tl

+
q0 + qhvac
U (Tu − Tl)

)
j

. (6.2b)
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The value of qhvac is positive and negative, respectively, for heating (obviously Tamb < Tlj )

and cooling (Tamb > Tlj ) modes, and zero during an OFF cycle (φj < Pc).

6.4 Performance analysis

In this section, we present a simulation test to demonstrate the performance of the proposed

transactive control method for thermostatic loads in a real-time market environment.

6.4.1 Case study

General assumptions are given in Tables 1 and 2. The market update cycle (τ) is set to

5 minutes to be similar to the redispatch time of energy imbalance markets in CAISO

[154]. Thermal model parameters in Equation 6.2b are randomly and uniformly distributed

between the minimum and the maximum values given in Table 6.2, and most of them are

taken from [152].

A detailed energy balance simulation of buildings is not in the scope of this work, and

as noted earlier we use a lumped system approach to represent the thermal behavior of each

building. A significant portion of the energy consumption of devices that are not involved in

the demand response program (unresponsive electric loads) is eventually converted to heat

in conditioned spaces. Another important heat source that should be taken into account is

the solar gain (through windows and/or walls), which depends on the location, orientation

and architecture of the buildings. For simplicity, we assume the magnitude of solar gain is

linearly related to the magnitude of the solar PV panel output for the building. Accordingly,

we assume the magnitude of q0 is equal to the magnitude of the PV output plus 86% [134]

of the magnitude of the unresponsive load, ignoring the ventilation and non-electric internal

loads.

Table 6.1: Inputs

Parameter Unit Value
Feeder capacity limit kW 6000
Market cycle (τ) min 5
Mean non-HVAC load kWh/h 2.0
Number of participants – 1000

Figure 6.2 illustrates the a typical profile of the LMP that comes from the underlying

wholesale energy market that changes on an hourly basis. The magnitude of variation of

the total non-TCL (unresponsive) demand is also shown. We assume LMP and non-TCL

demand profiles are the same for the winter and summer days. In addition, the total solar
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Table 6.2: Model parameters

Parameter Unit Min Max
Air conditioner capacity kWe 3.00 5.00
Air conditioner COP – 1.88 3.12
Ambient temp. summer ◦C 26.0 32.0
Ambient temp. winter ◦C -2.0 4.0
Building thermal mass MJ/◦C 54.1 90.0
Comfort range size ◦C 0.85 1.15
Heat pump capacity kWe 3.00 5.00
Heat pump COP – 2.63 4.37
Heat transfer coefficient kW/◦C 0.38 0.62
Indoor temp. summer ◦C 15.5 25.4
Indoor temp. winter ◦C 14.6 24.4
Solar PV capacity kW 2.25 3.75

PV generation in a mid January day and also a mid June day based on historical data

in Victoria, BC (approximately 48◦N latitude) are shown. From the assumed profiles, the

daily solar PV output per household is 2.64 kWh and 24.29 kWh on a mid January day and

on a mid June day, respectively. It should be mentioned that all these profiles are inputs

to the simulation.

Fig. 6.2: LMP on the feeder and total unresponsive load.

6.4.2 Heating mode

Figure 6.3 illustrates the temperature state distribution (horizontal axis) and the associated

bid price distribution (vertical axis) at 12 AM, 9 AM, 3 PM and 9 PM on the second
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day of operation with the proposed control method. In this simulation, we assume the

initial temperature states (12 AM day 1) are random-normally distributed around 0.5.

Performing the simulation with different initial temperature state distributions leads to

similar results indicating insensitivity to initial conditions. The bid prices are normalized

with respect to the mean LMP, P̄ , over the future time window of an hour. The horizontal

and vertical boxes show the distribution density of the temperature states and the associated

bid prices respectively at the aforementioned time slots. In each box, the central mark

indicates the median, and the bottom and top edges of the box indicate the 25th and

75th percentiles, respectively. The whiskers extend to the most extreme data points not

considered outliers, and the outliers are plotted individually using the “×” symbol. We note

that the temperature state of most loads are very close to the lower bound at 12 AM and

9 PM, suggesting loads are saturated probably because they have experienced a relatively

expensive electricity period prior to these hours. On the other hand, the temperature state

distribution at 3 PM shows an opposite profile where more temperature states are close to

the upper bound. This behaviour indicates loads are anticipating more expensive electricity

hours by pre-heating. Finally, the 9 AM temperature states are well distributed, with a

median closer to the upper bound though.

Figure 6.4 illustrates the market settlement conditions at the aforementioned time slots.

The small circle marks the clearing point at the intersection of the supply curve (red) and

the demand curve (blue), associated with each time slot. The demand curve includes an

unresponsive part (not-shown) and another part consisting of responsive TCL bids that

depend on room temperature, comfort range and also price average and volatility over a

future time window of an hour. The supply curve consists of two segments and a vertical

component, which enforces the feeder constraint. The first segment represents the total solar

PV generation at zero marginal cost, and the second segment represent the feeder (with a

constrained capacity) at a given LMP reflecting the underlying wholesale market situation.

PV generation at 12 AM and 9 PM is zero. As mentioned, a significant proportion of TCL

demand is fully saturated at 12 AM and 9 PM and becomes unresponsive to electricity

price. At 9 PM, the clearing price rises to the point that the responsive portion is such that

the cleared load quantity does not exceed the feeder load constraint.

Figure 6.5 shows the evolution of temperature states over a day of operation (right

side vertical axis) using boxplots. We note that the temperature state of most loads that

are fully depleted at midnight (θ → 0) increases so they are fully “charged” by noon

(θ → 1). The dispatched load that is at its maximum at 1 AM gradually decreases during

the flat LMP period until 5 AM at which the expected price for the next time slot (6–

7 AM) goes up, so the dispatched load increases to its maximum again to pre-heat the

room. Subsequently, loads maintain their high charge state (high θ) in anticipation of the



109

Fig. 6.3: Temperature state distribution vs. bid price distribution at 12 AM, 9 AM, 3 PM
and 9 PM on a mid January day: whiskers “‖” and outliers “×”.

expensive evening period during which most switch to the OFF mode. At night time, loads

consume a minimal amount of electricity (enough to maintain the room temperature in the

comfort range) despite their low θs. This behaviour is because loads benefit by waiting for

the after-midnight inexpensive electricity period. A dot indicates the clearing price at time

t and its color represents the associated dispatched responsive load (left side vertical axis).

Clearing prices are the same as the hourly LMPs, except when the clearing price rises to

prevent feeder overloading. The net load on the feeder should always be smaller than the

feeder capacity limit.
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Fig. 6.4: Market settlement at 12 AM, 9 AM, 3 PM and 9 PM on a winter day: supply
curve (red) and demand curve (blue).

Figure 6.6 illustrates the clearing price as well as the total load before and after imple-

mentation of the proposed method of operation on a mid January day. The clearing price

in the uncoordinated case is the same as the input LMP profile since the uncoordinated

load does not exceed the feeder capacity limit in this simulation. We notice that the imple-

mentation of this strategy shifts a significant portion of the TCL energy requirements from

relatively expensive periods to inexpensive periods. As a result the blended clearing price

(weighted average price also equal to daily cost divided by daily consumption) decreases

from 42.43$/MWh to 38.50$/MWh. On the other hand, it introduces some oscillations and
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Fig. 6.5: Temperature state evolution (heating mode): temperature state distribution
(blue boxplots), clearing price (circles) and cleared responsive load (colorbar).
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spikes in the demand profile, which can cause operational problems such as harmonic volt-

ages and currents. There exist solutions to avoid this issue, principally employing lockout

times and bid compensation [54]. Alternatively, the aggressive reaction of loads to LMP

changes can be mitigated to some extent when the grid operator provides a longer-time

forecast of P̄ and P̂ , thereby reducing the impact of sudden price changes.

Fig. 6.6: Clearing price and total load profile (heating condition).

Another approach to mitigate demand fluctuations is to modify the bidding strategy to

include the ON→OFF and OFF→ON switch costs. This would also reduce cycling wear

out of HVAC systems. Accordingly, we increase the bidding price for those thermostatic

loads that are in the ON state by φs ($ per switch), and decrease the bidding price of

OFF state loads by φs. With the switching price included, thermostats only respond to

substantial price variations. Including the switching cost effectively shifts bid prices from the

marginal point, which makes the settlement process less efficient and as a result decreases

the potential cost reduction, but smooths out the load profile. The magnitude of φs can

be either fixed or variable (e.g. a constant percentage of the original bid over time). It can

also vary from customer to customer.

Figure 6.7 illustrates the shape of the responsive load under different control strategies.

Case A is the profile shown in Figure 6.6. Case B is similar to case A with P̄ and P̂ values

obtained in a six hour future time window instead of in a one hour window. For simplicity,



113

we do not consider any forecast error in estimating P̄ and P̂ values. In case C, each bid price

is adjusted by including/deducting a percentage (±r) of the bid price for the switching cost,

which is selected randomly and uniformly between 0 and 50%. The sign is positive for loads

in the ON state, and negative for loads in the OFF state. There are periods during which

the bid price is zero or small so that this increase does not make a difference. Thereby,

whenever the original bid (φ) is below a certain value (φ0) we use φ0 (here 33$/MWh) to

compute the adjusted bid (φ∗):

φ∗ = (1± r)×max(φ, φ0).

Finally, case D combines both modifications suggested in cases B and C.

Table 6.3 summarizes the electricity blended price as well as the daily energy consump-

tion associated with each case. Including the switching cost (case C) slightly increases the

daily energy consumption while estimating P̄ and P̂ over a six hour time window (case

B) reduces the consumption. In addition, we note that the blended price in case C is sig-

nificantly higher. Large load changes may require additional voltage control action within

the distribution system, however coordination of the load control system and the voltage

control system is not in the scope of this work.

Table 6.3: Performance comparison

Parameter Unit Case A Case B Case C Case D
Electricity blended price $/MWh 38.50 39.44 45.10 37.41
Daily energy consumption MWh 1204 1072 1215 1204

Table 6.4 compares the energy cost and the blended price with the control strategy

(case D) for heat pumps versus the uncoordinated scenario. The energy cost is reduced by

10.2%, while the energy consumption of the heat pumps decreases by 1%. Note that this

cost saving happens on a day that the system utilization factor (ratio of the time that a

equipment is in use to the total time that it could be in use) is around 54%. If the average

ambient temperature increases by only 1◦C, the utilization factor will decrease to 51% and

the cost saving percentage will increase to 10.6%. If the average ambient temperature

increases by 5◦C, the utilization factor will decrease to 38% and the cost saving percentage

will increase to 11.2%. Note that a significant portion of the energy cost belongs the

unresponsive loads. It should be mentioned that this cost reduction does not reflect the

entire achievable benefits of demand response integration. Potentially, demand response

can reduce the reserve requirements and assist with primary frequency regulation.
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Fig. 6.7: Total load profile under different control strategies (heating condition).

Table 6.4: Results (heating mode)

Parameter Unit Coordinated Uncoordinated
Daily electricity cost k$ 45.02 50.11
Blended price $/MWh 37.41 41.42

6.4.3 Cooling mode

In cooling mode, solar gain no longer works in favour of the HVAC system, although solar PV

panels provide a significant portion of customers demand in summer. Figure 6.8 illustrates

the market settlement at 12 AM, 9 AM, 3 PM and 9 PM on a mid June day. We should

mention that all results reported in this subsection are related to the case D: six hours

future time window and a switching cost as a percentage of the original bid specific for

each consumer. Including the switching cost in the bidding spreads out the demand curve

compared to those in Figure 6.4. Moreover, we note negative bid prices at 12 AM and 9

AM.

Figure 6.9 shows the clearing price as well as the total load before and after implemen-
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Fig. 6.8: Demand curves at 12 AM, 9 AM, 3 PM and 9 PM on a mid June day: supply
curve (red) and demand curve (blue).

tation of the proposed method of operation on a mid June day.

Rooftop solar PV panels supply a significant portion of demand on the mid June day

so that the electricity price is lower than the mid January day. Table 6.5 compares the

energy cost and blended price associated with the control strategy for air conditioners

versus the uncoordinated case. The energy cost is reduced by 10.6%, while the energy

consumption of the air conditioners does not change. Note that this cost saving happens on

a day that the utilization factor of air conditioners is around 70%. If the average ambient

temperature decreases by only 1◦C, the utilization factor will decrease to 66% and the cost
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Fig. 6.9: Clearing price and total load profile (cooling mode).

saving percentage will increase to 11.9%.

Table 6.5: Results (cooling mode)

Parameter Unit Coordinated Uncoordinated
Daily electricity cost k$ 48.13 53.87
Blended price $/MWh 34.92 39.09

6.5 Conclusions

In this paper, a new market-based control method for thermostatic loads is presented based

on transactive control paradigm. Implementation of the method requires real-time two

way communication between the loads and the market operator. An agent-based modeling

approach is used to aggregate loads. The demand response aggregator is highly responsive

to market price fluctuations. The demand profile is smoothed by introducing a switching

cost as well as providing price forecasts (mean and standard deviation) over a longer future

time window. This control method reduces the electricity cost by 10.2% on a cold day, and

by 10.6% on a hot day in comparison with the uncoordinated operation, for a case study

with given inputs.
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Flexible loads can assist the system operator maintain the grid frequency and voltage

within the admissible range of their nominal value. Therefore, a future objective is to

design a control method that incorporates energy balancing service with frequency/voltage

regulation. Another essential extension of this work is to investigate the stability of the

proposed operation strategy.

In addition to thermostatically controlled loads, plug-in electric vehicles and smart

appliances can also be used to provide ancillary services if the smart grid infrastructure is

available. However, the characteristics (magnitude, duration, frequency and availability) of

these loads are different from HVAC loads; thus their operation strategy will be different.

Accordingly, a more advance control scheme will be needed to optimally control an aggregate

of different loads.

A physical demonstration, similar to the Decentralised Energy Exchange (deX) in Aus-

tralia [155], is eventually required to gather field data, and to have a better understanding of

consumers’ behavior and technical barriers such as communication and metering response,

particularly for tariff-based incentives.
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Chapter 7

Conclusions and Future Work

Generation variation is a challenge to the seamless integration of renewable energies. The

traditional approach to dealing with generation variation is to operate additional spinning

reserve units, which often is too costly and can lead to increased overall emissions. Su-

per grids and demand response programs are lower-cost solutions to mitigating generation

variation. This dissertation suggests (1) taking a unified approach to performing resource

allocation at the interconnection scale, and (2) operating distributed energy resources, in-

cluding flexible electric loads, in a grid-friendly way to deal with power fluctuations. Both

suggestions lead to a lower overall electricity price that can facilitate renewable integration.

In summary, the main contributions presented in this dissertation are:

(1) Demand response integration into wholesale markets

A new model of demand response integration in bulk electric systems is presented.

With price-responsive loads included, the market settlement is such that the economic

surplus is maximized. Thereby, the resource allocation objective function is reformu-

lated to maximize surplus rather than minimize cost to include demand response.

(2) Optimal export/import schedule to maximize the interconnection surplus

A centralized scheduler is developed to determine the unconstrained and constrained

power transfers within an interconnection in order to maximize the overall surplus.

This resource allocation method can potentially lead to a similar generation and

load dispatch schedule that would result from operating the entire assets (in the

interconnection) under a hypothetical single giant control area. Although neither of

these approaches are practically implementable, they set upper bounds to lowering

the operational cost that distributed control approaches, i.e. agent-based control

methods, can achieve. Also, a new parameter, economic utilization factor, is defined

and used to evaluate the performance of system interties.
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(3) Super grid operation of the Western Interconnection

The benefits of operating the Western Interconnection in a unified manner is explored,

using a reduced model of the WECC system consisting of 20 consolidated areas, each

with a hypothetical wholesale market for the planning year 2024. A key result was

that integrating demand response in the super-hourly time scale does not contribute to

a significant cost reductions. This suggests sub-hourly scale examination is required.

(4) Transactive control strategy for plug-in electric vehicles (smart charging)

A load management scheme is suggested that includes electric vehicles in a 5-minute

retail double auction market. Every vehicle submits its buy and sell bids to the

market operator, considering its demand urgency and the future price opportunity

(transactive control paradigm). Comparing the cost reduction associated with either

unidirectional charging (V1G) or bidirectional charging (V2G) scenarios with the

uncoordinated charging (V0G) scenario, it is concluded that smart charging can sig-

nificantly reduce the energy cost, in particular in the presence of substantial amount

of variable renewable generation. Simulation results indicated V2G does not provide

significant additional benefits, given big impact on battery life and complexity.

(5) Market-based control approach for thermostatically controlled loads

An agent-based demand response model is developed for thermostatically controlled

loads. The proposed operation method reduces complexity by introducing the temper-

ature comfort range. Every thermostatic load participates in the retail market, con-

sidering its temperature state (load flexibility) and expected price fluctuation (mean

and standard deviation) in a future time window. This method of operation prevents

overloading the supply feeder, and also provides an efficient short-term matching of

distributed generation and flexible load resources.

7.1 Summary

The key conclusions of this dissertation are as follows:

In Chapter 2, we introduced a simple cost model of intermittent renewable and demand

response integration that can be used to determine the optimal level of variable generation

resources in an electric system. The model incorporates production, uncertainty, emission

costs, as well as capacity expansion and mothballing costs, and considers the impacts of

generation variability and load flexibility on the hourly price of electricity. We found that

for a typical power grid, the cost function is minimized with about one third variable

renewable generation. The results showed that the optimal level of renewable resources

is highly sensitive to a carbon tax and the resource’s capital cost. We also noticed that
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integrating inter-hourly demand response does not significantly impact the optimal level.

In Chapter 3, we modified the unit commitment objective to maximize the economic

surplus instead of minimizing the operational cost, in the presence of price-sensitive loads.

We also discussed the impact of electricity imports/exports (within an interconnected sys-

tem) on the economic surplus. Next, we presented a new interconnection-wide resource

allocation modeling method that incorporates both energy supply and demand response re-

sources, and then tested it on a hypothetical system consisting of two consolidated areas that

loosely represents North America’s Western Interconnection. The optimal generation sched-

ule associated with the stand-alone, copper-sheet (unconstrained-flow) and constrained-flow

models of the interconnection were compared. Furthermore, we assessed the impact of ex-

panding the system tieline capacity on inter-change scheduling. We found that, as the level

of variable generation increases, the optimal use of tielines becomes more beneficial.

In Chapter 4, we presented a method to determine the optimal resource allocation

hour-ahead schedule in an interconnection. The purpose was not to solve the intercon-

nection resource allocation problem itself; rather, we sought to provide a method that

facilitates impact studies of renewable generation and demand response interaction at the

interconnection scale without fully implementing the various existing market designs. The

method determines the optimal inter-area transfer set that effectively makes the clearing

price uniform over the interconnection’s markets (to the extent possible). We demonstrated

the method on a 20-area reduced model of the WECC system (each with a hypothetical

wholesale market) for the planning year 2024. Simulation results illustrated that inter-

regional collaboration assists control areas in reducing production costs by 22% relative

to the standalone condition with inelastic demand. In addition, results indicated that the

overall consumer surplus increases and the overall producer surplus decreases, while the

increased magnitude is always greater than the decreased magnitude. Thereby, the global

surplus (total consumer and producer surplus) increases. At the same time, the magnitude

of production cost decrease is greater than the magnitude of producer surplus decrease. We

also quantified the potential benefits of demand response integration in wholesale markets,

and noticed that the economic benefit of inter-hourly demand response is not substantial

when the system is operated with the optimal inter-area transfer set. We concluded that

the majority of the benefits for demand response arise from intra-hourly demand response

resources which are not considered in conventional hourly resource scheduling mechanisms.

In Chapter 5, we demonstrated how advanced electric vehicle charging strategies can be

used to improve inter-temporal coordination between charging needs and charging oppor-

tunities to lower charging costs. When using real-time retail price to reduce the impact of

distribution constraints, utilities can also help connect solar PV panels to charging stations

and reduce the customer’s net vehicle energy costs when compared to the uncoordinated
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scenario, thus significantly bolstering the economic case of electric vehicles over conventional

vehicles. We evaluated these impacts using agent-based simulations of vehicle chargers op-

erating in a real-time pricing environment in conjunction with PV generation. Overall,

consumers would realize significant savings when electric vehicles participate in a retail

electricity markets and receive real-time price signals which they could compare to buy/sell

reservation prices to make charge/discharge decisions. This intra-hourly bid-response strat-

egy requires knowledge of price expectations based on day-ahead hourly wholesale prices,

which suggests that the integration of wholesale and retail markets must consider not only

topological but also inter-temporal exchanges to induce sufficient demand response partici-

pation at the wholesale level.

In Chapter 6, we proposed a new market-based (indirect and centralized) operation

method for thermostatically controlled loads based on the transactive control paradigm.

Implementation of this method requires a real-time two way communication between these

loads and the retail market operator. Similar to the smart charging method, we used an

agent-based approach to model the HVAC load control strategy. The simulation results

indicated that implementing this control strategy would enable the load fleet to provide

a fast collective response to market price fluctuations that reflects underlying technical

real-time energy balance requirements at the wholesale market level. The control method

reduces energy costs, prevents grid congestion and facilitates renewable integration.

In summary, we concluded that, considering capability of loads to provide a fast response

to price changes as well as their flexibility restrictions, market-based demand response

programs are useful to mitigate sub-hourly power fluctuations rather than shifting energy

demand for super-hourly time periods.

7.2 Future Work

The following studies and modifications are recommended as extensions of the current work

to provide a more accurate insight into benefits and limitations of super grids and demand

response programs.

(I) Incorporating reserve requirements in the interconnection-wide economic

dispatch problem: Future work could be done to include reserve scheduling in

the resource allocation problem. A co-optimization of energy and reserve allocation

is required to provide an efficient use of resources, in particular in the presence of

significant amounts of variable generation. In an interconnection, reserve sharing can

lower the total operational cost. In addition, the availability of demand response

can reduce the need to operate costly spinning reserve units necessary to back up

generation and load variations.
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(II) Considering operational constraints for supply and demand resources:

There are a number of operational constraints that are excluded from the proposed

scheduling model for simplicity, including ramping limits as well as start-up and shut-

down restrictions (a history of events happening in previous hours). It is also required

to delve deeper into system reliability and survivability matters e.g., N-1 contingency

constraint. Including operational constraints in the resource allocation process would

improves on the functionality of the model. In addition, with these constraints in-

cluded, the total system cost would be described more accurately than the model

presented in Chapter 2.

(III) Investigating the impact of including energy storage systems on the op-

timal operation: In conjunction with super grids and demand response programs,

energy storage systems can be used to mitigate generation and load fluctuations. A

future objective should be exploring the benefits of integrating energy storage sys-

tems in both wholesale (e.g. pumped hydroelectric storage) and retail (e.g. battery

storage) electricity markets.

(IV) Developing an interconnection optimal resource planning model: The cost

reduction associated with operating an interconnection in a unified manner is more ap-

preciable with greater penetration levels of renewables. Accordingly, optimal resource

planning should also be done at the interconnection-scale. One essential extension

of this work is to apply the scheduling method for energy planning purposes. The

objective would be to determine the most economically beneficial type and capac-

ity of renewable energies in each area so that the system can achieve the targeted

greenhouse gas emissions reduction with the minimal added cost. In addition, we can

introduce an interconnection-wide carbon tax to incentivize clean energy resources

that can accelerate the phase out process of fossil fuel power plants. As an aside,

it is necessary to consider the system long-term resource adequacy in regions with

(energy-only) markets.

(V) Evaluating performance of a demand response program consisting of elec-

tric vehicles, smart appliances and HVAC loads: A model of a demand re-

sponse program combining technologies with different characteristics (magnitude,

duration, frequency and availability) is necessary to understand their collective be-

haviour. Sometimes these flexible loads can be complementary, and sometimes incom-

patible. Therefore, a more advanced control scheme should be developed to optimally

control an aggregation of different types of loads. In designing load management

strategies, robustness of the operation control method should also be considered.



123

(VI) Using demand response to provide primary frequency control service: Flex-

ible loads can assist the system operator in maintaining grid frequency within the

admissible range of its nominal value. Therefore, a future objective is to design a

control method that incorporates energy balancing services with frequency regula-

tion. In addition, an essential piece of this work would be to examine the stability of

the control method.
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