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ABSTRACT

Due to failure of the continuum hypothesis for higher Knudsen numbers, rarefied

gases and microflows of gases are particularly difficult to model. Macroscopic trans-

port equations compete with particle methods, such as the direct simulation Monte

Carlo method (DSMC) to find accurate solutions in the rarefied gas regime. Due to

growing interest in micro flow applications, such as micro fuel cells, it is important

to model and understand evaporation in this flow regime.

To gain a better understanding of evaporation physics, a non-steady simulation

for slow evaporation in a microscopic system, based on the Navier-Stokes-Fourier

equations, is conducted. The one-dimensional problem consists of a liquid and va-

por layer (both pure water) with respective heights of 0.1mm and a corresponding

Knudsen number of Kn=0.01, where vapor is pumped out. The simulation allows for

calculation of the evaporation rate within both the transient process and in steady

state.

The main contribution of this work is the derivation of new evaporation bound-

ary conditions for the R13 equations, which are macroscopic transport equations with

proven applicability in the transition regime. The approach for deriving the boundary

conditions is based on an entropy balance, which is integrated around the liquid-vapor

interface. The new equations utilize Onsager relations, linear relations between ther-

modynamic fluxes and forces, with constant coefficients that need to be determined.

For this, the boundary conditions are fitted to DSMC data and compared to other
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R13 boundary conditions from kinetic theory and Navier-Stokes-Fourier solutions for

two steady-state, one-dimensional problems. Overall, the suggested fittings of the

new phenomenological boundary conditions show better agreement to DSMC than

the alternative kinetic theory evaporation boundary conditions for R13.

Furthermore, the new evaporation boundary conditions for R13 are implemented

in a code for the numerical solution of complex, two-dimensional geometries and

compared to Navier-Stokes-Fourier (NSF) solutions. Different flow patterns between

R13 and NSF for higher Knudsen numbers are observed which suggest continuation

of this work.
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Chapter 1

Introduction

The phase change between liquid and vapor plays an important role in many techni-

cal processes. Often this phase change is desired such as in refrigeration cycles where

evaporators remove heat from a cold reservoir and condensers reject heat to the envi-

ronment [1][2]. In steam power plants liquid water is evaporated, then expanded in a

turbine and eventually condensed again [2][3][4]. In other applications, evaporation or

condensation may occur which is not desired. Water management plays an important

role in fuel cell systems [5][6] and having control over the phase of the water is crucial

for optimal operation.

When developing new technologies, it is desired to compare mathematical models

with experimental data where the mathematical approach is by far cheaper.

Modeling evaporation and condensation has been subject of research for the past

century. However, previous work has been mostly concerned with a flow regime, where

the equations of classical hydrodynamics, i.e., the Navier-Stokes-Fourier equations

are valid. Though, there are many applications where the continuum hypothesis and

therefore classical hydrodynamics fail, such as flow within micro electro mechanical

devices (MEMS) [7] or vacuum applications.

The present work starts with modeling slow evaporation in a microscopic system

where classical hydrodynamics are just valid (Chap. 2). The results give insight

into the physics of evaporation. In Chap. 3 macroscopic transport equations with

applicability in flow regimes beyond the scope of classical hydrodynamics are extended

by deriving new evaporation/condensation boundary conditions. These boundary

conditions utilize coefficients which are determined by fitting to reference data for a

half-space and a finite problem. In Chap. 4 the newly derived boundary conditions

are put to test in a numerical steady-state simulation for complex geometries. The
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work ends with the conclusion and outlook in Chap. 5.

1.1 Microscopic vs. macroscopic approach

For modeling ideal gas flow, there are in general two approaches, the microscopic and

the macroscopic approach. In the microscopic approach, the Boltzmann equation

[8][9] is solved, e.g., with the Direct Simulation Monte Carlo method (DSMC) [10].

By neglecting external forces, the Boltzmann equation is given as

∂f

∂t
+ ck

∂f

∂xk
=

1

Kn
S(f) =

1

Kn

∫ 2π∫
0

π/2∫
0

(
f

′
f 1′ − ff 1

)
gσc sin θdθdεdc1 , (1.1)

with f(xk, ck, t) as single particle distribution function, in which xk = {x1, xx, x3} is

the position vector and ck = {c1, c2, c3} the vector denoting microscopic velocity. The

term S(f) describes binary collisions between particles and, if set to zero, Eq. (1.1)

describes free flight. The distribution function f(xk, ck, t) is defined over the relation

Nxk,ck = f(xk, ck, t)dxkdck which is the number of particles within a cell of phase

space dxkdck at time t [9][11]. The collision term S(f) consists of f = f(xk, ck, t)

and f 1 = f(xk, c
1
k, t), which denote the respective distribution of the two incoming

particles before collision, f
′

= f(xk, c
′

k, t) and f 1′ = f(xk, c
1′

k , t) as distribution of

outgoing particles after collision, θ as the collision angle, ε as the orientation of the

collision plane, σc as the differential cross section and g as the relative velocity of the

incoming particles.

By knowing the distribution function one may condense microscopic information

into macroscopic quantities which are also referred to as moments. Some moments of

the distribution function are given as

Mass density: ρ = m

∫
fdc , (1.2)

Velocity: ρvi = m

∫
cifdc , (1.3)

Internal energy: ρu =
3

2
ρθ =

m

2

∫
C2fdc , (1.4)

Pressure tensor: pij = pδij + σij = m

∫
CiCjfdc , (1.5)
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Stress tensor: σij = m

∫
C〈iCj〉fdc , (1.6)

Heat flux vector: qi =
m

2

∫
C2Cifdc . (1.7)

The ideal gas law is here defined as p = ρθ, with θ = RT and the peculiar velocity as

Ci = ci − vi , (1.8)

in which ci is the microscopic velocity and vi the bulk velocity, def. (1.3). Indices in

angular brackets denote trace free and symmetric tensors.

The Boltzmann equation is difficult and computationally expensive to solve and

for engineering applications determining the macroscopic quantities only is often suffi-

cient. In the macroscopic approach, sets of equations, e.g., the Navier-Stokes-Fourier

equations (classical hydrodynamics) are derived from the Boltzmann equation. These

equations reduce the number of variables, and when simplified, allow for analytical

solutions. The advantage of faster calculations is associated with the restriction to

certain flow regimes [12].

1.2 Characteristics of micro and rarefied gas flow

Macroscopic transport equations approximate the Boltzmann equation (1.1) and are

bound to certain flow regimes, which can be characterized by the Knudsen number.

The Knudsen number is the ratio of the mean free path, i.e., the average distance a

molecule travels between two subsequent collisions, and a characteristic length, e.g.

the diameter of a pipe [11]. The Knudsen number is defined as

Kn =
µ
√
RT

pL
, (1.9)

with µ as dynamic viscosity, L as characteristic length, R as individual gas con-

stant, T as temperature and p = ρRT as pressure. For Knudsen numbers larger than

Kn ≈ 4·10−2 the classical Navier-Stokes-Fourier equations (NSF) start to fail [11][12].

Applications for Knudsen numbers in the transition regime, i.e., 4 · 10−2 < Kn < 2.5

[12], may be those with large mean free paths, e.g., in vacuum or aerospace applica-

tions, or those with small characteristic lengths, which can be found in microflows. In

this regime rarefaction effects are observed, such as temperature jump and velocity
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slip at interfaces, Knudsen layers in front of interfaces, transpiration flow, thermal

stresses, or heat transfer without temperature gradients [11][12][13][14][15]. Knudsen

layers are thin areas in front of boundaries in the order of a few mean free paths,

which correspond to a discontinuity between the phase density right at the boundary,

where particle interaction with the boundary is the dominant mechanism and the

phase density for the bulk flow.

1.3 The Navier-Stokes-Fourier equations

As first approach for modeling evaporation one considers the Navier-Stokes-Fourier

equations (NSF) from classical fluid mechanics, which are valid for relatively small

Knudsen numbers only. For a fluid (liquid or gas) the conservation laws in local form

for mass, momentum and energy are given as [16]

∂ρ

∂t
+
∂ρvk
∂xk

= 0 , (1.10)

∂ρvi
∂t

+
∂ρvivk + pik

∂xk
= ρgi , (1.11)

∂ρ
(
u+ v2

2

)
∂t

+
∂
(
ρ
(
u+ v2

2

)
vk + pikvi + qk

)
∂xk

= ρgivi , (1.12)

in which pik = pδik+σik is the pressure tensor, with δik as identity matrix. The tensor

notation is used in which the symbol for sum is neglected, i.e.,
3∑

k=1

∂vk
∂xk

= ∂vk
∂xk

. Here,

ρ is mass density, vi velocity vector, u specific internal energy, p pressure, σik viscous

stress tensor, qk conductive heat flux vector and gi a body force, e.g., gravitational

force. The variables depend on the position vector xk, which for three dimensions in

space reads xk = {x1, x2, x3} and time t. One has five equations for the five unknowns

ρ, vi and T . An algebraic equation for p is found in the ideal gas law p = ρRT . To

close the system, it is necessary to find equations for qk and σik which are given by

Fourier’s law

qk = −k ∂T
∂xk

, (1.13)
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and the Navier-Stokes stress tensor for a compressible fluid, with superscript v for

vapor as [16]

σvik = −µ
[
∂vi
∂xk

+
∂vk
∂xi
− 2

3

∂vj
∂xj

δik

]
− ν ∂vj

∂xj
δik , (1.14)

in which µ is the dynamic viscosity and ν the bulk viscosity. When considering a

monatomic gas, the bulk viscosity becomes zero.

For an incompressible and Newtonian liquid the divergence
∂vj
∂xj

is zero and there-

fore the stress tensor simplifies to

σlik = −µ
[
∂vi
∂xk

+
∂vk
∂xi

]
. (1.15)

Under the assumption of constant specific heats, the equation of state for enthalpy

in vapor is

hv = cpv (Tv − T0) + h0
gl , (1.16)

with h0
gl = h0

g − h0
l , see Appendix A. One notes, that if the equilibrium temperature

T0 is not set to zero, one obtains hv(T0) = h0
gl, which appears convenient. However,

since enthalpy differences are considered, the choice of T0 does not effect the results

eventually. After combination with uv = hv − pv
ρv

and the ideal gas law, Eq. (1.16)

becomes

uv = Tv(c
p
v −R) + h0

gl − T0c
p
v . (1.17)

For an incompressible fluid, the equation of state for enthalpy reads

hl = cpl (Tl − T0) +
1

ρl
(pl − pl0) , (1.18)

and by using the definition for internal energy ul = hl − pl
ρl

it follows

ul = cpl (Tl − T0)− pl0
ρl

. (1.19)

By using the appropriate stress tensor, Eq. (1.14) or (1.15), and equations of state,

NSF can be used to model liquid or vapor. Modeling evaporation is mainly a matter

of the corresponding interface or boundary conditions between liquid and vapor which

are discussed in the next chapters.
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Chapter 2

A Transient Simulation on

Evaporation

2.1 1-D, Non-steady evaporation problem

To gain an insight into the physics of evaporation processes, the Navier-Stokes-

Equations (NSF), Eqs. (1.10-1.12) are considered. The system of interest, depicted

in Fig. 2.1, consists of a liquid and a vapor layer divided by an interface. Equilib-

Figure 2.1: Evaporation in one-dimensional and non-steady state system.

rium pressure of the system, when no evaporation occurs, is the saturation pressure

at temperature T0, p0 = psat (T0). The driving force of evaporation is the controlled

pressure at the top boundary

pv(x = H) = pbv , (2.1)

which is set to pbv < p0. Simply speaking, vapor is pumped out of the top boundary

which decreases the pressure at every location in the system and therefore forces

evaporation. As result, mass and convective heat (j and Q) are transferred from



7

Equilibrium pressure: p0 = psat (298K) = 3169Pa
Vaporization enthalpy: h0

gl (298K) = 2442.3 · 103 J
kg

Specific gas constant: R = 461.9 J
kgK

Density vapor: ρv0 = p0

RT0

Density liquid: ρl = 1000 kg
m3

Isobaric specific heat vapor: cpv = 5
2
R

Specific heat liquid: cl = 4180 J
kgK

Thermal conductivity vapor: kv = 0.014 W
mK

Thermal conductivity liquid: kl = 0.55 W
mK

Table 2.1: Material properties for water.

vapor velocity vv(x, 0) = 0
vapor pressure pv(x, 0) = p0 = psat (T0)
liquid pressure pl(x, 0) = p0 = psat (T0)
temperature Tl(x, 0) = Tv(x, 0) = T0

position interface Ll(t = 0) = Ll0

Table 2.2: Initial conditions for non-steady evaporation system.

liquid to vapor and out of the system at x = H. The choice of equilibrium pressure

allows for small differences between pbv and p0 to start evaporation. Additionally the

temperatures on bottom and top

Tl(x = 0) = Tbl = const. , (2.2)

Tv(x = H) = Tbv = const. , (2.3)

are controlled and if not set to T0, evaporation can be driven by them as well. The

liquid layer is at rest (vl = 0) while being depleted, as a result the interface moves

into the negative x direction with velocity vs. The controlled boundary conditions,

Eqs. (2.1-2.3) are chosen to be constant in time. The system is much wider than it

is high, which minimizes impact of left and right boundaries and allows for a one-

dimensional description. The interface is assumed to be an infinitesimal thin volume

by letting its height approach zero, ∆x→ 0. Material properties for water are taken

out of Table 2.1. The initial conditions (t = 0) are depicted in Table 2.2. It is desired

to obtain a full thermodynamic solution of the system with simplified NSF.
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2.2 Simplification of NSF equations for

one-dimensional system

For heat and mass transfer for one dimension in space, the mass- and momentum

balances (1.10, 1.11) for the vapor bulk become

∂ρv
∂t

+
∂ρvvv
∂x

= 0 , (2.4)

∂ρvvv
∂t

+
∂

∂x

(
ρvv

2
v + p− σ11

)
= ρvf1 , (2.5)

with the simplified compressible stress tensor (1.14) as

σ11 =

(
4

3
µ+ ν

)
∂v

∂x
. (2.6)

The momentum balance for vapor is further simplified by neglecting gravitation,

which is justified due to low mass density of vapor. The square of velocity is neglected

due to slow fluid flow and also the stress tensor which, relative to temperature or

density, is assumed to have a small impact in the present system. Then the momentum

balance reduces to
∂ρvvv
∂t

+R
∂ρvTv
∂x

= 0 , (2.7)

where the ideal gas law p = ρRT was introduced. The one-dimensional energy balance

for vapor reads

∂ρv
(
uv + 1

2
v2
v

)
∂t

+
∂

∂x

(
ρv

(
uv +

1

2
v2
v

)
vv + pv + qv − σ11vv

)
= ρvf1vv . (2.8)

With the same assumptions as the momentum balance, the energy balance can

be reduced to
∂ρvuv
∂t

+
∂

∂x
(vvhvρv + qv) = 0 , (2.9)

where h = u + p
ρ

was introduced. By using Eq. (1.17) together with Fourier’s heat

conduction, Eq. (1.13), and under the assumption of constant thermal conductivity

kv, the energy balance for vapor becomes

(cpv −R)
∂ρvTv
∂t

+ cpv
∂vvρvTv
∂x

− kv
∂2Tv
∂x2

= 0 . (2.10)
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vapor liquid

mass
∂ρv
∂t

+
∂ρvvv
∂x

= 0
∂vl
∂x

= 0

momentum
∂ρvvv
∂t

+R
∂ρvTv
∂x

= 0
∂pl
∂x

= 0

energy (cpv −R)
∂ρvTv
∂t

+ cpv
∂vvρvTv
∂x

− kv
∂2Tv
∂x2

= 0 ρlcl
∂Tl
∂t
− kl

∂2Tl
∂x2

= 0

Table 2.3: Simplified Navier-Stokes-Fourier equations for non-steady evaporation sys-
tem.

With constant density, the mass balance of the liquid layer reads

∂vl
∂x

= 0 . (2.11)

By recalling, that the liquid is it rest, and under the same assumptions as for the

momentum balance for vapor (2.5), the momentum balance for liquid simplifies to

∂pl
∂x

= 0 , (2.12)

which may be integrated trivially and leads to constant pressure pl = const. in the

liquid layer. The gravitational force and therefore the hydrostatic pressure is ne-

glected by considering a thin liquid layer. By taking into account all previous stated

assumptions and with Eq. (1.13), the energy balance for liquid becomes

ρl
∂ul
∂t

+
∂ql
∂x

= 0 , (2.13)

and by using Eq. (1.19), it further simplifies to

ρlc
p
l

∂Tl
∂t
− kl

∂2Tl
∂x2

= 0 . (2.14)

The bulk equations for liquid and vapor are summarized in Table 2.3.
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2.2.1 Linearization and non-dimensionalization of NSF

Linearizing around an equilibrium state defined over temperature T0, density ρ0 and

pressure p0 = psat (T0) allows for further simplification of the bulk equations as stated

in Table 2.3. The equations below describe the relation between dimensionless devi-

ation to equilibrium (overbar) and regular variables

T = T0

(
1 + T

)
, ρ = ρ0 (1 + ρ) , p = p0 (1 + p) , (2.15)

xk = Lxk, t =
L

v0

t, vk = v0vk .

The equations in Table 2.3 are modified by applying (2.15) and ignoring all terms,

which are non-linear in the deviations to equilibrium. This method is based on

the dimensionless deviations (close to equilibrium) being represented by a value N

with −1 < N < 1, so that multiplication with other deviations always leads to a

product, which is smaller than any of the factors. All variables are non-dimensional

and describe the deviation from the equilibrium state. Hence, mass and momentum

balances in the vapor become

∂ρv
∂t

+
∂vv
∂x

= 0 , (2.16)

v2
0

RT0

∂v

∂t
+
∂T

∂x
+
∂ρ

∂x
= 0 . (2.17)

The factor RT0 in (2.17) has the same order of magnitude as the speed of sound which

for an ideal gas can be written as a =
√
κRTv, with κ = cp

cv
. Slow evaporation in the

order of magnitude of v0 = 1m
s

is assumed and therefore
v2
0

RT0
� 1. This allows to

neglect the time derivative in (2.17). For obtaining a simple solution it is desired to

decouple the equations in Table 2.3 as much as possible. Note, that in the solution

later on, the time and velocity scale is changed, where v0 =
√
RT0 was used. Hence

the momentum balance in vapor becomes

∂
(
T v + ρv

)
∂x

= 0 , (2.18)

which after integration reads

T v + ρv = C(t) = p(x = H, t) = pbv(t) or ρv = pbv(t)− T v . (2.19)



11

The ideal gas law, which in linearized and non-dimensional form (deviation from

equilibrium), assumes the form ρv = −T v + pv and is used to eliminate density in the

momentum balance for vapor (2.18), which after integration becomes

pv = pbv . (2.20)

With Eqs. (2.12) and (2.20), the pressure in the entire system is constant and equal to

the controlled pressure pbv on the top boundary. The integrated momentum balance

for vapor (2.19) is plugged into the mass balance (2.16) and with ∂pbv(t)

∂t
= 0 the

modified mass balance for vapor becomes

∂T v
∂t
− ∂vv

∂x
= 0 . (2.21)

The energy balance for vapor (2.10) after linearization and non-dimensionalization

reads

−R∂ρv
∂t

+ (cpv −R)
∂T v
∂t
− kv
ρv0v0L

∂2T v
∂x2 = 0 . (2.22)

By using the integrated momentum balance, Eq. (2.19) again, the energy balance for

vapor becomes
∂T v
∂t
− kv

RT0

cpvp0v0L

∂2T v
∂x2 = 0 . (2.23)

Having the temperature as unknown only, the discussed simplifications decouple the

energy balance from momentum and mass balances and make it therefore simple to

solve. Finally, the mass balance (2.21) is combined with the energy balance (2.23) to

find
∂vv
∂x
− kv

RT0

cpvp0v0L

∂2T v
∂x2 = 0 . (2.24)

After integration, Eq. (2.24) allows to calculate the vapor velocity vv(x, t) depending

on vapor temperature Tv without the issue of solving a time derivative. Mass and

momentum balances of liquid, Eq. (2.11) and (2.12) do not change their appearance

in linear and dimensionless form. The energy balance for liquid (2.14) slightly changes

in linearized and non-dimensional form and reads

∂T l
∂t
− kl
Lρlclv0

∂2T l
∂x2 = 0 . (2.25)

A summary of the Navier-Stokes-Fourier equations, simplified, linearized and in non-
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vapor liquid

mass
∂vv
∂x
− kv

RT0

cpvp0v0L

∂2T v
∂x2 = 0

∂vl
∂x

= 0

momentum
∂pv
∂x

= 0
∂pl
∂x

= 0

energy
∂T v
∂t
− kv

RT0

cpvp0v0L

∂2T v
∂x2 = 0

∂T l
∂t
− kl
Lρlclv0

∂2T l
∂x2 = 0

Table 2.4: Simplified, linearized and non-dimensional Navier-Stokes-Fourier equations
for unsteady evaporation system.

dimensional form is given in Table 2.4.

2.3 Defining and simplifying the boundary condi-

tions

For integrating the equations in Table 2.4, boundary conditions and interface con-

ditions for velocity, pressure and two temperatures for both vapor and liquid are

required. Three boundary conditions are found in Eqs. (2.1-2.3) by controlling tem-

peratures at both boundaries and pressure at x = H. The mass balance (1.10) is

integrated around an interface between liquid and vapor and becomes

ρlv̂
Ll
l = ρLl

v v̂
Ll
v , (2.26)

with the liquid and vapor velocities v̂Ll
l and v̂Ll

v at location Ll from the perspective of

an observer moving with the interface. By using Galilei transformation one obtains

v̂Ll
v − v̂

Ll
l = vLl

v − v
Ll
l , (2.27)

with vLl
α as velocities observed from a laboratory reference frame. The liquid is at

rest so that vLl
l = 0. The liquid reservoir is depleted by evaporation and the interface

between liquid and vapor moves towards x = 0, with velocity vs = dLl

dt
. The relative

liquid velocity from an observer moving with the interface is found by observation as

v̂Ll
l = −dLl

dt
= −vs . (2.28)
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For Eq. (2.27) follows

v̂Ll
v = vLl

v −
dLl
dt

. (2.29)

Eq. (2.28) and (2.27) are substituted into the integrated mass balance for vapor (2.26),

which then becomes
dLl
dt

=
ρLl
v v

Ll
v

ρLl
v − ρl

. (2.30)

The momentum balance (1.11) integrated around the interface reads

ρLl
l v̂

Ll
l v̂

Ll
l + pLl

l = ρLvv v̂
Lv
v v̂Lv

v + pLl
v . (2.31)

Again the square of velocity is neglected so that

pLl
l = pLl

v . (2.32)

The energy balance, Eq. (1.12) integrated around an interface between liquid and

vapor reads

ρlv̂
Ll
l hl + qLl

l = ρLl
v v̂

Ll
v hv + qLl

v . (2.33)

For simplicity it is desired to use velocities from the laboratory reference frame.

The integrated energy balance (2.33) is manipulated by using Eqs. (2.28, 2.29), heat

conduction according to Fourier (1.13), the caloric equations of state, (1.16) and

(1.18), and the integrated mass balance (2.26). It follows

∂TLl
l

∂x
= − 1

kl

 (
cpv (Tv − To) + h0

gl

)
ρLl
v v

Ll
v +

+
((
−cpvTv + cpvT0 − h0

gl

)
ρLl
v + ρlcl (Tl − T0)

) (
ρ
Ll
v v

Ll
v

ρ
Ll
v −ρl

)
− kv ∂T

Ll
v

∂x

 .

(2.34)

Two evaporation interface conditions are found over the Onsager theory, which utilizes

an integrated entropy balance [17][18]:

pLl
sat − pLl

v√
2πRTLl

l

= r̂11j
Ll + r̂12

qLl
v

RTLl
l

, (2.35)

− pLl
sat√

2πRTl

(
TLl
v − T

Ll
l

)
TLl
l

= r̂21j
Ll + r̂22

qLl
v

RTLl
l

. (2.36)
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vap. vel. vLl
v = −

(
ρLl
v

ρl
− 1

) r̂12kv
r̂11R

1

ρLl
v T

Ll
l

[
∂Tv
∂x

]
Ll

+
1

r̂11ρ
Ll
v

pLl
sat −RρLl

v T
Ll
v√

2πRTLl
l


vap. pr. pv(H, t) = pbv = const.

liqu. pr. pl = pv

liq. tem. Tl(0, t) = Tbl = const.

liq. tem.

[
∂Tl
∂x

]
Ll

= − 1

kl

( (
cpv (Tv − T0) + h0

gl

)
ρLl
v v

Ll
v − kv

[
∂Tv
∂x

]
Ll

+
((
−cpvTv + cpvT0 − h0

gl

)
ρLl
v + ρlcl (Tl − T0)

) (
ρ
Ll
v v

Ll
v

ρ
Ll
v −ρl

) )

vap. tem. Tv(H, t) = Tbv = const.

vap. tem.

[
∂Tv
∂x

]
Ll

=
R

r̂22kv
TLl
l

r̂21ρ
Ll
v

(
vLl
v −

ρLl
v v

Ll
v

ρLl
v − ρl

)
+

pLl
sat√

2πRTl

(
TLl
v − T

Ll
l

)
TLl
l


surf. vel.

dLl
dt

=
ρLl
v v

Ll
v

ρLl
v − ρl

Table 2.5: Evaporation interface and boundary conditions for non-steady system.

The Onsager coefficients, which describe the linear relation between thermodynamic

fluxes and forces can be taken from (D.2) or (D.3) in Appendix D. Eq. (2.35) is

manipulated by using jLl = ρLl
v v̂

Ll
v or jLl = ρLl

v

(
vLl
v − dLl

dt

)
for mass flow and with the

ideal gas law and Eq. (1.13) and (2.30) it follows

vLl
v = −

(
ρLl
v

ρl
− 1

) r̂12kv
r̂11R

1

ρLl
v T

Ll
l

∂TLl
v

∂x
+

1

r̂11ρ
Ll
v

pLl
sat −RρLl

v T
Ll
v√

2πRTLl
l

 . (2.37)

Eq. (2.36) is manipulated in the same manner and then reads

∂TLl
v

∂x
=

R

r̂22kv
TLl
l

r̂21ρ
Ll
v

(
vLl
v −

ρLl
v v

Ll
v

ρLl
v − ρl

)
+

pLl
sat√

2πRTl

(
TLl
v − T

Ll
l

)
TLl
l

 . (2.38)

Table 2.5 summarizes all interface and boundary conditions for the one-dimensional

and non-steady system.
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vap. vel. vLl
v =

1

v0

(
1− p0

RT0ρl

)
r̂12kvT0

r̂11p0L

[
∂T v
∂x

]
Ll

+

1

r̂11p0

√
2πRT0

(
p0h

0
glT

Ll

l −RT0p0p
Ll
v

)


vap. pr. pbv =
pbv

p0

− 1

liqu. pr. pl = pv

liq. tem. T bl =
Tbl
To
− 1

liq. tem.

[
∂T l
∂x

]
Ll

=
1

kl

(
Lρv0h

0
glv0

To
vLl
v

(
ρl

ρvo − ρl

)
+ kv

[
∂T v
∂x

]
Ll

)

vap. tem. T bv =
Tbv
To
− 1

vap. tem.

[
∂T v
∂x

]
Ll

=
LR

r̂22kv

(
r̂21ρv0

(
− ρl
ρv0 − ρl

)
v0v

Ll
v +

p0√
2πRT0

(
T v − T l

))

surf. vel.
dLl
dt

=
ρv0v

Ll
v

ρv0 − ρl
Table 2.6: Linearized and non-dimensional interface and boundary conditions for
non-steady system.

2.3.1 Linearizing and non-dimensionalizing the boundary con-

ditions

The interface and boundary conditions, Table 2.5 shall be linearized and non-dimensionalized

in the same way as the Navier-Stokes-Fourier equations by using (2.15). The satura-

tion pressure is approximated with the Clausius-Clapeyron equation which in linear

and non-dimensional form (variables denote deviation to equilibrium) can be writ-

ten as psat
(
T l
)

=
h0
gl

RT0
T l. The linear and non-dimensional boundary conditions are

summarized in Table 2.6
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2.3.2 Analytical steady-state solution

A full set of equations to describe Fig. 2.1 is obtained from the simplified Navier-

Stokes-Fourier equations in Table 2.4 together with the initial- and boundary condi-

tions given in Tables 2.2 and 2.6. For gaining a steady-state solution, one considers

the interface between liquid and vapor to be fixed, i.e., dLl

dt
= 0. With all time deriva-

tives being zero, the temperature profiles which follow after integration of Eq. (2.23)

and (2.25) are linear and the solution of the vapor velocity implicitly given by (2.21)

is constant. As comparison to the non-steady solution, a steady-state solution shall

be obtained by solving the two modified Onsager boundary conditions (2.37,2.38)

together with the integrated energy balance (2.34) and the controlled boundary tem-

peratures as a linear system. The solution must satisfy

Tl = (Al +Blx) , (2.39)

Tv = (Av +Bvx) , (2.40)

vv = Cv = const. . (2.41)

For the linear system it follows

f1
h0
gl

r̂11
√

2πRT0
0 0 f1

r̂12kvT0

r̂11p0L
1

0 0 1 −kv
kl

− 1
kl

Lρv0hoglv0

T0
f3

f2 −f2 0 1 r̂21ρv0LRv0

r̂22kv
f3

1 0 −Ll0

L
0 0

0 1 0
(
H−Ll0

L

)
0




Al

Av

Bl

Bv

Cv

 =



f1
RT0p

Ll
v

r̂11
√

2πRT0

0

0
Tbl
T0
− 1

Tbv
T0
− 1


,

(2.42)

with the constants:

f1 = − 1

vo

(
1− ρv0

ρl

)
, (2.43)

f2 =
LR

r̂22kv

p0√
2πRT0

, (2.44)

f3 =
ρl

ρv0 − ρl
. (2.45)
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2.4 Numerical method

2.4.1 Computational domain and discretization

The simplified NSF equations, Tables 2.4 and 2.6, shall be solved numerically in the

following. Due to simple geometry, a uniform mesh, depicted in Fig. 2.2 for both liquid

and vapor appears convenient. The height of the system is split into Nl subdivisions

Figure 2.2: Discretized computational domain for non-steady evaporation system.

of size ∆xl(t) = hl(t) for liquid and Nv subdivisions of size ∆xv(t) = hv(t) for vapor

with hl (t = 0) = hv (t = 0) = h. The location is given by iα = {1, ..., Nα + 1} for

space and j = {1, ...,M + 1} for time. The differential equations (2.23) and (2.25)

are of the form
∂T

∂t
− a∂

2T

∂x2 = 0 , (2.46)

which after discretization may be written as[
∂T

∂t

]
i,j−1

− a
[
∂2T

∂x2

]
i,j−1

= 0 . (2.47)

An explicit form is obtained by using a forward difference for the time derivative and

a central difference for the spatial derivative given as[
∂T

∂t

]
i,j−1

=
T i,j − T i,j−1

k
+O (k) , (2.48)
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[
∂2T

∂x2

]
i,j−1

=
T i+1,j−1 − 2T i,j−1 + T i−1,j−1

h2
+O

(
h2
v

)
. (2.49)

By approximating derivatives with finite differences, an error O(h2
v) is introduced.

The explicit solution for the temperature profiles reads

T i,j = T i,j−1 + a
k

h2

(
T i+1,j−1 − 2T i,j−1 + T i−1,j−1

)
. (2.50)

The velocity may be calculated with Eq. (2.24), which is of the form

∂vv
∂x
− a∂

2Tv
∂x2

= 0 . (2.51)

For velocity at i = 2, a first order backward and a second order central difference are

used which are given as (
∂vv
∂x

)
2,j

=
vv,2,j − vv,1,j

hv
+O (hv) , (2.52)

(
∂2T v
∂x2

)
2,j

=
T v,3,j − 2T v,2,j + T v,1,j

h2
v

+O
(
h2
v

)
. (2.53)

Since a central difference of higher accuracy can not be used for
(
∂vv
∂x

)
2,j

at i = 2,

a backward difference (2.52) is necessary. Then the explicit form for calculating the

velocity at i = 2 becomes

vv,2,j =
v

hv

(
T v,3,j − 2T v,2,j + T v,1,j

)
+ vv,1,j . (2.54)

For velocity at i = 3...Nv + 1 two second order central differences are used:

∂vv
∂x

=

(
∂vv
∂x

)
i−1,j

=
vv,i,j − vv,i−2,j

2hv
+O

(
h2
v

)
, (2.55)

[
∂2T v
∂x2

]
i−1,j

=
T v,i,j − 2T v,i−1,j + T v,i−2,j

h2
v

+O
(
h2
v

)
. (2.56)

The velocity follows as

vv,i,j =
2

hv
v
(
T v,i,j − 2T v,i−1,j + T v,i−2,j

)
+ vv,i−2,j . (2.57)
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c1 =
1

v0

1

kl

Lρvoh
0
glv0

T0

, c2 =
r̂12kvT0

r̂11p0L
, c3 =

kv
kl

, c4 = RT0p0p
Ll
v ,

c5 =
1

r̂11p0

√
2πRT0

, c6 =
1(

1
LR
kvr̂22 − r̂21ρv0

r̂12kvT0

r̂11p0L

) , c7 =
r̂21ρv0

r̂11p0

√
2πRT0

,

c8 =
p0√

2πRT0

, c9 = p0h
0
gl .

Table 2.7: Constants for the solution of linear system

Equations to determine Tl (Nl + 1), Tv (1) and vv (1) are found in the two evaporation

Onsager boundary conditions (2.37,2.38) and the integrated energy balance (2.34).

One sided differences as below are used for the three equations which form a linear

system: (
∂Tv
∂x

)
1,j

=
−3T v,1,j + 4T v,2,j − T v,3,j

2hv
+O

(
h2
v

)
,

(
∂Tl
∂x

)
Nl+1,j

=
T l,Nl−1,j − 4T l,Nl,j + 3T l,Nl+1,j

2hl
+O

(
h2
l

)
. (2.58)

The first Onsager boundary condition (2.37) is used to eliminate the vapor velocity

vv (1) in the integrated energy balance (2.34) and in the second Onsager boundary

condition (2.38), and the linear system follows as(
(3 + 2hlc1c5c9) −3 (c1c2 − c3) hl

hv

−2hv (c6c7c9 − c6c8) (−3− 2hvc6c8)

)(
T l,Nl+1,j

T v,1,j

)
=(

2hlc1c5c4 − T l,Nl−1,j + 4T l,Nl,j − (c1c2 − c3) hl
hv

(
4T v,2,j − T v,3,j

)
−2hvc6c7c4 − 4T v,2,j + T v,3,j

)
, (2.59)

with the constants c1, ..., c9 given in Table 2.7. After solving the linear system, the

Onsager boundary condition (2.37) can be solved explicitly for the vapor velocity at

the boundary vv (1). The discretization of the remaining boundary conditions from

Table 2.6 is trivial and not further discussed here.

2.4.2 The Matlab algorithm

The non-steady evaporation problem is solved in Matlab for which the algorithm is

illustrated as a flow chart in Fig. 2.3. Due to decoupling of the differential equations
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Figure 2.3: Flow chart for numerical solution of non-steady evaporation system.
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after simplification, simple explicit solutions can be obtained.

Moving interfaces can be modeled either with dynamic mesh or a level set method,

Ref. [19]. Due to simple geometry, a dynamic mesh is chosen here. For every time

step j the new position of the interface must be calculated by solving Eq. (2.30). This

leads to growing spatial step sizes in vapor hv and decreasing spatial steps in liquid

hl. This issue suggests to swap nodes after a certain difference between hv and hl is

reached, i.e., Nl = Nl − 1 and Nv = Nv + 1. A criterion is suggested in

hl,new < hcritical =
Ll,initial − hinitial

Ninitial

. (2.60)

The critical step size of the liquid hcritical corresponds to the time, when the

interface reaches the next closest node of the initial state, as shown in Figure 2.4.

Figure 2.4: Dynamic mesh for non-steady evaporation simulation.

With and without node-swap, all variables are interpolated to the new grid after

every time step.

2.5 Results of the non-steady simulation

Explicit numerical methods are restricted to the CFL-criterion, given as

a
k

h2
<

1

2
, (2.61)

with a = kv
RT0

cpvp0v0L
for vapor and v0 =

√
RT0. To guarantee a sufficient number of

subdivisions for thin fluid layers it is desired to choose the spatial step size h small
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Controlled pressure: pv(x = H) = 3000Pa
Controlled temperatures: Tv(x = H) = Tl(x = 0) = 298K
Evaporation coefficient: ϑ = 0.5
Onsager coefficients: r̂11 = 1

ϑ
− 0.40044

r̂12 = 0.126
r̂22 = 0.291

Initial lengths: Lv = Ll = 0.1mm
Initial spatial subdivisions: Nl = Nv = 7
Number time steps: M = 74, 200, 509
Initial spatial increment: h = 1.31 · 10−5mm
Initial temporal increment: k = 5 · 10−5s
Duration: tmax = 10 sec

Table 2.8: Input parameters for non-steady evaporation simulation of thin water
layer.

enough. For predicting outcome as far in the future as possible, this effort competes

with the need to choose large time steps k. Here, the CFL criterion for the vapor

layer is more critical than for the liquid.

2.5.1 Evaporation of water in microscopic system

By using material properties from Table 2.1, slow evaporation of pure water from a

thin liquid layer shall be computed. The driving force of the system is pressure on

top boundary pv(x = H) only, given with other input parameters in Table 2.8. The

input parameters are chosen in a way to gain a relatively high Knudsen number of

Kn = µ
√
RT
pL

= 0.01. The Onsager coefficients for the interface conditions in Table 2.6

are taken from (D.2). For staying in the linearized regime, a small pressure difference

of 169Pa between pv(x = H) and p0 = psat (298K) = 3169Pa is chosen. Initially, the

liquid and vapor layers are equal with Lv = Ll = 0.1mm. Even though the Knudsen

number is still in a very moderate range, the CFL criterion makes it difficult to

gain enough spatial subdivisions while minimizing the temporal subdivisions (M =

74, 200, 509 for 10 seconds). The output of the simulation is summarized in Table 2.9.

The liquid layer shrinks in 10sec by only 0.023mm. The liquid temperature at

the interface Tl = 297.1244K is slightly larger than for vapor with Tv = 297.1146K,

though for a significant temperature jump, a Knudsen number of 0.01 appears to

be too small. One node is swaped during the simulation. The temperature profiles

for liquid and vapor for different times are depicted in Figure 2.5 and compared to
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Liquid height: Ll (t = 10 sec) = 0.077mm
Temperatures: Tl (x = Ll, t = 10 sec) = 297.1244K

Tv (x = Ll, t = 10 sec) = 297.1146K
Spatial subdivisions: Nv = 8

Nl = 6
Computational time: tcompute ≈ 8.5 min

Table 2.9: Output parameters for non-steady evaporation simulation of thin water
layer.

the analytical steady-state solution, Eq. (2.42). Note that the steady-state solution

Figure 2.5: Temperature profiles in liquid and vapor for non-steady simulation.

(circles) is obtained for a fixed interface and Lv = Ll = 0.1mm, which corresponds

to t = 0s. In the liquid layer, steady state is reached between 0.005s and 0.05s after

pressure deviation from equilibrium at the top boundary was initiated. In the vapor

layer steady state is reached even faster. Since the interface has not moved very

far after this short time, the agreement between steady and non-steady solution is

excellent for 0.05s (green line) and 0.1s (yellow line).

Figure 2.6 gives an overview about thermodynamic quantities. One notes the

negative conductive heat flux in the vapor which suggests conductive heat transport

opposite directed to the fluid flow. This means that part of the required energy for
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Figure 2.6: Thermodynamic quantities for non-steady evaporation system.

evaporation, the vaporization enthalpy, comes from the top boundary. Though due

to the convective heat flux which is dominant here, the overall heat transport in

the vapor is positive as expected. The observation of the moving interface allows to

calculate the interface velocity, which is nearly constant, see Figure 2.7. The average

interface velocity within 10 seconds is 0.0023mm
sec

.

For conducting simulations in the transition regime, the CFL criterion appears to

be an issue. Fot future efforts it might be desirable to use an analytic solution or

implicit numerical method which is not bound to the CFL restriction.
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Figure 2.7: Linear approximation to liquid depletion: lines (numerical results), circles
(linear approximation).
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Chapter 3

Derivation of Evaporation

Boundary Conditions for the

Linear R13-Equations Based on

the Onsager Theory

By combining the Grad and Chapman-Enskog methods into the order of magnitude

method, Struchtrup and Torrilhon derived the regularized R13 equations, macroscopic

transport equations which account for effects in the transition regime [11][20]. Like

all macroscopic transport equations, the R13 equations are an approximation of the

Boltzmann equation. R13 introduces higher moments which have a large influence in

the rarefied gas regime and small influence in the regime of small Knudsen numbers.

Coefficients within the R13 equations allow quick adjustion between different colli-

sion models, such as Maxwell molecules, hardspheres or the Bhatnager-Gross-Krook

(BGK) model [11]. In the following, only Maxwell molecules will be considered.

Based on microscopic evaporation boundary conditions of the Boltzmann equa-

tion, Struchtrup et al. derived macroscopic evaporation boundary conditions for R13

[18]. These equations which are referred to as MBC (Macroscopic Boundary Condi-

tions) in the following show promising results for Knudsen numbers in the transition

regime. Here we seek to derive improved evaporation boundary conditions by using

an entropy balance integrated around an interface between liquid and vapor phase.

Based on the Onsager theory, the integrated entropy balance is rewritten as sum of

thermodynamic fluxes and forces [21]. The Onsager theory assumes linear relations
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between fluxes and forces and allows one to break the entropy balance into sets of

equations, which we utilize as evaporation/condensation boundary condtions [22][23].

A challenge lies in determining the Onsager coefficients, which provide the lin-

ear relations between fluxes and forces. The linear R13 equations, accompanied

by the new phenomenological boundary conditions (PBC), are solved for two one-

dimensional steady-state systems. The first system consists of a vapor phase in

between two liquid reservoirs. A DSMC solution for this system is used to fit the

Onsager coefficients and to compare the results with the MBC for R13 and also with

two Navier-Stokes-Fourier models, which use the Onsager theory as well. The second

system is a half space problem [24], for which dimensionless numbers are used to

compare the different models.

The remainder of the Chapter proceeds as follows: Sec. 3.1 gives an overview

about the R13 equations and the corresponding macroscopic evaporation boundary

conditions based on kinetic theory. Sec. 3.2 explains the derivation of the Onsager

boundary conditions. Sec. 3.3 shows how the Onsager coefficients are determined,

mainly by fitting to DSMC data. The work is discussed in Sec. 3.3.5, Sec. 3.3.6 and

in the conclusion, Chap. 5.

3.1 The R13 equations

All equations shall be non-dimensionalized and linearized around an equilibrium state,

defined by a reference density for vapor ρ0 and reference temperature T0. The equilib-

rium pressure for both liquid and vapor is defined as p0 = psat (T0). We shall consider

small deviations from equilibrium, caused by pressure or temperature gradients, to

drive evaporation or condensation. Non-dimensionalizing allows to introduce mean-

ingful coefficients into the equations, e.g., Prandtl or Knudsen numbers. The relations

(2.15) which show the connection between variables denoting non-dimensional devi-

ation from an equilibrium state (with overbar) and regular variables, are extended

by

qk = ρ0

√
RTo

3
qk, σik = ρ0RT0σik, (3.1)

h = h0

(
1 + h

)
, η = ρs = η0 (1 + η) ,

vk =
√
RT0vk, t =

L√
RT0

t .
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Here, η = ρs is the entropy density and the reference velocity in (2.15) was set to

v0 =
√
RT0. If not otherwise stated, all following equations use variables denoting

deviation from equilibrium, the overbars are neglected. The conservation laws for

mass, momentum and energy (1.10-1.12) are given in linearized and dimensionless

form as
∂ρ

∂t
+
∂vk
∂xk

= 0 , (3.2)

∂vi
∂t

+
∂σik
∂xk

+
∂p

∂xi
= gi , (3.3)

3

2

∂T

∂t
+
∂vk
∂xk

+
∂qk
∂xk

= 0 . (3.4)

The ideal gas law p = ρRT assumes for the non-dimensional and linear case the form

p = ρ + T , with all variables describing the deviation from the equilibrium state.

Equations for heat flux vector qk and stress tensor σik become full balance equations

beyond the hydrodynamic regime. By means of the order of magnitude method,

Struchtrup & Torrilhon derived the following (here linearized & non-dimensionalized)

balance equations from the Boltzmann equation, Ref. [20]:

∂σij
∂t

+
4

5
Pr

w3

w2

∂q〈i
∂xj〉

+
∂mijk

∂xk
= − 2

w2

1

Kn

[
σij + 2Kn

∂v〈i
∂xj〉

]
, (3.5)

∂qi
∂t

+
5

4 Pr

θ4

θ2

∂σik
∂xk

+
1

2

∂Rik

∂xk
+

1

6

∂∆

∂xi
= − 1

θ2

5

2 Pr

1

Kn

[
qi +

5

2 Pr
Kn

∂T

∂xi

]
. (3.6)

The higher moments are defined over the relations [20]

∆ = −8Kn

Pr∆

∂qk
∂xk

, (3.7)

Rij = −28

5

Kn

PrR

∂q〈i
∂xj〉

, (3.8)

mijk = −3Kn

PrM

∂σ〈ij
∂xx〉

. (3.9)

By using the Chapman-Enskog expansion while considering low Knudsen numbers,

Eqs. (3.5, 3.6) reduce to the laws of Navier-Stokes and Fourier, i.e., the left hand

sides become zero [11]. The balance laws (3.5,3.6) use the higher moments ∆, Rik

and mijk. Here, Pr = µcp
k

denotes the Prandtl number, with µ as dynamic viscosity, cp

as isobaric specific heat and k = 15
4
µ as thermal conductivity. The Knudsen number
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$2 $3 = θ4 θ2 Pr PrR PrM Pr∆

MM 2 3 45/8 2/3 7/6 3/2 2/3
BGK 2 2 5/2 1 1 1 1
HS 2.02774 2.42113 5.81945 0.6609 1.3307 1.3951 0.9025

Table 3.1: Coefficients for Maxwell (MM), Hard Sphere (HS) and Bhatnager-Gross-
Krook (BGK) models for stress tensor and heat flux vector.

is Kn = µ
√
RT
pL

, with L as characteristic length, e.g., diameter. Here, θ2, θ4, w2 and w3

are coefficients which account for different collision models, such as Maxwell, hard-

sphere and BGK models. In the following sections only Maxwell molecules are used.

The corresponding coefficients for Maxwell, Hard Sphere or BGK models for stress

tensor, heat flux vector and higher moments can be found in Table 3.1 [21].

3.1.1 Macroscopic evaporation boundary conditions for

Maxwell molecules

Based on microscopic evaporation boundary conditions of the Boltzmann equation,

Struchtrup et al. derived macroscopic evaporation boundary conditions (MBC) for the

R13 equations [18]. In these, interface effects are described through the evaporation

coefficient ϑ and the accommodation coefficient χ. The evaporation coefficient equals

the condensation coefficient, which is the probability that a vapor particle hitting the

liquid interface will condense [25].

For the case that a vapor molecule hitting the liquid interface is reflected back

to the vapor and not being absorbed, Maxwell proposed an accommodation model

which is based on the assumption that the fraction χ of the vapor molecules hitting

the liquid surface are diffusively reflected, i.e., with momentum and energy exchange,

and the remaining fraction (1 − χ) is specularly reflected, without energy exchange

[14]. After non-dimensionalization and linearization around an equilibrium state, the

MBC for evaporation [18] assume the form

Vn =

√
2

π

ϑ

2− ϑ

(
psat

(
T l
)
− pg +

1

2

(
T g − T l

)
− 1

2
σgnn +

1

120
∆ +

1

28
Rnn

)
, (3.10)

qgn = −
√

2

π

ϑ+ χ(1− ϑ)

2− ϑ− χ(1− ϑ)

(
2
(
T g − T l

)
+

1

2
σgnn +

1

15
∆ +

5

28
Rnn

)
− 1

2
V g
n , (3.11)
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mnnn =

√
2

π

ϑ+ χ(1− ϑ)

2− ϑ− χ(1− ϑ)

(
2

5

(
T g − T l

)
− 7

5
σgnn +

1

75
∆− 1

14
Rnn

)
− 2

5
V g
n ,

(3.12)

σnk = −
√

2

π

ϑ+ χ(1− ϑ)

2− ϑ− χ(1− ϑ)

(
V
g

k
+

1

5
qgk +

1

2
mnnk

)
, (3.13)

Rnk =

√
2

π

ϑ+ χ(1− ϑ)

2− ϑ− χ(1− ϑ)

(
V
g

k −
11

5
qgk −

1

2
mnnk

)
, (3.14)

m̃nij = −
√

2

π

ϑ+ χ(1− ϑ)

2− ϑ− χ(1− ϑ)(
σ̃gij +

1

14
R̃ij +

(
1

5

(
T g − T l

)
− 1

5
σgnn +

1

150
∆

)
δij

)
+

1

5
δijV

g
n . (3.15)

Here, the index n refers to the direction normal to the interface. The variables

are tensor components where the overbar denotes the normal-tangential- and tilde

the tangential-tangential parts, see Appendix B. Note that all variables describe the

deviation from an equilibrium state.

3.2 Deriving the evaporation boundary conditions

We aim to derive phenomenological boundary conditions (PBC) for the regularized

R13 equations for a liquid-gas interface. The approach follows Ref. [21] in which a

reduced entropy balance is used to derive boundary conditions for a wall-gas interface.

The entropy balance for a fluid with dimensionless entropy density η̃, entropy flux Ψk

and entropy generation rate Σgen reads

∂η̃

∂t
+
∂Ψk

∂xk
= Σgen . (3.16)

Eq. (3.16) shall be integrated over a small volume of area ∆A and height ∆x across

the liquid-vapor interface. By using Gauss’ Theorem, the integrated entropy balance

becomes ∫
∆A∆x

∂η̃

∂t
dV +

∮
∂∆V

ΨknkdA =

∫
∆A∆x

ΣgendV . (3.17)
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For ∆x→ 0 the first term vanishes and (3.17) reduces to the entropy balance for the

interface, (
Ψg
k −Ψl

k

)
nk = Σsurface . (3.18)

Hence, the entropy generation rate Σsurface =

∫
∆A∆x

ΣgendV

dA
is equal to the difference in

the entropy fluxes entering and leaving the interface. In the following, all variables

on liquid side are indicated with superscript l and all variables on vapor side with g.

A linear combination of manipulated mass, energy and entropy balances (Appendix

A) leads to the (linearized and non-dimensional) entropy flux on the liquid side as

Ψl
k = −qlkT l − σlikvli − plvlk . (3.19)

Here T , ρ and v are deviations to an equilibrium state defined by T0, ρ0 and p0 =

psat (T0). For the linear R13 equations and the vapor side, the linearized and dimen-

sionless entropy flux (Appendix A) is

Ψg
k = − (ρg + T g) vgk−v

g
i σ

g
ik−T

gqgk−
$3

5
Pr qgi σ

g
ik−

$2

4
σgijmijk−

2θ2

25
(Pr)2

(
qgiRik +

∆

3
qgk

)
.

(3.20)

Furthermore the (linearized and non-dimensional) balance laws for mass, momentum

and energy integrated around the interface similar to (3.18) become

ρlv
l
knk = ρ0v

g
knk , (3.21)

plni + σliknk = pgni + σgiknk , (3.22)

ρlh
l
0

Rρ0T0

vlknk + qlknk =
hgo
RTo

vgknk + qgknk . (3.23)

The variables vlk and vgk are the velocities on liquid and on vapor side at the inter-

face, from the perspective of an observer resting on the interface. The entropy fluxes

(3.19,3.20) are plugged into the integrated entropy balance (3.18). Eqs. (3.21-3.23)

are used to eliminate most variables on liquid side. All variables describe the deviation

from equilibrium, are dimensionless and linearized. After applying the appropriate

coefficients for Maxwell molecules, according to Table 3.1, using the Clausius Clapey-

ron equation [2] (linearized and dimensionless) in the form psat
(
T l
)

=
h0
gl

RT0
T l and by
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considering ρl � ρ0 one may write (3.18) as below

Jgknk
1

ρ0

(
psat

(
T l
)
− pg

)
−
(
T g − T l

)
qgknk − Viσ

g
iknk −

$3

5
Pr qgi σ

g
iknk

− $2

4
σgijmijknk −

2θ2

25
(Pr)2

(
qgiRiknk +

∆

3
qgknk

)
= Σsurface . (3.24)

where Vi = vgi − vli, J
g
knk = ρ0v

g
knk and the corresponding ideal gas law, given as

ρg = pg − T g was used. To accomplish a proper entropy balance for the linearized

equations, terms up to second order are kept.

Next, the entropy balance is split into normal and tangential components. All

matrices and higher moments are symmetric and trace free:

Σsurface = Jgn
1

ρ0

[
psat

(
T l
)
− pg − σnn

]
(3.25)

+ qgn

[
−
(
T g − T l

)
− $3

5
Prσnn −

2θ2

25
(Pr)2

(
Rnn +

∆

3

)]
+mnnn

[
−3$2

8
σnn

]
+ σnk

[
−V k −

$3

5
Pr qk −

$2

2
mnnk

]
+Rnk

[
−2θ2

25
(Pr)2 qk

]
+ m̃nij

[
−$2

4
σ̃ij

]
.

As before, overbar denotes normal-tangential- and tilde denotes tangential-tangential

components (Appendix B). If the mass flow Jgn vanishes, Eq. (3.25) simplifies to the

entropy generation at a wall-gas-interface, see Ref. [21].

The entropy generation may be written as a superposition of thermodynamic

fluxes Ji and forces Xi [22][23]:

σ =
∑
i

JiXi ≥ 0 . (3.26)

Here, moments with odd degree in the normal direction n are identified as fluxes, i.e.,

Jn, qn, mnnn, σnk, Rnk and m̃nij, while moments with even degree in n are identified

as the corresponding forces, i.e., pg, T g, T l, σnn, Rnn, ∆, V k, qk, mnnk and σ̃ij. Here,

pg, T g, T l, σnn, Rnn, ∆, Jn, qn and mnnn are scalars, V k, qk, mnnk, σnk and Rnk

are vectors and σ̃ij and m̃nij are tensors. Furthermore, a linear force-flux relation is
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stated within the Onsager theory to satisfy Eq. (3.26):

Ji =
∑
j

LijXj , (3.27)

where, Lij is a symmetric and positiv-definite matrix of Onsager coefficients with the

Onsager reciprocity relation given as Lij = Lji. Only equations of the same tensor

rank are coupled over the reciprocity relation (Curie principle, [26]). This means that

all force terms of the same tensor rank superimpose each other and impact all fluxes

of the same tensor rank, hence:

Scalar fluxes: V g
n

qgn

mnnn

 =

 λ0 λ1 λ2

λ1 λ3 λ4

λ2 λ4 λ5




[
psat

(
T l
)
− pg − σnn

][
−
(
T g − T l

)
− $3

5
Prσnn − 2θ2

25
(Pr)2 (Rnn + ∆

3

)][
−3$2

8
σnn
]

 ,

(3.28)

Vector fluxes:(
σnk

Rnk

)
=

(
ζ0 ζ1

ζ1 ζ2

)( [
−V k − $3

5
Pr qk − $2

2
mnnk

][
−2θ2

25
(Pr)2 qk

] )
, (3.29)

Tensor fluxes:

m̃nij = −κ0
$2

4
σ̃ij . (3.30)

For all λ0,...,2 = 0 one obtains the full set of phenomenological boundary con-

ditions for a wall-gas interface, see Ref. [21]. The interface conditions (3.29-3.30),

which consist of first order tensors (vectors) and second order tensors (matrices), re-

specitvely, have been fitted for a wall-gas interface in Ref. [21]. The fitting of (3.28)

for evaporation at liquid-vapor interfaces is discussed in Sec. 3.3. The new evapora-

tion boundary conditions (3.28-3.30) shall be referred to as PBC (Phenomenological

Boundary Conditions) in the following.
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3.3 Determining the Onsager coefficients

3.3.1 Comparison to previous macroscopic boundary condi-

tions

The structure between PBC and MBC is very similar, with the main difference, being

the coefficients. As first step to determine the Onsager coefficients within the PBC

at a liquid-gas interface (3.28-3.30), we try to use the coefficients of the MBC in a

way that all terms except those where higher order moments, i.e., ∆, Rij, mijk, occur

are consistent with the MBC. This is justified due to the fact, that the MBC predicts

effects in the Navier-Stokes regime very well. In the transition regime, however, their

application seems to be more limited [18].

Since the higher moments are responsible for approximating rarefaction effects, a

difference between PBC and MBC in these terms is desired.

For a liquid-gas interface, the Onsager matrix of those boundary conditions with

variables of zero tensor rank (3.28) assumes the dimension 3x3, in contrast to the

wall-gas interface (V g
n = 0) where the dimension is 2x2 [21]. It follows that it is not

possible to have all terms which consist of pg, σnn and
(
T g − T l

)
equal between PBC

and MBC. Hence, one has a certain degree of freedom to choose which coefficients to

use from the MBC. Based on these thoughts, the following Onsager coefficients are

suggested:

λ0 = a

√
2

π

ϑ

2− ϑ
, (3.31)

λ1 = b

(
−1

2

√
2

π

ϑ

2− ϑ

)
, (3.32)

λ2 = c

(
−2

5

√
2

π

ϑ

2− ϑ

)
, (3.33)

λ3 = d

(
2

√
2

π

ϑ+ χ(1− ϑ)

2− ϑ− χ(1− ϑ)

)
, (3.34)

λ4 = e

(
−2

5

√
2

π

ϑ+ χ(1− ϑ)

2− ϑ− χ(1− ϑ)

)
, (3.35)
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λ5 = f

 1
$2

(
56
15

+ 16
75
$3 Pr

)√
2
π

ϑ+χ(1−ϑ)
2−ϑ−χ(1−ϑ)

+ 8
$215

√
2
π

ϑ
2−ϑ

 . (3.36)

To leave the coefficients adjustable, the factors a− f have been added. Even for

a = b = ... = f = 1, the PBC differ from the MBC not only in the higher order

terms, but also in some lower order terms, see Appendix C. The boundary conditions

(3.29-3.30) have been fitted for a wall-gas interface in Ref. [21] and shall not further

be investigated here. To determine the coefficients a, b, ..., f by fitting to a DSMC

solution, two evaporation problems will be discussed, for which analytical solutions

for R13 with PBC can be obtained.

3.3.2 Simplification of R13 for 1-D problems

As can be expected, the present PBC just like the MBC give less accurate results

than methods that solve the full Boltzmann equation. The R13 equations and their

corresponding boundary conditions are approximations to the Boltzmann equation

and carry less information. The adjustable coefficients a-f in (3.31) - (3.36) leave six

degress of freedom to determine the Onsager coefficients.

It is of interest if the simplification of R13 to the Boltzmann equation can be

partly corrected by adjusting the Onsager coefficients. In this context we simplify the

linear R13 equations for one-dimensional and steady systems and solve them for two

problems, previously dicussed in [18]. Then, the new solutions are fitted to DSMC

data.

In one-dimensional systems, all variables depend only on the location x. For the

rest state, the saturation pressure of the liquid interface is set to psat(T0) = p0. We

assume that the liquid temperature at the interface is controlled. Small pressure or

temperature changes are sufficient to drive evaporation or condensation. All equations

are linear and dimensionless and describe the deviation from their equilibrium state.

The simplified balance equations for mass, momentum and energy read

∂v

∂x
=
∂σ

∂x
+
∂p

∂x
=
∂q

∂x
= 0 . (3.37)
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After simple integration follows

v = V0 = const , p+ σ = P0 = const , q0 = Q0 = const . (3.38)

Hence, velocity and conductive heat flux are constant in the vapor phase. The normal

components of the linear and non-dimensional constitutive equations for (3.7) - (3.9)

obtain the form

∆ = −8Kn

Pr∆

∂q

∂x
= 0 , Rnn = −28

5

Kn

PrR

∂q

∂x
= 0 , mnnn = −3Kn

PrM

∂σ

∂x
, (3.39)

with data to adjust between the molecule models from Table 3.1. The linear and

non-dimensional equations for normal stress σ and conductive heat flux qo become

6

5
Kn

∂2σ

∂x2
=

σ

Kn
, (3.40)

∂θ

∂x
= − 4q0

15Kn
− 2

5

∂σ

∂x
. (3.41)

Integration yields

σ = A sinh

[√
5

6

x

Kn

]
+B cosh

[√
5

6

x

Kn

]
, (3.42)

Tg = K − 4q0x

15Kn
− 2

5
σ . (3.43)

with A, B, K as constants of integration. There are 6 unknowns (V0, P0, Q0, A, B, K)

that must be determined for finding the solution. For evaporating interfaces, and by

taking ∆ = R = 0 (3.39) into account, the normal boundary conditions (3.28)-(3.30)

simplify to

Vo,n = λ0

[
−P0 + psat

(
T l
)]

+ λ1

[
− (Tg − Tl)−

$3

5
Prσnn

]
− λ2

3$2

8
σnn , (3.44)

qo,n = λ1

[
−P0 + psat

(
T l
)]

+ λ3

[
− (Tg − Tl)−

$3

5
Prσnn

]
− λ4

3$2

8
σnn , (3.45)

6

5
Kn

[
∂σ

∂x

]
n

= λ2

[
P0 − psat

(
T l
)]

+λ4

[
(Tg − Tl) +

$3

5
Prσnn

]
+λ5

3$2

8
σnn , (3.46)

with Vo,n = nkVk and qo,n = qknk.
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3.3.3 Problem I: Vapor layer between two liquid reservoirs

In the first problem for fitting the coefficients a − f , and also for getting an in-

sight into the Knudsen layers, we consider one-dimensional, steady-state heat- and

mass transfer, within a vapor phase, in between two liquid reservoirs, with controlled

temperatures of the liquid interfaces, as depicted in Fig. 3.1. The system has been

discussed in [18] and shall be outlined only briefly here. The contribution is the so-

lution of the new phenomenological boundary conditions. The interfaces are located

Figure 3.1: System I: Vapor phase between two liquid reservoirs.

at x = ±1
2

with the normal vector n pointing from liquid into vapor and the super-

scripts 0 for x = −1
2

and 1 for x = 1
2
, i.e. V 0

0,n = −V 1
0,n = V0,n. Driving force for

evaporation and condensation is the temperature difference between T 0
l and T 1

l . The

required six equations are found by evaluating the boundary conditions (3.28) at both

interfaces. For evaluation of the equations, it is convenient to take both the sums and

the differences at both interfaces. For the three sums follows

P0 =
1

2

(
p0
sat(T

0
l ) + p0

sat(T
1
l )
)

, (3.47)

(
T 0
l + T 1

l

)
−
(
T 0
g + T 1

g

)
= 0 , (3.48)

σ0
nn = −σ1

nn . (3.49)

Stress profile, Eq. (3.42) and temperature profile, Eq. (3.43), follow as

σ = A sinh

[√
5

6

x

Kn

]
, (3.50)

Tg =
(T 0

l + T 1
l )

2
− 4q0x

15Kn
− 2

5
A sinh

[√
5

6

x

Kn

]
. (3.51)
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The three differences of the normal boundary conditions form a linear system for V0,

Q0 and A as

V0 =
1

2


λ0 [psat (T 0

l )− psat (T 1
l )]

+λ1

[
− 4q0

15Kn
+ (T 0

l − T 1
l ) +

(
2$3

5
Pr−4

5

)
A sinh

[
1
2

√
5
6

1
Kn

]]
+3$2

4
λ2A sinh

[
1
2

√
5
6

1
Kn

]
 , (3.52)

Q0 =
1

2


λ1 [psat (T 0

l )− psat (T 1
l )]

+λ3

[
− 4q0

15Kn
+ (T 0

l − T 1
l ) +

(
2$3

5
Pr−4

5

)
A sinh

[
1
2

√
5
6

1
Kn

]]
+λ4

3$2

4
A sinh

[
1
2

√
5
6

1
Kn

]
 , (3.53)

A =
1

12
5

√
5
6

cosh(1
2

√
5
6

1
Kn

) λ4

[
4qo

15Kn
+ (T 1

l − T 0
l ) +

(
4
5
− 2$3

5
Pr
)
A sinh

[
1
2

√
5
6

1
Kn

]]
−λ5

3$2

4
A sinh

[
1
2

√
5
6

1
Kn

]
+ λ2 [psat (T 1

l )− psat (T 0
l )]

 . (3.54)

We refrain from showing the solution but will only show results from the inversion in

the figures. For the linear NSF-Onsager boundary conditions, see Appendix D, one

finds

V0 =
r̂22

r̂11r̂22 − r̂12r̂12

1√
2π

1

2

(
p0
sat(T

0
l )− p1

sat(T
1
l )

+ r̂12

r̂22

(
4Q0

15Kn
+ T 1

l − T 0
l

) ) , (3.55)

q0 =
1

r̂22

1

2

(
1√
2π

(
− 4Q0

15Kn
+ T 0

l − T 1
l

)
− 2r̂12V0

)
. (3.56)

Here A is the amplitude of the Knudsen layer. The given solution for NSF is a

simplification for χ = ϑ = 1, see Appendix D. For the NSF-Onsager coefficients r̂11,

r̂12 and r̂22, the Onsager matrix (D.2) or the corrected Onsager matrix (D.3) can be

used. The solution of the MBC for this system can be found in [18]. Results shall be

compared in Sec. 3.3.5 and 3.3.6.

3.3.4 Problem II: Evaporation in half-space

In the Half Space Problem, a liquid interface evaporates into equilibrium conditions,

as discussed previously in Ref. [18]. Driving force is the prescribed pressure p∞ far
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away from the interface, see Fig. 3.2. The six unknowns are found by considering

Figure 3.2: System II: Half-space problem.

evaporation boundary conditions on one side and constant velocity v∞ = V0, pressure

p∞ = P0 and temperature T∞ far away from the interface. For reaching constant

pressure p∞ and due to the momentum balance (3.38) it is necessary to set the normal

stress far away from the interface to σ∞ = 0. Moreover conductive heat flux q0 is

set to zero as well. With T∞ prescribed, one finds the constant K. For (3.50,3.51) it

follows

σ (x) = A exp

[
−
√

5

6

x

Kn

]
, (3.57)

T (x) = T∞ −
2

5
σ (x) . (3.58)

Evaluating the boundary conditions (3.28) at the interface between liquid and vapor

leads to

v∞ = λ0 [psat (Tl)− p∞] + λ1 (Tl − T∞) +

(
λ1

(
2

5
− $3

5
Pr

)
− λ2

3$2

8

)
A , (3.59)

0 = λ1 [psat (Tl)− p∞] + λ3 (Tl − T∞) +

(
λ3

(
2

5
− $3

5
Pr

)
− λ4

3$2

8

)
A , (3.60)

0 = λ2 [psat (Tl)− p∞] + λ4 (Tl − T∞) +

(
λ4

(
2

5
− $3

5
Pr

)
− λ5

3$2

8
− 6

5

√
5

6

)
A .

(3.61)
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For Navier-Stokes-Fourier out of Eq. (D.1) follows

v∞ =
psat(Tl)− p∞√

2πr11

, (3.62)

v∞ =
1√
2π

Tl − T∞
r21

. (3.63)

When setting psat(Tl)−p∞ = ∆p and Tl−T∞ = ∆T , there are four unknowns ∆p, ∆T ,

v∞ and A, which can be calculated with the PBC (3.59-3.61), if one of the variables is

prescribed. For NSF, A is zero and the two equations (3.62, 3.63) are sufficient to be

solved as a linear system. The solution for the MBC can again be found in Ref. [18].

Ytrehus, who discussed the half space problem in Ref. [24] proposed dimensionless

ratios, in which the pressure difference ∆p is eliminated:

αp =
psat (Tl)− p∞

v∞√
2

, (3.64)

αθ =
Tl − T∞

v∞√
2

. (3.65)

This choice allows to gain results, corresponding to pressure and temperature, without

prescribing any of the four variables, and it becomes easy to compare different models,

such as Maxwell molecules, BGK, Navier-Stokes-Fourier etc. Note that (3.59-3.63)

and therefore also (3.64,3.65) are independent of the Knudsen number.

3.3.5 Fitting of the Onsager coefficients: standard tempera-

ture profile

The ratios (3.64,3.65) from Problem II together with DSMC data for Problem I shall

be used to fit the coefficients a-f . The temperatures and saturation pressures at the

liquid boundaries are given as T 0
l = psat(T

0
l ) = 1.05 and T 1

l = psat(T
1
l ) = 0.95. The

evaporating material, which is defined over the saturation pressures is artificial. All

results in the following are based on full evaporation and fully diffusive reflection,

by setting the evaporation and accommodation coefficients to ϑ = χ = 1. Maxwell

molecules are considered and their data is taken out of Table 3.1. In Table 3.2, factors

for the Onsager coefficients, used in Eqs. (3.31-3.36), which have been found by trial

and error are suggested to adjust the PBC, Eqs. (3.28), for best fit. The results
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a b c d e f
PBC standard profile 1.01 0.95 1.30 1.05 0.20 1.10

Table 3.2: Factors to adjust the Onsager coefficients of the PBC for the standard
profile.

αp % to Ytrehus αθ % to Ytrehus
PBC standard profile 2.1179 0.35 0.4889 10.33
MBC 2.1097 0.74 0.4894 10.44
NSF 1.9940 6.18 0.4431 -
NSF corrected 2.1254 - 0.4472 0.93
Ytrehus 2.1254 - 0.4431 -

Table 3.3: Solutions for Ytrehus’ ratios and percentual deviation to Ytrehus’ solution
for standard profile.

of the new PBC are compared with the previously derived evaporation boundary

conditions (MBC) and also with Navier-Stokes-Fourier. NSF is based on Onsager

boundary conditions as well and uses the Onsager matrix (D.2) or the corrected

Onsager matrix (D.3). Ytrehus used a moment method to solve the half space problem

with high precision [24] and his results are used here as reference. Ytrehus’ ratios αp,

αθ (3.64,3.65) have been calculated for PBC, MBC, NSF and corrected NSF. Together

with the percentual deviation to Ytrehus’ solution, they are given in Table 3.3. By

trial and error fitting of the Onsager coefficients, it was not possible to achieve superior

agreement between PBC and DSMC for Problem I (Sec. 3.3.3) and proper results

for Ytrehus’ ratios (3.64,3.65) at the same time. Forcing good agreement between

Ytrehus’ solution of the half space problem and PBC regarding the dimensionless

ratios showed significant decrease in agreement between PBC and DSMC for Problem

I. The fittings that are chosen here are compromises between Problem I and Problem

II but with strong emphasis on achieving proper results for Problem I, i.e., proper

agreement with DSMC results.

Fig. 3.3 shows temperature and normal stress profiles for Kn = 0.078. R13 with

PBC (solid, purple) and MBC (solid, red) are in good agreement with DSMC (green,

dashed). The amplitude of the Knudsen layer A is zero for NSF (black, dashed) and

corrected NSF (blue, dashed). As a result both NSF solutions slightly deviate from

DSMC close to the boundaries. A = 0 removes the last term in (3.51) and therefore

leads to a linear function. For Problem I, NSF is not able to predict normal stress at

all, see Eqs. (3.55, 3.56).

In Fig. 3.4 temperature and normal stress profiles are illustrated for Kn = 0.235.
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Figure 3.3: Temperature and normal stress profiles for Kn = 0.078 with ∆T = 0.05
and ∆p = 0.05: DSMC (symmetrized; green, dashed), R13 with PBC (purple), R13
with MBC (red), corrected NSF (blue, dashed), uncorrected NSF (black, dashed).

Both sets of boundary conditions for R13 reconstruct the DSMC results well but

slightly underpredict the Knudsen layers both for temperature and normal stress.

For the temperature profile they are in better agreement with DSMC than the two

NSF solutions. For both Kn = 0.078 and Kn = 0.235 one notes the significant

temperature jumps at the boundaries.

Additionally to temperature and normal stress profiles we seek to get insight into

the three integration constants velocity V0, conductive heat flux q0 and Knudsen layer

amplitude A, depending on the Knudsen number. The three variables are plotted over

Kn = {0, 1.0} in Fig. 3.5. Sign of velocity V0 and conductive heat flux q0 are positive.

That is, mass and conductive heat flux are transferred from warm to cold, i.e., they

are transported at x = −1
2

into the system via evaporation and due to steady state the

same amount of mass and conductive heat is transported at x = 1
2

out of the system

into the colder reservoir via condensation. R13 with PBC shows very good agreement

with DSMC for V0, q0 for all Knudsen numbers. The PBC results for normal stress

are better than those of MBC for Kn < 0.4. For higher Knudsen numbers both PBC

and MBC fail to predict σ in precise agreement with DSMC. Again the normal stress
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Figure 3.4: Temperature and normal stress profiles for Kn = 0.235 with ∆T = 0.05
and ∆p = 0.05: DSMC (symmetrized; green, dashed), R13 with PBC (purple), R13
with MBC (red), corrected NSF (blue, dashed), uncorrected NSF (black, dashed).

can not be predicted by NSF.

Interestingly for this PBC fit, Ytrehus’ ratios are very similar to those of the

MBC, i.e., 0.35% (PBC) and 0.74% (MBC) deviation for αp and 10.33% (PBC)

and 10.44% (MBC) for αθ, see Table 3.3. Corrected NSF is under 1% deviation

for both ratios. Uncorrected NSF shows zero deviation for αθ and 6.18% for αp.

For Knudsen numbers larger than 0.235 the deviation between DSMC and the PBC

becomes slightly larger for the temperature profile and stays similar for the normal

stress profile. The temperature jump at the boundaries increases with increasing

Knudsen number.

3.3.6 Fitting of the Onsager coefficients: inverted tempera-

ture profile

By adjusting the values for ∆T , ∆p it can be shown that the sign of the conductive

heat flux q0 switches. This leads to an inverted temperature profile. The negative
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Figure 3.5: Evaporation velocity V0, conductive heat flux q0 and boundary normal
stress σ0 for standard temperature profile: DSMC (green, dots), R13 with PBC (pur-
ple), R13 with MBC (red), corrected NSF (blue, dashed), uncorrected NSF (black,
dashed).

sign of q0 indicates conductive heat transport from x = 1
2

to x = −1
2
, see Fig. 3.1.

Though the second law is not violated since the overall heat transport is given with

Q = ρV0h+ q0 and the advective term ρV0h is dominant. Hence the overall heat Q is

transported from hot to cold as expected. One notes that due to the reversed sign of

the conductive heat flux, the necessary vaporization enthalpy is partly provided by

the colder boundary. The liquid temperatures at the boundaries are set to T 0
l = 1.01

and T 1
l = 0.99. The respective saturation pressures follow as psat(T

0
l ) = 1.0752 and
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a b c d e f
PBC inverted profile 0.985 0.85 1.30 1.0 0.20 1.10

Table 3.4: Factors to adjust the Onsager coefficients of the PBC for the inverted
profile.

αp % to Ytrehus αθ % to Ytrehus
PBC inverted profile 2.1373 0.56 0.4646 4.85
Ytrehus 2.1254 - 0.44311 -

Table 3.5: Solutions for Ytrehus’ ratios and percentual deviation to Ytrehus’ solution
for inverted profile.

psat(T
1
l ) = 0.9248. Therefore the evaporating material of the system is different to the

standard profile. The small temperature difference between hot and cold boundaries

and the large difference between the saturation pressures allows for a temperature

jump large enough to reverse the sign of the conductive heat flux.

By fitting with trial and error, it was not possible to achieve proper results for

the standard and inverted profiles at the same time. This is believed to be due to the

fact that the evaporating material is different between standard and inverted case,

since the saturation pressures are different. Therefore we present a fitting for the

adjustable factors within the PBC for the inverted case which is given in Table 3.4.

The ratios αp,αθ as well as the percentual deviation to Ytrehus’ solution are presented

in Table 3.5.

The temperature and stress profiles for Kn = 0.078 are given in Fig. 3.6. As

comparison to the new fitting, a PBC solution, which uses the previous coefficients,

is given as well (purple, dashed). R13 with PBC and MBC both overpredict the

Knudsen layer at the interfaces. For the temperature profile, corrected NSF shows

the best agreement with DSMC here. Normal stress is predicted well for PBC and

MBC and is again zero for NSF. For Kn = 0.235 the overprediction of the R13

boundary conditions becomes so large that the profiles are not inverted anymore, as

shown in Fig. 3.7. Note that it is possible to ”turn” the PBC temperature profile to

match DSMC, however this leads to worse results for other plots. In this case MBC

shows slightly better results for temperature and normal stress profiles than MBC.

Fig. 3.8 illustrates evaporation velocity, conductive heat flux and normal boundary

stress for the inverted profile. For velocity and conductive heat flux, R13 with PBC

is in very good agreement with DSMC. In comparison to the standard profile, the

normal boundary stress of PBC starts to differ from DSMC already earlier, i.e., for
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Figure 3.6: Inverted temperature and normal stress profiles for Kn = 0.078 with
∆T = 0.01 and ∆p = 0.075: DSMC (symmetrized; green, dashed), R13 with PBC
(purple), R13 with PBC and previous fitting (purple, dashed), R13 with MBC (red),
corrected NSF (blue, dashed), uncorrected NSF (black, dashed).

Kn > 0.1. Corrected NSF is in surprisingly good agreement with DSMC for Kn < 0.3

but fails to predict normal boundary stress. Except for temperature and normal stress

profiles for Kn = 0.235, R13 with PBC shows the best agreement with DSMC for all

discussed models here.

One notes that for this PBC fitting the deviation of αθ to Ytrehus’ solution be-

comes with 4.85% smaller than for the standard profile. For αp the deviation stays

small with 0.56%.

3.3.7 Impact of evaporation and accommodation coefficients

To gain a better understanding of the impact of evaporation and accommodation

coefficients, the PBC shall be tested for the ”standard temperature profile” of the

previously discussed problem and a variety of ϑ, χ. Fig. 3.9 illustrates solutions of

the PBC for Problem I, Fig. 3.1, together with the fitting from Table 3.2. The plots

are based on χ = 0.1 (Green), χ = 0.5 (Red), χ = 1 (Blue), ϑ = 0.1 (solid), ϑ = 0.5
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Figure 3.7: Inverted temperature and normal stress profiles for Kn = 0.235 with
∆T = 0.01 and ∆p = 0.075: DSMC (symmetrized; green, dashed), R13 with PBC
(purple), R13 with PBC and previous fitting (purple, dashed), R13 with MBC (red),
corrected NSF (blue, dashed), uncorrected NSF (black, dashed).

(dashed) and ϑ = 1 (large, dashed). For ϑ = 1, the solutions are independent of

χ. Since the evaporation coefficient is defined over the condensation coefficient, this

may be explained due to the fact that for the condensation coefficient being unity,

no reflection occurs, all vapor molecules hitting the liquid interface are condensed.

The largest temperature jump between gas and boundary is found for ϑ = 0.1 and

χ = 0.1 and the smallest for χ = 1.

The stress profile seems to be dependent, mainly on the evaporation coefficient.

The accommodation coefficient has a small impact only for ϑ = 0.5. The largest

stress can be found for ϑ = 1. Evaporation velocity V0, conductive heat flux q0 and

boundary normal stress σ for various values of ϑ and χ are depicted in Fig. 3.10. The

results of V0 and σ seem to be almost independent of χ, except for ϑ = 0.5, where χ

has a small impact. Interestingly, both ϑ and χ have a large influence on q0.
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Figure 3.8: Evaporation velocity V0, conductive heat flux q0 and boundary normal
stress σ0 for inverted temperature profile: DSMC (green, dots), R13 with PBC (pur-
ple), R13 with PBC and previous fitting (purple, dashed), R13 with MBC (red),
corrected NSF (blue, dashed), uncorrected NSF (black, dashed). Note: For σ, the
two PBC solutions are represented by the solid, purple curve.

3.3.8 Notes on the meaning of the individual Onsager coef-

ficients of the normal fluxes

The fittings used in the Tables 3.2 and 3.4 are based on a trial and error procedure,

in which the factors a − f in the Onsager coefficients (3.31-3.36) are individually

adjusted. Due to symmetry of the Onsager matrix, six independent parameters need

to be determined. The tuning of the Onsager coefficients one by one gives an insight
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Figure 3.9: PBC temperature and normal stress profiles for Kn = 0.235 and various
evaporation and accommodation coefficients: χ = 0.1 (Green), χ = 0.5 (Red), χ = 1
(Blue), ϑ = 0.1 (solid), ϑ = 0.5 (dashed), ϑ = 1 (large, dashed). Note: For ϑ = 1,
the large, dashed, green curve represents all three solutions.

into what outcome they influence. One notes however, that due to the coupling within

the Onsager matrix in Eq. (3.28), the individual Onsager coefficient impacts multiple

fluxes. The following is an attempt to determine some trends, which were observed

during the fitting procedure.

Since λ0 appears only in the equation for the normal velocity, it has a strong

impact on V0 and no impact on the conductive heat flux q0. Apparently it has no

impact on boundary normal stress σ. Temperature and stress profiles appear to be

independent of λ0 as well. The coefficient λ1 has a big impact on V0 and q0 and a

small impact on σ. It has a major impact on the temperature profile and a smaller

impact on the stress profile. λ2 strongly influences V0 and σ and slightly q0. Since

λ2 does not appear in the equation for q0, this is expected. It has an impact on

temperature and stress profiles but with clear emphasis on the stress profile.

The coefficient λ3 seems to play a key role in the fitting. Even though it appears

only in the equation for V0, it has not only a strong impact on the magnitudes and

slopes of V0, but also on those of q0. It slightly impacts σ as well. Regarding the
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Figure 3.10: PBC evaporation velocity V0, conductive heat flux q0 and boundary
normal stress σ0 for standard temperature profile and various evaporation and ac-
commodation coefficients: χ = 0.1 (Green), χ = 0.5 (Red), χ = 1 (Blue), ϑ = 0.1
(solid), ϑ = 0.5 (dashed), ϑ = 1 (large, dashed). Note: For ϑ = 1, the large, dashed,
green curve represents all three solutions.

profiles, λ3 seems to impact only the temperature. The Onsager coefficient λ4 mainly

impacts σ, but also V0, q0 and both profiles, with stronger impact on the stress profile,

as expected. λ5 appears only in the equation for the normal component of the higher

moment mnnn. The coefficient has a strong impact on σ, a medium impact on V0

and no impact on q0. It influences the stress profile significantly and the temperature

profile slightly. After these dependencies were established, several rounds of fitting

were done, until a reasonable fitting was obtained.
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Chapter 4

Evaporation in Numerical

Two-Dimensional Steady-State

Simulation

4.1 R13 with Phenomenological Onsager bound-

ary conditions in numerical simulation

It shall be shown that the applicability of R13 with PBC (Phenomenological Boundary

Conditions) is not limited to one-dimensional systems. A numerical solver for 2-D

geometries, written in C++ by Torrilhon [27], is used in this chapter to solve the

linear R13 equations with the PBC for evaporation. As comparison, simplified NSF

(Navier-Stokes-Fourier) is solved with the same code. The program from Torrilhon

allows for generic implementation of macroscopic transport equations. The numerical

solver relies on a discontinuous Galerkin (DG) method which utilizes finite elements

to discretize the system. Here the code is extended by implementing the evaporation

boundary conditions, previously derived in Chap. 3.

The PBC for R13, given in Eqs. (3.28-3.30), are adjusted by using data for Maxwell

molecules out of Table 3.1 and read

−λ0ρ+vgx+(−λ0 − λ1)T g +

(
−λ0 −

3

4
λ2 −

2

5
λ1

)
σxx−

1

5
λ1Rxx = λ1T

l +λ0psat(T
l) ,

(4.1)
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Evaporation/condensation Wall with energy transfer Inflow/outflow
λ0 a0ϑ2 0 1/10−5

λ1 −1
2
b0ϑ2 0 0

λ2 −2
5
c0ϑ2 0 0

λ3 2d0χ2 2d0ϑ2 1/10−5

λ4 −2
5
e0χ2 −2e0ϑ2 0

λ5 f0

(
52
25
χ2 + 4

15
ϑ2

)
2f0ϑ2 0

ζ0 a1χ2 a1ϑ2 1.0
ζ1 −b1χ2 −b1ϑ2 1.0
ζ2 13c1χ2 c1ϑ2 1.0
κ0 2a2χ2 2a2ϑ2 1.0

Table 4.1: Adjustment of the Onsager coefficients to gain evaporation boundary con-
ditions, wall boundary conditions and inflow boundary conditions.

−λ1ρ+ (−λ1 − λ3)T g +

(
−λ1 −

3

4
λ4 −

2

5
λ3

)
σxx+ qgx−

1

5
λ3Rxx = λ3T

l +λ1psat(T
l) ,

(4.2)

−λ2ρ+(−λ2 − λ4)T g+

(
−λ2 −

3

4
λ5 −

2

5
λ4

)
σxx+mxxx−

1

5
λ4Rxx = λ4T

l+λ2psat(T
l) ,

(4.3)

−ζ0vy + σxy +

(
−2

5
ζ0 −

1

5
ζ1

)
qy − ζ0mxxy = 0 , (4.4)

−ζ1vy +

(
−2

5
ζ1 −

1

5
ζ2

)
qy − ζ1mxxy +Rxy = 0 , (4.5)

−1

2
κ0σyy +mxyy = 0 . (4.6)

Since for wall-vapor interfaces the DG-code uses a normal vector n pointing from

vapor into the direction of the wall, the sign of T l, psat(T
l), vx, q

g
x, mxxx, σxy, Rxy

and mxyy is switched. The liquid phase is not solved and therefore can be treated in

the same manner as a wall, which allows for mass transfer. Adjustment of the On-

sager coefficients allows to derive other boundary conditions such as wall with energy

transfer or inflow/outflow. Table 4.1 gives an overview about these modifications.

The factors being used are given as

χ2 =

√
2

π

ϑ+ χ(1− ϑ)

2− ϑ− χ(1− ϑ)
, ϑ2 =

√
2

π

ϑ

2− ϑ
. (4.7)

For an adiabatic wall (fully specular reflective) all Onsager coefficients are set

to zero, which leads to vgx = qgx = mxxx = σxy = Rxy = mxyy = 0. The Onsager
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Evaporation/condensation Wall with energy transfer Inflow/outflow
a0 0.975 − −
b0 0.875 − −
c0 1.0 − −
d0 1.1 0.872 −
e0 0.7 0.872 −
f0 1.05 1.0 −
a1 1.0 (Not fitted) 0.9143 1.0 (Not fitted)
b1 1.0 (Not fitted) 0.9143 1.0 (Not fitted)
c1 1.0 (Not fitted) 1.0 1.0 (Not fitted)
a2 1.0 (Not fitted) 1.0 (Not fitted) 1.0 (Not fitted)

Table 4.2: Adjustable coefficients within Onsager coefficients for R13.

Evaporation/condensation Wall with energy transfer Inflow/outflow
psat pevap − ±pflow
Tl Tevap Tw Tflow

Table 4.3: Overview input parameters.

coefficients for a wall with energy transfer are taken from Ref. [21]. The adjustable

coefficients within the Onsager coefficients for the different boundaries are set as in

Table 4.2.

Note: The evaporation/condensation coefficients a0, ..., f0 are based on a fitting

as in Problem I (Chap. 3), however different definitions of the Knudsen number

between DSMC and R13 where used. Therefore a small error is introduced here. For

evaporation/condensation the coefficients a1, b1, c1 and a2 are not fitted and set to

unity. The adjustable coefficients for a wall with energy transfer d0, ..., f0 and a1, ..., c1

are taken from Ref. [21] and a2 is set to unity. Depending on the boundary, different

pressures and temperatures are assumed as depicted in Table 4.3.

From Tables 4.1 and 4.3 the inflow/outflow boundary conditions follow as

− (ρ+ T g)− σxx +
vx
λ0

= ±pflow , (4.8)

−T g − 2

5
σxx −

1

5
Rxx +

qgx
λ3

= Tflow , (4.9)

mxxx = 0 , (4.10)

−vy −
3

5
qy + σxy −mxxy = 0 , (4.11)
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−vy −
3

5
qy −mxxy +Rxy = 0 , (4.12)

−1

2
σyy +mxyy = 0 . (4.13)

Due to limited degrees of freedom when controlling variables at one boundary, the

velocity vgx in Eq. (4.8) is removed. Since division by 0 is not defined, λ0 is set to

a value of much larger order of magnitude than vx. In the same manner the heat

flux qgx is removed. Hence, driving forces of the system which are controlled at both

boundaries are pressure pflow and temperature Tflow.

4.2 Navier-Stokes-Fourier with Onsager boundary

conditions in numerical simulation

For obtaining a comparison to the R13 solutions for two-dimensional systems, Navier-

Stokes-Fourier together with evaporation boundary conditions is solved here. For χ =

ϑ = 1 and considering one-dimensional geometry, evaporation boundary conditions

for NSF are given in Appendix D, see. (D.1). For 2- and 3-dimensional geometries

an additional boundary condition is found in Ref. [18] and reads

σgxy = − ϑ+ χ(1− ϑ)

2− ϑ− χ(1− ϑ)

√
2

πRT

(
pvgy +

1

5
qy

)
. (4.14)

Note that Eqs. (D.1) are simplified for 1-D geometry. Again by considering χ = ϑ = 1

and after full linearization and non-dimensionalization, Eq. (4.14) becomes

σgxy = −
√

2

π

(
vgy +

1

5
qgy

)
. (4.15)

For the DG-code one sets T = −2
3
T ∗, qx = −q∗x and qy = −q∗y and the evaporation

boundary conditions for NSF (4.15) and (D.1) follow as

ρ−
√

2πr11v
g
x −

2

3
T ∗ +

√
2πr12q

∗
x = −psat , (4.16)

−
√

2πr21v
g
x −

2

3
T ∗ +

√
2πr22q

∗
x = −T l , (4.17)
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√
2

π
vgy − σgxy −

1

5

√
2

π
q∗y = 0 . (4.18)

A corrected Onsager matrix for r11, r12 and r22 which is used in the DG-code is given

in (D.3). For a wall with energy transfer, (4.16-4.18) reduce to

vgx = 0 , (4.19)

−2

3
T ∗ +

√
2πr22q

∗
x = −T l , (4.20)√

2

π
vgy − σgxy −

1

5

√
2

π
q∗y = 0 . (4.21)

For an adiabatic wall (fully specular reflective) the trivial boundary conditions read

vgx = q∗x = σgxy = 0 . (4.22)

The inflow/outflow b.c. used for NSF are given as

psat = −ρ+
2

3
T ∗ + ε

√
2πr11v

g
x − ε

√
2πr12q

∗
x , (4.23)

T l =
2

3
T ∗ + ε

√
2πr21v

g
x − ε

√
2πr22q

∗
x , (4.24)√

2

π
vgy − σgxy −

1

5

√
2

π
q∗y = 0 , (4.25)

with ε = 10−5 as factor of low order of magnitude to remove vgx and q∗x. For the input

parameters, Table 4.3 is used.

4.3 Results for two-dimensional simulation for R13

and NSF

4.3.1 Testing of the numerical simulation in quasi

one-dimensional system

Before using the R13 and NSF-equations in a two-dimensional geometry they shall

be tested and compared with analytical solutions from Problem I (Sec. 3.3.3). The

analytical solutions for R13 with PBC and NSF with PBC are given in Eqs. (3.52-
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3.54) and (3.55-3.56) respectively. To obtain a standard temperature profile with

non-reversed heat flux, the driving forces at the boundaries are set as in (Sec. 3.3.5)

to T 0
l = psat(T

0
l ) = 1.05 and T 1

l = psat(T
1
l ) = 0.95. All results use ϑ = χ = 1

in the following. In contrast to Sec. 3.3.5 the adjustable Onsager coefficients for

evaporation being used are given in Table 4.2. For NSF the corrected Onsager matrix

given in (D.3) is utilized. The numerical solutions for R13 and NSF model a quasi-

one-dimensional system, depicted in Fig. 4.1 for R13.

Figure 4.1: R13 in quasi one-dimensional system: Temperature distribution with grid
mesh for Kn = 0.1.

The left and right boundaries are based on the full evaporation boundary condi-

tions (4.1-4.6). Top and bottom are adiabatic walls with vgx = qgx = mxxx = σxy =

Rxy = mxyy = 0. In Fig. 4.2 numerical solutions (blue line) are compared with

analytical solutions (read line) for Kn = 0.1.

The agreement between numerical and analytical solutions for temperature and

density profiles is flawless, therefore one can barely see the numerical solution under-

neath the analytical. One notes the non-linear behavior of R13 close to the boundaries

due to Knudsen layers which can not be predicted by NSF.

4.3.2 Numerical solutions for two-dimensional channel-flow

with four evaporating cylinders

The system of interest for the two-dimensional steady-state simulation is a channel

with four evaporating cylinders, which is discretized as depicted in Fig. 4.3. The
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Figure 4.2: Analytical vs. numerical solutions of R13 and NSF in quasi one-
dimensional system. Note: The numerical solution lies underneath the analytical
solution.

Figure 4.3: Grid of two-dimensional channel-flow with four evaporating cylinders.

left boundary is the inlet of the channel flow and the right boundary is the outlet.
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Evaporation/condensation Wall with energy transfer Inflow/outflow
psat pevap = 0.2 − ±pflow = 0.1
Tl Tevap = 0.2 Tw = 0.2 Tflow = 0.2

Table 4.4: Input parameters for two-dimensional channel flow with four evaporating
cylinders.

For R13 inflow/outflow boundary conditions, the Eqs. (4.8-4.13) and for NSF, the

Eqs. (4.23-4.25) are used. Top and bottom are walls which allow energy transfer,

given with Table 4.1 for R13 and with Eqs. (4.19-4.21) for NSF. The cylinder walls

use evaporation boundary conditions given by (4.1-4.6) with Table 4.1 for R13 and

(4.16-4.18) for NSF. The input parameters, which are given in Table 4.4 are non-

dimensional and describe the deviation from equilibrium. They are chosen in a way,

that evaporation at the cylinders can be observed clearly.

The plots in Fig. 4.4 show pressure contours, superimposed by velocity streamlines,

for R13 and NSF, for the three Knudsen numbers: Kn = {0.1, 0.5, 1}. For Kn = 0.1,

the velocity streamlines are similar between R13 and NSF. The inflow of the left

boundary collides with the evaporating flow, which leaves the two cylinders on the

left-hand side. The largest flow velocity is observed in between the two cylinders on

the right-hand side. For Kn = 0.5, the evaporation overcomes the inflow and leaves

the system at the inlet of the channel. This interesting effect is observed for R13

and NSF, but with different flow behavior. For R13, the streamlines, which leave

the inlet, have their origin mainly in the left bottom cylinder. The dominance of

the left cylinder of R13 becomes even more apparent for Kn = 1. The NSF velocity

streamlines at the inlet for Kn = {0.5, 1} come almost equally from both left cylinders.

For Kn = 0.1, the pressure contours of R13 and NSF show very similar behavior.

With increasing Kn, the R13-pressure contours on the right hand side of the diagrams

disconnect from each other and become almost vertical for Kn = 1.

Also, for Kn = 1, significant differences between R13 and NSF are found for the

temperature profiles, which are depicted in Fig. 4.5. The overall temperature around

the four evaporting cylinders is much lower for NSF, than for R13. As can be seen

by the conductive heat flux streamlines, the enthalpy of vaporization is provided

by the boundaries, as in the previous simulations. The magnitude of the R13 heat

flux, shows interesting peaks in between the two cylinders on the right-hand side for

Kn = {0.5, 1}.
The large differences between R13 and NSF for Kn = {0.5, 1} are likely due
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Figure 4.4: Pressure contours superimposed by velocity streamlines for two-
dimensional channel-flow with four evaporating cylinders and various Knudsen num-
bers.
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Figure 4.5: Temperature contours superimposed by cond. heat flux streamlines for
two-dimensional channel-flow with four evaporating cylinders and various Knudsen
numbers.
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to rarefaction effects, which can not be captured by NSF. It has to be taken into

account, as mentioned in Sec. 4.2, that simplified NSF boundary conditions are used

here. Note that R13 is limited to flow regimes below Kn = 1 and can only describe

a tendency here. For validation of the R13 results a reliable reference, such as from

a DSMC simulation is necessary, which might be part of a future work.
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Chapter 5

Conclusion

5.1 Summary and achievements

In Chap. 2 simplified Navier-Stokes-Fourier equations are considered to model slow

evaporation in a non-steady and one-dimensional system. Driving force of evaporation

is the controlled pressure on top of the vapor layer. Onsager boundary conditions are

used for the interface between the two phases. The bulk equations are discretized

by means of finite differences and solved explicitly. A matlab algorithm is suggested

which is based on a dynamic mesh. Liquid and vapor heights are chosen to be 0.1mm

respectively. This leads to a Knudsen number of Kn=0.01, which is just in the classical

hydrodynamics regime. The simulation allows for calculation of all thermodynamic

quantities and gives an insight into the physics of evaporation processes.

Based on the Onsager Theory which utilizes the second law of thermodynamics,

evaporation boundary conditions (PBC) for the regularized R13 equations are derived

in Chap. 3. The Onsager coefficients have been determined by following a process

consisting of three steps. In the first step (Sec. 3.3.1) the boundary conditions are

compared with previously discussed boundary conditions for evaporation (MBC),

which represent an alternative approach for deriving boundary conditions for R13.

Under the assumption of proper results for MBC in the Navier-Stokes-Fourier (NSF)

regime and by keeping in mind that higher moments develop a significant impact

only for higher Knudsen numbers, coefficients are being taken over from MBC to

PBC so that the differences between the sets of boundary conditions lie mainly in

the terms with higher moments [21]. The idea is to find boundary conditions which

are just as reliable as MBC in the NSF regime and more accurate in the transition
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regime. In the next step adjustable coefficients are suggested for the PBC. These

coefficients are fitted by trial and error to DSMC data for the analytical solution of

a finite one-dimensional system (Sec. 3.3.3). In the third step for finding meaningful

Onsager coefficients the half space problem (Sec. 3.3.4) is solved analytically and

ratios suggested by Ytrehus [24] are used to fine tune the coefficients. The overall

agreement between PBC and DSMC (Sec. 3.3.5 and 3.3.6) has been shown to be

better than for MBC or NSF.

The impact of the evaporation and accommodation coefficients is discussed in Sec.

3.3.7. In Sec. 3.3.8 it is explained, how the trial and error fitting gives an insight into

the physical meaning of the individual Onsager coefficients.

In Chap. 4 the new evaporation/condensation boundary conditions are imple-

mented into a code for the numerical solution of two-dimensional, steady-state prob-

lems. Results for Knudsen numbers of Kn={0.1,0.5,1.0} are obtained and compared

to simplified Navier-Stokes-Fourier solutions. It is observed that with increasing

Knudsen number, R13 shows different flow behavior than NSF.

5.2 Recommendations and future work

For the non-steady evaporation model in Chap. 2, one notes that the numerical ap-

proach chosen is restricted to the CFL criterion which limits the applicability for

higher Knudsen numbers. In a future work we recommend to use an analytical

method or implicit numerical method which is not bound to the CFL criterion. Also,

for gaining an evaporation model with applicability in a flow regime further away from

equilibrium, it might be of interest to solve the non-linearized Navier-Stokes-Fourier

equations.

Due to lack of a mathematical approach, i.e., optimization algorithm, for fitting

the Onsager coefficients in Chap. 3, it is uncertain if significantly better fittings for

the presented problems are possible. This may be part of a future analysis. Even

though NSF fails to predict normal stress for the presented problems, it shows sur-

prisingly good results for low to moderate Knudsen Numbers. The advantage of R13

with PBC compared to NSF might be shown even more clearly in numerical simula-

tions for complex geometries. The Onsager coefficients appear to be dependent on the

evaporating material, which in the practical application becomes problematic. There-
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fore we recommend an investigation considering the fitting of Onsager coefficients as

function of the enthalpy of vaporization, which defines the material.

For the numerical simulation in Chap. 4, it is necessary to compare the results

to a reliable reference, such as a DSMC solution, which shall be a future effort.

Additionally it might be of interest to compare the numerical R13 results to those of

a 26-moment method, see [28].
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Appendix A

Derivation of Entropy Fluxes

Based on the incompressible Navier-Stokes-Fourier-equations, a reduced entropy flux

Ψl
k for the liquid side of a liquid-gas interface shall be derived in the following. Here,

the vapor is a monatomic ideal gas with specific heat cp = 5
2
R and the liquid is

described as an incompressible simple liquid. The heat of vaporization at reference

state T0, psat (T0) is

h0
gl = hg (T0)− hl (T0) =

5

2
RT0 −

(
clT0 +

psat (T0)

ρl
+ h0

)
, (A.1)

with the enthalpies

hl = cl (T − T0) +
5

2
RT0 +

p− psat (T0)

ρl
− h0

gl , (A.2)

hg =
5

2
RT . (A.3)

The energy density of the liquid εl = ρlu
l, with ul as the internal energy, is

εl = ρl

(
hl − p

ρl

)
= ρl

(
cl (T − T0) +

5

2
RT0 −

psat (T0)

ρl
− h0

gl

)
. (A.4)

The entropy density ηl = ρls
l of the incompressible liquid is given as

ηl = clρl ln
T l

T0

− ρl
T0

h0
gl , (A.5)
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where the proper entropy difference at equilibrium state ηv(T0)
ρv
− ηl(T0)

ρl
=

h0
gl

T0
was used.

The conservation laws for mass, energy and entropy for a fluid are

∂ρ

∂t
+
∂ρvk
∂xk

= 0 , (A.6)

∂
(
ε+ ρ

2
v2
)

∂t
+
∂
(
(ε+ ρ

2
v2)vk + qk + pvk + σikvi

)
∂xk

= 0 , (A.7)

∂η

∂t
+
∂ (ηvk + φk)

∂xk
= σgen . (A.8)

When one intends linearized balance laws, the entropy must be considered up to

quadratic terms in deviations from equilibrium. To obtain a proper quadratic entropy,

it is convenient to replace η by a linear combination η̂

η̂ = η +
5

2
Rρ− 1

T0

(
ε+

ρ

2
v2
)

, (A.9)

which obeys the balance laws (A.6-A.8). Then, the reduced entropy balance reads

∂η̂

∂t
+
∂
(
η̂vk + φk − 1

T0
(pvk + qk + σikvi)

)
∂xk

= Σgen . (A.10)

For deriving the entropy flux on the liquid side, incompressible Navier-Stokes-Fourier

is used with φk =
qlk
T l . Hence the reduced entropy flux can be read from (A.10) as

Ωl
k = η̂lvlk +

qlk
T l
− 1

T0

(
qlk + plvlk + σlikv

l
i

)
. (A.11)

By using the equations of state for a liquid, (A.4,A.5) in (A.9) and after linearizing and

non-dimensionalizing with (2.15) and (3.1), the reduced entropy density η̃l assumes

the form

η̃l =
η̂l

Rρl
=
psat (T0)

ρlRT0

− cl
R

(
T l
)2

2
− 1

2

(
vl
)2

. (A.12)

The reduced entropy flux (dimensionless, linearized) on liquid side which, depending

on evaporation or condensation, either enters or leaves the interface between liquid

and vapor follows as

Ψl
k =

Ωl
k

ρ0R
√
RT0

= −plvlk − qlkT l − σlikvli . (A.13)
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By considering R13 for the vapor phase, the entropy for the vapor can be found

in the same manner, over a linear combination of (A.6-A.8). Though due to the

higher moments, there are additional terms in the (dimensionless, linearized) reduced

entropy density η̃g and reduced entropy flux Ψg
k, see Ref. [29]:

η̃g = η0 −
(ρg)

2

2
− (vg)

2

2
− 3

4

(
T g
)2 − $2

8
(σg)

2 − 2θ2

25
(Pr)2 (qg)

2
, (A.14)

Ψg
k = −pgvgk − q

g
kT

g − σgikv
g
i −

$3

5
Pr qgi σ

g
ik −

$2

4
σgijmijk −

2θ2

25
(Pr)2

(
qgiRik +

∆

3
qgk

)
.

(A.15)

The overbars which denote dimensionless deviations to the respective equilibrium

state are neglected in Chap. 3.
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Appendix B

Normal and Tangential

Components

Within the process of deriving Onsager boundary conditions, it is desirable to decom-

pose the tensors into their respective normal and tangential components. The normal

component of a vector can be defined as

qn = qknk , (B.1)

with its tangential component

qi = qi − qnni , with qini = 0 . (B.2)

Similar one may define the components of a symmetric and trace-free tensor as [21]

σnn = σrknknr , (B.3)

σni = σiknk − σnnni , with σnini = 0 , (B.4)

σ̃ij = σij − σnn
(

3

2
ninj −

1

2
δij

)
− σninj − σ̃njni , with σ̃ijnj = σ̃kk = 0 . (B.5)

Here, σnn is the normal-normal component, σni the normal-tangential component and

σ̃ij the tangential-tangential component. Similar for a symmetric and trace-free third

order tensor, i.e., a 3-dimensional matrix one finds

mnnn = mijkninjnk , (B.6)
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mnni = mijknjnk −mnnnni , with mnnini = 0 , (B.7)

m̃nij = mijknk−mnnn

(
3

2
ninj −

1

2
δij

)
−mnninj−mnnjni , with m̃nijnj = 0 . (B.8)

Additionally one has:

δijmnnjni = δijσnjni = δijm̃nij = 0 , (B.9)

δijninj = njnj = 1 . (B.10)
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Appendix C

Comparison of PBC vs. MBC for

Non-Fitted Coefficients

For Maxwell molecules, the normal boundary conditions of PBC and MBC are com-

pared with each other. The Onsager coefficients (3.31-3.36) are plugged into the PBC

(3.28) while considering data for Maxwell molecules from Table. 3.1 and setting the

adjustable coefficients a = b = ... = f = 1. The terms that are different between

PBC and MBC are underlined, terms indicated with tilde appear in the MBC but

not in the PBC. As mentioned in Chap. 3.3.1 there is a certain degree of freedom

which coefficients to take over from the MBC, i.e., the here shown fitting is just one

possibility. Our attempt is to have as many lower order terms such as pg, σnn and(
T g − T l

)
equal between PBC and MBC but we seek to have differences in higher

order terms, i.e., ∆ and Rnn, see Chap. 3.3.1.

PBC:

V g
n =

√
2

π

ϑ

2− ϑ

(
psat

(
T l
)
− pg − 1

2
σgnn +

1

2

(
T g − T l

)
+

1

30
∆ +

1

10
Rnn

)
(C.1)

MBC:

V g
n =

√
2

π

ϑ

2− ϑ

(
psat

(
T l
)
− pg − 1

2
σgnn +

1

2

(
T g − T l

)
+

1

120
∆ +

1

28
Rnn

)
(C.2)
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PBC:

qgn = −
√

2

π

ϑ+ χ(1− ϑ)

2− ϑ− χ(1− ϑ)

(
2
(
T g − T l

)
+

1

2
σgnn +

2

15
∆ +

2

5
Rnn

)

− 1

2

√
2

π

ϑ

2− ϑ

[
psat

(
T l
)
− pg − σgnn

]
(C.3)

MBC:

qgn = −
√

2

π

ϑ+ χ(1− ϑ)

2− ϑ− χ(1− ϑ)

(
2
(
T g − T l

)
+

1

2
σgnn +

1

15
∆ +

5

28
Rnn

)

− 1

2

√
2

π

ϑ

2− ϑ

(
psat

(
T l
)
− pg − 1

2
σgnn +

˜1

2
(T g − T l) +

1̃

120
∆ +

1̃

28
Rnn

)
(C.4)

PBC:

mnnn =

√
2

π

ϑ+ χ(1− ϑ)

2− ϑ− χ(1− ϑ)

(
2

5

(
T g − T l

)
− 7

5
σgnn +

2

75
∆ +

2

25
Rnn

)

− 2

5

√
2

π

ϑ

2− ϑ

(
psat

(
T l
)
− pg − 1

2
σgnn

)
(C.5)

MBC:

mnnn =

√
2

π

ϑ+ χ(1− ϑ)

2− ϑ− χ(1− ϑ)

(
2

5

(
T g − T l

)
− 7

5
σgnn +

1

75
∆− 1

14
Rnn

)

− 2

5

√
2

π

ϑ

2− ϑ

(
psat

(
T l
)
− pg − 1

2
σgnn +

˜1

2
(T g − T l) +

1̃

120
∆ +

1̃

28
Rnn

)
(C.6)
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Appendix D

Onsager Boundary Conditions for

Navier-Stokes-Fourier Equations

Here the Navier-Stokes-Fourier equations are used together with evaporation bound-

ary conditions based on the Onsager theory. The Eqs. (2.35,2.36) are simplifications

for full evaporation, ϑ = 1, fully diffusive reflection, χ = 1 and by considering one-

dimensional heat and mass transfer only [17][18]. They are given in fully linearized

form below  psat−pg√
2π

(T l−T g)√
2π

 =

[
r̂11 r̂12

r̂21 r̂22

][
vgx

qgx

]
. (D.1)

All variables are non-dimensional and linearized. The matrix of Onsager coeffi-

cients read [17][18]

r̂αβ =

[ (
1
ϑ
− 1

2

)
+ 1

16
1
8

1
8

1
4

]
. (D.2)

Solutions based on (D.2) in Chap. (3.3) are referred to as uncorrected NSF. A

correction can be found in kinetic theory which yields [17][18]

r̂αβ,corr =

[
1
ϑ
− 0.40044 0.126

0.126 0.291

]
. (D.3)


