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Penetration of renewable energy generators into energy systems is increasing. The 

intermittency and variability of these generators makes supplying energy reliably and 

cost effectively difficult. As a result, storage technologies are proposed as a means to 

increase the penetration of renewable energy, to minimize the amount of curtailed 

renewable energy, and to limit the amount of back-up supply. Therefore, methods for 

determining an energy system’s storage requirements are being developed. This thesis 

investigates and details four existing methods, proposes and develops a fifth method, and 

compares the results of all five methods. The results show that methods which 

incorporate cost, namely the Dynamic Optimization and the Abbey method, consistently 

yield the most cost effective solutions. Under excellent renewable energy conditions the 

results show that the cost-independent methods of Korpaas, Barton, and the Modified 

Barton method produce solutions that are nearly as cost effective but have greater 

reliability of energy supply than the Dynamic Optimization and Abbey solutions. This 

thesis recommends a new path of research for the Modified Barton method: the 

incorporation of cost through the confidence level. This thesis also recommends the 

development of new sizing methods from various aspects of the methods presented. 
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Nomenclature 

Autonomy: The relative amount of time which the wind-storage system is self sufficient. 

CDF: Cumulative Density Function. 

ESD: Energy Storage Device. 

EV: Expected Value. 

FFT: Fast Fourier Transform. 

LOLP: Loss of Load Probability, the probability the wind-storage system will be unable 

to fully supply load. 

PDF: Probability Density Function. 

Periodogram: Variance as a function of frequency. 

WS: Wind Speed. 
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Symbols 

A: Amplitude 

EStore: Store Energy 

PBackup: Backup Power 

PCharge: Charge Power, also subscripted ‘Ch’ 

PCurt: Dumped or Curtailed Power 

PDischarge: Discharge Power, also subscripted ‘Dch’ 

PDump: Dumped or Curtailed Power 

PFP: Firm power, constant system load 

PLoad: System Load 

PNet: Net Power 

PWind: Wind Power 

t: Discrete time step 

T: Length of time considered 

u: Wind speed designation in Barton’s method 

α: Efficiency correction in Barton’s method 

κ: Variance of wind speed to variance of wind power conversion 

γ: Confidence level 

σ: Standard deviation 

η: Efficiency of storage device, subscripted either charge, discharge or roundtrip 



 xi 

ζ: Storage Size 

τ: Storage Period 

ω: Frequency 

ν: Wind Speed 

νCutIn: Minimum wind speed at which turbine will generate power, below which it is off. 

νCutOut: Maximum wind speed at which turbine will generate power, above which it will 

turn off. 



 

 

1 Introduction 

1.1 Background 

There is a social, environmental, and economic push to reduce emissions from fossil 

fuel fired generators and to reduce dependence on fuels. As a result, use of renewable 

sources for energy supply is increasing. Amongst renewable energy technologies wind 

energy converters are relatively mature and cost effective [1] and are being installed in 

greater numbers. There is some unpredictability or intermittency associated with wind 

energy, resulting in rapid fluctuations in generation. Fluctuating generation is smoothed 

through fast ramping of dispatchable generators, through altering the load to fit the 

available generation, or through transferring energy to and from a storage device [2].  

Storage devices should be utilized when an energy system has a high penetration of 

intermittent wind power, when there is a suitable storage technology available, and when 

it improves operation of the energy system. High penetration of intermittent power is 

necessary for viability of storage devices because low penetration variations can be 

absorbed through ramping of existing generation. Furthermore, intermittency of wind 

power is necessary for viability of storage devices. A single wind site or aggregation of 

wind sites with low variability will be more easily absorbed and may not require storage. 

In energy systems where storage is required a suitable storage technology must be 

available. For instance, systems requiring relatively large amounts of energy storage may 

be limited to site-specific technologies like pumped hydro storage. Whereas systems 

requiring relatively small amounts of storage have a greater number of storage options 

such as chemical storage in batteries or fuel cells. Whichever technology is applicable, 

the resulting storage device must improve system operation; which may include reduction 

in emissions, improved reliability, and reduced cost of energy supply [3–5].  
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In order to keep costs at a minimum, the size requirements for energy storage devices 

must be determined. Storage devices will have capital and possibly operating costs in 

addition to finite lives. Sizing a device too small may either reduce its operating life 

through over use, such as exceeding maximum depth of discharge too frequently [6], or 

render it ineffective at balancing load. Sizing a device too large will result in increased 

capital costs which will increase the cost of supplying energy; therefore, effective storage 

sizing is necessary.  

1.2 Factors Affecting Wind and Storage Energy Systems 

The size of an energy storage device is affected by the renewable energy generation, by 

the load to be supplied, and by the economics of the energy system [7]. As previously 

stated, renewable energy sources often generate energy unpredictably. The range of 

unpredictable generation, the rate at which generation changes, and the frequency with 

which generation changes will affect the amount of storage required. The storage device 

matches the unpredictable generation to the system load, therefore, system load can also 

affect store size. A flexible load or a load which is positively correlated with the 

renewable generation will require less storage than a load which is negatively correlated 

or out of phase with the naturally occurring frequencies of the renewable generation. 

Finally, the costs of storage relative to the costs of backup generation or loss of reliability 

will affect how much storage is optimal. As with renewable generation and load, the costs 

associated with supplying energy and installing storage systems are often site-specific.  

The renewable generation characteristics affecting energy storage requirements include 

the average amount of renewable power, the variance, and the frequency of variance. The 

average amount of generation will determine how much of the load can be met directly.  
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Generally, a high average means the site spends more time producing energy, translating 

to more time the generator is directly meeting load and less time that a storage device or 

backup generator is utilized. However, high average generation does not always translate 

into smaller storage devices as the variance of a wind site also affects storage size. For 

instance, a wind site that spends 50% of its time at full output and the remaining time at 

no output would have an average of 50%. However, the large range, from full to zero, 

would require a storage device to smooth and balance output. Furthermore, the frequency 

at which this power output varies will affect storage size. Using the example of a site 

with 50% average generation, if this site’s output varied rapidly from hour to hour the 

storage device would be relatively small, only needing to store a few hours worth of 

energy. This is shown in Figure 1-1 where plot (a) shows a simplified system where net 

power varies from hour to hour. Net power, PNet is given in Eqn. (1.1) where PWind is 

wind generation and PLoad is system load. 

 

                  (1.1)  

 

The store cycles from full to empty to full rapidly. However, the required storage size is 

only 1 MWh. 
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Figure 1-1: Example of store size given different net power conditions. Plot (a) shows small 

storage size, plot (b) shows large storage size. 

 

In contrast, if the site spent several hours at full output and an equal amount of time at no 

output, the device would need to be large enough to store many hours worth of energy. 

Again Figure 1-1 shows this in plot (b) where the net power does not vary as rapidly and 

therefore the storage device must be larger, in this instance 5 MWh. In summary, the 

average generation, the variance, and the frequency of variance will all affect storage size 

requirements. 

Similarly, system load can affect storage requirements; in particular from load 

flexibility and correlation between the load and renewable generation. Load flexibility 

refers to the ability to alter load as necessary to balance supply and demand; generally 
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referred to as demand side management [8], [9]. An energy system with a large capacity 

for demand side management will require less storage than a system with no ability to 

alter load. Another factor affecting storage size is the correlation between load and 

generation [10], which refers to how load and generation vary together in time. A perfect 

positive correlation between load and generation would require no storage as there would 

be balance at all times. A simplified example is shown in plot (c) of Figure 1-2 where the 

load and generation are nearly matched and thus the net power does not change 

significantly. 

 

Figure 1-2: Effects of Load-Generation Correlation on Net Power. Plot (a) shows large net 

power resulting from load and generation totally out of phase. Plot (b) shows reduction in 

net power when load and generation are partially out of phase. Plot (c) shows low net power 

when load and generation are almost in phase. 
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Alternatively, a strongly negative correlation would require significant storage as load 

would be at a minimum while generation is at a maximum and vice versa. This is shown 

in plot (a) of Figure 1-2, where load and generation are perfectly out of phase and large 

positive and negative net powers result. In such negatively correlated systems the storage 

device attempts to shift load and generation together.  

Another factor affecting storage requirements is the cost of supplying energy, separated 

into capital costs and operating costs. Energy storage devices will have a capital cost 

which will increase the overall energy supply cost. This increase in cost is offset as a 

storage device will decrease the amount of curtailed energy [2] and decrease the amount 

of required back-up energy or loss of load, both of which have operating costs. Therefore 

the capital costs relative to the operating costs can affect how much energy storage to 

install. 

Energy storage requirements are affected by wind characteristics, load characteristics, 

and energy system costs. Wind sites with high variability will require energy storage to 

smooth out generation. Similarly, systems without demand side management capability 

will also require energy storage. Finally, systems which have a high cost associated with 

back-up energy or loss of load may financially benefit from having energy storage 

systems. These factors are included in determining energy storage requirements.  

1.3 Defining Storage Requirements 

Methods for sizing energy storage draw upon some of the previously mentioned factors 

as inputs. The relative importance or weight of each factor varies from method to method. 

This thesis presents several methods which are sensitive to energy system costs. It also 

shows that methods neglecting system costs are most sensitive to wind resource data. 
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There is no clear consensus on which method to utilize for sizing energy storage. This 

section introduces some of the most simple, most novel, or most cited methods for sizing 

energy storage. 

Many methods draw on purely statistical information such as probability density 

functions (PDFs) and variance to determine store size. PDF and expected value methods, 

such as the methods proposed by Korpaas [11] and Gavanidou [12], first utilize the mean 

and variance of a data set to construct a PDF, for example, from a time series of wind 

speeds. This PDF gives the probability of a wind speed and hence a wind power 

occurring. Scenarios of operation can be constructed at each possible wind speed and an 

expected value determined. A novel and highly cited method proposed by Barton [13] 

draws on this scenario-based calculation but also uses variance of wind speeds as a 

function of frequency. In this method, a large wind speed data set is used to generate a 

periodogram which is then filtered to determine variance over a desired frequency range 

where storage will operate. This desired frequency range corresponds to the storage 

period, for instance 24hrs, or 1 year. Additional statistical information, like the 

correlation between wind power and variable load can be used to alter the store size. For 

instance, Barton’s method calculates a periodic variance to attempt to capture the effects 

of variable load on storage size. The storage sizes from the above methods are generated 

using only power or historical resource data and results from statistical analysis. Some 

basic statistical information, like PDFs of wind speeds, is readily available from sources 

such as the Canadian Wind Energy Atlas [14]. The speed of construction and calculation 

of the previously mentioned methods means sensitivity analysis of all parameters is 

quickly executed with the exception of sensitivity to cost.  
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Cost sensitivity is captured with techno-economic optimization. The attraction of 

optimization is that a single method can incorporate the technical constraints of a real 

system and the correlations between input data sets, and produce a lowest cost solution.  

A common type of optimization is a dynamic optimization, where the term dynamic 

refers to the incorporation of time into the model. Detailed constraints ensure the model 

closely replicates real world conditions [15]. Some constraints like ramping rates can 

only be implemented when adequate temporal resolution of data are available. Also, to 

capture seasonal variations and correlations, data sets must be several years in length. 

The required data quality, the amount of computational memory and speed required to 

yield a solution, and robustness issues due to the deterministic modeling of stochastic 

processes are weaknesses of dynamic optimizations [16]. 

Alternative optimization methods exist which avoid some of the above problems. The 

issue of data requirements can be mitigated by simulating data. For instance, data sets can 

be built with Markov chains or ARMA models [17]. Another alternative is to use discrete 

wind speed-based scenarios built from PDFs. The scenario concept is demonstrated by 

Pereira [18], Abbey [19], and Brown [20]. A further benefit of using scenarios is a 

reduction in variables. A few representative scenarios are shorter than a time series data 

set and thus have fewer variables, which in turn eases memory requirements and allows 

for more detailed constraints. A final benefit of using scenarios and stochastic 

optimizations is an improvement in solution robustness. Whereas the dynamic 

optimization yields a specific solution for given data, stochastic optimizations yield more 

general solutions. The robustness comes from reducing the larger data sets into a few 

characteristic, or most likely to occur, scenarios.  
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Methods of sizing energy storage devices are largely dependent on the energy system 

to be modeled. The energy system design will determine which technical constraints and 

data inputs are relevant to the storage sizing method.  

1.4 Objectives 

As previously discussed, there are many existing methods for sizing storage. The 

number and variety of methods published indicates sizing energy storage is an evolving 

area. While the number of methods is increasing, there is little research available 

comparing methods. The objective of this thesis is to develop and detail five methods of 

sizing energy storage for remote and grid connected systems and investigate their 

sensitivity to factors which are known to influence energy system performance and hence 

storage requirements. The intent of these methods is for energy system design and to be 

used by energy system planners. One of these methods will be developed for the first 

time in this thesis; the other four will be derived from existing methods.  

1.5 Summary of Methods 

There are five methods included in this thesis, four of these methods are largely based 

on existing methods identified in the literature and have only minor modifications, the 

fifth method represents a significant modification from an existing method. The first 

method is proposed by Barton [21] and is partially replicated by Gassner [22]. It is both 

highly cited and novel in its approach to filtering by frequency. Second, is a PDF method 

from Korpaas [23] which is cited, relatively simple and easy to replicate, and utilizes 

probabilities only to size storage. The third method is a dynamic optimization developed 

by the author but is obvious in its complexity and design. The fourth is a cited two-stage 

optimization that is derived from work by Abbey [19] which was chosen because of its 
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incorporation of probabilities and optimization. The fifth is a modification of Barton’s 

method intended to reduce complexity without significantly affecting results. Finally, in 

order to test and compare these methods, a time-series function is developed. 

The analyses presented in this thesis are based on the energy system shown in Figure 

1-3. This system design is relatively simple and includes wind power PWind, a variable 

system load PLoad, and an energy storage device (ESD) with charging and discharging 

powers PCh and PDch respectively. The system is sized and intended to be wholly wind 

supplied with the storage device balancing wind generation and load. To allow generation 

and load to be balanced at times the storage device is either full or empty, two additional 

variables are included: backup power, PBackup, and curtailed or dumped power, PCurt. 

When required, a desired storage period of 24 hours will be assumed. This length is 

chosen because work by Barton [21], Gassner [22], and Abbey [19] all utilize a 24 hr 

storage period. 
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Figure 1-3: Diagram of modeled energy system. 

 

Testing of the alternative storage sizing methods is performed under varying wind site 

conditions, varying system load, and varying costs. Sites tested include high and low 

variance locations with a large range of capacity factors. Similarly, load profiles are 

changed to simulate conditions from baseload, or low variance, to peaking, or high 

variance. Load profiles are offset from wind data to test for effects of diurnal and 

seasonal correlation. Finally; sensitivity to capital and operating costs are examined. The 

variables and testing are not exhaustive but are sufficient to demonstrate the abilities and 

sensitivities of the five methods. 

The results are discussed and applications and recommendations presented in the 

conclusion. This thesis provides details on five different methods for sizing energy 

storage. Of these, the modification of Barton’s method is presented for the first time in 

this report, validation of this method is achieved by comparing it to the other four 
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methods. Furthermore, this thesis gives a comparison of the results from all these 

methods and discusses the strengths and weaknesses of the different approaches. Finally, 

recommendations are made as to how best apply and improve storage sizing algorithms.  
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2 Sizing Methods 

This chapter details four storage sizing methods: Barton’s method, Korpaas’ method, 

the Dynamic Optimization, and Abbey’s two-stage optimization. Barton’s method uses 

wind speed variance as a function of frequency to calculate a storage size. The Korpaas 

method utilizes PDFs of wind speed and an iterative process to size energy storage. The 

Dynamic Optimization is a basic linear dynamic optimization based on the energy system 

of Figure 1-3. Similarly, Abbey’s two-stage optimization utilizes the energy system of 

Figure 1-3, but generates characteristic scenarios and iteratively tries various store sizes. 

2.1 Barton’s Method 

The performance of a wind powered energy system is affected by the magnitude and 

frequency of variations in wind speed. For instance, diurnal variations affect the amount 

of energy storage required to ensure reliability throughout a day [13]. In the same way, 

seasonal variations affect the amount of long term storage required to balance out energy 

over the year. Barton’s method [21] filters the magnitude of variance at common 

frequencies, such as diurnal or seasonal cycles, and uses the magnitudes to size energy 

storage requirements.  

2.1.1 Filtering by Frequency 

Filtering wind speed variance requires a filter function and a transformation of wind 

speed time series data into the frequency domain. The transformation requirement is met 

through construction of a periodogram, which can be calculated from a Fast Fourier 

Transform (FFT). A periodogram, turns a time series data set of wind speeds into 

variance of wind speed as a function of frequency. This function is derived in Appendix 

A. Barton’s method then filters the periodogram three times to isolate: the long term 
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variance or store period average variance, the short term variance, and the state of charge 

variance. These filters are shown in Figure 2-1 and presented as equations in Appendix 

A. 

 

Figure 2-1: Filter Functions for 24hr Store Period. Low pass filter isolates long term 

variance, high pass filter isolates short term variance. State of charge filter is scaled by 20. 

 

The filtered short and long term variances are utilized to determine probability density 

functions, detailed in Appendix A, while the state of charge variance is used in the 

calculation of storage size. This filtering process is shown in the flowchart of Figure 2-2 

where wind speed data is first converted to an FFT and periodogram, and then filter 

functions are used to isolate variance. At this stage Barton’s method has variance of wind 

speeds which must be converted to variance of power. 
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Figure 2-2: Flowchart of Barton's Method 
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2.1.2 Spreadsheeting Method 

The conversion of wind speed variance to wind power variance is complicated by the 

non-linear relation between wind speed and wind power, as in a wind turbine 

manufacturer’s power curve [24]. Barton’s method must therefore determine a wind 

speed at which to convert speed to power. This speed is known as the balanced power 

wind speed. Furthermore, Barton’s method accounts for inefficiencies and finite ratings 

of store charge and discharge powers via an adjustment factor, α. The calculation of α 

and the determination of a balanced speed is accomplished through a spreadsheeting 

method. The term spreadsheeting is used because it offers a convenient visualization of 

the method as shown in Figure 2-3. 

 

Figure 2-3: Simplified spreadsheet representation of Barton’s Method. This figure shows 

one spreadsheet for a load of 0.5. For variable load there will be a spreadsheet for each 

possible load. 
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The rows in the spreadsheet represent storage period average wind speeds, these are 

shown in Figure 2-4.  

 

Figure 2-4: Long term average wind speeds. In this figure the long term wind speed is based 

on a 24 hr storage period and is shown with an arbitrarily placed 24hr window with a long 

term mean of 7m/s. The short term wind speeds are those which fall within the 24hr 

window. 

 

Based on the storage period average wind speed PDF, a series of average speeds are each 

assigned a probability of occurrence, this is shown in the rows of Figure 2-3. The 

columns of Figure 2-3 represent short term wind speeds. Each column is assigned a 

probability of occurring from the short term wind speed PDF and the short term wind 

speed in each column is based on long term wind speed in the row, this is described in 

Appendix A. The result is a matrix or spreadsheet of wind speeds. At each cell the 

system’s operating state is calculated based on the cell’s wind speed. These include 

values for wind power, net power, charging powers, curtailed power, and backup power. 

The values across each row are convolved with their associated probability of occurrence 
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to give an expected value of system performance for that mean speed. The mean speed 

with net power closest to zero is deemed the balanced wind speed. The spreadsheeting 

process begins in Figure 2-2 when the high and low frequency variance is used to 

construct PDFs at sample mean wind speeds. Performance is then calculated at each 

mean wind speed and the results combined into expected values, this is the conclusion of 

the spreadsheeting process, again shown in Figure 2-2. The data generated by the 

spreadsheet calculations can be utilized to estimate the overall system operating 

characteristics. 

2.1.3 Storage Size 

Once the balanced wind speed is determined there are three factors which are utilized 

to adjust the state of charge variance, σ
2

ΔEτ, into a required store size. These are κ, α, and 

γ. κ is the wind turbine gradient at the balanced wind speed and it converts the variance in 

wind speed to variance in wind power, it is given as: 

 

 
      

  
 
           

 
                 

     
 (2.1)  

α is an adjustment factor for the efficiency losses and finite power ratings of the energy 

store. α is calculated from the spreadsheet results for the balanced mean wind speed. It is 

given as: 

 
   

        
 

     
  (2.2)  

This is the ratio of variance in the system charge and discharge powers to the net system 

power variance.  



 

 

19 

The final factor, γ, is the confidence level. This term allows adjustment of storage size 

to account for unknowns. In a system which places a large emphasis on reliability or 

which has access to low cost storage the confidence level would be high. Alternately, a 

system with expensive storage options or a tolerance of unreliable operation would use a 

lower confidence level. The final calculation of storage size, ζτ, is therefore given as: 

            (2.3)  

There is a further addition in Barton’s method which is introduced for variable loads. 

This addition is called the periodic variance and is again calculated at the balanced wind 

speed. At this balanced wind speed a net power into the storage device is calculated at 

each possible load. These net powers form a vector which when summed from time 0 to t 

shows the state of charge or the total accumulated energy in the store at t, shown in 

Figure 2-5. 

 

Figure 2-5: Visualization of periodic variance calculation. Where the minimum to 

maximum range of energy accumulated in the store is utilized to calculate the periodic 

variance. 

 

The required increase in store size is calculated to be half the difference between the 

maximum and minimum states of charge.  
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                    (2.4)  

Barton’s method for wind speeds assumes that wind power and load are independent 

random variables, therefore, the final storage size is then given as: 

               
 
          

  (2.5)  

This storage size addresses the effects of efficiencies through α, the effects of wind 

variance through κσΔEτ, the effects of variable load through ζPeriodic, and the effects of cost 

and reliability through γ.  

2.2 Korpaas’ Method 

The method suggested by Korpaas is intended to size a storage device which smoothes 

the variable output of a wind turbine into constant or baseload power. The requirement of 

constant output power allows Korpaas to design a very simple and intuitive probabilistic 

sizing method. This method can also be applied to system loads which are relatively 

constant or have low variance relative to the average load.  

2.2.1 Method 

Korpaas’ method assumes a simple storage device with no ramping constraints and 

which can be characterized by charging and discharging efficiencies only. Korpaas’ 

method also defines charging and discharging power in simple terms. When PWind is less 

than Pfp (firm power) the difference is discharging power, PDch. Alternately, when PWind is 

greater than Pfp the difference is charging power, PCh. 

         
                         
                                        

  (2.6)  

 



 

 

21 

          
                         
                                        

  (2.7)  

These two powers are tied together by integrating over time. The integral of power with 

respect to time is energy, thus the integral of charging power over all times the system is 

in a charging state is the total energy which enters the store. Similarly, the integral of 

discharging power over all times of negative net power is the energy leaving the store. 

The amount of energy which leaves the store must be supplied by energy entering the 

store. Thus these two terms are set equal to each other and firm power, which affects both 

charge and discharge power, is used to balance charge and discharge energy.  

                
       

    

 

 

 

 

   (2.8)  

In the above equation ηCh and ηDch are charge and discharge efficiencies respectively. The 

calculation of these integrals is the key step. Firm power is a constant and will not change 

in time or as power from the intermittent source changes. However, the rate of power 

entering or leaving the store is related to the intermittent resource and the characteristics 

of that resource. Therefore, one might have to collect large amounts of time series power 

data for the intermittent resource and perform a step by step integration of charge and 

discharge power. This may be time consuming as the integration will need to be repeated 

for different firm power levels until charge and discharge energies are found to be equal. 

Another option is to define PDFs and cumulative density functions for the intermittent 

resource. This allows simple expected value calculations to be performed instead of 

lengthy step by step integrations. This is the option that Korpaas follows and the 

equations for expected value of energy entering and leaving the store are shown below, 
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where F denotes the cumulative density function of the renewable resource and f denotes 

the PDF of the renewable resource.  

                                

       

      

 (2.9)  

 

 

  
    

           
                               

      
                      

      

      

 

(2.10)  

 

The variable Pfp is iteratively changed until E(ηDch
-1

PDch) = E(ηChPCh). The final result is 

the available firm power commitment and the expected values of energy entering and 

leaving the store, which are equal. The storage size is then this expected value multiplied 

by the desired store period, which in this thesis is 24hrs. 

2.3 Dynamic Optimization 

The Dynamic Optimization is a time-series based optimization method designed to size 

energy storage requirements for a wind-load energy system, as shown in Figure 1-3. This 

optimization is based on minimizing cost as presented in an objective function. 

Minimization is constrained by equations so as to create realistic operating conditions. 

The optimization is subject to several simplifying assumptions and is solved using 

Matlab’s ‘linprog’ (R2010a, MathWorks, Natick, MA, US) linear program solver. 

2.3.1 Data Requirements 

This time series method requires synchronized time series of load and wind generation. 

In this thesis synchronization means the data sets are of the same resolution and start and 
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end at the same time of day and year (for instance 00:00 January 1
st
). Synchronization of 

data sets ensures seasonal and hourly correlations between wind power and load are 

captured. In order to capture seasonal correlations, data sets must span at least one year. 

In this thesis, the wind generation data set is created by converting a wind speed data set, 

using data from the Enercon E48 wind turbine [24]. The average hourly wind speed is 

used to interpolate a power from the wind turbine power curve. 

2.3.2 Objective Function 

The objective function for this method is to minimize total cost of supplying energy 

and is given below as: 

 

   
   

                               

                                       

 

   

 

(2.11)  

CStoreP and CStoreE are the capital costs for the energy storage device’s power and energy 

capacity respectively. Pt,Wind and Pt,Backup are the wind and backup power at time t and dt is 

the time increment, in this case hours. T is the total length of the optimization, in the case 

of one year at one hour time increments, T is 8760. In the model there are state variables 

for wind power, backup power, dumped power, charging power, discharging power, and 

energy state of charge. However, only wind and backup power enter the objective 

function as they have an attached cost, given by CWind and CBackup. XStoreP and XStoreE are 

global variables representing rated store power and rated store energy.  

2.3.3 Constraints 

Constraints ensure the load is always met, that the store is operated correctly and that 

wind energy is utilized. The demand constraint balances load at each time step, t:  
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                                                          (2.12)  

The backup power constraint limits the size of backup power at any point in time: 

                   (2.13)  

It is required to ensure the model does not charge the store by accepting a higher backup 

load than the system load at time t. Fundamentally, this is akin to taking extra power from 

a larger grid or backup device and storing it for future use, which is not allowed in this 

model. The following three equations govern the storage device. First, the discharge 

power for time t cannot exceed the energy in the storage device at time t:  

                                 (2.14)  

Second, the energy in the device at time t cannot exceed the store capacity: 

                          (2.15)  

Third, the energy in the storage device at time t+1 is equal to the store energy at time t 

plus the power entering and leaving the store at time t. 

 
                                                          

   

(2.16)  

The above equation is valid only for t values of one to T-1. This constraint is copied from 

an account balance model [25]. The last constraint governs the final state of the storage 

system. 

                  (2.17)  

The above equation is for t=0 and t=T, which forces the store to start and finish in an 

empty state.  

2.3.4 Assumptions and Issues 

The requirement that the store starts and finishes in an empty state has potential to 

cause end-effect issues. For example, consider a 24 hr window in which the first 12 hrs 
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has a positive net power and the final 12 hrs a negative net power, as shown in Figure 

2-6. 

 

Figure 2-6: Positive end effects of storage device. In plot (a) net power starts positive and 

the storage device starts empty, thus it fills, shown in plot (b). Then when negative net 

power occurs the store has energy to discharge. 
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Under these conditions the start and finish empty constraint has no effect on the operation 

of the storage device. However, if the net power conditions are reversed, as in Figure 2-7, 

the storage device is unutilized as a result of the storage start and finish empty constraint.  

 

Figure 2-7: Negative end effects of storage device. The net power starts negative, shown in 

plot (a) but the store is empty and therefore cannot discharge, shown in plot (b). Then when 

the net power is positive the store remains empty due to the operating constraint which 

requires the store to be empty at time t=24. 

 

It is worth noting that in the situation of Figure 2-6, if the store had started full it would 

have also remained unutilized. In this case the constraint would have been for it to start 

and finish full and therefore the device would have stayed full throughout. Therefore, end 

effects may be present regardless of the constraint on how the storage device starts and 

finishes. As the Dynamic Optimization is a long running model, one year, targeting a 24 
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hr storage device, the end effects will be small. If the model was modified to target long 

term storage, such as annual storage, this constraint would need to be modified, as in the 

Abbey Method. Another assumption present in this model is no ramping rate 

requirements on the storage device. The resolution of the data sets used is hourly and it is 

assumed that store power can ramp much faster than can be captured at this resolution 

[6]. Therefore, ramping rates are neglected. Furthermore, it is assumed that there are no 

parasitic losses or depth of discharge limitations on the storage device. This assumption 

reduces the complexity of the model. The final issue associated with this model is due to 

the length of the optimization. While the optimization is designed for a year of hourly 

wind and load data this results in an intractable problem for basic notebook computers 

due to memory limitations; therefore the model is split into four separate three month 

periods. Each period computes in approximately 10-15 minutes for a total time of 

approximately one hour. The results from each period are compared and the largest 

storage size is selected. Alternatives would be the use of a more powerful computer, or 

by selecting the storage size from the period with the largest negative correlation between 

load and wind. As a result of this split, the seasonal correlations have a reduced affect on 

the storage size. This issue coupled with end effect, ramping rate, and storage 

assumptions reduce the credibility of the optimized solution. 

2.4 Alternative Optimization – Two Stage 

The two-stage optimization is based on a method presented by Abbey [19]. The first 

stage sets limits for storage size and power, then the second stage optimizes for operation 

within these limits. This method shares many similarities with the Dynamic 
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Optimization, but uses probabilities to increase processing speed and improve the 

robustness of the result.  

The first stage of the optimization sets limits for the storage size and power. While 

Abbey accomplishes this through a separate optimization it is also possible to simply 

supply a reasonable range of storage power and energy ratings and iteratively feed all 

possible combinations of store power and energy into the second stage. The lowest cost 

combination from the second stage results is the optimal solution. This iterative approach 

simplifies programming with negligible increase in solution speed.  

The second-stage optimization calculates the operation and overall cost of the energy 

system. However, Abbey reduces the length of the optimization by using probabilities 

and scenarios rather than time series programming. Abbey assumes that two independent 

variables affect the results of storage size: the amount of wind energy relative to the load, 

and how well the wind energy matches up with the load. These variables are binned into 

PDFs and their probabilities are convoluted resulting in a matrix of possible scenarios for 

wind energy penetration and wind load correlation. The second stage optimization 

calculates the best case of each scenario, and then calculates an expected value based on 

the results of all scenarios. 

2.4.1 Data Requirements 

The two-stage method presented by Abbey requires synchronized data sets of wind 

speed or power and load. These data sets are used to make scenarios and probabilities.  

2.4.2 Scenario Determination 

The two-stage method optimizes for a series of characteristic scenarios which are 

defined by the amount of wind energy penetration and the amount of wind to load 
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correlation. To determine these scenarios the data sets for load and wind are aligned and 

then divided into 365 twenty-four hour periods. Each period is then evaluated for wind 

energy penetration given as: 

      
        
  
   

        
  
   

 (2.18)  

And for wind-load correlation, given as: 

      
                                 
  
   

                
 (2.19)  

 

Ranges for penetration and correlation are determined from the 365 periods and these 

ranges are divided into equally spaced bins. The scenarios are then placed in these bins as 

shown in Figure 2-8.  

 

Figure 2-8: Visual representation of scenario binning. Each bin contains scenarios from 

which one is selected as the bin’s characteristic scenario to be used in the optimization. The 

weight assigned to each bin’s characteristic scenario is proportional to the number of 

scenarios in that bin. 
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The number of scenarios which fall into each bin gives the probability of a scenario from 

that bin occurring. The scenario in each bin which has values of penetration and 

correlation closest to the midpoint of the bin is then defined as the characteristic scenario 

for the bin. The optimization is performed on these characteristic scenarios only, rather 

than the whole data set. 

2.4.3 Second Stage Objective Function and Optimization 

The two-stage optimization is given storage power and energy constraints and then 

outputs an optimal value based on the determined scenarios. The objective function of 

this optimization is given as: 

    
 

                                    

 

   

 (2.20)  

This value represents the operating costs given the storage constraints, where CWind and 

CBackup are the costs associated with an hour of wind or backup energy respectively, and 

Pt,Wind and Pt,Backup are the amounts of wind and backup energy at time t for duration dt. 

The capital cost of the given storage device is added to this value to give an overall cost 

and the result is stored. Therefore, equation 2.20 is similar to the objective function of the 

Dynamic Optimization, equation 2.11, except that the capital costs are outside the 

operating costs optimization. When equation 2.20 is executed, the two stage method 

changes the storage sizes, and then executes equation 2.20 again, producing a new 

optimal. This is repeated until all possible combinations of storage constraints have been 

executed. The lowest overall cost of operating and capital costs is the optimal. This 

iterative approach to optimization is not efficient but produces a solution.  
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2.4.4 Constraints  

There are many repeated constraints from the Dynamic Optimization. This is because 

the modeled wind-storage energy system is identical to that shown in Figure 1-3. The 

first constraint requires the system load be met at all times t: 

                                                        (2.21)  

In the Dynamic Optimization the length of the optimization was one year, in this 

optimization the length is 24 hrs. Therefore t is from 1 to 24. Energy in the store at t+1 is 

the sum of previous energy, and net power entering and leaving the store. Again, this is a 

similar constraint to the Dynamic Optimization and is based on an account balance model 

[25]. 

                         (2.22)  

 
                                                          

   

(2.23)  

The power into and out of store must be less than the rated store power at all times. 

                    (2.24)  

                       (2.25)  

Finally, the store must start and finish at the same level. However, this differs from the 

Dynamic Optimization in that it starts and finishes half full. The method first proposed by 

Abbey included initial store energy as a factor to be optimized for, producing average 

values of 35%.  In this thesis, 50% or half full is chosen arbitrarily.  

                             (2.26)  

                             (2.27)  

As the store size increases there is more energy available initially. This energy must be 

returned to the store by the end of each time period, otherwise a net gain or loss of energy 
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will occur. For instance, if the store started half full and finished the day empty, 

additional energy would have entered the system from the store. Energy is only permitted 

to enter this system from the scenario’s wind generation and therefore the store must 

finish where it started. This also means energy cannot be shared from high wind days to 

low wind days as is possible in reality and in the Dynamic Optimization.  

2.4.5 Assumptions 

There are four assumptions made in Abbey’s method which must be addressed. These 

involve the use of PDFs, the range of possible store ratings, and the storage start and 

finish levels. 

The first assumption is that every possible scenario from the convolution of 

probabilities exists in the data sets. The solution lies in binning by correlation and 

penetration. The use of bins keeps non-existing scenarios out of the optimization. Each 

bin is assigned a probability equal to the number of scenarios which are represented by 

that bin. If a bin has no scenarios then the optimization will ignore it.  

The second assumption in this optimization is in the storage ratings. As previously 

stated the 1
st
 stage of the optimization is executed by iteratively changing store power and 

energy ratings. Therefore a range of possible store ratings is required. The lower level is 

chosen to be zero, or no storage device. The upper level for store power is set to the rated 

power of installed wind generation. The upper level for store energy is set to 150% of the 

result from the Barton method. This sets an upper bound for storage size. In theory this 

could limit the result of the two-stage optimization, however, the results indicate this 

does not occur when sizing for a 24hr storage device. 
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The final assumption involves end effects as a result of the relatively short 24hr storage 

period and scenario length. These effects were deemed negligible in the Dynamic 

Optimization, however, as the two-stage method optimizes for short scenarios the end 

effects are important. Therefore, the device starts and finishes half-full. This level is 

based on results from Abbey.  
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3 Modified Barton’s Method 

Barton’s method is complex and difficult to implement; however, the basic principle is 

straightforward: the intermittent generator’s magnitude and frequency of variance affect 

storage size requirements. In this chapter a modification of Barton’s method is proposed.  

In this modification the high and low frequency filters, the spreadsheeting calculations, 

and the calculations of α, κ and the periodic variance are eliminated. Figure 2-2 shows 

that α, κ, and periodic variance are dependent on the spreadsheeting calculations which 

are in turn dependent on the high and low frequency filters. Therefore, if α, κ and 

periodic variance are neglected then spreadsheeting and high and low frequency filtering 

can be avoided as well. 

As previously stated, α adjusts for storage limitations and inefficiencies.  It is 

multiplied with the state of charge variance and other conversions to give the final store 

power. α is calculated through the spreadsheeting results of Barton’s method. In the case 

of an ideal storage device with unlimited charge and discharge power ratings and perfect 

efficiency, α would be unity. For the case of unlimited charge and discharge power 

ratings but an inefficient device, α would be equal to the round trip efficiency of the 

storage device. Adding finite power ratings would further reduce α, however the finite 

ratings considered in this thesis are sufficiently large so as not to affect α. Observed 

results, as shown in Figure 3-1, have shown that there is minimal difference between α 

and round trip storage efficiency. 
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Figure 3-1: Sensitivity of α to roundtrip storage efficiency. Marked line shows α calculated 

by Barton's Method, solid line is y=x to illustrate the difference between α and the 

efficiency. This result is calculated with Sandspit wind speed data and without limitations 

on the storage device charge and discharge powers. 

 

Therefore, it is proposed that α can be assigned a value equal to the round trip efficiency 

or neglected entirely.  

The term κ is required to convert the filtered state of charge variance from variance of 

wind speed to variance of wind power. In Barton’s method this variance is calculated 

from a periodogram of wind speed variance which is calculated from a time series data 

set of wind speed. However, if the time series data set of wind speed is first converted to 

a wind power and then converted to a periodogram and filtered the result is variance of 

wind power, making the term κ unnecessary. A comparison is shown in Figure 3-2 where 

there is a slight change in periodograms due to the conversion of wind speeds to wind 

powers. This is due to the non-linear relationship between wind speed and wind power 

via a turbine power curve. 
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Figure 3-2: Comparison of normalized variance for wind speed and power for Sandspit and 

the Enercon E-48 wind turbine. Differences are due to the non-linear conversion from wind 

speed to wind power. 

 

The final term modified from Barton’s method is the periodic variance. The periodic 

variance accounts for the effects of variable load on storage size. Work by Gassner [22] 

has not included periodic variance. The simplified method assumes the effect of periodic 

variance is small and can be neglected. This assumption is verified in section 5.3 

Given that the term α can be neglected, that the term κ can be made unnecessary, and 

that the periodic variance is ignored the spreadsheeting and high and low pass filters 

become unnecessary. The removal of these steps from Barton’s method results in a 

simpler calculation of storage size.  

The proposed simplified method is reduced to a few steps. First, the intermittent 

resource data is converted into units of power rather than being left as resource units like 

wind speed or water flow rate. This data is then transformed into a periodogram. At this 

stage the state of charge filter [13] is calculated and applied to the periodogram. 

              

   
  
  
 
 

 
 

 
 
 

 
         

 

     
 
            (3.1)  
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In this equation the amplitude Ai is in units of power and ωi has units of time inverted. 

Therefore the overall units are energy
 
squared. The result is an uncorrected value for store 

size variation based on variations in power output. Therefore the final result is the store 

size as calculated by the filter, σΔEτ,simple, multiplied by the confidence level, γ.  

                
 (3.2)  
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4 Input Data and Parametric Variations 

This chapter outlines the testing and validating of the different storage sizing methods. 

First the financial data and methods are presented, followed by the wind data, load 

profiles, and time shifting methods. Results are generated using a time-series testing 

function detailed in Appendix B. Base case results are generated by running the testing 

function without storage capacity. 

The validity of the Modified Barton method will be evaluated from the average result 

of the four existing methods.  

4.1 Financial Analysis 

To compare the financial costs of operating each method’s proposed energy system, an 

investment annual cost method is used. As in Abbey’s study [19] a 20 year life span is 

assumed for the storage device with an 8.5% interest rate. The cost of the storage system 

is converted to an annual cost and added to the system operating cost, yielding a yearly 

cost of operation. The financial metric for comparison will be supply cost of energy, 

CSupply, given as: 

         
      
      

 (4.1)  

 

CTotal is defined in Appendix B. Reliability metrics are loss of load probability (LOLP), 

Eqn. (4.2), and autonomy, Eqn. (4.3). 

       
        
      

 (4.2)  
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 (4.3)  

 

Table 4-1 shows the initial financial inputs for the methods. Unless otherwise stated this 

information is used to compare results.  

Table 4-1: Base Input Data 

Store 
Efficiency 

Store Energy 
[$/kWh] 

Store Power 
[$/kW] 

Wind Energy 
[$/kWh] 

Backup 
Energy 

[$/kWh] 

Term Period 
[years] 

Interest Rate 
[percent] 

0.85 875 213 0.4 0.6 20 8.5 

 

These values are identical to those used in Abbey’s paper; however, in this thesis the cost 

of diesel energy as used by Abbey is assigned to backup energy. 

4.1.1 Varying Interest Rate 

An interest rate is applied to the capital costs of the storage system. A high interest rate 

reflects the value of capital costs associated with the project and makes storage devices 

more expensive. A low interest rate has the effect of reducing storage costs. In this paper 

interest rates of 5% and 8.5% are considered as well as a no rate case where the storage 

costs are divided evenly across 20 years of operation.  

4.1.2 Cost of Backup Energy 

In theory, increasing the cost of backup energy will force the Dynamic Optimization 

and Abbey’s method to increase storage size. An increasing cost of backup energy is akin 

to placing increasing value on system reliability. Therefore, backup energy cost is varied 

from $0.2/kWh to $2.0/kWh. This change will only impact the Dynamic Optimization 

and Abbey results for storage size.  
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4.2 Wind Data 

Data sets of wind speeds are required for this study. Wind data was made available 

from Environment Canada [26] at hourly resolutions and a height of 10m. The height was 

adapted to turbine height of 64m using the power law of Peterson [27]. Additional 

comments on the utilized wind speed data are made in Appendix D.  

By combining wind speed data sets with a turbine power curve a data set of wind 

power is created. This data set can then be analyzed for daily variance of wind power, 

seasonal variance of wind power, and mean wind power. Of these factors, mean wind 

power or capacity factor is selected to classify sites.  

Wind sites of varying capacity factors are used by the five methods to produce required 

storage sizes. A normalization of system load is performed to ensure the reliability 

metrics can be used for comparison between sites. This ensures the energy entering 

through the wind turbine is equal to the energy absorbed by the system load through one 

year of operation. This normalization is described in Section 4.3. 

Five different sites are used to examine each method’s performance under different 

wind conditions. The table below lists five wind sites of differing capacity factors. 

Capacity factors range from poor (0.063) to excellent (0.42) and are shown in Table 4-2. 

Table 4-2: Wind Site Characteristics. Sites A, B, C, D, E correspond to Sandspit, Penticton, 

Victoria, Terrace, Prince Rupert respectively [26]. Wind speed data was converted to power 

using an Enercon E-48 turbine power curve [24]. 

Wind 

Site 

Capacity 

Factor 

Average Wind 

Speed [m/s] 

Wind 

Speed 

Variance 

[(m/s)
2
] 

Power 

Variance 

[MW
2
] 

A 0.42 6.30 14.29 0.14 

B 0.14 3.27 6.24 0.052 

C 0.063 2.34 3.54 0.020 

D 0.33 5.20 8.48 0.11 

E 0.21 4.01 8.09 0.083 

 



 

 

41 

Sites A and D have high capacity factors while sites B, C, and E have low capacity 

factors. Furthermore, sites A, C, and E are coastal locations whereas sites B and D are 

inland locations.  

4.3 Load Profiles 

As with a site’s wind speeds, the characteristics of a load profile can affect energy 

system generation and storage requirements and energy system reliability. An example of 

a 24hr load profile is shown in Figure 4-1. This figure shows an average power of 

approximately 8000MW, a minimum of approximately 6500MW and a maximum of 

approximately 9000MW.  

 

Figure 4-1: Sample 24hr load profile. This profile shows a diurnal cycle with a minimum at 

approximately 05:00 and a maximum at approximately 18:00 [28]. 
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To test each method’s ability to size an energy storage device a suitable load profile is 

required. To simulate a realistic load curve, historical load data was used from a large 

utility [28]. To validate the models’ ability to account for load variance, tests are 

conducted with sinusoidal functions of 24 hour period and varying base load. 

Load profiles are scaled so the total load energy is equal to the total wind energy, 

eliminating wind to load energy ratio as a variable when interpreting results. For 

example, if a load profile with an average load of 0.5 MW is combined with a 1 MW 

wind site of capacity factor 0.15 the reliability results will be poor regardless of the 

storage device. This is due to the difference in energy generated and energy demand. To 

counter this difference the load is normalized against its average to produce a load profile 

with an average load of 1. Then the load profile is multiplied by the wind site capacity 

factor. The end result is a site specific load profile with an average load equal to the 

capacity factor of the site. Over the course of the year energy supplied by the wind will 

approximately match the energy drawn as demand. This normalization of load with wind 

energy allows for comparison of results across wind sites. 

The historical load profile is scaled to create five separate load profiles. The 

characteristics of these loads are shown in Table 4-3.  

Table 4-3: Load Profile Characteristics 

Load 
Option 

Maximum 
Load [MW] 

Minimum 
Load [MW] 

Mean 
[MW] 

Variance 
[MW2] 

1 0.632 0.292 0.424 0.005 

2 0.838 0.161 0.424 0.018 

3 1.092 0.000 0.424 0.048 

4 0.507 0.371 0.424 0.001 

5 0.437 0.416 0.424 0.00002 
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Load option 1 is the historical data set with only one change: it is scaled to have a mean 

load equal to the capacity factor of the wind site. Again, all sites will have the same mean 

load so that only the maximum, minimum, and variance of the load profile will affect 

results. Option 2 takes the historical data and shifts it down by 1/3 of the maximum load 

to simulate the removal of base or constant load, this increases the variance of the profile. 

Option 3 goes further and takes the historical data and shifts it down by the minimum 

load to simulate a highly variable load. In this option it is possible to have no load or 

periods of very low load, this is shown in Figure 4-2, plot (a). Option 4 is the historical 

data shifted up by the maximum load to increase the amount of baseload power. 

Furthermore, Option 5 takes the historical data and shifts it up by 100 times the 

maximum load, an arbitrary increment, to reduce the variance of the data set and simulate 

a near constant load, shown in Figure 4-2 (b). 

 

Figure 4-2: Sample plots of load options 3 and 5. They have been scaled to have a mean of 

0.424kW. 
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4.4 Correlation between Load and Resource 

The effect of correlation between load and generation on storage size and energy 

system performance is investigated. There are expected to be two types of correlation; 

diurnal and seasonal. To examine the diurnal correlation effects the wind speed profile is 

shifted by up to 24 hrs. To examine the seasonal correlation effects the wind speed profile 

is shifted by up to 12 months. This is shown below in Figure 4-3, wherein lag refers to 

the shift between data sets. 

 

Figure 4-3: Shifting wind speed relative to load. Plot (a) shows the load data and plot (b) 

shows the sliding 8760hr window which determines which wind data is utilized. 

 

This figure also shows how the input data change with lag. The change in data will have 

minimal effect on diurnal changes, but is potentially more significant in seasonal 
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5 Results and Discussion 

This chapter presents the results from each method and discusses areas of interest. It 

begins with changing costs and financial inputs, followed by varying wind sites, varying 

load profiles, and varying lag between load and wind resource. These testing 

methodologies are not exhaustive but are sufficient to show sensitivities of each method 

and to validate the Modified Barton method.  

5.1 Costs 

This section first varies the capital costs of energy storage through a changing interest 

rate. It then varies the operating costs of an energy storage system by changing the cost of 

backup energy. 

5.1.1 Interest Rate  

Figure 5-1 shows the effects of increasing interest rate on the supply cost for an energy 

system modelled with wind site D and load option 1. The cost of the no storage base case 

does not change with interest rate because there is no storage device present.  
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Figure 5-1: Effect of interest rate on supply cost. Abbey and Dynamic methods reduce 

storage size to minimize supply cost. Results can be found in Table 8-7. 

 

Of note in Figure 5-1 is the relatively close cost across methods for the no interest rate 

case. This result highlights the trade off between the capital costs associated with storage 

devices and the operating costs associated with backup or lost energy. A larger storage 

device has a greater capital cost but reduces the operating costs from lost or backup 

energy. The Barton, Modified Barton, and Korpaas opt for larger storage sizes while the 

Abbey and Dynamic opt for smaller storage sizes. The results for storage size are shown 

in Figure 5-2. Under varying interest rate, the Barton, Modified Barton, and Korpaas 

results do not have a change in storage size because these sizing methods are not 

sensitive to cost.  
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Figure 5-2: Effect of interest rate on store size. Probabilistic methods are not affected by 

storage cost.  
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and operating costs. The Dynamic results in Figure 5-3 show a greater sensitivity to back 

up energy costs than the Abbey method. This is because the scenarios for which the 

Abbey method optimizes are only 24 hours long, meaning there will be a maximum 

possible size for the storage device: equal to the greatest net store energy over all of the 

scenarios. The Dynamic method is not constrained to consider 24 hour storage, it is only 

the prices of energy and storage costs that make the Dynamic method consider 24 hour 

storage periods. Therefore, as the relative costs change the Dynamic method effectively 

lengthens the storage period by selecting larger storage devices. As the Abbey method’s 

maximum storage size is the greatest net store energy over all 24 hour scenarios, the 

Dynamic’s maximum storage size is the greatest net store energy over the entire one year 

data set. 
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Figure 5-3: Storage size vs. Backup energy cost. As cost of backup energy is increased the 

optimization methods add more storage. 

 

The results of LOLP and autonomy are shown in Figure 5-4. This figure shows that as 
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wind profile average and thus the values for net power may only increase slightly with 

capacity factor. Therefore the Dynamic and Abbey results do not increase storage size as 

significantly as the other methods. Korpaas and Modified Barton are sensitive only to the 

wind profile, and thus as capacity factor increases so should the storage size. Similarly, 

the Barton method increases store size with capacity factor, however, it is also sensitive 

to load profile. Where the Dynamic and Abbey methods size storage based on net power, 

the Barton method considers the load profile and the wind profile separately. Thus as 

capacity factor increases so does the storage size. Similarly, Figure 5-8 in the Load 

Profile section shows that as load variance increases so does the storage size. 

 

Figure 5-5: Storage size vs wind capacity factor. Note for high capacity factor sites there is a 

significant difference in size between the Barton, Modified Barton, and Korpaas methods’ 

results and the Dynamic, and Abbey methods’ results. 
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The Abbey and Dynamic methods always yield a storage size which results in the 

lowest cost of energy.  These results are shown in the tables of Appendix C and 

summarized in Figure 5-6.  

 

Figure 5-6: Supply cost vs. wind site. Note that the probabilistic methods cost more than the 

no-storage case and optimizations for most sites, but that at high capacity factor sites this 

increase is minimal. 
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Figure 5-7: LOLP vs. capacity factor. Note the significant improvement at high capacity 

factors. 
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5.3 Load Profiles 

The results of the models’ validation for sensitivity to load variance with a period of 24 

hours are shown in Figure 5-8.  

 

Figure 5-8: Store size vs. variance for sinusoidal loads. 
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The results for storage size under increasing load variance of the historical load profile 

are shown in Figure 5-9. The periodic variance in historical data has a minimal effect on 

storage size as Barton’s method does not significantly change as load variance is 

increased.  

 

Figure 5-9: Store size vs. load variance for load profiles of Table 4-3. 
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load is nearly constant and thus net power will change with wind generation. At moderate 

variance levels the load power fluctuates slightly about the mean, in this instance 

allowing wind and load to match up positively and thus reducing net power directly, the 

presence of small positive correlation is confirmed in Figure 5-13. At very high load 

variance the net power may fluctuate rapidly if wind and load do not match up well, 

resulting in more periods of lost or dumped load. Results for LOLP in Figure 5-11 show 

there is little benefit to a large storage device under increasing load variance, the 

Modified Barton, Barton, and Korpaas results have a ~5-7% improvement in LOLP over 

the Abbey and Dynamic results despite having 2-3 times the storage.  

 

Figure 5-10: Cost vs. load variance. There is an optimal amount of variance for lowest cost 

of energy supply, best shown in the no storage case. 
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Another result of note is the effect from increasing variance on system reliability. This is 

shown in Figure 5-11 and Figure 5-12.  

 

Figure 5-11: LOLP vs load variance. Note the minimal change in LOLP for all methods as 

variance of load increases. 
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Figure 5-12: Autonomy vs. load variance. Autonomy increases with variance due to more 

time load is relatively small; allowing wind and storage to completely supply load. 
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5.4 Correlation between Load and Generation 

Correlation between load and generation is investigated at short term or diurnal cycles 

by changing lag in one hour increments, long term or seasonal cycles are investigated by 

changing lag in one month increments. 

5.4.1 Diurnal Correlation 

The diurnal correlation was investigated by shifting wind speeds by 0 to 24 hrs. The 

correlation between wind and load can be seen through the backup energy metric in 

Figure 5-13. 

 

Figure 5-13: Short term correlation between wind and load. The no storage case shows 

there is a slight positive correlation between wind and load with maximum correlation at 

3hrs. 
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The no storage case in Figure 5-13 shows a slight increase in backup energy as load and 

wind power are brought roughly 12hrs out of phase. This is shown in more detail in 

Figure 5-14. 

 

Figure 5-14: Backup energy vs. time lag for no storage case only. Note the rough cycling of 

the curve, with a minimum at a lag of 3hrs. 
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Figure 5-15: Change in store size as wind and load are shifted. 
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utilized. Figure 5-16 shows a significant seasonal correlation between the wind and load 

data.  

 

Figure 5-16: Backup energy at seasonal lags. The no storage case shows that there is a 

positive correlation at seasonal lags between wind and load. 
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Figure 5-17 shows only slight changes in the Barton, Korpaas, and Modified Barton 

methods’ storage sizes, which confirms that wind measurements in a specific month are 

similar from year to year and thus changing the window of measurement will have 

limited effect on results from these methods. 
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Figure 5-17: Storage size vs lag. The slight variations in probabilistic sizes are due to 

changes in wind data. 
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because the storage capital costs are prohibitively expensive; and it is not observed in 

Abbey’s method because it optimizes for 24hr storage.  
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6 Conclusion 

The objective of this thesis was to develop five energy storage sizing methods, to 

demonstrate the sensitivity of all methods to common factors affecting energy system 

performance, and comment on the results from the methods. Investigation of these results 

has shown the Barton, Modified Barton, and Korpaas methods yield larger, more 

reliability-based solutions than the Dynamic Optimization and Abbey methods, which 

tend to yield lower cost solutions. Each method has benefits and drawbacks and, 

combining aspects of these methods into one simple yet efficient method may be ideal. 

Table Table 6-1 summarizes the methods according to six qualitative metrics: 

accuracy, sensitivity, versatility, speed and cost, reproducibility, and ease of use. 

Accuracy refers to the appropriateness for decision making. Sensitivity lists the general 

inputs to which the models are sensitive. Versatility refers to the model’s ability to 

consider different design options or system constraints. Speed and cost refers to the 

amount and type of data required, the time required to prepare inputs and to analyze 

results. Reproducibility refers to how well the models will produce a good result given 

slight changes in inputs. Ease of use refers to how well it can be understood and 

implemented by an energy systems designer, planner, or researcher. 

Table 6-1: Summary of Methods 

 Korpaas Barton Modified 
Barton 

Two-Stage Dynamic 

Accuracy Low: high 
level decision 
making 

Moderate: 
can be used 
for planning 
and detailed 
decisions 

High: 
improved 
accuracy 
over 
Barton 
due to 
removing 
κ, α 

High: system 
planning and 
detailed 
decisions 

High: system 
planning and 
detailed 
decisions 

Sensitivity Low: wind Moderate: Low: wind High: wind High: wind 
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speeds, 
system 
characteristics 

wind speeds, 
system load 
and 
characteristics 

speeds 
and 
storage 
efficiency 
only 

speeds, 
system 
characteristics, 
costs 

speeds, 
system 
characteristics, 
costs 

Versatility Low: limited 
operating 
strategies 

Low: limited 
operating 
strategies 

Low: 
limited 
operating 
strategies 

Moderate: 
different 
operating 
strategies, no 
seasonal 
variations 

High: different 
operating 
strategies, no 
seasonal 
variations 

Speed and 
Cost 

High: quick to 
execute, uses 
readily 
available wind 
data 

Moderate: 
requires 
significant 
wind and load 
data 

High: 
requires 
wind data 

Low: large 
data 
requirements: 
wind speeds, 
loads 

Low: large 
data 
requirements: 
wind speeds, 
loads 

Reproducibility High: simple 
and robust 
method 

High: if 
enough data 
is available 

High: if 
enough 
data is 
available 

Low: very 
sensitive to 
data 

High: given 
sufficient data 
and computing 
power 

Ease of Use Moderate: 
simple to 
understand 
and program 

Low: difficult 
to program 

High: easy 
to 
program 

Low: difficult 
to program 

High: relatively 
easy to 
program and 
interpret 
results 

 

The first method detailed was based on work by Barton and utilized variance filters, 

PDFs, and a confidence level to size energy storage. The use of filters to isolate wind 

speed variance at desired frequencies is effective. In this way only variance which affects 

storage size is considered. However, the calculations require conversion of wind speed 

variance to wind power variance, to adjust for storage efficiency, and to account for 

variable load. While the results for the output storage size show a very reliable solution, 

evidenced by high LOLP, the added complication of the aforementioned calculations 

limit this method’s widespread use.  

The Korpaas method utilizes PDFs of wind speed as opposed to time series data sets. 

This is beneficial when time series data is unavailable or when only PDFs can be 
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obtained. The results for storage size show a reliability and cost similar to that of the 

Barton method. While the simplicity of execution and reduced data requirements are the 

strength of this method there is presently no confidence level input or other option for 

considering the effect of cost on storage size. 

The Dynamic Optimization method relies on capital and operating costs coupled with 

time series data sets of load and wind power to size an energy storage device. This 

method uses simple constraints to simulate a real energy system and seeks out the lowest 

cost solution to supply energy. Therefore, the results from this solution show a low cost 

of energy supply when compared to the statistical methods. In some instances the supply 

cost is only slightly lower than the Barton and Korpaas methods’ results and yet the 

reliability is significantly worse. Therefore, sensitivity analysis of costs should be 

performed when using this method. However, the size of this optimization makes 

sensitivity analysis difficult. Also, the deterministic nature of this type of method means 

solution robustness is poor. 

An improvement on both computational time and solution robustness is achieved in the 

Abbey method. This method defines a set of characteristic scenarios based on penetration 

and correlation of wind power relative to load. The use of scenarios reduces the size of 

the optimization which improves computational time, approximately 10 minutes to a 

solution on a basic notebook computer. Furthermore, general scenarios should yield a 

more robust solution than one large data set. Where the Dynamic method optimized with 

certainty over one specific year of data, the Abbey method made general scenarios based 

on that year which are likely to apply to future years. Furthermore, while only one year of 

data was utilized to generate those scenarios, the Abbey method could easily utilize many 
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more years of data, whereas the Dynamic method might suffer from computational issues 

due to large data sets. As the first stage selection of storage size is performed iteratively 

there is not a significant improvement in computational time. The results from this 

method are generally close to those of the Dynamic Optimization: a cost effective yet not 

always reliable energy system. 

The Modified Barton method was developed from Barton’s Method: eliminating the 

high and low pass filters, spreadsheeting, periodic variance, α, and κ. As a result this 

method is simpler to understand and execute. Rather than working in wind speeds, the 

method works in wind power which eliminates the calculation for κ. Other calculations 

are eliminated by assuming that the reduction in store size due to efficiency and the 

increase in store size due to variable load are both small. The resulting Modified Barton 

method produces results which yield smaller, yet reliable and cost effective energy 

storage devices. The primary weakness of this method is its requirement for time series 

data sets of wind power. 

This thesis presents and compares five options for sizing energy storage methods, of 

which the Modified Barton is presented for the first time. To the knowledge of the author, 

these methods have not been compared before. The Modified Barton method can be said 

to produce similar results to the other methods because its results are within the same 

order of magnitude and are bounded by the other methods’ results. The results section 

highlights the sensitivities and weaknesses of each method to common factors which 

affect energy storage requirements. While sensitivities and weaknesses could have been 

discerned from a careful analysis of the methods, only thorough execution of the methods 

could have revealed the relative magnitudes of energy storage size, the relative 
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sensitivities of each method, and the relative programming complexity of each method. 

By comparing the various methods in detail, this thesis provides new insight for energy 

systems planners who have a need to understand and select appropriate energy storage 

sizing methods.  
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7 Recommendations 

There are several recommendations which are supported by this work. These include 

when to utilize a specific type of method, on how to improve the Modified Barton 

method presented in this thesis, and how to combine various aspects of each method into 

a new method.  

The factors affecting method selection are availability of data, speed and accuracy of 

solution, and goal of the energy system. The first factor, availability of data, may be the 

most limiting. If time series data sets for wind speed and load are unavailable the first 

choice of method would be Korpaas’ PDF based method. This method can utilize more 

commonly available PDFs of wind speed, and has an additional benefit of requiring 

relatively little computational and programming time. The speed benefit also applies to 

the Modified Barton method which requires only a time series data set of wind power to 

filter for storage size. These methods can be utilized to estimate storage requirements 

based on available wind power. An added benefit of these methods is that they yield a 

system designed for reliability. However, if the goal of the energy system is lowest cost, 

these methods will not be sufficient as costs are not considered. Therefore, lowest cost 

solutions must be obtained with economic optimizations. 

To achieve a low cost solution with the Modified Barton method the confidence level 

modifier must be further investigated. Previous work by Gassner recommended 

investigation of confidence level’s dependence on generation and on firm power 

commitment. This thesis has shown that cost also influences sizing energy storage. 

Therefore, the confidence level should also be linked to the capital costs of energy 

storage relative to the operating costs of energy sources. This would improve the 
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usefulness of the Modified Barton method by making it both simple to execute and cost 

efficient. 

An alternative use of the statistics-based methods is to combine them with details of the 

Dynamic Optimization into a new method. The Modified Barton and Korpaas methods 

are fast to program and execute and under most circumstances yield larger storage sizes 

relative to the Dynamic Optimization and Abbey methods. Therefore, the results from 

these methods may be used to create a bound or range of possible storage sizes 

considered by the Dynamic and Abbey methods, causing them to execute faster. Next, the 

scenario’s generated for the Abbey method can be utilized in a dynamic optimization 

model. These scenarios can be weighted and combined into one data set. This data set 

would be smaller than the whole data set and therefore complexities neglected in the 

Dynamic Optimization could be included. For instance, resolution could be increased and 

ramping rate constraints considered. The resulting method would be a high resolution 

scenario based dynamic optimization with a statistical method providing a pre-calculation 

for storage size.  

This thesis recommends when to utilize each type of method, additional work to 

improve the Modified Barton method, and that a combined method to size storage should 

be utilized. The Modified Barton and Korpaas methods are quickly executed and can size 

storage with less data than a dynamic optimization method. To improve the cost 

efficiency of its solution it is recommended the Modified Barton method’s confidence 

level be tied to energy system costs. Finally, when sizing storage a combined 

optimization method incorporating statistics and scenarios may be utilized. These 
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recommendations may increase the utilization of statistical methods like the Barton, 

Korpaas, and Modified Barton method and improve the results of optimizations.  
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Appendix A. Periodogram and Filtering 

This appendix presents the derivation of the periodogram by first outlining the 

autocovariance function, the requirement of a stationary time series, and the Fourier 

transform. This background is followed by a description of the filter functions, the 

probability density functions, and the coefficient of variation. 

A.1 Autocovariance Function 

An analysis of a time series’ variance is often completed with the autocovariance 

function, γx(s,t). This function is a useful way to observe the amount of fluctuation 

(variance) about the mean at various time lags. It is given below: 

                           (A.1)  

Where E[] is the expected value operator, x indicates a data series with xs and xt values in 

that data set at times s and t, finally μs and μt are the means of the time series near s and t 

respectively. For the special case s=t this equation reduces to the variance of the time 

series [29]. The time series sample of wind speed is assumed to have a constant mean and 

a covariance that depends only on the absolute difference between s and t. Therefore the 

autocovariance reduces to: 

                                         (A.2)  

Where: 

       (A.3)  

And 

         (A.4)  

In the above equations h is termed the lag or the time difference between samples xs and 

xt, and μ is the mean of the time series. The autocovariance function is a useful tool for 
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observing variance in a time series as a function of lag. However, we need to transfer this 

function into the frequency domain. 

A.2 Stationary Requirement 

The wind speed time series is assumed to have a constant mean and covariance 

independent of time. This assumption allows the time series to be classified as ‘weakly 

stationary’. A non-stationary time series would have either a mean which changes in time 

or a covariance which is a function of time. Stationarity is required for the auto 

covariance function to be dependent on h alone.  

A.3 Fast (Discrete) Fourier Transform 

The time series is assumed to be of the form: 

                              

 

   

 (A.5)  

This is the Fourier representation of the time series. This allows the discrete Fourier 

transform to be applied to the data xt of length n as follows: 

        
  

      
       

 

   

 (A.6)  

And a periodogram is as follows: 

               
 
                                

            (A.7)  

The periodogram is the discrete version of the spectral density function which shows 

variance as a function of frequency. As sample size n increases to infinity, the 

periodogram approaches the spectral density function. It is also worth noting that the total 

variance of the time series, σ
2
 can be calculated from the periodogram by: 
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 (A.8)  

where m is (n-1)/2 for odd n and m is (n/2)-1 for even n.  

A.4 Filtering Functions 

This section lists the three filter functions derived by Barton [21]. The high pass filter 

isolates short term variance of wind speeds. Where Ai is amplitude of variance at 

frequency ωi, τ is the storage period, and i is the discrete index in the periodogram. 

          
  

  
 

 
  

  
   

 
 

           (A.9)  

Similarly, the low pass filter isolates long term variance for the construction of the 

period average PDF. 

         
   

  
   

 
 

           (A.10)  

Finally, the state of charge filter isolates variance which will affect the storage size.  

     
   

  
  
 
 

 
 

 
 
 

 
       

 

     
 
            (A.11)  

  

A.5 Probability Density Functions 

Barton’s probabilistic method requires the construction of probability density 

functions: a long term wind speed PDF, and short term wind speed PDFs. Note that there 

are multiple short term PDFs. Essentially, these functions are required to answer two 

questions. First, what is the probability of a given average wind speed over the length of 

the storage period? This is referred to as the period average or mean wind speed and the 

PDF is a function of the low frequency variance and the overall mean wind speed. It 
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allows one to observe the range of long term average wind speeds. The PDF is given as a 

normal distribution defined as: 

          
 

    
       

        (A.12)  

Or a Weibull distribution as: 

           
 

 
     

  
 
 
 
 

           

            (A.13)  

Where α and β are shape and scale factors and are functions of the mean and variance. At 

shape factors greater than three Barton uses a normal distribution to approximate the 

PDF. The normal and Weibull distributions are similar at shape factors between three and 

four. 

The second question is: for a given period mean wind speed what is the likely 

distribution of wind speeds within that period? This is referred to as the within period 

wind speed and the PDF is a function of the high frequency variance and the given mean 

wind speed. Therefore there is a separate PDF of within period wind speeds for each 

mean wind speed. These PDFs allow one to observe the range of short term average wind 

speeds. The within period PDFs are constructed in the same way as the mean wind speed 

PDFs with one change. As the mean wind speed for each within period PDF is different, 

the short term variance (which is a function of the overall mean) must also change. 

Assuming that variance is linearly proportional to mean wind speed, the coefficient of 

variation can be computed: 

               (A.14)  
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The coefficient of variance is discussed further below. Equation A.14 allows variance at 

different sampled wind speeds to be estimated. The variance at each sampled wind speed 

is then: 

                   (A.15)  

This variance is then used to construct a PDF around the sampled wind speed. The end 

result of the PDF construction stage in the probabilistic method is one PDF describing the 

long term average wind speed and one PDF describing the probability of the short term 

wind speed for each possible period average wind speed. These PDFs are used to 

calculate the expected values of system performance. 

A.6 Coefficient of Variance 

The coefficient of variation assumes that wind speeds vary linearly with mean wind 

speed. A brief examination of this assumption was tested with hourly data from Sandspit, 

BC. This analysis revealed a strong linear relation for low daily average wind speed (0-

11m/s). At higher wind speeds the result was not as strong. However, the definition of 

CV in Barton’s method would require a CV to approach 0 as daily average approaches 

0m/s mean wind speed (because a 0m/s average wind speed must have no variance 

because measured wind speeds must be positive). Where in reality there is some variance 

at daily averages close to zero. The CV could be modified to accept a constant or ‘y-

intercept’ term. In the plot below, CV could be calculated from the line of best fit. 
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Appendix B. Time Series Testing Function 

In order to compare results a testing function was developed. This testing function 

takes in the same data sets and store efficiencies as the sizing methods. It also takes in the 

storage size result from one of the methods. The function then acts as an energy system 

controller; it balances load using the available wind power, available storage device 

charge or discharge capability, a dump or curtailed load, and a backup or unmet load 

option, shown in Figure 1-3. At each time step, t, the following calculations are carried 

out. First, a net power is calculated from the load and the available renewable power. As 

the time series data are hourly averages, powers and energies can be used 

interchangeably. 

                        (B.1)  

The load and wind power come from the time series data sets. A positive net power is a 

time of surplus energy. Therefore, excess energy is sent to the storage device according to 

the equation below.  

 

          

  
                                                      

                                              

  
(B.2)  

In this equation, EStore,Limit is the storage size from sizing method and ηRT is the round trip 

storage efficiency. In the case that the input exceeds the available size energy is dumped 

according to the following equation. 

                                                (B.3)  

Similarly, in times of negative net power energy is drawn from the storage device. The 

storage device equations for a discharging state are: 
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  (B.4)  

If the storage device is unable to meet the negative net power, the difference is calculated 

as the unmet or backup power. 

                               (B.5)  

In the above equation PNet,tdt is negative and of greater magnitude than EStore,t thus 

PBackup,tdt is negative. At this stage the power at time t has been balanced through 

charging, curtailing, discharging, and dumping energy. These calculations are performed 

at each time step of the time series data sets. A partial flowchart is shown in Figure 8-1. 
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Figure 8-1: Partial flowchart of time series testing function. The case of positive net power is 

neglected for simplicity. 

 

 The time series function then calculates a total operation cost by summing the amount 

of renewable power generated and unmet power.  

                                           

 

 (B.6)  

A total yearly cost is calculated from the operating and capital costs in the equation 

below, where A20,IR refers to a 20 year investment annual cost with interest rate, IR. 

                                                                (B.7)  

Therefore, output results from the testing function include an overall cost consisting of 

capital plus operating costs, system reliability in the metrics of autonomy and loss of load 

probability. In addition, energy flows are tracked and include renewable energy curtailed 

and load energy backup. The reliability metric Loss of Load Probability or LOLP is the 

total unmet or backup load, given by PBackup, divided by the total required load. 

       
        
      

 (B.8)  

The other reliability metric, autonomy, is similar to LOLP except it tracks the amount of 

time the load is not completely met. A similar version is defined by Ekren [30] but is 

modified for use here and is given below. 

             
        

      
 (B.9)  

These two reliability metrics indicate the overall reliability of the system. 
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Appendix C. Tabled Results 

C.1 Wind Site Results 

 

Table 8-1: Wind site A results. Results generated from load option 1and input data from 

Table 4-1. 

Site A, 
Load: 3717kWh 

Method 

Store 
Energy 
[kWh] 

Curtailed 
Energy[kWh] 

LOLP 
Cost per 

kWh 

Barton 4.38 689 0.22 0.64 
Modified Barton 3.58 748 0.23 0.63 

Korpaas 4.05 712 0.22 0.64 
Abbey 1.04 1083 0.31 0.61 

Dynamic 1.40 1007 0.29 0.61 
No Storage 0.00 1476 0.40 0.64 

 

Table 8-2: Wind site B results.  Results generated from load option 1and input data from 

Table 4-1. 

Site B, 
Load: 1254 kWh 

Method 

Store 
Energy[kWh] 

Curtailed 
Energy[kWh] 

LOLP 
Cost per 

kWh 

Barton 2.44 416 0.36 0.81 
Modified Barton 1.29 489 0.41 0.76 

Korpaas 1.87 445 0.38 0.79 
Abbey 0.38 594 0.49 0.72 

Dynamic 0.44 585 0.48 0.72 
No Storage 0.00 695 0.55 0.73 

 

Table 8-3: Wind site C results. Results generated from load option 1and input data from 

Table 4-1. 

Site C, 
Load: 553 kWh 

Method 

Store 
Energy[kWh] 

Curtailed 
Energy[kWh] 

LOLP 
Cost per 

kWh 

Barton 1.19 221 0.43 0.90 

Modified Barton 0.42 271 0.51 0.82 

Korpaas 0.94 233 0.45 0.87 

Abbey 0.56 259 0.49 0.80 

Dynamic 0.21 296 0.55 0.77 

No Storage 0.00 352 0.64 0.78 
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Table 8-4: Wind site D results. Results generated from load option 1and input data from 

Table 4-1. 

Site D, 
Load: 2862 kWh 

Method 

Store 
Energy[kWh] 

Curtailed 
Energy[kWh] 

LOLP 
Cost per 

kWh 

Barton 3.59 683 0.27 0.68 

Modified Barton 2.74 748 0.29 0.67 

Korpaas 3.27 706 0.27 0.68 

Abbey 0.57 1038 0.37 0.64 

Dynamic 1.30 902 0.33 0.65 

No Storage 0.00 1237 0.43 0.66 

 

Table 8-5: Wind site E results. Results generated from load option 1and input data from 

Table 4-1. 

Site E, 
Load: 1810 kWh 

Method 

Store 
Energy[kWh] 

Curtailed 
Energy[kWh] 

LOLP 
Cost per 

kWh 

Barton 2.85 653 0.39 0.79 

Modified Barton 1.72 721 0.42 0.75 
Korpaas 2.54 668 0.39 0.78 

Abbey 0.45 850 0.48 0.71 

Dynamic 0.29 877 0.49 0.71 

No Storage 0.00 967 0.53 0.72 

 

C.2 Tabled Results for Effect of Interest Rate 

 

Table 8-6: Storage size under various interest rates. Results generated from load option 1, 

wind site D, and input data from Table 4-1. 

Method 
No 

Interest 
[kWh] 

5% [kWh] 
8.50% 
[kWh] 

Barton 3.59 3.59 3.59 
Modified Barton 2.74 2.74 2.74 

Korpas 3.27 3.27 3.27 
Abbey 1.70 0.85 0.57 

Dynamic 2.94 1.77 1.30 
Base Case 0.00 0.00 0.00 

 

Table 8-7: Overall Costs under various interest rates. Results generated from load option 1, 

wind site D, and input data from Table 4-1. 

Method 
No 

Interest 
[$/kWh] 

5% 
[$/kWh] 

8.50% 
[$/kWh] 

Barton 0.62 0.65 0.68 
Modified Barton 0.62 0.64 0.67 
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Korpas 0.62 0.65 0.68 
Abbey 0.62 0.64 0.64 

Dynamic 0.62 0.64 0.65 
Base Case 0.66 0.66 0.66 
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Appendix D. Comments on Wind Speed Data 

The quality and quantity of data in wind speed data sets affects results. The available 

data sets give hourly averages for many years; allowing many effects to be considered in 

the models. However, there are also some effects which cannot be considered as a result 

of these data sets.  

Wind speed effects considered in this research are daily variance, seasonal variance, 

and mean wind speed.  The daily variance can be captured in data sets which span 

multiple days at relatively low resolutions (hourly). Furthermore, as the length of these 

data sets spans several years any yearly or seasonal trends present can be captured as 

well. Finally, the length of sets also allows for long term averages to be taken for mean 

wind speeds. These long term data sets can be converted to a power and the sites can be 

classified by their average generation or their capacity factor. Sites with low variance and 

high capacity factor are preferable because this research has shown they supply energy at 

a lower cost.  

Wind speed effects ignored in this research are gusting or short term variance, and 

direction changes. The large number of hourly average data previously mentioned is 

useful for determining capacity factors or average generation. However, hourly averages 

are at an insufficient resolution to consider power quality effects. In a high resolution 

model of wind generation there will be power fluctuations which may affect quality of 

supply. Additional fluctuations in power may come from rapid changes in wind direction, 

both horizontal and vertical [31],[32]. Under these circumstances a small meteorological 

tower may react to the change in direction and give a seamless reading for wind speed. 

However, a large wind turbine may take time to adapt to this change in direction and as a 
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result the generated power may not be proportional to the wind speed recorded by a 

meteorological tower. Furthermore, aggregation effects like shadowing and turbine 

hysteresis may also affect the conversion from average wind speed to average wind 

power [33]. This research assumes that the average measured wind speed over one hour 

is equivalent to the wind speed facing the turbine and that it gives an accurate measure of 

the wind speed available for power generation.  

An improvement to this research would be to use either high resolution wind speed 

data which includes wind speed direction or to use measured wind power. High 

resolution data with directions could be converted to a more accurate wind power and 

then averaged. Similarly, if generation data existed for a given site it would be preferable 

to measured wind speeds. 

 


