

New Technologies for Canadian Observatories

12.15.2017 AGM

Project Overview

The project goal was to use Open Data and Machine Learning to create an impactful, high value MVP in only 6 weeks.

After considering a shortlist of use cases, lung cancer detection was selected as the project objective.

- Relatively unexplored in astronomy
- High impact requires more complete understanding
- Could drive future surveys based on data analysis procedures

- Relatively unexplored in astronomy
- High impact requires more complete understanding
- Could drive future surveys based on data analysis procedures

Project Overview

The project goal was to use Open Data and Machine Learning to create an impactful, high value MVP in only 6 weeks.

After considering a shortlist of use cases, lung cancer detection was selected as the project objective.

- Relatively unexplored in astronomy
- High impact requires more complete understanding
- Could drive future surveys based on data analysis procedures

Solution Overview

Low-dose computed tomography (CT) scan advantages:

- · Low dose CT scans use less radiation
- · Low dose CT scans require no injections or dyes
- · Scans take less than a minute
- · CT scanners are relatively cheap

- and reproduce results from Julian and Daniel's model
- for doctors and radiologists

Project Approach

Develop a simple interface to create a diagnostic tool

Neural Networks

Results

How it Works

kaggle

Project Approach

- Understand the methods and reproduce results from Julian and Daniel's model
- Develop a simple interface to create a diagnostic tool for doctors and radiologists

Medical Imaging Data

Low-dose computed tomography (CT) scan advantages:

- · Low dose CT scans use less radiation
- Low dose CT scans require no injections or dyes
- Scans take less than a minute
- CT scanners are relatively cheap

Neural Networks

Neural Networks

2D vs 3D

Doctor sees this:

Neural Network sees this:

VS.

How it Works

Raw input: CT scan New input: 3D chunks New input: Most probable candidates

Normalize

Nodule Finder

Malignancy prob.: 93%
Diameter: 15.6mm
Lobulation: 0.60
Spiculation: 0.52

1. Normalize data

- make CT slices the same thickness
- make cutoff between air and bone
- lung segmentation

2. Find Tumors

CT scans are broken into sub-images, and the nodule finder identifies regions that appear abnormal

3. Predict Cancer Probability

Predicts the attributes (such as malignancy, size, lobulation, and spiculation) on the regions discovered in the Nodule Finder to assess probability of cancer

Provided by Julian Dewit

1. Normalize data

- make CT slices the same thickness
- make cutoff between air and bone
- lung segmentation

CT so and that a Raw input: CT scan New input: 3D chunks New input: Most probable candidates

Normalize

Nodule Finder

Malignancy prob.: 93%
Diameter: 15.6mm
Lobulation: 0.60
Spiculation: 0.52

1. Normalize data

- make CT slices the same thickness
- make cutoff between air and bone
- lung segmentation

2. Find Tumors

CT scans are broken into sub-images, and the nodule finder identifies regions that appear abnormal

3. Predict Cancer Probability

Predicts the attributes (such as malignancy, size, lobulation, and spiculation) on the regions discovered in the Nodule Finder to assess probability of cancer

Provided by Julian Dewit

data

e thickness and bone

2. Find Tumors

CT scans are broken into sub-images, and the nodule finder identifies regions that appear abnormal

3. Predic

Predicts maligna spiculati discover assess Raw input: CT scan New input: 3D chunks New input: Most probable candidates

Normalize

Nodule Finder

Malignancy prob.: 93%
Diameter: 15.6mm
Lobulation: 0.60
Spiculation: 0.52

1. Normalize data

- make CT slices the same thickness
- make cutoff between air and bone
- lung segmentation

2. Find Tumors

CT scans are broken into sub-images, and the nodule finder identifies regions that appear abnormal

3. Predict Cancer Probability

Predicts the attributes (such as malignancy, size, lobulation, and spiculation) on the regions discovered in the Nodule Finder to assess probability of cancer

Provided by Julian Dewit

ors

sub-images, tifies regions

3. Predict Cancer Probability

Predicts the attributes (such as malignancy, size, lobulation, and spiculation) on the regions discovered in the Nodule Finder to assess probability of cancer

Raw input: CT scan New input: 3D chunks New input: Most probable candidates

Normalize

Nodule Finder

Malignancy prob.: 93%
Diameter: 15.6mm
Lobulation: 0.60
Spiculation: 0.52

1. Normalize data

- make CT slices the same thickness
- make cutoff between air and bone
- lung segmentation

2. Find Tumors

CT scans are broken into sub-images, and the nodule finder identifies regions that appear abnormal

3. Predict Cancer Probability

Predicts the attributes (such as malignancy, size, lobulation, and spiculation) on the regions discovered in the Nodule Finder to assess probability of cancer

Provided by Julian Dewit

Results

Human (trained professional)

· Non-Cancerous Cases: 66%

· Cancerous Cases: 89%

Convolutional Neural Network

✓ • Non-Cancerous Cases: 69%

✓ • Cancerous Cases: 93%

IVOUILO

Human (trained professional)

- Non-Cancerous Cases: 66%
- Cancerous Cases: 89%

Convolutional Neural Network

- ✓ Non-Cancerous Cases: 69%
- Cancerous Cases: 93%

Solution Overview

Low-dose computed tomography (CT) scan advantages:

- · Low dose CT scans use less radiation
- · Low dose CT scans require no injections or dyes
- · Scans take less than a minute
- · CT scanners are relatively cheap

- and reproduce results from Julian and Daniel's model
- for doctors and radiologists

Project Approach

Develop a simple interface to create a diagnostic tool

Neural Networks

Results

How it Works

Demo & Use Case

Based on this data and our observations, we recommend immediate treatment.

Let's isolate and examine just the red area, which shows the highest probability of a malignant tumor.

The system has flagged this patient's recent CT scans. Let's take a look and visually assess the areas the Neural Net has identified.

Patient: 0b922b907eeb8f02010c876f0c2efe26

Nodule: 1; Probab. of malignancy: 0.85

Demo & Use Case

Based on this data and our observations, we recommend immediate treatment.

Let's isolate and examine just the red area, which shows the highest probability of a malignant tumor.

The system has flagged this patient's recent CT scans. Let's take a look and visually assess the areas the Neural Net has identified.

Patient: 0b922b907eeb8f02010c876f0c2efe26

Nodule: 1; Probab. of malignancy: 0.85

Demo & Use Case

Based on this data and our observations, we recommend immediate treatment.

Let's isolate and examine just the red area, which shows the highest probability of a malignant tumor.

The system has flagged this patient's recent CT scans. Let's take a look and visually assess the areas the Neural Net has identified.

Lessons

Impactful Use cases

1

Not all potential use cases are relevant; select important problems and provide actionable insights that would be hard to get without Machine Learning DEEP Neural Networks

2

State of the art models are getting deeper and deeper.

Data

3

The research and rapid implementation of this project was enabled by large, well-curated data sets.

Flexibility

4

Agility, flexibility, and an R&D mindset enable sucessful outcomes for data-driven, AI-powered projects.

