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The project goal was to use
Open Data and Machine
Learning to create an impactful,

high value MVP in only 6 weeks.

After considering a shortlist of
use cases, lung cancer
detection was selected as the
project objective.

- Relatively unexplored in
astronomy

- High impact requires more
complete understanding

- Could drive future surveys
based on data analysis
procedures
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Solution Overview

Medical Imaging Data

Low-dose computed tomography (CT) scan advantages:
+ Low dose CT scans use less radiation
+ Low dose CT scans require no injections or dyes

- Scans take less than a minute
- CT scanners are relatively cheap ‘
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Project
Approach

Understand the methods
and reproduce results from
Julian and Daniers model

Develop & simple interface
o greate a diagrostic ol
for dociors and radicloglsts

Neural Networks
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Daniel Hammack's
open source models as
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Project
Approach

Understand the methods
and reproduce results from
Julian and Daniel's model

Develop a simple interface
to create a diagnostic tool
for doctors and radiologists
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Low-dose computed tomography (CT) scan advantages:
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Neural Networks

Cancer
Diagnosis

CONVOLUTION FOOLING CONVOLUTION POOLING FLATTEN LIRS

1 CONNECTED ]

FEATURE LEARNING CLASSIFICATION

20vs 3D

Docior sees. this: Metiral Network sees this!
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How it Works

Raw input: New input: New input:
CT scan 3D chunks Most probable
candidates

Nodule Finder ; Attribute Predictor

Malignancy prob.: 93%
Diameter: 15.6mm
Lobulation: 0.60
Spiculation: 0.52

Prendded by Julian Dewit
1. Normalize data

W-A-A=n ) 2FindTumors

CT scans are broken into sub-images,

- ki CT slees the sarme higiress e /
~mike culo Betawen air s bore: and the nodule finder identifies regions

= lung segmenatian that appear abnormal ) ! \
‘& 3. Predict Cancer Probability

Predicts the attributes (such as
malignancy, size, lobulation, and
spiculation) on the regions
discovered in the Nodule Finder to
assess probability of cancer
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Based on this data

and our observations,

we recommend
immediate treatment.

Let's isolate and
examine just the red
area, which shows the
highest probability of a
malignant tumor.

The system has flagged
this patient's recent CT
scans. Let's take a look
and visually assess the
areas the Neural Net

has identified.



Patient: 0b922b907eeb8f02010c876f0c2efe26
Nodule: 1; Probab. of malignancy: 0.85
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Impactful Use DEEP Neural Flexibility
cases Networks

Not all potential use cases State of the art models The research and rapid Agility, flexibility, and an

are relevant; select are getting deeper and implementation of this R&D mindset enable
important problems and deeper. project was enabled by sucessful outcomes for

provide actionable insights large, well-curated data data-driven, Al-powered
th_at would bel hard to get sets. projects.
without Machine Learning
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