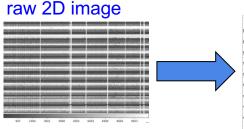
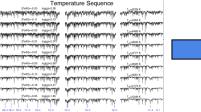
machine learning for stellar spectra

Sébastien Fabbro

NTCO 2017



calibrated 1D spectra

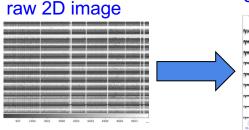


estimated stellar parameters

T_{eff}, log(g), [Fe/H], [C/H], [N/H], [O/H], [Na/H], [Mg/H], [Al/H], [Si/H], [S/H], [K/H], [Ca/H], [Ti/H], [V/H], [Mn/H], [Ni/H],...

stellar populations galactic archeology near-field cosmology

synthetic 2D image subject of the s



calibrated 1D spectra

estimated stellar parameters

T_{eff}, log(g), [Fe/H], [C/H], [N/H], [O/H], [Na/H], [Mg/H], [Al/H], [Si/H], [S/H], [K/H], [Ca/H], [Ti/H], [V/H], [Mn/H], [Ni/H],...

[Mn/H], [Ni/H],...

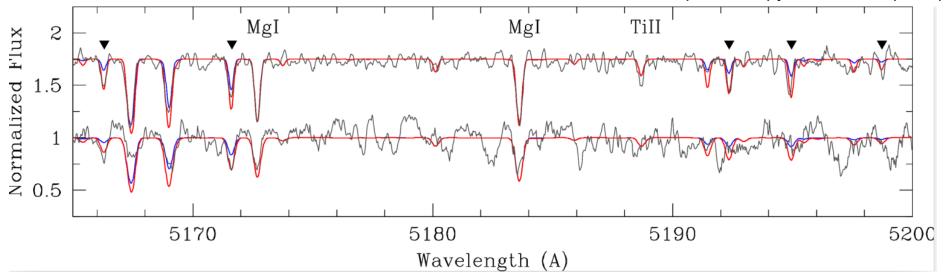
typical ML analysis

stellar populations galactic archeology near-field cosmology

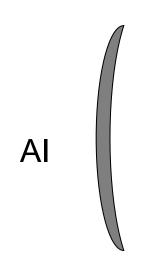
synthetic 2D image synthetic 2D image synthetic 2D image synthetic 1D spectra synthe

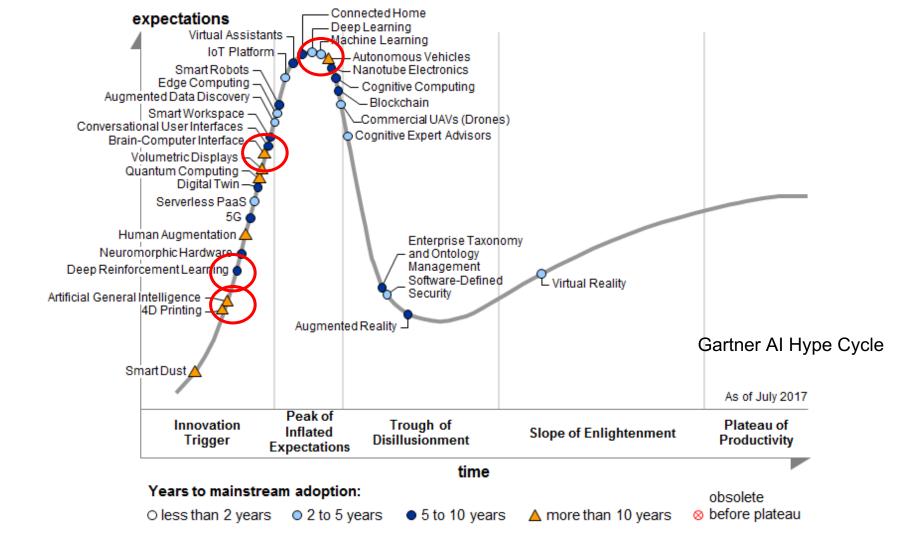
traditional approach

Gemini-GRACES spectroscopy, Venn et. al (2017)

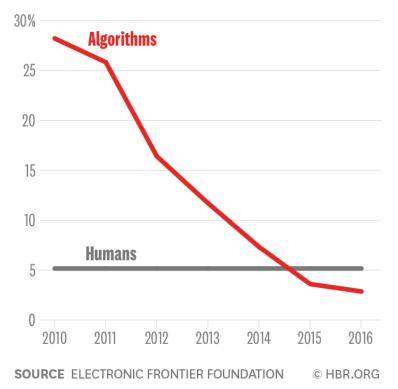


- physics models methods (EQW, NL fit, projections...)
- "data driven" methods (The Cannon, ANN): need a set of reference stars

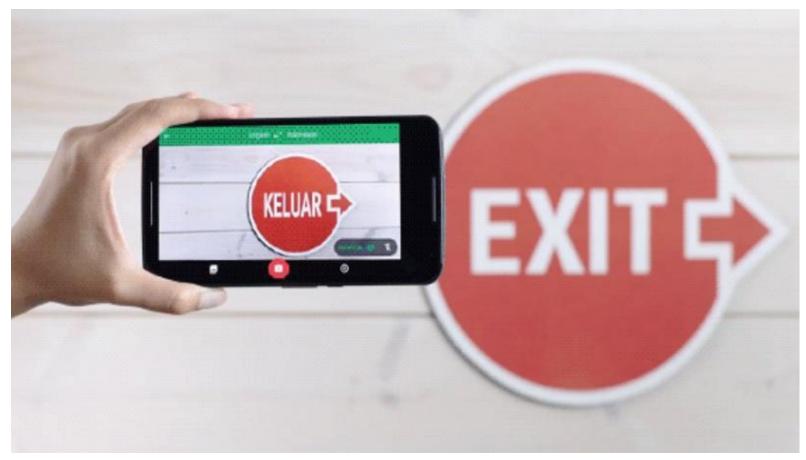




recognize puppy from muffins

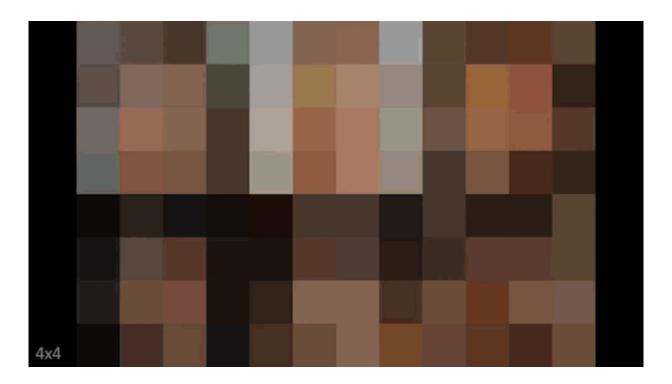


translate from 100 languages



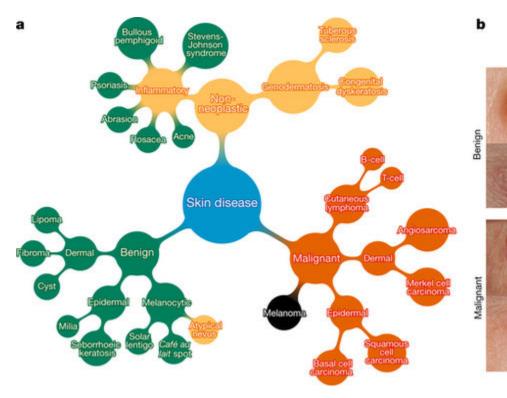
restyle paintings

generate new celebrities



Karas et. al (2017)

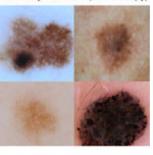
detect skin cancer

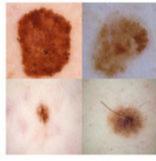


Epidermal lesions

Melanocytic lesions

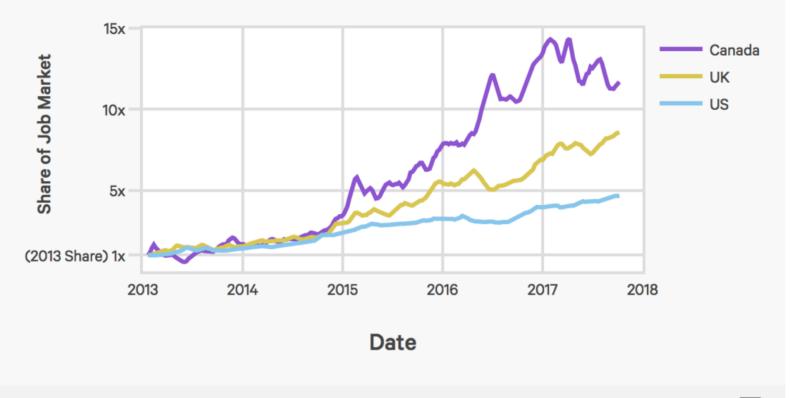
Melanocytic lesions (dermoscopy)



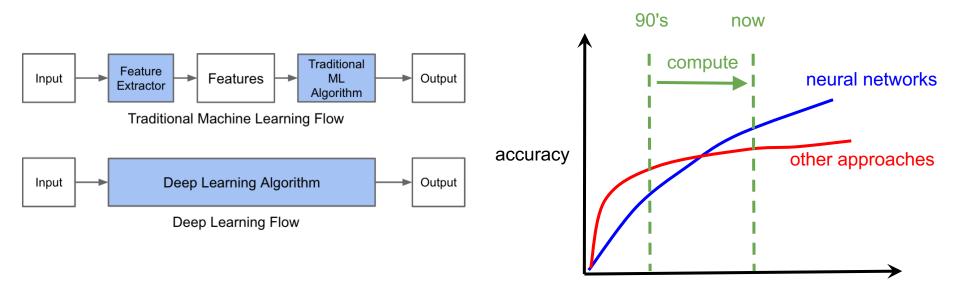


Esteva et. al (2017)

Share of Jobs Requiring AI Skills (Indeed.com)



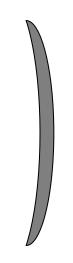
deep learning

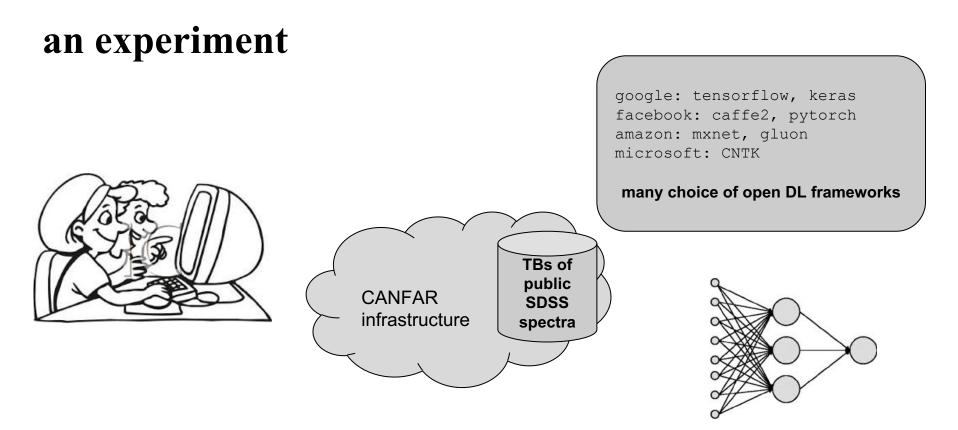


model + data size

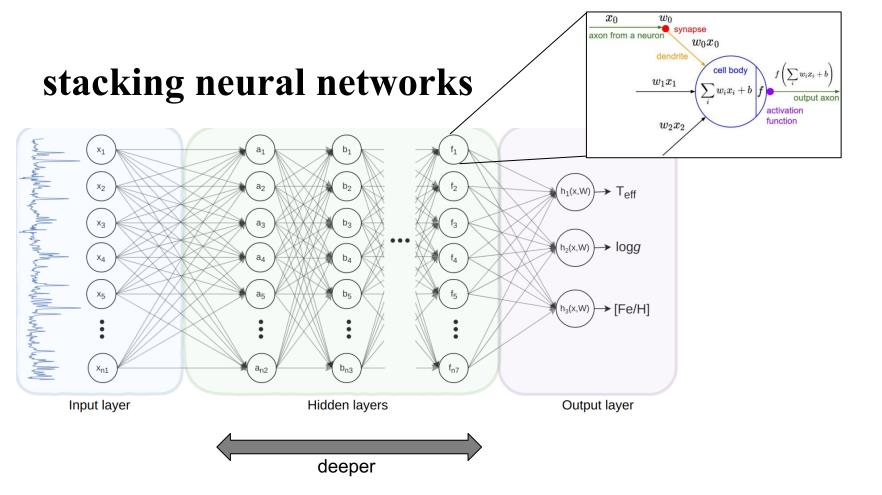
should astronomers care?

- detect complex structures in large data sets
- classify astronomical objects
- learn time consuming simulations
- automate and accelerate manual data analysis tasks
- replace many image processing techniques
- powerful well written software
- prepare students

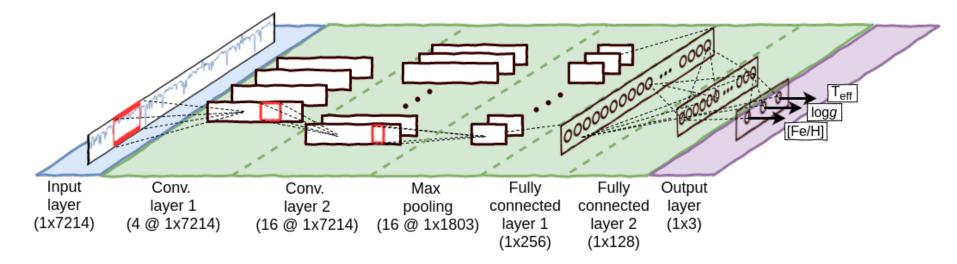




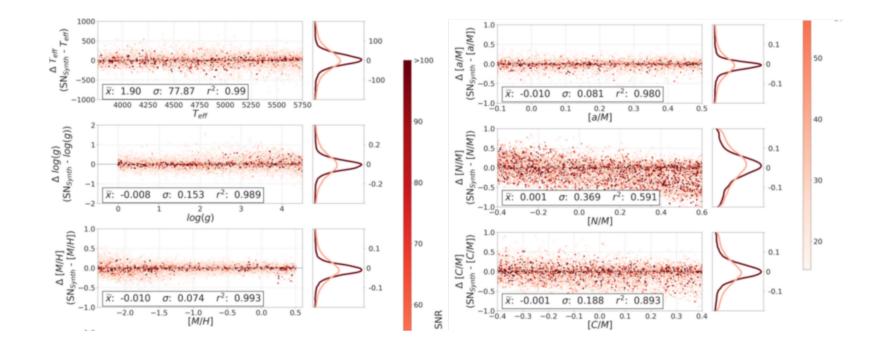
distant past ML knowledge



StarNet



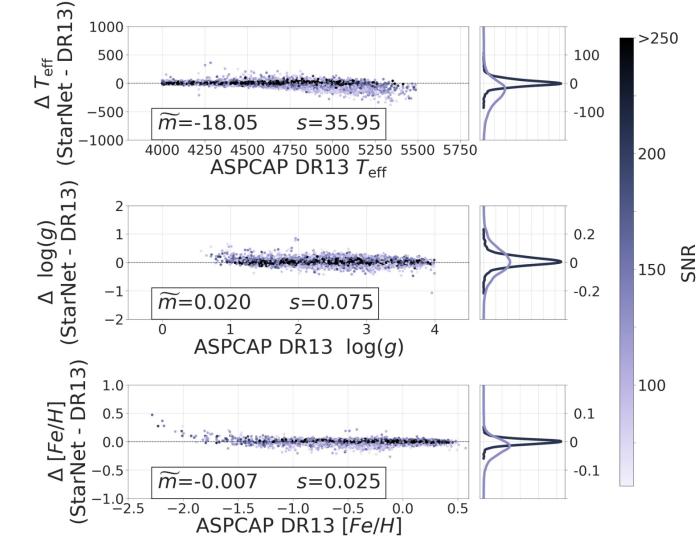
starnet trained on synthetic spectra

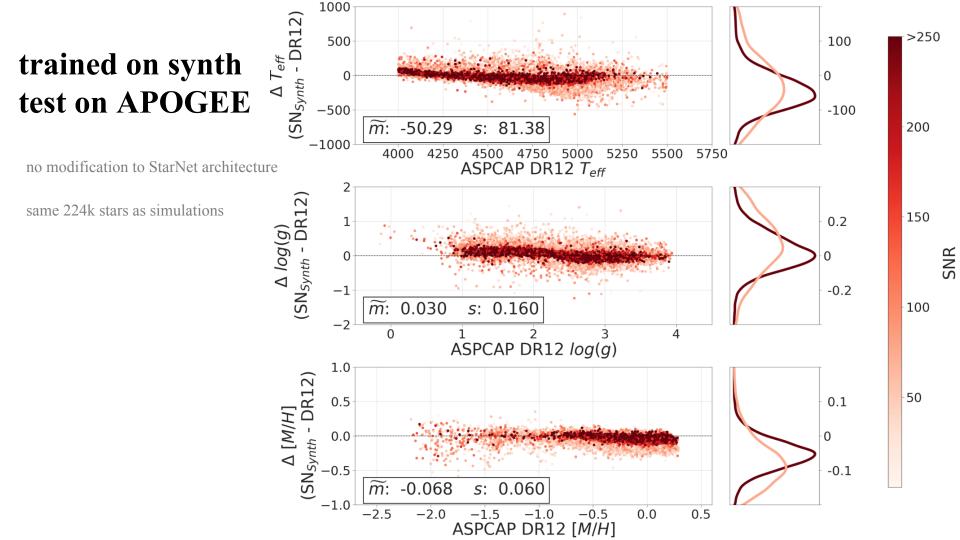


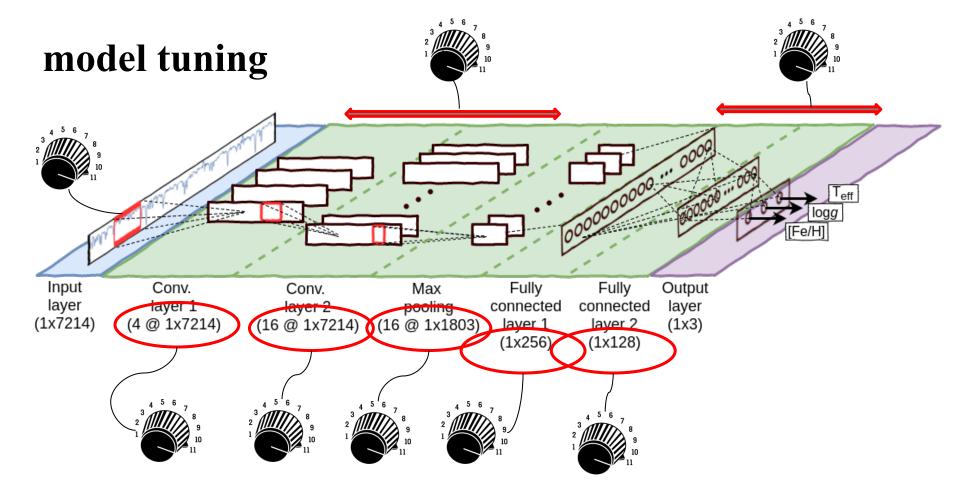
starnet trained on **APOGEE spectra**

15k stars with 47k visits

official pipeline parameters







meta learning starnet

13 hyperparameters

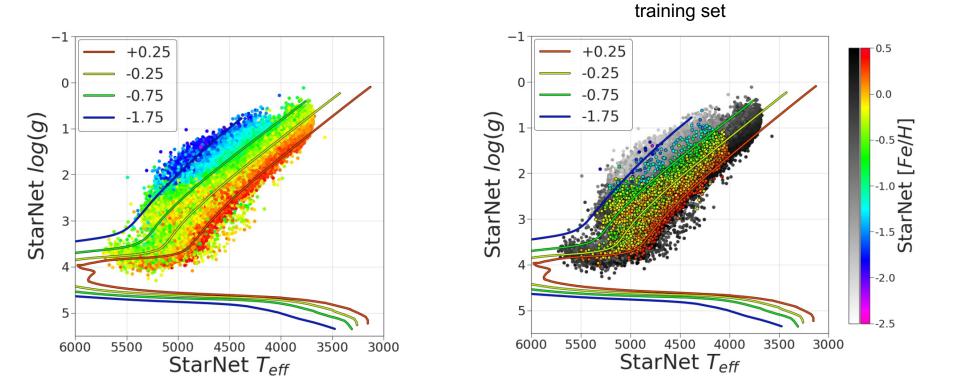
30mn per training (no GPU)

Tree-structured Parzen Estimator Bayes Optimizer

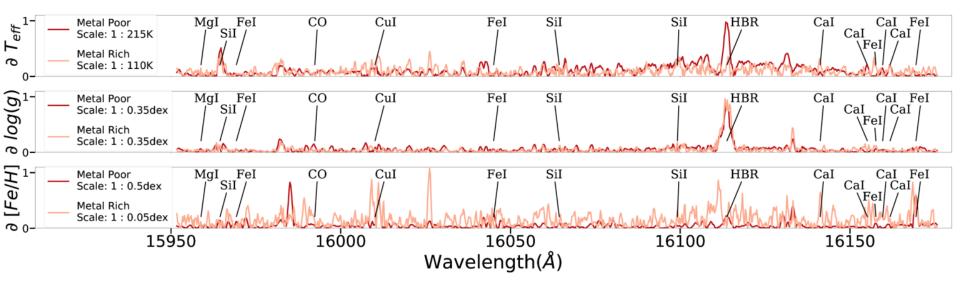
(smartish gridding)



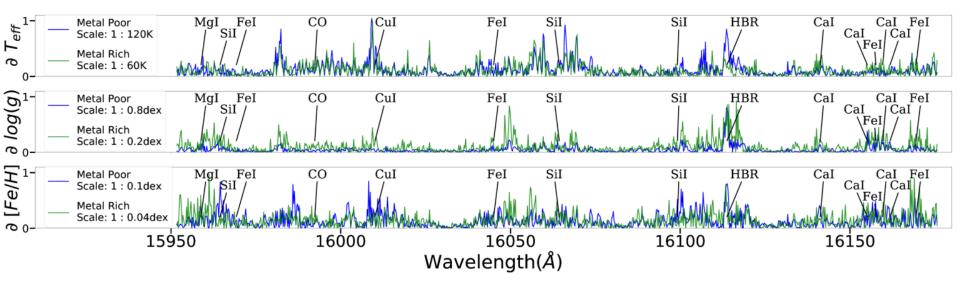
realistic parameters



where to look in a spectrum - synthetic

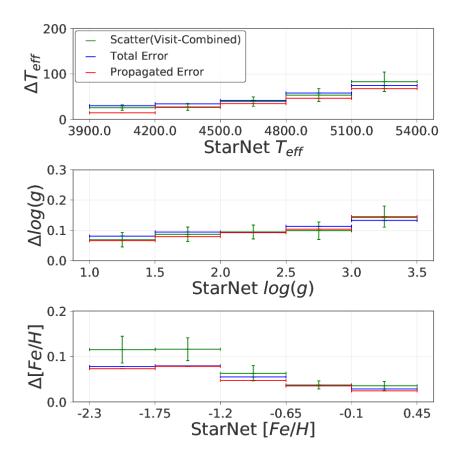


where to look in a spectrum - real

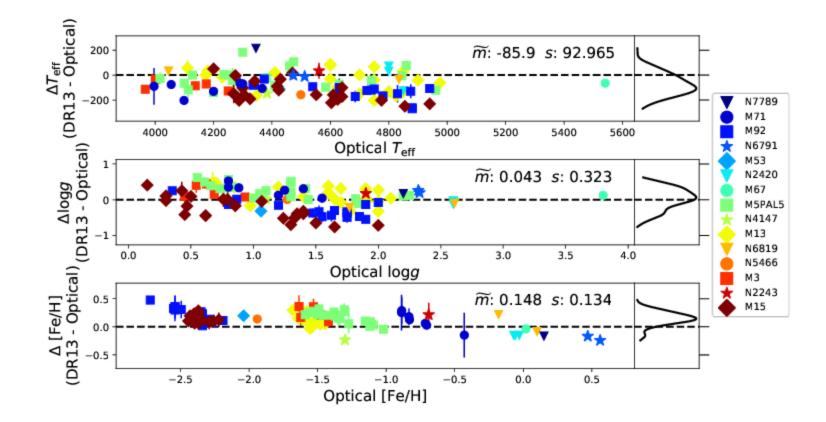


uncertainties

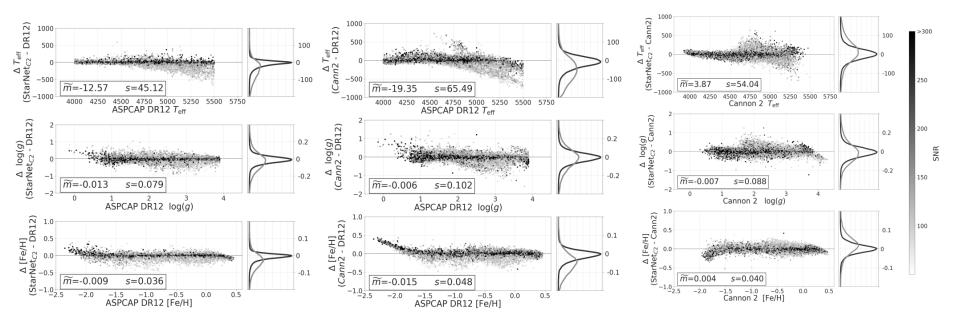
propagated from error spectra onto the starnet model with intrinsic scatter.



calibration uncertainties



comparison with official APOGEE methods



StarNet vs. ASCAP

The Cannon 2 vs. ASCAP

StarNet vs. The Cannon 2

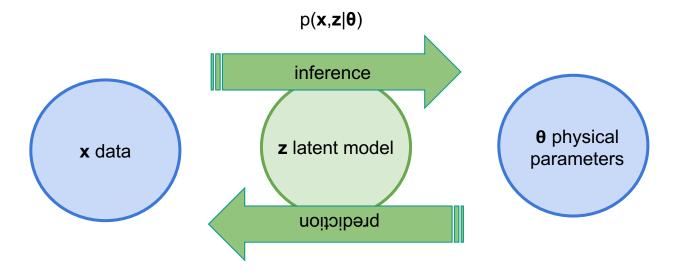
machine learning limitations

- <u>dealing with uncertainties</u>
- dealing with heteroscedastic data
- dealing with missing d
 interpretable moc
 generalisability
 reduce training set size

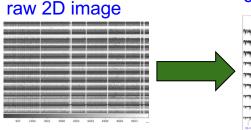
machine learning limitations

- dealing with uncertainties
- dealing with heteroscedastic data
- dealing with missing data
- interpretable models
- generalisability
- reduce training set size

machine learning meets statistics



generative implicit models, deep probabilistic programming



calibrated 1D spectra

Temperature Sequence

estimated stellar parameters

T_{eff}, log(g), [Fe/H], [C/H], [N/H], [O/H], [Na/H], [Mg/H], [Al/H], [Si/H], [S/H], [K/H], [Ca/H], [Ti/H], [V/H], [Mn/H], [Ni/H],...

NTCO 2018?

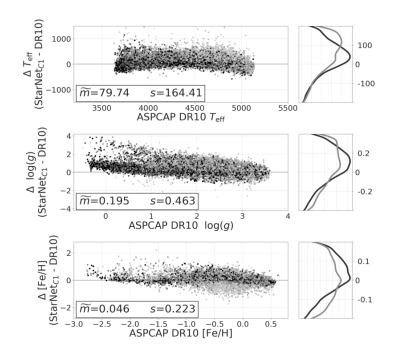
stellar populations galactic archeology near-field cosmology

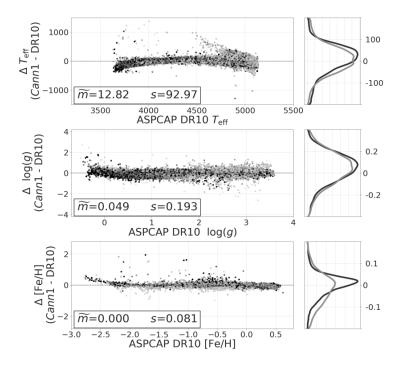
synthetic 1D spectra Temperature Sequence where the sequence wh

end

extra slides

small training set





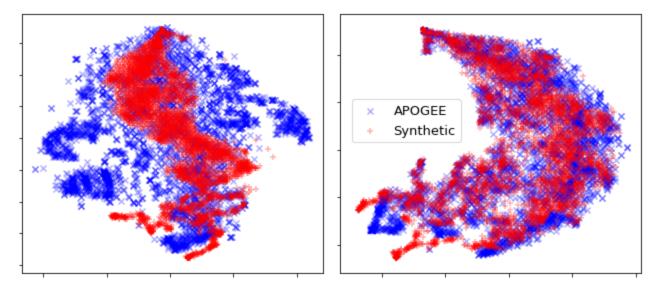
StarNet

542 DR10 stars

The Cannon Ness (2015)

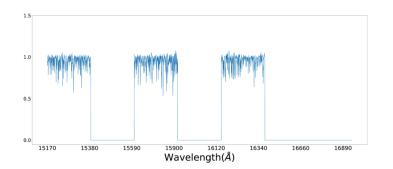
synthetic gap?

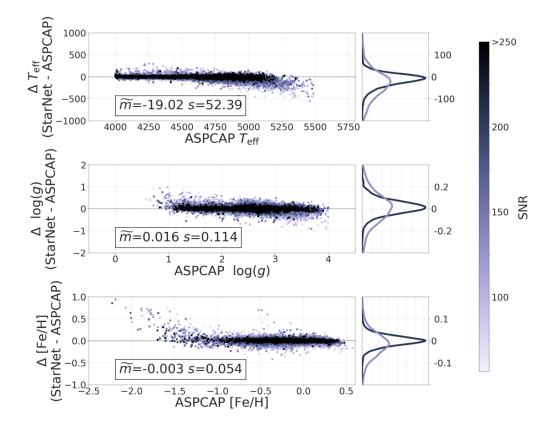
t-SNE before and after zero-data - interpolation



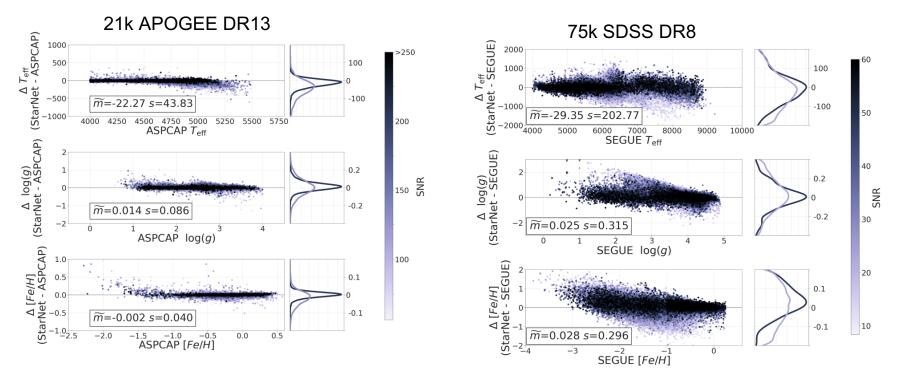
missing data?

training and testing using random parts of the spectra





multi-surveys



simultaneous training on 41k IR with APSCAP + 77k optical spectra with SEGUE

exploring deep learning architectures

Neural Network	no. of Filters in Conv. Layers	no. of Nodes in Fully Connected Layers	r^2	T_{eff}		log(g)		[Fe/H]	
				\widetilde{x}	σ	\widetilde{x}	σ	\widetilde{x}	σ
Shallow NN	0	512, 128	0.9667	-7.2	72.3	0.003	0.142	-0.008	0.057
Deep NN	0	$\begin{array}{c} 2048,1024,512,\\ 256,128,32 \end{array}$	0.9642	-10.2	73.9	0.027	0.144	-0.011	0.057
Shallow CNN	16	128	0.9573	-1.2	82.9	0.017	0.155	-0.008	0.066
StarNet CNN	4, 16	256, 128	0.9749	-12.1	63.5	0.005	0.108	-0.014	0.049
Deep CNN	16, 32, 32, 64, 64	1024, 512, 256	0.9737	-8.7	70.2	0.003	0.105	-0.010	0.053