Overview of Nüvü Camēras's technology

NTCO AGM 2017 meeting 2017.12.14

Presented by

Olivier Daigle — CTO odaigle@nuvucameras.com @OlivierDaigle nivi camēras

every photon counts

Agenda

01 Our Technology: EMCCD 101

- Electron Multiplication on the CCD
- Excess Noise Factor and Photon Counting
- Clock Induced Charges
- EMCCD types and architectures

02 Our Products

- CCCP controllers
- HNü and EMN2 cameras
- Upcoming developments

03 Astronomical Applications

Brief overview

04 Conclusions

Our Technology EMCCD 101

The CCD

EMCCD 101 The CCD

- Electron Multiplying Charge Coupled Device
- Detector architecture similar to frametransfer CCDs
- Imaging area collects light and traps resulting photo-electrons
- Storage area allows to quickly transfer images to a light-shielded region once the integration time has elapsed
- One by one, each pixel line is transferred to the horizontal register

The CCD

- In a standard CCD camera, the contents of each pixel would then be sent through the output amplifier
- In low light applications, the readout noise from the output amplifier becomes significant at high readout rates or when light level is very low
- That problem is alleviated by an added Electron Multiplication register
 - Allows to propel the weak signals over the noise floor
 - Makes readout noise negligible

Excess noise factor

- The gain has a statistical behaviour
- This behaviour induces an Excess Noise Factor (ENF) of sqrt(2)
- The uncertainty in the gain value induces the ENF
- The effect of the ENF on the SNR is the same as if the QE would be halved

Excess noise factor

- The gain has a statistical behaviour
- This behaviour induces an Excess Noise Factor (ENF) of sqrt(2)
- The uncertainty in the gain value induces the ENF
- The effect of the ENF on the SNR is the same as if the QE would be halved

$$\mathrm{SNR} = \frac{\mathrm{QE} * \mathrm{S}}{\sqrt{\mathrm{F}^2 * (\mathrm{QE} * \mathrm{S} + \mathrm{NT} + \mathrm{C}) + \frac{\sigma^2}{\mathrm{G}^2}}}$$

Photon Counting

- Photon Counting operation involves applying a threshold to the pixel's output value
- The threshold is chosen according to the read-out noise
- Some events are below the threshold and can't be counted. They are lost.
- G is not part of the equation: no more ENF!
- No more σ too!
- However, binary pixel

Photon Counting

- Photon Counting operation involves applying a threshold to the pixel's output value
- The threshold is chosen according to the read-out noise
- Some events are below the threshold and can't be counted. They are lost.
- G is not part of the equation: no more ENF!
- No more σ too!
- However, binary pixel

Photon Counting

- Photon Counting operation involves applying a threshold to the pixel's output value
- The threshold is chosen according to the read-out noise
- Some events are below the threshold and can't be counted. They are lost.
- G is not part of the equation: no more ENF!
- No more σ too!
- However, binary pixel

EMCCD 101 Photon Counting

- In PC, the detection limit is a function of the ratio EM gain over the read-out noise
- A high EM gain is mandatory for an efficient PC operation

 $\mathrm{SNR} = \frac{\mathrm{QE} * \mathrm{DP} * \mathrm{S}}{\sqrt{\mathrm{DP} * (\mathrm{QE} * \mathrm{S} + \mathrm{NT} + \mathrm{C})}}$

Clock Induced Charges - The CIC is generated by the impact ionisation of the *holes* during the clock transition.

Janesick 2001

Clock Induced Charges - The CIC is generated by the impact ionisation of the *holes* during the clock transition.

Metal Oxide Semiconductor (MOS) Capacitor

Janesick 2001

camēras

Clock Induced Charges

 Sinusoidal and triangular clocks almost completely suppress the CIC generated during the vertical transfer (<0.001 ē/ pix/image)

Efficiency

Efficiency

AM zoomed image cross section × 1s 20 30 Y Pixel 50 10 40 PC zoomed image cross section **Cross section** 10 x 0.1s Reference

> 20 30 Y Pixel

40

50

camēra:

Architecture

	CCD60	CCD97	CCD201 -20	CCD207	CCD220	CCD282
Pixels	128 ²	512 ²	1024 ²	1600²	240 ²	4096 ²
Sorties	1x EM	1x EM 1x Conv	1x EM 1x Conv	1x EM 1x Conv	8x EM	8x EM
Arch.	FT	FT	FT	FF	S-FT	S-FT
FPS	1000	65	16	5	2000	4
ROI/ mROI ?	Yes	Yes	Yes	Yes	No	No

rivi cameras

Our Products

Our Products

- CCCP controller (Nüvü's technology)
- EMN2 cameras (customizable)
- HNü cameras (flagship product)
- CCCPs (space) controller

Our Products

- CCCP controller (Nüvü's technology)
- EMN2 cameras (customizable)
- HNü cameras (flagship product)
- CCCPs (space) controller

CCCP controller

- Controller, integrated in all Nüvü's cameras, generates less clock-induced charges (the dominant source of noise @ moderate and high frame rate)
 - Greater photon counting performance
- Precise temperature control
 - Stable EM gain

EMCCD controller

FMCCD

HNü cameras

HNü 512 is balanced for optimal frame rates (63 fps), field of view and minimal noise

- HNü 1024 is optimized for the largest field of view, lower frame rate (16 fps)
- ThermoElectric Cooling (air or liquid dissipation)
 - -85°C by air cooling, ≤-90°C liquid cooling
 - "AO" variant: -60°C cooling, optimized for high fps
- CameraLink or GigE interface
- Optimized for easy integration into most systems (Metric and imperial mounting holes on face plat)

Same sensor sizes and connectivity as for the HNü

Can support custom sensors

- Made for special projects, customized read-out, detector test and development (mostly astro and space agencies)
- Allow for colder detector temperatures
- Liquid nitrogen cooled

Cameras

- λ /10 window custom coating available, C-Mount standard, centred chip, built-in shutter
- Binning, ROI & mROI selection, Cropped-sensor mode
 - mROI: multiple ROI, several 100's fps even with 1024² (developed for PESTO)
- Standard CCD and EMCCD channels (512 & 1024)
- NüPixel software, drivers for third-party software (Biomed),
 SDK (C/C++), for Linux and Windows

CCCPs controller

- Yield the same low light performance as the commercial controller, built with **only** Space Qualified components
- PCB routed according to IPC2221-2222 Class 3 (highest reliability and repeatability)
- Designed with best practices to sustain vibrations
- Compatible with the commercial software suite
- CSA TRL-5 (Thermal, Vacuum, SQ by design)

CCCPs controller To be presented at the Canadian SmallSat symposium (Toronto, Feb. 2018)

- Yield the same low light performance as the commercial controller, built with **only** Space Qualified components
- PCB routed according to IPC2221-2222 Class 3 (highest reliability and repeatability)
- Designed with best practices to sustain vibrations
- Compatible with the commercial software suite
- CSA TRL-5 (Thermal, Vacuum, SQ by design)

Upcoming products developments

- 4k x 4k camera
 - To be presented at SPIE Astro (Austin TX, June 2018)
- mROI with individual EM gain per ROI under development
 - For 128, 512, and 1024 cameras
- 30 MHz read-out tests
 - 1.5 kfps on the 128, optimized for AO
 - Other sensors TBD

Astronomical Applications

- Direct imaging of exoplanets
- 10-9 contrast

Direct imaging of exoplanets

- For a mag 8 star, > mag 30 for the planet! (comparable to HUDF)
- 10 100 hours of integration per planet

Marois et al. 2008

- Direct imaging of exoplanets
- 10-9 contrast

Direct imaging of exoplanets

- For a mag 8 star, > mag 30 for the planet! (comparable to HUDF)
- 10 100 hours of integration per planet

Figure 2-22: Model exoplanet spectra (Cahoy et al 2010) for a Jupiter-mass planet with stellar metallicity (1x solar) and one enhanced in heavy elements by formation (3x), and a Neptone-like planet (10x). Spectra have been binned to the resolution of the WFIRST-2.4 coronagraph spectrometer, = 70. The three classes of planets are easily distinguishable.

Direct imaging of exoplanets

- WFIRST

- Models shows that by comparison with the CCD, the use of an EMCCD would reduce the acquisition time by ~90%
- For the lifespan of the mission, the number of detected exoplanets increases by 50%

Direct imaging of exoplanets

> 2 photons/pixel/h 3 photons/pixel/h 5.5 photons/pixel/h 19.5 photons/pixel/h

120 * 90s images: 3 hours of total integration

Direct imaging of exoplanets

Direct imaging of exoplanets

- High-Contrast Imaging
 Balloon System
- LOWFS
 - HNü 128 AO modified for vacuum operation
- Coronagraph
 - Space controller with HNü 512 AO cryostat

[1] M. J. Wilby and Al. "The coronagraphic Modal Wavefront Sensor: a hybrid focal-plane sensor for the high-contrast imaging of circumstellar environments", A&A 597, A112 (2017)

HICIBAS

Direct imaging of exoplanets

- High-Contrast Imaging
 Balloon System
- LOWFS
 - HNü 128 AO modified for vacuum operation
- Coronagraph
 - Space controller with HNü 512 AO cryostat

HICIBAS

SSA

- Search for orbital debris
- For moving objects against a bright background, the SNR increases with lower integration times!

CCD 2ē

EMCCD

SSA

Honeywell

A

nivi

COM DEV

COM DEV°

can

CCD (red) vs. EMCCD (blue)

SSA

10Hz data

SSA

10Hz data

SSA

CCD ReadNoise 10e-, M16 RSO @GEO 1 frame 10 seconds 50 100 150 200 250 300 50 250 100 150 200 300

CCD motion compensated 100 frames 0.1 seconds

10Hz data

EMCCD Gain 1000, M16 RSO @GEO 100 frames 0.1 seconds

EMCCD motion compensated

Fast differential photometry

30 fps, offline averaging

© Nüvü Caméras 2017

Fast differential photometry

30 fps, offline averaging

Observatoire du Mont-Mégantic

dà

Fast differential photometry

30 fps, offline averaging

Observatoire du Mont-Mégantic

dà

© Nüvü Caméras 2017

Fast differential photometry

30 fps, offline averaging

de

UV imaging

- An EMCCD is a CCD

- Spectral responses are similar

QE at -100°C IMO (CCD60) 100% 90% 80% ---Basic 70% mid 60% ----Basic BB 50% 40% BB 30% 20% 10% ******* 0% 300 400 500 600 700 800 900 1000 1100

- UV imaging
- LUMOGEN® coating can be applied to enhance UV response to ~50% of the green response of the EMCCD

 $\label{eq:Front-Illuminated} \ \mathsf{CCD} \ \mathsf{response} \ \mathsf{with} \ \mathsf{Lumogen} \\ \mathbb{R}$

UV imaging

- Delta-doped EMCCDs, in development at JPL/NASA allow for high UV response with respect to MCPs

Nikzad et al. 2016

Conclusions

- Our products are optimized for high sensitivity in low light applications
- Commercial cameras
 - Ease of use, high cooling performance, versatile software suite and SDK, laboratory applications and B2B
- Space controller
 - World's first SQ EMCCD controller
 - Foreseen for SSA and coronagraph applications
- 4k x 4k development
 - Largest EMCCD, opens-up new possibilities in spectroscopy, wide field surveys, large format medical imaging

Conclusions

- Open innovation
 - We concentrate on what we are good at: building cameras
 - We support our clients and partners in getting the most out of our technology
 - Product customization, development of new features upon request to better suit our client's needs
 - Looking forward to play an active role in NTCO!

nuvu camēras

every photon counts