Deep NIR photometry of NGC 5904 with GeMS/GSAOI

Tarun Kumar ${ }^{1}$, Mojtaba Taheril , Paolo Turri2, ${ }^{3}$, Kim Venn ${ }^{1}$, David Andersen ${ }^{2}$, Alan McConnachie ${ }^{2}$

Introduction

Here, we study the intermediate-metallicity globular cluster (GC) NGC 5904 (M5) from deep near-infrared (NIR) band (J, Ks) imaging taken with the multi conjugate adaptive optics system (GeNS). globular cluster is a part of an ambitious survey to provide a coalactic globular clusters and to map their internal proper motions when combined with archival HST ACS imaging. Internal proper motions can be used to study any orbital anisotropy to determine the cluster's geometric distance, search for signatures of rotation, and possibly provide constraints for a central intermediate mass blackhole. NIR photomery doesnt sufer from diferenial reddening (CMD) shows a characteristic " S " shape known as main-sequence knee (MSK) which serves as absolute age indicator due to its independence on distance extinction and photometric calibration. In recent Hubble Space Telescope (HST) surveys many GCs have been found to be harboring multiple stellar populations (MSP) with different chemical abundances challenging our basic assumption of stellar evolution models of GCs formed of coeval stars with virtually same chemical composition. The lower main sequence in NIR-CMD can be used to look for binary fractions fingerprint of the formation epoch and evolution of MSPs (see Piotto et al, 2015 and reference therein). In this poster we present our preliminary photometric analysis of NGC 5904 which also known to harbors MSPs, including the deepest NIR CMD obtained from ground.

Observation

Data was obtained in 2014 along with other six GCs. It contains 8 exposures of 160 second, single exposure of 90 second and 21.5 second for each J and Ks band. Below we show an exemplary image of the M5 taken with GeMS detector which is made of four chips. The combined field of view (FOV) of the detector is
$85 " \times 85 ")$ 85 "x85"

Figure 1: A typical image of M5 from GeMS infrared camera.

Method

A combination of Gemini IRAF package and DAOPHOTII was used for data analysis. The methods used here are described in Turri et al. (2017) and briefly summarized below.

PSF Variability

Unlike classical adaptive optics (AO), multi-conjugate adaptive optics (MCAO) systems provide a relatively uniform, near-diffraction-limited correction over wider FOV. However, there is still variation in the point spread function (PSF) across the GeMS FOV, especially at the edge of the field where the MCAO correction starts to drop off. We can see this by comparing the center and edge of FOV as shown in the Figure 2. Considering this, we used a quadratically variable PSF model.

Figure 2: Portion of a chip at the center (top) and the edge (bottom) of field of view. We can se hat in the center, the PSF has a round shape while it is elongated at the edge of the chip

Photometry

Profile-fitting photometry was performed in sequential steps to obtain the best PSF model for each chip and steps to obtain the best PSF model for each chip and exposure. In the first step we allowed DAOPHOT to
select the PSF stars automatically which are used to model the PSF for the whole field. However, it didn't perform optimal photometry due to crowding of the field, so we selected 100 PSF stars manually from each chip that were better suited for modelling the PSF These PSF stars were selected on the criteria that they were not too faint (>2500 ADU) or too bright (< half of threshold ADU value used), weren't too close to bright or saturated stars and were distributed uniformly across the FOV (see fig. 3).

Figure 3. Selection of PSF stars in one chip.
In Figure 4, we show example images of chip \#3 for J and Ks band before and after the PSFs have been fitted and stars removed from the field. As expected, J band photometry has higher residual comparing to Ks due to

Figure 4: Top panels (left to right): J band image exposures of cer the PSF subtraction for one of show the same for Ks band.

Photometric calibratio

A standard photometric catalogue was matched with GeMS instrumental magnitude catalogues for each chip and exposure using daophot package to find star common in both catalogues. However, due to the crowding of the region and seeing limitation, groups of neighbouring stars that were resolved in GeMS FOV remained unresolved in the photometric catalogue. Therefore, multiple stars in GeMS catalogues were falsely detected as a single star in photometric catalogue. This can be seen as the spurious regio towards the fainter magnitude in the figure 6 . Thes false detection contaminated the final photometry and currently we are working to mitigate this issue.

Figure 5: Instrumental vs catalogue magnitude obtained for a single chip GeMS. Beyond the expected false detection- wan see a significan

Result and discussion

In the Figure 6, we present the photometric calibrated deepest NIR CMD in J-Ks band fitted with Dartmouth isochrone with parameters close standard values available from literature (Horta et al. 2020, Coppola et al. 2011). Despite errors due to photometric calibration, our CMD fits well with standard parameters and reaches deep enough to clearly show the main sequence knee (MSK) that is not seen before. Recent surveys of 4 globular clusters in NIR using the Hubble Space Telescope has revealed that MSK for all clusters split into multiple sequences due to different abundances of $\mathrm{Y}, \mathrm{C}, \mathrm{N}$ and O , and can be associated with corresponding MSPs observed earlier in UV-visible band. In the Figure 7 lower part of CMD in NIR (Fl10W, F160W) for NGC 6752 showing multiple sequences which is also known to harbor MSPs in earlier HST UV-VIS legacy survey.

Figure 6: Left panel: Deepest CMD in JKs band with Dartmouth isochrone fitted with following parameters: distance $=14.2 \mathrm{mag}$, age $=11.5 \mathrm{Gyr}$, $[\mathrm{Fe} / \mathrm{H}]$ $=-1.20, \mathrm{Y}=0.33$ and $[\alpha / \mathrm{Fe}]=0$. Inset zooms in on MSK.

From the same survey NGC 5904 is known to harbo MSPs and it is possible that its MSK (inset in fig. 6) bundances suggesting a more complex formation history.

Figure 7: CMD of NGC 6752 in HST F110W, F160W filters with Dartmouth isochrones overimposed with different helium abundance. In the left panel, we assume the same abundances of C, N and O . In the right panel multiple populations (figure adapted from Milone et al poplations (figure adapted from Milone et

Future work

Combining our data with exquisite HST photometry of M5 in visible band to study the lower main equence
Creating the first ground based internal proper motion map of member stars by combining two epochs of NGC 5904 observed with GeMS.

Acknowledgement

We express our gratitude to Peter Stetson for providing tandard photometric catalogue and support with the calibration process.

References

oppola G., et al., 2011, Monthly Notices of the Royal Astronomical Society,416, 1056
Horta D., et al. 2020, Monthly Notices of the Roya Astronomical Society
Milone A., et al., 2019, Monthly
ty, 484,4046
Piotto G., et al., 2015, The Astronomical Journal, 149 Turri P., McConnachie A., Stetson P., Fiorentino G., Andersen D., Bono G.,Massari D., Véran J.-P., 2017, The Astronomical Journal, 153, 199
Background image
ttps://www.nasa.gov/content/hubbles-messier-5

