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Introduction

- Ultraviolet Near Infrared Optical Northern Survey
(UNIONS) uses data from 3 key telescopes in
Hawaii: Pan-STARRS, Subaru, and the Canada-
France-Hawaii Telescope to answer big questions
In astrophysics.

- There are many Machine Learning (ML) efforts
underway to analyze the data but the models are
trained from scratch using supervised learning to
accomplish a specific task. However, the
performance of these models is limited by the
quantity and quality of labels (e.g. galaxy type).

- Self-Supervised Learning (SSL) is a promising
alternative to supervised learning where far fewer
labels are needed and this has shown great
potential when applied to data from a couple of
astronomy surveys.

Task

- Our group hopes to exploit advances in SSL to
create a model that generates meaningful lower
dimensional representations of astronomy
observations without the need for explicit labels.

- See Figure 1 for overview of methodology and
Figure 2 for example reconstructions.
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Figure 2: Example Pixel Reconstruction for 4 cutouts.
Key Takeaway: Model could be more expressive.

Can we train a machine learning model to
understand astronomy data without labels?
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Figure 3: Visualization of Learned Representations via t-distributed Stochastic Neighbor Embedding (t-SNE).
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Key Takeaway: There is semantically meaningful structure observed. Note these axes are meaningless.
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We don’t actually care
if this reconstruction is
bad, it's about what
can be learned in the
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Masked Autoencode (MAE) with Vision
Transformer (ViT) backbone
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Figure 1: Overview of Methodology to use Masked Autoencoder for Pre-Training.
Key Takeaway: The focus will be to use the representations for strong lens detection.

| want to focus on
implementing one
well but others can
build upon this
work
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- See Figure 3 for a visualization of learned
representations and Figure 4 for the use of these
representations for 4 semantic search examples.

Query Cutout Most to Least Similar Cutouts

Figure 4: Example Similarity Search Application.
Key Takeaway: Model is able to return similar sources.

Future Directions

- Scale: use much more data for pre-training and
downstream tasks.

- Lenses: use known strong lenses to find more.
- Tune: run experiments to optimize performance.

Summary

- SSL and astronomy can be a powerful duo.
- Initial results are promising but not perfect.

- If it works this model has the ability to make new
discoveries in UNIONS and reduce the number of
models that are trained from scratch.
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