SECONDARY ELECTRON DETECTION

CAMTEC Workshop Presentation

Haitian Xu June 14th 2010

Introduction

- SEM
 - Raster scan specimen surface with focused high energy ebeam
 - Signal produced by beam interaction with near-surface specimen atoms
 - Information on surface topography and chemical composition
 - Stereoscopic image and spectrum of specimen surface

Introduction

Primary signals

- Secondary electron (SE)
 - SEM micrograph, surface topography
- Backscattered electron (BSE)
 - SEM micrograph
 - Atomic number \rightarrow contrast
- Characteristic x-ray
 - Energy dispersive spectrometry

Introduction

- Features
 - Stereoscopic image of surface topography at nm resolution
 - Orders-of-magnitude greater depth of field than optical microscopy due to much smaller limiting aperture
 - Left to right: optical, SE, BSE of slightly warped metal chip
 - Blurring of optical image
 - SE: most visually interesting, rich surface details and shadow
 - BSE: flat contrast, ideal for accurate image analysis

- Electrons scatter via interactions with specimen atoms
- Nature of resulting electronic signal depends on nature of interaction and energy
- SE
 - Inelastic scattering of primary electrons eject free electron from K-orbital of specimen atom with small fraction of energy < 50 eV
 - Shallow escape depth (~2nm), information of specimen surface only
- BSE
 - Elastically and inelastically scattered primary electrons
 - > 50% primary electron energy

Secondary Electron

- Electron penetration studied using simulation
- Resolution depends on size of signal-producing region
- Secondary electron emitted from shallow escape depth \rightarrow

highest resolution

Yield

 Average number of secondary electrons produced per incident electron, 0.1-10

$$\delta = \frac{\overline{N}_{secondary}}{N_{primary}}$$

Strongly dependent on material, surface structure, angle of incidence, energy of incident electron (V_{acc})

- Yield
 - − Large at specimen edge due to edge effect →
 contrast at edge
 - Yield larger for inclined incidence as volume
 from which SE can escape is proportional to
 1/cosθ
 - SE yield sensitive to surface detail
 - Plot of yield against specimen angle relative to primary beam follows 1/cos curve

- Yield
 - SE detector usually located to one side of the beam column
 - Surface features tilted towards detector appear particularly bright
 - This fact can be used to distinguish between raised features and depressions
 - Characteristic three-dimensional appearance of the SE image with easy-to-interpret

- SE by BSE
 - Primary incident beam \rightarrow SE1, independent of V_{acc}
 - BSE as they leave the specimen \rightarrow SE2
 - BSE colliding with chamber or lens system \rightarrow SE3
 - SE2 and SE3 yield depends on V_{acc}

- Simplest scheme
 - Collect SE using positively-biased electrode
 - Amplify resulting current gives SE signal
 - Weak, low SNR
- Everhart-Thornley Detector
 - 1960¹, scintillator-photomultiplier system
 - Amplifies SE signal and improves SNR through electron → photon
 → photoelectron → SE conversion process

- Photomultiplier tube
 - Entrance coated with material of low work function, absorbs photons from scintillator and emits low-E photoelectrons (photocathode)
 - Photoelectrons accelerate towards dynodes at positive bias (~+100 V) with high yield coating
 - Accelerated photoelectrons generate SE at dynode, giving off excess electrons
 - SE repeatedly accelerated towards N successive dynodes biased at ~+100 V positive with respect to the last, producing more excess SE.
 - Scintillator signal amplified by $(\delta)^N$, typically 10^6
 - Total effective amplification of PM/scintillator combination typically 10⁸

- Functions as inefficient BSE detector
 - LoS only, wire-mesh cannot attract high-E BSE electrons moving in other directions
 - Bias Faraday cage at negative V and/or switch off scintillator bias to exclude SE detection
- Detects SE2 and SE3 which contain information on BSE

- SE are low energy surface electrons emitted as a result of inelastic scattering of primary incident electrons by specimen atoms
- SE yield is sensitive to surface detail, gives high-resolution stereoscopic image of specimen surface
- Detection of SE achieved in most commercial SEM by side-mounted Everhart-Thornley detector, a scintillator/photomultiplier construct which amplifies the SE signal through a series of photon-electron conversions/amplification to achieve high SNR

