Backscattered Electron Detection

By Mandira Das

•Secondary electrons only give fine topographical information of the surface.

•Backscattered electrons give compositional information of the sample.

Generation of Backscattered electron

•High energy electrons, after interacting with the atoms in the specimen, fly back into vacuum-

Backscattered Electrons.

types:
Elastically
Scattered—
No energy loss, large

scattering angle.

Backscattered

electrons are two

•Inelastically Scattered— Loss of energy, scattered at small

Principle of imaging:

 The fraction of backscattered electrons is dependent on

Atomic number of the atoms on the Sample surface.

 Different atomic number results in different 'Electron reflectivity', which is given by—

Number of Backscattered electrons

Number of incident electrons

- Higher Atomic Number=Higher reflectivity.
- Backscattered electron signal covers the contrast which reflects the specimen <u>composition</u>.

- Electron reflectivity also depends on the incident angle of electron beam.
- Reflectivity becomes larger as the specimen tilting rises. This signifies the <u>topographic information</u> of the specimen

- The resolution of the images is limited by the radius in which the backscattered electrons are produced.
- The radius of a hemispherical region from which backscattered electrons are produced is- Rese = 0.007 AE 01.67 (APR)

$$R_{BSE} \approx \frac{Z^{0.9} \rho}{Z^{0.9} \rho}$$

- A = atomic weight (gm/mol)
- $Z = \operatorname{atomic} \operatorname{number}$
- E =incident beam energy (keV)
- $\rho = \text{density}(\text{gm/cm}^3)$
- resolution is limited to the order of 2 x Radius, irrelevant of the diameter of the incident electron beam.

Backscattered electron detector

• The most popular kind of backscatter electron detector is the semiconductor detector.

•When a backscattered electron enter into the depletion region a pair of hole and electron is generated.

•This electron hole pair is then attracted by the reverse bias. Resulting in current flow.

Backscattered electron detector

 Addition and subtraction is allowed between the signals of all the annular detection elements.

Images

Fig: SE image of Ceramic

Fig: Signal added image (GMR)

Fig: BSE image of Ceramic

Fig: Signal subtracted image (GMR)

Application of BSE imaging:

- Medical (human bone biopsies)
- To examine the crystallographic orientation in photonic crystals.
- To examine geological and oceanographic elements......etc.

