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Abstract 

Despite huge investment in and political support for AI in healthcare, less than 10% of AI decision 

support tools are studied against a gold standard or outside the lab, so 91% have no impact on 

clinical practice [1]. Some do not even move beyond limited internal validation studies to check their 

accuracy on datasets from outside the development site. However, relying on the results of 

validation studies assumes that AI will be the decision taker but the reality is that AI is used to 

support humans taking decisions [2]. We also know that clinicians value evidence about the impact 

of the AI on user decisions more than validation study results [3, 4]. 

Most developers falsely assume that the only step beyond validating their model is a randomised 

controlled trial (RCT) of AI impact on real users and their decisions. While very useful, these raise 

many logistical and resource issues. For example, before an RCT is carried out an AI must be 

connected to the organisation’s EPR, which means matching up clinical codes and passing cyber 

security checks, an intricate and risk-prone process requiring high-level signoff [5]. Designing a 

decision support RCT means finding a methodologist familiar with specific biases such as the 

carryover, checklist and Hawthorne effects and automation bias [6]. Once a lengthy, expensive trial 

is complete, developers worry that the AI output might not have been sufficiently user-friendly to 

influence user decisions, so the results may be negative - even though a small tweak to advice 

wording might have made it positive. 

So, in addition to algorithm validation and field trials, AI developers need to be aware of a more 

affordable kind of evaluation study: the lab test of algorithm impact on simulated user decisions, a 

kind of “intervention modelling experiment” [7]. In this kind of study, users read a clinical vignette (a 

scenario which may include an image or lab data) then answer questions about it (eg. What is your 

diagnosis?) without the AI, then re-answer the questions with the AI’s output [8]. The AI output can 

even be presented in different formats to test the impact of alternative wording, presentation 

format, timing etc on user decisions. Developers do not even require a working AI algorithm for such 

a study, as the advice can be mocked up [8].  

These user impact studies need to be designed carefully but have several benefits: 

1. They are quick to set up and cheap to run 

2. They help the developer estimate the likely impact of the DSS on user decisions 

3. They can distinguish between effective and ineffective output formats 

4. They allow the investigator to capture qualitative views on the advice [eg. 8]  

5. They provide the data needed for an RCT sample size calculation.  

We will discuss some examples of this kind of study [8, 9], including lessons learned from setting 

them up and analysing the results. 



In conclusion, we believe that developers should make more use of this cost-effective study design 

to estimate the impact of their AI on simulated user decisions, before they make the jump to 

carrying out an RCT of actual impact in a real-world setting. These studies will make it much easier to 

develop AI algorithms with real world impact, and to identify those that are unlikely to succeed 

much earlier in the development pathway.  
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