<table>
<thead>
<tr>
<th>Sheet Number</th>
<th>Sheet Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>title sheet and drawing list</td>
</tr>
<tr>
<td>02</td>
<td>sign design/graphic design details</td>
</tr>
<tr>
<td>03</td>
<td>sign and graphic design</td>
</tr>
<tr>
<td>04</td>
<td>sign and graphic design, mounting details</td>
</tr>
<tr>
<td>05</td>
<td>general notes</td>
</tr>
</tbody>
</table>

Sign No. 13
Pedestrian - Minor Wayfinding B
core colours

- clear anodized coating
 - application: sign structure
- PANTONE 185 C
 - application:
 - pinstrip, arrows
- PANTONE 426 C
 - application: text,
 - crest - monochromatic
- PANTEONE 7541 C
 - application: background
- gary oak motif - digital file is to be delivered by University of Victoria

samples of typeface family

Myriad Pro Semi Bold

ABCDEFghijklmnopqrstuvwxyz
abcdefghijklmnopqrstuvwxyz

1234567890

University of Victoria Logo, horizontal standard

arrow style and arrow size in relation to text height

full colour

reverse monochromatic - shown against bacgroud for clarity

project: Campus Wayfinding	number: FM 09-8567
issue date: April 1, 2019	
sign: Sign No. 13 - Minor Wayfinding B	
sheet name: graphic design details	
scale: as noted	
sheet number: 02	

University of Victoria Logo
Description:
One sided sign. Digitally printed vinyl protected with anti-graffiti, optically clear overlamine. Vinyl and overlamine to lap over the sign edges.

Vinyl: 3M IJ180, MPI 2005 or equivalent
Overlamine: 3M 8914, Avery DOL 6060 or equivalent.

1) One piece vinyl to be printed on, installed as per manufacturer’s recommendations.
2) Use compatible UV inks and overlaminates as recommended by manufacturer.

Refer to Adobe Photoshop files for detailed sample layout.

Aluminum panel size:
600 mm x 350 mm x 6.4 mm

Aluminum panel size:
700 mm x 350 mm x 6.4 mm
Aluminum panel size:

- **Type 3 Sign Scale 1:5**
 - 600 mm x 350 mm x 6.4 mm

- **Type 4 Sign Scale 1:5**
 - 700 mm x 350 mm x 6.4 mm

Residence A

Residence B

Optional pictograms - coordinate with University of Victoria

Fastener typical location on sign

Scale 1:1

Typical mounting detail

Scale 1:1

Project: Campus Wayfinding

Sign: Sign No. 13 - Minor Wayfinding B

Sheet: Sheet 04

Issue Date: April 1, 2019
STRUCTURAL NOTES

DRAWINGS
1. These drawings show the completed project. The drawings do not show components that may be necessary for construction safety, which is the responsibility of the contractor.
2. The use of these drawings is limited to that indicated in the revisions column.
3. The information on these drawings shall not be used for any other project or works.

DESIGN
1. The structures shown have been designed in substantial accordance with the British Columbia Building Code 2006, which is based on the National Building Code of Canada 2005.
2. The following wind loads and factors were used: q50=0.63kPa, Iw=1.0-ULS, 0.75-SLS.

FIELD REVIEW BY STRUCTURAL ENGINEER
1. Structural Engineer provides field review only for the work shown on these structural drawings, and it is conducted with such frequency as Structural Engineer deems appropriate to ascertain that the work is in general conformance with the documents prepared by Structural Engineer.
2. Field review by Structural Engineer is not carried out for the Contractor’s benefit, nor does it make Structural Engineer guarantors of the Contractor’s work. It remains the Contractor’s responsibility to build the work in conformance with the contract documents. Structural Engineer shall not be responsible for the acts or omissions of the Contractor, Sub-Contractor, or any other persons performing any of the work or for the failure of any of them to carry out the work in accordance with the contract documents.
3. Provide 24 hours advance notice of each required field review. Field reviews shall be scheduled to be carried out during normal business hours unless special arrangements are made with Structural Engineer.
4. The work to be reviewed shall be generally complete.

CONCRETE AND REINFORCING STEEL
2. Reinforcing shall conform to CAN/CSA-G30.18R – Grade 400MPa.
3. Cover to reinforcing steel to be 50mm uno.
4. Portland cement shall be type gu unless noted otherwise.
5. Concrete shall have a compressive strength of 35MPa at 28 days, and conform to exposure class C-1 with a maximum water-cement ratio of 0.40 and air content of 5-8%. Maximum aggregate size to be 19mm.
6. No calcium chloride is permitted, in any form, in any concrete mix. Curing and protection of concrete for hot, cold or dry weather is to be as per clauses 7.4.1.8 and 7.4.2 of CAN/CSA.

STRUCTURAL ALUMINUM
1. Aluminum sections shall be new.
2. Aluminum alloys shall conform to the Aluminum Association publication Aluminum Standards and Data ISO 6361-2 or ISO 6362-2.
3. Extruded shapes, Tubes, Bolts, and Plate to be 6061 alloy uno.
4. Aluminum in contact with concrete or grout shall be given a heavy coat of alkali-resistant bituminous paint or other equivalent coating before installation.
5. Welding operators and procedures shall be qualified according to CSA W47.2.
6. Submit shop drawings for review prior to start of steel fabrication.
7. Fabrication practices and tolerances shall be in accordance with CAN/CSA-S16, except bolt holed edge distance tolerance to be -0, +2mm.
8. Anchor and connection bolts to be ASTM A193 Stainless Steel. Anchors shall be embedded 300mm into concrete, complete with a nut and washer each end.
9. Unless noted otherwise, column base plates shall be 20 mm minimum thick. Anchor bolt holes shall be punched undersize and reamed to size.
10. Provide 6 mm cap plates for all tube members uno.
11. Aluminum shall be connected with fillet welds all-around uno. Weld size shall match the wall thickness of the thinnest part being connected uno. Welds to be ground smooth.

TAMPER RESISTANCE AND CONNECTIONS
1. Connection hardware to be stainless steel uno.
2. Aluminum panels to be connected to structure with 6.4mm diameter stainless steel self-tapping screws at 450mm maximum centre to centre spacing.
3. Non-removable panels may be welded or glued by the manufacturer, as approved by Structural Engineer.
4. Panel connection screws to be tamper resistant “Torx-Pin” screws as supplied by O.E.M. Hardware of Surrey BC, or equivalent as approved by Structural Engineer.
5. Visible connection bolts shall be “Pentagon” tamper resistant bolts, with “Pentagon” nuts as supplied by O.E.M. Hardware of Surrey BC, or equivalent as approved by Structural Engineer.
6. Anchor bolts to be secured with “Pentagon” security nuts.