Sign No. 10

Pedestrian - Intermediate Directional

Sheet List

<table>
<thead>
<tr>
<th>Sheet Number</th>
<th>Sheet Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>title sheet and drawing list</td>
</tr>
<tr>
<td>02</td>
<td>typography, colours and pictograms</td>
</tr>
<tr>
<td>03</td>
<td>sign design - overview</td>
</tr>
<tr>
<td>04</td>
<td>graphic design details</td>
</tr>
<tr>
<td>05</td>
<td>sign construction - sections</td>
</tr>
<tr>
<td>06</td>
<td>sign construction - details</td>
</tr>
<tr>
<td>07</td>
<td>general notes - structural</td>
</tr>
</tbody>
</table>

Project: Campus Wayfinding
Number: FM 09-8567
Issue date: April 1, 2019

Sign No. 10 - Intermediate Directional
Title sheet and drawing list

As noted

University of Victoria
core colours

- clear anodized coating
- PANTONE 185 C - pinstrip, arrows
- PANTONE 426 C - text
- PANTONE 7541 C - background
- gary oak motif - digital file to be delivered by University of Victoria

samples of typeface family

Myriad Pro Semi Bold

ABCDEFghijklmnopqrstuvwxyz

abcdefghijklmnopqrstuvwxyz

1234567890

University of Victoria Logo, horizontal standard

full colour

reverse monochromatic - shown against background for clarity

project: Campus Wayfinding
number: FM 09-8567
issue date: April 1, 2019
sign: Sign No. 10 - Intermediate Directional typography, colours and pictograms as noted
sheet name: as noted
scale: as noted
sheet number: 02
Description
Digitally printed vinyl protected with anti-graffiti, optically clear overlaminate
Front/Back aluminum panel size (one piece): 960 mm x 1250 mm x 6.4 mm
Top Aluminum panel size (one piece): 194 mm x 960 mm x 3.2 mm
Side aluminum panel size (one piece): 194 mm x 1243.6 mm x 3.2 mm
See sheet 05 for details.

Vinyl:
3M IJ180, MPI 2005 or equivalent
Overlaminate:
3M 8914, Avery DOL 6060 or equivalent.

1) One piece vinyl to be printed on, installed as per manufacturer’s recommendations.
2) Use compatible UV inks and overlaminates as recommended by manufacturer
3) Wrap vinyl and overlaminate over the edges of the aluminum panels.

Refer to Adobe Photoshop files for detailed sample layout.
6.4mm alu. plate (sign panel) mechanically fastened to internal framing

853mm x 204mm x 12.5 mm aluminum plate

12.5 mm s/s anchor bolts with leveling nut (typ)

2 - 10M cont.
sign panels to extend 5 mm below framing
10M @ 250mm o.c.
5-15M @ 200mm o.c.
2-15M cont.

204mm x 853mm x 12mm aluminum plate

640mm x 254mm x 12mm aluminum plate

2 x 51mm x 102mm x 4.8mm aluminum rectangular tubes (interior framing)
- all connections to be welded

fill with 35 MPa non-shrink grout (typ)

6.4mm aluminum plate on front and back
3.2mm aluminum plate on sides and top plates mechanically fastened to internal framing with s/s tamper resistant screws as required.

General Note:
Manufacturer to verify all dimensions prior to sign fabrication. All discrepancies should be reported to the Architect.

Cross section scale 1:15
Long section scale 1:15
Plan section a scale 1:15
s/s self tapping, tamper resistant screws - as required (typ)

6.4mm thick aluminum (sign panel) typical on front and back

ensure watertight connection.

51mm x 102mm x 4.8mm aluminum rectangular tubes

51mm x 51mm x 4.8mm aluminum square tube beyond (sign framing)

3.2 mm thick aluminum plate on sides and top (typ)

General Note:
Manufacturer to verify all dimensions prior to sign fabrication. All discrepancies should be reported to the Architect.

section detail 1 scale 1:2

plan detail 2 scale 1:2
GENERAL NOTES
1. Provide self adhesive sign ID stickers. ID's should correspond with ID's shown on location plan.
Form and placement of stickers on signs is to be coordinated with University of Victoria.
2. Fasteners:
 - foundation (anchor bolts):
 - bolts: Fastenal part #47406 (1/2" s/s threaded rod)
 - washers: Fastenal part #70112 (1/2" s/s washers)
 - nuts: Fastenal part #707714 (1/2" s/s nuts)
 - security screws panel attachment: Fastenal part #BS0160024SSH200 (10-24 x 3/4" button head security screw)
3. Threadlocker: Locktite 271 Red
4. Whenever anchor bolts are cut, contractor to ensure cut surfaces (terminated coating) are protected against rusting.
5. Manufacturer to verify all diemnsions prior to sign fabrication. All discrepancies should be reported to the Architect.

STRUCTURAL NOTES
DRAWINGS
1. These drawings show the completed project. The drawings do not show components that may be necessary for construction safety, which is the responsibility of the contractor.
2. The use of these drawings is limited to that indicated in the revisions column.
3. The information on these drawings shall not be used for any other project or works.

DESIGN
1. The structures shown have been designed in substantial accordance with the British Columbia Building Code 2006, which is based on the National Building Code of Canada 2005.
2. The following wind loads and factors were used: q50=0.63kPa, Iw=1.0-ULS, 0.75-SLS.

FIELD REVIEW BY STRUCTURAL ENGINEER
1. Structural Engineer provides field review only for the work shown on these structural drawings, and it is conducted with such frequency as Structural Engineer deems appropriate to ascertain that the work is in general conformance with the documents prepared by Structural Engineer.

CONCRETE AND REINFORCING STEEL
2. Reinforcing shall conform to CAN/CSA-G30.18R – Grade 400MPa.
3. Cover to reinforcing steel to be 50mm uno.
4. Portland cement shall be type gu unless noted otherwise.
5. Concrete shall have a unit weight of 23±1 kn/m3/ (145±5 pcf) unless noted otherwise.
6. No calcium chloride is permitted, in any form, in any concrete mix. Curing and protection of concrete for hot, cold or dry weather is to be as per clauses 7.4.1.8 and 7.4.2 of CAN/CSA.

STRUCTURAL ALUMINUM
1. Aluminum sections shall be new.
2. Aluminum alloys shall conform to the Aluminum Association publication Aluminum Standards and Data ISO 6361-2 or ISO 6362-2.
3. Extruded shapes, Tubes, Bolts, and Plate to be 6061 alloy uno.
4. Aluminum in contact with concrete or grout shall be given a heavy coat of alkali-resistant bituminous paint or other equivalent coating before installation.
5. Welding operators and procedures shall be qualified according to CSA W47.2.
6. Submit shop drawings for review prior to start of steel fabrication.
7. Fabrication practices and tolerances shall be in accordance with CAN/CSA-S16, except bolt hole edge distance tolerance to be -0, +2mm.
8. Anchor and connection bolts to be ASTM A193 Stainless Steel. Anchors shall be embedded 300mm into concrete, complete with a nut and washer each end.
9. Unless noted otherwise, column base plates shall be 20 mm minimum thick. Anchor bolt holes shall be punched undersize and reamed to size.
10. Provide 6 mm cap plates for all tube members uno. Weld size shall match the wall thickness of the thinnest part being connected uno. Welds to be ground smooth.
11. Aluminum shall be connected with fillet welds all-around uno. Weld size to be carried out during normal business hours unless special arrangements are made with Structural Engineer.

TAMPER RESISTANCE AND CONNECTIONS
1. Connection hardware to be stainless steel uno.
2. Aluminum panels to be connected to structure with 6.4mm diameter stainless steel self-tapping screws at 450mm maximum centre to centre spacing.
3. Non-removable panels may be welded or glued by the manufacturer, as approved by Structural Engineer.
4. Panel connection screws to be tamper resistant “Torx-Pin” screws as supplied by O.E.M. Hardware of Surrey BC, or equivalent as approved by Structural Engineer.
5. Visible connection bolts shall be “Pentagon” tamper resistant bolts, with “Pentagon” nuts as supplied by O.E.M. Hardware of Surrey BC, or equivalent as approved by Structural Engineer.
6. Anchor bolts to be secured with “Pentagon” security nuts.