Physics 321b: Classical Mechanics II

Instructor: Stefan Janiszewski

Office: Elliot 203

Office Hours: Monday 12-1 and Friday 1-2 Email: stefan.janiszewski@gmail.com

Recommended Texts:

-I will follow <u>Classical Dynamics by Thorton and Marion (5th Ed.)</u> which can be found cheaply online (although slow shipping) and a couple are available in the bookstore.

-The dense but thorough classic <u>Mechanics Vol 1 by Landau and Lifshitz</u> can be found for free online.

Lecture: Lectures are Tuesday and Friday 2:30-3:50 in Elliot 160. Every other week may involve a problem session instead of traditional lecture.

Homework: Homework assignments will be a LARGE part of the total grade. They will be due weekly at the beginning of class on **Tuesday**. Late assignments will be penalized at my discretion. Computer tools (Mathematica etc) can be used, but are NOT a substitute for explanation. Homeworks will be graded by TA Marla Cervantes and score specific questions should be directed to her, marla@uvic.ca.

Labs: Labs are a required component of this course.

Midterm: The midterm exam is tentatively scheduled for Tuesday **February 16th**. A practice session will be held the lecture before.

Final: The final exam is scheduled to for **TBD**. Note that on all exams only the Sharp EL-510R calculator, available from the bookstore, can be used.

Grades: The course grade will be determined from the following components, following option 1 or 2, which ever gives the higher score.

- 1: a) The Labs will count **15%**.
 - b) The Midterm will count 15%.
 - c) The Homeworks will count 30%.
 - d) The Final will count 40%.
- Or 2: a) The Labs will count 15%.
 - b) The Midterm will count 15%.
 - c) The Final will count 30%.
 - d) The homework will count 40%.

Tentative schedule. Details will be added as time goes on, but the following topics will likely be covered.

- Intro: Functionals and extremization (~1 week). An intro to the machinery of advanced mechanics, along with motivation for departure from Newton's Laws formalism.
- Lagrange mechanics (~2 weeks). Generalized coordinates and configuration space.
 The Lagrangian and action. Hamilton's principle. Euler-Lagrange equations.
 Conservation laws. Application.
- **3.** Hamilton dynamics (~2 weeks). Legendre transformations, Hamilton function, and Hamilton's equations of motion. Canonical transformations. Poisson brackets. Maupertuis principle. Hamilton-Jacoby equation.
- **4. Rigid body motion (~1 week).** Main concepts of solid bodies. Euler's angles and Euler's equations.
- **5.** Particles in electromagnetic and gravitational fields (~2 weeks). Action for a relativistic particle. The vector potential of electromagnetism. Equations of motions and simple solutions. Backreaction of radiation. Small perturbations of Keplerian orbits.
- **6.** Adiabatic processes (~1 week). Adiabatic invariants. Action-angle variables. Liouville's theorem. Boltzmann equation.
- 7. Fields (~1 week). Lagrangian of scalar and vector fields. Derivation of Maxwell's equations. Least action for light.