

Physics 535 Syllabus

Instructors: Ingrid Spadinger, PhD, FCCPM Tel: 604-877-6000 ext 672027 e-mail: ispading@bccancer.bc.ca Alanah Bergman, PhD, FCCPM Tel: 604-877-6000 ext 672781 e-mail: abergman@bccancer.bc.ca Tony Popescu, PhD, FCCPMTel: 604-877-6000 ext 672046 e-mail: tpopescu@bccancer.bc.ca Richard Lee, PhD, FCCPM Tel: 604-877-6000 ext 672294 e-mail: rilee@bccancer.bc.ca

UVic Liaison:	TBA	e-mail:	
TA:	ТВА	e-mail:	

Required text: none

References:

- 1. AAPM TG-71: Monitor unit calculations for external photon and electron beams. (AAPM Report # 258)
- 2. AAPM TG-114: Verification of monitor unit calculations for non-IMRT clinical radiotherapy. (AAPM Report # 114)
- 3. AAPM TG-70: Recommendations for clinical electron beam dosimetry (AAPM Report # 99)
- 4. AAPM TG-43 Update: A revised AAPM protocol for brachytherapy dose calculations (AAPM Report #84)
- 5. AAPM HEBD Working Group: Dose Calculation for Photon-Emitting Brachytherapy Sources with Average Energy Higher than 50 keV. (AAPM Report #229)

These and additional related reports may be found at: <u>https://www.aapm.org/pubs/reports/</u>

- 6. The Physics of Radiation Therapy, 3rd or 4th Edition, Faiz M. Khan, Lippincott, Williams and Wilkins, 2003 or 2009
- 7. Handbook of Radiotherapy Physics: Theory and Practice. Philip Mayles, Alan Nahum, Jean-Claude Rosenwald, eds. Taylor and Francis, 2007.
- The Physics of Radiology, 4th Edition, Harold E. Johns and John R. Cunningham, Charles C Thomas Publishers, 1983

Evaluation:

Assignments - 70% Final Exam- 30%

Physics 535 Course Outline

- 1. Introduction to radiation therapy treatment planning and delivery
 - the radiation therapy process: treatment planning and delivery
 - patient immobilization and set-up techniques
 - patient data acquisition
 - definition of target and organs at risk
 - verification of target localization and dose delivered
- 2. External beam photon and electron dose calculations
 - properties of therapeutic photon and electron beams
 - beam data: acquisition and format for patient dose calculations
 - single beam dose calculations in a flat, homogeneous medium
 - dose calculations on the central beam axis
 - off-axis dose calculations
 - dose calculation in the presence of irregular surfaces, oblique incidence, and inhomogeneities
 - correction-based methods
 - model-based algorithms
 - Monte Carlo and Grid-based Boltzmann solver methods
- 3. Single and multiple beam treatment planning
 - multiple beam arrangements and their application
 - coplanar and noncoplanar intersecting beams
 - adjacent beams
 - beam weighting in patient dose calculations
 - beam modification
 - aperture shaping
 - intensity or fluence modulation
 - surface modification: bolus
 - optimization of beam parameters
 - forward planning
 - inverse planning
- 4. Brachytherapy
 - techniques: surface, intracavitary, interstitial
 - radioactive sources and delivery apparatus
 - dose rate
 - dose calculations
 - fundamentals of treatment planning
- 5. Special techniques
 - proton beam therapy
 - moving beam therapy (photon and electron arcs, linear scanning)
 - total body photon and electron irradiation
 - stereotactic radiotherapy / surgery (linac, cyberknife, gamma knife)
 - tomotherapy
 - motion management: gating, coaching, and breath hold techniques
- 6. Clinical application of imaging technologies in radiation therapy
 - CT and conventional simulation
 - MRI, PET, and ultrasound imaging in treatment planning and delivery
 - image fusion, registration, and deformation
 - 4D CT
 - kV and MV portal imaging
 - kV and MV cone beam CT
- 7. Radiation therapy errors: lessons to be learned