Location: VIC rm 1605 (Physics Conference Room)

Tues / Thurs 1:30 - 2:45 pm

Course Instructors:				
Andrew Jirasek (course coordinator)	СТ	CSI (BCCA)	jirasek@uvic.ca	250 721 7704
Joseph Yang	MRI	CSI (BCCA)	JYang4-02@bccancer.bc.ca	250 712 3918
Isabelle Gagne	Nuc Med	VIC (BCCA)	imgagne@bccancer.bc.ca	250 519 5500 x693783
Tony Mestrovic	Ultrasound	VIC (BCCA)	amestrovic@bccancer.bc.ca	250 519 5634
Derek Wells	Radiography	VIC (BCCA)	dwells@bccancer.bc.ca	250 519 5629

Week	Date	Instructor	Assign/Lab		Lecture number, Title		Details
week 1	Sept 5	AJ	A1 out		1	Intro	Handouts, assign reading
week 2	Sept 10	AJ			2	Discussion session	X-ray CT
		AJ			3	Laboratory 1	X-ray CT
week 3	 	AJ			4	Discussion session	X-ray CT
		AJ	A2 out	A1 due	5	Laboratory 1	X-ray CT
week 4		DW				Discussion session	Radiography
		DW		Lab1 due	7	Discussion session	Radiography
week 5	Oct 1	DW				Discussion session	Radiography
	Oct 3	DW				Discussion session	Radiography
week 6	Oct 8	DW				Laboratory 2	Radiography
	Oct 10	DW	A3 out	A2 due	11	Laboratory 2	Radiography
week 7	Oct 15	TM			12	Discussion session	Ultrasound
	Oct 17	TM		Lab 2 due	13	Discussion session	Ultrasound
week 8	Oct 22	TM			14	Laboratory 3	Ultrasound
	Oct 24	ТМ	A4 out	A3 due	15	Laboratory 3	Ultrasound
week 9	Oct 29	IG			16	Discussion session	Nuclear Medicine
	Oct 31	IG		Lab 3 due	17	Discussion session	Nuclear Medicine
week 10	Nov 5	IG			18	Discussion session	Nuclear Medicine
	Nov 7	IG			19	Discussion session	Nuclear Medicine
week 11	Nov 14					Reading Break	
	Nov 19	JY	A5 out	A4 due	20	Discussion session	MRI
week 12	Nov 21	JY			21	Discussion session	MRI
	Nov 26	JY			22	Discussion session	MRI
week 13	Nov 28	JY			23	Discussion session	MRI

Dec 3	A5, report due	24 Student presentations
Week 14 Dec 5		25 Student presentations

Marking Scheme

Participation	25%	in class
Assignments	25%	5% x 5 assignments
Laboratory	30%	10% x 3 labs
Project	20%	1 report (10%) + talk (10%)

Participation

The "in-class" component of the course is organized as a discussion session. Each week prior to the discussion session you will be assigned relevant reading material for that days discussion. As well, you will be given "sample questions" that may be asked of you in the discussion session. You will be responsible for all the assigned reading. During each session you will be called on to answer questions / explain concepts / draw diagrams of equipment etc from the assigned sections for that given week. The questions asked by the instructors will form the "seeds" for the discussion sessions.

Marking for the discussion session component will be undertaken by the instructor leading the discussion session and will be based on your level of preparation for each session, comprehension of material, and initiative in the session.

Assignments

1 assignment in each of the main sections (radiography, CT, MRI, ultrasound, nuclear medicine). Each assignment is worth 5% of the total mark.

Labs

3 labs to be completed (radiography, CT, ultrasound). Lab time is scheduled during course hours. Data for each lab will be collected in groups. The analysis and lab write-up is to be performed individually. Lab write-ups should be no more than 5 pages (adhere to length restrictions!) and should consist of the following components:

- I. abstract: brief summary of the experiment. State relevant results.
- II. Introduction: state brief background to the experiment. May state relevant theory here. State objective of experiment.
- III. Theory: if not stated in (II), state theory required to perform experiment. This should be concise, yet cover what is needed.
- IV. Materials and Methods: state equipment used, how it was set-up, and methods used in experiment. Others reading the report should be able to reproduce your experiment and results based on the materials and methods described in this section.
- V. Results: state main results of experiment. Include tables, plots etc.
- VI. Discussion: summarize (synthesize) main results. Do they make sense? Answer any questions posed in lab hand-out material.
- VII. Conclusions: Summarize experiment and main results.
- VIII. References: include any references other than lab hand-outs.

Project + talk

A list of topics for the project is provided. You can choose a topic from the list, or come up with your own topic. However, the topic must concentrate on an "emerging technique / technology" in medical imaging, i.e. it can not be a review of basic modalities. Let one of the instructors know your choice of topic before you start your research. The report is to be an "abstract" of 3 pages in length (not more!!) summarizing the scope of your talk. Talks are 1/2 hr in length and are to be held in the last week of class.

Your abstract and talk should be based on research presented in recent published papers on your chosen topic. Your abstract should include references to the papers that your work is based on.

Project Topics:

- 1. Real-time tracking of diaphragm motion using on-board imaging.
- 2. Computer aided diagnosis and detection (CAD) systems for mammography.
- 3. Cone beam CT.
- 4. Deformable fusion of MR and CT images
- 5. Targeted contrast enhanced ultrasound for diagnostic imaging.
- 6. Ultrasound for image guided radiation therapy.
- 7. Beyond FDG, novel PET tracers for cancer imaging.