

Physics 535 Syllabus

Instructors:	Ingrid Spadinger, Ph	D, FCCPM	Tel: 604-877-6000	ext 672027
	e-mail: ispading@bccancer.bc.ca			
	Alanah Bergman, Ph	D, FCCPM	Tel: 604-877-6000	ext 672781
	e-mail: <u>abergman@bccancer.bc.ca</u>			
	Tony Popescu, PhD,	FCCPMTel	: 604-877-6000 ext	672046
		e-mail: tpop	escu@bccancer.bc.	<u>ca</u>
UVic Liaison:	Tony Mestrovic	e-mail:	AMestrovic@bccand	<u>cer.bc.ca</u>
TA:	Haley Clark	e-mail: Hale	ey.Clark@bccancer.l	bc.ca

Required text: none

References:

- 1. The Physics of Radiation Therapy, 3rd or 4th Edition, Faiz M. Khan, Lippincott, Williams and Wilkins, 2003 or 2009
- 2. The Physics of Radiology, 4th Edition, Harold E. Johns and John R. Cunningham, Charles C Thomas Publishers, 1983
- 3. Handbook of Radiotherapy Physics: Theory and Practice. Philip Mayles, Alan Nahum, Jean-Claude Rosenwald, eds. Taylor and Francis, 2007.

Outline

- 1. Introduction to Radiation Therapy Treatment Planning and Delivery
 - the radiation therapy process: treatment planning and delivery
 - patient immobilization and set-up techniques
 - patient data acquisition methods
 - definition of target and organs at risk
- 2. Photon Beam Treatment Planning: Principles and Methodology
 - properties of therapeutic photon beams
 - dosimetric functions and single beam, central axis point dose calculations
 - multiple beam treatment planning; field matching
 - off-axis, missing tissue, and inhomogeneity corrections
- 3. Electron Beam Treatment Planning: Principles and Methodology
 - properties of therapeutic electron beams
 - point dose calculations
 - shielding, bolus, oblique incidence, and inhomogeneities
- 4. Computerized External Beam Treatment Planning
 - calculation algorithms
 - plan optimization
- 5. Brachytherapy
 - apparatus, radioactive sources, delivery techniques
 - dose calculation
 - fundamentals of treatment planning

6. Special Techniques

- proton beam therapy
- moving beam therapy (photon and electron arcs and scanning beams)
- total body photon and electron irradiation
- stereotactic radiotherapy / surgery (linac, cyberknife, gamma Knife)
- tomotherapy
- intensity modulated radiation therapy: optimization, fixed field delivery, arc delivery
- motion management: gating, coaching, and breath hold techniques
- 7. Clinical Application of Imaging Technologies in Radiation Therapy
 - CT and conventional simulation
 - MRI, PET, and ultrasound imaging in treatment planning and delivery
 - image fusion, registration, and deformation
 - 4D CT
 - kV and MV portal imaging
 - kV and MV cone beam CT
- 8. Radiation Therapy Errors and Radiation Accidents

EVALUATION:

Assignments - 70%

Final Exam- 30%