TABLE 1 PHYSICS 102 SYLLABUS FOR THE FALL TERM, 2013-2014 | Approx Cha
hours
+5 hrs | | apter Topics Covered (Text: College Physics, R. A. Serway 7 th , 8 th or 9 th edition) | Sections or Pages of Text Omitted 8 th ed. 9 th . | | |-------------------------------|----|---|---|-----------------------| | 1 | 1 | INTRODUCTION . Standards of length, time and mass, dimensions of physical quantities, significant figures, cooordinate systems. | - | - | | 4 | 2 | MOTION IN ONE DIMENSION. Displacement, velocity, acceleration, motion with constant acceleration, free fall. | - | - | | 4 | 3 | VECTORS AND TWO-DIMENSIONAL MOTION. Vectors and scalars, properties/components of a vector, projectile motion. | 3.5 | 3.5 | | 4 | 4 | THE LAWS OF MOTION . Force, Newton's laws of motion, mass and weight, applications of Newton's laws, friction. | - | - | | 3.5 | 5 | WORK AND ENERGY . Work, kinetic and potential energy, conservative and non-conservative forces, workenergy theorem, conservation of energy, power. | - | - | | 3 | 6 | MOMENTUM AND COLLISIONS. Linear momentum and impulse, conservation of momentum, elastic (definition only) and inelastic collisions, glancing collisions. | 6.5
173 | 6.5
179-180 | | 3.5 | 7 | CIRCULAR MOTION AND THE LAW OF
GRAVITY. Angular velocity, centripetal acceleration
and force, Newton's law of gravitation. (Omit rotational
motion under constant angular acceleration, consequences
of Newton' law, Kepler's Laws) | 7.2
211-215 | 7.2
217-221 | | 3 | 8 | ROTATIONAL EQUILIBRIUM AND ROTATIONAL DYNAMICS. Torque and the second condition of equilibrium, center of gravity, examples of objects in equilibrium. (Omit Newton's laws for rotation, rotational kinetic energy, angular momentum.) | 8.5-8.7 | 8.5-8.7 | | 3 | 9 | SOLIDS AND FLUIDS . States of matter, elastic properties of solids, density and pressure, variation of pressure with depth, buoyant force and Archimedes' principle, fluids in motion, surface tension, capillarity (last 2 topics on pages 1021-26 in the 4 th edition). | 304-306
9.10 | 312-315
9.10 | | 1 | 10 | THERMAL PHYSICS . Thermometer and temperature scales, expansion of solids and liquids. (omit zeroth law, ideal gas, kinetic theory of gases.) | 10.1
10.4-
10.5 | 10.1
10.4-
10.5 | | 3 | 11 | HEAT . Mechanical equivalent of heat, specific heat, calorimetry, latent heat, conduction, convection, and radiation (qualitative only). (Omit hindering heat transfer and applications.) | 11.6 | 11.6 |