Nanomechanical Response of Bacteria to Antimicrobials: A Pressing Issue

John R. Dutcher Department of Physics University of Guelph

- bacteria basics
 - bacterial cell envelope
- viscoelastic properties of bacterial cells
 - AFM-based creep deformation measurement
 - simple mechanical model
 - comparison of different types of cells
 - effect of cationic antimicrobial compounds
 - "before & after" plus time-resolved measurements
- summary & conclusions

PSI BIOLOGICAL PHYSICS PROJECTS

- bacterial biophysics
 - Min protein oscillations & patterns
 - viscoelasticity of bacteria & biofilms
 - twitching motility

- biopolymers at surfaces & membranes
 - single molecule pulling of proteins on nano-curved surfaces
 - single molecule imaging of peptides in lipids
 - field driven changes in conformation & orientation
- enzymatic degradation of cellulose
 - imaging & kinetics of adsorption & degradation
- polysaccharide nanoparticles
 - cool science & startup company

BACTERIA

many different types & shapes of bacteria in nature

BACTERIAL CELL ENVELOPE

- bacterial cell envelope is boundary with external environment
 - lipid membranes, peptidoglycan,

lipoproteins, lipopolysaccharides, etc.

 cell wall must support turgor pressure, while allowing growth & transport of biomolecules

MECHANICAL MEASUREMENTS OF BACTERIA

first studies of cells

- changes with pH & ionic strength
- embedding & stretching in gel strips
- rupture of cells between
 flat plate and optical fiber
- filamentous cells
 viscoelastic fibers
- cell wall components
 - peptidoglycan sacculus
 elastic modulus

[Thwaites & Mendelson, PNAS (1985)]

[[]Yao et al., J. Bacteriol. (1999)]

[Vadillo-Rodriguez & Dutcher, Soft Matter (2011)]

PREPARATION OF BACTERIA FOR AFM

- growth of bacterial cells
 - cultured at 37°C in TSB or LB to late-exponential phase
 - harvested by centrifugation @ 1,150 × g
 - washed twice & re-suspended in deionized water
 - different types of cells
 - Gram negative: P. aeruginosa PAO1, E. coli (WT, Ipp)
 - Gram positive: *B. subtilis* 168
- for AFM, bacterial cells must be adhered to a surface
 - use "biological glue"
 - thin, positively-charged polymer layer since cells have negative charge
 - -poly-L-lysine, polyethyleneimine, mussel adhesive protein

IMAGING AT DIFFERENT FORCES

cells are deformable!

P. aeruginosa PAO1

FORCE-INDENTATION CURVES

P. aeruginosa PAO1

[Vadillo-Rodriguez et al., J. Bacteriol. (2008)]

• AFM tip pressing on bacterial cell

• AFM tip pressing on bacterial cell

• AFM tip pressing on bacterial cell

AFM tip pressing on bacterial cell

ANALYSIS OF NANOCREEP EXPERIMENT

[Vadillo-Rodriguez et al., J. Bacteriol. (2008)]

CREEP DEFORMATION CURVES

- check that drift in system is close to zero
- compare results for PT vs CT
- compare untreated cell vs glutaraldehyde-treated cell
 - factor of 2.8 increase in k_1 , factor of 2.2 decrease in τ

CREEP IS A ROBUST PHYSICAL MEASUREMENT

- perform measurement multiple times on many different cells
 - cells measured at same point in life cycle, at centre of cell

	Untreated cells		Gluttreated cells
	PT	СТ	PT
<i>k</i> ₁ (N/m)	0.03 ± 0.01	0.044 ± 0.002	0.11 ± 0.03
au (S)	1.7 ± 0.2	1.8 ± 0.2	0.8 ± 0.3

very well-defined and reproducible physical measurement

DIFFERENT TYPES OF CELLS

- compare Gram negative E. coli WT with Gram positive B. subtilis
 - factor of 2.2 increase in k_1 , factor of 1.2 decrease in τ
- compare *E. coli* WT with *E. coli* mutant *lpp* (lipoprotein deficient)
 - factor of 1.7 decrease in k_1 , factor of 2.4 increase in τ

[Vadillo-Rodriguez et al., J. Bacteriol. (2009)]

DYNAMIC VISCOELASTICITY

- force-indentation curves
 - vary loading rate for rates comparable to $1/\!\tau$
- determine elastic modulus E_1 at different loading rates
- compare measured & calculated E_1 values

E. coli K12

[Vadillo-Rodriguez & Dutcher, Soft Matter (2009)]

DYNAMIC VISCOELASTICITY

- hysteresis in approach & retraction curves
- determine dissipated energy W_2 at different loading rates
- compare measured & calculated W_2 values

BACTERIAL BIOFILMS

- viscoelastic properties of bacterial biofilms
 - compare WT P. aeruginosa PAO1 and isogenic LPS mutants
 - coat bead on AFM cantilever with bacterial cells
 - press on clean glass surface & biofilms
 - force-distance curves biffness, adhesion, cohesion
 - creep deformation curves by viscoelasticity

O-antigen

[Lau et al., Biophys. J. (2009); Lau et al., J. Bacteriol. (2009)]

BACTERIAL BIOFILMS

viscoelastic properties of bacterial biofilms

- compare WT P. aeruginosa PAO1 and isogenic LPS mutants

migA, wapR & rmIC, and correlate with confocal microscopy

changes in LPS	mechanical changes		structural changes
expression	to cells	_/	to biofilms

- differences between early-stage & late-stage biofilms
 - stiffness & adhesion decrease as biofilm ages
- differences between different mutants
 - wapR biofilms have smaller stiffness & much larger adhesion & cohesion than WT

[Lau et al., Biophys. J. (2009); Lau et al., J. Bacteriol. (2009)]

ANTIMICROBIAL ACTIVITY

- use creep experiment to evaluate antimicrobial action
 - polymyxin B (PMB) and polymyxin B nonapeptide (PMBN)
 - polymyxins are currently "last hope" antibiotics
 - PMB & PMBN bind to lipopolysaccharide in outer membrane (OM) & change permeability
 - PMB makes it to cytoplasmic membrane

AFM IMAGING OF EFFECT OF PMB & PMBN

before PMB, 1 nm rms roughness

11 min after 50 μg/mL PMB, 8 nm rms roughness

before PMBN, 1 nm rms roughness

16 min after 50 μg/mL PMBN, 5 nm rms roughness

imaged in liquid

[Lu et al., Soft Matter (2014)]

EFFECT OF PMB ON CELL HEIGHT

small, rapid decrease in cell height

P. aeruginosa PAO1 50 μg/mL PMB

[Lu et al., Soft Matter (2014)]

VISCOELASTIC MODELS

exposure to PMB & PMBN requires use of four element model

[Lu et al., Soft Matter (2014)]

BEFORE & AFTER PMB EXPOSURE

• viscoelastic parameters before & after 1 h exposure to PMB

- *P. aeruginosa* PAO1 50 μg/mL PMB
- 1/η₁ provides distinctive signature for loss of integrity
- slight increase
 in k₁
- large decreases in k_2 , η_2

) [Lu et al., Soft Matter (2014)]

BEFORE & AFTER PMBN EXPOSURE

viscoelastic parameters before & after 1 h exposure to PMBN

- P. aeruginosa PAO1 50 µg/mL PMBN
- smaller increase in 1/η₁
- slight decrease in k_1
- large decreases in k_2 , η_2

TIME-RESOLVED RESPONSE TO PMB

rapid loss of integrity followed by slow recovery

TIME-RESOLVED RESPONSE TO PMBN

• two-step response with delayed response for loss of integrity

EFFECT OF LOW PMB CONCENTRATION

• before & after 1 h exposure to 5 μ g/mL PMB

- *P. aeruginosa* PAO1 5 μg/mL PMB
- smaller number of compromised cells
- large decrease
 in k₁
- qualitatively different results consistent with different mechanism

m/Ns) [Lu et al., Soft Matter (2014)]

KEY RESULTS FOR PMB & PMBN

- $1/\eta_1$ provides measure of loss of integrity of cell envelope
 - smaller effect for PMBN
 - consistent with PMBN affecting only OM & PMB affecting both membranes both membranes
- abrupt changes to all parameters after certain time of exposure
 - suggests the existence of critical concentration
 - more abrupt change for PMB exposure consistent with promoted uptake mechanism
- large decreases in $k_2 \& \eta_2$ for both PMB & PMBN
 - less elastic & less viscous more water-like response
 - consistent with periplasm becoming more diluted

VISCOELASTIC MODEL OF CELL

 can provide physical interpretation of phenomenological parameters

SUMMARY

- viscoelastic properties of bacterial cells
 - AFM creep deformation experiment is an *in situ*, reliable measure of mechanical response
 - effect of cationic peptides
 - distinct differences for structurally similar compounds
 - insight into mechanisms of action

www.physics.uoguelph.ca/psi

ACKNOWLEDGEMENTS

- viscoelastic properties of bacteria
 - Terry Beveridge
 - Virginia Vadillo-Rodriguez
 - Shun Lu
 - Grant Walters
 - Richard Parg
 - Sarah Schooling
 - Joe Lam
 - Peter Lau

Grant

0

Richard

Joe

Peter

