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Recent STEHM High-Resolution Performance and 
Future Applications 

Three presentations 
 
•  Structure of the STEHM plus recent performance 

and possible applications 

•  Special features of STEHM plus possible 
applications 

•  Cost of STEHM 
 



   
The STEHM 
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The STEHM’s Energy Spread 

Co
un
ts

eV

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

28000

30000

32000

34000

36000

38000

40000

Co
un
ts

-1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
eV

60kv 16ev disp 0.32ev rez 0.10 sec

60 kV – 0.32 eV for 0.1 s 
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Beam current – 7 µA 
Convergence angle, α - ? 
Source brightness - ? 

Maximum emission stable for hours – high emission for days. 
Performance needs to be measured. Will be reported later. 
The energy spread will improve with age as the tip flattens.  

FWHM 



   
STEHM’s TEM 

Au lattice image 
 

TEM specimen 
made insitu by 

specimen 
ablation by 

electron beam 



   
TEM Imaging at Edge of Specimen 

A 

B 

A – electrons traveling around the outside of atomic column 
B – electrons traveling along core of atomic column 

Note the change in channeling of the electrons from passing around 
the atoms (dark contrast) to along the atomic core (white contrast) 



   

Au lattice image 
showing 

dynamic imaging 
contrast, d, 

under focus, U, 
over focus, O, 

exactly infocus, I, 
atomic plane 
relaxation, R. 
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Ultra-stable STEHM Imaging 

TEM image of gold crystals on an amorphous carbon substrate taken for 120 
seconds, the maximum recording time available, using the Gatan USC 1004 2k 
x 2k camera, b) enlargement of the centrally located gold crystal to more 
easily see the presence of lattice fringes, verified in c) the Fourier transform. 
Useful for low-dose, beam-sensitive specimen such as biology and soft 
specimen. 



   
STEHM’s TEM Au Lattice Imaging 

Atomic core imaging condition 
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Problem – Dynamic diffraction (coherent information 
transfer) and the intensity decreases with scattering angle 



   

Young Fringe Measurement of STEHM’s 
Specimen Information Transfer 

Problem - Intensity decreases with scattering angle – improved 
measurement possible using DBI of amorphous materials 

Young’s fringe pattern from tungsten specimen 
recorded at 300 kV for 4s using STEHM image 
having Nyquist frequency of 38.3 nm-1. 

Projected fringe contrast for two perpendicular 
directions from the Young’s fringe pattern. 

H. Müller et al., Nuclear Inst. and Methods in Physics Research A  V645 (2011) 20.  



   
STEHM’s Aplanatic TEM 

(Correction of Spherical and Coma Aberrations) 

Tilt tableau with an outer tilt angle of 60mrad. The individual positions of the 21 
diffractograms corresponds to the position of the illumination tilt. 

45 mrad 

60 mrad 

Necessary for 
determining 
coherence 
properties of 
quasiparticles 
-  phonons 
-  plasmons 
-  magnons 
-  etc. 

Increases HR 
imaging field of 
view from 100 nm 
to 1 mm. 



   
Electron Holography 

Visualizing the “unseen” world. 
 
 Possible to see at the atomic scale: 

 •  magnetic fields 
•  electrostatic fields 
•  strain fields 
•  temperature 
•  composition 
•  identify type and number of 

 atoms in lattice image 



   

STEHM’s Images of Core Shell Ni/NiO 
Nanoparticles 

Simulated icosahedral Ni nanoparticle on amorphous 
Carbon substrate 



   
STEHM’s Images of Core Shell Ni/NiO 

Nanoparticles 

STEHM image of Ni/NiO nanoparticle on amorphous 
Carbon substrate 
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Ni 
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STEHM’s Images of Core Shell Ni/NiO 

Nanoparticles 

STEHM image of Ni/NiO nanoparticle on amorphous 
Carbon substrate 

a-C 

Ni 

NiO 



   
STEHM’s Images of Core Shell Ni/NiO 

Nanoparticles 

Please use SiNitride 
substrate to support 
specimen instead of a-
carbon to reduce 
background noise. 



   

Reference (Empty) Hologram 



   

STEHM’s Hologram Images of Core Shell Ni/NiO 
Nanoparticles 
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Nanoparticles 

Ni 

NiO 

Atomic steps  
at interface 



   
STEHM’s Hologram Images of Core Shell 

Ni/NiO Nanoparticles 
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Filtered Electron Holography 

1)  Spatially 
  - on diffraction plane 

 
2) Energy-loss 

  - using energy window 
  - separate energy loss peak-of-interest 

 from zero- loss peak and other peaks 
 using GIF.  



   

Spatial Filtering on Diffraction Plane 
Zero-loss & Phonon-loss Intensities for GaAs 

0.2 0.4 0.6 0.8 1.0

2

4

6

8

10

s (1/Å) 
0               10                20 

φ (mrad) 

222 444 666 

Phonon-loss 

total 

Zero-loss 

atomic planes 

Doyle and Turner Acta Cryst. (1968). A24, 390 

Aplanatic STEHM required 

Intensity 



   

Interfered Regions in Diffraction (k-) Space 

1 – elastically scattered, 
Bragg diffracted beams 
 
2 – inelastically scattered, 
phonon loss electrons 
from nuclear core (Z – 
contrast imaging) 
 
3 – inelastically scattered, 
phonon loss electrons 
from thermal vibration of 
atoms 



   

R. A. Herring, G. Pozzi, T. Tanji and A. Tonomura, 
"Interferometry using convergent beam electron 
diffracted beams plus an  electron biprism" 
Ultramicroscopy 60 (1995) 153 - 168. 

Diffracted Beam Interferometry/
Holography 
(DBI/H) 

Hologram of the main beam (000) 
interfering with the 111 diffracted 
beam of GaAs.  

Invented during Tonomura Electron 
Wavefront Project. 
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Spatial-filtering 
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zero loss electrons 
generated from a 
Germanium 
specimen. 
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Thermal Diffuse Scattering of Electrons 
(low-angle diffusely scattered electrons) 

Electron diffraction pattern recorded from GaAs, showing the 
presence of diffuse scattering streaks between the Bragg reflections 
due to thermal vibration of the atoms in the crystals.  
Z.L. Wang, Micron 34 (2003) 141. 

TDS Intensity 
due to thermal 
vibration of 
atoms. 



   
Measurement of Mean Atomic Vibration 

Amplitude, u 

a) Interference of the 000 and 222 beams of Aluminum resulting in the 
formation of fringes in the intensity of region b shown in b) used to measure 
the mean displacement of atoms, u, of 12 pm -  a first time measurement. 

( ) 2222
21 sin16 λθπ Burrk −=−

u = 12 pm 

Herring, Microscopy 62 (2013) S99 – S108. 



   
Can be used to: 

•  determine energy of molecular dynamic 
reactions 

•  measurement of time using frequency of 
atomic vibrations 

Mean Atomic Vibration Amplitude, u 



   Condenser Aperture 
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, E 

Self-Interference of Elastically & Inelastically Scattered Electrons 
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Dynamic diffraction reduced by: 
 1) thin specimen 
 2) high angle interference 
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Self-Interference of Amorphous Surface Layer Intensity  
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Herring et al JEM 61 (2012) 17 -23. 
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Fringe Spacing ((arbitrary units) 

 γ ~ 0.1 

1 

2.7 mrad 

000+220g 

440g 

Fringes at 1 

Fringe Contrast at 1 
Herring, Saitoh, Tanji, Tanaka JEM 61 (2012) 17 -23. 

amorphβφ 2=

Phase Measurement of Amorphous GaAs Material 



   
Higher Order Laue Zone (HOLZ) Lines for 

Internal Strain Measurements 

Super-high 
resolution 
strain 
measurements 

Herring et al Microsc 
& Microanalysis 
(Nashville, 2011) 

bright field zero  order  
beam – HOLZ line 

dark field 320 beam –  
with HOLZ line 



   Combined with 
confocal electron 
holography for 3D 
measurements of 
strain 

t
g Rˆ8 ⋅

=φ
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Herring, Saitoh, Tanji, Tanaka, unpublished. 

Enables higher-resolution 
measurement of strain 
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Formation of Electron Vortice Beams 

B J McMorran et al. Science 2011;331:192-195 



   

Large Orbital Angular Momentum 

B J McMorran et al. Science 2011;331:192-195 

Over-focused 
 
to  
 

Under-focused 



   

Spin Polarized Electron Beams 

Far-field ExB-filtered beam profiles for 
a) l=0, b) l=2, c) together showing 
discriminating radius and d) intensity 
profiles. 
Grillo et al, PRL 108 (2012) 044801. 

STEHM’s EVB + ExB images 



   

Specimens can be solids, liquids and gases. 



   Catalysts Interactions 



   
Summary 

The STEHM  
  
•  One awesome electron microscope 

•  Enabling awesome science 



   
STEHM Team 

 
Collaboration between:  
 
    Hitachi, HHT Japan + HHT Canada 

 
    CEOS, Germany  

 
    UVic, Canada 
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Don’t use the ABNORMAL infrastructure 
 

Use the STEHM infrastructure for what its worth! 
 

See: 
Lab Manager - Elaine Humphrey 

STEHM infrastructure Trainer – Adam Schuetze 
http://stehm.uvic.ca/ 

 

In Conclusion 



   

Don’t use the ABNORMAL infrastructure 
 

Use the STEHM infrastructure for what its worth! 
 

See: 
Lab Manager - Elaine Humphrey 

Trainer and Engineer – Adam Schuetze 
http://stehm.uvic.ca/ 

 

In Conclusion 



   


