Twenty years ago Dr. Edward Ishiguro came up with a solution to a problem that had stumped scientists since the discovery of penicillin in 1928.

That problem was penicillin tolerance — penicillin's inability to kill bacteria when they are not growing. Growing bacteria cells are susceptible to penicillin, but non-growing cells are tolerant.

Though scientists had long been aware of this phenomenon, they had not been able to overcome it. Not, that is, until Ishiguro, who is now chair of biochemistry and microbiology at the University of Victoria, realized tolerance was directly related to cell starvation.

“Ishiguro had long suspected a connection between cell starvation and penicillin tolerance, and he still remembers the moment that he realized how he could test his theory,” says Ishiguro. “It was a rainy Saturday afternoon idea that just cropped up,” he says. It turned out to be the idea that launched his career.

Penicillin and similar antibiotics work by targeting the cell wall of bacteria. Starving non-growing cells produce a chemical called guanosine tetraphosphate which scientists have found is a signal for the cell to shut down its energy-consuming operations and go into hibernation — a state of inactivity. “It’s like an energy conservation signal,” says Ishiguro. “Pennywise, when they are not being used.”

Using E. coli bacteria as a model, Ishiguro developed a test that showed that guanosine tetraphosphate triggers a shutdown in penicillin’s target — a protein responsible for the construction and expansion of the cell wall — making it impossible for penicillin to interact with it and destroy the bacteria. Subsequently, Ishiguro found that he could inhibit the production of guanosine tetraphosphate in starving cells.

“Guanosine tetraphosphate — the starvation signal chemical — is made by a protein associated with the cell’s ribosome, the structure on which cells protein is produced,” says Ishiguro. “We found that drugs called ribosomes, by pure chance, inhibit the formation of the chemical. This fools the bacteria into behaving like normal growing cells and keeps them susceptible to penicillin.”

Ishiguro says that while a combination of these ribosome-targeting drugs and penicillin can kill non-growing bacterial cells, such combination therapy isn’t perfect.

“They don’t target the specific action of the protein, and, moreover, many bacteria have already become resistant to these drugs. Resistance — which is not the same as tolerance — results when bacteria adapt to an antibiotic that has been in use for a long time. For the past two years, Ishiguro’s team has been studying the protein that releases guanosine tetraphosphate, an effort that could lead to new drug targets. This protein may represent an important new drug target.

“The discovery of new drug targets is so important today due to the growing problem of bacterial drug resistance,” he says.

Research into guanosine tetraphosphate is also crucial because scientists have found the chemical allows bacteria to resist the body’s defence mechanisms as well as drug treatment. Starving cells, for example, can tolerate acid attacks in the stomach. “The human body has perfectly good mechanisms to get rid of the bugs,” says Ishiguro. “If we can short-circuit the production of this chemical we can make bacteria more sensitive to both drugs and the body’s own defences.”

Ishiguro has received funding from the Natural Sciences and Engineering Research Council of Canada. E engineering Research Council for 20 years. He now receives more than $60,000 a year from the agency.

“I don’t want that funding but there is a good defence mechanism,” he says. “It has supported many of my students, who are all doing very well now.”

Teaching and research, a symbiotic relationship

Like all UVic faculty members, Dr. Ed Ishiguro is both a teacher and a researcher. For him, the two go hand-in-hand.

“I firmly believe that I would not have come very far,” he says. “It has supported many of my students, who are all doing very well now.”

Ishiguro has taught introductory microbiology for 20 years, designed and teaches the microbial molecular biology course, and he coordinates the introductory course on biochemistry and human health.

“Ishiguro has supervised nine graduate students who have completed their degrees and two more graduate students who have completed their degrees. He has also trained three postdoctoral fellows and three research assistants, and dozens of undergraduates have been supported by his research grants and have made important contributions to his research.

SHARPEN YOUR KNOWLEDGE

• Want to watch E. coli being destroyed by penicillin?
 There’s a short video at http://www.micro.msb.ca/Video/Penicillin.html and at http://www.bbc.co.uk/bc/bbc/bbc impoverishment

• A wealth of information on penicillin is available at the Britannica site http://www.britannica.com/bcom/en/b/article/9/0,7067,21433,00.html

• Who discovered penicillin and what did it have to do with World Wars I and II? See http://www.pbs.org/wgbh/aso/databank/entrap/entrap.html

Kirkon Rodzman is a UVic writing public, he wrote this story as a participant in the SPARK program (Students Promoting Awareness of Research Knowledge), funded by the Natural Sciences and Engineering Research Council of Canada.

\[O ne ne part human, ten parts germs\]

The adult human body is composed of about 10 trillion human cells. In addition, it is home to approximately 100 trillion microorganisms (aka. “germs”). The microbes that live on humans are called the normal microflora, most of which are bacteria in the intestinal tract. Far from threatening our health, the normal microflora play an essential role in keeping us healthy. They apparently provide a competitive barrier, preventing harmful microbes from invading our bodies. Although some of our normal microflora could cause serious diseases, in healthy people their activities are kept in check by other members of the normal microflora.

Our resident microorganisms are important, and we should care for these microbes as much as we care for our own cells (for example, eating yogurt to help re-establish your intestinal microflora after being treated with a course of antibiotics).

Keeping one step ahead of the microbes

Antibiotics are chemicals produced by living things that prevent the growth of microorganisms and, in some cases, even kill them.

Only a small fraction of the known antibiotics are used to treat human disease. M any antibiotics have toxic side-effects that are harmful to humans.

And the number of these useful antibiotics continues to decrease at a frightening pace. M icroorganisms rapidly develop resistance to antibiotics, and, once that happens, they are no longer affected by them. T he more we use antibiotics, the more microorganisms build up resistance to them.

Developing new antibiotics that are effective against these resistant microbes is a major priority. T he problem is that we are quickly running out of options. T herefore, to prevent the spread of antibiotic resistance, we should use antibiotics only when it is absolutely necessary.

FACTS FROM THE EDGE

• UVic researchers recently received nearly $24 million in research and equipment grants from the Natural Sciences and Engineering Research Council and $13.7 million from the Social Sciences and Humanities Research Council.

• UVic has been allocated 29 new Canada Research Chairs in a federally funded program to help Canadian universities recruit research stars of today and tomorrow in the global intellectual marketplace.

• UVic public lectures, performances, conferences, exhibitions, and athletics events attract an incremental annual audience of more than 300,000.

• UVic operates the third-largest co-operative education program in Canada, annually placing nearly 3,000 students in paid work-terms related to their field of study with employers around the world.

• UVic generates $299 million in local economic activity each year.