Phil 203: Elementary Formal Logic
Syllabus

Instructor: Dr. Audrey Yap (ayap@uvic.ca)
Office: CLE B307
Phone: 721-7510
Office Hours: Thursdays: 11:00-1:00, and by appointment
Computer Lab Hours: Thursdays: 10:00-11:00 in CLE A010
Class Information: TWF 10:30-11:00 in ECS116
Course Website: Through CourseSpaces. http://coursespaces.uvic.ca

About the book: You need an unused registration ID, which you will find on the CD sleeve if you purchase a physical copy. You do not need a physical copy of the textbook. An easy way to purchase Language, Proof, and Logic is online through this site: http://ggweb.stanford.edu/store.

Course Objectives:
This is an introductory course in formal logic that covers the use of symbolic techniques for the analysis and construction of good arguments. Proofs in formal logic mirror the structure of good arguments in English generally, so to construct them, we learn about good methods of inference. Not every method of reasoning results in a valid argument, so it is useful to learn about ways of differentiating good from bad methods. Since this course covers the basics of modern symbolic logic, it is extremely useful for any students who might want to continue studying logic; but any students interested in writing better arguments will benefit from it.

Coursework:
There will be 11 homework assignments, roughly one per week. Homework must be submitted by 5pm on the due date, unless otherwise specified. Most of the homework is turned in using the Submit software in the LPL package, and will be marked electronically. Although the software allows you to submit your assignment to the instructor multiple times, only the first submission will be counted for your grade. This means that the entire assignment must be submitted at the same time. If you wish to check your work before submitting it, you can submit the assignment only to yourself as many times as you like. Some additional questions will be answered separately on CourseSpaces. All assignments will be weighted equally. Late homework will generally not be accepted, but only the best ten will be counted. Exceptions to these rules will only be made in the case of documented illness or other extenuating circumstances which interfere with the timely completion of the assigned work. Such documentation must be received within a week of the due date.

Students may work on the homework assignments in small groups, but must write their
answers to the homework independently. In particular, you must create your own solution files when turning in your homework, since the software can detect copied files. Plagiarised work will not be given credit. For more information on plagiarism, see the University Calendar.

Homework will be worth 25% of the final grade. There will also be two non-cumulative midterms (20% each) to be held during class, and a cumulative final to be held during the final examination period to be scheduled by the Registrar (35%). Rewrites will only be scheduled in cases of documented illness or other extenuating circumstances. Such documentation must be received within a week of the exam date. Percentage grades correspond to letter grades according to the following scale:

- 90-100 = A+; 85-89 = A; 80-84 = A-; 77-79 = B+; 73-76 = B; 70-72 = B-; 65-69 = C+; 60-64 = C; 50-59 = D; 0-49 = F.

Schedule:

- **Week One: Jan 6, 7, 9**
 Topic: The Language of Formal Logic (1.1-1.3, 2.1)

- **Week Two: Jan 13, 14, 16**
 Topic: Atomic Sentences, Boolean Connectives (2.5, 3.1-3.7)
 HW 1 due Jan 16

- **Week Three: Jan 20, 21, 23**
 Topic: Boolean Connectives (4.1-4.5)
 HW 2 due Jan 23

- **Week Four: Jan 27, 28, 30**
 Topic: Formal Proofs (6.1-6.6)
 HW 3 due Jan 30

- **Week Five: Feb 3, 4, 6**
 Topic: Formal Proofs (6.1-6.6)
 Test One: Feb 4
 HW 4 due Feb 6

- **Week Six: Feb 17, 18, 20**
 Topic: Conditionals (7.1-7.2, 8.2)
 HW 5 due Feb 20

- **Week Seven: Feb 24, 25, 27**
 Topic: Introduction to Quantifiers (9.1-9.6)
 HW 6 due Feb 27
• Week Eight: Mar 3, 4, 6
 Topic: Quantifiers (10.1-10.5)
 Test Two: Mar 4
 HW 7 due Mar 6

• Week Nine: Mar 10, 11, 13
 Topic: Quantifiers and Translation (11.1-11.4)
 HW 8 due Mar 13

• Week Ten: Mar 17, 18, 20
 Topic: Proofs with Quantifiers (13.1-13.3)
 HW 9 due Mar 20

• Week Eleven: Mar 24, 25, 27
 Topic: Proofs with Quantifiers, Numerical Quantifiers (14.1-14.2)
 HW 10 due Mar 27

• Week Twelve: Mar 31, Apr 1
 Topic: Review
 HW 11 due Apr 3

Note: This syllabus is tentative, and should only be used to give a rough guide to the course schedule. Additional readings may be assigned, and dates may be changed if necessary.