Sign No. 3B

Vehicular - Building Identification

Sheet List

<table>
<thead>
<tr>
<th>Sheet Number</th>
<th>Sheet Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>title sheet and drawing list</td>
</tr>
<tr>
<td>02</td>
<td>typography, colours and pictograms</td>
</tr>
<tr>
<td>03</td>
<td>sign design - overview</td>
</tr>
<tr>
<td>04</td>
<td>sign design - graphic design details</td>
</tr>
<tr>
<td>05</td>
<td>sign construction - sections</td>
</tr>
<tr>
<td>06</td>
<td>sign construction - details</td>
</tr>
<tr>
<td>07</td>
<td>general notes</td>
</tr>
</tbody>
</table>
core colours

- clear anodized coating
 application: sign structure
- PANTONE 185 C
 application: pinstrip, arrows
- PANTONE 426 C
 application: text, crest - monochromatic
- PANTONE 7541 C
 application: background, back panel (single sided sign) crest - reversed monochromatic
- gary oak motif - digital file is to be delivered by University of Victoria

samples of typeface family

Myriad Pro Semi Bold

ABCDEFGHJKLmnopqrstuvwxyz
abcdefghijklmnopqrstuvwxyz
1234567890

University of Victoria Logo, horizontal standard

full colour

opaque monochromatic

opaque monochromatic reversed

project: Campus Wayfinding
number: FM 09-8567
issue date: Jan 31, 2012

sign: Sign No. 3B - Building Identification
typography, colours and pictograms
as noted
Sign No. 3B - Building Identification

- Building Name
- Occupant Line 1
- Occupant Line 2

- Strong Bldg

- Text Line 1
- Text Line 2

- Building Name
- Single Line - Occupant
- Double Line Stacked
- Occupant Name Line 2

Building name with occupant names
scale 1:15

Building name, text in one line
scale 1:15

Building name, text in two lines
scale 1:15

Building name, text in two lines (double line stacked)
scale 1:15

Project: Campus Wayfinding
Number: FM 09-8567
Issue date: Jan 31, 2012

Sign: Sign No. 3B - Building Identification
Sheet name: Sign design - overview
Scale: as noted

Sheet number: 03
Description
Digitally printed vinyl protected with anti-graffiti, optically clear overlaminate
Aluminum panel size (one piece): 1000 mm x 800 mm x 6.4 mm
See sheet 05 for details.

Vinyl: 3M IJ180, MPI 2005 or equivalent
Overlaminate: 3M 8914, Avery DOL 6060 or equivalent.

1) One piece vinyl to be printed on, installed as per manufacturer’s recommendations.
2) Use compatible UV inks and overlaminates as recommended by manufacturer
3) Wrap vinyl and overlaminate over the edges of the aluminum panel.
4) If single sided sign then back panel to receive vinyl printed with PANTEONE 7541 C

Refer to Adobe Photoshop files for detailed sample layout

Project: Campus Wayfinding
Number: FM 09-8567
Issue Date: Jan 31, 2012

Sign: Sign No. 3B - Building Identification
Sheet: Sheet name - graphic design details as noted
Scale: scale 1:15

University of Victoria

Building Name

Occupant Line 1

Occupant Line 2

760 max. length of text

Building Name

Strong Bldg

760 max. length of text

Text Line 1

Text Line 2

760 max. length of text

Pin strip to be 15 mm wide (typ)

GaryOak Motif (typ)

Crest height: 95 mm

leading: 310pt (auto)

Opaque monochromatic reversed crest

Pin strip to be 15 mm wide (typ)

building name, text in one line

building name, text in two lines
1125

leave 10mm min. gap between post and rain cap (typ)
alu. rain cap mechanically fastened to stringer with tamper resistant screws, as required.
rain cap to have clear anodized finish.

3.2mm thick aluminum rain cap, welded to post
rain cap to have clear anodized finish (typ)

12 mm dia. tamper resistant s/s thru bolt (typ)

38 mm dia. hole for bolt installation

40mm x 10mm aluminum spacer
w/ clear anodized finish
Spacer to terminate 50mm from top and bottom of framing (typ)

102mm x 102mm x 6.4mm aluminum square tube
w/ clear anodized finish (typ)

225mm x 225mm x 19mm base plate
w/ clear anodized finish welded to post

4-19mm s/s anchor bolts
with washers and leveling nuts (typ)
nuts to extend max 10mm above bolt
fill with 35 MPa non-shrink grout (typ)

12 mm dia. tamper resistant s/s thru bolt (typ)

51mm x 51mm x 4.8mm aluminum square tube
internal framing
all connection to be welded (typ)

6.4mm thick aluminum sign panel
to be mechanically fastened to internal framing with tamper resistant s/s screws

25

1200

600 mm
leave open at bottom (typ)
base to extend min 50mm above ground
slope of grade varies

Slope of grade varies

25

19

600

600 mm

General Note:
Manufacturer to verify all dimensions prior to sign fabrication. All discrepancies should be reported to the Architect.
6.4mm thick aluminum plate (sign panel)

51mm x 51mm x 4.8mm aluminum square tube (internal framing)

102mm x 102mm x 19mm aluminum square tube w/ clear anodized finish.

51mm x 51mm x 4.8mm aluminum square tube (internal framing)

6.4mm thick aluminum plate (sign panel)

38 mm dia. hole for bolt installation

3.2mm thick aluminum rain cap beyond w/ clear anodized finish welded to post (typ)

51mm x 51mm x 4.8mm aluminum square tube (internal framing)

6.4 mm thick aluminum rain cap with clear anodized finish

12 mm dia. tamper resistant s/s thru bolt and washer (typ)

40mm x 10mm aluminum spacer w/ clear anodized finish

s/s self tapping, tamper resistant screws (typ)

12mm dia. tamper resistant s/s thru bolt (typ)

38mm dia hole (bolt access)

51mm x 51mm x 4.8mm aluminum square tube (internal framing)

19mm s/s anchor bolts with washers and leveling nuts. Bolt to extend 10mm max. above nut. Nuts to be locked with threadlocker - clean any visible residue after application (typ) (see also sheet 07)

225mm x 225mm x 19mm aluminum base plate w/ clear anodized coating welded to post (typ)

section detail 2 scale 1:2

section detail 1 scale 1:2

section b (slip base) scale 1:5

General Note: Manufacturer to verify all dimensions prior to sign fabrication. All discrepancies should be reported to the Architect.

project: Campus Wayfinding
number: FM 09-8567
issue date: Jan 31, 2012

sign: Sign No. 3B - Building Identification
sheet name: sign construction - details
scale: as noted

sheet number: 06

University of Victoria
GENERAL NOTES

1. Provide self-adhesive sign ID stickers. ID’s should correspond with ID’s shown on location plan.

2. Fasteners:
 - foundation (anchor bolts):
 - bolts: Fastenal part #47406 (1/2” s/s threaded rod)
 - washers: Fastenal part #70714 (1/2” s/s washers)
 - nuts: Fastenal part #70714 (1/2” s/s nuts)
 - posts:
 - thru bolts: Fastenal part #174786 (1/2” x 5” button Socket Cap Screw)
 - thru bolt washers: Fastenal part #71021 (1/2” s/s washers)
 - thru bolt nuts: 70714 (1/2” s/s nuts)
 - panels:
 - security screws panel attachment: Fastenal part #BS0160024SSH200 (10-24 x 3/4” button head security screw)
 - rain cap attachment: Fastenal part #BS0160024SSH200 (10-24 x 3/4” button head security screw)
 - Threadlocker: Locktite 271 Red

3. Threadlock®: Locktite 271 Red

4. Whenever anchor bolts are cut, contractor to ensure cut surfaces (terminated coating) are protected against rusting.

5. Manufacturer to verify all dimensions prior to sign fabrication. All discrepancies should be reported to the Architect.

STRUCTURAL NOTES

DRAWINGS

1. These drawings show the completed project. The drawings do not show components that may be necessary for construction safety, which is the responsibility of the contractor.

2. The use of these drawings is limited to that indicated in the revisions column.

3. The information on these drawings shall not be used for any other project or works.

DESIGN

1. The structures shown have been designed in substantial accordance with the British Columbia Building Code 2006, which is based on the National Building Code of Canada 2005.

2. The following wind loads and factors were used: v50=0.63kPa, lw=1.0-ULS, 0.75-SLS.

FIELD REVIEW BY STRUCTURAL ENGINEER

1. Structural Engineer provides field review only for the work shown on these structural drawings, and it is conducted with such frequency as Structural Engineer deems appropriate to ascertain that the work is in general conformance with the documents prepared by Structural Engineer.

2. Field review by Structural Engineer is not carried out for the Contractor’s benefit, nor does it make Structural Engineer guarantors of the Contractor’s work. It remains the Contractor’s responsibility to build the work in conformance with the contract documents. Structural Engineer shall not be responsible for the acts or omissions of the Contractor, Sub-Contractor, or any other persons performing any of the work or for the failure of any of them to carry out the work in accordance with the contract documents.

3. The work to be reviewed shall be generally complete.

4. Provide 24 hours advance notice of each required field review. Field reviews shall be scheduled to be carried out during normal business hours unless special arrangements are made with Structural Engineer.

CONCRETE AND REINFORCING STEEL

2. Reinforcing shall conform to CAN/CSA-G30.18R – Grade 400MPa.

3. Portland cement shall be type gu unless noted otherwise.

4. Concrete work shall have a unit weight of 23±1 Kn/m3 (145±5 pcf) unless noted otherwise.

5. Concrete shall have a compressive strength of 35MPa at 28 days, and conform to exposure class C-1 with a maximum water-cement ratio of 0.40 and air content of 5-8%. Maximum aggregate size to be 19mm.

6. No calcium chloride is permitted, in any form, in any concrete mix. Curing and protection of concrete for hot, cold or dry weather is to be as per clauses 7.4.1.8 and 7.4.2 of CAN/CSA.

STRUCTURAL ALUMINUM

1. Aluminum sections shall be new.

2. Aluminum alloys shall conform to the Aluminum Association publication Aluminum Standards and Data ISO 6361-2 or ISO 6362-2.

3. Extruded shapes, Tubes, Bolts, and Plate to be 6061 alloy uno.

4. Aluminum in contact with concrete or grout shall be given a heavy coat of alkali-resistant bituminous paint or other equivalent coating before installation.

5. Welding operators and procedures shall be qualified according to CSA W47.2.

6. Submit shop drawings for review prior to start of steel fabrication.

7. Fabrication practices and tolerances shall be in accordance with CAN/CSA-S16, except bolt holed edge distance tolerance to be -0, +2mm.

8. Anchor and connection bolts to be ASTM A193 Stainless Steel. Anchors shall be embedded 300mm into concrete, complete with a nut and washer each end.

9. Unless noted otherwise, column base plates shall be 20 mm minimum thick. Anchor bolt holes shall be punched undersize and reamed to size.

10. Provide 6 mm cap plates for all tube members uno.

11. Aluminum shall be connected with fillet welds all-around uno. Weld size shall match the wall thickness of the thinnest part being connected uno. Welds to be ground smooth.

TAMPER RESISTANCE AND CONNECTIONS

1. Connection hardware to be stainless steel uno.

2. Aluminum panels to be connected to structure with 6.4mm diameter stainless steel self-tapping screws at 50mm maximum centre to centre spacing.

3. Non-removable panels may be welded or glued by the manufacturer, as approved by Structural Engineer.

4. Panel connection screws to be tamper resistant “Tors-Pin” screws as supplied by O.E.M. Hardware of Surrey BC, or equivalent as approved by Structural Engineer.

5. Visible connection bolts shall be “Pentagon” tamper resistant bolts, with “Pentagon” nuts as supplied by O.E.M. Hardware of Surrey BC, or equivalent as approved by Structural Engineer. Anchor bolts to be secured with “Pentagon” security nuts.