<table>
<thead>
<tr>
<th>Sheet Number</th>
<th>Sheet Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>title sheet and drawing list</td>
</tr>
<tr>
<td>02</td>
<td>typography, colours and pictograms</td>
</tr>
<tr>
<td>03</td>
<td>sign design - overview</td>
</tr>
<tr>
<td>04</td>
<td>graphic design details</td>
</tr>
<tr>
<td>05</td>
<td>sign construction - sections</td>
</tr>
<tr>
<td>06</td>
<td>sign construction - details</td>
</tr>
<tr>
<td>07</td>
<td>general notes - structural</td>
</tr>
</tbody>
</table>

Sign No. 10
Pedestrian - Intermediate Directional
core colours

- clear anodized coating
- PANTONE 165 C
- PANTONE 426 C
- PANTONE 7541 C
- gary oak motif - digital file is to be delivered by University of Victoria

samples of typeface family

Myriad Pro Semi Bold

ABCDEFghijklmnopqrstuvwxyz
abcdefghijklmnopqrstuvwxyz

University of Victoria Logo, horizontal standard

arrow style and arrow size in relation to text height

University of Victoria Logo, horizontal standard
Campus Wayfinding
FM 09-8567
January 31, 2012

Sign No. 10 - Intermediate Directional
sign design - overview
as noted

scale 1:15
Description
Digitally printed vinyl protected with anti-graffiti, optically clear overlaminates
Front/Back aluminum panel size (one piece): 960 mm x 1250 mm x 6.4 mm
Top Aluminum panel size (one piece): 194 mm x 960 mm x 3.2 mm
Side aluminum panel size (one piece): 194 mm x 1243.6 mm x 3.2 mm
See sheet 05 for details.

Vinyl: 3M IJ180, MPI 2005 or equivalent
Overlaminate: 3M 8914, Avery DOL 6060 or equivalent.

1) One piece vinyl to be printed on, installed as per manufacturer’s recommendations.
2) Use compatible UV inks and overlaminates as recommended by manufacturer
3) Wrap vinyl and overlaminates over the edges of the aluminum panels.

Refer to Adobe Photoshop files for detailed sample layout
General Note:
Manufacturer to verify all dimensions prior to sign fabrication. All discrepancies should be reported to the Architect.
s/s self tapping, tamper resistant screws - as required (typ)

6.4mm thick aluminum (sign panel) typical on front and back

3.2 mm thick aluminum plate on sides and top (typ)

6.4mm thick aluminum (sign panel) typical on front and back

3.2 mm thick aluminum plate mechanically fastened to structure

s/s self tapping, tamper resistant screws - as required (typ)

6.4mm thick aluminum (sign panel) typical on front and back

3.2 mm thick aluminum plate on sides and top (typ)

General Note:
Manufacturer to verify all dimensions prior to sign fabrication. All discrepancies should be reported to the Architect.

section detal 1 scale 1:2

plan detal 2 scale 1:2

General Note:
Manufacturer to verify all dimensions prior to sign fabrication. All discrepancies should be reported to the Architect.

TOP

3.2 mm thick aluminum plate on sides and top (typ)

6.4mm thick aluminum (sign panel) typical on front and back

51mm x 102mm x 4.8mm aluminum rectangular tubes

51mm x 102mm x 4.8mm aluminum rectangular tubes

51mm x 51mm x 4.8mm aluminum square tube beyond (sign framing)

3.2 mm thick aluminum plate on sides and top (typ)
GENERAL NOTES

1. Provide self-adhesive sign ID stickers. ID's should correspond with ID's shown on location plan.

2. Fasteners:
 - Foundation (anchor bolts):
 - Bolts: Fastenal part #47406 (1/2” s/s threaded rod)
 - Washers: Fastenal part #71021 (1/2” s/s washers)
 - Nuts: Fastenal part #70714 (1/2” s/s nuts)
 - Security screws panel attachment: Fastenal part #BS0160024SSH200 (10-24 x 3/4” button head security screw)
 - Threadlocker: Locktite 271 Red
 - Whenever anchor bolts are cut, contractor to ensure cut surfaces (terminated coating) are protected against rusting.
 - Manufacturer to verify all dimensions prior to sign fabrication. All discrepancies should be reported to the Architect.

STRUCTURAL NOTES (cont)

CONCRETE AND REINFORCING STEEL

2. Reinforcing shall conform to CAN/CSA-G30.18R – Grade 400MPa.
3. Cover to reinforcing steel to be 50mm uno.
4. Reinforcing shall be type gu unless noted otherwise.
5. Portland cement shall be type gu unless noted otherwise.
6. Concrete shall have a compressive strength of 35MPa at 28 days, and conform to exposure class C-1 with a maximum water-cement ratio of 0.40 and air content of 5-8%. Maximum aggregate size to be 19mm.
7. No calcium chloride is permitted, in any form, in any concrete mix. Curing and protection of concrete for hot, cold or dry weather is to be as per clauses 7.4.1.8 and 7.4.2 of CAN/CSA.

STRUCTURAL ALUMINUM

1. Aluminum sections shall be new.
2. Aluminum alloys shall conform to the Aluminum Association publication Aluminum Standards and Data ISO 6361-2 or ISO 6362-2.
3. Extruded shapes, Tubes, Bolts, and Plate to be 6061 alloy uno.
4. Aluminum in contact with concrete or grout shall be given a heavy coat of alkali-resistant bituminous paint or other equivalent coating before installation.
5. Welding operators and procedures shall be qualified according to CSA W47.2.
6. Submit shop drawings for review prior to start of steel fabrication.
7. Fabrication practices and tolerances shall be in accordance with CAN/CSA-S16, except bolt holed edge distance tolerance to be -0, +2mm.
8. Anchor and connection bolts to be ASTM A193 Stainless Steel. Anchors shall be embedded 300mm into concrete, complete with a nut and washer each end.
9. Unless noted otherwise, column base plates shall be 20 mm minimum thick. Anchor bolt holes shall be punched undersize and reamed to size.
10. Provide 6 mm cap plates for all tube members uno.
11. Aluminum shall be connected with fillet welds all-around uno. Weld size shall match the wall thickness of the thinnest part being connected uno. Welds to be ground smooth.

TAMPER RESISTANCE AND CONNECTIONS

1. Connection hardware to be stainless steel uno.
2. Aluminum panels to be connected to structure with 6.4mm diameter stainless steel self-tapping screws at 450mm maximum centre to centre spacing.
3. Non-removable panels may be welded or glued by the manufacturer, as approved by Structural Engineer.
4. Panel connection screws to be tamper resistant “Torx-Pin” screws as supplied by O.E.M.
5. Visible connection bolts shall be “Pentagon” tamper resistant bolts, with “Pentagon” nuts as supplied by O.E.M. Hardware of Surrey BC, or equivalent as approved by Structural Engineer.
6. Anchor bolts to be secured with “Pentagon” security nuts.

FIELD REVIEW BY STRUCTURAL ENGINEER

1. Structural Engineer provides field review only for the work shown on these structural drawings, and it is conducted with such frequency as Structural Engineer deems appropriate to ascertain that the work is in general conformance with the documents prepared by Structural Engineer.
2. Field review by Structural Engineer is not carried out to cover the Contractor’s benefit, nor does it make Structural Engineer guarantors of the Contractor’s work. It remains the Contractor’s responsibility to build the work in conformance with the contract documents. Structural Engineer shall not be responsible for the acts or omissions of the Contractor, Sub-Contractor, or any other persons performing any of the work or for the failure of any of them to carry out the work in accordance with the contract documents.
3. The work to be reviewed shall be generally complete.

DRAWINGS
1. These drawings show the completed project. The drawings do not show components that may be necessary for construction safety, which is the responsibility of the contractor.
2. The use of these drawings is limited to that indicated in the revisions column.
3. The information on these drawings shall not be used for any other project or works.

DESIGN
1. The structures shown have been designed in substantial accordance with the British Columbia Building Code 2006, which is based on the National Building Code of Canada 2005.
2. The following wind loads and factors were used: q50=0.63kPa, lw=1.0-ULS, 0.75-SLS.

SIGN NO. 10 - INTERMEDIATE DIRECTIONAL

FM 09-8567
January 31, 2012
07