Faculty of Engineering

COURSE OUTLINE

CENG450 – Computer Systems and Architecture

Term – Spring 2016 (201601)

Instructor
Dr. Nikitas Dimopoulos

Office Hours
Days: MR
Time: 14:30-15:00
Location: EOW 437

I can be reached via email (please use “CENG450 question” as your subject)

If you need to see me in person at a different time, please make an appointment (via email).
If you need to see me urgently, please try to see if I am in my office.

Course Objectives
The primary aim of this course is to explore computer architecture issues and their impact on the performance of a computer.

Learning Outcomes
The student will be able to
• Describe the benchmarking process and performance metrics
• Evaluate performance of a computer system
• Describe the control and data paths
• Analyze the use of pipelining in speeding-up computations
• Outline how a pipeline is controlled
• Assess the impact of branches and exceptions in pipeline processing
• Compare different dynamic scheduling techniques including Tomasulo and scoreboard
• Assess hierarchical memory organization
• Design and implement a simple pipelined CPU implementing a given instruction set.
• Demonstrate the ability to work in a group through a team-based project
• Demonstrate communication skills through a project report documenting team-based project work that designs and implements a simple pipelined CPU implementing a given Instruction Set.
• Use VHDL and Xilinx to implement the a simple pipelined CPU

Syllabus
We shall study topics such as how we define and measure performance, the impact of choosing an instruction set, organizing the various parts of a CPU (i.e. the control path and the data path). We shall study extensively how pipelining is used to speed-up computations, and what are the issues involved in controlling these pipelines.
We shall study the impact of exceptions, and how memory is organized so that it would keep-up with the data demand imposed by the "speedy" CPU.
The course includes as a project the design implementation and testing of a CPU.
In more detail, we shall study the following:
1. Performance metrics
2. Control and Data paths
3. Instruction set architectures and their impact on performance
4. Instruction and arithmetic pipelines
5. Pipeline hazards
6. Instruction level parallelism
7. Memory hierarchy

LECTURES

<table>
<thead>
<tr>
<th>A-Section(s):</th>
<th>A01, A02 / CRN 20362, 20363</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days:</td>
<td>MR</td>
</tr>
<tr>
<td>Time:</td>
<td>10:00-11:20</td>
</tr>
<tr>
<td>Location:</td>
<td>CLE A316</td>
</tr>
</tbody>
</table>

LAB

<table>
<thead>
<tr>
<th>B01</th>
<th>R 14:30-17:20</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA Babak Keshavarz Hedayati</td>
<td></td>
</tr>
<tr>
<td>Location:</td>
<td>ELW B328</td>
</tr>
</tbody>
</table>

Required Text

- **Title:** Computer Architecture A Quantitative Approach
- **Author:** Hennessy & Patterson
- **Publisher:** Morgan Kaufmann
- **Year:** 2007

Course web site: http://www.ece.uvic.ca/~ceng 450
Login: ceng450

References:

Assessment:

<table>
<thead>
<tr>
<th>Assignments:</th>
<th>2 %</th>
<th>Due Dates: TBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labs</td>
<td>30 %</td>
<td></td>
</tr>
<tr>
<td>Midterm</td>
<td>20 %</td>
<td>Thursday, February 18, 2016</td>
</tr>
<tr>
<td>Final Exam</td>
<td>48 %</td>
<td></td>
</tr>
</tbody>
</table>

Note: Failure to complete all laboratory requirements will result in a grade of N being awarded for the course. Failure to pass the final exam will result in a failing grade for the course. Homework will be assigned and collected, but it will not be corrected. Solutions will be posted after the due dates.

The final grade obtained from the above marking scheme for the purpose of GPA calculation will be based on the percentage-to-grade point conversion table as listed in the current Undergraduate Calendar.

Assignment of E grade and supplemental examination for this course will be at the discretion of the Course Instructor. The rules for supplemental examinations can be found in the current Undergraduate Calendar.

http://web.uvic.ca/calendar/FACS/UnIn/UARe/Grad.html

Note to Students:

Students who have issues with the conduct of the course should discuss them with the instructor first. If these
discussions do not resolve the issue, then students should feel free to contact the Chair of the Department by email or the Chair's Secretary to set up an appointment.

Accommodation of Religious Observance
http://web.uvic.ca/calendar/GI/GUPo.html

Policy on Inclusivity and Diversity
http://web.uvic.ca/calendar/GI/GUPo.html

Standards of Professional Behaviour
You are advised to read the Faculty of Engineering document *Standards for Professional Behaviour*, which contains important information regarding conduct in courses, labs, and in the general use of facilities.
https://www.uvic.ca/engineering/assets/docs/professional-behaviour.pdf

Cheating, plagiarism and other forms of academic fraud are taken very seriously by both the University and the Department. You should consult the entry in the current Undergraduate Calendar for the UVic policy on academic integrity.
http://web.uvic.ca/calendar/FACS/UnIn/UARe/PoAcI.html

Course Lecture Notes
Unless otherwise noted, all course materials supplied to students in this course have been prepared by the instructor and are intended for use in this course only. These materials are NOT to be re-circulated digitally, whether by email or by uploading or copying to websites, or to others not enrolled in this course. Violation of this policy may in some cases constitute a breach of academic integrity as defined in the UVic Calendar.